WO2023238750A1 - プラズマ処理装置内構造体、電極板及びプラズマ処理装置 - Google Patents

プラズマ処理装置内構造体、電極板及びプラズマ処理装置 Download PDF

Info

Publication number
WO2023238750A1
WO2023238750A1 PCT/JP2023/020281 JP2023020281W WO2023238750A1 WO 2023238750 A1 WO2023238750 A1 WO 2023238750A1 JP 2023020281 W JP2023020281 W JP 2023020281W WO 2023238750 A1 WO2023238750 A1 WO 2023238750A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
electrode
electrode plate
metal layer
gas
Prior art date
Application number
PCT/JP2023/020281
Other languages
English (en)
French (fr)
Inventor
文彬 有吉
寛大 山本
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023238750A1 publication Critical patent/WO2023238750A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present disclosure relates to a plasma processing apparatus internal structure, an electrode plate, and a plasma processing apparatus.
  • Patent Document 1 discloses a showerhead having an electrode plate having a plurality of gas ejection holes and functioning as an upper electrode, and an electrode support member having gas flow holes communicating with the gas ejection holes and supporting the electrode plate;
  • a plasma processing apparatus is disclosed that includes a high frequency power source that supplies high frequency power to an electrode support of a shower head.
  • the present disclosure provides a plasma processing apparatus internal structure, an electrode plate, and a plasma processing apparatus that reduce contact resistance.
  • An example of a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus An example of a cross-sectional schematic diagram of a shower head. An example of a partially enlarged schematic cross-sectional view of the shower head according to the first embodiment. An example of a bottom view of an electrode support body included in the shower head according to the first embodiment. An example of a top view of an electrode plate included in the shower head according to the first embodiment. An example of a top view of an electrode plate included in the shower head according to the second embodiment. An example of a bottom view of an electrode support included in the shower head according to the third embodiment. An example of a top view of an electrode plate included in the shower head according to the third embodiment.
  • FIG. 1 is an example of a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
  • the main body 111 includes a base 1110 and an electrostatic chuck 1111.
  • Base 1110 includes a conductive member.
  • the conductive member of the base 1110 can function as a lower electrode.
  • Electrostatic chuck 1111 is placed on base 1110.
  • Electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within ceramic member 1111a.
  • Ceramic member 1111a has a central region 111a. In one embodiment, ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b.
  • ring assembly 112 may be placed on the annular electrostatic chuck or the annular insulation member, or may be placed on both the electrostatic chuck 1111 and the annular insulation member.
  • at least one RF/DC electrode coupled to an RF (Radio Frequency) power source 31 and/or a DC (Direct Current) power source 32, which will be described later, may be disposed within the ceramic member 1111a.
  • at least one RF/DC electrode functions as a bottom electrode.
  • An RF/DC electrode is also referred to as a bias electrode if a bias RF signal and/or a DC signal, as described below, is supplied to at least one RF/DC electrode.
  • the conductive member of the base 1110 and at least one RF/DC electrode may function as a plurality of lower electrodes.
  • the electrostatic electrode 1111b may function as a lower electrode. Therefore, the substrate support 11 includes at least one lower electrode.
  • Ring assembly 112 includes one or more annular members.
  • the one or more annular members include one or more edge rings and at least one cover ring.
  • the edge ring is made of a conductive or insulating material
  • the cover ring is made of an insulating material.
  • the shower head 13 also includes an electrode plate 131, an electrode support 132, and a conductive connection member 133 (see FIG. 2, etc.), which will be described later.
  • the shower head 13 is supported at the top of the plasma processing chamber 10 via an insulating member 136.
  • the electrode plate 131 is arranged to face the substrate W supported by the substrate support section 11.
  • the electrode plate 131 has a function as an upper electrode.
  • a plurality of gas introduction ports 13d are formed in the electrode plate 131.
  • the electrode plate 131 is made of a material containing Si (eg, Si, SiC, etc.).
  • the gas supply section 20 may include at least one gas source 21 and at least one flow rate controller 22.
  • the gas supply 20 is configured to supply at least one process gas from a respective gas source 21 to the showerhead 13 via a respective flow controller 22 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller.
  • gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow rate of at least one process gas.
  • Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • RF power source 31 is configured to supply at least one RF signal (RF power) to at least one bottom electrode and/or at least one top electrode.
  • RF power source 31 may function as at least part of a plasma generation unit configured to generate a plasma from one or more process gases in plasma processing chamber 10 .
  • a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
  • the RF power supply 31 includes a first RF generation section 31a and a second RF generation section 31b.
  • the first RF generation section 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit, and generates a source RF signal (source RF power) for plasma generation. It is configured as follows.
  • the source RF signal has a frequency within the range of 10 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to at least one bottom electrode and/or at least one top electrode.
  • the second RF generating section 31b is coupled to at least one lower electrode via at least one impedance matching circuit, and is configured to generate a bias RF signal (bias RF power).
  • the frequency of the bias RF signal may be the same or different than the frequency of the source RF signal.
  • the bias RF signal has a lower frequency than the frequency of the source RF signal.
  • the bias RF signal has a frequency within the range of 100kHz to 60MHz.
  • the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies.
  • the generated one or more bias RF signals are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
  • At least one of the first and second DC signals may be pulsed.
  • a sequence of voltage pulses is applied to at least one lower electrode and/or at least one upper electrode.
  • the voltage pulse may have a pulse waveform that is rectangular, trapezoidal, triangular, or a combination thereof.
  • a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generation section 32a and the waveform generation section constitute a voltage pulse generation section.
  • the voltage pulse generation section is connected to at least one upper electrode.
  • the voltage pulse may have positive polarity or negative polarity.
  • the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses within one period.
  • the first and second DC generation units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generation unit 32a may be provided in place of the second RF generation unit 31b. good.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Evacuation system 40 may include a pressure regulating valve and a vacuum pump. The pressure within the plasma processing space 10s is adjusted by the pressure regulating valve.
  • the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
  • the control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform various steps described in this disclosure.
  • the control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, part or all of the control unit 2 may be included in the plasma processing apparatus 1.
  • the control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3.
  • the control unit 2 is realized by, for example, a computer 2a.
  • the processing unit two a1 may be configured to read a program from the storage unit two a2 and perform various control operations by executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary.
  • the acquired program is stored in the storage unit 2a2, and is read out from the storage unit 2a2 and executed by the processing unit 2a1.
  • the medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3.
  • the processing unit 2a1 may be a CPU (Central Processing Unit).
  • the storage unit 2a2 includes a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof. You can.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • FIG. 2 is an example of a schematic cross-sectional view of the shower head 13 according to the first embodiment.
  • FIG. 3 is an example of a partially enlarged schematic cross-sectional view of the shower head 13 according to the first embodiment. Note that when the electrode plate 131 is supported by the electrode support 132, the bottom surface of the electrode support 132 and the top surface of the electrode plate 131 are in contact.
  • FIG. 4 is an example of a bottom view of the electrode support 132 included in the shower head 13 according to the first embodiment.
  • FIG. 5 is an example of a top view of the electrode plate 131 included in the shower head 13 according to the first embodiment.
  • the shower head 13 includes an electrode plate 131 (an example of a first member), an electrode support 132 (an example of a second member), a conductive connection member 133, a seal member 134, 135. Further, the shower head 13 is an electrode assembly (an example of a structure within the plasma processing apparatus) including an electrode plate as an upper electrode.
  • the bottom surface of the electrode support 132 shown in FIG. 4 is a surface facing the electrode plate 131.
  • a gas flow hole forming region 1321 in which a plurality of gas flow holes 13c are formed is formed in the center of the bottom surface of the electrode support 132.
  • some gas distribution holes 13c are illustrated, and illustration of other gas distribution holes 13c is omitted.
  • the electrode plate 131 and the electrode support 132 are in thermal contact. Further, a flow path (not shown) through which a heat medium flows is formed in the electrode support 132. As a result, the heat that has entered the electrode plate 131 from the plasma generated in the plasma processing space 10s is transferred to the electrode support 132, and by the heat medium flowing through the flow path (not shown) of the electrode support 132, The heat is removed.
  • an annular groove portion 1322 is formed on the bottom surface of the electrode support 132 on the outer periphery of the gas flow hole forming region 1321.
  • a conductive connecting member 133 is arranged in the groove portion 1322 .
  • the electrode support 132 may have an anodized film (an alumite film in one example) 1325 on the surface.
  • the inner wall surfaces (side wall surfaces and top surface) of the groove portion 1322 are not formed with an anodic oxide film but are formed of a conductive material.
  • a metal silicide layer 1313 is provided under the metal layer 1312. Further, as shown in FIG. 3, a natural oxide film 1315 is formed on the surface of the electrode plate 131 except for the region where the metal layer 1312 and the metal silicide layer 1313 are formed.
  • the thickness of the metal layer 1312 formed on the upper surface of the electrode plate 131 is, for example, on the order of several hundred nm or more and several hundred thousand nm or less.
  • the thickness of the metal layer 1312 that does not include the metal silicide layer 1313 is preferably 1 nm or more and 5000 nm or less.
  • the conductive connection member 133 is made of a flexible conductive material.
  • the conductive material of the conductive connection member 133 for example, any one of aluminum, stainless steel, Hastelloy (registered trademark), etc. can be used.
  • the conductive connection member 133 has, for example, a spiral tube structure in which a band-shaped metal is spirally wound. In the conductive connection member 133 having a spiral tube structure, the diameter of the conductive connection member 133 is formed to be slightly larger than the depth of the groove portion 1322 .
  • the bottom surface of the electrode support 132 has an annular groove formed on the outer periphery of the gas flow hole forming region 1321 and on the inner periphery of the annular groove 1322. 1323 is formed. A sealing member 134 is arranged in the concave groove portion 1323. Further, on the bottom surface of the electrode support 132, an annular groove portion 1324 is formed on the outer periphery of the annular groove portion 1322. A seal member 135 is arranged in the groove portion 1324 . Note that an anodic oxide film may be formed on the inner wall surfaces (side wall surfaces and top surfaces) of the groove portions 1323 and 1324.
  • the seal members 134 and 135 are flexible and made of fluorine-based or silicone-based rubber.
  • the seal member 134 connects the electrode plate 131 and the electrode support at the inner periphery of the conductive connection member 133.
  • a seal is formed between the body 132 and the body 132.
