WO2023228815A1 - Resin composition, cured product, antenna element and electronic component - Google Patents

Resin composition, cured product, antenna element and electronic component Download PDF

Info

Publication number
WO2023228815A1
WO2023228815A1 PCT/JP2023/018261 JP2023018261W WO2023228815A1 WO 2023228815 A1 WO2023228815 A1 WO 2023228815A1 JP 2023018261 W JP2023018261 W JP 2023018261W WO 2023228815 A1 WO2023228815 A1 WO 2023228815A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
resin
antenna
mass
Prior art date
Application number
PCT/JP2023/018261
Other languages
French (fr)
Japanese (ja)
Inventor
央 小笠原
斉 荒木
将也 壽慶
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023228815A1 publication Critical patent/WO2023228815A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • Typical materials for surface protection films and interlayer insulating films of semiconductor devices, insulating layers of organic electrolytic devices, and flattening films of TFT substrates include polyimide resins that have excellent heat resistance, electrical insulation, and the like.
  • semiconductor applications have expanded and performance has improved, efforts have been made to reduce costs and increase integration by increasing the efficiency of manufacturing processes. Therefore, attention is being focused on semiconductor devices that form multilayer metal rewiring.
  • insulating films are required to have a low dielectric loss tangent in order to reduce transmission loss.
  • One way to reduce the linear thermal expansion of an insulating film is to fill it with a high amount of inorganic particles.
  • an example of achieving low dielectric loss tangent and low linear thermal expansion by incorporating silica particles into polyimide made from an aliphatic diamine compound derived from dimer acid (dimer fatty acid), etc., which exhibits low dielectric loss tangent. Patent Document 1
  • Patent Document 2 shows a coating material with a low coefficient of linear thermal expansion by adding nanosilica having an average particle size of 0.1 ⁇ m or less.
  • the insulating films used in the above applications are required to have various thicknesses. Therefore, there is a need for a coating material that can form a thin film and whose thickness can be easily adjusted by changing the number of rotations during coating, rather than a sheet material that has a limited thickness.
  • a coating material that can form a thin film and whose thickness can be easily adjusted by changing the number of rotations during coating, rather than a sheet material that has a limited thickness.
  • Patent Document 1 it is difficult to create a uniform film due to agglomeration and thixotropy of silica particles.
  • Patent Document 2 there were problems in that the coefficient of linear thermal expansion was not sufficiently lowered due to the large specific surface area of nanosilica, and that the hydroxyl groups on the surface deteriorated the dielectric loss tangent.
  • the present invention relates to the following.
  • the component (A) contains a diamine residue represented by the following formula (1) and/or a diamine residue represented by the following formula (2),
  • the content of the component (B) in the resin composition is Bm (mass) and the content of the component (C) is Cm (mass)
  • the total content of diamine residues represented by formula (1) and diamine residues represented by formula (2) is 1 mol% or more and 30 mol% of the total diamine residues of the component (A) (100 mol%) % or less.
  • the component (C) is a glycol ester solvent, and the content of the component (C) is 40% by mass or more when the total solvent in the resin composition is 100% by mass [1] to [5] ]
  • the resin composition according to any one of the above.
  • the resin composition further contains a thermosetting resin as component (D), and the component (D) is selected from the group consisting of polyphenylene ether resin, maleimide resin, polybutadiene resin, and benzocyclobutene resin.
  • the resin composition according to any one of [1] to [7], which contains at least one type of resin.
  • An antenna element comprising at least one or more antenna wiring, a ground, and an insulating film that insulates between the ground and the antenna wiring,
  • the antenna wiring includes at least one type selected from the group consisting of a meandering loop antenna, a coiled loop antenna, a meandering monopole antenna, a meandering dipole antenna, and a microstrip antenna,
  • the exclusive area of each antenna part in the antenna wiring is 1000 mm 2 or less
  • An antenna element in which the insulating film is a cured product according to [9].
