WO2023234318A1 - 硫酸製造装置及び硫酸製造方法 - Google Patents

硫酸製造装置及び硫酸製造方法 Download PDF

Info

Publication number
WO2023234318A1
WO2023234318A1 PCT/JP2023/020162 JP2023020162W WO2023234318A1 WO 2023234318 A1 WO2023234318 A1 WO 2023234318A1 JP 2023020162 W JP2023020162 W JP 2023020162W WO 2023234318 A1 WO2023234318 A1 WO 2023234318A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
sulfuric acid
heat exchange
gas
reaction
Prior art date
Application number
PCT/JP2023/020162
Other languages
English (en)
French (fr)
Inventor
勉 西出
英晃 岡田
雄一朗 石田
Original Assignee
日本管機工業株式会社
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本管機工業株式会社, Jfeスチール株式会社 filed Critical 日本管機工業株式会社
Publication of WO2023234318A1 publication Critical patent/WO2023234318A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/765Multi-stage SO3-conversion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/78Preparation by contact processes characterised by the catalyst used
    • C01B17/79Preparation by contact processes characterised by the catalyst used containing vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/80Apparatus

Definitions

  • the present invention relates to a sulfuric acid production device and a sulfuric acid production method.
  • Sulfuric acid (H 2 SO 4 ) is a strong acid that is produced in large quantities and used in various fields. Sulfuric acid can be roughly divided into industrial concentrated sulfuric acid, which is expressed at a sulfuric acid concentration of 90% by weight or more, and industrial diluted sulfuric acid, which is expressed at a sulfuric acid concentration of less than 90% by weight, and each has different properties. Among these, dilute sulfuric acid is a strong acid, but unlike concentrated sulfuric acid, it does not have oxidizing or dehydrating effects, but it is highly corrosive to metal materials and other materials. Dilute sulfuric acid is used in a variety of applications, including industrial supplies, medicines, agricultural chemicals, and reagents.
  • Raw materials include desulfurization waste liquid and recycled sulfur from gas generated in the process of manufacturing coke used in steelmaking (coke oven gas (hereinafter referred to as "COG")), and recycled sulfur discharged from the copper refining process.
  • COG coke oven gas
  • a gas containing SOx or the like is used.
  • Patent Document 1 the method disclosed in Patent Document 1 is known as a method that can produce dilute sulfuric acid at low cost.
  • a material containing a large amount of water in addition to sulfur and nitrogen is used as a raw material, and an oxygen-containing gas with a high oxygen concentration is introduced into the combustion means.
  • the combustion means combustion furnace
  • the cooling means exhaust heat boiler
  • reaction means sulfur oxide is added with a catalyst to produce sulfur trioxide (SO 3 ), and in the dilute sulfuric acid production means (dilute sulfuric acid tower), the reaction gas is cooled to produce dilute sulfuric acid. There is.
  • JP2021-31305A (Claim 1, Paragraph 0062, etc.)
  • gas is transferred in this order: a combustion furnace, a converter, and a dilute sulfuric acid tower.
  • a combustion furnace raw materials are burned at 950 to 1000°C, so the combustion gas produced is high temperature, and the reaction in the converter is also an exothermic reaction, so the temperature of the gas increases, but the final product, a dilute sulfuric acid aqueous solution, is Since it is an aqueous solution that is stored at room temperature, it is necessary to provide a cooling means to cool the gas at any time during the process.
  • a waste heat boiler is provided as such a cooling means, and the combustion gas is cooled by heat exchange between the refrigerant (water) and the combustion gas.
  • the gas contains sulfuric acid gas (H 2 SO 4 ), when the temperature of the gas decreases, it becomes an aqueous sulfuric acid solution.
  • Sulfuric acid aqueous solution is a strong acid and is highly corrosive to metals.
  • the equipment becomes expensive and the cost of producing dilute sulfuric acid increases.
  • metals with low corrosion resistance are used for piping etc., the equipment will be cheaper and the manufacturing cost of dilute sulfuric acid will be lowered.
  • the waste heat generated when cooling the gas was not particularly mentioned in this document.
  • the waste heat boiler in this document cools the combustion gas by directly feeding low-temperature pure water into the boiler, so the amount of steam generated from the waste heat boiler is reduced, and the amount of steam that can be used effectively is reduced. The quantity was decreasing.
  • the purpose of the present invention is to produce sulfuric acid at a low cost, obtain sulfuric acid with a higher recovery rate, reduce sulfur dioxide released into the atmosphere, and effectively utilize waste heat.
  • An object of the present invention is to provide a manufacturing apparatus and a method for manufacturing sulfuric acid.
  • the present inventors have discovered that by performing multiple predetermined heat exchanges using a predetermined refrigerant, not only can sulfuric acid be produced at a low cost, but also that sulfuric acid can be obtained with a higher recovery rate and the CO2 that is emitted into the atmosphere.
  • the present invention was completed based on the discovery that it is possible to reduce sulfur and effectively utilize waste heat.
  • the present invention provides a raw material supplying means for supplying a raw material containing at least a sulfur content, a combustion means for burning the raw material to generate a combustion gas containing sulfur oxides, and a refrigerant introducing means for introducing a first refrigerant. , a combustion gas cooling means for cooling the combustion gas by heat exchange with a refrigerant; a reaction means for oxidizing the sulfur oxide with a catalyst to generate a reaction gas containing sulfur trioxide and water; and a second refrigerant.
  • reaction gas cooling means for cooling the reaction gas by heat exchange with the reaction gas; and a reaction gas cooling means for absorbing sulfur trioxide and water contained in the reaction gas after cooling into a sulfuric acid aqueous solution to generate sulfuric acid, containing sulfur dioxide and oxygen.
  • a sulfuric acid recovery means for discharging exhaust gas, and a second refrigerant whose temperature has been raised by heat exchange with the reaction gas and the first refrigerant that has been cooled by heat exchange with the first refrigerant whose temperature has been raised.
  • heat exchange means for preparing the second refrigerant and supplying either the heated first refrigerant or the cooled second refrigerant to the combustion gas cooling means as the refrigerant;
  • the present invention includes a combustion gas cooling means for cooling combustion gas, a reaction gas cooling means for cooling reaction gas, and a heat exchange means.
  • heat exchange means heat exchange is performed between the second refrigerant whose temperature has been raised by heat exchange with the reaction gas and the first refrigerant.
  • the heated first refrigerant for the combustion gas cooling means is prepared, and the exhaust heat can be effectively utilized.
  • the temperature of the first refrigerant is raised to cool the combustion gas, the amount of steam generated by cooling the combustion gas increases, and as a result, there is an advantage that the amount of effectively usable steam increases.
  • the combustion gas cooling means is configured such that the heated first refrigerant has a temperature equal to or higher than the acid dew point of the combustion gas
  • the reaction gas cooling means is configured such that the second refrigerant is heated to a temperature higher than the acid dew point of the combustion gas. The temperature is above the acid dew point of
  • the combustion gas cooling means and the reaction gas cooling means use a refrigerant with a temperature higher than the acid dew point of the gas to be heat exchanged, the gas is cooled to a temperature lower than the acid dew point by these means. It does not become a highly corrosive sulfuric acid aqueous solution. Therefore, even relatively inexpensive metal piping and the like can be used to produce sulfuric acid, and sulfuric acid can be produced at low cost.
  • the heat exchange means includes a refrigerant transfer path for transferring the heated second refrigerant, and a refrigerant transfer path to which the first refrigerant is supplied and which exchanges heat with the heated second refrigerant.
  • a preheater raises the temperature of the first refrigerant and supplies it to the combustion gas cooling means, and the second refrigerant after heat exchange with the first refrigerant is transferred from the preheater to the reaction gas cooling means. and a refrigerant return path for returning the refrigerant to the means.
  • the heat exchange means By configuring the heat exchange means in this way, it is possible to raise the temperature of the first refrigerant while circulating the second refrigerant, and the second refrigerant can be used to cool the reactive gas and raise the temperature of the first refrigerant. It can be used efficiently for both.
  • the refrigerant return path can also supply a portion of the second refrigerant to the combustion gas cooling means.
  • a part of the second refrigerant can also be used as a refrigerant for cooling the combustion gas.
  • the refrigerant return path includes a tank that stores the second refrigerant, and a pump that supplies the second refrigerant to the reaction gas cooling means.
  • the second refrigerant is preferably an organic refrigerant that is liquid at least within the range of -20°C to 350°C.
  • a substance that is solid at room temperature such as molten salt
  • it will harden at room temperature and lose its function as a refrigerant.
  • the organic refrigerant which is liquid at least within the range of -20° C. to 350° C., does not solidify within the heat exchange means, so that heat exchange with the reaction gas can be continued stably.
  • the first refrigerant is water
  • the second refrigerant is a mixture of diphenyl and diphenyl oxide.
  • the heat exchange means is preferably of a smoke tube type.
  • the combustion gas cooling means is preferably of a water tube type that is applied to combustion gas containing dust, but if the combustion gas does not contain dust, the refrigerant return path is By supplying a portion of the second refrigerant to the combustion gas cooling means, a smoke tube type can be applied by using a portion of the second refrigerant as a refrigerant for cooling the combustion gas.
  • the cost of producing sulfuric acid can be reduced by using an inexpensive smoke tube type as the heat exchange means.
  • the combustion gas cooling means the combustion gas transferred from the combustion means may contain adhesive dust, so if dust adheres to the inside of the means on the downstream side, there is a risk of clogging problems. be. In the case of a water tube boiler, the dust adheres to the outer surface of the tubes through which water flows, so the tubes are not clogged. Further, dust attached to the outer surface of the tube can be easily removed by, for example, soot blowing.
  • the sulfuric acid production apparatus of the present invention preferably includes means for negative pressure operation.
  • the reaction means By introducing hot air into the reaction means, the reaction means can be preheated before the equipment starts operating. By preheating to the reaction temperature in advance, the start-up time can be reduced to less than half the time.
  • the introduction of hot air is also effectively used for purging the reaction means during maintenance. Due to the negative pressure operation, the hot air is induced into the reaction means, and it is difficult for the hot air to drift inside the reaction means. Local generation of sulfuric acid solution and molten catalyst solids within the reaction means is avoided.
  • the sulfur dioxide recovery means absorbs sulfur dioxide contained in the exhaust gas into water to generate sulfurous acid, and oxidizes the sulfurous acid with oxygen contained in the exhaust gas to generate sulfuric acid.
  • sulfur dioxide in exhaust gas is absorbed into water to produce sulfurous acid, which can then be oxidized and recovered as sulfuric acid. Since the exhaust gas contains about 10% oxygen, this oxygen can be used for oxidation to sulfuric acid, and there is no need to separately add an oxidizing agent as in the conventional case. In addition to increasing the recovery rate of sulfuric acid, it is possible to reduce sulfur dioxide released into the atmosphere.
  • the present invention includes a raw material supplying step of supplying a raw material containing at least sulfur, a combustion step of burning the raw material to generate combustion gas containing sulfur oxides, and a refrigerant introduction step of introducing a first refrigerant. , a combustion gas cooling step of cooling the combustion gas by heat exchange with a refrigerant; a reaction step of oxidizing the sulfur oxide with a catalyst to generate a reaction gas containing sulfur trioxide and water; and a second refrigerant. a reaction gas cooling step of cooling the reaction gas by heat exchange with the reaction gas, and absorbing sulfur trioxide and water contained in the reaction gas after the cooling into a sulfuric acid aqueous solution to generate sulfuric acid, which contains sulfur dioxide and oxygen.
  • a method for producing sulfuric acid comprising:
  • the present invention includes a cooling process for cooling combustion gas and a heat exchange process for cooling reaction gas.
  • heat exchange step heat is exchanged between the second refrigerant whose temperature has been increased by heat exchange with the reaction gas and the first refrigerant.
  • the heated first refrigerant for the cooling process is prepared, and the exhaust heat can be effectively utilized.
  • the temperature of the first refrigerant is raised to cool the combustion gas, the amount of steam generated by cooling the combustion gas increases, and as a result, there is an advantage that the amount of effectively usable steam increases.
  • the temperature of the heated first refrigerant is higher than or equal to the acid dew point of the combustion gas
  • the temperature of the second refrigerant is higher than or equal to the acid dew point of the reactive gas.
  • the temperature is preferably .
  • the heat exchange step includes a step of cooling the reaction gas by heat exchange with the second refrigerant, a transfer step of transferring the heated second refrigerant, and a step of transferring the heated second refrigerant.
  • a preheating step in which the first refrigerant is heated in the preheater by heat exchange with the preheater and supplied to the combustion gas cooling step; and a preheating step in which the second refrigerant after heat exchange with the first refrigerant is returned. and a refrigerant return step used for heat exchange with the reaction gas.
  • a portion of the second refrigerant may also be supplied to the combustion gas cooling means.
  • a part of the second refrigerant can also be used as a refrigerant for cooling the combustion gas.
  • the refrigerant return step includes a step of storing the second refrigerant and a step of supplying the second refrigerant to the reaction gas cooling step.
  • the second refrigerant it is preferable to use an organic refrigerant that is liquid at least within the range of -20°C to 350°C.
  • a substance that is solid at room temperature such as molten salt
  • it will harden at room temperature and lose its function as a refrigerant.
  • the organic refrigerant which is liquid at least within the range of -20° C. to 350° C., does not solidify within the heat exchange means, so that heat exchange with the reaction gas can be continued stably.
  • the heat exchange means is preferably of a smoke tube type.
  • the combustion gas cooling means is preferably a water tube type that is applied to combustion gas containing dust, but if the combustion gas does not contain dust, the refrigerant transfer and refrigerant return means By supplying a portion of the second refrigerant to the combustion gas cooling means, a smoke tube type can be applied by using a portion of the second refrigerant as a refrigerant for cooling the combustion gas.
  • the combustion gas transferred from the combustion process may contain adhesive dust, so if it adheres to the inside of the downstream process, there is a risk of clogging problems.
  • dust adheres to the outer surface of the tube through which water flows, so the dust can be easily removed by soot blowing.
  • negative pressure operation is preferably performed, but pressurized operation may also be performed.
  • the sulfur dioxide recovery step absorbs sulfur dioxide contained in the exhaust gas into water to generate sulfurous acid, and oxidizes the sulfurous acid with oxygen contained in the exhaust gas to generate sulfuric acid.
  • sulfur dioxide in exhaust gas is absorbed into water to produce sulfurous acid, which can then be oxidized and recovered as sulfuric acid. Since the exhaust gas contains about 10% oxygen, this oxygen can be used for oxidation to sulfuric acid, and there is no need to separately add an oxidizing agent as in the conventional case. In addition to increasing the recovery rate of sulfuric acid, it is possible to reduce sulfur dioxide released into the atmosphere.
  • the present invention introduces hot air into the reaction means from the hot air introduction means while operating under negative pressure, purges the reaction gas remaining in the reaction means upstream of the sulfuric acid recovery means, and transfers the resulting purge gas to the reaction means.
  • This is a maintenance method characterized by introducing the sulfur dioxide recovery means into a sulfur dioxide recovery means.
  • a raw material supply means for supplying a raw material containing at least a sulfur content; Combustion means for burning the raw material to generate combustion gas containing sulfur oxides; a cooling means for cooling the combustion gas by heat exchange with a first refrigerant whose temperature has increased; a reaction means for oxidizing the sulfur oxide with a catalyst to produce a reaction gas containing sulfur trioxide and water; heat exchange means for cooling the reaction gas by heat exchange with a second refrigerant;