  • the seal member 135 seals between the electrode plate 131 and the electrode support 132 at the outer periphery of the bottom surface of the electrode support 132 rather than the conductive connection member 133 .
  • the metal layer 1312 may be divided in the circumferential direction of the upper surface of the electrode plate 131 and formed into three metal layers 1312a, 1312b, and 1312c. Note that the metal layer 1312 may be divided into two, or may be divided into four or more. Further, the divided metal layers 1312a, 1312b, and 1312c may be formed in the same arc shape, or may be formed in arc shapes with different lengths and intervals.
  • annular groove portion 1322d is formed on the bottom surface of the electrode support 132 on the outer periphery of the gas flow hole forming region 1321. Further, on the bottom surface of the electrode support 132, an annular groove portion 1322e is formed on the outer periphery of the annular groove portion 1322d. An anodic oxide film is not formed on the inner wall surfaces (side wall surfaces and top surfaces) of the groove portions 1322d and 1322e, but are formed of a conductive material.
  • a conductive connecting member 133d is arranged in the groove portion 1322d.
  • a conductive connecting member 133e is arranged in the groove portion 1322e.
  • the conductive connection members 133d and 133e are made of a flexible conductive material.
  • an annular metal layer 1312d is formed on the upper surface of the electrode plate 131 at a position corresponding to the groove portion 1322d of the electrode support 132, on the outer periphery of the gas inlet formation region 1311. ing. Further, on the upper surface of the electrode plate 131, a ring-shaped metal layer 1312e is formed at a position corresponding to the groove portion 1322e of the electrode support 132 and on the outer periphery of the metal layer 1312d. Further, a metal silicide layer is formed under the metal layers 1312d and 1312e.
  • annular groove 1323d is formed on the bottom surface of the electrode support 132 at an outer periphery of the gas flow hole forming region 1321 and an inner periphery of the annular groove 1322d. has been done.
  • a sealing member 134d is arranged in the groove portion 1323d.
  • annular groove portion 1324d is formed on the outer periphery of the annular groove portion 1322d.
  • a seal member 135d is arranged in the groove portion 1324d.
  • annular groove portion 1323e is formed at an outer periphery of the groove portion 1324d and an inner periphery of the annular groove portion 1322e.
  • a seal member 134e is arranged in the groove portion 1323e. Further, on the bottom surface of the electrode support 132, an annular groove portion 1324e is formed on the outer periphery of the annular groove portion 1322e. A seal member 135e is arranged in the groove portion 1324e.
  • the seal members 134d and 135d prevent the processing gas from reaching the metal layer 1312d of the electrode plate 131, the side wall surface and top surface of the groove portion 1322d of the electrode support 132, and the conductive connection member 133d.
  • the seal members 134e and 135e prevent the processing gas from reaching the metal layer 1312e of the electrode plate 131, the side wall surface and top surface of the groove portion 1322e of the electrode support 132, and the conductive connection member 133e.
  • the groove provided in the electrode support 132 in which the sealing member is arranged may have a configuration having at least one of the groove portions 1323d, 1324d, 1323e, and 1324e.
  • annular groove portion 1322f is formed at an outer periphery of the gas flow hole formation region 1321f and an inner periphery of the gas flow hole formation region 1321g. Further, on the bottom surface of the electrode support 132, an annular groove portion 1322g is formed on the outer periphery of the gas flow hole formation region 1321g and on the inner periphery of the gas flow hole formation region 1321h. Further, on the bottom surface of the electrode support 132, an annular groove portion 1322h is formed on the outer periphery of the gas flow hole forming region 1321h.
  • An anodic oxide film is not formed on the inner wall surfaces (side wall surfaces and top surfaces) of the groove portions 1322f, 1322g, and 1322h, but are formed of a conductive material.
  • a conductive connecting member 133f is arranged in the groove portion 1322f.
  • a conductive connecting member 133g is arranged in the groove portion 1322g.
  • a conductive connecting member 133h is arranged in the groove portion 1322h.
  • the conductive connection members 133f, 133g, and 133h are made of a flexible conductive material.
  • a gas inlet forming region 1311f in which a plurality of gas inlets 13d are formed is formed in the center of the upper surface of the electrode plate 131. Further, on the upper surface of the electrode plate 131, a gas introduction port formation region 1311g is formed in which a plurality of gas introduction ports 13d are formed on the outer periphery of the gas introduction port formation region 1311f. Further, on the upper surface of the electrode plate 131, a gas introduction port formation region 1311h is formed in which a plurality of gas introduction ports 13d are formed on the outer periphery of the gas introduction port formation region 1311g. In addition, in FIG. 10, some gas introduction ports 13d are illustrated, and illustration of other gas introduction ports 13d is omitted.
  • a ring-shaped metal layer is provided at a position corresponding to the groove portion 1322f of the electrode support 132, on the outer periphery of the gas introduction port formation region 1311f and the inner periphery of the gas introduction port formation region 1311g. 1312f is formed. Further, on the upper surface of the electrode plate 131, an annular shape is provided at a position corresponding to the concave groove portion 1322g of the electrode support 132, on the outer periphery of the gas introduction port formation region 1311g and the inner periphery of the gas introduction port formation region 1311h. A metal layer 1312g is formed.
  • an annular metal layer 1312h is formed at a position corresponding to the groove portion 1322h of the electrode support 132, on the outer periphery of the gas inlet forming region 1311h. Further, a metal silicide layer is formed under the metal layers 1312f, 1312g, and 1312h.
  • the conductive connection member 133f deforms within the groove 1322f, causing the electrode support 132 to deform. It contacts the side wall surface of the groove 1322f formed on the bottom surface and/or the top surface of the groove 1322f in an electrically conductive manner, and contacts the metal layer 1312f formed on the upper surface of the electrode plate 131 in an electrically conductive manner.
  • the conductive connection member 133f electrically connects the electrode plate 131 and the electrode support 132.
  • the conductive connection member 133g electrically connects the electrode plate 131 and the electrode support 132.
  • the conductive connection member 133h electrically connects the electrode plate 131 and the electrode support 132.
  • annular groove 1323f is formed on the outer periphery of the gas flow hole forming region 1321f and inner periphery of the annular groove 1322f. has been done.
  • a seal member 134f is arranged in the groove portion 1323f.
  • annular groove portion 1324f is formed at an outer periphery of the annular groove portion 1322f and an inner periphery of the gas flow hole forming region 1321g.
  • a seal member 135f is arranged in the groove portion 1324f.
  • An annular groove 1323g is formed on the bottom surface of the electrode support 132 at an outer periphery of the gas flow hole forming region 1321g and an inner periphery of the annular groove 1322g.
  • a sealing member 134g is arranged in the groove portion 1323g.
  • an annular groove portion 1324g is formed at an outer periphery of the annular groove portion 1322g and an inner periphery of the gas flow hole forming region 1321h.
  • a seal member 135f is disposed in the groove portion 1324g.
  • An annular groove 1323h is formed on the bottom surface of the electrode support 132 at an outer periphery of the gas flow hole forming region 1321h and an inner periphery of the annular groove 1322h.
  • a sealing member 134h is arranged in the groove portion 1323h.
  • an annular groove portion 1324h is formed on the outer periphery of the annular groove portion 1322h.
  • a seal member 135h is arranged in the groove portion 1324h.
  • the seal members 134f and 135f prevent the processing gas from reaching the metal layer 1312f of the electrode plate 131, the side wall surface and top surface of the groove portion 1322f of the electrode support 132, and the conductive connection member 133f.
  • the seal members 134g and 135g prevent the processing gas from reaching the metal layer 1312g of the electrode plate 131, the side wall surface and top surface of the groove portion 1322g of the electrode support 132, and the conductive connection member 133g.
  • the seal members 134h and 135h prevent the processing gas from reaching the metal layer 1312h of the electrode plate 131, the side wall surface and top surface of the groove portion 1322h of the electrode support 132, and the conductive connection member 133h.
  • the metal layers 1312f, 1312g, 1312h of the electrode plate 131, the side wall surfaces and top surfaces of the groove portions 1322f, 1322g, 1322h of the electrode support 132, and the conductive connection members 133f, 133g, 133h react with the processing gas and come into contact with it. This can prevent resistance from increasing.
  • the groove in which the sealing member provided in the electrode support 132 is arranged may have at least one of groove portions 1323f, 1324f, 1323g, 1324g, 1323h, and 1324h.
  • the metal layer 1312 and the groove portion 1322 are formed three times has been described as an example, but the metal layer 1312 and the groove portion 1322 are formed twice. It may be formed more than the circumference. Further, at least one of the metal layer 1312 and the groove portion 1322 formed over a plurality of circumferences may be formed discretely in the circumferential direction of the upper surface of the electrode plate 131.
  • the gas diffusion chamber 13b may be divided into a plurality (three).
  • the gas is introduced into the plasma processing space 10s from the first gas diffusion chamber formed in the center through the gas flow holes 13c of the gas flow hole formation region 1321f and from the gas introduction port 13d of the gas introduction port formation region 1311f.
  • a second gas diffusion chamber formed on the outer periphery of the first gas diffusion chamber passes through the gas distribution hole 13c of the gas distribution hole formation region 1321g, and then from the gas introduction port 13d of the gas introduction port formation region 1311g to the plasma processing space. Introduced within 10 seconds.
  • a third gas diffusion chamber formed on the outer periphery of the second gas diffusion chamber passes through the gas distribution hole 13c of the gas distribution hole formation region 1321h, and then from the gas introduction port 13d of the gas introduction port formation region 1311h to the plasma processing space. Introduced within 10 seconds.
  • the conductive connecting member 133 and the concave groove 1322 in which the conductive connecting member 133 is disposed are formed in a continuous annular shape in the circumferential direction of the bottom surface of the electrode support 132, as shown in FIG.
  • the conductive connection members 133 and the groove portions 1322 in which the conductive connection members 133 are arranged may be formed discretely in the circumferential direction of the bottom surface of the electrode support 132.
  • the conductive connection member 133 and the groove portion 1322 in which the conductive connection member 133 is disposed are described as being formed on one circumference as shown in FIG. 4, the present invention is not limited to this.
  • the conductive connection member 133 and the groove portion 1322 in which the conductive connection member 133 is arranged may be formed over multiple circumferences. Further, even if at least one of the conductive connection members 133 formed over a plurality of circumferences and the groove portions 1322 in which the conductive connection members 133 are disposed is formed discretely in the circumferential direction of the bottom surface of the electrode support 132. good.
  • a source RF signal is supplied from the first RF generating section 31a to the lower electrode, a bias RF signal is supplied from the second RF generating section 31b to the lower electrode, and a bias RF signal is supplied from the second DC generating section 32b to the upper electrode.
  • the plasma processing apparatus 1 that supplies the second DC signal will be explained as an example.
  • the second DC generation section 32b supplies the second DC signal to the electrode support 132.
  • the second DC signal is then supplied from the electrode support 132 to the electrode plate 131 via the conductive connection member 133.
  • a processing gas is supplied from the gas supply section 20 into the plasma processing space 10s via the shower head 13, a source RF signal is supplied from the first RF generation section 31a to the lower electrode, and a source RF signal is supplied to the lower electrode from the first RF generation section 31b.