  • An electronic component including a semiconductor package including at least a semiconductor element, a rewiring layer, a sealing resin, a ground wiring, and an antenna wiring,
  • the redistribution layer includes copper wiring and an insulating film
  • the sealing resin is between the ground wiring and the antenna wiring
  • a resin composition that has excellent applicability to a substrate, a low dielectric loss tangent, and a low coefficient of linear thermal expansion, a cured product obtained from the resin composition, an insulating film, an antenna element, and an electronic component. It is something to do.
  • 1 is a schematic diagram of an example of a coplanar feeding type microstrip antenna, which is a type of planar antenna.
  • 1 is a schematic diagram of a cross section of an example of a semiconductor package including an IC chip (semiconductor element), a rewiring layer, a sealing resin, and an antenna element.
  • the resin composition of the present invention includes (A) a resin containing at least one type selected from the group consisting of polyimide, polybenzoxazole, precursors thereof, polyamide, and copolymers thereof; (B) inorganic particles with an average particle diameter of 150 nm or more and 5 ⁇ m or less, and (C) an ester solvent,
  • the component (A) contains a diamine residue of formula (1) and/or a diamine residue of formula (2), When the content of the component (B) is Bm (mass) and the content of the component (C) is Cm (mass), 0.1 ⁇ (Bm/Cm) ⁇ 3.0 is satisfied.
  • the resin composition of the present invention comprises a resin (hereinafter referred to as component (A)) containing at least one type selected from the group consisting of (A) polyimide, polybenzoxazole, precursors thereof, polyamide, and copolymers thereof. ).
  • component (A) containing at least one type selected from the group consisting of (A) polyimide, polybenzoxazole, precursors thereof, polyamide, and copolymers thereof.
  • a copolymer thereof refers to a copolymer obtained by copolymerizing two or more selected from the group consisting of polyimide, polybenzoxazole, their precursors, and polyamide.
  • the polyimide precursor is not particularly limited as long as it has a structure that becomes a polyimide having an imide ring by dehydration and ring closure.
  • polyimide precursors include those obtained by reacting tetracarboxylic acid, the corresponding tetracarboxylic dianhydride, or tetracarboxylic diester dichloride, etc. with diamine, the corresponding diisocyanate compound, or trimethylsilylated diamine, etc. , a tetracarboxylic acid and/or its derivative residue, and a diamine and/or its derivative residue.
  • the polyimide precursor include polyamic acid, polyamic acid ester, polyamic acid amide, and polyisoimide.
  • the polyimide is not particularly limited as long as it has an imide ring.
  • the polyimide include those obtained by dehydrating and ring-closing the above-mentioned polyamic acid, polyamic acid ester, polyamic acid amide, or polyisoimide by heating or reaction using an acid or a base. and/or a derivative residue thereof, and a diamine and/or a derivative residue thereof.
  • a copolymer can be obtained by adjusting the reaction time during the dehydration ring closure process, or by polymerizing polyimide and then polymerizing polyamic acid.
  • the polyamide is not particularly limited as long as it has an amide bond.
  • Examples of polyamides include those obtained by reacting dicarboxylic acids, corresponding dicarboxylic acid dichlorides, dicarboxylic acid active diesters, etc. with diamines, corresponding diisocyanate compounds, trimethylsilylated diamines, etc. It has an acid and/or its derivative residue and a diamine and/or its derivative residue.
  • the polybenzoxazole precursor is not particularly limited as long as it has a structure that becomes a polybenzoxazole having a benzoxazole ring upon dehydration and ring closure.
  • Examples of the polybenzoxazole precursor include those obtained by reacting a dicarboxylic acid, a corresponding dicarboxylic acid dichloride, or a dicarboxylic acid activated diester, with a bisaminophenol compound as a diamine, and It has an acid and/or its derivative residue and a bisaminophenol compound and/or its derivative residue.
  • the polybenzoxazole precursor include polyhydroxyamide.
  • Polybenzoxazole is not particularly limited as long as it has a benzoxazole ring.
  • Examples of polybenzoxazole include those obtained by dehydrating and ring-closing a dicarboxylic acid and a bisaminophenol compound as a diamine using polyphosphoric acid, and those obtained by subjecting the above polyhydroxyamide to heating or anhydrous phosphorus.
