WO2023238732A1 - Layered structure, cured product of resin layer in said layered structure, and electronic component having said cured product - Google Patents

Layered structure, cured product of resin layer in said layered structure, and electronic component having said cured product Download PDF

Info

Publication number
WO2023238732A1
WO2023238732A1 PCT/JP2023/020028 JP2023020028W WO2023238732A1 WO 2023238732 A1 WO2023238732 A1 WO 2023238732A1 JP 2023020028 W JP2023020028 W JP 2023020028W WO 2023238732 A1 WO2023238732 A1 WO 2023238732A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
film
resin
epoxy resin
cured product
Prior art date
Application number
PCT/JP2023/020028
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 佐々木
紗季 齋藤
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2023238732A1 publication Critical patent/WO2023238732A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention relates to a laminated structure, a cured product of a resin layer in the laminated structure, and an electronic component having the cured product.
  • Fingerprint detection devices are used as personal authentication tools in mobile terminals and the like.
  • capacitive fingerprint authentication sensors are used. Its operating principle is to recognize a fingerprint by using electrodes to read the difference in charge generated within the sensor due to the unevenness of the fingerprint.
  • a semiconductor device that can be used as a capacitive fingerprint detection device is disclosed in Patent Document 1, for example.
  • This fingerprint authentication sensor uses an FC-BGA package.
  • the top side (front side) is the sensor surface
  • the bottom side (back side) is the IC chip.
  • Components such as are mounted and solder balls are arranged. Since the sensor surface of a fingerprint authentication sensor requires high reading accuracy, the insulating protective film formed on the circuit board for the sensor surface is required to have flatness and a high dielectric constant.
  • This insulating protective film for the sensor surface may be formed using, for example, a laminated structure that includes a first film (support), a resin layer, and a second film (protective film) in this order. . That is, after peeling off the second film from the resin layer of the laminated structure and laminating the resin layer on the circuit board, the resin layer is cured to form an insulating protective film (cured product) for the sensor surface. is possible. However, good adhesion between the resin layer and the second film is required up to the step of peeling the second film from the laminate structure.On the other hand, in the step of peeling the second film from the laminate structure, Good releasability between the resin layer and the second film is required.
  • this laminated structure satisfies the condition of having a resin layer that allows a cured product with a high dielectric constant to be obtained, while also satisfying the condition that the resin layer and the second film have conflicting adhesion and releasability. It is important that both properties are good.
  • the resin layer in order to obtain an insulating protective film with a fine pattern, the resin layer must have good image forming properties after development and before thermosetting, and also good image forming properties after thermosetting. There is a need. The reason for this is that, depending on the resin layer of the laminated structure, although the image forming properties are good immediately after development, the resin contained in the resin layer softens before it hardens due to the heating during thermosetting. Flow may occur and fill the openings, or the line pattern of the resin layer may collapse, resulting in poor image formation after heat curing. This is because both need to be controlled so that the image forming properties after thermosetting are also good.
  • the object of the present invention which was made in view of the above problems, is to be able to obtain a cured product with a high dielectric constant, and to have good image forming properties both after development and before heat curing and after heat curing.
  • a laminated structure having a certain resin layer and having good peelability and adhesion between the resin layer and a second film, a cured product of the resin layer in the laminated structure, and a cured product thereof
  • Our objective is to provide electronic components that have the following characteristics.
  • the present inventors focused on the components constituting the resin layer that can obtain a cured product with a high dielectric constant, and found that a specific content of perovskite-type compounds to obtain a high dielectric constant, Furthermore, the present invention has been completed by discovering that the above object can be achieved by adjusting the content of liquid epoxy resin as a thermosetting resin to a specific amount relative to solid epoxy resin.
  • the types of carboxyl group-containing resins, photocurable compounds that do not contain carboxyl groups, and/or photopolymerization initiators are changed or their contents are adjusted.
  • the present inventors have surprisingly found that all of the above objectives can be achieved simultaneously by setting a specific content of the perovskite type compound and further setting a specific content of the liquid epoxy resin relative to the solid epoxy resin. They discovered this.
  • the reason why all of the above objectives can be achieved simultaneously is not necessarily clear, but it is thought to be as follows. That is, in order to obtain a cured product with a high dielectric constant, if the content of the perovskite compound is set to 55 to 85% by mass on a solid basis with respect to the total mass of the resin layer, it usually improves the image forming property and the second film.
  • the dielectric constant of a cured product in this specification refers to the dielectric constant of a cured product obtained by performing an exposure step, a development step, and a thermosetting step on the resin layer in the laminated structure.
  • the above object is a laminated structure including, in order, a first film, a resin layer, and a second film according to the present invention
  • the resin layer includes (A) a carboxyl group-containing resin, (B) a photocurable compound that does not contain a carboxyl group, (C) a photopolymerization initiator, (D) a perovskite type compound, and (E) an epoxy resin.
  • the content of the perovskite compound (D) is 55 to 85% by mass on a solid content basis with respect to the total mass of the resin layer
  • the epoxy resin (E) includes a solid epoxy resin and a liquid epoxy resin, This can be achieved by a laminated structure characterized in that the content of the liquid epoxy resin is 150 to 1000 parts by mass based on solid content based on 100 parts by mass of the solid epoxy resin.
  • the content of the perovskite compound (D) is 70 to 85% by mass on a solid content basis with respect to the total mass of the resin layer.
  • the perovskite compound (D) is a divalent metal salt of titanic acid.
  • the present invention also relates to a cured product, characterized in that the resin layer of the laminated structure is cured.
  • the present invention also relates to an electronic component comprising the cured product.
  • the present invention it is possible to obtain a cured product with a high dielectric constant, and the resin layer has good image formation properties both after development and before thermosetting and after thermosetting.
  • the present invention also provides a laminated structure having good peelability and adhesion between a resin layer and a second film, a cured product of the resin layer in the laminated structure, and an electronic component having the cured product. There is a particular thing.
  • the laminated structure of the present invention can obtain a cured product with a high dielectric constant due to the above-described configuration, and has good image forming properties both after development and before thermosetting and after thermosetting. It is possible to obtain a laminated structure that has a certain resin layer and has good releasability and adhesion between the resin layer and the second film.
  • the dielectric constant of the cured product is preferably 8 or more, more preferably 10 or more in the 10 GHz band.
  • the laminated structure of the present invention may be a laminated structure consisting of a first film, a resin layer, and a second film, or one other resin layer may be provided between the first film and the resin layer.
  • a laminated structure including the above may be used.
  • the components of this other resin layer may be the same as or different from the components of the resin layer mainly disposed between the first film and the second film.
  • An example of the laminated structure of the present invention is a dry film.
  • the first film has the role of supporting the resin layer when laminating the resin layer in the laminated structure on the circuit-formed substrate, and the curable resin composition for forming the resin layer is the first film. It is applied.
  • the first film may be formed of a thermoplastic resin such as a polyester film such as polyethylene terephthalate and polyethylene naphthalate, a polyimide film, a polyamideimide film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a polystyrene film, etc.
  • a film can be used.
  • polyester films can be preferably used from the viewpoints of heat resistance, mechanical strength, handleability, and the like.
  • the thickness of the first film is not particularly limited, but is preferably in the range of 10 to 150 ⁇ m, more preferably in the range of 15 to 100 ⁇ m, and even more preferably in the range of 20 to 75 ⁇ m, depending on the application. selected.
  • the surface of the first film on which the resin layer is provided may be subjected to a mold release treatment.
  • a conductive resin layer, a metal sputtered layer, or an ultra-thin copper foil may be formed on the surface of the first film on which the resin layer is provided. Examples of commercially available products include "E5041" (polyethylene terephthalate film; thickness 25 ⁇ m) manufactured by Toyobo Co., Ltd.
  • the resin layer contains (A) a carboxyl group-containing resin, (B) a photocurable compound that does not contain a carboxyl group, (C) a photopolymerization initiator, (D) a perovskite compound, and (E) an epoxy resin.
  • the thickness of this resin layer is preferably 5 to 100 ⁇ m, more preferably 10 to 90 ⁇ m, even more preferably 20 to 85 ⁇ m. By setting the thickness within this range, it is possible to meet the demand for thinner electronic components. Moreover, some electronic components have circuit thicknesses that vary depending on the application, and the laminated structure of the present invention can be sufficiently applied to electronic components with large circuit thicknesses.
  • the resin layer in the laminate structure of the present invention includes (A) a carboxyl group-containing resin, (B) a photocurable compound that does not contain a carboxyl group, (C) a photopolymerization initiator, (D) a perovskite compound, and (E ) A curable resin composition containing an epoxy resin is applied onto a first film and dried.
  • a curable resin composition containing an epoxy resin is applied onto a first film and dried.
  • (A) Carboxyl group-containing resin As the carboxyl group-containing resin, various conventionally known resins containing a carboxyl group in the molecule can be used.
  • the carboxyl group-containing resin may or may not have an ethylenically unsaturated double bond in its molecule, but in particular, a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond in its molecule is , preferred from the viewpoint of photocurability and development resistance.
  • the carboxyl group-containing resin corresponds to a photocurable resin.
  • the ethylenically unsaturated double bond is derived from acrylic acid or methacrylic acid or derivatives thereof.
  • the carboxyl group-containing resin preferably has an acid value of 20 to 200 mgKOH/g, more preferably 60 to 150 mgKOH/g, in order to be compatible with the development process.
  • this acid value is 20 mgKOH/g or more, the solubility in an alkaline aqueous solution increases and developability becomes good.
  • the acid value is 200 mgKOH/g or less, image forming properties are improved.
  • the acid value in this specification is a value measured by a neutralization titration method using phenolphthalein as an indicator.
  • the weight average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, but is generally in the range of 2,000 to 150,000, preferably in the range of 5,000 to 100,000.
  • a carboxyl group-containing resin having a weight average molecular weight of 2,000 or more the dryness to the touch of the resin layer can be improved.
  • a carboxyl group-containing resin having a weight average molecular weight of 150,000 or less developability and storage stability can be improved.
  • Mw weight average molecular weight
  • Measuring device “Waters 2695” manufactured by Waters Detector: “Waters2414” manufactured by Waters, RI (differential refractometer) Column: Waters “HSPgel Column, HR MB-L, 3 ⁇ m, 6mm x 150mm” x 2 + Waters “HSPgel Column, HR1, 3 ⁇ m, 6mm x 150mm” x 2 Measurement condition: Column temperature: 40°C RI detector setting temperature: 35°C Developing solvent: Tetrahydrofuran Flow rate: 0.5ml/min Sample amount: 10 ⁇ l Sample concentration: 0.5wt%
  • the content of the carboxyl group-containing resin is preferably 5 to 30% by mass on a solid content basis with respect to the total mass of the resin layer.
  • carboxyl group-containing resins include the following resins (which may be either oligomers or polymers). The following carboxyl group-containing resins may be used alone or in combination of two or more.
  • (meth)acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
  • a carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth)acrylic acid with an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth)acrylate, or isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers.
  • a carboxyl group-containing urethane resin produced by polyaddition reaction of diol compounds such as polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A-based alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
  • Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates, and polycarbonate polyols, polyether polyols, polyester polyols, polyolefin polyols, acrylic polyols, and bisphenol A-based polyols.
  • a urethane resin containing a terminal carboxyl group which is obtained by reacting an acid anhydride at the terminal end of a urethane resin obtained by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group, and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resins such as bisphenol A epoxy resin, hydrogenated bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bixylenol epoxy resin, and biphenol epoxy resin ( A carboxyl group-containing urethane resin produced by a polyaddition reaction of meth)acrylate or its partially modified acid anhydride, a carboxyl group-containing dialcohol compound, and a diol compound.
  • the hydroxyalkyl (meth)acrylate or the like has one hydroxyl group and one or more (meth)acryloyl groups in the molecule.
  • a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
  • reaction product obtained by reacting a reaction product obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing resin obtained by reacting a substance with a polybasic acid anhydride.
  • (11) Obtained by reacting a reaction product obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
  • An epoxy compound having multiple epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and alcoholic anhydride are reacted with an unsaturated group-containing monocarboxylic acid such as acrylic acid.
  • a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as adipic acid.
  • a photocurable compound that does not contain a carboxyl group is a compound that does not contain a carboxyl group and contains an ethylenically unsaturated double bond, and includes photocurable polymers, photocurable oligomers, photocurable monomers, etc. or a mixture thereof.
  • photocurable compounds containing no carboxyl group can be used alone or in combination of two or more.
  • photocurable polymers and photocurable oligomers include unsaturated polyester oligomers, (meth)acrylate oligomers, and the like.
  • (meth)acrylate oligomers include epoxy (meth)acrylates such as phenol novolak epoxy (meth)acrylate, cresol novolac epoxy (meth)acrylate, and bisphenol type epoxy (meth)acrylate, urethane (meth)acrylate, and epoxyurethane (meth)acrylate.
  • epoxy (meth)acrylates such as phenol novolak epoxy (meth)acrylate, cresol novolac epoxy (meth)acrylate, and bisphenol type epoxy (meth)acrylate, urethane (meth)acrylate, and epoxyurethane (meth)acrylate.
  • polyester (meth)acrylate, polyether (meth)acrylate, polybutadiene-modified (meth)acrylate, and the like are examples of the like.
  • photocurable monomers examples include alkyl (meth)acrylates such as 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate; such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate.
  • Hydroxyalkyl (meth)acrylates mono- or di(meth)acrylates of alkylene oxide derivatives such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipenta Polyhydric alcohols such as erythritol, trishydroxyethyl isocyanurate, or polyvalent (meth)acrylates of their ethylene oxide or propylene oxide adducts; Phenols such as phenoxyethyl (meth)acrylate, polyethoxydi(meth)acrylate of bisphenol A Examples include (meth)acrylates of ethylene oxide or propylene oxide adducts; (meth)acrylates of glycidyl ethers such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether,
  • a phenol compound having two or more phenolic hydroxyl groups in the molecule is obtained by a condensation reaction between a polymethylol form of bisphenol A or bisphenol F and phenols. A part or all of the phenolic hydroxyl groups of a phenolic compound having two or more phenolic hydroxyl groups in the molecule are converted into an oxyalkyl group having an alcoholic hydroxyl group, and (meth)acrylic is added to the terminal hydroxyl group of the resulting oxyalkyl group.
  • photocurable compounds obtained by addition of an acid are also preferred.
  • the content of the photocurable compound that does not contain a carboxyl group is preferably 0.1 to 30% by mass, more preferably 1 to 10% by mass based on solid content, based on the total mass of the resin layer.
  • the photopolymerization initiator is for reacting a carboxyl group-containing resin and/or a photocurable compound not containing a carboxyl group by exposure to light.
  • the photopolymerization initiator any known ones can be used.
  • the photopolymerization initiators may be used alone or in combination of two or more.
  • photopolymerization initiator examples include bis-(2,6-dichlorobenzoyl)phenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide, and bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide.
  • dichlorobenzoyl)-4-propylphenylphosphine oxide bis-(2,6-dichlorobenzoyl)-1-naphthylphosphine oxide, bis-(2,6-dimethoxybenzoyl)phenylphosphine oxide, bis-(2,6-dimethoxy) benzoyl)-2,4,4-trimethylpentylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,5-dimethylphenylphosphine oxide, bis-(2,4,6-trimethylbenzoyl)-phenylphosphine oxide
  • Bisacylphosphine oxides such as; 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphine acid methyl ester, 2-methylbenzoyldiphenylphosphin
  • photopolymerization initiators for acetophenones include Omnirad 907, 369, 369E, and 379 manufactured by IGM Resins. Further, commercially available photopolymerization initiators for acylphosphine oxides include Omnirad TPO and 819 manufactured by IGM Resins.
  • Commercial products of oxime ester photopolymerization initiators include Irgacure OXE01, OXE02, OXE03, OEX04 manufactured by BASF Japan Co., Ltd., N-1919 manufactured by ADEKA Corporation, ADEKA Arkles NCI-831, NCI-831E, and Changzhou Strong Examples include TR-PBG-304, 345, 411, and 458 manufactured by Denshi Shinzai Co., Ltd.
  • a commercially available titanocene photopolymerization initiator includes Omnirad 784 manufactured by IGM Resins.
  • a commercially available thioxanthone photopolymerization initiator includes KAYACUREDETX-S manufactured by Nippon Kayaku Co., Ltd.
  • JP 2004-359639, JP 2005-097141, JP 2005-220097, JP 2006-160634, JP 2008-094770, JP 2008-509967, Examples include carbazole oxime ester compounds described in Japanese Patent Application Publication No. 2009-040762 and JP-A No. 2011-80036.
  • a compound that absorbs the h-line (405 nm) and/or the g-line (436 nm) is more preferable.
  • Omnirad 784 manufactured by Resins.
  • the content of the photopolymerization initiator is preferably 0.1 to 3% by mass on a solid content basis with respect to the total mass of the resin layer.
  • a photoinitiation aid or sensitizer may be used in combination with the photopolymerization initiator described above.
  • Examples of the photoinitiation aid or sensitizer include tertiary amine compounds and xanthone compounds.
  • one type of photoinitiation aid or sensitizer may be used alone, or two or more types may be used in combination.
  • the perovskite type compound is preferably a divalent metal salt of titanate, and examples of the divalent metal salt of titanate include barium titanate, calcium titanate, strontium titanate, bismuth titanate, magnesium titanate, titanate Examples include barium neodymium, barium tin titanate, lead titanate, and composite oxides containing any of these.
  • the divalent metal salt of titanic acid it is particularly preferable to use at least one of barium titanate and calcium titanate because the composition has a high dielectric constant and is chemically stable.
  • the perovskite compound is preferably barium titanate.
  • perovskite compounds are surface-treated with a coupling agent such as aminosilane, mercaptosilane, or vinylsilane in order to obtain sufficient wettability with organic compounds such as carboxyl group-containing resins and epoxy resins. You can use whatever you have.
  • a coupling agent such as aminosilane, mercaptosilane, or vinylsilane
  • such a perovskite compound has an average particle diameter of 0.01 to 10.0 ⁇ m.
  • Image forming properties can be further improved by using a perovskite compound having an average particle size within this range.
  • the average particle size refers to the D50 value when the particle size distribution is prepared on a volume basis, and can be determined using a laser diffraction particle size distribution measuring device or a measuring device using a dynamic light scattering method.
  • Examples of a measuring device using a laser diffraction method include Microtrac MT3300EXII manufactured by Microtrac Bell Co., Ltd., and examples of a measuring device using a dynamic light scattering method include Nanotrac Wave II UT151 manufactured by Microtrac Bell Co., Ltd.
  • PMA propylene glycol monomethyl ether acetate
  • the content of the perovskite compound is 55 to 85% by mass on a solid content basis with respect to the total mass of the resin layer, and from the viewpoint of obtaining a higher dielectric constant, it is preferably 70 to 85% by mass. preferable. Further, from the viewpoint of the releasability and image-forming properties of the second film, the content of the perovskite compound is preferably 70 to 83% by mass.
  • Epoxy resins include solid epoxy resins and liquid epoxy resins.
  • solid epoxy resin means an epoxy resin that is solid at 20°C.
  • the concept of solid epoxy resin includes the concepts of semi-solid epoxy resin and crystalline epoxy resin. Various compounds included in the concept of solid epoxy resin may be used alone or in combination of two or more.
  • the semi-solid epoxy resin means an epoxy resin that is solid at 20°C and liquid at 40°C.
  • Crystalline epoxy resin means an epoxy resin with strong crystallinity.At 20°C, the polymer chains are regularly arranged, and even though it is a solid epoxy resin, it has a low viscosity comparable to that of a liquid resin when melted. means.
  • liquid epoxy resin means an epoxy resin that is liquid at 20°C.
  • the determination of liquid state is made in accordance with the "Method for Confirming Liquid State" in Attachment 2 of the Ministerial Ordinance on Testing and Properties of Hazardous Materials (Ministry of Home Affairs Ordinance No. 1 of 1989). Specifically, the method described in paragraphs 23 to 25 of JP-A No. 2016-079384 is used. Thereby, liquid epoxy resin and solid epoxy resin are distinguished and determined.
  • the liquid epoxy resin must be determined to be liquid by a "liquid confirmation method", and its viscosity is preferably 1,00 to 30,000 mPa ⁇ s at 25°C.
  • naphthalene type epoxy resins such as EPICLON HP-4700 (naphthalene type epoxy resin) manufactured by DIC Corporation or NC-7000 (naphthalene skeleton-containing polyfunctional epoxy resin) manufactured by Nippon Kayaku Co., Ltd.; Epoxidized products of condensates of phenols such as EPPN-502H (trisphenol epoxy resin) manufactured by Yakuza Corporation and aromatic aldehydes having a phenolic hydroxyl group (trisphenol type epoxy resin); EPICLON HP- manufactured by DIC Corporation Dicyclopentadiene aralkyl type epoxy resin such as 7200H, HP-7200L (polyfunctional epoxy resin containing dicyclopentadiene skeleton); biphenylaralkyl type such as NC-3000H (polyfunctional epoxy resin containing biphenyl skeleton) manufactured by Nippon Kayaku Co., Ltd.
  • EPICLON HP-4700 naphthalene type epoxy resin
  • NC-7000 naphthalene skeleton
  • Epoxy resin biphenyl/phenol novolac type epoxy resin such as NC-3000L manufactured by Nippon Kayaku Co., Ltd.; EPICLON N660, N690, N770 manufactured by DIC Corporation, novolac type epoxy such as EOCN-104S manufactured by Nippon Kayaku Co., Ltd. Resin; triglycidyl isocyanurate such as TEPIC manufactured by Nissan Chemical Co., Ltd., and the like.
  • Semi-solid epoxy resins include EPICLON 860, EXA-4816, and EPICLON EXA-4822 manufactured by DIC Corporation, Epotote YD-134 manufactured by Nippon Steel Chemical & Materials Co., Ltd., jER834 and jER872 manufactured by Mitsubishi Chemical Corporation, and Sumitomo Chemical.
  • Examples include bisphenol A type epoxy resins such as ELA-134 manufactured by DIC Corporation; and phenol novolac type epoxy resins such as EPICLON N-740 manufactured by DIC Corporation.
  • crystalline epoxy resin for example, those having a biphenyl structure, a sulfide structure, a phenylene structure, a naphthalene structure, etc. can be used.
  • Biphenyl type epoxy resins are provided as jER YX4000, YX4000H, YL6121H, YL6640, and YL6677 manufactured by Mitsubishi Chemical Corporation
  • diphenyl sulfide type epoxy resins are provided, for example, as JER YX4000, YX4000H, YL6121H, YL6640, and YL6677 manufactured by Mitsubishi Chemical Corporation.
  • the phenylene type epoxy resin is provided as EPOTOTO YDC-1312 manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • the naphthalene type epoxy resin is provided as EPICLON manufactured by DIC Corporation, for example. Available as HP-4032 and HP-4032D.
  • the crystalline epoxy resin Epotote YSLV-90C manufactured by Nippon Steel Chemical & Materials Co., Ltd. and TEPIC-S (triglycidyl isocyanurate) manufactured by Nissan Chemical Co., Ltd. can also be used.
  • Liquid epoxy resins include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol E epoxy resin, phenol novolak epoxy resin, tert-butyl-catechol epoxy resin, glycidylamine epoxy resin, and aminophenol epoxy resin. , alicyclic epoxy resins, and the like. By including the liquid epoxy resin, the laminated structure has excellent flexibility.
  • the liquid epoxy resins may be used alone or in combination of two or more.
  • the liquid epoxy resin is preferably at least one of bisphenol A epoxy resin, bisphenol F epoxy resin, and bisphenol E epoxy resin.
  • liquid epoxy resins examples include jER828 (liquid bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation, EPICLON 850-S (liquid bisphenol A type epoxy resin) manufactured by DIC Corporation, and EPOX manufactured by Printec Corporation.
  • liquid epoxy resins include jER828 (liquid bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation, EPICLON 850-S (liquid bisphenol A type epoxy resin) manufactured by DIC Corporation, and EPOX manufactured by Printec Corporation.
  • MK R710 liquid bisphenol E type epoxy resin
  • ZX1059 mixture of liquid bisphenol A type epoxy resin and liquid bisphenol F type epoxy resin manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • the content of the epoxy resin is, for example, 0.1 to 30% by mass on a solid content basis with respect to the total mass of the resin layer.
  • the content of the liquid epoxy resin is 150 to 1000 parts by mass based on solid content, based on 100 parts by mass of the solid epoxy resin, from the viewpoint of adhesion between the second film and the resin layer and image forming properties. Further, from the viewpoint of improving the adhesion between the second film and the resin layer, the content of the liquid epoxy resin is preferably 180 parts by mass or more on a solid content basis with respect to 100 parts by mass of the solid epoxy resin. . On the other hand, from the viewpoint of improving the releasability between the second film and the resin layer, the content of the liquid epoxy resin is preferably 750 parts by mass or less on a solid content basis with respect to 100 parts by mass of the solid epoxy resin. .
  • the content of the liquid epoxy resin is determined based on 100 parts by mass of the solid epoxy resin. It is preferably 180 to 750 parts by mass on a minute basis.
  • the curable resin composition for obtaining the resin layer of the laminated structure of the present invention contains an organic solvent for the purpose of preparing the curable resin composition or adjusting the viscosity when applying it to the first film. can do.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, and propylene glycol monomethyl ether.
  • dipropylene glycol monomethyl ether dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether, and other glycol ethers
  • ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, diethylene glycol monoethyl Esters such as ether acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, propylene carbonate
  • Aliphatic hydrocarbons such as octane and decane
  • organic solvent products include Juquisol CA (carbitol acetate, diethylene glycol monoethyl ether acetate) manufactured by Dow Chemical Japan Co
  • the content of the organic solvent is not particularly limited, and can be appropriately set according to the desired viscosity so as to facilitate the preparation of the curable resin composition.
  • the resin layer of the laminate structure of the present invention may further contain substances known in the field of electronic materials, such as thermosetting resins other than epoxy resins, polymerization inhibitors, cyanate compounds, elastomers, mercapto compounds, Thixotizing agent, adhesion promoter, block copolymer, chain transfer agent, copper inhibitor, antioxidant, rust inhibitor, finely divided silica, organic bentonite, thickener (e.g. montmorillonite), silicone type, fluorine type , a polymeric antifoaming agent, a dispersant, a coloring agent, and a leveling agent can be blended.
  • dispersants include DisperBYK-111 manufactured by BYK Chemie Co., Ltd.
  • the second film is provided on the opposite side of the resin layer from the first film for the purpose of preventing dust etc. from adhering to the surface of the resin layer of the laminated structure and improving handleability.
  • the second film for example, those exemplified for the first film can be used. Among these, polyester films, polyethylene films, polypropylene films, and films whose surfaces have been subjected to mold release treatment are preferred.
  • the thickness of the second film is not particularly limited, but is preferably in the range of 10 to 150 ⁇ m, more preferably in the range of 12.5 to 100 ⁇ m, and even more preferably in the range of 15 to 50 ⁇ m, depending on the application. be selected as appropriate.
  • the surface of the second film on which the resin layer is provided may be subjected to a mold release treatment.
  • the second film preferably has an arithmetic mean surface roughness Ra of 0.10 ⁇ m or more on the surface in contact with the resin layer.
  • Ra is 0.10 ⁇ m or more
  • the adhesion between the resin layer and the second film can be further improved.
  • the Ra of the second film is preferably 1.0 ⁇ m or less, and preferably 0.80 ⁇ m or less. It is more preferable that there be.
  • a specific method for measuring the arithmetic mean surface roughness Ra will be described below.
  • the arithmetic mean surface roughness Ra is a value measured using a shape measuring laser microscope (for example, VK-X100 manufactured by Keyence Corporation).
  • VK-X100 shape measurement laser microscope
  • VK-H1VX VK observation application
  • VK-H1VX Change the 10x objective lens to 50x magnification, and use the autofocus function of the image observation mode of the VK observation application (VK-H1VX) to focus on the surface of the sample.
  • VK-H1VX the image observation mode of the VK observation application
  • the measurement start button By selecting the easy mode on the shape measurement tab of the VK observation application (VK-H1VX) and pressing the measurement start button, the surface shape of the sample can be measured and a surface image file can be obtained.
  • tilt correction is performed. Note that the observation measurement range in the lateral direction in measuring the surface shape of the sample is 270 ⁇ m.
  • the surface can be shaped into a predetermined shape by hairline processing, matte coating, chemical etching, etc., and a thermoplastic resin film having the above-mentioned arithmetic mean surface roughness Ra can be obtained.
  • the arithmetic mean surface roughness Ra can be controlled by adjusting the particle size and/or amount of the filler added.
  • the arithmetic mean surface roughness Ra can be controlled by adjusting treatment conditions such as the blasting material and/or blasting pressure.
  • the second film having an arithmetic mean surface roughness Ra of 0.1 ⁇ m or more include, for example, Alphan “MA-411”, “MA-420”, and “MA-430” manufactured by Oji F-Tex Co., Ltd. , "E-201F”, “ER-440” (biaxially oriented polypropylene film), "Lumirror X42”, “Lumirror X43”, “Lumirror 12'', ⁇ PTH-25'', ⁇ PTHA-25'', ⁇ PTH-38'', and the like.
  • a curable resin composition for forming a resin layer is prepared. That is, each component such as (A) carboxyl group-containing resin is individually blended, premixed using a stirrer, and then kneaded using a three-roll mill to prepare a curable resin composition.
  • the prepared curable resin composition is coated onto the first film to a uniform thickness using a comma coater, a blade coater, or the like. Thereafter, the applied curable resin composition is usually dried at a temperature of 40 to 130°C for 1 to 30 minutes to form a resin layer.
  • a second film is attached to the surface of the resin layer opposite to the first film to form a laminated structure.
  • the laminated structure when it is elongated, it may be wound up into a roll to form a rolled laminated structure.
  • the rolled laminated structure may be cut into a predetermined width if necessary.
  • the formation of a cured resin layer on a circuit board involves the following steps: a step of peeling off the second film in the laminated structure, attaching a resin layer to the circuit-formed substrate, and laminating the first film and the resin layer on the substrate; an exposure step of irradiating a predetermined portion of the resin layer with active energy rays; This can be carried out by a method including a developing step of removing the region of the resin layer that has not been irradiated with active energy rays after the exposure step, and a cured product forming step of heating the resin layer after the developing step. Note that the step of peeling the first film from the resin layer may be performed before or after the exposure step.
  • a vacuum laminator or the like to peel off the second film from the resin layer and laminate the resin layer on the circuit-formed circuit board under pressure and heat.
  • the pressurizing condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120°C.
  • the resin layer can be photocured into a predetermined pattern by irradiating the resin layer with active energy rays at an exposure dose of 50 to 1000 mJ/cm 2 , for example. Irradiation with active energy rays is performed by irradiation with ultraviolet rays, electron beams, actinic rays, and the like.
  • a method of selectively irradiating active energy rays through a photomask formed with a predetermined pattern may be used, or a method of irradiating active energy rays selectively through a photomask on which a predetermined pattern is formed, or a method using a direct drawing device (for example, a method using a direct laser using CAD data from a computer).
  • a laser direct imaging device (which draws images) may also be used.
  • the exposure machine used for irradiation with active energy rays is equipped with a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a metal halide lamp, a mercury short arc lamp, a UV-LED, etc., and is a device that irradiates ultraviolet rays in the range of 350 to 450 nm. preferable.
  • the lamp light source or laser light source of the direct drawing machine preferably has a maximum wavelength in the range of 350 to 410 nm.
  • the unexposed areas can be removed by development with an alkaline aqueous solution to form a cured product in the form of a negative pattern.
  • a developing method a known method such as dipping can be used.
  • sodium carbonate, potassium carbonate, potassium hydroxide, amines, imidazoles such as 2-methylimidazole, alkaline aqueous solutions such as tetramethylammonium hydroxide aqueous solution (TMAH), or a mixture thereof are used as TMAH.
  • a cured product with a high dielectric constant can be obtained by completely thermally curing the cured product after the development step.
  • the heating conditions are, for example, 120° C. to 180° C. for 5 minutes to 120 minutes.
  • not only thermal curing by heating but also photocuring by ultraviolet irradiation may be used.
  • circuit-formed circuit boards include printed wiring boards and flexible printed wiring boards on which circuits have been previously formed using copper or the like, as well as paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/nonwoven epoxy, and glass.
  • Materials such as cloth/paper epoxy, synthetic fiber epoxy, fluororesin/polyethylene/polyphenylene ether, polyphenylene oxide/cyanate, etc. are used, and copper-clad laminates of all grades (FR-4, etc.), metal substrates, polyimide films , a PET film, a polyethylene naphthalate (PEN) film, a glass substrate, a ceramic substrate, a wafer plate on which a circuit is formed, and the like.
  • the circuit board is not limited to these, and any known and commonly used circuit board can be used.
  • the cured product is obtained by curing the resin layer.
  • the cured product of the present invention is obtained by peeling off the second film of the laminated structure, exposing the resin layer and the first film to light, and then peeling off the first film. , which is obtained by sequentially developing and thermally curing the resin layer alone.
  • the obtained cured product is useful as a cured product having a high dielectric constant, and is also suitable as a coverlay or solder resist (insulating cured product) to be formed on a flexible printed wiring board.
  • the present invention also provides an electronic component having a cured resin layer.
  • the electronic component refers to a component used in an electronic circuit, and is preferably a fingerprint authentication sensor.
  • active components such as transistors, light emitting diodes, and laser diodes, or passive components such as capacitors, inductors, and connectors may be used.
  • the thus obtained carboxyl group-containing resin had a solid content of 45.5% by mass and an acid value of 79.8 mgKOH/g. Note that this carboxyl group-containing resin corresponds to the carboxyl group-containing resin (13) in the above ((A) carboxyl group-containing resin).
  • this carboxyl group-containing resin corresponds to the carboxyl group-containing resin (13) in the above ((A) carboxyl group-containing resin).
  • GPC gel permeation chromatography
  • the curable resin composition obtained above was applied onto the film and dried at a temperature of 80° C. for 15 minutes to form a resin layer having a thickness of 25 ⁇ m after drying.
  • the laminated structures of Examples 1 to 14 and Comparative Examples 1 to 4 were obtained. I got a body.
  • the “content of perovskite compound” in Table 1 above indicates the mass % of the perovskite compound when the “total solid content of the curable resin composition” is 100 mass %.
  • Table 2 Comparative example The information regarding compounds *1 to *12 in Table 2 above is the same as the information regarding compounds *1 to *12 in Table 1.
  • a double-sided copper-clad laminate (copper foil thickness 35 ⁇ m, board thickness 1.6 mm, board size 150 mm x 95 mm, manufactured by Showa Denko Materials Co., Ltd.) was etched at an etching rate of 1 ⁇ m/m 2 using MEC Etch Bond CZ8101 manufactured by MEC Corporation.
  • a roughened substrate was obtained by CZ treatment (roughening treatment).
  • CZ treatment roughening treatment
  • lamination is performed so that the resin layer is in contact with the roughened surface of the roughened substrate, and the roughening treatment is performed.
  • a resin layer and a first film were laminated on the substrate.
  • the lamination was carried out in a chamber at 70° C. under the conditions of a vacuum pressure of 3 hPa, a vacuum time of 20 seconds, a pressurization time of 90 seconds, and a press pressure of 0.4 MPa.
  • the resin layer laminated on this roughened substrate was exposed to a cumulative exposure amount of 200 mJ/cm using EXP-2960 (light source: short arc lamp, parallel light exposure machine) manufactured by Oak Manufacturing Co., Ltd. (ORC). Pattern exposure was carried out in step 2 , and the first film was peeled off. Thereafter, development was performed for 60 seconds using a 1 wt % sodium carbonate aqueous solution at 30° C. and a spray pressure of 0.2 MPa to obtain a developed cured product pattern.
  • the opening diameter of the cured product pattern obtained above was observed, and the image forming properties after development and before thermosetting were evaluated.
  • the cured product pattern after development was irradiated with ultraviolet rays at an exposure dose of 1000 mJ/cm 2 in a UV conveyor furnace, and then heated at 160° C. for 1 hour in a hot air circulation drying oven to obtain a cured product. .
  • the opening diameter of the cured product pattern thus obtained was observed, and the image forming properties after thermosetting were evaluated.
  • The opening shape of ⁇ 150 ⁇ m was maintained and the opening was good.
  • The opening shape of ⁇ 150 ⁇ m could not be maintained, and the opening diameter was significantly reduced.
  • EXP-2960 light source: short arc lamp, parallel light exposure machine
  • ORC Oak Manufacturing Co., Ltd.
  • the resin layer (thickness: 50 ⁇ m) laminated on this copper foil was irradiated with ultraviolet rays in a UV conveyor furnace at a cumulative exposure dose of 1000 mJ/cm 2 , and then heated at 160°C for 1 hour to obtain a cured product.
  • Ta The resin layer (thickness: 50 ⁇ m) laminated on this copper foil was irradiated with ultraviolet rays in a UV conveyor furnace at a cumulative exposure dose of 1000 mJ/cm 2 , and then heated at 160°C for 1 hour to obtain a cured product.
  • the copper foil with this cured product was removed by etching using an etching solution having a composition of cupric chloride 340 g/l and free hydrochloric acid concentration 51.3 g/l, thoroughly washed with water, dried, A test piece made of a cured product with a thickness of 50 ⁇ m was prepared. Note that the thickness of the test piece was measured using a micrometer based on Japanese Industrial Standard B7502:2016.
  • the dielectric constant of the thus prepared test piece at 10 GHz was measured using an SPDR dielectric resonator and a network analyzer (E5071C, manufactured by Keysight Technologies).
  • the laminated structures of Examples 1 to 15 had good adhesion and releasability between the resin layer and the second film, and had good image formation properties both after development and before thermosetting and after thermosetting. Both conditions were good, and a cured product exhibiting a high dielectric constant could be obtained. On the other hand, in the laminated structures of Comparative Examples 1 to 4, it was difficult to simultaneously achieve all of the adhesion between the resin layer and the second film, image formability, and high dielectric constant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a layered structure that includes a resin layer with which a cured product with a high dielectric constant can be obtained and having both good image formation after development and before heat curing and good image formation after heat curing, and that has both good detachability and good adhesion between the resin layer and a second film. [Solution] This layered structure comprises a first film, a resin layer, and a second film, in that order. The resin layer contains a carboxyl group-containing resin (A), a photo-curable compound (B) containing no carboxyl group, a photoinitiator (C), a perovskite-type compound (D), and an epoxy resin (E). In terms of solid content, the content of the perovskite-type compound (D) accounts for 55-85 mass% of the entire mass of the resin layer. The epoxy resin (E) includes a solid epoxy resin and a liquid epoxy resin. In terms of solid content, the content of the liquid epoxy resin is 150-1000 parts by mass per 100 parts by mass of the solid epoxy resin.