  • Plasma is generated in the plasma processing space 10s by supplying a bias RF signal from the lower electrode to the lower electrode.
  • the processing gas flowing through the gas distribution hole 13c formed in the electrode support 132 and the gas introduction port 13d formed in the electrode plate 131 is ionized, and electric discharge occurs within the gas distribution hole 13c and the gas introduction port 13d.
  • the replacement period and average maintenance time of the electrode plate 131 can be lengthened, and the productivity of the plasma processing apparatus 1 can be improved.
  • FIG. 11 is an example of a partially enlarged schematic cross-sectional view of a shower head 13C according to a reference example. Note that when the electrode plate 131C is supported by the electrode support 132, the bottom surface of the electrode support 132 and the top surface of the electrode plate 131C are in contact.
  • the shower head 13C includes an electrode plate 131C, an electrode support 132, a conductive connection member 133, and a seal member (not shown).
  • the electrode plate 131C of the shower head 13C according to the reference example has a metal layer 1312 (see FIG. 3) and a metal silicide layer 1313 (see FIG. 3) formed compared to the electrode plate 131 of the shower head 13 according to the present embodiment. They are different in that they are not. The other configurations are the same, and redundant explanation will be omitted.
  • a natural oxide film 1315 serving as an insulator (eg, SiO 2 ) is formed on the surface of the electrode plate 131C. Further, the conductive connecting member 133 is in contact with the electrode plate 131C at a position where the natural oxide film 1315 is formed. Therefore, the contact resistance between the conductive connection member 133 and the electrode plate 131 increases. Therefore, when the second DC signal is supplied from the second DC generation section 32b to the electrode support 132, the contact resistance between the electrode support 132 and the conductive connection member 133 and the contact resistance between the conductive connection member 133 and the electrode plate 131 are reduced. A potential difference occurs between the electrode plate 131 and the electrode support 132 due to the contact resistance.
  • the pressure of the processing gas flowing through the gas distribution hole 13c and the gas introduction port 13d is high. Therefore, this potential difference may cause discharge near the interface between the electrode plate 131 and the electrode support 132 in the gas distribution hole 13c and the gas introduction port 13d. Due to the occurrence of electric discharge, the electrode plate 131 may be worn out, the average maintenance time may be shortened, and the productivity of the plasma processing apparatus 1 may be reduced.
  • a metal layer 1312 is formed on the upper surface of the electrode plate 131 at a position where the conductive connection member 133 contacts.
  • a metal silicide layer 1313 is formed under the metal layer 1312, and formation of a silicon oxide film (natural oxide film) at a position where the conductive connection member 133 contacts can be suppressed. Further, by forming the metal silicide layer 1313, contact resistance between the metal layer 1312 and the electrode plate 131 can be reduced.
  • a configuration can be considered in which an aluminum tape is attached to the electrode plate with a conductive adhesive at a position on the upper surface of the electrode plate in contact with the conductive connection member.
  • a metal silicide layer 1313 connects the metal layer 1312 and the base material (Si, SiC, etc.) of the electrode plate 131.
  • the contact resistance between the metal layer 1312 and the base material of the electrode plate 131 in the shower head 13 according to the present embodiment is lower than the contact resistance between the aluminum tape and the base material of the electrode plate in the shower head according to the reference example. Contact resistance can be reduced.
  • FIG. 12 is another example of a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
  • the plasma processing apparatus 1 shown in FIG. 12 includes a silicon ring 141, a deposit shield 142, a baffle plate 143, and conductive connection members 201, 202, 203, and 204 in addition to the plasma processing apparatus 1 shown in FIG.
  • the plasma processing chamber 10 includes a lower member 10a1 and an upper member 10a2.
  • the lower member 10a1 and the upper member 10a2 constitute the side wall 10a of the plasma processing chamber 10.
  • the upper member 10a2 constitutes at least a part of the top of the plasma processing chamber 10.
  • the silicon ring 141 (an example of a first member), the upper member 10a2 (an example of a second member), and the conductive connection member 201 are an example of a structure within the plasma processing apparatus.
  • the silicon ring 141 is an annular member arranged to surround the electrode plate 131.
  • the silicon ring 141 is made of a material containing Si (for example, Si or SiC).
  • Silicon ring 141 is supported by upper member 10a2.
  • a silicon ring 141 is supported in a portion of the upper member 10a2 that constitutes at least a portion of the top of the plasma processing chamber 10.
  • FIG. 12 In the example shown in FIG. 12, a silicon ring 141 is supported in a portion of the upper member 10a2 that constitutes at least a portion of the top of the plasma processing chamber 10.
  • a conductive connecting member 201 is arranged between the silicon ring 141 and the upper member 10a2.
  • the conductive connection member 201 is made of a flexible conductive material similarly to the conductive connection member 133.
  • the silicon ring 141 and the upper member 10a2 are electrically connected via the conductive connection member 201.
  • a metal layer (not shown) is provided on the upper surface of the silicon ring 141 at a position where the conductive connection member 201 contacts.
  • a metal silicide layer is formed under the metal layer, and it is possible to suppress the formation of a silicon oxide film (natural oxide film) at the position where the conductive connection member 201 contacts. Further, by forming the metal silicide layer, the contact resistance between the metal layer and the silicon ring 141 can be reduced.
  • the contact resistance between the conductive connection member 201 and the silicon ring 141 can be reduced. Therefore, the potential difference at the interface between the silicon ring 141 and the upper member 10a2 can be reduced. In other words, the silicon ring 141 can be at ground potential.
  • the silicon ring 141 may have a gas inlet 141a, and the upper member 10a2 may have a gas flow hole communicating with the gas inlet 141a.
  • the gas supply 20 may include at least one gas source 23 and at least one flow controller 24 .
  • the gas supply unit 20 is configured to supply processing gas from the gas source 23 to the gas inlet 141a via the flow rate controller 24.
  • the deposit shield 142 (an example of a first member), the side wall 10a of the plasma processing chamber 10 (an example of a second member), and the conductive connection members 202 and 203 are examples of structures within the plasma processing apparatus.
  • the deposit shield 142 is a member provided along the inner wall surface of the plasma processing chamber 10.
  • the deposit shield 142 is made of a material containing Si (eg, Si or SiC).
  • the deposit shield 142 has a convex portion protruding radially outward on the outer peripheral surface side, and this convex portion is sandwiched and supported by the lower member 10a1 and the upper member 10a2.
  • a conductive connection member 202 is arranged between the deposit shield 142 and the upper member 10a2 (a part of the side wall 10a of the plasma processing chamber 10). Further, a conductive connection member 203 is arranged between the deposit shield 142 and the lower member 10a1 (a part of the side wall 10a of the plasma processing chamber 10).
  • the conductive connection members 202 and 203 are made of a flexible conductive material similarly to the conductive connection member 133.
  • the deposit shield 142 and the side wall 10a (lower member 10a1, upper member 10a2) of the plasma processing chamber 10 are electrically connected via conductive connection members 202 and 203.
  • a metal layer (not shown) is provided at a position where the conductive connection member 202 contacts the upper surface of the sandwiched portion of the deposit shield 142.
  • a metal silicide layer is formed under the metal layer, and formation of a silicon oxide film (natural oxide film) at the position where the conductive connection member 202 contacts can be suppressed. Further, by forming the metal silicide layer, the contact resistance between the metal layer and the deposit shield 142 can be reduced.
  • the contact resistance between the conductive connection member 202 and the deposit shield 142 can be reduced. Therefore, the potential difference at the interface between the deposit shield 142 and the side wall 10a of the plasma processing chamber 10 can be reduced.
  • a metal layer (not shown) is provided at a position where the conductive connection member 203 contacts the lower surface of the sandwiched portion of the deposit shield 142.
  • a metal silicide layer is formed under the metal layer, and formation of a silicon oxide film (natural oxide film) at the position where the conductive connection member 203 contacts can be suppressed. Further, by forming the metal silicide layer, the contact resistance between the metal layer and the deposit shield 142 can be reduced.
  • the contact resistance between the conductive connection member 203 and the deposit shield 142 can be reduced. Therefore, the potential difference at the interface between the deposit shield 142 and the side wall 10a of the plasma processing chamber 10 can be reduced. That is, the deposit shield 142 can be set to the ground potential.
  • a sealing member (not shown) is arranged between the deposit shield 142 and the side wall 10a of the plasma processing chamber 10 so as to surround the metal layer formed on the deposit shield 142.
  • the baffle plate 143 (an example of a first member), the lower member 10a1 (an example of a second member), and the conductive connection member 204 are examples of internal structures of the plasma processing apparatus.
  • the baffle plate 143 is an annular member having a plurality of through holes.
  • the gas in the plasma processing space 10s passes through the through hole of the baffle plate 143 and is exhausted by the exhaust system 40 from the gas exhaust port 10e.
  • Baffle plate 143 is made of a material containing Si (for example, Si or SiC).
  • Baffle plate 143 is supported by lower member 10a1.
  • the lower member 10a1 supports the baffle plate 143 on the outer peripheral side of the baffle plate 143.
  • the structure is not limited to this, and a structure in which the inner peripheral side and/or the outer peripheral side of the baffle plate 143 is supported may be used.
  • a conductive connecting member 204 is arranged between the baffle plate 143 and the lower member 10a1. Furthermore, a conductive connection member 204 is arranged between the baffle plate 143 and the lower member 10a1. The conductive connection member 204 is made of a flexible conductive material similarly to the conductive connection member 133. Baffle plate 143 and lower member 10a1 are electrically connected via conductive connection member 204.
  • a metal layer (not shown) is provided on the lower surface of the baffle plate 143 at a position where the conductive connection member 204 contacts.
  • a metal silicide layer is formed under the metal layer, and formation of a silicon oxide film (natural oxide film) at the position where the conductive connection member 204 contacts can be suppressed. Further, by forming the metal silicide layer, contact resistance between the metal layer and the baffle plate 143 can be reduced.
  • a sealing member (not shown) is arranged between the baffle plate 143 and the lower member 10a1 so as to surround the metal layer formed on the baffle plate 143.
  • the present invention is not limited to this.
  • the present invention may also be applied to a structure within a plasma processing apparatus in which a bias voltage is applied to the second member.
  • Plasma processing apparatus 2 Control unit 10 Plasma processing chamber (second member) 20 Gas supply section 30 Power supply 40 Exhaust system 10s Plasma processing space 11 Substrate support section 13 Shower head (electrode assembly, plasma processing apparatus internal structure) 13a Gas supply port 13b Gas diffusion chamber 13c Gas distribution hole 13d Gas introduction port 131 Electrode plate (first member) 1311 Gas inlet formation region 1312 Metal layer 1313 Metal silicide layer 1315 Natural oxide film 132 Electrode support (second member) 1321 Gas flow hole formation region 1322 Recessed groove 1323 Recessed groove 1324 Recessed groove 1325 Anodic oxide film 133, 201, 202, 203, 204 Conductive connecting member 134, 135 Seal member 136 Insulating member 141 Silicon ring (first member) 142 Depot shield (first member) 143 Baffle plate (first member)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

