WO2023231826A1 - 来特莫韦中间体化合物及其制备方法和应用 - Google Patents

来特莫韦中间体化合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023231826A1
WO2023231826A1 PCT/CN2023/095672 CN2023095672W WO2023231826A1 WO 2023231826 A1 WO2023231826 A1 WO 2023231826A1 CN 2023095672 W CN2023095672 W CN 2023095672W WO 2023231826 A1 WO2023231826 A1 WO 2023231826A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
acid
compound iii
salt
preparation
Prior art date
Application number
PCT/CN2023/095672
Other languages
English (en)
French (fr)
Inventor
李延洁
陈恬
王乃星
吴佳炜
朱燕萍
Original Assignee
浙江车头制药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江车头制药股份有限公司 filed Critical 浙江车头制药股份有限公司
Publication of WO2023231826A1 publication Critical patent/WO2023231826A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/78Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 2
    • C07D239/84Nitrogen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals

Definitions

  • the invention belongs to the technical field of chemical drug synthesis and relates to a new intermediate of letermovir and its preparation method, as well as the application of the intermediate in the preparation of key intermediates of letermovir and letermovir.
  • Letermovir is a powerful anti-cytomegalovirus drug that mainly acts on the pUL56 subunit to prevent viral replication and achieve therapeutic effects. It has been approved in the U.S. market for the past 15 years for anti-cytomegalovirus. The only drug for cellular viruses. It was originally developed by the German company AiCuris anti-infective cures GmbH. It was acquired by Merck & Co., a subsidiary of Merck in the United States, on October 15, 2012. It is responsible for clinical trials, marketing approval, production and sales. Clinical studies have shown that letermovir has good safety and efficacy. After 28 days of treatment, no cytomegalovirus was detected in the patient's body. Compared with other approved drugs, there is no cross-resistance and it has good market prospects. , the chemical structure is as follows:
  • the compound patent WO2004096778A discloses the following synthetic route in the specification: starting from 2-halogen-substituted aniline, it is converted into a 2-aminocinnamic acid derivative through Heck coupling.
  • the imine phosphine is prepared by reaction with triphenylphosphine in carbon tetrachloride, which is subsequently reacted with an isocyanate to release triphenylphosphine oxide to give the carbodiimide.
  • dihydroquinazoline methyl esters are formed, which are separated into enantiomers by a chiral chromatography column, followed by hydrolysis to dihydroquinazoline acids under standard conditions.
  • Method two, preparation patent WO2006133822A provides the following preparation method: react 2-halogen-substituted aniline directly with isocyanate, and then react with alkyl acrylate to obtain ⁇ 8-fluoro-3-[2-methoxy Methyl-5-(trifluoromethyl)phenyl]-2-oxo-1,2,3,4-tetrahydroquinazolin-4-yl ⁇ acetate.
  • Patent WO2015088931A mentions an improved synthesis method of letermovir using 2-bromo-6-fluoroaniline as raw material, in which the asymmetric intramolecular cyclization of guanidinyl cinnamate is the key step: 2-Bromo-6-fluoroaniline is used as the starting material. After palladium-catalyzed coupling, amino protection, 2-methoxy-5-trifluoromethylaniline substitution, chlorination, docking with side chains, chiral synthesis, and hydrolysis and other steps to finally obtain letermovir, whose synthesis route is shown in the figure below:
  • the fraction is only about 30%, and the inventor found through a large number of repetitive experiments that the addition of crystal seeds in the splitting process is very important. Without crystal seeds, there is no way to carry out the splitting step, and obtaining the crystal seeds is relatively difficult. It is difficult. In addition, the use of 1-(2-methoxyphenyl)piperazine in the route also increases the cost of the entire route and is not suitable for industrial production.
  • the third method uses an asymmetric synthesis method, but the carbodiimide compound is unstable and a chiral catalyst is used during the reaction. The chiral catalyst is difficult to recover, making the entire route costly and unsuitable for industrial production.
  • the present invention provides a new intermediate compound II, III, and IV of letermovir and a preparation method thereof , and the application of this new intermediate in the preparation of key intermediates of letermovir and letermovir.
  • the present invention provides a compound II, or a salt, solvate or hydrate thereof;
  • R is an alkyl group, an aryl group or a benzyl group, where * represents a chiral carbon atom, and compound II has no optical activity.
  • the aryl group is phenyl or naphthyl.
  • the alkyl group is an alkyl group with 1 to 6 carbon atoms.
  • the R is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl or benzyl. More preferably, R is methyl.
  • the present invention provides a preparation method of Compound II, which preparation method includes the following steps:
  • the inert solvent in step (1) is toluene, dioxane, tetrahydrofuran (THF), methyl tert-butyl ether (MTBE), chlorobenzene, ethyl acetate, methyl acetate, isopropyl acetate and one or more of dichloromethane (DCM); dichloromethane is further preferred.
  • the volume of the inert solvent is 5-20 mL/g based on the mass of Compound I.
  • the base described in step (1) is: triethylamine (TEA), diisopropylethylamine (DIPEA) and 1,8-diazabicycloundec-7-ene (DBU) One or more of them, DBU is further preferred.
  • TAA triethylamine
  • DIPEA diisopropylethylamine
  • DBU 1,8-diazabicycloundec-7-ene
  • DBU 1,8-diazabicycloundec-7-ene
  • the molar ratio of compound I to anhydrous piperazine and alkali is 1:(1-4):(2-6), and more preferably, the compound I to anhydrous piperazine is 1:(1-4):(2-6).
  • the feeding molar ratio is 1:1.5-2.5, and the most preferred is 1:2.
  • the reaction in step (1) needs to be carried out in a nitrogen atmosphere, so the air in the reactor needs to be fully replaced with nitrogen during the reaction.
  • the nitrogen replacement operation can be performed multiple times; reaction temperature
  • the temperature is room temperature to 110°C (more preferably room temperature), and the reaction time is 1-24h (more preferably 12-24h).
  • step (1) is specifically implemented as follows: dissolve the anhydrous piperazine solid and alkali in an inert solvent at room temperature, replace the air in the reactor with nitrogen, and slowly add dropwise the solution in the inert solvent in a nitrogen atmosphere.
  • Compound I was kept at room temperature and stirred for 12-24 hours.
  • compound II was obtained through post-treatment.
  • the post-treatment may specifically include the following operations: after the reaction is completed, the reaction solution is washed with water, left to stand to separate the aqueous layer, and the solvent layer is spun dry to obtain compound II.
  • the invention provides compound III or IV, or their respective salts, solvates or hydrates;
  • R is alkyl, aryl or benzyl.
  • the aryl group is phenyl or naphthyl.
  • the alkyl group is an alkyl group with 1 to 6 carbon atoms.
  • the R is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl or benzyl. More preferably, R is methyl.
  • the salt of compound III or IV according to the present invention can be a salt formed by compound III and resolving agent A, or a salt formed by compound IV and resolving agent B; said resolving agent A is: D-tartaric acid, D-apple Acid, D-camphoric acid, D-camphorsulfonic acid, diacetone-D-gulonic acid, D-mandelic acid, D-dibenzoyltartaric acid monohydrate, D-dibenzoyltartaric acid anhydrous, D- One or more of di-p-toluoyl tartaric acid monohydrate, D-di-p-toluoyl tartaric acid anhydrous (D-DTTA), and D-diethyl tartrate; the resolving agent B is: L-tartaric acid, L-malic acid, L-camphoric acid, L-camphorsulfonic acid, diacetone-L-gulonic acid, L-mandelic acid, L-dibenzoy
  • the present invention provides a preparation method of Compound III or Compound IV, which preparation method includes the following steps:
  • the resolving agent A is: D-tartaric acid, D-malic acid, D-camphoric acid, D -Camphorsulfonic acid, diacetone-D-gulonic acid, D-mandelic acid, D-dibenzoyltartaric acid monohydrate, D-dibenzoyltartaric acid anhydrous, D-di-p-methylbenzoyltartaric acid Monohydrate, one or more of D-di-p-toluoyl tartaric acid anhydrous (D-DTTA), D-diethyl tartrate;
  • D-DTTA D-di-p-toluoyl tartaric acid anhydrous
  • compound II is salted out under the action of the corresponding resolving agent B, and the salt of compound IV is obtained by filtration;
  • the resolving agent B is: L-tartaric acid, L-malic acid, L-camphoric acid, L- Camphorsulfonic acid, diacetone-L-gulonic acid, L-mandelic acid, L-dibenzoyltartaric acid monohydrate, L-dibenzoyltartaric acid anhydrous, L-di-p-methylbenzoyltartaric acid monohydrate Water, one or more of L-di-p-methylbenzoyltartaric acid anhydrous, L-diethyl tartrate;
  • the resolving agent A described in step (2) is D-di-p-toluoyl tartaric acid anhydrous.