  • a sulfuric acid production apparatus comprising: a sulfuric acid recovery means for absorbing sulfur trioxide and water contained in the cooled reaction gas into an aqueous sulfuric acid solution to produce sulfuric acid and exhausting exhaust gas containing sulfur dioxide and oxygen. There it is, The heat exchange means prepares the heated first refrigerant for the cooling means by heat exchange between the first refrigerant and the second refrigerant whose temperature has been increased by heat exchange with the reaction gas.
  • a sulfuric acid production device featuring:
  • the cooling means is such that the heated first refrigerant has a temperature equal to or higher than the acid dew point of the combustion gas, and the heat exchange means is configured such that the second refrigerant has a temperature equal to or higher than the acid dew point of the reaction gas.
  • the heat exchange means includes: a cooler that cools the reaction gas by heat exchange with the second refrigerant; a refrigerant transfer path that transfers the second refrigerant heated by the heat exchange; A preheater to which a first refrigerant is supplied, raises the temperature of the first refrigerant by heat exchange with the heated second refrigerant, and supplies the heated second refrigerant to the cooling means, and heat between the first refrigerant and the first refrigerant.
  • the sulfuric acid production apparatus according to [1], further comprising a refrigerant return path that returns the exchanged second refrigerant from the preheater to the cooler.
  • the sulfur dioxide recovery means absorbs sulfur dioxide contained in the exhaust gas into water to generate sulfurous acid, and oxidizes the sulfurous acid with oxygen contained in the exhaust gas to generate sulfuric acid.
  • a raw material supply means for supplying a raw material containing at least a sulfur content; Combustion means for burning the raw material to generate combustion gas containing sulfur oxides; a cooling means for cooling the combustion gas by heat exchange with a first refrigerant whose temperature has increased; a reaction means for oxidizing the sulfur oxide with a catalyst to produce a reaction gas containing sulfur trioxide and water; heat exchange means for cooling the reaction gas by heat exchange with a second refrigerant;
  • a method for producing sulfuric acid comprising: a sulfuric acid recovery means for absorbing sulfur trioxide and water contained in the cooled reaction gas into an aqueous sulfuric acid solution to produce sulfuric acid, and discharging exhaust gas containing sulfur dioxide and oxygen. There it is, The heat exchange means prepares the heated first refrigerant for the cooling step by heat exchange between the first refrigerant and the second refrigerant whose temperature has been increased by heat exchange with the reaction gas.
  • a method for producing sulfuric acid characterized by
  • the heat exchange step includes: cooling the reaction gas by heat exchange with the second refrigerant; a step of transferring the second refrigerant whose temperature has increased due to the heat exchange; raising the temperature of the first refrigerant by heat exchange with the heated second refrigerant, and supplying it to the cooling process;
  • the method for producing sulfuric acid according to [12] comprising a step of returning the second refrigerant after heat exchange with the first refrigerant and using it for heat exchange with the reaction gas.
  • the sulfur dioxide recovery step includes absorbing sulfur dioxide contained in the exhaust gas into water to generate sulfurous acid, and oxidizing the sulfurous acid with oxygen contained in the exhaust gas to generate sulfuric acid.
  • a method for maintaining the sulfuric acid production apparatus comprising: While operating under negative pressure, hot air is introduced from the hot air introducing means into the reaction means, the reaction gas remaining in the reaction means is purged upstream of the sulfuric acid recovery means, and the resulting purge gas is transferred to the sulfur dioxide recovery means.
  • a maintenance method characterized by introducing the maintenance method.
  • sulfuric acid in addition to being able to produce sulfuric acid at a low cost, sulfuric acid can be obtained with a higher recovery rate, reducing sulfur dioxide released into the atmosphere, and effectively utilizing waste heat.
  • a manufacturing apparatus and a sulfuric acid manufacturing method can be provided.
  • FIG. 1 is a schematic diagram showing an upstream process of a dilute sulfuric acid production apparatus, which is a type of sulfuric acid production apparatus of the present invention.
  • FIG. 1 is a schematic diagram showing a downstream process of a dilute sulfuric acid production apparatus, which is a type of sulfuric acid production apparatus of the present invention. It is a schematic diagram showing the internal structure of a combustion means (combustion furnace).
  • FIG. 3 is a schematic diagram showing hot air introducing means.
  • FIG. 2 is a schematic diagram showing the internal structure of a converter. It is a sectional view of a water tube boiler.
  • FIG. 2 is a graph diagram showing the relationship between SO 3 concentration in gas, water vapor concentration, and estimated sulfuric acid dew point value.
  • FIG. 1 is a schematic diagram showing the upstream process of a dilute sulfuric acid production apparatus 40, and shows an embodiment in which an oxygen-containing gas is supplied to a raw material (desulfurization waste liquid/molten sulfur in this case). Note that by adding molten sulfur to the hydrogen sulfide raw material, the sulfur concentration can be adjusted, and thereby, for example, the present invention can also be used for producing concentrated sulfuric acid by increasing the sulfuric acid concentration.
  • FIG. 2 is a schematic diagram showing the downstream process of the dilute sulfuric acid manufacturing apparatus 40.
  • sulfuric acid in the present invention refers to sulfuric acid in which the concentration of sulfuric acid is not limited, and specifically includes, for example, dilute sulfuric acid and concentrated sulfuric acid.
  • dilute sulfuric acid means an aqueous sulfuric acid solution with a sulfuric acid concentration of less than 90% by weight
  • dilute sulfuric acid sulfuric acid content 60 to 80% by weight
  • purified dilute sulfuric acid Contains 27-50% by weight of sulfuric acid.
  • the dilute sulfuric acid production apparatus 40 of this embodiment includes means for supplying raw materials.
  • the raw material of this embodiment contains at least a sulfur content, and is composed of molten sulfur and desulfurization waste liquid in this embodiment, but the raw material is not limited thereto. Moreover, the raw material may further contain purified COG or the like as a combustion improver.
  • the raw material supply means is means for supplying these raw materials to the combustion furnace 51.
  • the dilute sulfuric acid production apparatus 40 of this embodiment includes a pipe line 41 that supplies molten sulfur as a raw material. Molten sulfur is molten sulfur recovered from refineries and the like. The raw material is supplied into the combustion furnace 51 via a pump (not shown) provided in the middle of the pipe line 41.
  • the dilute sulfuric acid production apparatus 40 also includes a pipe line 42 that supplies desulfurization waste liquid, which is a raw material.
  • Desulfurization waste liquid is waste liquid from desulfurization equipment installed for the purpose of removing soot, organic matter, sulfur compounds, etc. from exhaust gas (crude COG) discharged from coke oven equipment and the like.
  • desulfurization waste liquid contains components such as free sulfur, free NH 3 , NH 4 SCN, (NH 4 ) 2 S 2 O 3 and H 2 O.
  • water (H 2 O) is not particularly specified, but often accounts for 50% by weight or more of the entire desulfurization waste liquid.
  • the pipe line 42 communicates with the combustion furnace 51, and the desulfurization waste liquid is also supplied into the combustion furnace 51 as a raw material.
  • the pipe line 41 and the pipe line 42 correspond to the raw material supply means of the present invention, and these means realize the raw material supply process.
  • the desulfurization waste liquid contains, in addition to simple sulfur, a sulfur content (10 to 40% by weight) such as (NH 4 ) 2 S 2 O 3 , It contains nitrogen (5 to 25% by weight) such as NH 3 and water (40 to 80% by weight).
  • a sulfur content 10 to 40% by weight
  • nitrogen 5 to 25% by weight
  • the moisture content is determined by mixing the moisture in each raw material and combustion improver. defined as a quantity.
  • the dilute sulfuric acid production apparatus 40 is provided with a pipe line 43 for supplying air.
  • a pipe line 44 for supplying oxygen gas is connected to the pipe line 43.
  • an oxygen gas generator for example, PVSA (vacuum pressure swing adsorption) method: not shown
  • An oxygen gas generator is a device that adsorbs and removes nitrogen from the air under pressure using an adsorbent such as zeolite to efficiently obtain high-purity oxygen.
  • the oxygen gas generator is capable of generating oxygen with a purity of 90% by volume or more. This oxygen is mixed with the air in the pipe 43 and supplied into the combustion furnace 51 as air with a high oxygen concentration.
  • a PSA method pressure swing adsorption method
  • oxygen may be supplied by branching from an existing oxygen gas pipe.
  • the above oxygen gas generator, pipe line 43, and pipe line 44 can be referred to as oxygen-containing gas generating means.
  • the oxygen-containing gas supplied to the combustion furnace 51 is adjusted to have an oxygen concentration of 21 to 40% by volume, preferably 21 to 30% by volume, and more preferably 25 to 30% by volume.
  • FIG. 3 is a schematic diagram showing the internal structure of the combustion furnace 51.
  • a supply port 51a is provided upstream of the combustion furnace 51 to which raw materials and oxygen-containing gas are supplied, and the raw materials are combusted inside and combustion gas is discharged from a downstream discharge port 51b.
  • Ru molten sulfur is supplied from the upper supply port 51a in the figure
  • desulfurization waste liquid is supplied from the middle supply port 51a
  • air is supplied from the lower supply port 51a.
  • the raw materials may be supplied to the combustion furnace 51 in a state where some or all of the raw materials are mixed in advance.
  • a moisture evaporation zone on the raw material supply side of the combustion furnace 51, where combustion of molten sulfur and purified COG and moisture evaporation in the desulfurization waste liquid are mainly performed.
  • the downstream area is the combustible material combustion area, where combustible materials in the desulfurization waste liquid are combusted.
  • the area between these is a boundary.
  • a lattice brick 51c is provided between the combustible combustion area and the discharge port 51b.
  • the lattice-shaped bricks 51c are made by arranging cubic heat-resistant bricks in a lattice shape and leaving some portions open. It is preferable that the open area ratio of the lattice bricks 51c be around 50%.
  • the lattice bricks 51c are often provided in multiple stages.
  • the oxygen concentration of the oxygen-containing gas introduced into the combustion furnace 51 is in the range of 21 to 40% by volume, preferably 21 to 30% by volume, and the oxygen concentration in the combustion gas generated in the combustion furnace 51 is 2.0% by volume. It is more preferable that the SO 3 conversion rate in the combustion gas generated in the combustion furnace 51 is within the range of 1.0 to 3.0% by volume.
  • the lattice bricks 51c are physically connected to the air so that even if a defect occurs in the mixing state of air and combustibles in the combustibles combustion area, the combustibles do not blow through in an unburned state. It has the function of promoting remixing with combustible materials and promoting re-combustion due to the heat retained in the bricks. For this purpose, it is preferable to install a plurality of tiers of lattice bricks 51c.
  • each stage of the plurality of stages of lattice bricks 51c are arranged in a staggered manner. As a result, the dust in the gas adheres to and grows on the brick surface and falls. Therefore, it is preferable to install a plurality of lattice-like bricks 51c with no openings at the bottom to accumulate the falling dust.
  • the combustion temperature at which the raw materials are combusted in the combustion furnace 51 is preferably within the range of 900 to 1100°C.
  • the upper limit of the combustion temperature is preferably 1050°C or less.
  • the combustion temperature is preferably low, for example, 1025°C or less, more preferably 1000°C or less.
  • the raw material is combusted with a gas containing 21 to 40% by volume of oxygen, so the combustion produced is greater than when the raw material is combusted under the same conditions using normal air (oxygen concentration of less than 21% by volume).
  • the amount of NOx contained in the gas can be reduced.
  • NOx (rich) is the amount of NOx contained in the combustion gas when a raw material is combusted with an oxygen-containing gas with an oxygen concentration of 21 to 40% by volume, and the same condition is obtained using air with an oxygen concentration of less than 21% by volume.
  • NOx reduction rate shown by the following formula can be set to 50 to 95%.
  • NOx reduction rate NOx (rich) /NOx (air) ⁇ 100 (%)
  • the NOx reduction rate tends to decrease as the oxygen concentration increases, and can be approximately 80% when the oxygen concentration is 25% by volume and approximately 60% when the oxygen concentration is 30% by volume.
  • the combustion gas generated in the combustion furnace 51 is transferred to a waste heat boiler (WHB) 52 (combustion gas cooling means). Further, water is supplied from the pipe line 45 (refrigerant introduction means), and this water is introduced into the waste heat boiler 52 through a feed water preheater 63b, which will be described later.
  • heated water water in this embodiment
  • this water is evaporated with combustion gas to generate steam, and the combustion gas is A combustion gas cooling step is performed.
  • the "first refrigerant" of the present invention corresponds to water introduced from the pipe line 45 to the waste heat boiler 52, that is, "boiler feed water", and the “first refrigerant with increased temperature” falls under “boiler water”.
  • the combustion gas is cooled to a temperature not below the acid dew point (220° C.), and the boiler pressure in this case is about 3 MPa.
  • the combustion gas is cooled to 420 to 360°C, preferably to about 375°C.
  • Patent Document 1 states that the temperature of the combustion gas is cooled to 380 to 460°C, preferably about 420°C, but in this embodiment, the combustion gas is cooled to a lower temperature.
  • FIG. Figure 7 is a graph showing the relationship between the acid dew point of sulfuric acid (vertical axis) and the SO 3 concentration contained in the combustion gas (horizontal axis) for each amount of water contained in the combustion gas (water vapor concentration).
  • the acid dew point is determined by the SO 3 concentration, water vapor concentration, pressure, etc. in the combustion gas, and if it is lower than the acid dew point, severe corrosion (acid dew point corrosion) will occur inside the equipment due to the condensed sulfuric acid-containing solution. To avoid acid dew point corrosion, it is necessary to maintain the combustion gas at a temperature above the acid dew point.
  • the graph in Figure 7 shows that for the same water vapor concentration, the higher the SO 3 concentration in the combustion gas, the higher the acid dew point, and for the same SO 3 concentration, the higher the water vapor concentration, the higher the acid dew point. .
  • the combustion gas generated in the combustion furnace 51 and introduced into the waste heat boiler 52 contains 0.2 to 0.3 volume % (i.e., 2000 to 3000 ppm) of SO 3 . and about 25% by volume of H 2 O.
  • the composition of this combustion gas is shown by an open circle in FIG. 7, and the sulfuric acid dew point is about 190°C. That is, the acid dew point of the combustion gas in the waste heat boiler 52 is 190°C, and it is necessary to maintain the temperature of the combustion gas in the waste heat boiler 52 above the above acid dew point, preferably above 190°C.
  • the exhaust heat boiler 52 includes a boiler, and cools the combustion gas within the boiler.
  • the exhaust heat boiler 52 includes a refrigerant supply means (refrigerant supply step) for supplying a predetermined refrigerant (in this embodiment, boiler supply water) into the boiler, and a refrigerant supplying means that evaporates the refrigerant from the refrigerant supply means with combustion gas to create steam.
  • the combustion gas cooling means (combustion gas cooling process) generates and cools the combustion gas by heat exchange (combustion gas cooling process), and the steam discharging means (steam discharge process) are provided.
  • the temperature of the boiler water which is a refrigerant, also needs to be above 190°C.
  • the refrigerant and refrigerant supply means (refrigerant supply step) used here will be described in detail later.
  • the combustion gas cooling means include a smoke tube type and a water tube type, but it is preferable to use a water tube type in consideration of removing dust attached to the inside of the boiler.
  • a water tube boiler will be explained with reference to FIG.
  • the waste heat boiler 52 includes a boiler body 52a that defines the outer shape of the boiler, a boiler drum 52b provided at the top of the boiler body 52a, and a boiler tube 52c provided inside the boiler body 52a.
  • a soot blower 52d provided inside the boiler main body 52a.
  • Combustion gas generated in the combustion furnace 51 is introduced into the boiler body 52a through an opening at one end (left side in the figure) of openings provided at both ends of the boiler body 52a, and is introduced into the boiler body 52a through an opening at one end (left side in the figure) of openings provided at both ends of the boiler body 52a. derived from the aperture.