  • Examples include those obtained by dehydration and ring closure through a reaction using an acid, a base, a carbodiimide compound, etc., and have a dicarboxylic acid and/or its derivative residue and a bisaminophenol compound and/or its derivative residue.
  • a copolymer can be obtained by adjusting the reaction time during the dehydration ring closure process or by polymerizing polyamide after polymerizing polybenzoxazole.
  • the polyimide and/or polyimide precursor can contain the tetracarboxylic acid residue and/or its derivative residue described below.
  • the tetracarboxylic acid residue include aromatic tetracarboxylic acid, alicyclic tetracarboxylic acid, and aliphatic tetracarboxylic acid residues. These tetracarboxylic acid residues may have a heteroatom other than an oxygen atom in addition to the oxygen atom of the carboxy group.
  • tetracarboxylic acid residues and derivative residues thereof include butanetetracarboxylic acid, cyclopentanetetracarboxylic acid, pyromellitic acid, bicyclohexanetetracarboxylic acid, pentanetetracarboxylic acid, hexanetetracarboxylic acid, and cyclopropanetetracarboxylic acid.
  • the dicarboxylic acid residues and derivative residues thereof in the polyamide, polybenzoxazole, and polybenzoxazole precursor may contain tricarboxylic acid residues and/or derivative residues thereof.
  • dicarboxylic acid residues and tricarboxylic acid residues include residues of aromatic dicarboxylic acids, aromatic tricarboxylic acids, alicyclic dicarboxylic acids, alicyclic tricarboxylic acids, aliphatic dicarboxylic acids, and aliphatic tricarboxylic acids. It will be done.
  • These dicarboxylic acid residues and tricarboxylic acid residues may have a heteroatom other than an oxygen atom in addition to the oxygen atom of the carboxy group.
  • dicarboxylic acid residues and derivative residues thereof examples include phthalic acid, isophthalic acid, terephthalic acid, 4,4'-dicarboxybiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-dicarboxylic acid, and Carboxybiphenyl, 4,4'-benzophenonedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, hexane-1,6-dicarboxylic acid, succinic acid, or their dicarboxylic acid anhydrides, dicarboxylic acids Examples include, but are not limited to, residues such as acid chlorides, dicarboxylic acid active esters, or diformyl compounds.
  • tricarboxylic acid residues and derivative residues thereof include 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 2,4,5-benzophenonetricarboxylic acid, 2,4,4' - biphenyltricarboxylic acid or 3,3',4'-tricarboxydiphenyl ether, 1,2,4-cyclohexanetricarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid or their tricarboxylic acid anhydrides, tricarboxylic acid chlorides, Examples include, but are not limited to, residues such as tricarboxylic acid active esters or diformyl monocarboxylic acid.
  • diamine residues and derivative residues thereof include residues of aromatic diamines, bisaminophenol compounds, alicyclic diamines, alicyclic dihydroxydiamines, aliphatic diamines, and aliphatic dihydroxydiamines. These diamine residues and their derivative residues may have a hetero atom in addition to the nitrogen atom and oxygen atom that the amino group and its derivative have.
  • diamine residues, bisaminophenol compound residues, and derivative residues thereof examples include 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfone, 4,4' -diaminodiphenyl sulfide, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,6-diaminotoluene, benzidine, 3,3'-dimethylbenzidine, 3,3' -dimethoxybenzidine, o-tolidine, 4,4''-diaminotaphenyl, 1,5-diaminonaphthalene, 2,5-diaminopyridine, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 1,2- Cyclohexan
  • Component (A) contains a diamine residue of formula (1) and/or a diamine residue of formula (2).
  • the diamine residue of formula (1) or the diamine residue of formula (2) has a structure having a skeleton derived from dimer acid, which is a dimer of unsaturated fatty acids such as linoleic acid or oleic acid, and the resulting curing
  • a structure containing no double bond is preferred from the viewpoint of product reliability, and a structure represented by formula (3) is particularly preferred from the viewpoint of economical efficiency and elongation of the resulting cured product.