Description

積層構造体、その積層構造体における樹脂層の硬化物、およびその硬化物を有する電子部品A laminated structure, a cured product of a resin layer in the laminated structure, and an electronic component having the cured product
 本発明は、積層構造体、その積層構造体における樹脂層の硬化物、およびその硬化物を有する電子部品に関する。 The present invention relates to a laminated structure, a cured product of a resin layer in the laminated structure, and an electronic component having the cured product.
 指紋検出装置は、携帯端末などにおける本人認証ツールとして使用されている。特に、高度な指紋認証精度が求められる機器(例えば、スマートフォン)の場合には、静電容量方式の指紋認証センサーが採用されている。その動作原理は、指紋の凹凸によってセンサー内に発生した電荷の差を電極で読み取り、指紋を認識するというものである。静電容量式指紋検出装置として用いることができる半導体装置については、例えば、特許文献1に開示されている。 Fingerprint detection devices are used as personal authentication tools in mobile terminals and the like. In particular, in the case of devices that require a high degree of fingerprint authentication accuracy (for example, smartphones), capacitive fingerprint authentication sensors are used. Its operating principle is to recognize a fingerprint by using electrodes to read the difference in charge generated within the sensor due to the unevenness of the fingerprint. A semiconductor device that can be used as a capacitive fingerprint detection device is disclosed in Patent Document 1, for example.
 この指紋認証センサーには、FC-BGAパッケージが使用されており、このFC-BGAパッケージでは、トップサイド(表面側)はセンサー面となっており、そして、ボトムサイド(裏面側)にはICチップ等の部品が実装されると共にはんだボールが配置されている。指紋認証センサーのセンサー面には高い読み取り精度が必要とされるために、センサー面用の回路基板上に形成される絶縁性保護膜には、平坦性および高誘電率が求められる。 This fingerprint authentication sensor uses an FC-BGA package. In this FC-BGA package, the top side (front side) is the sensor surface, and the bottom side (back side) is the IC chip. Components such as are mounted and solder balls are arranged. Since the sensor surface of a fingerprint authentication sensor requires high reading accuracy, the insulating protective film formed on the circuit board for the sensor surface is required to have flatness and a high dielectric constant.
特開2002-71307号公報Japanese Patent Application Publication No. 2002-71307
 このセンサー面用の絶縁性保護膜は、例えば、第1のフィルム(支持体)と樹脂層と第2のフィルム(保護フィルム)とを順に含む積層構造体を使用して形成することが考えられる。すなわち、積層構造体の樹脂層から第2のフィルムを剥離し、回路基板に樹脂層を積層した後、樹脂層を硬化させて、センサー面用の絶縁性保護膜(硬化物)を形成することが考えられる。
 しかしながら、積層構造体から第2のフィルムを剥離する工程までは樹脂層と第2のフィルムとの良好な密着性が必要であり、一方、積層構造体から第2のフィルムを剥離する工程では、樹脂層と第2のフィルムとの良好な剥離性が必要である。すなわち、この積層構造体では、高誘電率の硬化物を得ることのできる樹脂層を有しているという条件を満たしながら、更に、樹脂層および第2のフィルムについては密着性および剥離性の相反する性質が両方とも良好であることが重要となる。
 これらに加えて、ファインパターンの絶縁性保護膜を得るためには、樹脂層については、現像後かつ熱硬化前の画像形成性が良好であり、更に熱硬化後の画像形成性も良好である必要がある。この理由としては、積層構造体の樹脂層によっては、現像直後は画像形成性が良好であるものの、熱硬化時の加熱によって樹脂層に含まれる樹脂が硬化するよりも先に軟化してしまい樹脂の流動が起きて開口部が埋まってしまったり、樹脂層のラインパターンが倒れてしまったりして熱硬化後の画像形成性が悪化することがあり、現像後かつ熱硬化前の画像形成性だけでなく、熱硬化後の画像形成性も良好になるように両方制御する必要があるからである。
This insulating protective film for the sensor surface may be formed using, for example, a laminated structure that includes a first film (support), a resin layer, and a second film (protective film) in this order. . That is, after peeling off the second film from the resin layer of the laminated structure and laminating the resin layer on the circuit board, the resin layer is cured to form an insulating protective film (cured product) for the sensor surface. is possible.
However, good adhesion between the resin layer and the second film is required up to the step of peeling the second film from the laminate structure.On the other hand, in the step of peeling the second film from the laminate structure, Good releasability between the resin layer and the second film is required. In other words, this laminated structure satisfies the condition of having a resin layer that allows a cured product with a high dielectric constant to be obtained, while also satisfying the condition that the resin layer and the second film have conflicting adhesion and releasability. It is important that both properties are good.
In addition to these, in order to obtain an insulating protective film with a fine pattern, the resin layer must have good image forming properties after development and before thermosetting, and also good image forming properties after thermosetting. There is a need. The reason for this is that, depending on the resin layer of the laminated structure, although the image forming properties are good immediately after development, the resin contained in the resin layer softens before it hardens due to the heating during thermosetting. Flow may occur and fill the openings, or the line pattern of the resin layer may collapse, resulting in poor image formation after heat curing. This is because both need to be controlled so that the image forming properties after thermosetting are also good.
 上記課題に鑑みてなされた本発明の目的は、高誘電率の硬化物を得ることができると共に、現像後かつ熱硬化前の画像形成性および熱硬化後の画像形成性の両方ともが良好である樹脂層を有しており、そして、樹脂層と第2のフィルムとの剥離性および密着性の両方ともが良好である積層構造体、その積層構造体における樹脂層の硬化物、その硬化物を有する電子部品を提供することにある。 The object of the present invention, which was made in view of the above problems, is to be able to obtain a cured product with a high dielectric constant, and to have good image forming properties both after development and before heat curing and after heat curing. A laminated structure having a certain resin layer and having good peelability and adhesion between the resin layer and a second film, a cured product of the resin layer in the laminated structure, and a cured product thereof Our objective is to provide electronic components that have the following characteristics.
 本発明者らは、鋭意検討の結果、高誘電率の硬化物を得ることのできる樹脂層を構成する成分に着目したところ、高誘電率を得るためのペロブスカイト型化合物を特定の含有量として、更に、熱硬化性樹脂としての液状エポキシ樹脂を固形エポキシ樹脂に対して特定の含有量とすることによって、上記目的を達成し得ることを見出して、本発明を完成したものである。一般に画像形成性を良好にするためには、カルボキシル基含有樹脂、カルボキシル基を含有しない光硬化性化合物および/または光重合開始剤の種類を変更したり、これらの含有量を調整したりするところ、本発明者らは、ペロブスカイト型化合物を特定の含有量とし、更に液状エポキシ樹脂を固形エポキシ樹脂に対して特定の含有量とすることにより、意外にも上記目的のすべてを同時に達成し得ることを見出したのである。
 上記目的のすべてを同時に達成し得る理由は、必ずしも明確ではないが以下のように考えられる。すなわち、高誘電率の硬化物を得るために、ペロブスカイト型化合物の含有量を樹脂層の全質量に対して固形分基準で55~85質量%とすると、通常、画像形成性、第2のフィルムと樹脂層との剥離性および密着性が低下してしまうと考えられるところ、液状エポキシ樹脂の含有量を固形エポキシ樹脂100質量部に対して固形分基準で150~1000質量部とすることにより、露光時の深部硬化性および表面硬化性が好適に得られ、この結果良好な画像形成性が得られたものと考えられる。また、第2のフィルムと樹脂層との剥離強度が適切な範囲に調整された結果、第2のフィルムと樹脂層との剥離性および密着性の両方ともが良好になり、これによってドライフィルム、すなわち積層構造体としての形態を維持することが可能になったものと考えられる。
 なお、本明細書における硬化物の誘電率とは、積層構造体における樹脂層に対して露光工程、現像工程および熱硬化工程を実施して得られる硬化物の誘電率を意味する。
As a result of intensive studies, the present inventors focused on the components constituting the resin layer that can obtain a cured product with a high dielectric constant, and found that a specific content of perovskite-type compounds to obtain a high dielectric constant, Furthermore, the present invention has been completed by discovering that the above object can be achieved by adjusting the content of liquid epoxy resin as a thermosetting resin to a specific amount relative to solid epoxy resin. In general, in order to improve image forming properties, the types of carboxyl group-containing resins, photocurable compounds that do not contain carboxyl groups, and/or photopolymerization initiators are changed or their contents are adjusted. , the present inventors have surprisingly found that all of the above objectives can be achieved simultaneously by setting a specific content of the perovskite type compound and further setting a specific content of the liquid epoxy resin relative to the solid epoxy resin. They discovered this.
The reason why all of the above objectives can be achieved simultaneously is not necessarily clear, but it is thought to be as follows. That is, in order to obtain a cured product with a high dielectric constant, if the content of the perovskite compound is set to 55 to 85% by mass on a solid basis with respect to the total mass of the resin layer, it usually improves the image forming property and the second film. It is thought that the releasability and adhesion between the resin layer and the resin layer would be reduced, but by setting the content of the liquid epoxy resin to 150 to 1000 parts by mass on a solid content basis with respect to 100 parts by mass of the solid epoxy resin, It is believed that good deep-part curability and surface curability during exposure were obtained, and as a result, good image-forming properties were obtained. Moreover, as a result of adjusting the peel strength between the second film and the resin layer to an appropriate range, both the peelability and adhesion between the second film and the resin layer become good, and as a result, the dry film, In other words, it is considered that it became possible to maintain the form as a layered structure.
Note that the dielectric constant of a cured product in this specification refers to the dielectric constant of a cured product obtained by performing an exposure step, a development step, and a thermosetting step on the resin layer in the laminated structure.
 すなわち、上記の目的は、本発明による
第1のフィルムと、樹脂層と、第2のフィルムとを順に含む積層構造体であって、
 前記樹脂層が、(A)カルボキシル基含有樹脂と、(B)カルボキシル基を含有しない光硬化性化合物と、(C)光重合開始剤と、(D)ペロブスカイト型化合物と、(E)エポキシ樹脂と、を含有し、
 前記(D)ペロブスカイト型化合物の含有量が、前記樹脂層の全質量に対して、固形分基準で55~85質量%であり、
 前記(E)エポキシ樹脂が、固形エポキシ樹脂と液状エポキシ樹脂とを含み、
 前記液状エポキシ樹脂の含有量が、前記固形エポキシ樹脂100質量部に対して、固形分基準で150~1000質量部であることを特徴とする積層構造体によって達成することができる。
That is, the above object is a laminated structure including, in order, a first film, a resin layer, and a second film according to the present invention,
The resin layer includes (A) a carboxyl group-containing resin, (B) a photocurable compound that does not contain a carboxyl group, (C) a photopolymerization initiator, (D) a perovskite type compound, and (E) an epoxy resin. and,
The content of the perovskite compound (D) is 55 to 85% by mass on a solid content basis with respect to the total mass of the resin layer,
The epoxy resin (E) includes a solid epoxy resin and a liquid epoxy resin,
This can be achieved by a laminated structure characterized in that the content of the liquid epoxy resin is 150 to 1000 parts by mass based on solid content based on 100 parts by mass of the solid epoxy resin.
 本発明による積層構造体の好ましい態様によれば、前記(D)ペロブスカイト型化合物の含有量が、前記樹脂層の全質量に対して固形分基準で70~85質量%である。 According to a preferred embodiment of the laminated structure according to the present invention, the content of the perovskite compound (D) is 70 to 85% by mass on a solid content basis with respect to the total mass of the resin layer.
本発明による積層構造体の別の好ましい態様によれば、前記(D)ペロブスカイト型化合物がチタン酸の二価金属塩である。 According to another preferred embodiment of the laminated structure according to the present invention, the perovskite compound (D) is a divalent metal salt of titanic acid.
 また、本発明は、前記積層構造体の樹脂層が硬化されたものであることを特徴とする硬化物に関する。 The present invention also relates to a cured product, characterized in that the resin layer of the laminated structure is cured.
 また、本発明は、前記硬化物を有することを特徴とする電子部品に関する。 The present invention also relates to an electronic component comprising the cured product.
 本発明によれば、高誘電率の硬化物を得ることができると共に、現像後かつ熱硬化前の画像形成性および熱硬化後の画像形成性の両方ともが良好である樹脂層を有しており、そして、樹脂層と第2のフィルムとの剥離性および密着性の両方ともが良好である積層構造体、その積層構造体における樹脂層の硬化物、その硬化物を有する電子部品を提供することにある。 According to the present invention, it is possible to obtain a cured product with a high dielectric constant, and the resin layer has good image formation properties both after development and before thermosetting and after thermosetting. The present invention also provides a laminated structure having good peelability and adhesion between a resin layer and a second film, a cured product of the resin layer in the laminated structure, and an electronic component having the cured product. There is a particular thing.
 本発明の積層構造体は、上述した構成によって、高誘電率の硬化物を得ることができると共に、現像後かつ熱硬化前の画像形成性および熱硬化後の画像形成性の両方ともが良好である樹脂層を有しており、そして、樹脂層と第2のフィルムとの剥離性および密着性の両方ともが良好である積層構造体を得ることができる。なお、硬化物の誘電率は、10GHz帯域において好ましくは8以上、より好ましくは10以上である。 The laminated structure of the present invention can obtain a cured product with a high dielectric constant due to the above-described configuration, and has good image forming properties both after development and before thermosetting and after thermosetting. It is possible to obtain a laminated structure that has a certain resin layer and has good releasability and adhesion between the resin layer and the second film. Note that the dielectric constant of the cured product is preferably 8 or more, more preferably 10 or more in the 10 GHz band.
本発明の積層構造体は、第1のフィルムと樹脂層と第2のフィルムとからなる積層構造体であっても、または第1のフィルムと樹脂層との間に他の樹脂層が1層以上含まれている積層構造体であってもよい。この他の樹脂層の成分は、第1のフィルムと第2のフィルムとの間に主として配置される樹脂層の成分と同じであるかまたは異なっていてもよい。本発明の積層構造体の例としては、ドライフィルムが挙げられる。 The laminated structure of the present invention may be a laminated structure consisting of a first film, a resin layer, and a second film, or one other resin layer may be provided between the first film and the resin layer. A laminated structure including the above may be used. The components of this other resin layer may be the same as or different from the components of the resin layer mainly disposed between the first film and the second film. An example of the laminated structure of the present invention is a dry film.
[第1のフィルム]
 第1のフィルムとは、回路形成された基板に積層構造体における樹脂層を積層する際、樹脂層を支持する役割を有するものであり、その樹脂層を形成するための硬化性樹脂組成物が塗布されるものである。第1のフィルムとしては、例えば、ポリエチレンテレフタレートおよびポリエチレンナフタレート等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の熱可塑性樹脂により形成されたフィルムを用いることができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムを好適に使用することができる。第1のフィルムの厚さは、特に制限されるものではないが、好ましくは10~150μmの範囲、より好ましくは15~100μmの範囲、さらにより好ましくは20~75μmの範囲で用途に応じて適宜選択される。第1のフィルムの樹脂層を設ける面には、離型処理が施されていてもよい。また、第1のフィルムにおいて樹脂層を設ける面には、帯電防止層として機能する導電性樹脂層、金属のスパッタ層もしくは極薄銅箔が形成されていてもよい。市販品としては、例えば、東洋紡株式会社製の「E5041」(ポリエチレンテレフタレートフィルム;厚さ25μm)が挙げられる。
[First film]
The first film has the role of supporting the resin layer when laminating the resin layer in the laminated structure on the circuit-formed substrate, and the curable resin composition for forming the resin layer is the first film. It is applied. The first film may be formed of a thermoplastic resin such as a polyester film such as polyethylene terephthalate and polyethylene naphthalate, a polyimide film, a polyamideimide film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a polystyrene film, etc. A film can be used. Among these, polyester films can be preferably used from the viewpoints of heat resistance, mechanical strength, handleability, and the like. The thickness of the first film is not particularly limited, but is preferably in the range of 10 to 150 μm, more preferably in the range of 15 to 100 μm, and even more preferably in the range of 20 to 75 μm, depending on the application. selected. The surface of the first film on which the resin layer is provided may be subjected to a mold release treatment. Furthermore, a conductive resin layer, a metal sputtered layer, or an ultra-thin copper foil may be formed on the surface of the first film on which the resin layer is provided. Examples of commercially available products include "E5041" (polyethylene terephthalate film; thickness 25 μm) manufactured by Toyobo Co., Ltd.
[樹脂層]
 樹脂層は、(A)カルボキシル基含有樹脂、(B)カルボキシル基を含有しない光硬化性化合物、(C)光重合開始剤、(D)ペロブスカイト型化合物、および(E)エポキシ樹脂を含む。この樹脂層の厚さは、好ましくは5~100μm、より好ましくは10~90μmであり、さらにより好ましくは20~85μmである。この範囲にすることによって、電子部品の薄型化の要求に応えることができる。また、電子部品には用途に応じて様々な回路の厚みを有するものがあるが、本発明の積層構造体は、回路厚みの大きい電子部品に対しても充分に適用することができる。本発明の積層構造体における樹脂層は、(A)カルボキシル基含有樹脂、(B)カルボキシル基を含有しない光硬化性化合物、(C)光重合開始剤、(D)ペロブスカイト型化合物、および(E)エポキシ樹脂を含む硬化性樹脂組成物を第1のフィルム上に塗布および乾燥して形成されるものである。以下、樹脂層を形成するための硬化性樹脂組成物についての構成成分を説明する。
[Resin layer]
The resin layer contains (A) a carboxyl group-containing resin, (B) a photocurable compound that does not contain a carboxyl group, (C) a photopolymerization initiator, (D) a perovskite compound, and (E) an epoxy resin. The thickness of this resin layer is preferably 5 to 100 μm, more preferably 10 to 90 μm, even more preferably 20 to 85 μm. By setting the thickness within this range, it is possible to meet the demand for thinner electronic components. Moreover, some electronic components have circuit thicknesses that vary depending on the application, and the laminated structure of the present invention can be sufficiently applied to electronic components with large circuit thicknesses. The resin layer in the laminate structure of the present invention includes (A) a carboxyl group-containing resin, (B) a photocurable compound that does not contain a carboxyl group, (C) a photopolymerization initiator, (D) a perovskite compound, and (E ) A curable resin composition containing an epoxy resin is applied onto a first film and dried. Hereinafter, the constituent components of the curable resin composition for forming the resin layer will be explained.
((A)カルボキシル基含有樹脂)
 カルボキシル基含有樹脂としては、分子中にカルボキシル基を含有している従来公知の各種樹脂を使用することができる。カルボキシル基含有樹脂は、分子中にエチレン性不飽和二重結合を有しても有さなくてもよいが、特に、分子中にエチレン性不飽和二重結合を有するカルボキシル基含有感光性樹脂が、光硬化性および耐現像性の面から好ましい。分子中にエチレン性不飽和二重結合を有する場合は、カルボキシル基含有樹脂は光硬化性樹脂に相当する。エチレン性不飽和二重結合は、アクリル酸もしくはメタクリル酸またはそれらの誘導体由来であることが好ましい。
((A) Carboxyl group-containing resin)