接触抵抗を低減するプラズマ処理装置内構造体、電極板及びプラズマ処理装置を提供する。 Siを含む材料で構成される第1部材と、前記第1部材を支持する第2部材と、前記第1部材と前記第2部材との間に配置され、前記第1部材と前記第2部材とを導通する導電接続部材と、を備え、前記第1部材は、前記導電接続部材と接触する位置に金属層を有する、プラズマ処理装置内構造体。

Description

プラズマ処理装置内構造体、電極板及びプラズマ処理装置
 本開示は、プラズマ処理装置内構造体、電極板及びプラズマ処理装置に関する。
 特許文献1には、複数のガス噴出孔が形成され上部電極としての機能を有する電極板及びガス噴出孔と連通するガス流通孔が形成され電極板を支持する電極支持体を有するシャワーヘッドと、シャワーヘッドの電極支持体に高周波電力を供給する高周波電源と、を備えるプラズマ処理装置が開示されている。
特開2020-17697号公報
 一の側面では、本開示は、接触抵抗を低減するプラズマ処理装置内構造体、電極板及びプラズマ処理装置を提供する。
 上記課題を解決するために、一の態様によれば、Siを含む材料で構成される第1部材と、前記第1部材を支持する第2部材と、前記第1部材と前記第2部材との間に配置され、前記第1部材と前記第2部材とを導通する導電接続部材と、を備え、前記第1部材は、前記導電接続部材と接触する位置に金属層を有する、プラズマ処理装置内構造体を提供することができる。
 一の側面によれば、接触抵抗を低減するプラズマ処理装置内構造体、電極板及びプラズマ処理装置を提供することができる。
容量結合型のプラズマ処理装置の構成例を説明するための図の一例。 シャワーヘッドの断面模式図の一例。 第1実施例に係るシャワーヘッドの部分拡大断面模式図の一例。 第1実施例に係るシャワーヘッドが有する電極支持体の底面図の一例。 第1実施例に係るシャワーヘッドが有する電極板の上面図の一例。 第2実施例に係るシャワーヘッドが有する電極板の上面図の一例。 第3実施例に係るシャワーヘッドが有する電極支持体の底面図の一例。 第3実施例に係るシャワーヘッドが有する電極板の上面図の一例。 第4実施例に係るシャワーヘッドが有する電極支持体の底面図の一例。 第4実施例に係るシャワーヘッドが有する電極板の上面図の一例。 参考例に係るシャワーヘッドの部分拡大断面模式図の一例。 プラズマ処理装置の構成例を説明するための図の他の一例。
 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
 以下に、プラズマ処理システムの構成例について説明する。図1は、容量結合型のプラズマ処理装置の構成例を説明するための図の一例である。
 プラズマ処理システムは、容量結合型のプラズマ処理装置1及び制御部2を含む。容量結合型のプラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間10sに供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。プラズマ処理チャンバ10の側壁10aは、例えば金属(例えばアルミニウム)で形成されており、接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10の筐体とは電気的に絶縁される。
 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板Wを支持するための中央領域111aと、リングアセンブリ112を支持するための環状領域111bとを有する。ウェハは基板Wの一例である。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。従って、中央領域111aは、基板Wを支持するための基板支持面とも呼ばれ、環状領域111bは、リングアセンブリ112を支持するためのリング支持面とも呼ばれる。
 一実施形態において、本体部111は、基台1110及び静電チャック1111を含む。基台1110は、導電性部材を含む。基台1110の導電性部材は下部電極として機能し得る。静電チャック1111は、基台1110の上に配置される。静電チャック1111は、セラミック部材1111aとセラミック部材1111a内に配置される静電電極1111bとを含む。セラミック部材1111aは、中央領域111aを有する。一実施形態において、セラミック部材1111aは、環状領域111bも有する。なお、環状静電チャックや環状絶縁部材のような、静電チャック1111を囲む他の部材が環状領域111bを有してもよい。この場合、リングアセンブリ112は、環状静電チャック又は環状絶縁部材の上に配置されてもよく、静電チャック1111と環状絶縁部材の両方の上に配置されてもよい。また、後述するRF(Radio Frequency)電源31及び/又はDC(Direct Current)電源32に結合される少なくとも1つのRF/DC電極がセラミック部材1111a内に配置されてもよい。この場合、少なくとも1つのRF/DC電極が下部電極として機能する。後述するバイアスRF信号及び/又はDC信号が少なくとも1つのRF/DC電極に供給される場合、RF/DC電極はバイアス電極とも呼ばれる。なお、基台1110の導電性部材と少なくとも1つのRF/DC電極とが複数の下部電極として機能してもよい。また、静電電極1111bが下部電極として機能してもよい。従って、基板支持部11は、少なくとも1つの下部電極を含む。
 リングアセンブリ112は、1又は複数の環状部材を含む。一実施形態において、1又は複数の環状部材は、1又は複数のエッジリングと少なくとも1つのカバーリングとを含む。エッジリングは、導電性材料又は絶縁材料で形成され、カバーリングは、絶縁材料で形成される。
 また、基板支持部11は、静電チャック1111、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路1110a、又はこれらの組み合わせを含んでもよい。流路1110aには、ブラインやガスのような伝熱流体が流れる。一実施形態において、流路1110aが基台1110内に形成され、1又は複数のヒータが静電チャック1111のセラミック部材1111a内に配置される。また、基板支持部11は、基板Wの裏面と中央領域111aとの間の間隙に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。
 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、複数のガス流通孔13c、及び複数のガス導入口13dを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13b及び複数のガス流通孔13cを通過して複数のガス導入口13dからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、少なくとも1つの上部電極を含む。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。
 また、シャワーヘッド13は、電極板131と、電極支持体132と、後述する導電接続部材133(図2等参照)と、を有する。シャワーヘッド13は、絶縁部材136を介して、プラズマ処理チャンバ10の上部に支持されている。
 電極板131は、基板支持部11に支持された基板Wと対向するように配置される。電極板131は、上部電極としての機能を有する。電極板131には、複数のガス導入口13dが形成されている。電極板131は、Siを含む材料(例えばSi、SiC等)で構成される。
 電極支持体132は、電極板131の上方に設けられ、電極板131を着脱自在に支持する。電極支持体132の内部には、ガス拡散室13bが形成されている。また、電極支持体132の内部には、ガス拡散室13bから電極板131のガス導入口13dに連通する複数のガス流通孔13cが形成されている。電極支持体132は、金属または金属基複合材料(MMC:Metal Matrix Composites)等の導電性材料で構成される。金属としては、例えば、アルミニウムを用いることができる。また、金属基複合材料としては、例えば、セラミックスとアルミニウムとから構成される金属基複合材料を用いることができる。また、電極支持体132の表面は、陽極酸化処理(アルマイト処理)が施されていてもよい。また、電極支持体132は、電極板131と熱的に接触して電極板131を冷却する。電極支持体132は、クーリングプレートとも称する。
 また、電極板131と電極支持体132との間には、後述する導電接続部材133(図2等参照)が配置される。電極板131と電極支持体132とは、導電接続部材133を介して電気的に接続される。
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する1又はそれ以上の流量変調デバイスを含んでもよい。
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、少なくとも1つのRF信号(RF電力)を少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ処理チャンバ10において1又はそれ以上の処理ガスからプラズマを生成するように構成されるプラズマ生成部の少なくとも一部として機能し得る。また、バイアスRF信号を少なくとも1つの下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、10MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給される。
 第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。バイアスRF信号の周波数は、ソースRF信号の周波数と同じであっても異なっていてもよい。一実施形態において、バイアスRF信号は、ソースRF信号の周波数よりも低い周波数を有する。一実施形態において、バイアスRF信号は、100kHz~60MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、少なくとも1つの下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、少なくとも1つの下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のバイアスDC信号は、少なくとも1つの下部電極に印加される。一実施形態において、第2のDC生成部32bは、少なくとも1つの上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、少なくとも1つの上部電極に印加される。
 種々の実施形態において、第1及び第2のDC信号のうち少なくとも1つがパルス化されてもよい。この場合、電圧パルスのシーケンスが少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に印加される。電圧パルスは、矩形、台形、三角形又はこれらの組み合わせのパルス波形を有してもよい。一実施形態において、DC信号から電圧パルスのシーケンスを生成するための波形生成部が第1のDC生成部32aと少なくとも1つの下部電極との間に接続される。従って、第1のDC生成部32a及び波形生成部は、電圧パルス生成部を構成する。第2のDC生成部32b及び波形生成部が電圧パルス生成部を構成する場合、電圧パルス生成部は、少なくとも1つの上部電極に接続される。電圧パルスは、正の極性を有してもよく、負の極性を有してもよい。また、電圧パルスのシーケンスは、1周期内に1又は複数の正極性電圧パルスと1又は複数の負極性電圧パルスとを含んでもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、処理部2a1、記憶部2a2及び通信インターフェース2a3を含んでもよい。制御部2は、例えばコンピュータ2aにより実現される。処理部2a1は、記憶部2a2からプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部2a2に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部2a2に格納され、処理部2a1によって記憶部2a2から読み出されて実行される。媒体は、コンピュータ2aに読み取り可能な種々の記憶媒体であってもよく、通信インターフェース2a3に接続されている通信回線であってもよい。処理部2a1は、CPU(Central Processing Unit)であってもよい。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。