  • diamines having the structure represented by formula (3) include “Versamine (registered trademark)” 551 and “Versamine (registered trademark)” 552 manufactured by BASF Corporation as commercially available dimer diamines. ”, “Priamine (registered trademark)” 1073, “Priamine (registered trademark)” 1074, and “Priamine (registered trademark) 1075” manufactured by Croda Japan Co., Ltd.
  • trimer triamine and dimer diamine may also be used.
  • Commercially available products of trimer triamine and dimer diamine include "Priamine (registered trademark)” 1071 manufactured by Croda Japan Co., Ltd.
  • Component (A) contains a total of 1 mol% or more and 30 mol% or less of diamine residues of formula (1) and diamine residues of formula (2) out of 100 mol% of all diamine residues of component (A).
  • the content is preferably 1 mol% or more and 15 mol% or less.
  • component contains a total of 1 mol % or more of the diamine residue of formula (1) and the diamine residue of formula (2) in 100 mol % of the total diamine residues of component (A), so that the ratio The dielectric constant and dielectric loss tangent can be lowered.
  • component (A) containing a total of 30 mol% or less of diamine residues of formula (1) and diamine residues of formula (2) in 100 mol% of all diamine residues of component (A), , the coefficient of linear thermal expansion can be lowered.
  • component (A) is used to terminate the main chain with an end-capping agent such as a monoamine, an acid anhydride, a monocarboxylic acid, a monoacid salt compound, or a monoactive ester compound. It is preferable to seal with.
  • an end capping agent such as a monoamine, an acid anhydride, a monocarboxylic acid, a monoacid salt compound, or a monoactive ester compound. It is preferable to seal with.
  • an end capping agent having a hydroxyl group, hydroxyl group, sulfonic acid group, thiol group, vinyl group, ethynyl group, or allyl group the solubility of the resin in a solvent can be improved.
  • the mechanical properties of the resulting cured product can be easily adjusted to a preferred range.
  • the introduction ratio of the terminal capping agent is preferably in order to prevent the molecular weight of component (A) from increasing and the solubility in the solvent to decrease with respect to 100 mole parts of the total amine components of component (A).
  • the amount is 0.1 part by mole or more, particularly preferably 5 parts by mole or more.
  • the introduction ratio of the terminal capping agent is preferably 60 parts by mole or less, particularly preferably 50 parts by mole or less. be.
  • a plurality of different terminal groups may be introduced by reacting a plurality of terminal capping agents.
  • monoamine acid anhydride, monocarboxylic acid, monoacid chloride compound, and monoactive ester compound, compounds described in Patent No. 6740903 [0038] to [0042] can be used.
  • the terminal capping agent introduced into the component (A) can be used in gas profile analysis (GC), pyrolysis gas profile (PGC), infrared spectrum and/or NMR measurement. can be easily detected.
  • GC gas profile analysis
  • PLC pyrolysis gas profile
  • NMR infrared spectrum
  • the weight average molecular weight of component (A) is preferably 5,000 or more and 100,000 or less. If the weight average molecular weight is 8,000 or more, the mechanical properties of the cured product after curing can be improved. More preferably, the weight average molecular weight is 12,000 or more. On the other hand, if the weight average molecular weight is 100,000 or less, solubility in organic solvents can be improved, and if the weight average molecular weight is 50,000 or less, the viscosity when dissolved in organic solvents can be adjusted to an appropriate range. This is preferable because it allows
  • the weight average molecular weight (Mw) can be confirmed using GPC (gel permeation chromatography). For example, it can be determined by measuring the developing solvent as N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as NMP) and converting it into polystyrene. Moreover, when containing two or more types of resin as (A) resin, it is sufficient if the weight average molecular weight of at least one type is within the above range.
  • NMP N-methyl-2-pyrrolidone
  • the resin composition of the present invention contains (B) inorganic particles having an average particle diameter of 150 nm or more and 5 ⁇ m or less (hereinafter sometimes referred to as component (B)).
  • component (B) inorganic particles having an average particle diameter of 150 nm or more and 5 ⁇ m or less.