As the carboxyl group-containing resin, various conventionally known resins containing a carboxyl group in the molecule can be used. The carboxyl group-containing resin may or may not have an ethylenically unsaturated double bond in its molecule, but in particular, a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond in its molecule is , preferred from the viewpoint of photocurability and development resistance. When the molecule contains an ethylenically unsaturated double bond, the carboxyl group-containing resin corresponds to a photocurable resin. Preferably, the ethylenically unsaturated double bond is derived from acrylic acid or methacrylic acid or derivatives thereof.
 カルボキシル基含有樹脂は、現像工程に対応するために、その酸価が20~200mgKOH/gであることが好ましく、60~150mgKOH/gであることがより好ましい。この酸価が20mgKOH/g以上であると、アルカリ水溶液に対する溶解性が増加し、現像性が良好となる。一方、この酸価が200mgKOH/g以下であると、画像形成性が向上する。なお、本明細書における酸価は、フェノールフタレインを指示薬とした中和滴定法で測定した値である The carboxyl group-containing resin preferably has an acid value of 20 to 200 mgKOH/g, more preferably 60 to 150 mgKOH/g, in order to be compatible with the development process. When this acid value is 20 mgKOH/g or more, the solubility in an alkaline aqueous solution increases and developability becomes good. On the other hand, when the acid value is 200 mgKOH/g or less, image forming properties are improved. In addition, the acid value in this specification is a value measured by a neutralization titration method using phenolphthalein as an indicator.
 カルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000の範囲であり、5,000~100,000の範囲にあるものが好ましい。重量平均分子量が2,000以上のカルボキシル基含有樹脂を用いることにより、樹脂層の指触乾燥性を向上させることができる。また、重量平均分子量が150,000以下のカルボキシル基含有樹脂を用いることにより現像性および貯蔵安定性を向上させることができる。なお、本明細書における重量平均分子量(Mw)の値は、ゲル・パーミエーション・クロマトグラフィー法(GPC)法(ポリスチレン標準)により、下記測定装置、測定条件にて測定した値である。
 測定装置:Waters製「Waters 2695」
 検出器:Waters製「Waters2414」、RI(示差屈折率計)
 カラム:Waters製「HSPgel Column,HR MB-L,3μm,6mm×150mm」×2+Waters製「HSPgel Column,HR1,3μm,6mm×150mm」×2
 測定条件:
 カラム温度:40℃
 RI検出器設定温度:35℃
 展開溶媒:テトラヒドロフラン
 流速:0.5ml/分
 サンプル量:10μl
 サンプル濃度:0.5wt%
The weight average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, but is generally in the range of 2,000 to 150,000, preferably in the range of 5,000 to 100,000. By using a carboxyl group-containing resin having a weight average molecular weight of 2,000 or more, the dryness to the touch of the resin layer can be improved. Further, by using a carboxyl group-containing resin having a weight average molecular weight of 150,000 or less, developability and storage stability can be improved. In addition, the value of weight average molecular weight (Mw) in this specification is a value measured by gel permeation chromatography (GPC) method (polystyrene standard) using the following measuring device and measuring conditions.
Measuring device: “Waters 2695” manufactured by Waters
Detector: “Waters2414” manufactured by Waters, RI (differential refractometer)
Column: Waters “HSPgel Column, HR MB-L, 3μm, 6mm x 150mm” x 2 + Waters “HSPgel Column, HR1, 3μm, 6mm x 150mm” x 2
Measurement condition:
Column temperature: 40℃
RI detector setting temperature: 35℃
Developing solvent: Tetrahydrofuran Flow rate: 0.5ml/min Sample amount: 10μl
Sample concentration: 0.5wt%
 カルボキシル基含有樹脂の含有量は、樹脂層の全質量に対して、固形分基準で好ましくは5~30質量%である。 The content of the carboxyl group-containing resin is preferably 5 to 30% by mass on a solid content basis with respect to the total mass of the resin layer.
 カルボキシル基含有樹脂の具体例としては、例えば、以下の樹脂(オリゴマーおよびポリマーのいずれでもよい)を挙げることができる。以下のカルボキシル基含有樹脂は、1種を単独でまたは2種以上を組み合わせて使用してもよい。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語で、他の類似の表現についても同様である。 Specific examples of carboxyl group-containing resins include the following resins (which may be either oligomers or polymers). The following carboxyl group-containing resins may be used alone or in combination of two or more. Note that in this specification, (meth)acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。 (1) A carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth)acrylic acid with an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth)acrylate, or isobutylene.
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers. A carboxyl group-containing urethane resin produced by polyaddition reaction of diol compounds such as polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A-based alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
 (3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。 (3) Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates, and polycarbonate polyols, polyether polyols, polyester polyols, polyolefin polyols, acrylic polyols, and bisphenol A-based polyols. A urethane resin containing a terminal carboxyl group, which is obtained by reacting an acid anhydride at the terminal end of a urethane resin obtained by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group, and an alcoholic hydroxyl group.
 (4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (4) Diisocyanate and bifunctional epoxy resins such as bisphenol A epoxy resin, hydrogenated bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bixylenol epoxy resin, and biphenol epoxy resin ( A carboxyl group-containing urethane resin produced by a polyaddition reaction of meth)acrylate or its partially modified acid anhydride, a carboxyl group-containing dialcohol compound, and a diol compound.
 (5)上記(2)または(4)に記載のカルボキシル基含有ウレタン樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (5) During the synthesis of the carboxyl group-containing urethane resin described in (2) or (4) above, the hydroxyalkyl (meth)acrylate or the like has one hydroxyl group and one or more (meth)acryloyl groups in the molecule. Carboxyl group-containing urethane resin with terminal (meth)acrylated by adding a compound.
 (6)上記(2)または(4)に記載のカルボキシル基含有ウレタン樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物等、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (6) During the synthesis of the carboxyl group-containing urethane resin described in (2) or (4) above, one isocyanate group and one or more A carboxyl group-containing urethane resin that is terminally (meth)acrylated by adding a compound that has a (meth)acryloyl group.
 (7)多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (7) A carboxyl group obtained by reacting (meth)acrylic acid with a polyfunctional epoxy resin and adding a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride to the hydroxyl group present in the side chain. Contains resin.
 (8)2官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (8) A carboxyl group-containing resin obtained by reacting (meth)acrylic acid with a polyfunctional epoxy resin in which the hydroxyl groups of a bifunctional epoxy resin are further epoxidized with epichlorohydrin, and adding a dibasic acid anhydride to the resulting hydroxyl groups. .
 (9)多官能オキセタン樹脂にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (9) A carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
 (10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシド等のアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (10) Reaction product obtained by reacting a reaction product obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a substance with a polybasic acid anhydride.
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (11) Obtained by reacting a reaction product obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
 (12)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (12) An epoxy compound having multiple epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and alcoholic anhydride are reacted with an unsaturated group-containing monocarboxylic acid such as acrylic acid. A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as adipic acid.
 (13)上記(1)~(12)等に記載のカルボキシル基含有樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有樹脂。 (13) In addition to the carboxyl group-containing resin described in (1) to (12), etc., one epoxy group and one or more ( A carboxyl group-containing resin obtained by adding a compound having a meth)acryloyl group.
((B)カルボキシル基を含有しない光硬化性化合物)
 カルボキシル基を含有しない光硬化性化合物とは、カルボキシル基を含有せず、エチレン性不飽和二重結合を含有する化合物であり、光硬化性ポリマー、光硬化性オリゴマー、光硬化性モノマーなどが挙げられ、それらの混合物であってもよい。カルボキシル基を含有しない光硬化性化合物を含むことにより、硬化物の強度を向上させることができる。カルボキシル基を含有しない光硬化性化合物は、1種を単独または2種以上を組み合わせて用いることができる。
((B) Photocurable compound containing no carboxyl group)
A photocurable compound that does not contain a carboxyl group is a compound that does not contain a carboxyl group and contains an ethylenically unsaturated double bond, and includes photocurable polymers, photocurable oligomers, photocurable monomers, etc. or a mixture thereof. By including a photocurable compound that does not contain a carboxyl group, the strength of the cured product can be improved. The photocurable compounds containing no carboxyl group can be used alone or in combination of two or more.
 光硬化性ポリマーおよび光硬化性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。 Examples of photocurable polymers and photocurable oligomers include unsaturated polyester oligomers, (meth)acrylate oligomers, and the like. Examples of (meth)acrylate oligomers include epoxy (meth)acrylates such as phenol novolak epoxy (meth)acrylate, cresol novolac epoxy (meth)acrylate, and bisphenol type epoxy (meth)acrylate, urethane (meth)acrylate, and epoxyurethane (meth)acrylate. ) acrylate, polyester (meth)acrylate, polyether (meth)acrylate, polybutadiene-modified (meth)acrylate, and the like.
 光硬化性モノマーとしては、例えば、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレンオキサイド誘導体のモノまたはジ(メタ)アクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリスヒドロキシエチルイソシアヌレート等の多価アルコールまたはこれらのエチレンオキサイドあるいはプロピレンオキサイド付加物の多価(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ビスフェノールAのポリエトキシジ(メタ)アクリレート等のフェノール類のエチレンオキサイドあるいはプロピレンオキサイド付加物の(メタ)アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの(メタ)アクリレート類;およびメラミン(メタ)アクリレートが挙げられる。
 また、カルボキシル基を含有しない光硬化性化合物としては、ビスフェノールAまたはビスフェノールFのポリメチロール体とフェノール類の縮合反応で分子中に2つ以上のフェノール性水酸基を有するフェノール化合物を得た後、この分子中に2つ以上のフェノール性水酸基を有するフェノール化合物のフェノール性水酸基の一部または全部を、アルコール性水酸基を有するオキシアルキル基に変換し、生じたオキシアルキル基の末端水酸基に(メタ)アクリル酸の付加を行なうことによって得られる光硬化性化合物も好ましい。
Examples of photocurable monomers include alkyl (meth)acrylates such as 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate; such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate. Hydroxyalkyl (meth)acrylates; mono- or di(meth)acrylates of alkylene oxide derivatives such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipenta Polyhydric alcohols such as erythritol, trishydroxyethyl isocyanurate, or polyvalent (meth)acrylates of their ethylene oxide or propylene oxide adducts; Phenols such as phenoxyethyl (meth)acrylate, polyethoxydi(meth)acrylate of bisphenol A Examples include (meth)acrylates of ethylene oxide or propylene oxide adducts; (meth)acrylates of glycidyl ethers such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, and triglycidyl isocyanurate; and melamine (meth)acrylate. It will be done.
In addition, as a photocurable compound that does not contain a carboxyl group, a phenol compound having two or more phenolic hydroxyl groups in the molecule is obtained by a condensation reaction between a polymethylol form of bisphenol A or bisphenol F and phenols. A part or all of the phenolic hydroxyl groups of a phenolic compound having two or more phenolic hydroxyl groups in the molecule are converted into an oxyalkyl group having an alcoholic hydroxyl group, and (meth)acrylic is added to the terminal hydroxyl group of the resulting oxyalkyl group. Also preferred are photocurable compounds obtained by addition of an acid.
 市販品としては、例えば、三洋化成工業株式会社製のDA-600が挙げられる。 Commercially available products include, for example, DA-600 manufactured by Sanyo Chemical Industries, Ltd.
 カルボキシル基を含有しない光硬化性化合物の含有量は、樹脂層の全質量に対して、固形分基準で好ましくは0.1~30質量%であり、より好ましくは1~10質量%である。 The content of the photocurable compound that does not contain a carboxyl group is preferably 0.1 to 30% by mass, more preferably 1 to 10% by mass based on solid content, based on the total mass of the resin layer.
((C)光重合開始剤)
 光重合開始剤は、カルボキシル基含有樹脂および/またはカルボキシル基を含有しない光硬化性化合物を露光により反応させるためのものである。光重合開始剤としては、公知のものをいずれも用いることができる。光重合開始剤は、1種を単独でまたは2種以上を組み合わせて用いてもよい。
((C) Photopolymerization initiator)
The photopolymerization initiator is for reacting a carboxyl group-containing resin and/or a photocurable compound not containing a carboxyl group by exposure to light. As the photopolymerization initiator, any known ones can be used. The photopolymerization initiators may be used alone or in combination of two or more.
 光重合開始剤としては、例えば、ビス-(2,6-ジクロロベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のビスアシルホスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルホスフィン酸メチルエステル、2-メチルベンゾイルジフェニルホスフィンオキサイド、ピバロイルフェニルホスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のモノアシルホスフィンオキサイド類;フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸エチル、1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。 Examples of the photopolymerization initiator include bis-(2,6-dichlorobenzoyl)phenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide, and bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide. dichlorobenzoyl)-4-propylphenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-1-naphthylphosphine oxide, bis-(2,6-dimethoxybenzoyl)phenylphosphine oxide, bis-(2,6-dimethoxy) benzoyl)-2,4,4-trimethylpentylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,5-dimethylphenylphosphine oxide, bis-(2,4,6-trimethylbenzoyl)-phenylphosphine oxide Bisacylphosphine oxides such as; 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphine acid methyl ester, 2-methylbenzoyldiphenylphosphine oxide, Monoacylphosphine oxides such as pivaloylphenylphosphinic acid isopropyl ester, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; ethyl phenyl(2,4,6-trimethylbenzoyl)phosphinate, 1-hydroxy-cyclohexylphenyl ketone , 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-{4-[4-(2-hydroxy-2 Hydroxyacetophenones such as -methyl-propionyl)-benzyl]phenyl}-2-methyl-propan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzoin, benzyl, benzoin methyl ether , benzoins such as benzoin ethyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n-butyl ether; benzoin alkyl ethers; benzophenone, p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4 , 4'-bisdiethylaminobenzophenone and other benzophenones; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-Methyl-1-[4-(methylthio)phenyl]-2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino )-2-[(4-methylphenyl)methyl)-1-[4-(4-morpholinyl)phenyl]-1-butanone, acetophenones such as N,N-dimethylaminoacetophenone; thioxanthone, 2-ethylthioxanthone, Thioxanthone such as 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone; anthraquinone, chloroanthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, Anthraquinones such as 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone, and 2-aminoanthraquinone; Ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; Ethyl-4-dimethylaminobenzoate, 2-(dimethyl Benzoic acid esters such as amino) ethyl benzoate and p-dimethylbenzoic acid ethyl ester; 1,2-octanedione, 1-[4-(phenylthio)-,2-(O-benzoyloxime)], ethanone, 1- Oxime esters such as [9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O-acetyloxime); bis(η5-2,4-cyclopentadiene-1 -yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium, bis(cyclopentadienyl)-bis[2,6-difluoro-3-(2-(1 Titanium such as phenyl disulfide 2-nitrofluorene, butyroin, anisoin ethyl ether, azobisisobutyronitrile, and tetramethylthiuram disulfide.
 アセトフェノン類の光重合開始剤の市販品としては、IGM Resins社製のOmnirad 907、369、369E、379等が挙げられる。また、アシルホスフィンオキサイド類の光重合開始剤の市販品としては、IGM Resins社製のOmnirad TPO、819等が挙げられる。オキシムエステル類の光重合開始剤の市販品としては、BASFジャパン株式会社製のIrgacure OXE01、OXE02、OXE03、OEX04、株式会社ADEKA製N-1919、アデカアークルズ NCI-831、NCI-831E、常州強力電子新材料社製のTR-PBG-304、345、411、458などが挙げられる。チタノセン類の光重合開始剤の市販品としては、IGM Resins社製のOmnirad 784が挙げられる。チオキサントン類光重合開始剤の市販品としては、日本化薬株式会社製のKAYACUREDETX-Sが挙げられる。 Commercially available photopolymerization initiators for acetophenones include Omnirad 907, 369, 369E, and 379 manufactured by IGM Resins. Further, commercially available photopolymerization initiators for acylphosphine oxides include Omnirad TPO and 819 manufactured by IGM Resins. Commercial products of oxime ester photopolymerization initiators include Irgacure OXE01, OXE02, OXE03, OEX04 manufactured by BASF Japan Co., Ltd., N-1919 manufactured by ADEKA Corporation, ADEKA Arkles NCI-831, NCI-831E, and Changzhou Strong Examples include TR-PBG-304, 345, 411, and 458 manufactured by Denshi Shinzai Co., Ltd. A commercially available titanocene photopolymerization initiator includes Omnirad 784 manufactured by IGM Resins. A commercially available thioxanthone photopolymerization initiator includes KAYACUREDETX-S manufactured by Nippon Kayaku Co., Ltd.