  • Boiler water and steam as a refrigerant are stored in the boiler drum 52b.
  • the upper surface of the boiler drum 52b is provided with an inlet for introducing the refrigerant (opening indicated by a downward arrow) and an outlet for leading out the refrigerant (opening indicated by an upward arrow).
  • Boiler feed water from a feed water preheater 63b (described later) is introduced into the boiler drum 52b through the refrigerant inlet, and evaporated steam within the boiler drum 52b is discharged to the outside through the refrigerant outlet.
  • the boiler tube 52c is composed of a hollow pipe, and is composed of a vertical tube arranged vertically with respect to the boiler main body 52a and a horizontal tube arranged laterally.
  • the vertical tube is arranged at the lower part of the boiler drum 52b and communicates with the inside of the boiler drum 52b, and the horizontal tube communicates the lower parts of the vertical tubes with each other.
  • the boiler water in the boiler drum 52b circulates within the boiler tube 52c and returns to the boiler drum 52b again.
  • the combustion gas passing through the outside of the boiler tube 52a comes into contact with the boiler tube 52c and is cooled by heat exchange.
  • the soot blower 52d is a cylindrical member provided within the boiler main body 52a, and is capable of blowing air into the inside of the cylinder.
  • the soot blower 52d is provided with a plurality of openings that communicate with the inside, and the air introduced into the inside of the cylinder is blown out from the openings. Further, the soot blower 52d is rotatable.
  • the combustion gas contains adhesive dust, and the dust adheres to the outer surface of the boiler tube 52c, but the dust is blown away by the air blown out from the soot blower 52d to clean the outer surface of the boiler tube 52c. be able to. Further, by rotating the soot blower 52d itself, a wide range of the outer surface of the boiler tube 52c can be cleaned.
  • the combustion gas cooled by the waste heat boiler 52 is introduced into the converter 61 (reaction means) via the dust collector 55.
  • the dust collector 55 is a means for removing dust contained in the combustion gas. It is preferable to provide hot air introduction means X1 in the middle of the pipe line from the dust collector 55 to the converter 61.
  • the hot air introducing means X1 includes a hot air stove 101 and a hot air stove fan 102, and a COG is introduced into the hot air stove 101.
  • the hot air stove 101 is a means for burning COG to generate high-temperature heated gas.
  • the hot air stove fan 102 includes a blower fan, and is a means for sending out the heated gas generated in the hot air stove 101 as hot air.
  • the combustion gas cooled by the waste heat boiler 52 contains a trace amount of nitrogen (for example, undecomposed NH 3 and NO x such as NO and NO 2 ).
  • the converter 61 reacts and oxidizes sulfur dioxide (SO 2 ) in the combustion gas with oxygen using catalysts installed in multiple stages (three stages in the figure) to produce a reaction gas containing sulfur trioxide (SO 3 ).
  • Sulfur dioxide is converted into sulfur trioxide (SO 3 ) with high efficiency by mixing and lowering the temperature to a temperature suitable for the subsequent catalytic reaction.
  • FIG. 5 is a schematic diagram showing the internal structure of the converter 61, in which (a) is a side view, (b) is a sectional view taken along line AA' in (a), and (c) is shown along the broken line in (b).
  • the converter 61 includes a main air pipe 61a that takes in air from the atmosphere, a branch air pipe 61b that branches from the main air pipe 61a inside the reactor, and a branch air pipe 61b that sends air into the reactor. It is provided with an air port 61d for entering the air.
  • any known catalyst used in the production of sulfuric acid can be used, such as vanadium pentoxide (V 2 O 5 ). Vanadium pentoxide has a denitration function, causing NH 3 and NO x to react and decomposing them into nitrogen (N 2 ) and water (H 2 O). Therefore, the present catalyst can simultaneously generate sulfur trioxide and decompose nitrogen components (NH 3 and NO x ). At this time, NH 3 may be injected for denitrification.
  • the temperature of the combustion gas introduced into the converter 61 is approximately 370°C.
  • the first stage of the converter 61 about 55% of the sulfur dioxide (SO 2 ) contained in the combustion gas introduced into the converter 61 undergoes an oxidation reaction and is converted into SO 3 , and the gas temperature after the reaction is The temperature will be close to 500°C.
  • the remaining sulfur dioxide (SO 2 ) is oxidized into sulfur trioxide (SO 3 ) in the second and third stages of the converter 61 .
  • the inlet temperature of the second stage is about 410°C, and the gas temperature after the reaction is about 480°C. Approximately 95% of the SO 2 contained in the combustion gas introduced into the converter 61 is converted to SO 3 due to the aeration.
  • the inlet temperature of the third stage is approximately 390°C. Due to air entrainment, approximately 98.9% of the SO 2 contained in the combustion gas introduced into the converter 61 is converted to SO 3 .
  • the gas temperature after the reaction in the third stage is no more than 410°C. In this way, even if the temperature of the combustion gas introduced into the converter 61 is as low as about 370°C, by introducing air into the converter 61, 98.9% of the SO 2 contained in the combustion gas can be removed. It can be converted to SO 3 and SO 3 can be produced at a high conversion rate.
  • a denitrification catalyst may be arranged on the upstream side of the first stage of the converter 61 (on the inflow side of the combustion gas from the exhaust heat boiler 52). can be used.
  • the reaction gas generated in the converter 61 is transferred to a cooler 62 (reaction gas cooling means) and cooled.
  • the reaction gas generated in the converter 61 and transferred to the cooler 62 contains 5 to 6 volume % (i.e., 5 ⁇ 10 4 to 6 ⁇ 10 4 ppm). It includes SO 3 and about 15% by volume H 2 O.
  • the composition of this reaction gas is shown by an open square in FIG. 7, and the sulfuric acid dew point is about 240°C. That is, the acid dew point of the reaction gas introduced into the cooler 62 is about 240°C, and it is necessary to maintain the temperature of the reaction gas in the cooler 62 at the above acid dew point or higher, preferably at 250°C or higher.
  • the cooler 62 cools the reaction gas by heat exchange with the second refrigerant.
  • a smoke tube type As the cooler 62, it is preferable to use a smoke tube type.
  • a smoke tube heat exchanger is a type of heat exchanger in which a reaction gas flows inside a thin tube and a refrigerant is circulated outside the tube. It is preferable to use a smoke tube heat exchanger as the cooler 62 because it is cheaper and has higher cooling efficiency than a water tube boiler such as the waste heat boiler 52. may be of any other type, such as a water tube type.
  • an organic refrigerant that is liquid in the temperature range of -20°C to 350°C is used.
  • organic refrigerants include Dowtherm (registered trademark) A, which is a mixture of diphenyl and diphenyl oxide (diphenyl ether), NeoSK-OIL 1400, NeoSK-OIL 1300, NeoSK-OIL 330, NeoSK-OIL 360, NeoSK- Examples include OIL L400 and KSK-OIL 260.
  • “NeoSK-OIL 1400” which is generally widely used and has excellent heat resistance, is preferred as an organic refrigerant suitable for liquid phase use.
  • the reaction gas has a high temperature of about 410°C at the outlet of the converter 61, but is cooled by the cooler 62 until it reaches a temperature of about 270 to 320°C, which is higher than the acid dew point, which is around 250°C.
  • the refrigerant pressure in the cooler 62 is about 0.1 MPa. It is preferable to provide a purge pipe X2 (purge flow path) in the path for transferring the reaction gas cooled by the cooler 62 to the downstream stream.
  • the heat exchange means 63 includes a water supply preheater 63b, a heat medium tank 63c, a heat medium circulation pump 63d, a refrigerant transfer path 63e, and a refrigerant return path 63h.
  • the refrigerant transfer pipe 63e transfers the second refrigerant, which has been heated to about 320° C. by heat exchange with the reaction gas, from the cooler 62 to the feed water preheater 63b.
  • a shell-and-tube heat exchanger can be used as the water supply preheater 63b.
  • a first refrigerant (boiler feed water) at about 105° C. is introduced from the outside via a refrigerant introduction path 63f.
  • the second refrigerant heated to about 320° C. in the cooler 62 exchanges heat with the first refrigerant in the feed water preheater 63b.
  • the temperature of the first refrigerant becomes approximately 220°C
  • the temperature of the second refrigerant becomes approximately 270°C.
  • the first refrigerant whose temperature has been raised to about 220° C.
  • the refrigerant introduction path 63f, the water supply preheater 63b, and the refrigerant supply path 63g correspond to refrigerant supply means for the combustion gas cooling means (exhaust heat boiler 52).
  • the refrigerant return path 63h returns the second refrigerant after heat exchange with the first refrigerant (boiler feed water) from the feed water preheater 63b to the cooler 62.
  • the refrigerant return path 63h includes a heat medium tank 63c that stores the second refrigerant and can release a small amount of mixed inert gas into the atmosphere, and a heat medium circulation pump 63d that drives the second refrigerant to the cooler 62. It is equipped with In this way, in the cooler 62, the reaction gas is cooled by heat exchange between the reaction gas and the second refrigerant (heat exchange step).
  • the temperature of the first refrigerant is increased by heat exchange between the heated second refrigerant and the first refrigerant (boiler feed water), and the heated second refrigerant is used for the combustion gas cooling means (exhaust heat boiler 52). 1 refrigerant can be obtained.
  • the reaction gas cooled by the cooler 62 is transferred to the bottom of a dilute sulfuric acid tower 71 (sulfuric acid recovery means) where a dilute sulfuric acid recovery process is performed, as shown in FIG.
  • the dilute sulfuric acid tower 71 is a device that absorbs H 2 O and SO 3 in the reaction gas into a circulating sulfuric acid aqueous solution (dilute sulfuric acid) to produce dilute sulfuric acid as a product, and is also called an absorption tower.
  • the inside of the dilute sulfuric acid tower 71 is filled with packing materials, and an aqueous sulfuric acid solution is sprayed toward the packing materials from the top of the tower.
  • Gas containing sulfuric acid mist and unreacted SO 2 is discharged from the top of the dilute sulfuric acid tower 71 .
  • sulfuric acid mist is collected by a wet electrostatic precipitator 76 or a mist eliminator and transferred to a tank 73 where it is reused as an aqueous sulfuric acid solution, but the rest is transferred to a sulfur dioxide tower 81 (sulfur dioxide recovery means) that produces sulfur dioxide. be done.
  • the exhaust gas transferred to the sulfite tower 81 contains about 200 ppm (dry content) of SO 2 and about 10% (dry content) of O 2 , with the remainder being CO 2 and N 2 .
  • water technical water
  • SO 2 absorbent to generate sulfur dioxide (H 2 SO 3 ) (sulfur dioxide recovery step).
  • This sulfurous acid is oxidized to sulfuric acid by oxygen contained in the exhaust gas.
  • purge gas for the converter 61 which is required during maintenance of the dilute sulfuric acid tower 71 and the wet electrostatic precipitator 76, is led out from the purge pipe X2 provided downstream of the cooler 62, and is directly transferred to the sulfur dioxide tower 81. introduced into the pipeline.
  • the temperature of the maintenance purge gas from the converter 61 decreases over time, causing acid dew point corrosion. Therefore, by heating the purge gas in the cooler 62 using the heat of the second refrigerant, The effect of preventing acid dew point corrosion can be obtained. Further, by introducing the purge gas for maintenance into the sulfur dioxide tower 81, an effect can be obtained in that SO 2 gas contained in the purge gas can be removed.
  • Exhaust gas from the top of the sulfite tower 81 is sucked/pressurized by an induction fan 87 and discharged into the atmosphere via a chimney 88. Since SO 2 is absorbed in the sulfur dioxide tower 81 and recovered as sulfuric acid, the amount of SO 2 discharged into the atmosphere is significantly reduced, and can be reduced to about 50 ppm or less, which is the exhaust gas control value.
  • the induction fan 87 has a function of creating a negative pressure in all the individual devices of the diluted sulfuric acid production apparatus 40 provided upstream of the induction fan 87. Since the gas is induced by negative pressure operation by the induction fan 87, high temperature and harmful gases are prevented from flowing into the atmosphere. Furthermore, the converter 61 also has the function of attracting atmospheric air without requiring any special equipment. As described above, dilute sulfuric acid production and exhaust gas treatment are performed.
  • the dilute sulfuric acid production apparatus and dilute sulfuric acid production method of this embodiment include a combustion gas cooling means for cooling combustion gas, a reaction gas cooling means for cooling reaction gas, and a heat exchange means.
  • heat exchange means heat exchange is performed between the second refrigerant whose temperature has been raised by heat exchange with the reaction gas and the first refrigerant.
  • the heated first refrigerant for the combustion gas cooling means is prepared, and it becomes possible to effectively utilize the exhaust heat.
  • the cooler cools the reaction gas through heat exchange, and exhibits the cooling heat recovery effect for preheating the waste heat boiler. Furthermore, during maintenance purging, by preventing the purge gas from cooling due to retained heat, it can also contribute to preventing corrosion on the downstream side.
  • the SO 3 concentration of the combustion gas is 0.26% by volume
  • the H 2 O concentration is 24.86% by volume. From this, based on the graph of FIG. 7, it can be seen that the acid dew point of the combustion gas is around 190°C.
  • the amount of air induced to be added to the second stage catalyst and the third stage catalyst is 4900 Nm 3 /Hr.
  • the SO 3 concentration of the reaction gas is 5.4% by volume
  • the H 2 O concentration is 15.1% by volume. From this, based on the graph of FIG. 7, it can be seen that the acid dew point of the reaction gas is around 240°C.
  • the SO 2 gas concentration value in the exhaust gas at the exit of the wet electrostatic precipitator 76 has decreased to about 200 ppm.
  • the conversion rate of 98.9% obtained from the SO 2 ⁇ SO 3 equilibrium conversion rate calculation chart is multiplied by the gas phase reaction (SO 3 + H 2 O ⁇ H 2 SO 4 ) conversion rate, resulting in a conversion of 99.7% or more. rate has been obtained.
  • the values are shown in the table below.
  • the inlet temperature of the first stage catalyst was 410°C
  • the outlet temperature of the third stage catalyst was 420°C.
  • the total amount of exhaust gas shown in Table 3 was 13,700 Nm 3 /Hr.
  • ⁇ Amount of heat recovered by the exhaust heat boiler 52 in the case where the temperature is 370°C: a ⁇ Condenser 62 recovery heat amount in low temperature 370°C case: b ⁇ Difference in the amount of heat recovered in the waste heat boiler 52: c ⁇ Difference in loss of recovered heat in cooler 62: d Difference in heat recovery between low temperature case and high temperature case ⁇ 1-(a+b-c-d)/(a+b) ⁇ 100 ⁇ 13...Equation (1) From the above, a 13% heat recovery advantage can be obtained in the low temperature case of 370°C compared to the high temperature case of 410°C.
  • FIG. 9 is a schematic diagram showing the upstream process of the dilute sulfuric acid manufacturing apparatus of this embodiment
  • FIG. 10 is a schematic diagram showing the downstream process of the dilute sulfuric acid manufacturing apparatus of this embodiment.
  • the same devices as those in the first embodiment are given the same reference numerals, and their explanation will be omitted below.
  • a vertical smoke tube type waste heat boiler 91 is used in place of the water tube type waste heat boiler 52. That is, it is a boiler in which the combustion gas supply port and outlet are arranged perpendicular to the ground (that is, in a direction parallel to the direction of gravity). By doing so, the structure is such that dust that does not block the inside of the exhaust heat boiler 91 falls downward and is easily discharged from the inside of the exhaust heat boiler 91.
  • the induction fan 87 is not provided, and the gas is transferred to the downstream side using pressure from the upstream side by pushing air introduced from the pipe line 43.
  • the structure of the heat exchange means 100 is different from the first embodiment.
  • a pipe in the discharge flow of the heat medium circulation pump 63d that drives the second refrigerant to the cooler 62, a pipe is branched from the pipe that introduces the second refrigerant into the cooler 62 and the second refrigerant is discharged.
  • a pipe line 63i leading to the heat boiler 91 is provided.
  • the exhaust heat boiler 91 cools the combustion gas using the second refrigerant.
  • the second refrigerant that cools the cooler 63 is used to cool the exhaust heat boiler 91.
  • the second refrigerant introduced into the waste heat boiler 91 cools the combustion gas, and then is introduced into the heat medium cooler (steam generator) 102.
  • the second refrigerant cooled by the heat medium cooler (steam generator) 102 is returned to the refrigerant tank 63c.
  • the water that has cooled the second refrigerant in the refrigerant transfer path 63e is introduced into the steam drum 101 as high-temperature steam.
  • the vapor drum above is introduced into the heating medium drum 102 and used to cool the second refrigerant. This steam is returned to the steam drum 101 again, and a portion is purged to the outside through the pipe 46.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