  • the resolving agent B described in step (2) is L-di-p-toluoyl tartaric acid anhydrous.
  • the molar ratio of compound II to resolving agent A or resolving agent B is 1:0.5-3, more preferably 1:0.8-1.5, even more preferably 1:0.9-1.1 .
  • step (2) specifically adopts the following operation: Dissolve compound II and resolving agent A or resolving agent B in a solvent at room temperature, slowly add water dropwise under stirring, stir until solid precipitates, and slowly cool to 0-10 Incubate at °C for 1-4 hours, filter, and obtain the corresponding salt solid of compound III or compound IV.
  • the solvent described in step (2) is: toluene, dioxane, THF, MTBE, chlorobenzene, ethyl acetate, methyl acetate, isopropyl acetate, dichloromethane, heptane, hexane One or more alkanes; it is further preferred that the solvent is THF.
  • step (2) the amount of solvent used is 5-20 mL/g based on the mass of compound II.
  • step (2) the temperature is slowly lowered to 2-5°C and kept for 2-3 hours.
  • step (3) of the present invention freeing the salt of compound III or the salt of compound IV means to free compound III or IV from the salt.
  • the following operation can be used for the dissociation: the salt of compound III or the salt of compound IV is dissolved with an organic solvent and an alkali solution, and then the liquids are separated, and the organic phase is taken to remove the solvent to obtain compound III or compound IV;
  • the organic solvent is selected from at least one of dichloromethane, ethyl acetate, isopropyl acetate, and toluene, and dichloromethane is further preferred.
  • the alkali solution is selected from a saturated aqueous solution of sodium bicarbonate or a saturated aqueous solution of potassium bicarbonate.
  • the present invention provides a method for preparing Compound V, comprising the following steps:
  • the step (4) is specifically implemented as follows: add compound III, 3-methoxyphenylboronic acid, catalyst, acid binding agent and organic solvent to the reaction vessel, and obtain compound V after sufficient reaction;
  • the catalyst is : One or more of Cu(OAc) 2 , CuI, CuCl, CuCO 3 , CuBr, NiCl 2 , Cu 2 O, Cu(OTf) 2 , CuSO 4 ;
  • the acid binding agent is: triethylamine, One or more of DBU, pyridine, DMAP, 2,6-dimethylpyridine, potassium carbonate, potassium tert-butoxide.
  • the catalyst is copper acetate.
  • the acid binding agent is triethylamine.
  • the organic solvent in step (4) is one or more of acetonitrile, toluene, dioxane, THF, MTBE, chlorobenzene, and methylene chloride, and more preferably acetonitrile.
  • the molar ratio of compound III, 3-methoxyphenylboronic acid, catalyst, and acid binding agent is 1:(1.5-5)(0.1-3):(1- 4), it is further preferred that the molar ratio of compound III and 3-methoxyphenylboronic acid is 1:1.8-2.5, and it is further preferred that the molar ratio of compound III and catalyst is 1:0.8-1.2.
  • step (4) the amount of organic solvent used is 5-40 mL/g based on the mass of compound III.
  • the reaction temperature in step (4) is 40-100°C; the reaction time is 1-48h.
  • a post-treatment operation is required, specifically: after the reaction is completed, the reaction is quenched with water, and then the aqueous phase is extracted with EtOAc, the organic phases are combined, and the solvent is removed to obtain compound V.
  • the present invention provides a method for preparing letermovir, which includes the following steps in sequence:
  • R is alkyl, aryl or benzyl.
  • the aryl group is phenyl or naphthyl.
  • the alkyl group is an alkyl group with 1 to 6 carbon atoms.
  • the R is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl or benzyl. More preferably, R is methyl.
  • steps (1)-(4) are as described above and will not be described again here.
  • step (5) For the hydrolysis reaction in step (5), refer to the hydrolysis reaction operation in the compound patent WO2006133822A to obtain letermovir.
  • the present invention provides another method for preparing letermovir, which includes the following steps in sequence:
  • R 1 is selected from Br, I or Cl, further preferably Br;
  • R is an alkyl group, an aryl group or a benzyl group.
  • the aryl group is phenyl or naphthyl.
  • the alkyl group is an alkyl group with 1 to 6 carbon atoms.
  • the R is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl or benzyl. More preferably, R is methyl.
  • steps (1)-(3) are as described above and will not be described again here.
  • the step (4) is specifically implemented as follows: add compound III, 3-methoxyhalobenzene represented by formula VI, oxalamide ligand, catalyst, acid binding agent and organic solvent in the reaction vessel, Control the temperature to fully react to obtain letermovir;
  • the catalyst is selected from one of Cu(OAc) 2 , CuI, CuCl, CuCO 3 , CuBr, NiCl 2 , Cu 2 O, Cu(OTf) 2 , and CuSO 4 or several;
  • the acid-binding agent is selected from one or more of potassium tert-butoxide, potassium hydroxide, potassium carbonate, sodium tert-butoxide, sodium hydroxide, sodium carbonate, potassium phosphate, and potassium dihydrogen phosphate.
  • the catalyst is selected from cuprous iodide.
  • the organic solvent is selected from: one or more of ethanol, methanol, acetonitrile, toluene, dioxane, THF, MTBE, chlorobenzene, and methylene chloride, and more Ethanol is further preferred.
  • the acid binding agent is selected from potassium phosphate.
  • the molar ratio of compound III, 3-methoxyhalobenzene represented by formula VI, oxalamide ligand, catalyst, and acid binding agent is 1:2-3:0.1 -1:0.1-1:1-3, further preferably the molar ratio of compound III and oxalamide ligand is 1:0.1-0.3, the molar ratio of oxalamide ligand to catalyst is 1:1; the amount of organic solvent Based on the mass of compound III, it is 10-15mL/g.
  • the reaction needs to be carried out under a nitrogen atmosphere, so the air in the reactor needs to be fully replaced with nitrogen first.
  • the nitrogen replacement operation can be performed multiple times; the reaction temperature The temperature is 40-90°C; the reaction time shown is 24-36h.
  • post-processing operations are required, specifically: after the reaction is completed, MTBE is added to the reaction system, and then washed with water, and the aqueous phase is taken. The aqueous phase is fully washed with MTBE, then methylene chloride is added, and hydrochloric acid is used to adjust the aqueous phase.
  • the pH is 7, the organic phase is obtained by liquid separation, dried over sodium sulfate, concentrated, and spun to dryness to obtain letermovir.
  • the present invention Compared with the existing letermovir preparation method, the present invention has the following technical advantages:
  • the new intermediate compounds II, III, and IV of letermovir of the present invention can be used to prepare key intermediates of letermovir, letermovir and its salts or analogs thereof, based on the origin of the intermediate compounds.
  • the preparation route of termovir has the advantages of low cost, high yield, and is more suitable for large-scale industrial production;
  • the new intermediate compound II of the present invention is relatively easy to crystallize and resolve with a resolving agent to obtain the corresponding enantiomers.
  • a chiral purity of 99.9% can be achieved in one resolution, and there is no need to add seed crystals during the resolution process. It can be crystallized, the overall operation is simple, the separation rate is high, and the cost is low;
  • the preparation method of letermovir of the present invention uses compound I as the starting material, first introduces the piperazine fragment during the preparation process, and then introduces the anisole fragment after splitting, which has low cost and high yield, and Avoid the generation of phosphine amine intermediates and eliminate the generation of by-product triphenoxyphosphonate. Therefore, the production process of the present invention is more conducive to large-scale industrial production.