 その他、特開2004-359639号公報、特開2005-097141号公報、特開2005-220097号公報、特開2006-160634号公報、特開2008-094770号公報、特表2008-509967号公報、特表2009-040762号公報、特開2011-80036号公報記載のカルバゾールオキシムエステル化合物等を挙げることができる。 In addition, JP 2004-359639, JP 2005-097141, JP 2005-220097, JP 2006-160634, JP 2008-094770, JP 2008-509967, Examples include carbazole oxime ester compounds described in Japanese Patent Application Publication No. 2009-040762 and JP-A No. 2011-80036.
光重合開始剤としては深部硬化性を向上させる観点から、h線(405nm)および/またはg線(436nm)に吸収のある化合物がより好ましい。具体的には、IGM Resins社製のOmnirad TPO、819、BASFジャパン株式会社製のIrgacure OEX04、株式会社ADEKA製のNCI-831E、常州強力電子新材料社製のTR-PBG-411、458、IGM Resins社製のOmnirad 784が挙げられる。 As the photopolymerization initiator, from the viewpoint of improving deep curability, a compound that absorbs the h-line (405 nm) and/or the g-line (436 nm) is more preferable. Specifically, Omnirad TPO, 819 manufactured by IGM Resins, Irgacure OEX04 manufactured by BASF Japan Co., Ltd., NCI-831E manufactured by ADEKA Co., Ltd., TR-PBG-411, 458, IGM manufactured by Changzhou Strong Electronics New Materials Co., Ltd. One example is Omnirad 784 manufactured by Resins.
 光重合開始剤の含有量は、樹脂層の全質量に対して、固形分基準で0.1~3質量%であることが好ましい。 The content of the photopolymerization initiator is preferably 0.1 to 3% by mass on a solid content basis with respect to the total mass of the resin layer.
 上記した光重合開始剤と併用して、光開始助剤または増感剤を用いてもよい。光開始助剤または増感剤としては、3級アミン化合物、およびキサントン化合物などを挙げることができる。また、光開始助剤または増感剤は1種類を単独で用いてもよく、2種以上を併用してもよい。 A photoinitiation aid or sensitizer may be used in combination with the photopolymerization initiator described above. Examples of the photoinitiation aid or sensitizer include tertiary amine compounds and xanthone compounds. Moreover, one type of photoinitiation aid or sensitizer may be used alone, or two or more types may be used in combination.
((D)ペロブスカイト型化合物)
 ペロブスカイト型化合物としては、チタン酸の二価金属塩が好ましく、チタン酸の二価金属塩としては、例えば、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸ビスマス、チタン酸マグネシウム、チタン酸バリウムネオジミウム、チタン酸バリウム錫 、チタン酸鉛 、および、これらのうちのいずれかを含む複合酸化物を挙げることができる。チタン酸の二価金属塩としては、組成物の誘電率が高く化学的に安定なことから、特に、チタン酸バリウムおよびチタン酸カルシウムの少なくとも1種を使用することが好ましい。さらに、第2のフィルムの剥離性が向上する観点から、ペロブスカイト型化合物はチタン酸バリウムであることが好ましい。
((D) Perovskite compound)
The perovskite type compound is preferably a divalent metal salt of titanate, and examples of the divalent metal salt of titanate include barium titanate, calcium titanate, strontium titanate, bismuth titanate, magnesium titanate, titanate Examples include barium neodymium, barium tin titanate, lead titanate, and composite oxides containing any of these. As the divalent metal salt of titanic acid, it is particularly preferable to use at least one of barium titanate and calcium titanate because the composition has a high dielectric constant and is chemically stable. Furthermore, from the viewpoint of improving the releasability of the second film, the perovskite compound is preferably barium titanate.
 また、このようなペロブスカイト型化合物は、カルボキシル基含有樹脂およびエポキシ樹脂などの有機化合物に対する十分な濡れ性を得るために、例えば、アミノシラン、メルカプトシランまたはビニルシランなどのカップリング剤等で表面処理されているものを用いてもよい。 In addition, such perovskite compounds are surface-treated with a coupling agent such as aminosilane, mercaptosilane, or vinylsilane in order to obtain sufficient wettability with organic compounds such as carboxyl group-containing resins and epoxy resins. You can use whatever you have.
 このようなペロブスカイト型化合物は、その平均粒子径が0.01~10.0μmであることが好ましい。平均粒子径がこの範囲内であるペロブスカイト型化合物を用いることで、画像形成性をより高めることができる。なお、平均粒子径とは、粒子径分布を体積基準で作製した際のD50の値のことをいい、レーザー回折式粒子径分布測定装置または動的光散乱法による測定装置により求めることができる。レーザー回折法による測定装置としては、マイクロトラック・ベル株式会社製のMicrotrac MT3300EXII、動的光散乱法による測定装置としては、マイクロトラック・ベル株式会社製のNanotrac Wave II UT151が挙げられる。測定サンプルは、ペロブスカイト型化合物をPMA(プロピレングリコールモノメチルエーテルアセタート)中に分散させたものを好ましく使用することができる。 It is preferable that such a perovskite compound has an average particle diameter of 0.01 to 10.0 μm. Image forming properties can be further improved by using a perovskite compound having an average particle size within this range. Note that the average particle size refers to the D50 value when the particle size distribution is prepared on a volume basis, and can be determined using a laser diffraction particle size distribution measuring device or a measuring device using a dynamic light scattering method. Examples of a measuring device using a laser diffraction method include Microtrac MT3300EXII manufactured by Microtrac Bell Co., Ltd., and examples of a measuring device using a dynamic light scattering method include Nanotrac Wave II UT151 manufactured by Microtrac Bell Co., Ltd. As the measurement sample, one in which a perovskite type compound is dispersed in PMA (propylene glycol monomethyl ether acetate) can be preferably used.
 本発明において、ペロブスカイト型化合物の含有量は、樹脂層の全質量に対して、固形分基準で55~85質量%であり、より高い誘電率を得る観点から70~85質量%であることが好ましい。また、第2のフィルムの剥離性および画像形成性の観点からペロブスカイト型化合物の含有量が70~83質量%であることが好ましい。 In the present invention, the content of the perovskite compound is 55 to 85% by mass on a solid content basis with respect to the total mass of the resin layer, and from the viewpoint of obtaining a higher dielectric constant, it is preferably 70 to 85% by mass. preferable. Further, from the viewpoint of the releasability and image-forming properties of the second film, the content of the perovskite compound is preferably 70 to 83% by mass.
((E)エポキシ樹脂)
 エポキシ樹脂は、固形エポキシ樹脂と液状エポキシ樹脂とを含む。本明細書において、固形エポキシ樹脂とは20℃で固体状であるエポキシ樹脂を意味する。固形エポキシ樹脂の概念には、半固形エポキシ樹脂および結晶性エポキシ樹脂の概念が含まれる。固形エポキシ樹脂の概念に含まれる種々の化合物を、1種を単独でまたは2種以上を組み合わせて使用してもよい。なお、半固形エポキシ樹脂とは、20℃で固体状であり、40℃で液状であるエポキシ樹脂を意味する。結晶性エポキシ樹脂とは、結晶性の強いエポキシ樹脂を意味し、20℃では、高分子鎖が規則正しく配列し、固形エポキシ樹脂でありながらも、溶融時には液状樹脂並みの低粘度となるエポキシ樹脂を意味する。
 本明細書において、液状エポキシ樹脂とは20℃で液状のエポキシ樹脂を意味する。液状の判定は、危険物の試験および性状に関する省令(平成元年自治省令第1号)の別紙第2の「液状の確認方法」に準じて行う。具体的には、特開2016-079384の段落23~25に記載の方法にて行う。これにより、液状エポキシ樹脂と固形エポキシ樹脂とが区別して判定される。液状エポキシ樹脂は、「液状の確認方法」にて液状と判定されることが必要であり、その粘度は、25℃で1,00~30,000mPa・sであることが好ましい。
((E) Epoxy resin)
Epoxy resins include solid epoxy resins and liquid epoxy resins. In this specification, solid epoxy resin means an epoxy resin that is solid at 20°C. The concept of solid epoxy resin includes the concepts of semi-solid epoxy resin and crystalline epoxy resin. Various compounds included in the concept of solid epoxy resin may be used alone or in combination of two or more. Note that the semi-solid epoxy resin means an epoxy resin that is solid at 20°C and liquid at 40°C. Crystalline epoxy resin means an epoxy resin with strong crystallinity.At 20℃, the polymer chains are regularly arranged, and even though it is a solid epoxy resin, it has a low viscosity comparable to that of a liquid resin when melted. means.
In this specification, liquid epoxy resin means an epoxy resin that is liquid at 20°C. The determination of liquid state is made in accordance with the "Method for Confirming Liquid State" in Attachment 2 of the Ministerial Ordinance on Testing and Properties of Hazardous Materials (Ministry of Home Affairs Ordinance No. 1 of 1989). Specifically, the method described in paragraphs 23 to 25 of JP-A No. 2016-079384 is used. Thereby, liquid epoxy resin and solid epoxy resin are distinguished and determined. The liquid epoxy resin must be determined to be liquid by a "liquid confirmation method", and its viscosity is preferably 1,00 to 30,000 mPa·s at 25°C.
 固形エポキシ樹脂としては、DIC株式会社製のEPICLON HP-4700(ナフタレン型エポキシ樹脂)または日本化薬株式会社製のNC-7000(ナフタレン骨格含有多官能エポキシ樹脂)等のナフタレン型エポキシ樹脂;日本化薬株式会社製のEPPN-502H(トリスフェノールエポキシ樹脂)等のフェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂);DIC株式会社製のEPICLON HP-7200H、HP-7200L(ジシクロペンタジエン骨格含有多官能エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂;日本化薬株式会社製のNC-3000H(ビフェニル骨格含有多官能エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂;日本化薬株式会社製のNC-3000L等のビフェニル/フェノールノボラック型エポキシ樹脂;DIC株式会社製のEPICLON N660、N690、N770、日本化薬株式会社製のEOCN-104S等のノボラック型エポキシ樹脂;日産化学株式会社製のTEPIC等のトリグリシジルイソシアヌレート等が挙げられる。 As solid epoxy resins, naphthalene type epoxy resins such as EPICLON HP-4700 (naphthalene type epoxy resin) manufactured by DIC Corporation or NC-7000 (naphthalene skeleton-containing polyfunctional epoxy resin) manufactured by Nippon Kayaku Co., Ltd.; Epoxidized products of condensates of phenols such as EPPN-502H (trisphenol epoxy resin) manufactured by Yakuza Corporation and aromatic aldehydes having a phenolic hydroxyl group (trisphenol type epoxy resin); EPICLON HP- manufactured by DIC Corporation Dicyclopentadiene aralkyl type epoxy resin such as 7200H, HP-7200L (polyfunctional epoxy resin containing dicyclopentadiene skeleton); biphenylaralkyl type such as NC-3000H (polyfunctional epoxy resin containing biphenyl skeleton) manufactured by Nippon Kayaku Co., Ltd. Epoxy resin; biphenyl/phenol novolac type epoxy resin such as NC-3000L manufactured by Nippon Kayaku Co., Ltd.; EPICLON N660, N690, N770 manufactured by DIC Corporation, novolac type epoxy such as EOCN-104S manufactured by Nippon Kayaku Co., Ltd. Resin; triglycidyl isocyanurate such as TEPIC manufactured by Nissan Chemical Co., Ltd., and the like.
 半固形エポキシ樹脂としては、DIC株式会社製のEPICLON 860、EXA-4816、EPICLON EXA-4822、日鉄ケミカル&マテリアル株式会社製のエポトートYD-134、三菱ケミカル株式会社製のjER834、jER872、住友化学株式会社製のELA-134等のビスフェノールA型エポキシ樹脂;DIC株式会社製のEPICLON N-740等のフェノールノボラック型エポキシ樹脂等が挙げられる。 Semi-solid epoxy resins include EPICLON 860, EXA-4816, and EPICLON EXA-4822 manufactured by DIC Corporation, Epotote YD-134 manufactured by Nippon Steel Chemical & Materials Co., Ltd., jER834 and jER872 manufactured by Mitsubishi Chemical Corporation, and Sumitomo Chemical. Examples include bisphenol A type epoxy resins such as ELA-134 manufactured by DIC Corporation; and phenol novolac type epoxy resins such as EPICLON N-740 manufactured by DIC Corporation.
 また、結晶性エポキシ樹脂としては、例えば、ビフェニル構造、スルフィド構造、フェニレン構造、ナフタレン構造等を有するものを用いることができる。ビフェニルタイプのエポキシ樹脂は、例えば、三菱ケミカル株式会社製のjER YX4000、YX4000H、YL6121H、YL6640、YL6677として提供されており、ジフェニルスルフィド型エポキシ樹脂は、例えば、日鉄ケミカル&マテリアル株式会社製のエポトートYSLV-120TEとして提供されており、フェニレン型エポキシ樹脂は、例えば、日鉄ケミカル&マテリアル株式会社製のエポトートYDC-1312として提供されており、ナフタレン型エポキシ樹脂は、例えば、DIC株式会社製のEPICLON HP-4032、HP-4032Dとして提供されている。また、結晶性エポキシ樹脂として日鉄ケミカル&マテリアル社製のエポトートYSLV-90C、日産化学株式会社製のTEPIC-S(トリグリシジルイソシアヌレート)を用いることもできる。 Further, as the crystalline epoxy resin, for example, those having a biphenyl structure, a sulfide structure, a phenylene structure, a naphthalene structure, etc. can be used. Biphenyl type epoxy resins are provided as jER YX4000, YX4000H, YL6121H, YL6640, and YL6677 manufactured by Mitsubishi Chemical Corporation, and diphenyl sulfide type epoxy resins are provided, for example, as JER YX4000, YX4000H, YL6121H, YL6640, and YL6677 manufactured by Mitsubishi Chemical Corporation. The phenylene type epoxy resin is provided as EPOTOTO YDC-1312 manufactured by Nippon Steel Chemical & Materials Co., Ltd., and the naphthalene type epoxy resin is provided as EPICLON manufactured by DIC Corporation, for example. Available as HP-4032 and HP-4032D. Further, as the crystalline epoxy resin, Epotote YSLV-90C manufactured by Nippon Steel Chemical & Materials Co., Ltd. and TEPIC-S (triglycidyl isocyanurate) manufactured by Nissan Chemical Co., Ltd. can also be used.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。液状エポキシ樹脂を含むことで、積層構造体の可とう性に優れる。液状エポキシ樹脂は、1種を単独でまたは2種以上を組み合わせて使用してもよい。液状エポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂およびビスフェノールE型エポキシ樹脂の少なくともいずれか1種が好ましい。 Liquid epoxy resins include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol E epoxy resin, phenol novolak epoxy resin, tert-butyl-catechol epoxy resin, glycidylamine epoxy resin, and aminophenol epoxy resin. , alicyclic epoxy resins, and the like. By including the liquid epoxy resin, the laminated structure has excellent flexibility. The liquid epoxy resins may be used alone or in combination of two or more. The liquid epoxy resin is preferably at least one of bisphenol A epoxy resin, bisphenol F epoxy resin, and bisphenol E epoxy resin.
 液状エポキシ樹脂としては、例えば、三菱ケミカル株式会社製のjER828(液状ビスフェノールA型エポキシ樹脂)、DIC株式会社製のEPICLON 850-S(液状ビスフェノールA型エポキシ樹脂)、株式会社プリンテック社製のEPOX MK R710(液状ビスフェノールE型エポキシ樹脂)、および日鉄ケミカル&マテリアル株式会社製のZX1059(液状ビスフェノールA型エポキシ樹脂および液状ビスフェノールF型エポキシ樹脂の混合物)が挙げられる。 Examples of liquid epoxy resins include jER828 (liquid bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation, EPICLON 850-S (liquid bisphenol A type epoxy resin) manufactured by DIC Corporation, and EPOX manufactured by Printec Corporation. Examples include MK R710 (liquid bisphenol E type epoxy resin) and ZX1059 (mixture of liquid bisphenol A type epoxy resin and liquid bisphenol F type epoxy resin) manufactured by Nippon Steel Chemical & Materials Co., Ltd.
 エポキシ樹脂の含有量は、樹脂層の全質量に対して、固形分基準で例えば0.1~30質量%である。 The content of the epoxy resin is, for example, 0.1 to 30% by mass on a solid content basis with respect to the total mass of the resin layer.
 液状エポキシ樹脂の含有量は、固形エポキシ樹脂100質量部に対して、第2のフィルムと樹脂層との密着性および画像形成性の観点から固形分基準で150~1000質量部である。また、第2のフィルムと樹脂層との密着性をより良くする観点から液状エポキシ樹脂の含有量は、固形エポキシ樹脂100質量部に対して、固形分基準で180質量部以上であることが好ましい。一方、第2のフィルムと樹脂層との剥離性をより良くする観点から液状エポキシ樹脂の含有量は、固形エポキシ樹脂100質量部に対して、固形分基準で750質量部以下であることが好ましい。第2のフィルムと樹脂層との密着性および剥離性をより良くし、さらに剥離強度を好適範囲に設定できる観点から、液状エポキシ樹脂の含有量は、固形エポキシ樹脂100質量部に対して、固形分基準で180~750質量部が好ましい。 The content of the liquid epoxy resin is 150 to 1000 parts by mass based on solid content, based on 100 parts by mass of the solid epoxy resin, from the viewpoint of adhesion between the second film and the resin layer and image forming properties. Further, from the viewpoint of improving the adhesion between the second film and the resin layer, the content of the liquid epoxy resin is preferably 180 parts by mass or more on a solid content basis with respect to 100 parts by mass of the solid epoxy resin. . On the other hand, from the viewpoint of improving the releasability between the second film and the resin layer, the content of the liquid epoxy resin is preferably 750 parts by mass or less on a solid content basis with respect to 100 parts by mass of the solid epoxy resin. . From the viewpoint of improving the adhesion and peelability between the second film and the resin layer and further setting the peel strength within a suitable range, the content of the liquid epoxy resin is determined based on 100 parts by mass of the solid epoxy resin. It is preferably 180 to 750 parts by mass on a minute basis.
(有機溶剤)
 本発明の積層構造体の樹脂層を得るための硬化性樹脂組成物には、当該硬化性樹脂組成物の調製または第1のフィルムに塗布する際の粘度調整等の目的で、有機溶剤を配合することができる。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセタート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセタート、ブチルセロソルブアセタート、ジエチレングリコールモノエチルエーテルアセタート、ブチルカルビトールアセタート、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテルアセタート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤など、公知慣用の有機溶剤を使用することができる。有機溶剤の製品としては、例えば、ダウ・ケミカル日本株式会社製のジューキゾールCA(カルビトールアセタート、ジエチレングリコールモノエチルエーテルアセタート)が挙げられる。
(Organic solvent)
The curable resin composition for obtaining the resin layer of the laminated structure of the present invention contains an organic solvent for the purpose of preparing the curable resin composition or adjusting the viscosity when applying it to the first film. can do. Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, and propylene glycol monomethyl ether. , dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether, and other glycol ethers; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, diethylene glycol monoethyl Esters such as ether acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, propylene carbonate; Aliphatic hydrocarbons such as octane and decane; petroleum ether, petroleum naphtha, and solvent Known and commonly used organic solvents such as petroleum solvents such as naphtha can be used. Examples of organic solvent products include Juquisol CA (carbitol acetate, diethylene glycol monoethyl ether acetate) manufactured by Dow Chemical Japan Co., Ltd.
 有機溶剤の含有量は、特に限定されず、硬化性樹脂組成物を調製し易いように目的の粘度に応じて適宜設定することができる。 The content of the organic solvent is not particularly limited, and can be appropriately set according to the desired viscosity so as to facilitate the preparation of the curable resin composition.
(その他の添加成分)
 本発明の積層構造体の樹脂層には、必要に応じてさらに、電子材料の分野において公知の物質、例えば、エポキシ樹脂以外の熱硬化性樹脂、重合禁止剤、シアネート化合物、エラストマー、メルカプト化合物、チキソ化剤、密着促進剤、ブロック共重合体、連鎖移動剤、銅害防止剤、酸化防止剤、防錆剤、微粉シリカ、有機ベントナイト、増粘剤(例えば、モンモリロナイト)、シリコーン系、フッ素系、高分子系等の消泡剤、分散剤、着色剤およびレベリング剤を配合することができる。市販される分散剤としては、例えば、ビックケミー株式会社製のDisperBYK-111が挙げられる。
(Other additive ingredients)
The resin layer of the laminate structure of the present invention may further contain substances known in the field of electronic materials, such as thermosetting resins other than epoxy resins, polymerization inhibitors, cyanate compounds, elastomers, mercapto compounds, Thixotizing agent, adhesion promoter, block copolymer, chain transfer agent, copper inhibitor, antioxidant, rust inhibitor, finely divided silica, organic bentonite, thickener (e.g. montmorillonite), silicone type, fluorine type , a polymeric antifoaming agent, a dispersant, a coloring agent, and a leveling agent can be blended. Examples of commercially available dispersants include DisperBYK-111 manufactured by BYK Chemie Co., Ltd.
[第2のフィルム]