  • Inorganic particle materials include silica, hollow silica, alumina, titania, silicon nitride, boron nitride, aluminum nitride, iron oxide, glass, and other metal oxides, metal nitrides, metal carbonates, and metal sulfates such as barium sulfate. These can be used alone or in combination of two or more. Among these, silica can be preferably used because of its low linear thermal expansion, low dielectric loss tangent, and low moisture absorption.
  • the average particle diameter of component (B) is 5 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1 ⁇ m or less, from the viewpoint of suppressing aggregates and improving coating properties.
  • the average particle diameter is 150 nm or more, preferably 300 nm or more.
  • the value of the median diameter (d 50 ) is adopted.
  • the above average particle diameter can be measured using a laser diffraction scattering type particle size distribution measuring device.
  • the component (B) is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and even more preferably a surface-treated product with a silane coupling agent.
  • This improves dispersibility and coatability when blended into a resin composition.
  • the coupling agent include a silane coupling agent, a titanium coupling agent, and an aluminum coupling agent.
  • the silane coupling agent include methacrylsilane, acrylicsilane, aminosilane, phenylaminosilane, imidazolesilane, vinylsilane, and epoxysilane, with aminosilane and phenylaminosilane being more preferred.
  • the content of component (B) is preferably 50% by mass or more, more preferably 60% by mass from the viewpoint of low linear thermal expansion and low dielectric loss tangent, when the solid content in the resin composition is 100% by mass. That's all.
  • the content is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the solid content refers to the components of the resin composition excluding the solvent.
  • the resin composition of the present invention contains (C) an ester solvent (hereinafter sometimes referred to as component (C)).
  • component (C) is a solvent having an ester bond and a molecular weight of less than 1000.
  • component (C) is ethyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, amyl acetate, n-propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate, 3-methyl-3-methoxy
  • Examples include, but are not limited to, butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, butyl carbitol acetate, ethyl carbitol acetate, etc. isn't it.
  • the resin composition may contain these ester solvents alone or in combination of two or more. Further, component (C) is preferably a linear ester solvent.
  • component (C) contains a glycol ester solvent. Moreover, it is more preferable that component (C) consists only of a glycol ester solvent.
  • a glycol ester solvent refers to a solvent having a structure in which one or both of the hydroxyl groups of glycol are esterified.
  • component (C) is preferably alkylene glycol monoalkyl ether acetate, more preferably ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, or propylene glycol monoethyl ether acetate.
  • the content of the component (C) is preferably 40% by mass or more, more preferably 70% by mass or more, and even more preferably 100% by mass, when the total solvent in the resin composition is 100% by mass.
  • the resin composition of the present invention may contain a solvent other than the component (C).
  • a solvent other than the component (C) for example, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone, N,N'-dimethylpropylene urea, N, Polar aprotic solvents such as N-dimethylisobutyric acid amide and methoxy-N,N-dimethylpropionamide, ethers such as tetrahydrofuran, dioxane, propylene glycol monomethyl ether, and propylene glycol monoethyl ether, acetone, methyl ethyl ketone, diisobutyl ketone, etc.
  • Examples include ketones, alcohols such as diacetone alcohol and 3-methyl-3-methoxybutanol, and aromatic hydrocarbons such as toluene
  • the content of the solvent is preferably 30 parts by mass or more based on 100 parts by mass of the solid content in order to easily dissolve the composition, and in order to easily form a coating film with a thickness of 1 ⁇ m or more, 1.
  • the content is preferably 500 parts by mass or less.
  • the content of the component (B) is Bm (mass) and the content of the component (C) is Cm (mass)
  • 0.1 ⁇ (Bm/Cm) ⁇ 3.0 more preferably 0.1 ⁇ (Bm/Cm) ⁇ 2.4, still more preferably 0.1 ⁇ (Bm/Cm) ⁇ 1.8.
  • the ratio of component (B) to component (C) is important for coating properties, and it has been found that a certain amount or more of component (C) is required relative to component (B). Therefore, by setting the range of 0.1 ⁇ (Bm/Cm) ⁇ 3.0, it is possible to stabilize the component (B) in the resin composition system, and the applicability can be significantly improved. It becomes possible.