  • the technical solutions will be clearly and completely described below through further examples. If the specific conditions are not specified in the examples, the conditions should be carried out according to the conventional conditions or the conditions recommended by the manufacturer. If the manufacturer is not indicated on the instruments used, they are all conventional products that can be purchased commercially. If the manufacturer is not indicated for the reagents used, they are all conventional products that can be purchased commercially or prepared according to known literature.
  • R is methyl, which was prepared according to the method of WO2006133822A.
  • R is also methyl.
  • the optical rotation is measured by the chiral HPLC method.
  • the specific test method is: instrument: high performance liquid chromatography; column: chromatographic column, 150mm*4.6mm, 5 ⁇ m; eluent A: n-hexane, eluent B: ethanol; Isocratic: 10% B; flow rate: 0.8mL/min; temperature: 25°C; UV detection: 260nm, collection time 25min.
  • the chiral purity of the product is measured by the chiral HPLC method.
  • the specific test method is: instrument: high performance liquid chromatography; column: chromatographic column, 150mm*4.6mm, 5 ⁇ m; eluent A: n-hexane, eluent B: Ethanol; isocratic: 10% B; flow rate: 0.8mL/min; temperature: 25°C; UV detection: 260nm, collection time 25min.

Abstract

本发明公开了来特莫韦中间体化合物及其制备方法和应用。本发明具体公开了化合物(II)、(III)和(IV),其结构如下所示。本发明提供了上述化合物在来特莫韦制备中的应用,具有操作简便、拆分效率高、收率更高、更适合工业化生产的优势。

Description

来特莫韦中间体化合物及其制备方法和应用 技术领域
本发明属于化学药物合成技术领域,涉及一种来特莫韦的全新中间体及其制备方法,以及该中间体在制备来特莫韦关键中间体和来特莫韦中的应用。
背景技术
来特莫韦(Letermovir,LMV)是一种强效的抗巨细胞病毒的药物,主要作用于pUL56亚基,阻止病毒的复制从而达到治疗效果,它是美国市场过去15年来批准用于抗巨细胞病毒的唯一药物。其最初由德国AiCuris anti-infective cures GmbH公司研制,2012年10月15日被美国默克(Merck)的子公司默沙东制药公司(Merck&Co)收购,负责临床试验、上市报批,生产与销售。临床研究表明,来特莫韦具有较好的安全性和效能,治疗28天后,患者体内未检测到巨细胞病毒,与其他已批准的药物相比不存在交叉耐药性,具有良好的市场前景,化学结构如下所示:
目前,关于来特莫韦的制备方法主要有以下几种:
方法一,化合物专利WO2004096778A在说明书中公开了以下合成路线:从2-卤素-取代的苯胺开始,将其通过Heck偶联转化为2-氨基肉桂酸衍生物。通过与三苯膦在四氯化碳中反应,制备亚胺膦,随后将其与异氰酸酯反应,释放氧化三苯膦以得到碳二亚胺。通过碳二亚胺与胺的反应,形成二氢喹唑啉甲酯,将其通过手性色谱柱分离成对映体,随后在标准条件下发生向二氢喹唑啉酸的水解。
方法二,制备专利WO2006133822A提供了以下制备方法:将2-卤素-取代的苯胺直接与异氰基酸酯反应,后与丙烯酸烷基酯反应,得到{8-氟-3-[2-甲氧基-5-(三氟甲基)苯基]-2-氧代-1,2,3,4-四氢喹唑啉-4-基}乙酸甲酯。之后将其通过与三氯氧磷氯化,然后与3-甲氧基苯基哌嗪反应,得到{8-氟-2-[4-(3-甲氧基苯基)哌嗪-1-基]-3-[2-甲氧基-5-(三氟甲基)苯基]-3,4-二氢喹唑啉-4-基}乙酸甲酯,通过DTTA拆分得到手性{8-氟-2-[4-(3-甲氧基苯基)哌嗪-1-基]-3-[2-甲氧基-5-(三氟甲基)苯基]-3,4-二氢喹唑啉-4-基}乙酸甲酯,之后水解,得到产品LMV。
方法三,专利WO2015088931A中提到了一种以2-溴-6-氟苯胺为原料的来特莫韦合成改进方法,其中涉及的不对称分子内环化的胍基肉桂酸酯是关键步骤:以2-溴-6-氟苯胺为起始原料,经过钯催化偶联,氨基保护,2-甲氧基-5-三氟甲基苯胺取代,氯代,与侧链对接,手性合成、水解等步骤,最终得到来特莫韦,其合成路线如下图所示:
通过对比,方法一中通过使用亚胺膦和碳二亚胺,在反应中会形成具有高度反应官能团的中间体,这相当大程度地导致了副产物,而该副产物仅能通过非常费力的色谱纯化或通过费力的提取过程进行分离;另外该反应过程,三苯氧磷会以化学计算量形成;此外,形成的二氢喹啉甲酯对映体的分离也是通过手性色谱柱进行分离,需要消耗大量的溶剂和时间,不适于工业规模化生产。而方法二对方法一进行了改进, 避免了三苯氧磷的形成,并且创造性地将{8-氟-2-[4-(3-甲氧基苯基)哌嗪-1-基]-3-[2-甲氧基-5-(三氟甲基)苯基]-3,4-二氢喹唑啉-4-基}乙酸甲酯与(2S,3S)-2,3-双[(4-甲基苯甲酰)氧基]琥珀酸结晶来分离对映体,但是其一次拆分无法达到所需的手性纯度和HPLC纯度,故需对拆分得到的对映体进行再结晶,经过两次拆分其拆分率仅为30%左右,并且本发明人通过大量重复性试验发现,该拆分过程中晶种的添加非常重要,没有晶种,则完全没有办法进行拆分步骤,而该晶种获取较为困难,另外路线中1-(2-甲氧基苯基)哌嗪的使用也使得整条路线成本提高,不适用于工业化生产。方法三则采用了不对称合成法,但其中碳二亚胺化合物不稳定,且反应过程中采用了手性催化剂,而手性催化剂难以回收,使得整条路线成本高,不适于工业化生产。
因此为来特莫韦探究一条操作简便、拆分效率高、收率更高、更适合工业化生产的工艺路线仍然是目前需要解决的问题。
发明内容
为了解决现有技术中来特莫韦制备过程中拆分困难、收率欠佳、成本高等问题,本发明提供了一种来特莫韦新的中间体化合物II、III、IV及其制备方法,以及该新中间体在制备来特莫韦关键中间体和来特莫韦中的应用。
本发明具体通过如下技术方案实现:
第一方面,本发明提供了一种化合物II,或者它的盐、溶剂化物或水合物;
其中R为烷基、芳基或苄基,其中*代表手性碳原子,化合物II无旋光性。
作为优选,所述的芳基为苯基或萘基。
作为优选,所述的烷基为1-6个碳原子的烷基。
作为进一步的优选,所述R为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基或苄基。更进一步优选R为甲基。
第二方面,本发明提供了一种化合物II的制备方法,所述制备方法包括如下步骤:
(1)在惰性气氛和惰性溶剂中,化合物I和无水哌嗪在碱的存在下进行反应,得到化合物II;反应式如下:
式I中,R的定义同式II。
作为优选,步骤(1)中所述惰性溶剂为甲苯、二氧六环、四氢呋喃(THF)、甲基叔丁基醚(MTBE)、氯苯、乙酸乙酯、乙酸甲酯、乙酸异丙酯和二氯甲烷(DCM)中的一种或几种;进一步优选为二氯甲烷。作为优选,所述惰性溶剂的体积用量以化合物I的质量计为5-20mL/g。
作为优选,步骤(1)中所述碱为:三乙胺(TEA)、二异丙基乙胺(DIPEA)和1,8-二氮杂二环十一碳-7-烯(DBU)中的一种或几种,进一步优选DBU。
作为优选,步骤(1)中,所述化合物I与无水哌嗪、碱的投料摩尔比为1:(1-4):(2-6),更优选所述化合物I与无水哌嗪的投料摩尔比为1:1.5-2.5,最优选为1:2。
作为优选,步骤(1)所述反应需在氮气气氛中进行,故在反应过程中需先用氮气充分置换反应器内的空气,为实现充分置换,氮气置换的操作可实施多次;反应温度为室温至110℃(更优选室温),反应时间为1-24h(更优选12-24h)。
作为优选,步骤(1)具体按照如下实施:室温下,将无水哌嗪固体和碱溶于惰性溶剂中,用氮气置换反应器内的空气,在氮气氛中缓慢滴加溶于惰性溶剂的化合物I,室温下保温搅拌12-24h,反应完毕后经后处理得到化合物II。所述后处理具体可包括如下操作:反应完毕,将反应液加入水洗涤,静置分去水层,溶剂层旋干即得化合物II。
第三方面,本发明提供了化合物III或IV,或者它们各自的盐、溶剂化物或水合物;
其中R为烷基、芳基或苄基。
作为优选,所述的芳基为苯基或萘基。
作为优选,所述的烷基为1-6个碳原子的烷基。
作为进一步的优选,所述R为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基或苄基。更进一步优选R为甲基。
本发明所述化合物III或IV的盐可以是化合物III与拆分剂A形成的盐,或化合物IV与拆分剂B形成的盐;所述拆分剂A为:D-酒石酸,D-苹果酸,D-樟脑酸,D-樟脑磺酸,双丙酮-D-古龙酸,D-扁桃酸,D-二苯甲酰酒石酸一水物,D-二苯甲酰酒石酸无水物,D-二对甲基苯甲酰酒石酸一水物,D-二对甲基苯甲酰酒石酸无水物(D-DTTA),D-酒石酸二乙酯中的一种或几种;所述拆分剂B为:L-酒石酸,L-苹果酸,L-樟脑酸,L-樟脑磺酸,双丙酮-L-古龙酸,L-扁桃酸,L-二苯甲酰酒石酸一水物,L-二苯甲酰酒石酸无水物,L-二对甲基苯甲酰酒石酸一水物,L-二对甲基苯甲酰酒石酸无水物,L-酒石酸二乙酯中的一种或几种。
第四方面,本发明提供了一种化合物III或化合物IV的制备方法,所述制备方法包括如下步骤:
(2)将化合物II在相应的拆分剂A作用下,成盐析出,过滤得到化合物III的盐;所述拆分剂A为:D-酒石酸,D-苹果酸,D-樟脑酸,D-樟脑磺酸,双丙酮-D-古龙酸,D-扁桃酸,D-二苯甲酰酒石酸一水物,D-二苯甲酰酒石酸无水物,D-二对甲基苯甲酰酒石酸一水物,D-二对甲基苯甲酰酒石酸无水物(D-DTTA),D-酒石酸二乙酯中的一种或几种;
或者,将化合物II在相应的拆分剂B作用下,成盐析出,过滤得到化合物IV的盐;所述拆分剂B为:L-酒石酸,L-苹果酸,L-樟脑酸,L-樟脑磺酸,双丙酮-L-古龙酸,L-扁桃酸,L-二苯甲酰酒石酸一水物,L-二苯甲酰酒石酸无水物,L-二对甲基苯甲酰酒石酸一水物,L-二对甲基苯甲酰酒石酸无水物,L-酒石酸二乙酯中的一种或几种;
(3)将步骤(2)得到的化合物III的盐或化合物IV的盐进行游离得相应的化合物III或化合物IV;反应式如下:
作为优选,步骤(2)中所述的拆分剂A为D-二对甲基苯甲酰酒石酸无水物。
作为优选,步骤(2)中所述的拆分剂B为L-二对甲基苯甲酰酒石酸无水物。
作为优选,步骤(2)中,化合物II与拆分剂A或拆分剂B的投料摩尔比为1:0.5-3,更优选为1:0.8-1.5,更进一步优选为1:0.9-1.1。
作为优选,步骤(2)具体采用如下操作:室温下,将化合物II和拆分剂A或拆分剂B溶于溶剂中,搅拌下缓慢滴加水,搅拌直至析出固体,缓慢降温至0-10℃保温1-4h,过滤,得化合物III或化合物IV相应的盐固体。
作为进一步的优选,步骤(2)中所述溶剂为:甲苯,二氧六环,THF,MTBE,氯苯,乙酸乙酯,乙酸甲酯,乙酸异丙酯,二氯甲烷,庚烷,己烷中的一种或几种;进一步优选所述溶剂为THF。
作为进一步的优选,步骤(2)中,溶剂的用量以化合物II的质量计为5-20mL/g。
作为进一步的优选,步骤(2)中,缓慢降温至2-5℃保温2-3小时。
本发明步骤(3)中,所述将化合物III的盐或化合物IV的盐进行游离即将化合物III或IV从盐中游离出来。一般而言,所述的游离可采用如下操作:所述化合物III的盐或化合物IV的盐用有机溶剂和碱溶液进行溶解,然后分液,取有机相去除溶剂,得化合物III或化合物IV;所述的有机溶剂选自二氯甲烷、乙酸乙酯,醋酸异丙酯、甲苯中的至少一种,进一步优选二氯甲烷。作为优选,所述的碱溶液选自碳酸氢钠饱和水溶液或者碳酸氢钾饱和水溶液。
第五方面,本发明提供了一种化合物V的制备方法,包括如下步骤:
(4)化合物III和3-甲氧基苯硼酸利用Chan-Lam偶联反应得到化合物V;
反应式如下:
化合物V中,R的定义同化合物III。
作为优选,所述步骤(4)具体按照如下实施:在反应容器中加入化合物III、3-甲氧基苯硼酸、催化剂、缚酸剂和有机溶剂,经充分反应得到化合物V;所述催化剂为:Cu(OAc)2、CuI,CuCl,CuCO3,CuBr,NiCl2,Cu2O,Cu(OTf)2,CuSO4中的一种或几种;所述缚酸剂为:三乙胺,DBU,吡啶,DMAP,2,6-二甲基吡啶,碳酸钾,叔丁醇钾中的一种或几种。
作为进一步的优选,步骤(4)中,所述催化剂为醋酸铜。
作为进一步的优选,步骤(4),所述缚酸剂为三乙胺。
作为进一步的优选,步骤(4)中所述有机溶剂为乙腈、甲苯,二氧六环,THF,MTBE,氯苯,二氯甲烷中的一种或几种,更进一步优选为乙腈。
作为进一步的优选,步骤(4)中,所述化合物III、3-甲氧基苯硼酸、催化剂、缚酸剂的投料摩尔比为1:(1.5-5)(0.1-3):(1-4),更进一步优选所述化合物III与3-甲氧基苯硼酸的摩尔比为1:1.8-2.5,更进一步优选所述化合物III与催化剂的摩尔比为1:0.8-1.2。
作为进一步的优选,步骤(4)中,有机溶剂的用量以化合物III的质量计为5-40mL/g。
作为进一步的优选,步骤(4)中所述反应温度为40-100℃;所述反应时间为1-48h。所述反应结束后需进行后处理操作,具体为:反应结束后,用水淬灭,之后再用EtOAc萃取水相,合并有机相,去除溶剂得到化合物V。
第六方面,本发明提供一种来特莫韦的制备方法,包括依次进行的如下步骤:
(1)在惰性气氛和惰性溶剂中,化合物I和无水哌嗪在碱的存在下进行反应,得到化合物II;
(2)将化合物II在相应的拆分剂作用下,成盐析出,过滤得到化合物III的盐;
(3)将化合物III的盐进行游离得化合物III;
(4)化合物III和3-甲氧基苯硼酸经Chan-Lam偶联反应得到化合物V;
(5)化合物V经水解得到来特莫韦LMV;
反应式如下:
其中,R为烷基、芳基或苄基。作为优选,所述的芳基为苯基或萘基。作为优选,所述的烷基为1-6个碳原子的烷基。作为进一步的优选,所述R为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基或苄基。更进一步优选R为甲基。
所述步骤(1)-(4)的操作细节如上所述,在此不再赘述。
所述步骤(5)的水解反应,可参照化合物专利WO2006133822A中的水解反应操作,得到来特莫韦。
第七方面,本发明提供了另一种来特莫韦的制备方法,包括依次进行的以下步骤:
(1)在惰性气氛和惰性溶剂中,化合物I和无水哌嗪在碱的存在下进行反应,得到化合物II;
(2)将化合物II在相应的拆分剂作用下,成盐析出,过滤得到化合物III的盐;
(3)将化合物III的盐进行游离得化合物III;
(4)化合物III与式VI所示的3-甲氧基卤代苯经乌尔曼C-N偶联反应生成来特莫韦LMV;
反应式如下:
其中R1选自Br、I或Cl,进一步优先为Br;R为烷基、芳基或苄基。作为优选,所述的芳基为苯基或萘基。作为优选,所述的烷基为1-6个碳原子的烷基。作为进一步的优选,所述R为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基或苄基。更进一步优选R为甲基。