 第2のフィルムとは、積層構造体の樹脂層の表面に塵等が付着するのを防止するとともに取扱性を向上させる目的で、樹脂層における第1のフィルムとは反対側の面に設けられる。第2のフィルムとしては、例えば、第1のフィルムで例示したものを用いることができる。これらの中でも、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、および、これらフィルムの表面が離形処理されたフィルムが好ましい。第2のフィルムの厚さは、特に制限されるものではないが、好ましくは10~150μmの範囲、より好ましくは12.5~100μmの範囲、さらにより好ましくは15~50μmの範囲で用途に応じて適宜選択される。第2のフィルムの樹脂層を設ける面には、離型処理が施されていてもよい。
 第2のフィルムは、樹脂層に接する面の算術平均表面粗さRaが0.10μm以上であることが好ましい。Raが0.10μm以上であることにより、樹脂層と第2のフィルムとの密着性をより高めることができる。一方で、樹脂層と第2のフィルムとの剥離性および密着性の両方ともをより良好にする観点から、第2のフィルムのRaは1.0μm以下であることが好ましく、0.80μm以下であることがより好ましい。
 以下、算術平均表面粗さRaの具体的な測定方法について説明する。算術平均表面粗さRaは、形状測定レーザーマイクロスコープ(例えば、株式会社キーエンス製VK-X100)を使用して測定した値である。形状測定レーザーマイクロスコープ(同VK-X100)本体(制御部)およびVK観察アプリケーション(株式会社キーエンス製VK-H1VX)を起動させた後、x-yステージ上に測定する試料(第2のフィルム)を載置する。顕微鏡部(株式会社キーエンス製VK-X110)のレンズレボルバーを回して倍率10倍の対物レンズを選択し、VK観察アプリケーション(同VK-H1VX)の画像観察モードで、大まかにピントおよび明るさを調節する。x-yステージを操作して、試料表面の測定したい部分が、画面の中心に来るように調節する。倍率10倍の対物レンズを倍率50倍に替え、VK観察アプリケーション(同VK-H1VX)の画像観察モードのオートフォーカス機能で、試料の表面にピントを合わせる。VK観察アプリケーション(同VK-H1VX)の形状測定タブの簡単モードを選択し、測定開始ボタンを押して、試料の表面形状の測定を行い、表面画像ファイルを得ることができる。VK解析アプリケーション(株式会社キーエンス製VK-H1XA)を起動して、得られた表面画像ファイルを表示させた後、傾き補正を行う。なお、試料の表面形状の測定における横方向の観察測定範囲は270μmとする。線粗さウインドウを表示させ、パラメータ設定領域で、JIS B0601-1994を選択した後、測定ラインボタンから水平線を選択し、表面画像内の任意の場所に水平線を表示させ、OKボタンを押すことによって、算術平均表面粗さRaの数値を得る。更に、表面画像内の異なる4か所で水平線を表示させ、それぞれの算術平均表面粗さRaの数値を得る。得られた5つの数値の平均値をそれぞれ算出し、試料表面の算術平均表面粗さRaとする。
 上記の算術平均表面粗さRaを有する第2のフィルムとして、熱可塑性樹脂フィルムを使用する場合には、フィルムを成膜する際の樹脂中にフィラーを添加したり、フィルム表面をブラスト処理したり、あるいはヘアライン加工、マットコーティング、またはケミカルエッチング等により、表面を所定の形態にすることができ、上記した算術平均表面粗さRaを有する熱可塑性樹脂フィルムを得ることができる。例えば、樹脂中にフィラーを添加する場合には、フィラーの粒径および/または添加量を調整することにより、算術平均表面粗さRaを制御することができる。また、ブラスト処理する場合は、ブラスト材および/またはブラスト圧等の処理条件を調整することにより、算術平均表面粗さRaを制御することができる。
 算術平均表面粗さRaが0.1μm以上の第2のフィルムの市販品としては、例えば、王子エフテックス株式会社製のアルファン「MA-411」、「MA-420」、「MA-430」、「E-201F」、「ER-440」(二軸延伸ポリプロピレンフィルム)、東レ株式会社製の「ルミラーX42」、「ルミラーX43」、「ルミラーX44」、ユニチカ株式会社製のエンブレット「PTH-12」、「PTH-25」、「PTHA-25」、「PTH-38」等が挙げられる。
[Second film]
The second film is provided on the opposite side of the resin layer from the first film for the purpose of preventing dust etc. from adhering to the surface of the resin layer of the laminated structure and improving handleability. . As the second film, for example, those exemplified for the first film can be used. Among these, polyester films, polyethylene films, polypropylene films, and films whose surfaces have been subjected to mold release treatment are preferred. The thickness of the second film is not particularly limited, but is preferably in the range of 10 to 150 μm, more preferably in the range of 12.5 to 100 μm, and even more preferably in the range of 15 to 50 μm, depending on the application. be selected as appropriate. The surface of the second film on which the resin layer is provided may be subjected to a mold release treatment.
The second film preferably has an arithmetic mean surface roughness Ra of 0.10 μm or more on the surface in contact with the resin layer. When Ra is 0.10 μm or more, the adhesion between the resin layer and the second film can be further improved. On the other hand, from the viewpoint of improving both the releasability and adhesion between the resin layer and the second film, the Ra of the second film is preferably 1.0 μm or less, and preferably 0.80 μm or less. It is more preferable that there be.
A specific method for measuring the arithmetic mean surface roughness Ra will be described below. The arithmetic mean surface roughness Ra is a value measured using a shape measuring laser microscope (for example, VK-X100 manufactured by Keyence Corporation). After starting the shape measurement laser microscope (VK-X100) main body (control unit) and VK observation application (VK-H1VX manufactured by Keyence Corporation), place the sample (second film) to be measured on the xy stage. Place. Turn the lens revolver on the microscope section (VK-X110 manufactured by Keyence Corporation) to select an objective lens with a magnification of 10x, and roughly adjust the focus and brightness in the image observation mode of the VK observation application (VK-H1VX). do. Adjust the xy stage so that the part of the sample surface you want to measure is in the center of the screen. Change the 10x objective lens to 50x magnification, and use the autofocus function of the image observation mode of the VK observation application (VK-H1VX) to focus on the surface of the sample. By selecting the easy mode on the shape measurement tab of the VK observation application (VK-H1VX) and pressing the measurement start button, the surface shape of the sample can be measured and a surface image file can be obtained. After starting the VK analysis application (VK-H1XA manufactured by Keyence Corporation) and displaying the obtained surface image file, tilt correction is performed. Note that the observation measurement range in the lateral direction in measuring the surface shape of the sample is 270 μm. Display the line roughness window, select JIS B0601-1994 in the parameter setting area, select the horizontal line from the measurement line button, display the horizontal line anywhere in the surface image, and press the OK button. , obtain the numerical value of the arithmetic mean surface roughness Ra. Furthermore, horizontal lines are displayed at four different locations within the surface image, and the numerical value of the arithmetic mean surface roughness Ra for each is obtained. The average value of the obtained five numerical values is calculated, and is defined as the arithmetic mean surface roughness Ra of the sample surface.
When using a thermoplastic resin film as the second film having the above arithmetic mean surface roughness Ra, filler may be added to the resin when forming the film, or the film surface may be subjected to blast treatment. Alternatively, the surface can be shaped into a predetermined shape by hairline processing, matte coating, chemical etching, etc., and a thermoplastic resin film having the above-mentioned arithmetic mean surface roughness Ra can be obtained. For example, when a filler is added to the resin, the arithmetic mean surface roughness Ra can be controlled by adjusting the particle size and/or amount of the filler added. In addition, in the case of blasting, the arithmetic mean surface roughness Ra can be controlled by adjusting treatment conditions such as the blasting material and/or blasting pressure.
Commercial products of the second film having an arithmetic mean surface roughness Ra of 0.1 μm or more include, for example, Alphan “MA-411”, “MA-420”, and “MA-430” manufactured by Oji F-Tex Co., Ltd. , "E-201F", "ER-440" (biaxially oriented polypropylene film), "Lumirror X42", "Lumirror X43", "Lumirror 12'', ``PTH-25'', ``PTHA-25'', ``PTH-38'', and the like.
[積層構造体の形成方法]
 積層構造体を形成する際には、まず、樹脂層を形成するための硬化性樹脂組成物を調製する。すなわち、(A)カルボキシル基含有樹脂等の各成分をそれぞれ配合し、撹拌機にて予備混合した後、3本ロールミルにて混練し、硬化性樹脂組成物を調製する。調製した硬化性樹脂組成物を、コンマコーター、ブレードコーター等により第1のフィルム上に均一な厚さに塗布する。その後、塗布された硬化性樹脂組成物を、通常、40~130℃の温度で1~30分間乾燥することで、樹脂層を形成する。更に、樹脂層における第1のフィルムとは反対側の表面に第2のフィルムを張り合わせて、積層構造体を形成する。また、積層構造体が長尺状である場合、ロール状に巻き取ってロール状積層構造体としてもよい。ロール状積層構造体は、必要に応じて所定の幅に切断してもよい。
[Method for forming laminated structure]
When forming a laminated structure, first, a curable resin composition for forming a resin layer is prepared. That is, each component such as (A) carboxyl group-containing resin is individually blended, premixed using a stirrer, and then kneaded using a three-roll mill to prepare a curable resin composition. The prepared curable resin composition is coated onto the first film to a uniform thickness using a comma coater, a blade coater, or the like. Thereafter, the applied curable resin composition is usually dried at a temperature of 40 to 130°C for 1 to 30 minutes to form a resin layer. Furthermore, a second film is attached to the surface of the resin layer opposite to the first film to form a laminated structure. Moreover, when the laminated structure is elongated, it may be wound up into a roll to form a rolled laminated structure. The rolled laminated structure may be cut into a predetermined width if necessary.
[回路基板への樹脂層の硬化物の形成方法]
 回路基板への樹脂層の硬化物の形成は、以下の工程:
 積層構造体における第2のフィルムを剥離し、回路形成された基板に樹脂層を付着して、基板に対して第1のフィルムおよび樹脂層を積層する工程、
 樹脂層の所定部分に活性エネルギー線を照射する露光工程、
 露光工程後の樹脂層において活性エネルギー線が照射されていない領域を除去する現像工程、および
 現像工程後の樹脂層を加熱する硬化物形成工程
を含む方法によって行うことができる。なお、樹脂層から第1のフィルムを剥離する工程は、露光工程前でも露光工程後でもよい。
[Method for forming cured resin layer on circuit board]
The formation of a cured resin layer on a circuit board involves the following steps:
a step of peeling off the second film in the laminated structure, attaching a resin layer to the circuit-formed substrate, and laminating the first film and the resin layer on the substrate;
an exposure step of irradiating a predetermined portion of the resin layer with active energy rays;
This can be carried out by a method including a developing step of removing the region of the resin layer that has not been irradiated with active energy rays after the exposure step, and a cured product forming step of heating the resin layer after the developing step. Note that the step of peeling the first film from the resin layer may be performed before or after the exposure step.
(回路形成された基板に樹脂層を付着する工程)
 回路基板に樹脂層を付着する工程としては、真空ラミネーター等を用いて、第2のフィルムを樹脂層から剥離して加圧および加熱下で回路形成された基板に樹脂層を積層することが好ましい。このような真空ラミネーターを使用することにより回路基板の表面に積層構造体の樹脂層が密着するため、気泡の混入がなく、また、回路基板表面の凹部の穴埋め性も向上する。加圧条件は、0.1~2.0MPa程度であることが好ましく、また、加熱条件は、40~120℃であることが好ましい。
(Process of attaching a resin layer to a circuit-formed board)
In the step of attaching the resin layer to the circuit board, it is preferable to use a vacuum laminator or the like to peel off the second film from the resin layer and laminate the resin layer on the circuit-formed circuit board under pressure and heat. . By using such a vacuum laminator, the resin layer of the laminated structure is brought into close contact with the surface of the circuit board, so there is no air bubbles mixed in, and the ability to fill in the recesses on the surface of the circuit board is improved. The pressurizing condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120°C.
(露光工程)
 露光工程では、樹脂層に、例えば露光量が50~1000mJ/cmの条件にて活性エネルギー線を照射することにより樹脂層を所定のパターン形状に光硬化させることができる。活性エネルギー線の照射は、紫外線、電子線、化学線等の照射により行われる。所定部分に活性エネルギー線を照射する方法としては、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線を照射する方法でもよく、直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)を用いてもよい。
 活性エネルギー線の照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ、UV-LED等を搭載し、350~450nmの範囲で紫外線を照射する装置が好ましい。直描機のランプ光源またはレーザー光源としては、最大波長が350~410nmの範囲にあるものが好ましい。
(Exposure process)
In the exposure step, the resin layer can be photocured into a predetermined pattern by irradiating the resin layer with active energy rays at an exposure dose of 50 to 1000 mJ/cm 2 , for example. Irradiation with active energy rays is performed by irradiation with ultraviolet rays, electron beams, actinic rays, and the like. As a method of irradiating active energy rays to a predetermined portion, a method of selectively irradiating active energy rays through a photomask formed with a predetermined pattern may be used, or a method of irradiating active energy rays selectively through a photomask on which a predetermined pattern is formed, or a method using a direct drawing device (for example, a method using a direct laser using CAD data from a computer). A laser direct imaging device (which draws images) may also be used.
The exposure machine used for irradiation with active energy rays is equipped with a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a metal halide lamp, a mercury short arc lamp, a UV-LED, etc., and is a device that irradiates ultraviolet rays in the range of 350 to 450 nm. preferable. The lamp light source or laser light source of the direct drawing machine preferably has a maximum wavelength in the range of 350 to 410 nm.
(現像工程)
 現像工程では、第1のフィルムの剥離後にアルカリ水溶液による現像により、未露光部を除去して、ネガ型のパターン状の硬化物を形成することができる。現像方法としては、ディッピング等の公知の方法によることができる。また、現像液としては、炭酸ナトリウム、炭酸カリウム、水酸化カリウム、アミン類、2-メチルイミダゾール等のイミダゾール類、水酸化テトラメチルアンモニウム水溶液(TMAH)等のアルカリ水溶液、または、これらの混合液を用いることができる。
(Developing process)
In the development step, after the first film is peeled off, the unexposed areas can be removed by development with an alkaline aqueous solution to form a cured product in the form of a negative pattern. As a developing method, a known method such as dipping can be used. In addition, as a developer, sodium carbonate, potassium carbonate, potassium hydroxide, amines, imidazoles such as 2-methylimidazole, alkaline aqueous solutions such as tetramethylammonium hydroxide aqueous solution (TMAH), or a mixture thereof are used. Can be used.
(硬化物形成工程)
 硬化物形成工程では、現像工程の後に、硬化物を完全に熱硬化することにより誘電率の高い硬化物を得ることができる。加熱条件は、例えば、120℃~180℃にて5分~120分である。なお、硬化物形成工程では、加熱による熱硬化だけでなく、紫外線照射による光硬化を併用してもよい。
(Cured product formation process)
In the cured product forming step, a cured product with a high dielectric constant can be obtained by completely thermally curing the cured product after the development step. The heating conditions are, for example, 120° C. to 180° C. for 5 minutes to 120 minutes. In addition, in the cured product forming step, not only thermal curing by heating but also photocuring by ultraviolet irradiation may be used.
 回路形成された基板としては、例えば、予め銅等により回路形成されたプリント配線板およびフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキシド・シアネート等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、金属基板、ポリイミドフィルム、PETフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板に回路を形成したもの等を挙げることができる。これらに限られず公知慣用の回路基板を用いることができる。 Examples of circuit-formed circuit boards include printed wiring boards and flexible printed wiring boards on which circuits have been previously formed using copper or the like, as well as paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/nonwoven epoxy, and glass. Materials such as cloth/paper epoxy, synthetic fiber epoxy, fluororesin/polyethylene/polyphenylene ether, polyphenylene oxide/cyanate, etc. are used, and copper-clad laminates of all grades (FR-4, etc.), metal substrates, polyimide films , a PET film, a polyethylene naphthalate (PEN) film, a glass substrate, a ceramic substrate, a wafer plate on which a circuit is formed, and the like. The circuit board is not limited to these, and any known and commonly used circuit board can be used.
[樹脂層の硬化物]
 硬化物は、樹脂層を硬化することによって得られるものである。例えば、上述の工程を実施して得られるものである。具体的には、本願発明の硬化物は、積層構造体のうちの第2のフィルムを剥離して、樹脂層および第1のフィルムの状態で、露光し、そして第1のフィルムを剥離して、樹脂層のみの状態で、現像および熱硬化を順に行うことによって得られるものである。得られる硬化物は、高い誘電率を有する硬化物として有用であり、フレキシブルプリント配線板に形成するカバーレイまたはソルダーレジスト(絶縁性硬化物)としても好適である。
[Cured product of resin layer]
The cured product is obtained by curing the resin layer. For example, it can be obtained by carrying out the above-mentioned steps. Specifically, the cured product of the present invention is obtained by peeling off the second film of the laminated structure, exposing the resin layer and the first film to light, and then peeling off the first film. , which is obtained by sequentially developing and thermally curing the resin layer alone. The obtained cured product is useful as a cured product having a high dielectric constant, and is also suitable as a coverlay or solder resist (insulating cured product) to be formed on a flexible printed wiring board.
[樹脂層の硬化物を有することを特徴とする電子部品]
 本発明は、樹脂層の硬化物を有する電子部品も提供する。本発明において電子部品とは、電子回路に使用する部品を意味し、好適には指紋認証センサーである。この他、トランジスタ、発光ダイオード、レーザーダイオード等の能動部品、または、コンデンサ、インダクタ、コネクタ等の受動部品でもよい。
[Electronic component characterized by having a cured resin layer]
The present invention also provides an electronic component having a cured resin layer. In the present invention, the electronic component refers to a component used in an electronic circuit, and is preferably a fingerprint authentication sensor. In addition, active components such as transistors, light emitting diodes, and laser diodes, or passive components such as capacitors, inductors, and connectors may be used.
 以下、本発明を、実施例を用いてより詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be explained in more detail using examples, but the present invention is not limited to the following examples. In addition, all "parts" and "%" below are based on mass unless otherwise specified.
((A)カルボキシル基含有樹脂の合成例1)
 温度計、撹拌機、滴下ロートおよび還流冷却器を備えたフラスコに、溶媒としてのジプロピレングリコールモノメチルエーテル325.0質量部を110℃まで加熱し、メタクリル酸174.0質量部、ε-カプロラクトン変性メタクリル酸(平均分子量314)174.0質量部、メタクリル酸メチル77.0質量部、ジプロピレングリコールモノメチルエーテル222.0質量部、および、重合触媒としてのt-ブチルパーオキシ2-エチルヘキサノエート(日油株式会社製、パーブチルO)12.0質量部の混合物を3時間かけて滴下し、さらに110℃で3時間攪拌し、重合触媒を失活させて、樹脂溶液を得た。この樹脂溶液を冷却後、株式会社ダイセル製サイクロマーM100を289.0質量部、トリフェニルフォスフィン3.0質量部およびハイドロキノンモノメチルエーテル1.3質量部を加え、100℃に昇温し、攪拌することによってエポキシ基の開環付加反応を行い、カルボキシル基含有樹脂を得た。このようにして得られたカルボキシル基含有樹脂は、固形分45.5質量%、固形分の酸価が79.8mgKOH/gであった。なお、このカルボキシル基含有樹脂は、上記の((A)カルボキシル基含有樹脂)における(13)のカルボキシル基含有樹脂に相当するものである。なお、上記した通り、ポリスチレンを標準物質としてゲル浸透クロマトグラフィー(GPC)により測定したところ、20,000であった。
((A) Synthesis example 1 of carboxyl group-containing resin)