本発明は、硫黄分を少なくとも含む原料を供給する管路41と、第1の冷媒を導入する管路45と、原料を燃焼して硫黄酸化物を含む燃焼ガスを生成する燃焼炉51と、昇温した第1の冷媒との熱交換によって燃焼ガスを冷却する排熱ボイラ52と、硫黄酸化物を触媒により酸化して、三酸化硫黄及び水を含む反応ガスを生成する転化器61と、第2の冷媒との熱交換により反応ガスを冷却する冷却器62と、冷却後の反応ガスに含まれる三酸化硫黄及び水を硫酸水溶液に吸収して希硫酸を生成し、二酸化硫黄及び酸素を含有する排出ガスを排出する希硫酸塔71と、昇温した第2の冷媒と第1の冷媒との熱交換によって、昇温した第1の冷媒と冷却された第2の冷媒とを調製し、いずれかを排熱ボイラ52に供給する熱交換手段63と、を備える硫酸製造装置である。

Description

硫酸製造装置及び硫酸製造方法
 本発明は、硫酸製造装置及び硫酸製造方法に関する。
 硫酸(HSO)は、強力な酸であり、大量に製造されて様々な分野で使用されている。硫酸には大別して、硫酸濃度が90重量%以上で表示される工業用濃硫酸と、90重量%未満で表示される工業用希硫酸があり、それぞれ性質が異なる。このうち希硫酸は、強酸性であるが濃硫酸と異なり酸化作用や脱水作用はない一方、金属材料他へ強い腐食性を示す。希硫酸は、工業用品や医薬、農薬、試薬など、様々な用途で使用されている。
 硫酸の製造には、硫黄を含む原料が必要となる。原料としては、製鉄などに使用されるコークスを製造する過程で発生するガス(コークス炉ガス(Coke Oven Gas):以下「COG」)からの脱硫廃液及び再生硫黄や、銅精錬工程から排出されるSOx含有ガスなどが使用される。
 希硫酸を安価に製造可能な方法として、例えば特許文献1の方法が知られている。この文献には、原料として、硫黄分と窒素分のほか、水分を多く含むものを使用し、酸素濃度が高い酸素含有ガスを燃焼手段に導入している。燃焼手段(燃焼炉)では、原料を燃焼して硫黄酸化物(SO:ここで、1≦x<3)と水を含む燃焼ガスを生成し、冷却手段(排熱ボイラ)で燃焼ガスを冷却して、反応手段(転化器)に導入する。反応手段(転化器)では、硫黄酸化物を触媒で参加して三酸化硫黄(SO)を生成し、希硫酸生成手段(希硫酸塔)で反応ガスを冷却して希硫酸を生成している。
特開2021-31305号公報(請求項1、段落0062など)
 特許文献1では、燃焼炉、転化器、希硫酸塔の順にガスが移送されている。燃焼炉では950~1000℃で原料を燃焼させるため、生じる燃焼ガスは高温であり、転化器での反応も発熱反応であるため、ガスの温度が上昇するが、最終製品である希硫酸水溶液は室温で保管される水溶液であるため、冷却手段を設けてプロセス中でガスを随時冷却する必要がある。本文献では、このような冷却手段として排熱ボイラを設けて冷媒(水)と燃焼ガスとの熱交換で燃焼ガスを冷却している。
 しかし、ガス中には硫酸ガス(HSO)の状態で含まれているが、ガスの温度が下がると水溶液である硫酸水溶液となる。硫酸水溶液は強酸で金属に対して高い腐食性を示す。これを避けるためにプロセス中の配管や設備に耐腐食性の高い素材とすると、設備が高価になり、希硫酸製造のコストが上昇する。逆に、耐腐食性の低い金属等を配管等に使用すると、設備は安価になり希硫酸の製造コストは下がる。しかしながら、このような場合では、配管等の腐食を避けるために、硫酸ガス(HSO)が硫酸水溶液にならないようにガスの冷却の際に冷媒の温度を調整することが求められる。本文献の排熱ボイラでは、硫酸ガス(HSO)が硫酸水溶液にならない高温度且つ高圧力の冷媒(水)で運転されるため、安価で耐食性の低い金属が使用できるものの、高温度且つ高圧力に対応出来るように特殊設計構造の高価な設備が必要となる。
 一方、ガスを冷却する際に生じる排熱は、本文献では特に論及されていなかった。希硫酸の製造においては、熱回収率を高めて排熱を有効利用し、より高い転化率で希硫酸を得、大気中に排出される二酸化硫黄を低減することが望ましい。また、本文献の排熱ボイラは、温度の低い純水をそのままボイラ内に給水して燃焼ガスを冷却しているため、排熱ボイラから発生する蒸気の量が減少し、有効に使える蒸気の量が少なくなっていた。
 本発明の目的は、硫酸を安価に製造可能であるのに加え、より高い回収率で硫酸を得て大気中に放出される二酸化硫黄を低減し、排熱を有効利用することが可能な硫酸製造装置及び硫酸製造方法を提供することにある。
 本発明者らは、所定の冷媒を用いた所定の熱交換を複数行うことで、硫酸を安価に製造可能であるのに加え、より高い回収率で硫酸を得て大気中に排出される二酸化硫黄を低減し、排熱を有効利用することができることを見出し、本発明を完成させた。
 本発明は、硫黄分を少なくとも含む原料を供給する原料供給手段と、前記原料を燃焼して、硫黄酸化物を含む燃焼ガスを生成する燃焼手段と、第1の冷媒を導入する冷媒導入手段と、冷媒との熱交換によって前記燃焼ガスを冷却する燃焼ガス冷却手段と、前記硫黄酸化物を触媒により酸化して、三酸化硫黄及び水を含む反応ガスを生成する反応手段と、第2の冷媒との熱交換により前記反応ガスを冷却する反応ガス冷却手段と、前記冷却後の前記反応ガスに含まれる三酸化硫黄及び水を硫酸水溶液に吸収して硫酸を生成し、二酸化硫黄及び酸素を含有する排出ガスを排出する硫酸回収手段と、前記反応ガスとの熱交換により昇温した第2の冷媒と前記第1の冷媒との熱交換によって、昇温した前記第1の冷媒と冷却された前記第2の冷媒とを調製し、前記昇温した前記第1の冷媒と前記冷却された前記第2の冷媒のいずれかを前記冷媒として前記燃焼ガス冷却手段に供給する熱交換手段と、を備えることを特徴とする硫酸製造装置である。
 本発明では、燃焼ガスを冷却する燃焼ガス冷却手段と、反応ガスを冷却する反応ガス冷却手段と、熱交換手段と、を備えている。熱交換手段では、反応ガスとの熱交換により昇温した第2の冷媒と、第1の冷媒との熱交換が行われる。これによって、燃焼ガス冷却手段のための昇温した第1の冷媒が調製され、排熱を有効利用することができる。また、第1の冷媒を昇温して燃焼ガスを冷却するため、燃焼ガスの冷却で生じる蒸気の量が多くなり、その結果、有効に使える蒸気の量が増えるというメリットがある。
 また、本発明では、前記燃焼ガス冷却手段は、前記昇温した第1の冷媒が前記燃焼ガスの酸露点以上の温度であり、前記反応ガス冷却手段は、前記第2の冷媒が前記反応ガスの酸露点以上の温度である。
 このように、燃焼ガス冷却手段や反応ガス冷却手段において、熱交換する対象のガスの酸露点以上の温度の冷媒を使用しているため、これらの手段によって酸露点未満の温度にガスが冷却されて腐食性の高い硫酸水溶液となることがない。したがって、比較的安価な金属製の配管等であっても硫酸の製造に使用することができ、硫酸を安価に製造することができる。
 さらに、本発明では、前記熱交換手段は、前記昇温した前記第2の冷媒を移送する冷媒移送路と、前記第1の冷媒が供給され、前記昇温した第2の冷媒との熱交換により前記第1の冷媒を昇温させて、前記燃焼ガス冷却手段に供給する予熱器と、前記第1の冷媒との熱交換後の前記第2の冷媒を、前記予熱器から前記反応ガス冷却手段に返送する冷媒返送路と、を備えている。
 このように熱交換手段を構成することで、第2の冷媒を循環させつつ第1の冷媒を昇温することができ、第2の冷媒を反応性ガスの冷却と第1の冷媒の昇温の両方に効率的に使用することができる。
 前記冷媒返送路は、前記第2の冷媒の一部を前記燃焼ガス冷却手段に供給することもできる。
 このようにすることで、第2の冷媒の一部を燃焼ガスの冷却のための冷媒として使用することもできる。
 前記冷媒返送路は、前記第2の冷媒を貯蔵するタンクと、前記第2の冷媒を前記反応ガス冷却手段に供給するポンプと、を備えている。
 前記第2の冷媒は、少なくとも-20℃~350℃の範囲内で液体である有機冷媒であることが好ましい。
 溶融塩のような常温で固体の物質を冷媒として用いた場合には、常温では固まって冷媒としての機能が損なわれてしまう。少なくとも-20℃~350℃の範囲内で液体である有機冷媒は、熱交換手段内で固まることはないため、反応ガスとの熱交換を安定して継続することができる。
 前記第1の冷媒は水であり、前記第2の冷媒はジフェニールとジフェニールオキサイドとの混合物であることが好ましい。
 前記熱交換手段は、煙管式であることが好ましい。また、前記燃焼ガス冷却手段は、ダストが含まれる燃焼ガスに適用される水管式であることが好ましいが、前記燃焼ガス中にダストが含まれない場合であれば、前記冷媒返送路を、前記第2の冷媒の一部を前記燃焼ガス冷却手段に供給することで第2の冷媒の一部を燃焼ガスの冷却のための冷媒として使用するにより煙管式を適用することができる。
 熱交換手段を安価な煙管式とすることで、硫酸製造のコストを低減することができる。一方、燃焼ガス冷却手段に関しては、燃焼手段から移送される燃焼ガス中には付着性ダストが含有されている場合があるため、下流側の手段内部にダストが付着すると閉塞トラブルが発生するおそれがある。水管式ボイラの場合、ダストが付着するのは、水が流れている管の外面であるので、管の閉塞は生じない。また、管の外面に付着したダストは、例えばスートブローになどにより容易に除去することもできる。
 さらに、本発明の硫酸製造装置は、負圧運転のための手段を備えることが好ましい。
 負圧運転を行うことによって、特別な設備を設けなくても、大気中の酸素が反応手段に誘引される。こうして誘引された酸素によって、反応手段内における触媒反応が促進されるため、積算転化率は98.9%を超える高い値となる。しかも、負圧運転を行うことにより、温度が高く有害なガスの大気中への流出を防止することも可能である。
 この場合、前記反応手段に熱風を導入する熱風導入手段と、前記反応手段に残存する反応ガスを、前記硫酸回収手段の上流でパージ可能なパージ流路とを、さらに備えることが好ましい。
 反応手段に熱風を導入することにより、設備稼働前の反応手段を予熱することができる。事前に反応温度まで予熱しておくことで運転起動時間が短縮され、半分以下の時間とすることが可能である。熱風の導入は、メンテナンス時での反応手段のパージにも有効に用いられる。負圧運転を行うことに起因して、熱風は反応手段内に誘引導入され、反応手段内部での熱風の偏流は生じ難い。反応手段内においては、硫酸液や触媒溶融固着物が局所的に発生することは回避される。
 なお、負圧運転ではなく加圧運転が行われている装置において反応手段に熱風を導入した場合、熱風は偏流するので反応手段内の全域で均等にパージすることは困難である。熱風が到達しない領域が反応手段内に局所的に生じて、硫酸液や触媒溶融物固着物が局所的に発生する。装置を正常に運転するためには、これらを系外に排出して篩分け分別し、正常な触媒のみを最充填するという煩雑な作業が必要とされる。
 したがって、負圧運転を行い、かつ反応手段に熱風を導入することによって、熱風パージの後、触媒の篩分け分別のような作業なしに、設備を再稼働することが可能となる。
 前記排出ガスに含まれる二酸化硫黄を回収する二酸化硫黄回収手段を、さらに備えることが好ましい。
 このように、排出ガスに含まれる二酸化硫黄を回収するため、二酸化硫黄を環境中に放出せずに除害することができる。
 この場合、前記二酸化硫黄回収手段は、前記排出ガスに含まれる二酸化硫黄を水に吸収して亜硫酸を生成し、前記排出ガスに含まれる酸素により前記亜硫酸を酸化して硫酸を生成することが好ましい。
 このように、排出ガス中の二酸化硫黄を水に吸収して亜硫酸を生成し、その後に酸化を行い硫酸として回収することができる。排出ガス中には10%程度の酸素が含有されているので、この酸素を硫酸への酸化に用いることができ、従来のように酸化剤を別途添加する必要はない。硫酸の回収率が高められるのに加えて、大気中に放出される二酸化硫黄を低減することが可能となる。
 本発明は、硫黄分を少なくとも含む原料を供給する原料供給工程と、前記原料を燃焼して、硫黄酸化物を含む燃焼ガスを生成する燃焼工程と、第1の冷媒を導入する冷媒導入工程と、冷媒との熱交換によって前記燃焼ガスを冷却する燃焼ガス冷却工程と、前記硫黄酸化物を触媒により酸化して、三酸化硫黄及び水を含む反応ガスを生成する反応工程と、第2の冷媒との熱交換により前記反応ガスを冷却する反応ガス冷却工程と、前記冷却後の前記反応ガスに含まれる三酸化硫黄及び水を硫酸水溶液に吸収して硫酸を生成し、二酸化硫黄及び酸素を含有する排出ガスを排出する硫酸回収工程と、前記反応ガスとの熱交換により昇温した第2の冷媒と前記第1の冷媒との熱交換によって、昇温した前記第1の冷媒と冷却された前記第2の冷媒とを調製し、前記昇温した前記第1の冷媒と前記冷却された前記第2の冷媒のいずれかを前記冷媒として前記燃焼ガス冷却工程に供給する熱交換工程と、を備えることを特徴とする硫酸製造方法である。
 本発明では、燃焼ガスを冷却する冷却工程と、反応ガスを冷却する熱交換工程とを備えている。熱交換工程は、反応ガスとの熱交換により昇温した第2の冷媒と、第1の冷媒との熱交換が行われる。これによって、冷却工程のための昇温した第1の冷媒が調製され、排熱を有効利用することができる。また、第1の冷媒を昇温して燃焼ガスを冷却するため、燃焼ガスの冷却で生じる蒸気の量が多くなり、その結果、有効に使える蒸気の量が増えるというメリットがある。
 また、前記燃焼ガス冷却工程は、前記昇温した第1の冷媒が前記燃焼ガスの酸露点以上の温度であり、前記反応ガス冷却工程は、前記第2の冷媒が前記反応ガスの酸露点以上の温度であることが好ましい。
 このように、冷却工程や熱交換工程において、熱交換する対象のガスの酸露点以上の温度の冷媒を使用しているため、これらの校庭によって酸露点未満の温度にガスが冷却されて腐食性の高い硫酸水溶液となることがない。したがって、比較的安価な金属製の配管等であっても硫酸の製造に使用することができ、硫酸を安価に製造することができる。
 前記熱交換工程は、前記反応ガスを、前記第2の冷媒との熱交換により冷却する工程と、前記昇温した前記第2の冷媒を移送する移送工程と、前記昇温した第2の冷媒との熱交換により前記第1の冷媒を前記予熱器で昇温させて前記燃焼ガス冷却工程に供給する余熱工程と、前記第1の冷媒との熱交換後の前記第2の冷媒を返送して前記反応ガスとの熱交換に使用する冷媒返送工程と、を備える。
 このように熱交換工程を備えることで、第2の冷媒を循環させつつ第1の冷媒を昇温することができ、第2の冷媒を反応性ガスの冷却と第1の冷媒の昇温の両方に効率的に使用することができる。
 前記冷媒返送工程は、前記第2の冷媒の一部を前記燃焼ガス冷却手段に供給することもできる。
 このようにすることで、第2の冷媒の一部を燃焼ガスの冷却のための冷媒として使用することもできる。
 前記冷媒返送工程は、前記第2の冷媒を貯蔵する工程と、前記第2の冷媒を前記反応ガス冷却工程に供給する工程と、を備えている。
 前記第2の冷媒として、少なくとも-20℃~350℃の範囲内で液体である有機冷媒を用いることが好ましい。
 溶融塩のような常温で固体の物質を冷媒として用いた場合には、常温では固まって冷媒としての機能が損なわれてしまう。少なくとも-20℃~350℃の範囲内で液体である有機冷媒は、熱交換手段内で固まることはないため、反応ガスとの熱交換を安定して継続することができる。
 前記第1の冷媒として水を用い、前記第2の冷媒としてジフェニールとジフェニールオキサイドとの混合物を用いることが好ましい。
 前記熱交換手段は、煙管式であることが好ましい。また、前記燃焼ガス冷却手段は、ダストが含まれる燃焼ガスに適用される水管式であることが好ましいが、前記燃焼ガス中にダストが含まれない場合であれば、前記冷媒移送と冷媒返送手段を、前記第2の冷媒の一部を前記燃焼ガス冷却手段に供給することで第2の冷媒の一部を燃焼ガスの冷却のための冷媒として使用するにより煙管式を適用することができる。
 燃焼工程から移送される燃焼ガス中には付着性ダストが含有されている場合があるため、下流側の工程内部に付着すると閉塞トラブルが発生するおそれがある。水管式ボイラの場合、ダストが付着するのは、水が流れている管の外面であるので、スートブローにより容易にダストを除去することができる。
 本発明においては、負圧運転が行われることが好ましいが、加圧運転が行われることもある。
 負圧運転を行うことによって、特別な設備を設けなくても、大気中の酸素が反応工程に誘引される。こうして誘引された酸素によって、反応工程内における触媒反応が促進されるため、積算転化率は99%を超える高い値となる。しかも、負圧運転を行うことにより、温度が高く有害なガスの大気中への流出を防止することも可能である。