所述步骤(1)-(3)的操作细节如上所述,在此不再赘述。
作为优选,所述步骤(4)具体按照如下实施:在反应容器中加入化合物III、式VI所示的3-甲氧基卤代苯、草酰胺配体、催化剂、缚酸剂和有机溶剂,控温充分反应,得到来特莫韦;所述催化剂选自Cu(OAc)2、CuI,CuCl,CuCO3,CuBr,NiCl2,Cu2O,Cu(OTf)2,CuSO4中的一种或几种;所述缚酸剂选自叔丁醇钾,氢氧化钾,碳酸钾,叔丁醇钠、氢氧化钠、碳酸钠、磷酸钾、磷酸二氢钾中的一种或几种。
作为进一步的优选,步骤(4)中,所述催化剂选自碘化亚铜。
作为进一步的优选,步骤(4)中,所述有机溶剂选自:乙醇、甲醇、乙腈、甲苯、二氧六环、THF、MTBE、氯苯、二氯甲烷中的一种或几种,更进一步优选为乙醇。
作为进一步的优选,步骤(4)中,所述缚酸剂选自磷酸钾。
作为进一步的优选,步骤(4)中,化合物III、式VI所示的3-甲氧基卤代苯、草酰胺配体、催化剂、缚酸剂的投料摩尔比为1:2-3:0.1-1:0.1-1:1-3,更进一步优选化合物III、草酰胺配体的投料摩尔比为1:0.1-0.3,草酰胺配体与催化剂的摩尔比为1:1;有机溶剂的用量以化合物III的质量计为10-15mL/g。
作为优选,步骤(4)中,所述反应需在氮气气氛下进行,故需先用氮气充分置换反应器内的空气,为实现充分置换,氮气置换的操作可实施多次;所述反应温度为40-90℃;所示反应时间为24-36h。所述反应结束后需进行后处理操作,具体为:反应结束后,反应体系中加入MTBE,之后用水洗涤,取水相,水相再用MTBE充分洗涤,然后加入二氯甲烷,使用盐酸调节水相为pH=7,分液得到有机相,通过硫酸钠进行干燥,并进行浓缩、旋干得到来特莫韦。
同现有来特莫韦制备方法相比,本发明具有如下的技术优势:
1、本发明的来特莫韦的全新中间体化合物II、III、IV,可用来制备来特莫韦关键中间体、来特莫韦及其盐或其类似物,基于该中间体化合物的来特莫韦制备路线具有成本低、收率高、更适于规模工业化的生产的优点;
2、本发明全新中间体化合物II比较容易与拆分剂结晶拆分得到相应的对映异构体,一次拆分即可达到99.9%的手性纯度,并且拆分过程中不需要添加晶种即可结晶,整体操作简单,拆分率高,成本低;
3、本发明的来特莫韦的制备方法,以化合物I为起始物料,在制备过程中先引入哌嗪片段,拆分后,再引入苯甲醚片段,成本低,收率高,并且避免生成亚膦胺中间体,排除了副生物三苯氧磷的生成。因此,本发明的生产工艺更利于大规模工业化生产。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将进一步通过实施例对技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。所用试剂未注明生产厂商者,均为可以通过市售购买获得或者根据公知文献制备的常规产品。
本发明实施例使用的化合物I中,R为甲基,其按照WO2006133822A的方法制得。相应地,实施例中的化合物II、III、IV、V中,R也为甲基。
实施例1:化合物II的制备
(1)室温下,称取188g无水哌嗪固体,663.8g DBU液体,倒入1.5LDCM,搅拌溶清,氮气置换3-4次。缓慢滴加470g化合物I的1LDCM溶液,室温下保温搅拌24h。反应液中加入水洗涤一次,静置分层,分去水层,有机层旋干得到471.9g化合物II,产率90%。
化合物II的高分辨质谱为:ESI-HRMS:m/z=481.1864[M+H]+;H1NMR(400MHz,CDCl3):δ7.40(dd,J=8.6,1.7Hz,1H),7.09(m,1H),7.01(dd,J=13.4,5.1Hz,2H),6.86(td,J=7.8,4.8Hz,1H),6.74(d,J=7.0Hz,1H),4.84(t,J=7.2Hz,1H),3.89(s,3H),3.66(s,3H),3.39(m,4H),3.03–2.84(m,1H),2.75–2.46(m,5H),1.81(s,1H)。
通过手性HPLC方法进行测定其旋光性,具体测试方法为:仪器:高效液相色谱;柱:色谱柱,150mm*4.6mm,5μm;洗脱剂A:正己烷,洗脱剂B:乙醇;等度:10%B;流速:0.8mL/min;温度:25℃;UV检测:260nm,采集时间25min。根据RT=14.4min(S构型),RT=19.9min(R构型)确定手性纯度,结果显示R/S=50:50。
(2)室温下,称取94g无水哌嗪固体,258g DIPEA液体,倒入2.5L甲苯,搅拌溶清,氮气置换3-4次。缓慢滴加470g化合物I的1.5L甲苯溶液,110℃下保温搅拌1h。反应液中加入水洗涤一次,静置分层,分去水层,有机层旋干得到419.5g化合物II,产率80%。
(3)室温下,称取376g无水哌嗪固体,662g TEA液体,倒入3.5L THF,搅拌溶清,氮气置换3-4次。缓慢滴加470g化合物I的1.5L THF溶液,65℃下保温搅拌12h。反应液中加入水洗涤一次,静置分层,分去水层,有机层旋干得到439.7g化合物II,产率86%。
(4)室温下,称取94g无水哌嗪固体,663.8g DBU液体,倒入3L MTBE,搅拌溶清,氮气置换3-4次。缓慢滴加470g化合物I的2L MTBE溶液,55℃下保温搅拌12h。反应液中加入水洗涤一次,静置分层,分去水层,有机E层旋干得到435.2g化合物II,产率83%。
(5)室温下,称取94g无水哌嗪固体,663.8g DBU液体,倒入4L二氧六环,搅拌溶清,氮气置换3-4次。缓慢滴加470g化合物I的4.9L二氧六环溶液,100℃下保温搅拌3h。反应液中加入水洗涤一次,静置分层,分去水层,有机层旋干,得到429.9g化合物II,产率82%。
(6)室温下,称取142g无水哌嗪固体、663.8g DBU液体,倒入1.5LDCM,搅拌溶清,氮气置换3-4次。缓慢滴加470g化合物I的1LDCM溶液,室温下保温搅拌24h。反应液中加入水洗涤一次,静置分层,分去水层,有机层旋干得到456.1g化合物II,产率87%。
(7)室温下,称取235g无水哌嗪固体,663.8g DBU液体,倒入1.5LDCM,搅拌溶清,氮气置换3-4次。缓慢滴加470g化合物I的1LDCM溶液,室温下保温搅拌24h。反应液中加入水洗涤一次,静置分层,分去水层,有机层旋干得到461.4g化合物II,产率88%。
实施例2:化合物III的制备
(1)室温下,称取15g实施例1的(1)制备的化合物II,11g D-DTTA,加入150mL THF溶解,搅拌下缓慢滴加120mL水,搅拌直至析出固体,缓慢降温至5℃保温2h,过滤,得化合物III的盐固体。化合物III的盐固体用5倍体积二氯甲烷和5倍体积碳酸氢钠饱和水溶液溶解,然后分液,取有机相旋干,得6.3g化合物III游离碱。产率42%,手性纯度99.9%。
化合物III的高分辨质谱为:ESI-HRMS:m/z=481.1863[M+H]+;H1NMR(400MHz,CDCl3):δ7.40(dd,J=8.6,1.7Hz,1H),7.09(m,1H),7.01(dd,J=13.4,5.1Hz,2H),6.86(td,J=7.8,4.8Hz,1H),6.74(d,J=7.0Hz,1H),4.84(t,J=7.2Hz,1H),3.89(s,3H),3.66(s,3H),3.39(m,4H),3.03–2.84(m,1H),2.75–2.46(m,5H), 1.81(s,1H)。
产物的手性纯度通过手性HPLC方法进行测定,具体测试方法为:仪器:高效液相色谱;柱:色谱柱,150mm*4.6mm,5μm;洗脱剂A:正己烷,洗脱剂B:乙醇;等度:10%B;流速:0.8mL/min;温度:25℃;UV检测:260nm,采集时间25min。根据RT=14.4min(S构型),RT=19.9min(R构型)确定手性纯度。
(2)室温下,称取15g实施例1的(1)制备的化合物II,5g D-酒石酸,加入150mL乙腈溶解,搅拌下缓慢滴加120mL水,搅拌直至析出固体,缓慢降温至5℃保温2h,过滤,得化合物III的盐固体。化合物III的盐固体用5倍体积二氯甲烷和5倍体积碳酸氢钠饱和水溶液溶解,然后分液,取有机相旋干,得6.0g化合物III游离碱。产率40%,手性纯度99.7%。