In a flask equipped with a thermometer, a stirrer, a dropping funnel, and a reflux condenser, 325.0 parts by mass of dipropylene glycol monomethyl ether as a solvent was heated to 110°C, and 174.0 parts by mass of methacrylic acid and ε-caprolactone modified were added. 174.0 parts by mass of methacrylic acid (average molecular weight 314), 77.0 parts by mass of methyl methacrylate, 222.0 parts by mass of dipropylene glycol monomethyl ether, and t-butyl peroxy 2-ethylhexanoate as a polymerization catalyst. A mixture of 12.0 parts by mass of Perbutyl O (manufactured by NOF Corporation) was added dropwise over 3 hours, and the mixture was further stirred at 110° C. for 3 hours to deactivate the polymerization catalyst to obtain a resin solution. After cooling this resin solution, 289.0 parts by mass of Cyclomer M100 manufactured by Daicel Corporation, 3.0 parts by mass of triphenylphosphine, and 1.3 parts by mass of hydroquinone monomethyl ether were added, and the temperature was raised to 100°C and stirred. By doing so, a ring-opening addition reaction of the epoxy group was carried out, and a carboxyl group-containing resin was obtained. The thus obtained carboxyl group-containing resin had a solid content of 45.5% by mass and an acid value of 79.8 mgKOH/g. Note that this carboxyl group-containing resin corresponds to the carboxyl group-containing resin (13) in the above ((A) carboxyl group-containing resin). In addition, as mentioned above, when it measured by gel permeation chromatography (GPC) using polystyrene as a standard substance, it was 20,000.
(実施例1~15、および比較例1~4)
下記の方法により硬化性樹脂組成物を調製した後、積層構造体を作製した。
(Examples 1 to 15 and Comparative Examples 1 to 4)
After preparing a curable resin composition by the method described below, a laminated structure was produced.
(硬化性樹脂組成物の調製)
 表1および表2に記載の配合に従い、実施例および比較例に記載の成分をそれぞれ配合し、撹拌機にて予備混合した後、3本ロールミルにて混練し、積層構造体を作製するための硬化性樹脂組成物を調製した。なお、表中の有機溶剤以外の値は、全て固形分量の値である。
(Preparation of curable resin composition)
According to the formulations listed in Tables 1 and 2, the components listed in Examples and Comparative Examples were blended, premixed using a stirrer, and then kneaded using a three-roll mill to produce a laminated structure. A curable resin composition was prepared. Note that all values other than organic solvent in the table are solid content values.
(積層構造体の作製)
 第1のフィルムとして厚さ25μmポリエチレンテレフタレートフィルム(東洋紡株式会社製の「E5041」)を用意した。上記で得た硬化性樹脂組成物を該フィルム上に塗布し、80℃の温度にて15分乾燥し、乾燥後の厚み25μmの樹脂層を形成した。次いで、第2のフィルムとしてMA-411(王子エフテックス株式会社製の二軸延伸ポリプロピレンフィルム;Ra=0.45μm)を張り合わせることで、実施例1~14、比較例1~4の積層構造体を得た。
 また、実施例15では第2のフィルムをMA-430(王子エフテックス株式会社製の二軸延伸ポリプロピレンフィルム;Ra=0.75μm)に変更した以外は、実施例5と同様に積層構造体を得た。
(Preparation of laminated structure)
A 25 μm thick polyethylene terephthalate film (“E5041” manufactured by Toyobo Co., Ltd.) was prepared as the first film. The curable resin composition obtained above was applied onto the film and dried at a temperature of 80° C. for 15 minutes to form a resin layer having a thickness of 25 μm after drying. Next, by laminating MA-411 (biaxially oriented polypropylene film manufactured by Oji F-Tex Co., Ltd.; Ra = 0.45 μm) as a second film, the laminated structures of Examples 1 to 14 and Comparative Examples 1 to 4 were obtained. I got a body.
In addition, in Example 15, the laminated structure was prepared in the same manner as in Example 5, except that the second film was changed to MA-430 (biaxially oriented polypropylene film manufactured by Oji F-Tex Co., Ltd.; Ra = 0.75 μm). Obtained.
 表1:実施例
Figure JPOXMLDOC01-appb-T000001
Table 1: Examples
Figure JPOXMLDOC01-appb-T000001
 上記表1における「ペロブスカイト型化合物の含有量」は、「硬化性樹脂組成物の固形分の合計」を100質量%とした場合におけるペロブスカイト型化合物の質量%を示す。
*1:DA-600:三洋化成工業株式会社製のジペンタエリスリトールヘキサアクリレート
*2:Omnirad 819:IGM Resins B.V.社製のアシルホスフィンオキサイド類の光重合開始剤
*3:Disperbyk-111:ビックケミー株式会製の分散剤
*4:チタン酸バリウム:堺化学工業株式会社製のペロブスカイト型化合物(平均粒子径=0.5μm)
*5:チタン酸カルシウム:デンカ株式会社製のペロブスカイト型化合物(平均粒子径=5μm)。
*6:EPICLON HP-7200L:DIC株式会社製の固形エポキシ樹脂、ジシクロペンタジエン骨格含有多官能エポキシ樹脂
*7:NC-3000H:日本化薬株式会社製の固形エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂
*8:jER828:三菱ケミカル株式会社製の液状エポキシ樹脂(25℃での粘度=13,000mPa・s)、ビスフェノールA型エポキシ樹脂
*9:EPICLON 850-S:DIC株式会社製の液状エポキシ樹脂(25℃での粘度=14,000mPa・s)、ビスフェノールA型エポキシ樹脂
*10:EPOX MK R710:株式会社プリンテック社製の液状エポキシ樹脂(25℃での粘度=2,700mPa・s)、ビスフェノールE型エポキシ樹脂
*11:ZX1059:日鉄ケミカル&マテリアル株式会社製の液状エポキシ樹脂(25℃での粘度=2,500mPa・s)、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物
*12:ジューキゾールCA:ダウ・ケミカル日本株式会社製の有機溶剤
The "content of perovskite compound" in Table 1 above indicates the mass % of the perovskite compound when the "total solid content of the curable resin composition" is 100 mass %.
*1: DA-600: Dipentaerythritol hexaacrylate manufactured by Sanyo Chemical Industries, Ltd. *2: Omnirad 819: IGM Resins B. V. Photopolymerization initiator of acylphosphine oxides manufactured by Co., Ltd. *3: Disperbyk-111: Dispersant manufactured by Byk Chemie Co., Ltd. *4: Barium titanate: Perovskite type compound manufactured by Sakai Chemical Industry Co., Ltd. (average particle size = 0. 5μm)
*5: Calcium titanate: Perovskite compound manufactured by Denka Corporation (average particle size = 5 μm).
*6: EPICLON HP-7200L: Solid epoxy resin manufactured by DIC Corporation, polyfunctional epoxy resin containing dicyclopentadiene skeleton *7: NC-3000H: Solid epoxy resin manufactured by Nippon Kayaku Co., Ltd., biphenylaralkyl type epoxy resin * 8: jER828: Liquid epoxy resin manufactured by Mitsubishi Chemical Corporation (viscosity at 25°C = 13,000 mPa・s), bisphenol A epoxy resin *9: EPICLON 850-S: Liquid epoxy resin manufactured by DIC Corporation (25 Viscosity at ℃ = 14,000 mPa s), bisphenol A epoxy resin *10: EPOX MK R710: Liquid epoxy resin manufactured by Printec Co., Ltd. (viscosity at 25 ℃ = 2,700 mPa s), bisphenol E Type epoxy resin *11: ZX1059: Liquid epoxy resin manufactured by Nippon Steel Chemical & Materials Co., Ltd. (viscosity at 25°C = 2,500 mPa・s), mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin *12: Juquisol CA: Organic solvent manufactured by Dow Chemical Japan Co., Ltd.
 表2:比較例
Figure JPOXMLDOC01-appb-T000002
 上記表2における*1~*12の化合物に関する情報は、表1における*1~*12の化合物に関する情報と同様である。
Table 2: Comparative example
Figure JPOXMLDOC01-appb-T000002
The information regarding compounds *1 to *12 in Table 2 above is the same as the information regarding compounds *1 to *12 in Table 1.
(第2のフィルムの密着性)
 上記積層構造体の作製において、ラミネートロール温度を50℃、加圧力を0.2MPaに設定したロールラミネーター(大成ラミネーター株式会社製のVA-770)を用いて樹脂層表面に第2のフィルムを張り合わせた際の樹脂層と第2のフィルムとの密着性を評価した。
◎:作製された積層構造体において全面的に樹脂層と第2のフィルムとが良好に密着していた。
○:作製された積層構造体において端部分にのみ第2のフィルムのわずかな浮きが見られたが、積層構造体として使用上問題ないレベルであった。
×:作製された積層構造体において全面的に第2のフィルムが樹脂層に張り付いていなかった。
(Adhesion of second film)
In the production of the above-mentioned laminated structure, a second film was laminated on the surface of the resin layer using a roll laminator (VA-770 manufactured by Taisei Laminator Co., Ltd.) with a lamination roll temperature of 50°C and a pressure of 0.2 MPa. The adhesion between the resin layer and the second film was evaluated.
◎: In the produced laminated structure, the resin layer and the second film were in good contact with each other over the entire surface.
Good: Slight lifting of the second film was observed only at the end portions of the produced laminate structure, but this was at a level that caused no problem in use as a laminate structure.
×: The second film did not stick to the resin layer over the entire surface of the produced laminated structure.
(第2のフィルムの剥離性)
 実施例1~15および比較例1~4で作製した積層構造体を幅10cm、長さ30cmにカットした。室温(20℃)で積層構造体を10分間放置した後、積層構造体の第2のフィルムを樹脂層から、樹脂層の表面に対して90度上方向に一気に引きはがし、樹脂層の破壊の有無を観察した。樹脂層が破壊されずに剥離できれば樹脂層と第2のフィルムとの剥離性が良好であると言える。
◎:第2のフィルムへの樹脂層の付着が全く見られず、樹脂層の破壊が認められなかった。
○:第2のフィルムへの樹脂層の付着がわずかに見られるが、積層構造体として使用上問題なかった。
×:第2のフィルムへの樹脂層の付着が多くみられ、樹脂層全体の著しい破壊が認められ、積層構造体として使用上問題があった。
(Peelability of second film)
The laminated structures produced in Examples 1 to 15 and Comparative Examples 1 to 4 were cut into pieces with a width of 10 cm and a length of 30 cm. After leaving the laminated structure at room temperature (20°C) for 10 minutes, the second film of the laminated structure was peeled off from the resin layer at 90 degrees upwards to the surface of the resin layer to prevent destruction of the resin layer. The presence or absence was observed. If the resin layer can be peeled off without being destroyed, it can be said that the peelability between the resin layer and the second film is good.
◎: No adhesion of the resin layer to the second film was observed, and no destruction of the resin layer was observed.
Good: Slight adhesion of the resin layer to the second film was observed, but there was no problem in using it as a laminated structure.
×: Much adhesion of the resin layer to the second film was observed, significant destruction of the entire resin layer was observed, and there were problems in use as a laminated structure.
(画像形成性)
 両面銅張積層板(銅箔の厚さ35μm、基板厚み1.6mm、基板サイズ150mm×95mm、昭和電工マテリアルズ株式会社製)をメック株式会社製のメックエッチボンドCZ8101でエッチングレート1μm/mでCZ処理(粗化処理)して粗化処理基板を得た。積層構造体から第2のフィルムを剥離した後、ニッコー・マテリアルズ株式社製のCVP-300を使用して、粗化処理基板の粗化面に樹脂層が接するようにラミネートし、粗化処理基板上に樹脂層および第1のフィルムを積層した。なお、ラミネートは、70℃のチャンバーにて真空圧3hPa、バキューム時間20秒、加圧時間90秒、プレス圧力0.4MPaの条件下で実施した。
 この粗化処理基板上に積層された樹脂層に対して、株式会社オーク製作所(ORC)社製のEXP-2960(光源;ショートアークランプ、平行光露光機)により、積算露光量:200mJ/cmにてパターン露光し、第1のフィルムを剥離した。この後、30℃、スプレー圧0.2MPaの条件で1wt%炭酸ナトリウム水溶液を使用して60秒間現像し、現像後の硬化物パターンを得た。
 上記により得られた硬化物パターンの開口径を観測し、現像後かつ熱硬化前の画像形成性を評価した。
○:φ150μmが良好に開口していた。
△:φ150μmが開口していたが、開口形状がいびつであった。
×:φ150μmが開口できなかった。
(Image forming property)
A double-sided copper-clad laminate (copper foil thickness 35 μm, board thickness 1.6 mm, board size 150 mm x 95 mm, manufactured by Showa Denko Materials Co., Ltd.) was etched at an etching rate of 1 μm/m 2 using MEC Etch Bond CZ8101 manufactured by MEC Corporation. A roughened substrate was obtained by CZ treatment (roughening treatment). After peeling off the second film from the laminated structure, using CVP-300 manufactured by Nikko Materials Co., Ltd., lamination is performed so that the resin layer is in contact with the roughened surface of the roughened substrate, and the roughening treatment is performed. A resin layer and a first film were laminated on the substrate. The lamination was carried out in a chamber at 70° C. under the conditions of a vacuum pressure of 3 hPa, a vacuum time of 20 seconds, a pressurization time of 90 seconds, and a press pressure of 0.4 MPa.
The resin layer laminated on this roughened substrate was exposed to a cumulative exposure amount of 200 mJ/cm using EXP-2960 (light source: short arc lamp, parallel light exposure machine) manufactured by Oak Manufacturing Co., Ltd. (ORC). Pattern exposure was carried out in step 2 , and the first film was peeled off. Thereafter, development was performed for 60 seconds using a 1 wt % sodium carbonate aqueous solution at 30° C. and a spray pressure of 0.2 MPa to obtain a developed cured product pattern.
The opening diameter of the cured product pattern obtained above was observed, and the image forming properties after development and before thermosetting were evaluated.
○: φ150 μm was well opened.
Δ: There was an opening with a diameter of 150 μm, but the shape of the opening was distorted.
×: φ150 μm could not be opened.
 更に、UVコンベア炉において1000mJ/cmの露光量の紫外線を上記の現像後の硬化物パターンに対して照射した後、熱風循環式乾燥炉において160℃で1時間加熱して硬化物を得た。このようにして得られた硬化物パターンの開口径を観測し、熱硬化後の画像形成性を評価した。
○:φ150μmの開口形状を保っており良好に開口していた。
×:φ150μmの開口形状を保つことができず、開口径が著しく減少していた。
Further, the cured product pattern after development was irradiated with ultraviolet rays at an exposure dose of 1000 mJ/cm 2 in a UV conveyor furnace, and then heated at 160° C. for 1 hour in a hot air circulation drying oven to obtain a cured product. . The opening diameter of the cured product pattern thus obtained was observed, and the image forming properties after thermosetting were evaluated.
○: The opening shape of φ150 μm was maintained and the opening was good.
×: The opening shape of φ150 μm could not be maintained, and the opening diameter was significantly reduced.
(誘電率の測定)
 積層構造体から第2のフィルムを剥離した後、ニッコー・マテリアルズ株式会社製のCVP-300を使用して、厚さ18μmの電解銅箔(古河電気工業株式会社製)に樹脂層が接するように樹脂層をラミネートし、電解銅箔上に樹脂層および第1のフィルムを積層した。なお、ラミネートは、70℃のチャンバーにて真空圧3hPa、バキューム時間20秒、加圧時間90秒、プレス圧力0.4MPaの条件下で実施した。
 この銅箔上に積層された樹脂層に対し、株式会社オーク製作所(ORC)社製のEXP-2960(光源;ショートアークランプ、平行光露光機)により、200mJ/cmの積算光量で全面露光し、第1のフィルムを剥離した。
(Measurement of dielectric constant)
After peeling the second film from the laminated structure, using CVP-300 manufactured by Nikko Materials Co., Ltd., the resin layer was placed in contact with an 18 μm thick electrolytic copper foil (manufactured by Furukawa Electric Co., Ltd.). A resin layer was laminated on the electrode, and the resin layer and the first film were laminated on the electrolytic copper foil. The lamination was carried out in a chamber at 70° C. under the conditions of a vacuum pressure of 3 hPa, a vacuum time of 20 seconds, a pressurization time of 90 seconds, and a press pressure of 0.4 MPa.
The entire surface of the resin layer laminated on the copper foil is exposed using EXP-2960 (light source: short arc lamp, parallel light exposure machine) manufactured by Oak Manufacturing Co., Ltd. (ORC) with an integrated light intensity of 200 mJ/cm 2 Then, the first film was peeled off.
 第1のフィルムが剥離された樹脂層(厚さ25μm)上に積層構造体の樹脂層(厚さ25μm)を更にラミネートして銅箔上に厚さ50μmの樹脂層を形成した後、株式会社オーク製作所(ORC)社製のEXP-2960(光源;ショートアークランプ、平行光露光機)により、200mJ/cmの積算光量でその樹脂層を全面露光し、第1のフィルムを剥離した。ここでのラミネートは、70℃のチャンバーにて真空圧3hPa、バキューム時間20秒、加圧時間90秒、プレス圧力0.4MPaの条件下で実施した。この銅箔上にラミネートされた樹脂層(厚さ50μm)に対し、UVコンベア炉にて積算露光量1000mJ/cmの条件で紫外線照射した後、160℃で1時間加熱し、硬化物を得た。 After further laminating the resin layer (thickness 25 μm) of the laminated structure on the resin layer (thickness 25 μm) from which the first film was peeled off to form a resin layer with a thickness of 50 μm on the copper foil, The entire resin layer was exposed to light using EXP-2960 (light source: short arc lamp, parallel light exposure machine) manufactured by ORC Co., Ltd. with an integrated light intensity of 200 mJ/cm 2 , and the first film was peeled off. The lamination here was carried out in a chamber at 70° C. under the conditions of a vacuum pressure of 3 hPa, a vacuum time of 20 seconds, a pressurization time of 90 seconds, and a press pressure of 0.4 MPa. The resin layer (thickness: 50 μm) laminated on this copper foil was irradiated with ultraviolet rays in a UV conveyor furnace at a cumulative exposure dose of 1000 mJ/cm 2 , and then heated at 160°C for 1 hour to obtain a cured product. Ta.
 次いで、この硬化物を有する銅箔から、塩化第二銅340g/l、遊離塩酸濃度51.3g/lの組成のエッチング液を用いて銅箔をエッチング除去し、十分に水洗、乾燥して、厚さ50μmの硬化物からなる試験片を作製した。なお、試験片の厚さは、日本工業規格B7502:2016に準拠したマイクロメーターにより測定した。 Next, the copper foil with this cured product was removed by etching using an etching solution having a composition of cupric chloride 340 g/l and free hydrochloric acid concentration 51.3 g/l, thoroughly washed with water, dried, A test piece made of a cured product with a thickness of 50 μm was prepared. Note that the thickness of the test piece was measured using a micrometer based on Japanese Industrial Standard B7502:2016.
 このようにして作製した試験片について、SPDR誘電体共振器とネットワークアナライザ((Keysight Technologies製 E5071C)を用いて、10GHzにおける誘電率を測定した。 The dielectric constant of the thus prepared test piece at 10 GHz was measured using an SPDR dielectric resonator and a network analyzer (E5071C, manufactured by Keysight Technologies).
 表3:実施例
Figure JPOXMLDOC01-appb-T000003
Table 3: Examples
Figure JPOXMLDOC01-appb-T000003
 表4:比較例
Figure JPOXMLDOC01-appb-T000004
 上記表4の比較例1における「熱硬化後の画像形成性」の評価「-」は、「熱硬化後の画像形成性」の評価を行わなかったことを意味する。なお、「熱硬化後の画像形成性」の評価を行わなかった理由は、「現像後かつ熱硬化前の画像形成性」の評価が「×」になっているので、「熱硬化後の画像形成性」の評価を更に行う必要性がないからである。
Table 4: Comparative example
Figure JPOXMLDOC01-appb-T000004
In Comparative Example 1 in Table 4 above, the evaluation "-" for "image forming properties after thermosetting" means that the "image forming properties after thermosetting" was not evaluated. The reason why we did not evaluate "image forming properties after heat curing" was that the evaluation of "image forming properties after development and before heat curing" was "x". This is because there is no need to further evaluate "formability."
 実施例1~15の積層構造体は、樹脂層と第2のフィルムとの密着性および剥離性が良好であり、現像後かつ熱硬化前の画像形成性および熱硬化後の画像形成性の両方ともが良好であり、高い誘電率を示す硬化物を得ることができた。一方、比較例1~4の積層構造体は、樹脂層と第2のフィルムとの密着性、画像形成性、および高い誘電率のすべてを同時に達成することが困難であった。 The laminated structures of Examples 1 to 15 had good adhesion and releasability between the resin layer and the second film, and had good image formation properties both after development and before thermosetting and after thermosetting. Both conditions were good, and a cured product exhibiting a high dielectric constant could be obtained. On the other hand, in the laminated structures of Comparative Examples 1 to 4, it was difficult to simultaneously achieve all of the adhesion between the resin layer and the second film, image formability, and high dielectric constant.