 前記排出ガスに含まれる二酸化硫黄を回収する二酸化硫黄回収工程を、さらに備えることが好ましい。
 このように、排出ガスに含まれる二酸化硫黄を回収するため、二酸化硫黄を環境中に放出せずに除害することができる。
 この場合、前記二酸化硫黄回収工程は、前記排出ガスに含まれる二酸化硫黄を水に吸収して亜硫酸を生成し、前記排出ガスに含まれる酸素により前記亜硫酸を酸化して硫酸を生成することが好ましい。
 このように、排出ガス中の二酸化硫黄を水に吸収して亜硫酸を生成し、その後に酸化を行い硫酸として回収することができる。排出ガス中には10%程度の酸素が含有されているので、この酸素を硫酸への酸化に用いることができ、従来のように酸化剤を別途添加する必要はない。硫酸の回収率が高められるのに加えて、大気中に放出される二酸化硫黄を低減することが可能となる。
 本発明は、負圧運転しつつ、前記熱風導入手段から前記反応手段に熱風を導入し、前記反応手段に残存する反応ガスを、前記硫酸回収手段の上流でパージし、得られたパージガスを前記二酸化硫黄回収手段に導入することを特徴とするメンテナンス方法である。
 加圧運転が行われている装置において、反応手段に熱風を導入した場合、熱風は偏流するので反応手段内の全域で均等にパージすることは困難である。熱風が到達しない領域が反応手段内に局所的に生じて、硫酸液や触媒溶融物固着物が局所的に発生する。装置を正常に運転するためには、これらを系外に排出して篩分け分別し、正常な触媒のみを最充填するという煩雑な作業が必要とされる。
 メンテナンスの際、負圧運転を行いつつ反応手段に熱風を導入し、反応手段に残存する反応ガスをパージすることによって、保有熱によるパージガスの冷却で酸露点生成を防止することができる。
<基礎出願の発明>
[1]硫黄分を少なくとも含む原料を供給する原料供給手段と、
 前記原料を燃焼して、硫黄酸化物を含む燃焼ガスを生成する燃焼手段と、
 昇温した第1の冷媒との熱交換によって前記燃焼ガスを冷却する冷却手段と、
前記硫黄酸化物を触媒により酸化して、三酸化硫黄及び水を含む反応ガスを生成する反応手段と、
 第2の冷媒との熱交換により前記反応ガスを冷却する熱交換手段と、
 前記冷却後の前記反応ガスに含まれる三酸化硫黄及び水を硫酸水溶液に吸収して硫酸を生成し、二酸化硫黄及び酸素を含有する排出ガスを排出する硫酸回収手段と、を含む硫酸製造装置であって、
 前記熱交換手段は、前記反応ガスとの熱交換により昇温した第2の冷媒と第1の冷媒との熱交換によって、前記冷却手段のための前記昇温した第1の冷媒を調製することを特徴とする硫酸製造装置。
[2]前記冷却手段は、前記昇温した第1の冷媒が前記燃焼ガスの酸露点以上の温度であり、前記熱交換手段は、前記第2の冷媒が前記反応ガスの酸露点以上の温度であることを特徴とする[1]に記載の硫酸製造装置。
[3]前記熱交換手段は、
 前記第2の冷媒との熱交換により前記反応ガスを冷却する冷却器と、
 前記熱交換により昇温した第2の冷媒を移送する冷媒移送路と、
 第1の冷媒が供給され、前記昇温した第2の冷媒との熱交換により前記第1の冷媒を昇温させて、前記冷却手段に供給する予熱器と、前記第1の冷媒との熱交換後の前記第2の冷媒を、前記予熱器から前記冷却器に返送する冷媒返送路と、を備えることを特徴とする[1]に記載の硫酸製造装置。
[4]前記冷媒返送路は、前記第2の冷媒を貯蔵するタンクと、前記第2の冷媒を前記冷却器に駆動するポンプと、を備えることを特徴とする[2]に記載の硫酸製造装置。
[5]前記第2の冷媒は、少なくとも-20℃~350℃の範囲内で液体である有機冷媒であることを特徴とする[1]に記載の硫酸製造装置。
[6]前記第1の冷媒は水であり、前記第2の冷媒はジフェニールとジフェニールオキサイドとの混合物であることを特徴とする[1]に記載の硫酸製造装置。
[7]前記熱交換手段は、煙管式であることを特徴とする[1]に記載の硫酸製造装置。
[8]負圧運転のための手段をさらに備えることを特徴とする[1]に記載の硫酸製造装置。
[9]前記反応手段に熱風を導入する熱風導入手段と、
 前記反応手段に残存する反応ガスを、前記硫酸回収手段の上流でパージ可能なパージ流路と、
をさらに備えることを特徴とする[8]に記載の硫酸製造装置。
[10]前記排出ガスに含まれる二酸化硫黄を回収する二酸化硫黄回収手段を、さらに備えることを特徴とする[1]に記載の硫酸製造装置。
[11]前記二酸化硫黄回収手段は、前記排出ガスに含まれる二酸化硫黄を水に吸収して亜硫酸を生成し、前記排出ガスに含まれる酸素により前記亜硫酸を酸化して硫酸を生成する[10]記載の硫酸製造装置。
[12]硫黄分を少なくとも含む原料を供給する原料供給手段と、
 前記原料を燃焼して、硫黄酸化物を含む燃焼ガスを生成する燃焼手段と、
 昇温した第1の冷媒との熱交換によって前記燃焼ガスを冷却する冷却手段と、
前記硫黄酸化物を触媒により酸化して、三酸化硫黄及び水を含む反応ガスを生成する反応手段と、
 第2の冷媒との熱交換により前記反応ガスを冷却する熱交換手段と、
 前記冷却後の前記反応ガスに含まれる三酸化硫黄及び水を硫酸水溶液に吸収して硫酸を生成し、二酸化硫黄及び酸素を含有する排出ガスを排出する硫酸回収手段と、を含む硫酸製造方法であって、
 前記熱交換手段は、前記反応ガスとの熱交換により昇温した第2の冷媒と第1の冷媒との熱交換によって、前記冷却工程のための前記昇温した第1の冷媒を調製することを特徴とする硫酸製造方法
[13]前記冷却工程は、前記昇温した第1の冷媒が前記燃焼ガスの酸露点以上の温度であり、前記熱交換工程は、前記第2の冷媒が前記反応ガスの酸露点以上の温度であることを特徴とする[12]に記載の硫酸製造方法。
[14]前記熱交換工程は、
 前記反応ガスを、前記第2の冷媒との熱交換により冷却する工程と、
 前記熱交換により昇温した第2の冷媒を移送する工程と、
 前記昇温した第2の冷媒との熱交換により前記第1の冷媒を昇温させて前記冷却工程に供給する工程と、
 前記第1の冷媒との熱交換後の前記第2の冷媒を返送して前記反応ガスとの熱交換に使用する工程と、を備えることを特徴とする[12]に記載の硫酸製造方法。
[15]前記冷媒返送路は、前記第2の冷媒を貯蔵する工程と、前記第2の冷媒を前記冷却器に駆動する工程と、を備えることを特徴とする[14]に記載の硫酸製造方法。
[16]前記第2の冷媒として、少なくとも-20℃~350℃の範囲内で液体である有機冷媒を用いることを特徴とする[12]に記載の硫酸製造方法。
[17]前記第1の冷媒として水を用い、前記第2の冷媒としてジフェニールとジフェニールオキサイドとの混合物を用いることを特徴とする[12]に記載の硫酸製造方法。
[18]前記熱交換工程は、煙管式により行うことを特徴とする[12]に記載の硫酸製造方法。
[19]負圧運転が行われることを特徴とする[12]に記載の硫酸製造方法。
[20]前記排出ガスに含まれる二酸化硫黄を回収する二酸化硫黄回収工程を、さらに備えることを特徴とする[12]に記載の硫酸製造装方法。
[21]前記二酸化硫黄回収工程は、前記排出ガスに含まれる二酸化硫黄を水に吸収して亜硫酸を生成し、前記排出ガスに含まれる酸素により前記亜硫酸を酸化して硫酸を生成する[20]に記載の硫酸製造方法。
[22]上記[10]に記載の硫酸製造装置のメンテナンス方法であって、
 負圧運転しつつ、前記熱風導入手段から前記反応手段に熱風を導入し、前記反応手段に残存する反応ガスを、前記硫酸回収手段の上流でパージし、得られたパージガスを前記二酸化硫黄回収手段に導入することを特徴とするメンテナンス方法。
 本発明によれば、硫酸を安価に製造可能であるのに加え、より高い回収率で硫酸を得て大気中に放出される二酸化硫黄を低減し、排熱を有効利用することが可能な硫酸製造装置及び硫酸製造方法を提供することができる。
本発明の硫酸製造装置の一種である希硫酸製造装置の上流側工程を示す模式図である。 本発明の硫酸製造装置の一種である希硫酸製造装置の下流側工程を示す模式図である。 燃焼手段(燃焼炉)の内部構造を示す模式図である。 熱風導入手段を示す模式図である。 転化器の内部構造を示す模式図である。 水管式ボイラの断面図である。 ガス中のSO濃度、水蒸気濃度と硫酸露点推定値との関係を示すグラフ図である。 SO→SO平衡転化率の計算図表である。 第2の実施形態に係る希硫酸製造装置の上流側工程を示す模式図である。 第2の実施形態に係る希硫酸製造装置の下流側工程を示す模式図である。
 以下、本発明の実施形態について、その構成を説明する。本発明は、その要旨を変更しない範囲で、適宜変更して実施することが可能である。なお、以下の実施形態では、本発明の硫酸の一種である希硫酸の製造について説明しているが、本発明はこれに限定されず、例えば濃硫酸の製造にも適用することができる。
1.希硫酸製造装置及び希硫酸製造方法(第1の実施形態)
 以下、図面を参照して、本発明の一実施形態(第1の実施形態)に係る希硫酸製造装置及び希硫酸製造方法について説明する。図1は、希硫酸製造装置40の上流側工程を示す模式図であり、原料(ここでは脱硫廃液・溶融硫黄)に酸素含有ガスを供給する実施形態を示している。なお、硫化水素原料に溶融硫黄を加えることで、硫黄濃度を調整することができ、これにより例えば硫酸濃度を上げることで濃硫酸の製造にも本発明を使用することができる。
 図2は、希硫酸製造装置40の下流側工程を示す模式図である。なお、本発明の「硫酸」とは、硫酸濃度が限定されない硫酸を意味し、具体的には例えば希硫酸と濃硫酸が含まれる。ここで、「希硫酸」とは、硫酸濃度が90重量%未満の硫酸水溶液を意味し、JIS K1321で規定される「薄硫酸」(硫酸分60~80重量%)や「精製希硫酸」(硫酸分27~50重量%)を含む。
 図1に示すように、本実施形態の希硫酸製造装置40は、原料を供給する手段を含む。本実施形態の原料は、少なくとも硫黄分を含み、本実施形態では溶融硫黄及び脱硫廃液からなるが、原料としてはこれに限定されない。また、原料は、助燃剤としての精製COG等をさらに含んでもよい。原料供給手段は、これらの原料を燃焼炉51に供給する手段である。本実施形態の希硫酸製造装置40は、原料である溶融硫黄を供給する管路41を備える。溶融硫黄は製油所などから回収される硫黄を溶融状態にしたものである。原料は、管路41の途中に設けられたポンプ(図示せず)を介して、燃焼炉51内に供給される。
 また、希硫酸製造装置40は、原料である脱硫廃液を供給する管路42を備える。脱硫廃液は、コークス炉設備などから排出される排ガス(粗COG)中の煤塵や有機物及び硫黄化合物などを取り除く目的で設置された脱硫設備からの廃液である。一般に、脱硫廃液には、遊離硫黄、遊離NH、NHSCN、(NH、HOなどの成分が含まれる。このうち水(HO)は、特に規定しないが脱硫廃液全体の50重量%以上となることが多い。管路42は燃焼炉51に連通しており、脱硫廃液も原料として燃焼炉51内に供給される。
 管路41及び管路42は、本発明の原料供給手段に該当し、これらの手段により原料供給工程を実現する。これらにより燃焼炉51に供給される原料(溶融硫黄、脱硫廃液)のうち脱硫廃液は、硫黄単体の他に(NHなどの硫黄分(10~40重量%)と、NHなどの窒素分(5~25重量%)と、水分(40~80重量%)とを含んでいる。本実施形態のように、原料が複数種類(例えば、本実施形態では溶融硫黄、脱硫廃液、の2種類)存在する場合は、水分の含有量は、各原料及び助燃剤中の水分を混合した量として定義される。
 また、希硫酸製造装置40には、空気を供給する管路43が設けられている。管路43には、酸素ガスを供給する管路44が接続されている。例えば、酸素ガス発生装置(例えば、PVSA(真空型圧力スイング吸着法)方式:不図示)を設けて、この酸素ガス発生装置から高濃度の酸素を供給することができる。酸素ガス発生装置は、ゼオライト等の吸着剤を使用して空気中の窒素を加圧下で吸着除去し、高純度の酸素を効率的に得る装置である。酸素ガス発生装置は、純度90体積%以上の酸素を発生することが可能である。この酸素は管路43の空気と混合され、酸素濃度の高い空気として燃焼炉51内に供給される。酸素ガス発生装置としてPSA方式(圧力スイング吸着法)を用いてもよい。またその代替として、既存の酸素ガス配管から分岐して酸素を供給してもよい。
 上記の酸素ガス発生装置、管路43、管路44は、酸素含有ガス生成手段と称することができる。これらにより燃焼炉51に供給される酸素含有ガスは、21~40体積%、好ましくは21~30体積%、より好ましくは25~30体積%の酸素濃度に調整される。
 燃焼炉51(燃焼手段)は、酸素含有ガスで原料を燃焼して硫黄酸化物(SOx)を含む燃焼ガスを生成する燃焼工程を行う。図3は、燃焼炉51の内部構造を示す模式図である。図示するように、燃焼炉51の上流には、原料と酸素含有ガスとが供給される供給口51aが設けられており、内部で原料が燃焼されて下流の排出口51bから燃焼ガスが排出される。本実施形態では、図の上段の供給口51aからは、溶融硫黄が供給され、中段の供給口51aからは脱硫廃液が供給され、下段の供給口51aからは空気が供給される。なお、本実施形態のように原料の種類ごとに別の供給口から原料を供給する態様のほか、あらかじめ原料の一部又は全部を混合した状態で燃焼炉51に原料を供給してもよい。
 燃焼炉51の原料供給側には水分蒸発域があり、ここでは主に溶融硫黄及び精製COGの燃焼と脱硫廃液中の水分蒸発が行われる。その後流が可燃物燃焼域で、脱硫廃液中の可燃物が燃焼する。これらの間は境界部となっている。可燃物燃焼域と排出口51bとの間には、格子状レンガ51cが設けられている。格子状レンガ51cは、立方体の耐熱レンガを格子状に並べるとともに一部を開口状態としたものである。格子状レンガ51cの開口率は、50%前後とすることが好ましい。格子状レンガ51cは、複数段設けることが多い。
 燃焼炉51は、導入される酸素含有ガスの酸素濃度が21~40体積%、好ましくは21~30体積%の範囲内であり、燃焼炉51で生成した燃焼ガス中の酸素濃度が2.0~7.0体積%の範囲内であり、燃焼炉51で生成した燃焼ガス中のSO転換率が1.0~3.0%の範囲内であることがより好ましい。SO転換率は下記の式で表される。
 SO転換率 = (SO/SO)×100
(ここで、SOは前記燃焼ガス中に含まれるSOの体積濃度、SOは前記燃焼ガス中に含まれるSOxの体積濃度である)。
 可燃物燃焼領域の後流に設けられた格子状レンガ51cを設けることで、後流機器への輻射低減の他以下の機能を発揮することができる。格子状レンガ51cは、可燃物燃焼域での空気と可燃物の混合状態に不備が仮に生じた場合においても、可燃物が未燃焼状態での吹き抜け現象を起こさないように、物理的に空気と可燃物との再混合を促し、レンガの保有熱による再燃焼を促進させる機能を持つ。この目的のため、複数段の格子状レンガ51cを設置することが好ましい。また、複数段の格子状レンガ51cの各段開口部は相互に千鳥配列とする。これにより、ガス中のダストはレンガ表面に付着成長して落下するので、最下部には開口部を設けないで落下ダストを蓄積させる複数段の格子状レンガ51cを設置することが好ましい。
 燃焼炉51で原料を燃焼させる燃焼温度としては、900~1100℃の範囲内が好ましい。燃焼温度の上限は、好ましくは1050℃以下である。燃焼ガス中のNOx量を低減する目的からは、燃焼温度は低いことが好ましく、例えば1025℃以下、さらには1000℃以下とすることが好ましい。
 燃焼炉51では、21~40体積%の酸素含有ガスで原料を燃焼するため、通常の空気(酸素濃度21体積%未満)を使用して同じ条件で原料を燃焼した場合よりも、生成する燃焼ガスに含まれるNOxの量を減らすことができる。例えば、酸素濃度21~40体積%の酸素含有ガスで原料を燃焼したときに燃焼ガスに含まれるNOx量をNOx(rich)とし、酸素濃度21体積%未満の空気を使用して同一条件で同じ原料を燃焼したときの燃焼ガスに含まれるNOx量をNOx(air)としたときに、下記式で示されるNOx減少率を50~95%とすることができる。
  NOx減少率: NOx(rich)/NOx(air) ×100(%)
 NOx減少率は、酸素濃度を上げるにつれて減少する傾向にあり、酸素濃度が25体積%では約80%、酸素濃度が30体積%では約60%とすることができる。