(3)室温下,称取15g实施例1的(1)制备的化合物II,10g D-樟脑磺酸,加入450mL二氧六环溶解,搅拌下缓慢滴加120mL水,搅拌直至析出固体,缓慢降温至5℃保温2h,过滤,得化合物III的盐固体。化合物III的盐固体用5倍体积二氯甲烷和5倍体积碳酸氢钠饱和水溶液溶解,然后分液,取有机相旋干,得5.7g化合物III游离碱。产率38%,手性纯度99.7%。
(4)室温下,称取15g实施例1的(1)制备的化合物II,7.2g D-DTTA,加入75mL乙酸乙酯溶解,搅拌下缓慢滴加120mL庚烷,搅拌直至析出固体,缓慢降温至7℃保温1h,过滤,得化合物III的盐固体。化合物III的盐固体用5倍体积二氯甲烷和5倍体积碳酸氢钠饱和水溶液溶解,然后分液,取有机相旋干,得5.4g化合物III游离碱。产率36%,手性纯度99.8%。
(5)室温下,称取15g实施例1的(1)制备的化合物II,19.2g D-酒石酸二乙酯,加入150mL乙酸乙酯溶解,搅拌下缓慢滴加120mL甲苯,搅拌直至析出固体,缓慢降温至0℃保温4h,过滤,得化合物III的盐固体。化合物III的盐固体用5倍体积二氯甲烷和5倍体积碳酸氢钠饱和水溶液溶解,然后分液,取有机相旋干,得4.8g化合物III游离碱。产率32%,手性纯度99.6%。
(6)室温下,称取15g实施例1的(1)制备的化合物II,17g D-DTTA,加入150mL THF溶解,搅拌下缓慢滴加120mL水,搅拌直至析出固体,缓慢降温至5℃保温2h,过滤,得化合物III的盐固体。化合物III的盐固体用5倍体积二氯甲烷和5倍体积碳酸氢钠饱和水溶液溶解,然后分液,取有机相旋干,得6.15g化合物III游离碱。产率41%,手性纯度99.8%。
实施例3:化合物V的制备
(1)称取5g按照实施例2的(1)方法制备的化合物III游离碱,50mL乙腈,3.2g 3-甲氧基苯硼酸,1.9g醋酸铜,2.2g三乙胺,升温至80℃搅拌反应1h,之后TLC点板,确认反应结束后,加入100mL水淬灭反应,之后再用100mL*3EtOAc萃取水相,合并有机相,旋干得到5.8g化合物V。产率95%,手性纯度99.9%。
化合物V的高分辨质谱为:ESI-HRMS:m/z=587.2275[(M+H)]+1H NMR(400MHz,CDCl3)δ7.39(d,J=8.6Hz,1H),7.14(t,J=8.2Hz,2H),7.06–6.95(m,2H),6.88(td,J=7.9,4.9Hz,1H),6.76(dd,J=7.6,1.4Hz,1H),6.46(dd,J=8.2,2.0Hz,1H),6.42(dd,J=8.1,2.1Hz,1H),6.37(t,J=2.3Hz,1H),4.86(t,J=7.3Hz,1H),3.90(s,3H),3.77(s,3H),3.68(s,3H),3.66–3.41(m,4H),3.07–2.70(m,5H),2.63(dd,J=14.6,7.8Hz,1H).
(2)称取5g按照实施例2的(1)方法制备的化合物III游离碱,150mL二氯甲烷,3.2g 3-甲氧基苯硼酸,1.2g碳酸铜,3.0g DBU,升温至40℃搅拌反应24h,之后TLC点板,确认反应结束后,加入100mL水淬灭反应,之后再用100mL*3EtOAc萃取水相,合并有机相,旋干得到5.7g化合物V。产率93%,手性纯度99.8%。
(3)称取5g按照实施例2的(1)方法制备的化合物III游离碱,100mL THF,3.2g 3-甲氧基苯硼酸,10.9g Cu(OTf)2,1.6g吡啶,升温至60℃搅拌反应12h,之后TLC点板,确认反应结束后,加入100mL水淬灭反应,之后再用100mL*3EtOAc萃取水相,合并有机相,旋干得到5.5g化合物V。产率90%,手性纯度99.5%。
(4)称取5g按照实施例2的(1)方法制备的化合物III游离碱,25mL二氧六环,3.2g 3-甲氧基苯硼酸,3.8g碘化亚铜,4.6g DMAP,升温至100℃搅拌反应3h,之后TLC点板,确认反应结束后,加入100mL水淬灭反应,之后再用100mL*3EtOAc萃取水相,合并有机相,旋干得到5.3g化合物V。产率87%,手性纯度99.6%。
(5)称取5g按照实施例2的(1)方法制备的化合物III游离碱,200mL MTBE,3.2g 3-甲氧基苯硼酸,0.25g醋酸铜,2,6-二甲基吡啶1.6g,升温至50℃搅拌反应16h,之后TLC点板,确认反应结束后,加入100mL水淬灭反应,之后再用100mL*3EtOAc萃取水相,合并有机相,旋干得到5.2g化合物V。产率85%,手性纯度99.8%。
(6)称取5g按照实施例2的(1)方法制备的化合物III游离碱,50mL乙腈,2.7g 3-甲氧基苯硼酸,1.52g醋酸铜,2.2g三乙胺,升温至80℃搅拌反应1h,之后TLC点板,确认反应结束后,加入100mL水淬灭反应,之后再用100mL*3EtOAc萃取水相,合并有机相,旋干得到5.6g化合物V。产率92%,手性纯度99.8%。
(7)称取5g按照实施例2的(1)方法制备的化合物III游离碱,50mL乙腈,3.45g 3-甲氧基苯硼酸,2.15g醋酸铜,2.2g三乙胺,升温至80℃搅拌反应1h,之后TLC点板,确认反应结束后,加入100mL水淬灭反应,之后再用100mL*3EtOAc萃取水相,合并有机相,旋干得到5.7g化合物V。产率94%,手性纯度99.8%。
实施例4:水解步骤
称取5.5g按照实施例3的(1)方法制备的化合物V溶解于100mL的1,4-二噁烷和1N(31.2mL) 的氢氧化钠溶液,并将其在室温搅拌3小时。随后,使用1N盐酸(约17mL)将pH调节到7.5,加入80mL MIBK,接着使用1N盐酸(约2mL)将pH再调节到7.0。分离所述相,并将有机相通过硫酸钠进行干燥和浓缩。将所述残余物溶解于40mL乙醇并浓缩,接着再次溶解于40mL乙醇并在高真空下在50℃浓缩和干燥。使用吸入的氮气将固化的泡沫在真空干燥箱中在45℃干燥18小时。得到4.7g来特莫韦LMV,产量85%,HPLC纯度99.7%,手性纯度99.9%。
实施例5:化合物LMV的制备
(1)称取100g按照实施例2的(1)方法制备的化合物III游离碱、78g间溴苯甲醚液体、7.9g CuI固体、10.3g草酰胺配体、88.4g磷酸钾,倒入1L无水乙醇,氮气置换3-4次,升温至78℃,保温反应33h,TLC点板确认反应结束,加入1LMTBE之后用水洗涤,取水相,再用MTBE洗涤水相2次。加入1L二氯甲烷然后使用1N盐酸调节水相为pH=7.0,分液得到有机相,通过硫酸钠进行干燥,并进行浓缩,旋干得到107.2g化合物LMV,产率90%,HPLC纯度99.8%,手性纯度99.9%。
化合物LMV的高分辨质谱为:ESI-HRMS:m/z=571[(M-H)]-1H NMR(300MHz,d6-DMSO):δ=7.53(d,2J=8.4,1H),7.41(brs,1H),7.22(d,2J=8.5,1H),7.09-7.01(m,2H),6.86(m,2H),6.45(dd,2J=8.2,3J=1.8,1H),6.39-6.34(m,2H),4.87(t,2J=7.3,1H),3.79(brs,3H),3.68(s,3H),3.50-3.38(m,4H),2.96-2.75(m,5H),2.45-2.40(m,1H)。
(2)称取100g按照实施例2的(1)方法制备的化合物III游离碱、78g间溴苯甲醚液体、7.9g CuI固体、10.3g草酰胺配体、46.7g叔丁醇钾,倒入700mL无水叔丁醇,氮气置换3-4次,升温至80℃,保温反应24h,TLC点板确认反应结束,加入1LMTBE之后用水洗涤,取水相,再用MTBE洗涤水相2次。加入1L二氯甲烷然后使用1N盐酸调节水相为pH=7.0,分液得到有机相,通过硫酸钠进行干燥,并进行浓缩。经旋干得到101.2g化合物LMV,产率85%,HPLC纯度99.6%,手性纯度99.7%。
(3)称取100g按照实施例2的(1)方法制备的化合物III游离碱、78g间溴苯甲醚液体、23.8g CuI固体、31g草酰胺配体、35g氢氧化钾,倒入1.5L无水甲醇,氮气置换3-4次,升温至65℃,保温反应28h,TLC点板确认反应结束,加入1LMTBE之后用水洗涤,取水相,再用MTBE洗涤水相2次。加入1L二氯甲烷然后使用1N盐酸调节水相为pH=7.0,分液得到有机相,通过硫酸钠进行干燥,并进行浓缩。经旋干得到96.5g化合物LMV,产率81%,HPLC纯度99.5%,手性纯度99.6%。