 次に、シャワーヘッド13の構造について、図2から図5を用いてさらに説明する。図2は、第1実施例に係るシャワーヘッド13の断面模式図の一例である。図3は、第1実施例に係るシャワーヘッド13の部分拡大断面模式図の一例である。なお、電極板131が電極支持体132に支持される際、電極支持体132の底面と電極板131の上面とが接している。図4は、第1実施例に係るシャワーヘッド13が有する電極支持体132の底面図の一例である。図5は、第1実施例に係るシャワーヘッド13が有する電極板131の上面図の一例である。
 図2及び図3に示すように、シャワーヘッド13は、電極板131(第1部材の一例)と、電極支持体132(第2部材の一例)と、導電接続部材133と、シール部材134,135と、を有する。また、シャワーヘッド13は、上部電極としての電極板を含む電極アセンブリ(プラズマ処理装置内構造体の一例)である。
 図4に示す電極支持体132の底面は、電極板131と対向する面である。電極支持体132の底面の中央部には、複数のガス流通孔13cが形成されるガス流通孔形成領域1321が形成されている。なお、図4においては、一部のガス流通孔13cを図示して、他のガス流通孔13cの図示は省略している。
 図5に示す電極板131の上面は、電極支持体132と対向する面である。電極板131の上面の中央部には、複数のガス導入口13dが形成されるガス導入口形成領域1311が形成されている。なお、図4においては、一部のガス導入口13dを図示して、他のガス導入口13dの図示は省略している。
 図2に示すように、電極支持体132の底面と電極板131の上面とが接して、電極板131が電極支持体132に支持される。これにより、電極支持体132のガス流通孔13cと電極板131のガス導入口13dとが連通する。即ち、ガス供給口13aに供給された処理ガスは、ガス拡散室13bに導入され、ガス拡散室13b内で拡散する。そして、処理ガスは、ガス拡散室13bから複数のガス流通孔13c及び複数のガス導入口13dを通過して、プラズマ処理空間10s(図1参照)に導入される。
 また、電極支持体132の底面と電極板131の上面とが接して電極板131が電極支持体132に支持されることにより、電極板131と電極支持体132とが熱的に接触する。また、電極支持体132には、熱媒体が通流する流路(図示せず)が形成されている。これにより、プラズマ処理空間10sに生成されたプラズマから電極板131に入熱した熱は、電極支持体132に伝熱して、電極支持体132の流路(図示せず)を流れる熱媒体によって、抜熱される。
 また、図2から図4に示すように、電極支持体132の底面には、ガス流通孔形成領域1321よりも外周に、円環形状の凹溝部1322が形成されている。凹溝部1322には、導電接続部材133が配置される。また、図3に示すように、電極支持体132は表面に陽極酸化膜(一例ではアルマイト膜)1325を有していてもよい。一方、凹溝部1322の内壁面(側壁面及び天面)には、陽極酸化膜は形成されておらず導電性材料で形成されている。
 また、図3及び図5に示すように、電極板131の上面には、ガス導入口形成領域1311よりも外周で、電極支持体132の凹溝部1322と対応する位置に、円環形状の金属層1312を有する。金属層1312は、電極板131の上面に金属を蒸着(真空蒸着)、溶射、または、接合することにより形成される。ここで、金属層1312の金属は、例えば、アルミニウム(Al)、タングステン(W)、チタン(Ti)、コバルト(Co)、ニッケル(Ni)等のうちいずれかで構成される。
 また、金属のターゲットをプラズマでスパッタして真空蒸着により電極板131の上面に金属層1312を形成する際、プラズマの熱が電極板131に入熱し、電極板131の温度は、例えば200℃から400℃に加熱される。また、溶射により、電極板131の上面に金属層1312を形成する際、熱が電極板131に入熱し、電極板131の温度は、例えば200℃から400℃に加熱される。この状態で、Siを含む材料(例えばSi、SiC等)で構成される電極板131の上面に金属層1312を形成することにより、金属がSiを含む材料内に拡散する。これにより、金属層1312の下には、金属シリサイド層1313を有する。また、図3に示すように、電極板131の表面は、金属層1312及び金属シリサイド層1313が形成された領域を除いて、自然酸化膜1315が形成されている。
 なお、金属層1312は、電極板131の上面の全面に形成されてもよいし、部分的に形成されてもよい。金属層1312は、少なくとも導電接続部材133と接触する位置に形成される。また、金属層1312は、シール部材134,135で囲まれた領域に形成されていてもよい。
 ここで、電極板131の上面に形成される金属層1312の厚さは、例えば数百nm以上、数十万nm以下のオーダーを有している。具体的には、金属シリサイド層1313を含まない金属層1312の厚さは、1nm以上5000nm以下が好ましい。
 導電接続部材133は、可撓性を有する導電性材料で形成される。ここで、導電接続部材133の導電性材料としては、例えば、アルミニウム、ステンレス、ハステロイ(登録商標)等のうちいずれかを用いることができる。導電接続部材133は、例えば、帯状の金属をらせん状に巻いたスパイラルチューブ構造を有している。スパイラルチューブ構造の導電接続部材133において、導電接続部材133の直径は、凹溝部1322の深さよりも僅かに大きく形成される。これにより、電極支持体132の底面と電極板131の上面とが接して電極板131が電極支持体132に支持された際、導電接続部材133は、凹溝部1322の天面と電極支持体132の上面との間で挟まれ凹溝部1322内で変形する。これにより、導電接続部材133は、電極支持体132の底面に形成された凹溝部1322の側壁面及び/又は凹溝部1322の天面と通電可能に接触する。また、導電接続部材133は、電極板131の上面に形成された金属層1312と通電可能に接触する。これにより、導電接続部材133は、電極板131と電極支持体132とを電気的に導通する。
 なお、導電接続部材133は、スパイラルチューブ構造に限られるものではなく、例えば、板バネ構造を有していてもよい。これにより、電極支持体132の底面と電極板131の上面とが接して電極板131が電極支持体132に支持された際、導電接続部材133が凹溝部1322内で変形する。また、導電接続部材133は、電極支持体132の底面に形成された凹溝部1322の側壁面及び/又は凹溝部1322の天面と通電可能に接触する。また、導電接続部材133は、電極板131の上面に形成された金属層1312と通電可能に接触する。これにより、導電接続部材133は、電極板131と電極支持体132とを電気的に接続する。
 また、図2及び図4に示すように、電極支持体132の底面には、ガス流通孔形成領域1321よりも外周かつ円環形状の凹溝部1322よりも内周に、円環形状の凹溝部1323が形成されている。凹溝部1323には、シール部材134が配置される。また、電極支持体132の底面には、円環形状の凹溝部1322よりも外周に、円環形状の凹溝部1324が形成されている。凹溝部1324には、シール部材135が配置される。なお、凹溝部1323,1324の内壁面(側壁面及び天面)には、陽極酸化膜が形成されていてもよい。
 シール部材134,135は、可撓性を有し、フッ素系またはシリコーン系のゴムで形成される。電極支持体132の底面と電極板131の上面とが接して電極板131が電極支持体132に支持された際、シール部材134は、導電接続部材133よりも内周で電極板131と電極支持体132との間をシールする。また、シール部材135は、導電接続部材133よりも電極支持体132の底面の外周で電極板131と電極支持体132との間をシールする。
 即ち、シール部材134,135は、処理ガスが電極板131の金属層1312、電極支持体132の凹溝部1322の側壁面及び天面、導電接続部材133に到達することを防止する。これにより、電極板131の金属層1312、電極支持体132の凹溝部1322の側壁面及び天面、導電接続部材133が処理ガスと反応し、接触抵抗が増加することを防止することができる。
 なお、金属層1312は、図5に示すように、電極板131の上面の周方向において、周方向に連続する円環形状に形成されるものとして説明したが、これに限られるものではない。金属層1312は、電極板131の上面の周方向において、離散的に形成されていてもよい。図6は、第2実施例に係るシャワーヘッドが有する電極板131の上面図の一例である。
 図6に示すように、金属層1312は、電極板131の上面の周方向において分割され、3つの金属層1312a,1312b,1312cとして形成されていてもよい。なお、金属層1312は、2つに分割されていてもよく、4つ以上に分割されていてもよい。また、分割された金属層1312a,1312b,1312cは、同一の円弧状に形成されていてもよく、異なる長さ、間隔の円弧状に形成されていてもよい。
 また、金属層1312及び凹溝部1322は、図4及び図5に示すように、1つの円周上に形成されるものとして説明したが、これに限られるものではない。金属層1312及び凹溝部1322は、径方向に複数形成されてもよい。図7は、第3実施例に係るシャワーヘッド13が有する電極支持体132の底面図の一例である。図8は、第3実施例に係るシャワーヘッド13が有する電極板131の上面図の一例である。
 図7に示すように、電極支持体132の底面には、ガス流通孔形成領域1321よりも外周に、円環形状の凹溝部1322dが形成されている。また、電極支持体132の底面には、円環形状の凹溝部1322dよりも外周に、円環形状の凹溝部1322eが形成されている。凹溝部1322d,1322eの内壁面(側壁面及び天面)には、陽極酸化膜は形成されておらず導電性材料で形成されている。凹溝部1322dには、導電接続部材133dが配置される。凹溝部1322eには、導電接続部材133eが配置される。導電接続部材133d,133eは、可撓性を有する導電性材料で形成される。
 図8に示すように、電極板131の上面には、ガス導入口形成領域1311よりも外周で、電極支持体132の凹溝部1322dと対応する位置に、円環形状の金属層1312dが形成されている。また、電極板131の上面には、金属層1312dよりも外周で、電極支持体132の凹溝部1322eと対応する位置に、円環形状の金属層1312eが形成されている。また、金属層1312d,1312eの下には、金属シリサイド層が形成される。
 電極支持体132の底面と電極板131の上面とが接して電極板131が電極支持体132に支持された際、導電接続部材133dは、凹溝部1322d内で変形して、電極支持体132の底面に形成された凹溝部1322dの側壁面及び/又は凹溝部1322dの天面と通電可能に接触し、電極板131の上面に形成された金属層1312dと通電可能に接触する。これにより、導電接続部材133dは、電極板131と電極支持体132とを電気的に導通する。同様に、導電接続部材133eは、電極板131と電極支持体132とを電気的に導通する。
 また、図7に示すように、電極支持体132の底面には、ガス流通孔形成領域1321よりも外周かつ円環形状の凹溝部1322dよりも内周に、円環形状の凹溝部1323dが形成されている。凹溝部1323dには、シール部材134dが配置される。また、電極支持体132の底面には、円環形状の凹溝部1322dよりも外周に、円環形状の凹溝部1324dが形成されている。凹溝部1324dには、シール部材135dが配置される。また、電極支持体132の底面には、凹溝部1324dよりも外周かつ円環形状の凹溝部1322eよりも内周に、円環形状の凹溝部1323eが形成されている。凹溝部1323eには、シール部材134eが配置される。また、電極支持体132の底面には、円環形状の凹溝部1322eよりも外周に、円環形状の凹溝部1324eが形成されている。凹溝部1324eには、シール部材135eが配置される。
 シール部材134d,135dは、処理ガスが電極板131の金属層1312d、電極支持体132の凹溝部1322dの側壁面及び天面、導電接続部材133dに到達することを防止する。同様に、シール部材134e,135eは、処理ガスが電極板131の金属層1312e、電極支持体132の凹溝部1322eの側壁面及び天面、導電接続部材133eに到達することを防止する。これにより、電極板131の金属層1312d,1312e、電極支持体132の凹溝部1322d,1322eの側壁面及び天面、導電接続部材133d,133eが処理ガスと反応し、接触抵抗が増加することを防止することができる。なお、電極支持体132に設けられるシール部材が配置される溝は、凹溝部1323d,1324d,1323e,1324eのうち少なくとも1つを有する構成であってもよい。