  • the resin composition of the present invention further contains (D) a thermosetting resin (hereinafter sometimes referred to as (D) component), and the (D) component is polyphenylene ether resin, maleimide resin, polybutadiene resin, and benzocyclobutene resin.
  • the polyphenylene ether resin is not particularly limited as long as the structure of the formula (5) is repeatedly included in the resin structure, but it is preferably a resin having a plurality of structures described by the formula (5) in the resin structure.
  • the number of repeating units in the resin structure is the largest in the structure represented by formula (5).
  • the polyphenylene ether resin referred to in the present invention may be a copolymer with another structure as long as the resin structure includes the structure described in formula (5).
  • R 1 to R 4 may be the same or different, and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 30 carbon atoms, an alkoxy group, a fluoroalkyl group, a phenyl group, or a phenoxy group. show.
  • the number average molecular weight of the polyphenylene ether resin is preferably 500 or more and 5000 or less. More preferably, it is 1000 or more and 4000 or less. By setting the number average molecular weight to 500 or more, the crosslinking density can be reduced and the toughness of the resin composition can be improved. By setting the molecular weight to 5,000 or less, the compatibility with other components such as polyimide can be improved, the thermosetting resin composition can be made into a uniform structure, and the physical properties can be stabilized.
  • the crosslinkable functional groups of the polyphenylene ether resin include, but are not limited to, phenolic hydroxyl groups, acrylic groups, vinyl groups, and epoxy groups.
  • crosslinkable functional groups are preferably attached to both ends of the molecular chain, but may be attached only to one end.
  • the crosslinkable functional group contained in the phenylene ether resin is preferably a vinyl group among these crosslinkable functional groups. Since a thermosetting resin composition thermally crosslinked with a vinyl group has low polarity, it is possible to lower the dielectric constant and dielectric loss tangent. Examples of such resins include OPE-2st manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the maleimide resin is not particularly limited as long as it is a maleimide resin that dissolves in an organic solvent from the viewpoint of lowering the viscosity of the thermosetting resin composition solution.
  • maleimide resins include phenylmethane maleimide, metaphenylene bismaleimide, 4,4'-diphenylmethane bismaleimide, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, 2,2'-bis[4 -(4-maleimidophenoxy)phenyl]propane, 4-methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide-(2,2,4-trimethyl)hexane, 4,4-diphenyl ether bismaleimide, 4 , 4-diphenylsulfone bismaleimide, polyphenylmethanemaleimide, novolak-type maleimide compounds, biphenylaralkyl-type maleimide compounds, and prepolymers of these maleimide resin
  • the polybutadiene resin is not particularly limited as long as the structure of the resin includes the structure described by formula (6), but preferably has a plurality of structures described by formula (6) in the resin structure.
  • the average molecular weight of the polybutadiene resin is preferably 500 or more and 5000 or less.
  • examples of such polybutadiene resins include B1000, B2000, and B3000 manufactured by Nippon Soda Co., Ltd., and Ricon 130, Ricon 131, Ricon 142, Ricon 150, Ricon 152, Ricon 153, Ricon 156, and Ricon 15 manufactured by Total Lubricants Japan Co., Ltd. 7, Ricon130MA8, Ricon130MA13, Examples include Ricon130MA20, Ricon156MA17, Ricon100, and Ricon181.
  • the benzocyclobutene resin is produced, for example, by reacting a brominated arylcyclobutene compound and a compound containing an unsaturated alkyl group in the presence of a palladium catalyst.
  • a brominated arylcyclobutene compound and a compound containing an unsaturated alkyl group in the presence of a palladium catalyst.
  • Specific examples include divinylsiloxane bisbenzocyclobutene.
  • Examples of commercially available benzocyclobutene compounds include CYCLOTENE 3022-63 and 4026-46 manufactured by Dow Chemical Co., Ltd.
  • component (D) is from 1% by mass to 50% by mass, more preferably from 10% by mass to 30% by mass, based on 100% by mass of the entire resin.