Claims (5)

  1.  第1のフィルムと、樹脂層と、第2のフィルムとを順に含む積層構造体であって、
     前記樹脂層が、(A)カルボキシル基含有樹脂と、(B)カルボキシル基を含有しない光硬化性化合物と、(C)光重合開始剤と、(D)ペロブスカイト型化合物と、(E)エポキシ樹脂と、を含有し、
     前記(D)ペロブスカイト型化合物の含有量が、前記樹脂層の全質量に対して、固形分基準で55~85質量%であり、
     前記(E)エポキシ樹脂が、固形エポキシ樹脂と液状エポキシ樹脂とを含み、
     前記液状エポキシ樹脂の含有量が、前記固形エポキシ樹脂100質量部に対して、固形分基準で150~1000質量部であることを特徴とする積層構造体。
    A laminated structure including a first film, a resin layer, and a second film in this order,
    The resin layer includes (A) a carboxyl group-containing resin, (B) a photocurable compound that does not contain a carboxyl group, (C) a photopolymerization initiator, (D) a perovskite type compound, and (E) an epoxy resin. and,
    The content of the perovskite compound (D) is 55 to 85% by mass on a solid content basis with respect to the total mass of the resin layer,
    The epoxy resin (E) includes a solid epoxy resin and a liquid epoxy resin,
    A laminated structure characterized in that the content of the liquid epoxy resin is 150 to 1000 parts by mass based on solid content based on 100 parts by mass of the solid epoxy resin.
  2.  前記(D)ペロブスカイト型化合物の含有量が、前記樹脂層の全質量に対して、固形分基準で70~85質量%であることを特徴とする請求項1に記載の積層構造体。 The laminated structure according to claim 1, wherein the content of the perovskite compound (D) is 70 to 85% by mass on a solid content basis with respect to the total mass of the resin layer.
  3.  前記(D)ペロブスカイト型化合物がチタン酸の二価金属塩であることを特徴とする請求項1または2に記載の積層構造体。 The laminate structure according to claim 1 or 2, wherein the perovskite compound (D) is a divalent metal salt of titanic acid.
  4.  請求項1に記載の積層構造体の樹脂層が硬化されたものであることを特徴とする硬化物。 A cured product, characterized in that the resin layer of the laminated structure according to claim 1 is cured.
  5.  請求項4に記載の硬化物を有することを特徴とする電子部品。 An electronic component comprising the cured product according to claim 4.
PCT/JP2023/020028 2022-06-06 2023-05-30 Layered structure, cured product of resin layer in said layered structure, and electronic component having said cured product WO2023238732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091603 2022-06-06
JP2022091603 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023238732A1 true WO2023238732A1 (en) 2023-12-14