 図6及び図7に示す例においては、金属層1312及び凹溝部1322が2周形成される場合を例に説明したが、これに限られるものではなく、金属層1312及び凹溝部1322は、3周以上に形成されていてもよい。また、複数周に亘って形成される金属層1312及び凹溝部1322のうち、少なくとも1つが電極板131の上面の周方向において離散的に形成されていてもよい。
 また、金属層1312及び凹溝部1322が複数周形成される構成において、電極板131に形成されるガス導入口形成領域1311及び電極支持体132に形成されるガス流通孔形成領域1321が複数設けられていてもよい。図9は、第4実施例に係るシャワーヘッド13が有する電極支持体132の底面図の一例である。図10は、第4実施例に係るシャワーヘッド13が有する電極板131の上面図の一例である。
 図9に示すように、電極支持体132の底面の中央部には、複数のガス流通孔13cが形成されるガス流通孔形成領域1321fが形成されている。また、電極支持体132の底面には、ガス流通孔形成領域1321fよりも外周に、複数のガス流通孔13cが形成されるガス流通孔形成領域1321gが形成されている。また、電極支持体132の底面には、ガス流通孔形成領域1321gよりも外周に、複数のガス流通孔13cが形成されるガス流通孔形成領域1321hが形成されている。なお、図9においては、一部のガス流通孔13cを図示して、他のガス流通孔13cの図示は省略している。
 電極支持体132の底面には、ガス流通孔形成領域1321fよりも外周かつガス流通孔形成領域1321gよりも内周に、円環形状の凹溝部1322fが形成されている。また、電極支持体132の底面には、ガス流通孔形成領域1321gよりも外周かつガス流通孔形成領域1321hよりも内周に、円環形状の凹溝部1322gが形成されている。また、電極支持体132の底面には、ガス流通孔形成領域1321hよりも外周に、円環形状の凹溝部1322hが形成されている。凹溝部1322f,1322g,1322hの内壁面(側壁面及び天面)には、陽極酸化膜は形成されておらず導電性材料で形成されている。凹溝部1322fには、導電接続部材133fが配置される。凹溝部1322gには、導電接続部材133gが配置される。凹溝部1322hには、導電接続部材133hが配置される。導電接続部材133f,133g,133hは、可撓性を有する導電性材料で形成される。
 図10に示すように、電極板131の上面の中央部には、複数のガス導入口13dが形成されるガス導入口形成領域1311fが形成されている。また、電極板131の上面には、ガス導入口形成領域1311fよりも外周に複数のガス導入口13dが形成されるガス導入口形成領域1311gが形成されている。また、電極板131の上面には、ガス導入口形成領域1311gよりも外周に複数のガス導入口13dが形成されるガス導入口形成領域1311hが形成されている。なお、図10においては、一部のガス導入口13dを図示して、他のガス導入口13dの図示は省略している。
 電極板131の上面には、ガス導入口形成領域1311fよりも外周かつガス導入口形成領域1311gよりも内周で、電極支持体132の凹溝部1322fと対応する位置に、円環形状の金属層1312fが形成されている。また、電極板131の上面には、ガス導入口形成領域1311gよりも外周かつガス導入口形成領域1311hよりも内周で、電極支持体132の凹溝部1322gと対応する位置に、円環形状の金属層1312gが形成されている。電極板131の上面には、ガス導入口形成領域1311hよりも外周で、電極支持体132の凹溝部1322hと対応する位置に、円環形状の金属層1312hが形成されている。また、金属層1312f,1312g,1312hの下には、金属シリサイド層が形成される。
 電極支持体132の底面と電極板131の上面とが接して電極板131が電極支持体132に支持された際、導電接続部材133fは、凹溝部1322f内で変形して、電極支持体132の底面に形成された凹溝部1322fの側壁面及び/又は凹溝部1322fの天面と通電可能に接触し、電極板131の上面に形成された金属層1312fと通電可能に接触する。これにより、導電接続部材133fは、電極板131と電極支持体132とを電気的に導通する。同様に、導電接続部材133gは、電極板131と電極支持体132とを電気的に導通する。また、導電接続部材133hは、電極板131と電極支持体132とを電気的に導通する。
 また、図9に示すように、電極支持体132の底面には、ガス流通孔形成領域1321fよりも外周かつ円環形状の凹溝部1322fよりも内周に、円環形状の凹溝部1323fが形成されている。凹溝部1323fには、シール部材134fが配置される。また、電極支持体132の底面には、円環形状の凹溝部1322fよりも外周かつガス流通孔形成領域1321gよりも内周に、円環形状の凹溝部1324fが形成されている。凹溝部1324fには、シール部材135fが配置される。電極支持体132の底面には、ガス流通孔形成領域1321gよりも外周かつ円環形状の凹溝部1322gよりも内周に、円環形状の凹溝部1323gが形成されている。凹溝部1323gには、シール部材134gが配置される。また、電極支持体132の底面には、円環形状の凹溝部1322gよりも外周かつガス流通孔形成領域1321hよりも内周に、円環形状の凹溝部1324gが形成されている。凹溝部1324gには、シール部材135fが配置される。電極支持体132の底面には、ガス流通孔形成領域1321hよりも外周かつ円環形状の凹溝部1322hよりも内周に、円環形状の凹溝部1323hが形成されている。凹溝部1323hには、シール部材134hが配置される。また、電極支持体132の底面には、円環形状の凹溝部1322hよりも外周に、円環形状の凹溝部1324hが形成されている。凹溝部1324hには、シール部材135hが配置される。
 シール部材134f,135fは、処理ガスが電極板131の金属層1312f、電極支持体132の凹溝部1322fの側壁面及び天面、導電接続部材133fに到達することを防止する。同様に、シール部材134g,135gは、処理ガスが電極板131の金属層1312g、電極支持体132の凹溝部1322gの側壁面及び天面、導電接続部材133gに到達することを防止する。また、シール部材134h,135hは、処理ガスが電極板131の金属層1312h、電極支持体132の凹溝部1322hの側壁面及び天面、導電接続部材133hに到達することを防止する。これにより、電極板131の金属層1312f,1312g,1312h、電極支持体132の凹溝部1322f,1322g,1322hの側壁面及び天面、導電接続部材133f,133g,133hが処理ガスと反応し、接触抵抗が増加することを防止することができる。なお、電極支持体132に設けられるシール部材が配置される溝は、凹溝部1323f,1324f,1323g,1324g,1323h,1324hのうち少なくとも1つを有する構成であってもよい。
 図8及び図9に示す例においては、金属層1312及び凹溝部1322が3周形成される場合を例に説明したが、これに限られるものではなく、金属層1312及び凹溝部1322は、2周以上に形成されていてもよい。また、複数周に亘って形成される金属層1312及び凹溝部1322のうち、少なくとも1つが電極板131の上面の周方向において離散的に形成されていてもよい。
 また、図8及び図9に示す例においては、ガス拡散室13b(図1参照)が複数(3つ)に区画されていてもよい。中央部に形成された第1のガス拡散室からガス流通孔形成領域1321fのガス流通孔13cを通過してガス導入口形成領域1311fのガス導入口13dからプラズマ処理空間10s内に導入される。第1のガス拡散室よりも外周に形成された第2のガス拡散室からガス流通孔形成領域1321gのガス流通孔13cを通過してガス導入口形成領域1311gのガス導入口13dからプラズマ処理空間10s内に導入される。第2のガス拡散室よりも外周に形成された第3のガス拡散室からガス流通孔形成領域1321hのガス流通孔13cを通過してガス導入口形成領域1311hのガス導入口13dからプラズマ処理空間10s内に導入される。
 同様に、導電接続部材133及び導電接続部材133が配置される凹溝部1322は、図4に示すように、電極支持体132の底面の周方向において、周方向に連続する円環形状に形成されるものとして説明したが、これに限られるものではない。導電接続部材133及び導電接続部材133が配置される凹溝部1322は、電極支持体132の底面の周方向において、離散的に形成されていてもよい。
 また、導電接続部材133及び導電接続部材133が配置される凹溝部1322は、図4に示すように、1つの円周上に形成されるものとして説明したが、これに限られるものではない。導電接続部材133及び導電接続部材133が配置される凹溝部1322は、複数周に亘って形成されていてもよい。また、複数周に亘って形成される導電接続部材133及び導電接続部材133が配置される凹溝部1322のうち、少なくとも1つが電極支持体132の底面の周方向において離散的に形成されていてもよい。
 ここで、第1のRF生成部31aから下部電極にソースRF信号を供給し、第2のRF生成部31bから下部電極にバイアスRF信号を供給し、第2のDC生成部32bから上部電極に第2のDC信号を供給するプラズマ処理装置1を例に説明する。
 第2のDC生成部32bは、電極支持体132に第2のDC信号を供給する。そして、第2のDC信号は、電極支持体132から導電接続部材133を介して電極板131に供給される。
 また、ガス供給部20からシャワーヘッド13を介してプラズマ処理空間10s内に処理ガスを供給し、第1のRF生成部31aから下部電極にソースRF信号を供給し、第2のRF生成部31bから下部電極にバイアスRF信号を供給することにより、プラズマ処理空間10s内にプラズマが生成される。
 ここで、電極支持体132に形成されるガス流通孔13c及び電極板131に形成されるガス導入口13dを流れる処理ガスが電離して、ガス流通孔13c及びガス導入口13d内で放電が発生するおそれがある。ガス流通孔13c及びガス導入口13d内における放電は、電極板131と電極支持体132との界面における電位差が小さいほど、処理ガスの電離を抑制することができ、放電を抑制することができる。放電を抑制することにより、電極板131の交換時期や平均メンテナンス時間を長くすることができ、プラズマ処理装置1の生産性を向上させることができる。
 ここで、参考例に係るシャワーヘッド13Cと対比しつつ、本実施形態に係るシャワーヘッド13についてさらに説明する。まず、参考例に係るシャワーヘッド13Cの構造について、図11を用いて説明する。図11は、参考例に係るシャワーヘッド13Cの部分拡大断面模式図の一例である。なお、電極板131Cが電極支持体132に支持される際、電極支持体132の底面と電極板131Cの上面とが接している。
 図11に示すように、シャワーヘッド13Cは、電極板131Cと、電極支持体132と、導電接続部材133と、シール部材(図示せず)と、を有する。参考例に係るシャワーヘッド13Cの電極板131Cは、本実施形態に係るシャワーヘッド13の電極板131と比較して、金属層1312(図3参照)及び金属シリサイド層1313(図3参照)が形成されていない点で異なっている。その他の構成については、同様であり、重複する説明を省略する。
 参考例に係るシャワーヘッド13Cにおいては、電極板131Cの表面に、絶縁体(例えば、SiO)となる自然酸化膜1315が形成されている。また、導電接続部材133は、自然酸化膜1315が形成された位置で電極板131Cと接触している。このため、導電接続部材133と電極板131との接触抵抗が大きくなる。このため、第2のDC生成部32bから電極支持体132に第2のDC信号を供給した際、電極支持体132と導電接続部材133との接触抵抗及び導電接続部材133と電極板131との接触抵抗に起因して、電極板131と電極支持体132との間に電位差が生じる。また、ガス流通孔13c及びガス導入口13dを流れる処理ガスの圧力は高くなっている。このため、ガス流通孔13c及びガス導入口13d内の電極板131と電極支持体132との界面付近において、この電位差によって放電が生じるおそれがある。放電が発生することで、電極板131が消耗し、平均メンテナンス時間が短くなり、プラズマ処理装置1の生産性が低下するおそれがある。
 また、第2のDC生成部32bから上部電極に第2のDC信号を供給しない場合にも同様の課題が生じる場合がある。すなわち、第1のRF生成部31aから下部電極にソースRF信号を供給し、第2のRF生成部31bから下部電極にバイアスRF信号を供給し、プラズマ処理空間10sにプラズマを生成すると、プラズマがガス導入口13dからガス導入口13dとの境界まで進入する場合がある。この場合にも、電極板131と電極支持体132との間の電位差によって、ガス流通孔13c及びガス導入口13d内において放電が生じるおそれがある。放電が発生することで、電極板131が消耗し、平均メンテナンス時間が短くなり、プラズマ処理装置1の生産性が低下するおそれがある。