(4)称取100g按照实施例2的(1)方法制备的化合物III游离碱、116.8g间溴苯甲醚液体、5.9g CuBr固体、51.6g草酰胺配体、88.4g磷酸钾,倒入1L无水乙醇,氮气置换3-4次,升温至78℃,保温反应33h,TLC点板确认反应结束,加入1LMTBE之后用水洗涤,取水相,再用MTBE洗涤水相2次。加入1L二氯甲烷然后使用1N盐酸调节水相为pH=7.0,分液得到有机相,通过硫酸钠进行干燥,并进行浓缩。经旋干得到92.9g化合物LMV,产率78%,HPLC纯度99.5%,手性纯度99.6%。
(5)称取100g按照实施例2的(1)方法制备的化合物III游离碱、116.8g间碘苯甲醚液体、4.1g CuCl 固体、41.3g草酰胺配体、88.4g磷酸钾,倒入1L无水乙醇,氮气置换3-4次,升温至78℃,保温反应33h,TLC点板确认反应结束,加入1LMTBE之后用水洗涤,取水相,再用MTBE洗涤水相2次。加入1L二氯甲烷然后使用1N盐酸调节水相为pH=7.0,分液得到有机相,通过硫酸钠进行干燥,并进行浓缩。经旋干得到90.5g化合物LMV,产率76%,HPLC纯度99.6%,手性纯度99.5%。
(6)称取100g按照实施例2的(1)方法制备的化合物III游离碱、78g间溴苯甲醚液体、3.95g CuI固体、5.15g草酰胺配体、88.4g磷酸钾,倒入1L无水乙醇,氮气置换3-4次,升温至78℃,保温反应33h,TLC点板确认反应结束,加入1LMTBE之后用水洗涤,取水相,再用MTBE洗涤水相2次。加入1L二氯甲烷然后使用1N盐酸调节水相为pH=7.0,分液得到有机相,通过硫酸钠进行干燥,并进行浓缩。经旋干得到98.7g化合物LMV,产率83%,HPLC纯度99.7%,手性纯度99.8%。
(7)称取100g按照实施例2的(1)方法制备的化合物III游离碱、78g间溴苯甲醚液体、11.85g CuI固体、15.45g草酰胺配体、88.4g磷酸钾,倒入1L无水乙醇,氮气置换3-4次,升温至78℃,保温反应33h,TLC点板确认反应结束,加入1LMTBE之后用水洗涤,取水相,再用MTBE洗涤水相2次。加入1L二氯甲烷然后使用1N盐酸调节水相为pH=7.0,分液得到有机相,通过硫酸钠进行干燥,并进行浓缩。经旋干得到103.6g化合物LMV,产率87%,HPLC纯度99.6%,手性纯度99.8%。
实施例6:化合物IV的制备
(1)室温下,称取15g实施例1的(1)制备的化合物II,11gL-DTTA,加入150mL THF溶解,搅拌下缓慢滴加120mL水,搅拌直至析出固体,缓慢降温至5℃保温2h,过滤,得化合物IV的盐固体。化合物IV的盐固体用5倍体积二氯甲烷和5倍体积碳酸氢钠饱和水溶液溶解,然后分液,取有机相旋干,得到6.0g化合物IV游离碱。产率41%,手性纯度99.8%。
化合物IV的高分辨质谱为:ESI-HRMS:m/z=481.1862[M+H]+;H1NMR(400MHz,CDCl3):δ7.40(dd,J=8.6,1.7Hz,1H),7.09(m,1H),7.01(dd,J=13.4,5.1Hz,2H),6.86(td,J=7.8,4.8Hz,1H),6.74(d,J=7.0Hz,1H),4.84(t,J=7.2Hz,1H),3.89(s,3H),3.66(s,3H),3.39(m,4H),3.03–2.84(m,1H),2.75–2.46(m,5H),1.81(s,1H)。
化合物IV产物的手性纯度检测方法同实施例2。
(2)室温下,称取15g实施例1的(1)制备的化合物II、5gL-酒石酸,加入150mL乙腈溶解,搅拌下缓慢滴加120mL水,搅拌直至析出固体,缓慢降温至5℃保温2h,过滤,得化合物IV的盐固体。化合物IV的盐固体用5倍体积二氯甲烷和5倍体积碳酸氢钠饱和水溶液溶解,然后分液,取有机相旋干,得到5.8g化合物IV游离碱。产率39%,手性纯度99.8%。
(3)室温下,称取15g实施例1的(1)制备的化合物II、10g L-樟脑磺酸,加入450mL二氧六环溶解,搅拌下缓慢滴加120mL水,搅拌直至析出固体,缓慢降温至5℃保温2h,过滤,得化合物IV的盐 固体。化合物IV的盐固体用5倍体积二氯甲烷和5倍体积碳酸氢钠饱和水溶液溶解,然后分液,取有机相旋干,得到5.5g化合物IV游离碱。产率37%,手性纯度99.7%。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种化合物II,或者它的盐、溶剂化物或水合物;
    其中R为烷基、芳基或苄基,其中*代表手性碳原子,该化合物II无旋光性。
  2. 如权利要求1所述的化合物II,其特征在于:所述的芳基为苯基或萘基;所述的烷基为1-6个碳原子的烷基。
  3. 如权利要求1所述的化合物II,其特征在于:所述R为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基或苄基。
  4. 一种如权利要求1-3之一所述的化合物II的制备方法,其特征在于所述制备方法包括如下步骤:
    (1)在惰性气氛和惰性溶剂中,化合物I和无水哌嗪在碱的存在下进行反应,得到化合物II;反应式如下:
    式I中,R的定义同式II。
  5. 化合物III或IV,或者它们各自的盐、溶剂化物或水合物;
    其中R为烷基、芳基或苄基。
  6. 如权利要求5所述的化合物III或IV,其特征在于:所述的芳基为苯基或萘基;所述的烷基为1-6个碳原子的烷基;优选所述R为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基或苄基。
  7. 一种如权利要求5或6所述的化合物III或化合物IV的制备方法,其特征在于所述制备方法包括如下步骤:
    (2)将化合物II在相应的拆分剂A作用下,成盐析出,过滤得到化合物III的盐;所述拆分剂A为:D-酒石酸,D-苹果酸,D-樟脑酸,D-樟脑磺酸,双丙酮-D-古龙酸,D-扁桃酸,D-二苯甲酰酒石酸一水物,D-二苯甲酰酒石酸无水物,D-二对甲基苯甲酰酒石酸一水物,D-二对甲基苯甲酰酒石酸无水物(D-DTTA),D-酒石酸二乙酯中的一种或几种;
    或者,将化合物II在相应的拆分剂B作用下,成盐析出,过滤得到化合物IV的盐;所述拆分剂B为:L-酒石酸,L-苹果酸,L-樟脑酸,L-樟脑磺酸,双丙酮-L-古龙酸,L-扁桃酸,L-二苯甲酰酒石酸一水物,L-二苯甲酰酒石酸无水物,L-二对甲基苯甲酰酒石酸一水物,L-二对甲基苯甲酰酒石酸无水物,L-酒石酸二乙酯中的一种或几种;
    (3)将步骤(2)得到的化合物III的盐或化合物IV的盐进行游离得相应的化合物III或化合物IV;
    反应式如下:
  8. 一种化合物V的制备方法,其特征在于所述制备方法包括如下步骤:
    (4)化合物III和3-甲氧基苯硼酸利用Chan-Lam偶联反应得到化合物V;
    反应式如下:
    化合物V中,R的定义同化合物III。
  9. 一种来特莫韦的制备方法,包括依次进行的如下步骤:
    (1)在惰性气氛和惰性溶剂中,化合物I和无水哌嗪在碱的存在下进行反应,得到化合物II;
    (2)将化合物II在相应的拆分剂作用下,成盐析出,过滤得到化合物III的盐;
    (3)将化合物III的盐进行游离得化合物III;
    (4)化合物III和3-甲氧基苯硼酸经Chan-Lam偶联反应得到化合物V;
    (5)化合物V经水解得到来特莫韦LMV;
    反应式如下:
    其中R为烷基、芳基或苄基。
  10. 一种来特莫韦的制备方法,其特征在于所述制备方法包括依次进行的以下步骤:
    (1)在惰性气氛和惰性溶剂中,化合物I和无水哌嗪在碱的存在下进行反应,得到化合物II;
    (2)将化合物II在相应的拆分剂作用下,成盐析出,过滤得到化合物III的盐;
    (3)将化合物III的盐进行游离得化合物III;
    (4)化合物III与式VI所示的3-甲氧基卤代苯经乌尔曼C-N偶联反应生成来特莫韦LMV;反应式如下:
    其中R1选自Br、I或Cl,R为烷基、芳基或苄基。
PCT/CN2023/095672 2022-06-02 2023-05-23 来特莫韦中间体化合物及其制备方法和应用 WO2023231826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210625868.5A CN115322157B (zh) 2022-06-02 2022-06-02 来特莫韦中间体化合物及其制备方法和应用