 図1に示すように、燃焼炉51で生成した燃焼ガスは、排熱ボイラ52(Waste Heat Boiler:WHB)(燃焼ガス冷却手段)に移送される。また、管路45(冷媒導入手段)からは水が供給され、この水は後述する給水予熱器63bを通過して廃熱ボイラ52に導入される。排熱ボイラ52では、冷媒として昇温した水(本実施形態では水)がボイラ内に供給され、この水が燃焼ガスで蒸発して蒸気を発生するとともに、水との熱交換により燃焼ガスが冷却される燃焼ガス冷却工程が行われる。なお、本実施形態において、本発明の「第1の冷媒」は、管路45から排熱ボイラ52に導入される水、すなわち「ボイラ給水」が該当し、「昇温した第1の冷媒」が「ボイラ水」に該当する。燃焼ガスは、酸露点(220℃)を下回らない温度まで冷却され、この場合のボイラ圧力は3MPa程度である。排熱ボイラ52内で、燃焼ガスは420~360℃、好ましくは375℃程度まで冷却される。なお、特許文献1では、燃焼ガスの温度は380~460℃、好ましくは420℃程度まで冷却されるとしているが、本実施形態では、より低い温度まで燃焼ガスを冷却している。
 ここで、図7を参照して酸露点について説明する。図7は、硫酸の酸露点(縦軸)と、燃焼ガス中に含まれるSO濃度(横軸)との関係を、燃焼ガス中に含まれる水分量(水蒸気濃度)ごとにグラフで示している。酸露点は、燃焼ガス中のSO濃度や水蒸気濃度、圧力等によって決定され、酸露点を下回る場合には、結露した硫酸を含む溶液によって設備内部に激しい腐食(酸露点腐食)が引き起こされる。酸露点腐食を回避するためには、燃焼ガスを酸露点以上の温度に保持する必要がある。図7のグラフには、同じ水蒸気濃度では燃焼ガス中のSO濃度が高いほど酸露点が高くなることが、同じSO濃度では水蒸気濃度が高いほど酸露点が高くなることが示されている。
 ここで、後述するシミュレーションに示すように、燃焼炉51で生成して排熱ボイラ52に導入される燃焼ガスには、0.2~0.3体積%(すなわち、2000~3000ppm)のSOと約25体積%のHOが含まれる。この燃焼ガスの組成を図7に白抜き丸で示しているが、硫酸露点は約190℃となる。すなわち、排熱ボイラ52における燃焼ガスの酸露点は190℃であり、排熱ボイラ52では燃焼ガスの温度を上記の酸露点以上、好ましくは190℃超に維持することが必要となる。
 排熱ボイラ52は、ボイラを備えており、このボイラ内で燃焼ガスを冷却する。排熱ボイラ52は、上記のボイラ内に所定の冷媒(本実施形態ではボイラ給水)を供給する冷媒供給手段(冷媒供給工程)と、この冷媒供給手段からの冷媒を燃焼ガスで蒸発させて蒸気を発生させて熱交換により燃焼ガスを冷却する燃焼ガス冷却手段(燃焼ガス冷却工程)と、水蒸気の排出手段(水蒸気排出工程)と、を備えている。ここで、排熱ボイラ52において、上述したように燃焼ガスを酸露点以上、例えば190℃超えとする必要があるため、冷媒であるボイラ水の温度も190℃超とする必要がある。ここで用いる冷媒及び冷媒供給手段(冷媒供給工程)については、追って詳細に説明する。
 燃焼ガス冷却手段としては、煙管式及び水管式等が挙げられるが、ボイラ内に付着したダスト除去を考慮すると水管式を用いることが好ましい。図6を参照して、水管式ボイラを説明する。図示するように、排熱ボイラ52は、ボイラの外形を規定するボイラ本体52aと、ボイラ本体52aの上部に設けられたボイラドラム52bと、ボイラ本体52aの内部に設けられたボイラチューブ52cと、ボイラ本体52aの内部に設けられたスートブロワ52dと、を備えている。
 燃焼炉51で生成した燃焼ガスは、ボイラ本体52aの両端に設けられた開口のうちの一端側(図では左側)の開口からボイラ本体52a内に導入され、他端側(図では右側)の開口から導出される。ボイラドラム52bには、冷媒としてのボイラ水や水蒸気が蓄えられている。ボイラドラム52bの上面には、冷媒導入する導入口(下向き矢印の開口)と冷媒導出する導出口(上向き矢印の開口)が設けられている。冷媒導入口からは、後述する給水予熱器63bからのボイラ給水がボイラドラム52b内に導入され、ボイラドラム52b内の蒸発水蒸気が冷媒導出口から外部へ排出される。
 ボイラチューブ52cは、内部が中空のパイプで構成され、ボイラ本体52aに対して縦方向に配置される縦チューブと横方向に配置される横チューブで構成される。縦チューブは、ボイラドラム52bの下部に配置されボイラドラム52b内に連通しており、横チューブは縦チューブの下部を互いに連通している。このような構成により、ボイラドラム52bのボイラ水は、ボイラチューブ52c内を循環して再びボイラドラム52b内に戻る。ボイラチューブ52aの外部を通過する燃焼ガスは、ボイラチューブ52cと接触して熱交換により冷却される。
 スートブロワ52dは、ボイラ本体52a内に設けられた筒状の部材であり、筒の内部に空気を吹き込めるようになっている。スートブロワ52dには、内部と連通する開口が複数設けられており、筒の内部に導入された空気は開口から噴き出す。また、スートブロワ52dは、回転できるようになっている。燃焼ガスには、付着性のダストが含まれており、ボイラチューブ52cの外表面にはダストが付着するが、スートブロワ52dから噴き出される空気によってダストを吹き飛ばしてボイラチューブ52cの外表面を清掃することができる。また、スートブロワ52d自身が回転することで、ボイラチューブ52cの外表面の広い範囲を清掃することができる。
 排熱ボイラ52で冷却された燃焼ガスは、集塵器55を経て転化器61(反応手段)に導入される。集塵器55は、燃焼ガスに含まれるダストを除去するための手段である。集塵器55から転化器61への管路の途中には、熱風導入手段X1を設けることが好ましい。熱風導入手段X1は、図4に示すように、熱風炉101と熱風炉ファン102とを備えており、熱風炉101にはCOGが導入される。熱風炉101は、COGを燃焼して高温の加熱ガスを生成する手段である。また、熱風炉ファン102は送風ファンを備え、熱風炉101で生成した加熱ガスを熱風として送り出す手段である。熱風導入手段X1から転化器61内に300~400℃の熱風を導入することによって、転化器61の予熱又はメンテナンスパージを行うことができる。
 排熱ボイラ52で冷却された燃焼ガスには、微量の窒素分(例えば、未分解NHや、NO、NOなどのNO)が含まれる。転化器61は、複数段(図では三段)に設置した触媒により、燃焼ガス中の二酸化硫黄(SO)と酸素とを反応させて酸化し、三酸化硫黄(SO)を含む反応ガスを生成する反応を行う(反応工程)。より詳細には、転化器61は、複数段のうち前段の触媒による硫黄酸化物(SO)と酸素との酸化(発熱反応)で昇温する転化後ガスに、外部から誘引した大気を直接混合させて、後段の触媒反応に適する温度にまで降下させる手法により、高効率で二酸化硫黄を三酸化硫黄(SO)に変換する。
 図5は、転化器61の内部構造を示す模式図である、図の(a)は側面図、(b)は(a)のA-A’断面図、(c)は(b)の破線丸内の拡大図である。この図に示すように、転化器61は、大気の空気を取り入れる主空気管61aと、主空気管61aから器内で分岐する枝空気管61bと、枝空気管61bから器内に空気を送入する空気口61dと、を備えている。
 触媒としては、硫酸の製造に使用される公知のものを使用することができ、例えば五酸化バナジウム(V)などを挙げることができる。五酸化バナジウムには、脱硝機能があり、NHとNOとを反応させて窒素(N)と水(HO)に分解する。このため、本触媒によって三酸化硫黄の生成と、窒素分(NH及びNO)の分解を同時に行うことができる。この際、脱硝用にNHを注入してもよい。
 転化器61に導入される燃焼ガスの温度は、370℃程度となっている。転化器61の第一段では、転化器61に導入された燃焼ガスに含まれる二酸化硫黄(SO)の約55%が酸化反応してSOに転化されるとともに、反応後のガス温度は500℃近くとなる。転化器61の第二段及び第三段で残りの二酸化硫黄(SO)を三酸化硫黄(SO)に酸化反応させる。第二段の入口温度は、410℃程度となっており、反応後のガス温度は480℃程度となる。空気混入に起因して、転化器61に導入された燃焼ガスに含まれるSOのうち約95%程度がSOに転化される。第三段の入口温度は390℃程度となる。空気混入に起因して、転化器61に導入された燃焼ガスに含まれるSOのうち約98.9%がSOに転化される。第三段での反応後のガス温度は410℃止まりとなる。このように、転化器61に導入される燃焼ガスの温度が370℃程度と低くても、転化器61内に空気を導入することで、燃焼ガス中に含まれるSOの98.9%をSOに転化することができ、高い転化率でSOを生成することができる。
 なお、転化器61の第一段の上流側(排熱ボイラ52からの燃焼ガスの流入側)に、脱硝触媒を配置してもよく、脱硝触媒としては、五酸化バナジウムに助触媒を混合したものを用いることができる。
 転化器61で生成した反応ガスは、冷却器62(反応ガス冷却手段)に移送されて冷却される。ここで、後述するシミュレーションに示すように、転化器61で生成して冷却器62に移送される反応ガスには、5~6体積%(すなわち、5×10~6×10ppm)のSOと約15体積%のHOが含まれる。この反応ガスの組成を図7に白抜き四角で示しているが、硫酸露点は約240℃となる。すなわち、冷却器62に導入される反応ガスの酸露点は約240℃であり、冷却器62では反応ガスの温度を上記の酸露点以上、好ましくは250℃以上に維持することが必要となる。
 冷却器62は、第2の冷媒との熱交換により反応ガスを冷却する。冷却器62としては、煙管式を用いることが好ましい。煙管式熱交換器は、細い管の内部に反応ガスを流し、その管の外側に冷媒を循環させる方式の熱交換器である。煙管式熱交換器は、排熱ボイラ52のような水管式ボイラと比較して、安価であることと冷却効率が高いことなどから、冷却器62として使用することが好ましいが、冷却器62としては水管式など他の形式であってもかまわない。
 第2の冷媒としては、-20℃~350℃の温度範囲で液体である有機冷媒が用いられる。有機冷媒としては、ジフェニールとジフェニールオキサイド(ジフェニルエーテル)との混合物であるダウサム(Dowtherm:登録商標)Aや、NeoSK-OIL 1400、NeoSK-OIL 1300、NeoSK-OIL 330、NeoSK-OIL 360、NeoSK-OIL L400、KSK-OIL 260などを挙げることができる。これらのうち、今回での液相使用に適した有機冷媒としては、一般に広く使用されており耐熱性に優れた「NeoSK-OIL 1400」が好ましい。
 反応ガスは、転化器61の出口温度で410℃程度と高温であるが、250℃前後とされる酸露点を上回る温度の270~320℃程度になるまで冷却器62で冷却される。この場合の冷却器62の冷媒圧力は0.1MPa程度である。冷却器62で冷却された反応ガスを後流に移送する経路には、パージ用管路X2(パージ流路)を設けることが好ましい。
 熱交換手段63は、給水予熱器63b、熱媒タンク63c、熱媒循環ポンプ63d、冷媒移送路63e、冷媒返送路63hを備えている。冷媒移送管63eは、反応ガスとの熱交換により320℃程度に昇温した第2の冷媒を、冷却器62から給水予熱器63bに移送する。
 給水予熱器63bとしては、多管式熱交換器を用いることができる。給水予熱器63bでは、冷媒導入路63fを介して外部から105℃程度の第1の冷媒(ボイラ給水)が導入される。冷却器62で320℃程度に昇温した第2の冷媒は、給水予熱器63bにおいて第1の冷媒と熱交換が行われる。これにより、第1の冷媒は220℃程度に、第2の冷媒は270℃程度になる。熱交換により220℃程度に昇温した第1の冷媒は、冷媒供給路63gを介して排熱ボイラ52に供給される。これにより、排熱ボイラ52での第1の冷媒(水蒸気)の回収量を増量することができる。なお、冷媒導入路63f、給水予熱器63b、及び冷媒供給路63gが、燃焼ガス冷却手段(排熱ボイラ52)のための冷媒供給手段に相当する。
 冷媒返送路63hは、第1の冷媒(ボイラ給水)との熱交換後の第2の冷媒を、給水予熱器63bから冷却器62に返送する。冷媒返送路63hは、第2の冷媒を貯蔵し、混入する微量不活性ガスを大気中に放出可能な熱媒タンク63cと、第2の冷媒を冷却器62に駆動する熱媒循環ポンプ63dとを備えている。
 このように冷却器62では、反応ガスと第2の冷媒との熱交換によって反応ガスが冷却される(熱交換工程)。さらに、昇温した第2の冷媒と第1の冷媒(ボイラ給水)との熱交換により第1の冷媒を昇温させて、燃焼ガス冷却手段(排熱ボイラ52)のための昇温した第1の冷媒を得ることができる。
 冷却器62で冷却された反応ガスは、図2に示すように、希硫酸回収工程を行う希硫酸塔71(硫酸回収手段)の塔底部に移送される。希硫酸塔71は、反応ガス中のHOとSOを循環硫酸水溶液(希硫酸)に吸収し、製品の希硫酸を生成する装置であり、吸収塔とも呼ばれる。希硫酸塔71の塔内には充填物が充填され、塔上部から硫酸水溶液が充填物に向けて噴霧されている。反応ガスが充填物間を通過する際に硫酸水溶液と接触することで、HOとSOが硫酸水溶液に吸収される。SOを吸収した硫酸水溶液は、希硫酸タンク73に移送され、熱交換器74によって、図示しない冷水塔からの冷却水により冷却される。
 希硫酸塔71の塔頂部からは、硫酸ミストや未反応のSOなどを含むガスが排出される。この排出ガスは、湿式電気集塵機76又はミストエリミネータで硫酸ミストが回収されタンク73に移送されて硫酸水溶液として再利用されるが、残りは亜硫酸を生成する亜硫酸塔81(二酸化硫黄回収手段)に移送される。
 亜硫酸塔81に移送される排出ガスには、200ppm(乾分)程度のSO、10%(乾分)程度のOを含まれており、残部はCO及びNである。亜硫酸塔81においては、水(工水)がSO吸収剤として使用されて、亜硫酸(HSO)を生成する(二酸化硫黄回収工程)。この亜硫酸は、排出ガス中に含有される酸素によって硫酸に酸化される。なお、希硫酸塔71及び湿式電気集塵機76のメンテナンス時に必要とされる転化器61のパージガスは、冷却器62後流に設けられるパージ用管路X2から導出され、亜硫酸塔81へ直接移送される管路に導入される。転化器61からのメンテナンスパージガスは、継時経過で温度が低下して酸露点腐食を引き起こすため、第2の冷媒が持つ熱を利用しての冷却器62でパージガスを加熱することで、パージガスによる酸露点腐食を防止できる効果が得られる。また、メンテナンス用のパージガスを亜硫酸塔81に導入することによって、パージガスに含まれるSOガスを除去できるという効果も得られる。
 亜硫酸塔81の頂部からの排ガスは、誘引ファン87で吸引/昇圧され、煙突88を介して大気中に排出される。亜硫酸塔81においてSOが吸収されて硫酸として回収されることから、大気中へのSO排出量が大幅に低減され、排ガス管理値である50ppm以下程度とすることができる。誘引ファン87は、これよりも上流側に設けられた本希硫酸製造装置40の個別の装置のすべてについて負圧にする機能を有している。誘引ファン87による負圧運転によりガスを誘引するため、温度が高く有害なガスが大気に流出することを防止している。また、転化器61において、特別な設備を備えることなく、大気を誘引する機能も兼ね備えている。以上により、希硫酸製造と排ガス処理が行われる。
 本実施形態の希硫酸製造装置や希硫酸製造方法では、燃焼ガスを冷却する燃焼ガス冷却手段と、反応ガスを冷却する反応ガス冷却手段と、熱交換手段とを備えている。熱交換手段では、反応ガスとの熱交換により昇温した第2の冷媒と、第1の冷媒との熱交換が行われる。これによって、燃焼ガス冷却手段のための昇温した第1の冷媒が調製され、排熱を有効利用することが可能となった。
 冷却器は、通常運転時には、熱交換によって反応ガスを冷却し、排熱ボイラの予熱のための冷却熱回収効果を発揮する。さらに、メンテナンスパージ時には、保有熱によるパージガスの冷却防止によって、下流側での腐食の防止にも寄与することができる。
2.シミュレーション
 図1、図2の希硫酸製造装置40について、図8のSO→SO平衡転化率の計算図表及び相似実績運転データに基づき、計算シミュレーションを行った。
 燃焼炉51と集塵器55の間の燃焼ガスのガス組成を計算シミュレーションした結果、下記表に示す数値となった。
 上記表に示されるように、燃焼ガスのSO濃度は0.26体積%、HO濃度は24.86体積%となっている。このことから、図7のグラフをもとに、燃焼ガスの酸露点は190℃付近であることがわかる。
 転化器61の各段における温度及び転化率を計算シミュレーションした結果、下記表に示す数値となった。