 これに対し、本実施形態に係るシャワーヘッド13においては、電極板131の上面の導電接続部材133が接触する位置に金属層1312が形成されている。これにより、金属層1312の下に金属シリサイド層1313が形成され、導電接続部材133が接触する位置におけるシリコン酸化膜(自然酸化膜)の形成を抑制することができる。また、金属シリサイド層1313が形成されることにより、金属層1312と電極板131との接触抵抗を低減することができる。
 したがって、導電接続部材133と電極板131との接触抵抗を低減することができる。このため、第2のDC生成部32bから電極支持体132に第2のDC信号を供給した際、電極板131と電極支持体132との界面における電位差を低減することができる。よって、処理ガスの電離を抑制することができ、放電を抑制することができる。放電を抑制することにより、平均メンテナンス時間を長くすることができ、プラズマ処理装置1の生産性を向上させることができる。
 また、他の参考例に係るシャワーヘッドとして、電極板の上面の導電接続部材と接触する位置に、導電性接着剤でアルミニウムテープを電極板に張り付けした構成が考えられる。これに対し、本実施形態に係るシャワーヘッド13においては、金属層1312と電極板131の母材(Si,SiC等)との間を、金属シリサイド層1313で接続する。これにより、参考例に係るシャワーヘッドにおけるアルミニウムテープと電極板の母材との間の接触抵抗よりも、本実施形態に係るシャワーヘッド13における金属層1312と電極板131の母材との間の接触抵抗を小さくすることができる。これにより、電極板131と電極支持体132との界面における電位差を低減することができる。よって、処理ガスの電離を抑制することができ、放電を抑制することができる。放電を抑制することにより、平均メンテナンス時間を長くすることができ、プラズマ処理装置1の生産性を向上させることができる。
 また、Siを含む材料で構成される電極板131と、電極板131を支持する電極支持体132と、電極板131と電極支持体132との間に配置され、電極板131と電極支持体132とを導通する導電接続部材133と、を備えるプラズマ処理装置内構造体(電極アセンブリ)において、電極板131は、前記導電接続部材133と接触する位置に金属層1312を有する構成を例に説明したがこれに限られるものではない。Siを含む材料で構成される第1部材と、第1部材を支持する第2部材と、第1部材と第2部材とを導通する導電接続部材と、を備える他のプラズマ処理装置内構造体において、第1部材は、導電接続部材と接触する位置に金属層を有する構成であってもよい。また、第1部材は、導電接続部材及び第2部材を介して、電圧が印加される部材であってもよい。また、第2部材が接地され、導電接続部材を介して電気的に接続される第1部材も接地される構成であってもよい。
 図12は、容量結合型のプラズマ処理装置の構成例を説明するための図の他の一例である。なお、以下の説明において、図1に示すプラズマ処理装置1と重複する構成については、説明を省略する。図12に示すプラズマ処理装置1は、図1に示すプラズマ処理装置1に加えて、シリコンリング141、デポシールド142、バッフル板143、導電接続部材201,202,203,204を備えている。また、プラズマ処理チャンバ10は、下側部材10a1と、上側部材10a2と、を有する。下側部材10a1及び上側部材10a2は、プラズマ処理チャンバ10の側壁10aを構成する。また、上側部材10a2は、プラズマ処理チャンバ10の天部の少なくとも一部を構成する。
 シリコンリング141(第1部材の一例)、上側部材10a2(第2部材の一例)及び導電接続部材201は、プラズマ処理装置内構造体の一例である。
 シリコンリング141は、電極板131を囲むように配置される円環形状の部材である。シリコンリング141は、Siを含む材料(例えば、SiまたはSiC)で構成される。シリコンリング141は、上側部材10a2に支持される。図12に示す例において、上側部材10a2のうち、プラズマ処理チャンバ10の天部の少なくとも一部を構成する部分において、シリコンリング141を支持する。
 また、シリコンリング141と上側部材10a2との間には、導電接続部材201が配置される。導電接続部材201は、導電接続部材133と同様に可撓性を有する導電性材料で形成される。シリコンリング141と上側部材10a2とは、導電接続部材201を介して電気的に接続される。
 ここで、シリコンリング141の上面の導電接続部材201が接触する位置に金属層(図示省略)を有している。これにより、金属層の下に金属シリサイド層が形成され、導電接続部材201が接触する位置におけるシリコン酸化膜(自然酸化膜)の形成を抑制することができる。また、金属シリサイド層が形成されることにより、金属層とシリコンリング141との接触抵抗を低減することができる。
 したがって、導電接続部材201とシリコンリング141との接触抵抗を低減することができる。このため、シリコンリング141と上側部材10a2との界面における電位差を低減することができる。即ち、シリコンリング141を接地電位とすることができる。
 また、シリコンリング141の上面に形成された金属層を囲むように、シリコンリング141と上側部材10a2との間にシール部材(図示省略)が配置される。
 また、図12に示すように、シリコンリング141はガス導入口141aを有し、上側部材10a2はガス導入口141aと連通するガス流通孔を有する構成であってもよい。ガス供給部20は、少なくとも1つのガスソース23及び少なくとも1つの流量制御器24を含んでもよい。ガス供給部20は、処理ガスを、ガスソース23から流量制御器24を介してガス導入口141aに供給するように構成される。
 シリコンリング141と上側部材10a2との界面における電位差を低減することにより、処理ガスの電離を抑制することができ、放電を抑制することができる。放電を抑制することにより、平均メンテナンス時間を長くすることができ、プラズマ処理装置1の生産性を向上させることができる。
 デポシールド142(第1部材の一例)、プラズマ処理チャンバ10の側壁10a(第2部材の一例)及び導電接続部材202,203は、プラズマ処理装置内構造体の一例である。
 デポシールド142は、プラズマ処理チャンバ10の内壁面に沿って設けられる部材である。デポシールド142は、Siを含む材料(例えば、SiまたはSiC)で構成される。デポシールド142は、外周面側に径方向外側に向かって突出する凸部を有し、この凸部が下側部材10a1と上側部材10a2とによって挟持されて支持される。
 また、デポシールド142と上側部材10a2(プラズマ処理チャンバ10の側壁10aの一部)との間には、導電接続部材202が配置される。また、デポシールド142と下側部材10a1(プラズマ処理チャンバ10の側壁10aの一部)との間には、導電接続部材203が配置される。導電接続部材202,203は、導電接続部材133と同様に可撓性を有する導電性材料で形成される。デポシールド142とプラズマ処理チャンバ10の側壁10a(下側部材10a1、上側部材10a2)とは、導電接続部材202,203を介して電気的に接続される。
 ここで、デポシールド142の挟持される部分上面の導電接続部材202が接触する位置に金属層(図示省略)を有している。これにより、金属層の下に金属シリサイド層が形成され、導電接続部材202が接触する位置におけるシリコン酸化膜(自然酸化膜)の形成を抑制することができる。また、金属シリサイド層が形成されることにより、金属層とデポシールド142との接触抵抗を低減することができる。
 したがって、導電接続部材202とデポシールド142との接触抵抗を低減することができる。このため、デポシールド142とプラズマ処理チャンバ10の側壁10aとの界面における電位差を低減することができる。
 同様に、デポシールド142の挟持される部分下面の導電接続部材203が接触する位置に金属層(図示省略)を有している。これにより、金属層の下に金属シリサイド層が形成され、導電接続部材203が接触する位置におけるシリコン酸化膜(自然酸化膜)の形成を抑制することができる。また、金属シリサイド層が形成されることにより、金属層とデポシールド142との接触抵抗を低減することができる。
 したがって、導電接続部材203とデポシールド142との接触抵抗を低減することができる。このため、デポシールド142とプラズマ処理チャンバ10の側壁10aとの界面における電位差を低減することができる。即ち、デポシールド142を接地電位とすることができる。
 また、デポシールド142に形成された金属層を囲むように、デポシールド142とプラズマ処理チャンバ10の側壁10aとの間にシール部材(図示省略)が配置される。
 バッフル板143(第1部材の一例)、下側部材10a1(第2部材の一例)及び導電接続部材204は、プラズマ処理装置内構造体の一例である。
 バッフル板143は、複数の貫通孔を有する円環形状の部材である。プラズマ処理空間10s内のガスは、バッフル板143の貫通孔を通過し、ガス排出口10eから排気システム40によって排気される。バッフル板143は、Siを含む材料(例えば、SiまたはSiC)で構成される。バッフル板143は、下側部材10a1によって支持される。図12に示す例において、下側部材10a1は、バッフル板143の外周側において、バッフル板143を支持する。なお、バッフル板143の外周側を支持する例を説明したが、これに限られるものではなく、バッフル板143の内周側及び/又は外周側を支持する構造であってもよい。
 また、バッフル板143と下側部材10a1との間には、導電接続部材204が配置される。また、バッフル板143と下側部材10a1との間には、導電接続部材204が配置される。導電接続部材204は、導電接続部材133と同様に可撓性を有する導電性材料で形成される。バッフル板143と下側部材10a1とは、導電接続部材204を介して電気的に接続される。
 ここで、バッフル板143の下面の導電接続部材204が接触する位置に金属層(図示省略)を有している。これにより、金属層の下に金属シリサイド層が形成され、導電接続部材204が接触する位置におけるシリコン酸化膜(自然酸化膜)の形成を抑制することができる。また、金属シリサイド層が形成されることにより、金属層とバッフル板143との接触抵抗を低減することができる。
 したがって、導電接続部材204とバッフル板143との接触抵抗を低減することができる。このため、バッフル板143と下側部材10a1との界面における電位差を低減することができる。即ち、バッフル板143を接地電位とすることができる。
 また、バッフル板143に形成された金属層を囲むように、バッフル板143と下側部材10a1との間にシール部材(図示省略)が配置される。
 また、第2部材が接地されるプラズマ処理装置内構造体を例に説明したがこれに限られるものではない。第2部材にバイアス電圧が印加されるプラズマ処理装置内構造体に適用してもよい。
 以上、プラズマ処理システムの実施形態等について説明したが、本開示は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形、改良が可能である。
 尚、本願は、2022年6月6日に出願した日本国特許出願2022-91875号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。
W     基板
1     プラズマ処理装置
2     制御部
10    プラズマ処理チャンバ(第2部材)
20    ガス供給部
30    電源
40    排気システム
10s   プラズマ処理空間
11    基板支持部
13    シャワーヘッド(電極アセンブリ、プラズマ処理装置内構造体)
13a   ガス供給口
13b   ガス拡散室
13c   ガス流通孔
13d   ガス導入口
131   電極板(第1部材)
1311  ガス導入口形成領域
1312  金属層
1313  金属シリサイド層
1315  自然酸化膜
132   電極支持体(第2部材)
1321  ガス流通孔形成領域
1322  凹溝部
1323  凹溝部
1324  凹溝部
1325  陽極酸化膜
133,201,202,203,204 導電接続部材
134,135 シール部材
136   絶縁部材
141   シリコンリング(第1部材)
142   デポシールド(第1部材)
143   バッフル板(第1部材)