CN202210625868.5 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023231826A1 true WO2023231826A1 (zh) 2023-12-07

Family

ID=83916099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095672 WO2023231826A1 (zh) 2022-06-02 2023-05-23 来特莫韦中间体化合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115322157B (zh)
WO (1) WO2023231826A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322157B (zh) * 2022-06-02 2023-12-05 浙江车头制药股份有限公司 来特莫韦中间体化合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784390A (zh) * 2003-05-02 2006-06-07 拜耳医药保健股份公司 具有抗病毒性能的取代二氢喹唑啉
CN101213180A (zh) * 2005-06-15 2008-07-02 艾库里斯有限及两合公司 制备二氢喹唑啉的方法
CN104144678A (zh) * 2012-02-29 2014-11-12 艾库里斯有限及两合公司 含有抗病毒活性二氢喹唑啉衍生物的药物制剂
WO2016109360A1 (en) * 2014-12-29 2016-07-07 Auspex Pharmaceuticals, Inc. Dihydroquinazoline inhibitors of viral terminase
CN115322157A (zh) * 2022-06-02 2022-11-11 浙江车头制药股份有限公司 来特莫韦中间体化合物及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392353B2 (en) * 2015-11-24 2019-08-27 Merck Sharp & Dohme Corp. Processes for making substituted quinazoline compounds using hydrogen bonding catalysts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784390A (zh) * 2003-05-02 2006-06-07 拜耳医药保健股份公司 具有抗病毒性能的取代二氢喹唑啉
CN101213180A (zh) * 2005-06-15 2008-07-02 艾库里斯有限及两合公司 制备二氢喹唑啉的方法
CN104144678A (zh) * 2012-02-29 2014-11-12 艾库里斯有限及两合公司 含有抗病毒活性二氢喹唑啉衍生物的药物制剂
WO2016109360A1 (en) * 2014-12-29 2016-07-07 Auspex Pharmaceuticals, Inc. Dihydroquinazoline inhibitors of viral terminase
CN115322157A (zh) * 2022-06-02 2022-11-11 浙江车头制药股份有限公司 来特莫韦中间体化合物及其制备方法和应用

Also Published As

Publication number Publication date
CN115322157A (zh) 2022-11-11
CN115322157B (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
KR101440257B1 (ko) 약학적 활성 화합물의 제조에 사용되는 중간체의 제조 방법
TWI685486B (zh) 製備pde4抑制劑之方法
CN111592467B (zh) 尼拉帕尼中间体及其制备方法和用途和尼拉帕尼的合成方法
EP2712865B1 (en) Improved process for the preparation of ambrisentan
WO2019114811A1 (zh) 一种罗沙司他的合成方法及其中间体化合物
WO2023231826A1 (zh) 来特莫韦中间体化合物及其制备方法和应用
KR20200131241A (ko) 2종의 4-{[(2s)-2-{4-[5-클로로-2-(1h-1,2,3-트리아졸-1-일)페닐]-5-메톡시-2-옥소피리딘-1(2h)-일}부타노일]아미노}-2-플루오로벤즈아미드 유도체의 제조 방법
WO2013105100A1 (en) Processes for the preparation of 5-chloro-n-({(5s)-2-oxo-3-[4-(3-oxo-4-morpholinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophene-carboxamide and intermediates thereof
EP3649116A1 (en) A process for preparing alectinib or a pharmaceutically acceptable salt thereof
US20170267633A1 (en) Novel crystalline arylalkylamine compound and process for producing the same
US9771317B2 (en) Process for preparing lacosamide and related compounds
TW202210461A (zh) 一種(s)—2—胺基—3—(4—(2,3—二甲基吡啶—4—基)苯基)丙酸甲酯二酸鹽的製備方法
WO2015111085A2 (en) Processes for the preparation of eltrombopag and pharmaceutically acceptable salts, solvates and intermediates thereof
CN111793016A (zh) 一种拉罗替尼中间体的制备方法以及中间体化合物
JP2010090031A (ja) 二環性プロリン化合物の製造方法
NZ580271A (en) Process for making galantamine
KR100990046B1 (ko) 신규한 몬테루카스트 4-할로 벤질아민염 및 이를 이용한 몬테루카스트 나트륨염의 제조방법
WO2009047797A2 (en) Process for the preparation of perhydroisoindole derivative
CN107868033B (zh) 一种苯丙氨酸类化合物的制备方法
WO2015075749A1 (en) Novel processes for the preparation of vemurafenib
WO2021238965A1 (zh) (s)-2-氨基-3-(4-(2,3-二甲基吡啶-4-基)苯基丙酸甲酯及其盐的制备方法
CN114014864A (zh) 一种曲拉西利化合物的制备工艺
WO2012027951A1 (zh) 一种合成培南类药物的中间体及其制备方法和应用
WO2024094181A1 (zh) 通过非对映酒石酸酯拆分外消旋体制备非奈利酮的方法
WO2008124969A1 (fr) Méthode de préparation de rivastigmine et de ses intermédiaires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815010

Country of ref document: EP

Kind code of ref document: A1