 第2段触媒及び第3段触媒に誘引添加される空気量は4900Nm/Hrとなる。
 上記表に示されるように、第1段触媒に導入される燃焼ガスの温度が370℃と低くても、図8のSO→SO平衡転化率の計算図表による計算シミユレーションにより、第3段触媒までに累積転化率98.9%の高い転化率で燃焼ガスを転化することができる。
 転化器61と冷却器62の間の反応ガスのガス組成を計算シミュレーションした結果、下記表に示す数値となった。
 上記表に示されるように、反応ガスのSO濃度は5.4体積%、HO濃度は15.1体積%となっている。このことから、図7のグラフをもとに、反応ガスの酸露点は240℃付近であることがわかる。
 相似実績運転データでは、湿式電気集塵器76出口での排出ガス中のSOガス濃度値が約200ppmにまで低下している。SO→SO平衡転化率の計算図表で得られた転化率98.9%に気相反応(SO+HO→HSO)転化率が相乗されて99.7%以上の転化率が得られている。計算シミュレーションした結果、下記表に示す数値となった。
 第1段触媒反応を今回の低温370℃を従来の高温410℃との計算シミュレーシにより、下記の排熱回収の有効利用メリットが得られる。
 表2に示す、第1段触媒の入口温度は410℃、第3段触媒の出口温度は420℃であった。
 表3に示す、全排ガス量は13700Nm/Hrであった。
・温度370℃ケースにおける排熱ボイラ52回収熱量:a
・低温370℃ケースにおける冷却器62回収熱量:b
・排熱ボイラ52での回収熱量差:c
・冷却器62での回収熱量ロス差:d
 低温のケースと高温のケースでの熱回収の差={1-(a+b-c-d)/(a+b)}×100≒13  ・・式(1)
 以上より、低温である370℃ケース時は高温である410℃のケース時より13%熱回収メリットが得られる。
3.第2の実施形態
 次に、本発明の他の実施形態(第2の実施形態)に係る希硫酸製造装置及び希硫酸製造方法について説明する。図9は、本実施形態の希硫酸製造装置の上流側工程を示す模式図であり、図10は、本実施形態の希硫酸製造装置の下流工程を示す模式図である。第1の実施形態と同じ装置については同じ符号を付してあり、以下では説明を省略する。
 本実施形態では、まず、水管式の排熱ボイラ52に替えて垂直型の煙管式の排熱ボイラ91を採用している。すなわち、燃焼ガスの供給口から出口が地面に対して垂直(すなわち、重力方向に対して平行な方向)に配置されたボイラである。このようにすることで、排熱ボイラ91内に閉塞しないダストが下方に落下して排熱ボイラ91内から排出されやすい構造となっている。本実施形態では誘引ファン87を設けることなく、管路43から導入される空気の押し込みにより上流側からの圧力でガスを下流側に移送している。
 また、本実施形態では、熱交換手段100の構造が第1の実施形態と異なっている。本実施形態では、第2の冷媒を冷却器62に駆動する熱媒循環ポンプ63dの吐出流において、第2の冷媒を冷却器62に導入する管路から分岐してこの第2の冷媒を排熱ボイラ91に導入する管路63iが設けられている。そして、排熱ボイラ91では、第2の冷媒を用いて燃焼ガスを冷却している。このように、冷却器63を冷却する第2の冷媒を使用して、排熱ボイラ91を冷却している。排熱ボイラ91に導入された第2の冷媒は、燃焼ガスを冷却したのち、熱媒冷却器(蒸気発生器)102に導入される。熱媒冷却器(蒸気発生器)102で冷却された第2の冷媒は、冷媒タンク63cに返送される。
 冷媒移送路63eで第2の冷媒を冷却した水は、高温の蒸気となって蒸気ドラム101に導入される。蒸気ドラムの上記は熱媒ドラム102に導入され、第2の冷媒の冷却に使用される。この蒸気は再度蒸気ドラム101に返送され、一部が管路46を通じて外部にパージされる。
40 希硫酸製造装置、41 管路(原料供給手段)、42 管路(原料供給手段)、43 管路、44 管路、45 管路(冷媒導入手段)、46 管路、51 燃焼炉(燃焼手段)、51a 供給口、51b 排出口、51c 格子状レンガ、52 排熱ボイラ(燃焼ガス冷却手段)、52a ボイラ本体、52b ボイラドラム、52c ボイラチューブ、52d スートブロワ、55 集塵器、61 転化器(反応手段)、62 冷却器(反応ガス冷却手段)、63 熱交換手段、63b 給水予熱器、63c 熱媒タンク、 63d 熱媒循環ポンプ、63e 冷媒移送路、63f 冷媒導入路、63g 冷媒供給路、63h 冷媒返送路、63i 管路、71 希硫酸塔(硫酸回収手段)、73 タンク、74 熱交換器、76 湿式電気集塵器、81 亜硫酸塔(二酸化硫黄回収手段)、87 誘引ファン、88 煙突、91 排熱ボイラ(燃焼ガス冷却手段)、100 熱交換手段、101 蒸気ドラム、102 熱媒冷却器(蒸気発生器)