 

Claims (16)

  1.  Siを含む材料で構成される第1部材と、
     前記第1部材を支持する第2部材と、
     前記第1部材と前記第2部材との間に配置され、前記第1部材と前記第2部材とを導通する導電接続部材と、を備え、
     前記第1部材は、
     前記導電接続部材と接触する位置に金属層を有する、
    プラズマ処理装置内構造体。
  2.  前記金属層と前記第1部材との間に金属シリサイド層を有する、
    請求項1に記載のプラズマ処理装置内構造体。
  3.  前記金属層は、アルミニウム、タングステン、チタン、コバルト、ニッケルのうちいずれかで構成される、
    請求項2に記載のプラズマ処理装置内構造体。
  4.  前記金属層の厚みは、1nm以上、5000nm以下である、
    請求項3に記載のプラズマ処理装置内構造体。
  5.  前記金属層は、円環形状に形成される、
    請求項1乃至請求項4のいずれか1項に記載のプラズマ処理装置内構造体。
  6.  前記金属層は、1つの円周上に形成される、
    請求項1乃至請求項4のいずれか1項に記載のプラズマ処理装置内構造体。
  7.  前記第1部材は、SiまたはSiCで構成される、
    請求項1乃至請求項4のいずれか1項に記載のプラズマ処理装置内構造体。
  8.  前記第1部材は、ガス導入口を有し、
     前記第2部材は、前記ガス導入口と連通するガス流通孔を有する、
    請求項1乃至請求項4のいずれか1項に記載のプラズマ処理装置内構造体。
  9.  前記第1部材は、電極板であり、
     前記第2部材は、電極支持体である、
    請求項1乃至請求項4のいずれか1項に記載のプラズマ処理装置内構造体。
  10.  電極支持体によって着脱自在に支持され、導電接続部材を介して前記電極支持体と導通する電極板であって、
     前記導電接続部材と接触する位置に金属層を有する、
    電極板。
  11.  前記金属層と前記電極板との間に金属シリサイド層を有する、
    請求項10に記載の電極板。
  12.  前記金属層は、アルミニウム、タングステン、チタン、コバルト、ニッケルのうちいずれかで構成される、
    請求項11に記載の電極板。
  13.  前記金属層の厚みは、1nm以上、5000nm以下である、
    請求項12に記載の電極板。
  14.  前記電極板は、SiまたはSiCで構成される、
    請求項10乃至請求項13のいずれか1項に記載の電極板。
  15.  請求項1乃至請求項4のいずれか1項に記載のプラズマ処理装置内構造体を備える、
    プラズマ処理装置。
  16.  前記第1部材は、電極板であり、
     前記第2部材は、電極支持体であり、
     前記プラズマ処理装置は、
     基板を支持する基板支持部と、
     前記電極支持体にDC信号を供給するDC生成部と、を更に備える、
    請求項15に記載のプラズマ処理装置。

     
PCT/JP2023/020281 2022-06-06 2023-05-31 プラズマ処理装置内構造体、電極板及びプラズマ処理装置 WO2023238750A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091875 2022-06-06
JP2022091875 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023238750A1 true WO2023238750A1 (ja) 2023-12-14

Family

ID=89118321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020281 WO2023238750A1 (ja) 2022-06-06 2023-05-31 プラズマ処理装置内構造体、電極板及びプラズマ処理装置

Country Status (1)

Country Link
WO (1) WO2023238750A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074456A (en) * 1990-09-18 1991-12-24 Lam Research Corporation Composite electrode for plasma processes
JP2003518720A (ja) * 1999-12-24 2003-06-10 クシュカルブ・セラミックス・ビー・ブイ プラズマリアクトルのための電極を製造する方法およびそのような電極
JP2004524677A (ja) * 2000-12-29 2004-08-12 ラム リサーチ コーポレーション プラズマ処理用電極及びその製造方法並びにその使用
JP2012043796A (ja) * 2002-05-23 2012-03-01 Lam Res Corp 電極
JP2021118249A (ja) * 2020-01-24 2021-08-10 東京エレクトロン株式会社 プラズマ処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074456A (en) * 1990-09-18 1991-12-24 Lam Research Corporation Composite electrode for plasma processes
JP2003518720A (ja) * 1999-12-24 2003-06-10 クシュカルブ・セラミックス・ビー・ブイ プラズマリアクトルのための電極を製造する方法およびそのような電極
JP2004524677A (ja) * 2000-12-29 2004-08-12 ラム リサーチ コーポレーション プラズマ処理用電極及びその製造方法並びにその使用
JP2012043796A (ja) * 2002-05-23 2012-03-01 Lam Res Corp 電極
JP2021118249A (ja) * 2020-01-24 2021-08-10 東京エレクトロン株式会社 プラズマ処理装置

Similar Documents

Publication Publication Date Title
JP6728117B2 (ja) 取り外し可能なガス分配プレートを有するシャワーヘッド
JP3884620B2 (ja) プラズマ放電ガスを処理室へ導入する高電力rf電極を絶縁する装置
JP3155199B2 (ja) プラズマ処理装置
US20210398786A1 (en) Plasma processing apparatus
JP7340938B2 (ja) 載置台及び基板処理装置
WO2023238750A1 (ja) プラズマ処理装置内構造体、電極板及びプラズマ処理装置
WO2023058475A1 (ja) プラズマ処理装置
TW202414502A (zh) 電漿處理裝置內結構體、電極板及電漿處理裝置
US20230187183A1 (en) Upper electrode and plasma processing apparatus
WO2024053563A1 (ja) 電極板、電極アセンブリ及びプラズマ処理装置
US20240112891A1 (en) Plasma processing apparatus and substrate processing apparatus
JP2024050423A (ja) プラズマ処理装置及び基板処理装置
WO2024057973A1 (ja) 静電チャック及び基板処理装置
WO2023074475A1 (ja) プラズマ処理装置及び静電チャック
JP2023053918A (ja) 上部電極アセンブリ及びプラズマ処理装置
WO2022215633A1 (ja) 静電チャックおよび基板処理装置
US20230073711A1 (en) Substrate support assembly and plasma processing apparatus
JP2024013617A (ja) 基板処理装置
US20230352280A1 (en) Substrate support assembly, substrate support, substrate processing apparatus, and substrate processing method
JP2023003957A (ja) プラズマ処理装置及び基板支持部
JP2023137666A (ja) 上部電極及びプラズマ処理装置
JP2023165222A (ja) 静電チャック、基板支持アセンブリ、及びプラズマ処理装置
JP2024027431A (ja) プラズマ処理装置及び基板支持部
JP2024011192A (ja) 基板支持器及びプラズマ処理装置
TW202240025A (zh) 半導體製造裝置及半導體製造裝置用之零件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819730

Country of ref document: EP

Kind code of ref document: A1