Family

ID=89118213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020028 WO2023238732A1 (en) 2022-06-06 2023-05-30 Layered structure, cured product of resin layer in said layered structure, and electronic component having said cured product

Country Status (2)

Country Link
TW (1) TW202411075A (en)
WO (1) WO2023238732A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037287A (en) * 2015-08-13 2017-02-16 太陽インキ製造株式会社 Photosensitive resin composition, dry film, and printed wiring board
WO2017122460A1 (en) * 2016-01-13 2017-07-20 太陽インキ製造株式会社 Dry film and printed wiring board
JP2020154325A (en) * 2013-07-04 2020-09-24 味の素株式会社 Photosensitive resin composition
JP2020154052A (en) * 2019-03-18 2020-09-24 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic component
JP2022028036A (en) * 2018-03-22 2022-02-14 太陽インキ製造株式会社 Dry film, cured product and electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020154325A (en) * 2013-07-04 2020-09-24 味の素株式会社 Photosensitive resin composition
JP2017037287A (en) * 2015-08-13 2017-02-16 太陽インキ製造株式会社 Photosensitive resin composition, dry film, and printed wiring board
WO2017122460A1 (en) * 2016-01-13 2017-07-20 太陽インキ製造株式会社 Dry film and printed wiring board
JP2022028036A (en) * 2018-03-22 2022-02-14 太陽インキ製造株式会社 Dry film, cured product and electronic component
JP2020154052A (en) * 2019-03-18 2020-09-24 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic component

Also Published As

Publication number Publication date
TW202411075A (en) 2024-03-16

Similar Documents

Publication Publication Date Title
CN106662813B (en) Curable resin composition, dry film, cured product, and printed wiring board
JP6788372B2 (en) Alkaline developable resin composition, dry film, cured product and printed wiring board
JP2017037287A (en) Photosensitive resin composition, dry film, and printed wiring board
JP2017198747A (en) Dry film, cured product and printed wiring board
JP2022025366A (en) Dry film, dry film set, cured product of the same, and electronic component
TWI798403B (en) Photosensitive film laminate and its cured product, and electronic parts
JP6748478B2 (en) Dry film, cured product and printed wiring board
JP6789193B2 (en) Photosensitive resin compositions, dry films, cured products, and printed wiring boards
JP2019179232A (en) Dry film, cured product and printed wiring board
JP7043568B2 (en) Photosensitive resin compositions, dry films, cured products, and printed wiring boards
WO2023238732A1 (en) Layered structure, cured product of resin layer in said layered structure, and electronic component having said cured product
KR20210119893A (en) Curable resin composition, dry film, cured product, and electronic component
JP7101513B2 (en) Curable resin compositions, dry films, cured products, and electronic components
WO2021157282A1 (en) Curable composition, and dry film and cured object obtained therefrom
WO2021044984A1 (en) Curable resin composition, dry film and cured article comprising same, and electronic component equipped with said cured article
JP2021042268A (en) Curable resin composition
JP2020154052A (en) Curable resin composition, dry film, cured product and electronic component
JP7339103B2 (en) Curable resin composition, dry film, cured product, and electronic component
WO2023085155A1 (en) Curable resin composition, laminated structure, cured product, and electronic component
WO2023054616A1 (en) Photosensitive film laminate, cured product, and printed wiring board
JP2024065105A (en) CURABLE RESIN COMPOSITION, METHOD FOR PRODUCING CURED PRODUCT OF THE CURABLE RESIN COMPOSITION, AND METHOD FOR PRODUCING PRINTED WIRING BOARD COMPRISING THE CURED PRODUCT
JP2024065106A (en) Method for producing cured product of curable resin composition and printed wiring board including said cured product
WO2024075714A1 (en) Photosensitive resin composition, dry film, cured product and printed wiring board
WO2023145974A1 (en) Film laminate, cured product, and printed wiring board comprising said cured product
WO2023190393A1 (en) Cured product and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819712

Country of ref document: EP

Kind code of ref document: A1