Claims (24)

  1.  硫黄分を少なくとも含む原料を供給する原料供給手段と、
     前記原料を燃焼して、硫黄酸化物を含む燃焼ガスを生成する燃焼手段と、
     第1の冷媒を導入する冷媒導入手段と、
     冷媒との熱交換によって前記燃焼ガスを冷却する燃焼ガス冷却手段と、
     前記硫黄酸化物を触媒により酸化して、三酸化硫黄及び水を含む反応ガスを生成する反応手段と、
     第2の冷媒との熱交換により前記反応ガスを冷却する反応ガス冷却手段と、
     前記冷却後の前記反応ガスに含まれる三酸化硫黄及び水を硫酸水溶液に吸収して硫酸を生成し、二酸化硫黄及び酸素を含有する排出ガスを排出する硫酸回収手段と、
     前記反応ガスとの熱交換により昇温した第2の冷媒と前記第1の冷媒との熱交換によって、昇温した前記第1の冷媒と冷却された前記第2の冷媒とを調製し、前記昇温した前記第1の冷媒と前記冷却された前記第2の冷媒のいずれかを前記冷媒として前記燃焼ガス冷却手段に供給する熱交換手段と、を備えることを特徴とする硫酸製造装置。
  2.  前記燃焼ガス冷却手段は、前記昇温した第1の冷媒が前記燃焼ガスの酸露点以上の温度であり、前記反応ガス冷却手段は、前記第2の冷媒が前記反応ガスの酸露点以上の温度であることを特徴とする請求項1に記載の硫酸製造装置。
  3.  前記熱交換手段は、
     前記昇温した前記第2の冷媒を移送する冷媒移送路と、
     前記第1の冷媒が供給され、前記昇温した第2の冷媒との熱交換により前記第1の冷媒を昇温させて、前記燃焼ガス冷却手段に供給する予熱器と、
     前記第1の冷媒との熱交換後の前記第2の冷媒を、前記予熱器から前記反応ガス冷却手段に返送する冷媒返送路と、を備えることを特徴とする請求項1に記載の硫酸製造装置。
  4.  前記冷媒返送路は、前記第2の冷媒の一部を前記燃焼ガス冷却手段に供給することを特徴とする請求項3に記載の硫酸製造装置。
  5.  前記冷媒返送路は、前記第2の冷媒を貯蔵するタンクと、前記第2の冷媒を前記反応ガス冷却手段に供給するポンプと、を備えることを特徴とする請求項3に記載の硫酸製造装置。
  6.  前記第2の冷媒は、少なくとも-20℃~350℃の範囲内で液体である有機冷媒であることを特徴とする請求項1に記載の硫酸製造装置。
  7.  前記第1の冷媒は水であり、前記第2の冷媒はジフェニールとジフェニールオキサイドとの混合物であることを特徴とする請求項1に記載の硫酸製造装置。
  8.  前記熱交換手段は、煙管式であることを特徴とする請求項1に記載の硫酸製造装置。
  9.  負圧運転のための手段をさらに備えることを特徴とする請求項1に記載の硫酸製造装置。
  10.  前記反応手段に熱風を導入する熱風導入手段と、
     前記反応手段に残存する反応ガスを、前記硫酸回収手段の上流でパージ可能なパージ流路と、をさらに備えることを特徴とする請求項9に記載の硫酸製造装置。
  11.  前記排出ガスに含まれる二酸化硫黄を回収する二酸化硫黄回収手段を、さらに備えることを特徴とする請求項1に記載の硫酸製造装置。
  12.  前記二酸化硫黄回収手段は、前記排出ガスに含まれる二酸化硫黄を水に吸収して亜硫酸を生成し、前記排出ガスに含まれる酸素により前記亜硫酸を酸化して硫酸を生成する請求項11記載の硫酸製造装置。
  13.  硫黄分を少なくとも含む原料を供給する原料供給工程と、
     前記原料を燃焼して、硫黄酸化物を含む燃焼ガスを生成する燃焼工程と、
     第1の冷媒を導入する冷媒導入工程と、
     冷媒との熱交換によって前記燃焼ガスを冷却する燃焼ガス冷却工程と、
     前記硫黄酸化物を触媒により酸化して、三酸化硫黄及び水を含む反応ガスを生成する反応工程と、
     第2の冷媒との熱交換により前記反応ガスを冷却する反応ガス冷却工程と、
     前記冷却後の前記反応ガスに含まれる三酸化硫黄及び水を硫酸水溶液に吸収して硫酸を生成し、二酸化硫黄及び酸素を含有する排出ガスを排出する硫酸回収工程と、
     前記反応ガスとの熱交換により昇温した第2の冷媒と前記第1の冷媒との熱交換によって、前記昇温した前記第1の冷媒と冷却された前記第2の冷媒とを調製し、前記昇温した前記第1の冷媒と前記冷却された前記第2の冷媒のいずれかを前記冷媒として前記燃焼ガス工程に供給する前記熱交換工程と、を備えることを特徴とする硫酸製造方法。
  14.  前記燃焼ガス冷却工程は、前記昇温した第1の冷媒が前記燃焼ガスの酸露点以上の温度であり、前記反応ガス冷却工程は、前記第2の冷媒が前記反応ガスの酸露点以上の温度であることを特徴とする請求項13に記載の硫酸製造方法。
  15.  前記熱交換工程は、
     前記昇温した前記第2の冷媒を移送する冷媒移送工程と、
     前記昇温した第2の冷媒との熱交換により前記第1の冷媒を昇温させて前記燃焼ガス冷却工程に供給する余熱工程と、
     前記第1の冷媒との熱交換後の前記第2の冷媒を返送して前記反応ガスとの熱交換に使用する冷媒返送工程と、を備えることを特徴とする請求項13に記載の硫酸製造方法。
  16.  前記冷媒返送工程は、前記第2の冷媒の一部を前記燃焼ガス冷却工程に供給することを特徴とする請求項15に記載の硫酸製造方法。
  17.  前記冷媒返送路は、前記第2の冷媒を貯蔵する工程と、前記第2の冷媒を前記反応ガス冷却工程に供給する工程と、を備えることを特徴とする請求項15に記載の硫酸製造方法。
  18.  前記第2の冷媒として、少なくとも-20℃~350℃の範囲内で液体である有機冷媒を用いることを特徴とする請求項13に記載の硫酸製造方法。
  19.  前記第1の冷媒として水を用い、前記第2の冷媒としてジフェニールとジフェニールオキサイドとの混合物を用いることを特徴とする請求項13に記載の硫酸製造方法。
  20.  前記熱交換工程は、煙管式により行うことを特徴とする請求項13に記載の硫酸製造方法。
  21.  負圧運転が行われることを特徴とする請求項13に記載の硫酸製造方法。
  22.  前記排出ガスに含まれる二酸化硫黄を回収する二酸化硫黄回収工程を、さらに備えることを特徴とする請求項13に記載の硫酸製造装方法。
  23.  前記二酸化硫黄回収工程は、前記排出ガスに含まれる二酸化硫黄を水に吸収して亜硫酸を生成し、前記排出ガスに含まれる酸素により前記亜硫酸を酸化して硫酸を生成する請求項22記載の硫酸製造方法。
  24.  請求項11に記載の硫酸製造装置のメンテナンス方法であって、
     負圧運転しつつ、前記熱風導入手段から前記反応手段に熱風を導入し、前記反応手段に残存する反応ガスを、前記硫酸回収手段の上流でパージし、得られたパージガスを前記二酸化硫黄回収手段に導入することを特徴とするメンテナンス方法。
PCT/JP2023/020162 2022-05-31 2023-05-30 硫酸製造装置及び硫酸製造方法 WO2023234318A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022088994 2022-05-31
JP2022-088994 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234318A1 true WO2023234318A1 (ja) 2023-12-07

Family

ID=89024807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020162 WO2023234318A1 (ja) 2022-05-31 2023-05-30 硫酸製造装置及び硫酸製造方法

Country Status (1)

Country Link
WO (1) WO2023234318A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117105A (ja) * 1984-11-09 1986-06-04 モンサント・コンパニー 硫酸の製造方法
JPH05139708A (ja) * 1991-05-24 1993-06-08 Haldor Topsoee As 消費された硫酸の再生方法
JP2003517419A (ja) * 1999-11-01 2003-05-27 フアルマシア・コーポレーシヨン 二酸化硫黄から三酸化硫黄、硫酸およびオレウムを製造する方法
JP2006503782A (ja) * 2002-10-24 2006-02-02 オウトクンプ オサケイティオ ユルキネン 二酸化硫黄に富んでいるガスからの硫酸製造プロセスおよびプラント
JP2016517389A (ja) * 2013-03-15 2016-06-16 メックス・インコーポレイテッドMecs, Inc. 三酸化硫黄吸収熱の回収
JP2018027870A (ja) * 2016-08-18 2018-02-22 住友金属鉱山株式会社 硫酸製造システム
JP2019507097A (ja) * 2016-03-04 2019-03-14 ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG 硫酸の製造のためのプロセスおよび装置
JP2021031305A (ja) * 2019-08-14 2021-03-01 日本管機工業株式会社 希硫酸製造装置及び希硫酸製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117105A (ja) * 1984-11-09 1986-06-04 モンサント・コンパニー 硫酸の製造方法
JPH05139708A (ja) * 1991-05-24 1993-06-08 Haldor Topsoee As 消費された硫酸の再生方法
JP2003517419A (ja) * 1999-11-01 2003-05-27 フアルマシア・コーポレーシヨン 二酸化硫黄から三酸化硫黄、硫酸およびオレウムを製造する方法
JP2006503782A (ja) * 2002-10-24 2006-02-02 オウトクンプ オサケイティオ ユルキネン 二酸化硫黄に富んでいるガスからの硫酸製造プロセスおよびプラント
JP2016517389A (ja) * 2013-03-15 2016-06-16 メックス・インコーポレイテッドMecs, Inc. 三酸化硫黄吸収熱の回収
JP2019507097A (ja) * 2016-03-04 2019-03-14 ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG 硫酸の製造のためのプロセスおよび装置
JP2018027870A (ja) * 2016-08-18 2018-02-22 住友金属鉱山株式会社 硫酸製造システム
JP2021031305A (ja) * 2019-08-14 2021-03-01 日本管機工業株式会社 希硫酸製造装置及び希硫酸製造方法

Similar Documents

Publication Publication Date Title
US10933368B2 (en) Gas treatment processes and systems for reducing tail gas emissions
CN102910593B (zh) 酸性气废气处理***及处理方法
CN102371108A (zh) 含硫化氢酸性气富氧空气焚烧生产硫酸的方法
CN103429313B (zh) 用于从气体流去除污染物的方法
CN100415638C (zh) 从含硫化氢的气流中回收硫的方法
CN213834549U (zh) 用于生产硫和硫酸的工艺设备
CN102781824A (zh) 从气流中去除污染物的处理
CN103072957A (zh) 一种制取硫酸的工艺
JP2020011229A (ja) 酸性ガス処理
JP2018153808A (ja) 炭素捕捉
CN101193690A (zh) 燃料气体的处理
JP7316146B2 (ja) 希硫酸製造装置及び希硫酸製造方法
CN113509834B (zh) 局部钙循环与纯氧燃烧耦合的水泥生产碳捕集装置及工艺
CN202864918U (zh) 酸性气废气处理***
CN108970328A (zh) 一种处理化工行业高硫废气回收硫磺的装置及工艺
WO2023234318A1 (ja) 硫酸製造装置及び硫酸製造方法
CN111689477A (zh) 高含烃酸性气湿法制硫酸工艺与装置
CN108706547B (zh) 一种以h2s和石油焦为原料回收硫磺的装置及方法
RU2744704C2 (ru) Способ получения триоксида серы
CN212559465U (zh) 高含烃酸性气湿法制硫酸装置
RU2556935C2 (ru) Способ утилизации кислых газов, содержащих сероводород и аммиак
JPS60200810A (ja) 二酸化硫黄から硫酸を製造する方法及び装置
WO2022172864A1 (ja) 希硫酸製造装置及び希硫酸製造方法
CN107438476B (zh) 用于净化含so2气体的连续工艺和设备
WO2020089099A1 (en) Method for production of sulfur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816075

Country of ref document: EP

Kind code of ref document: A1