  • Component (D) may contain these alone or in combination of two or more.
  • the resin composition of the present invention may contain a thermal crosslinking agent.
  • a thermal crosslinking agent can be used.
  • groups selected from the group consisting of an acrylic group, a methacrylic group, a maleimide group, a styryl group, an epoxy group, an oxetanyl group, a benzoxazine structure, an alkoxymethyl group, and a methylol group.
  • the content of the thermal crosslinking agent is 1% by mass or more and 50% by mass or less, more preferably 3% by mass or more and 40% by mass or less, based on 100% by mass of the entire resin.
  • the thermal crosslinking agent may contain these alone or in a mixture of two or more.
  • the resin composition of the present invention may contain a curing accelerator.
  • a curing accelerator By containing a curing accelerator, the curing of the thermal crosslinking agent can be accelerated and cured in a short time.
  • Curing accelerators are not particularly limited, but include imidazoles, polyhydric phenols, acid anhydrides, amines, hydrazides, polymercaptans, Lewis acid-amine complexes, latent curing agents, organic peroxides, etc. can be used.
  • imidazoles and organic peroxides which have excellent storage stability and heat resistance of cured products, are preferably used. These may be contained alone or in combination of two or more.
  • the imidazoles include “Curezol (registered trademark)” 2MZ, “Curezol (registered trademark)” 2PZ, “Curezol (registered trademark)” 2MZ-A, “Curezol (registered trademark)” 2MZ-OK (the above product names, Shikoku Kasei (manufactured by Kogyo Co., Ltd.).
  • Examples of polyhydric phenols include “Sumilite Resin (registered trademark)” PR-HF3, “Sumilite Resin (registered trademark)” PR-HF6 (all trade names, manufactured by Sumitomo Bakelite Co., Ltd.) and "Kayahard (registered trademark)”.
  • organic peroxides examples include benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t- Butyl isopropyl carbonate, di-t-butyl peroxide, t-butyl peroctate, 1,1-bis(t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis(t-butyl (peroxy)cyclohexane, t-butylperoxy-2-ethylhexanoate, and the like.
  • the content of the curing accelerator is not particularly limited, it is preferably 0.1% by mass or more and 10% by mass or less based on 100% by mass of the entire resin.
  • the resin composition of the present invention may contain an adhesion improver.
  • adhesion improvers include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling of 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, etc.
  • trimethoxyvinylsilane, triethoxyvinylsilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane and p-styryltrimethoxysilane are preferred, and p-styryltrimethoxysilane is more preferred.
  • the adhesion improver may contain two or more of these.
  • the content of the adhesion improver in the resin composition is preferably 0.1 to 10% by mass based on 100% by mass of the entire resin. By setting it within such a range, it is possible to provide a resin composition that has high adhesion to the substrate and excellent resistance to oxygen plasma and UV ozone treatment.
  • the resin composition of the present invention may contain a surfactant.
  • a surfactant By containing a surfactant, the wettability with the substrate can be improved and the uniformity of the thickness of the coating film can be improved.
  • commercially available compounds can be used.
  • silicone surfactants include the SH series, SD series, and ST series from Dow Corning Toray Silicone, the BYK series from BYK Chemie Japan, the KP series from Shin-Etsu Silicone, and the Disform series from NOF Corporation. Toshiba Silicone Co., Ltd.'s TSF series, etc.
  • fluorine-based surfactants include Dainippon Ink Industries, Ltd.'s "Megafac” (registered trademark) series, Sumitomo 3M Co., Ltd.'s Florado series, and Asahi Glass Co., Ltd.'s “Surflon” ( (registered trademark) series, "Asahi Guard” (registered trademark) series, Shin-Akita Kasei Co., Ltd.'s EF series, and Omnova Solutions Co., Ltd.'s Polyfox series.
  • surfactants obtained from acrylic and/or methacrylic polymers include, but are not limited to, the Polyflow series manufactured by Kyoeisha Chemical Co., Ltd. and the "Disparon” (registered trademark) series manufactured by Kusumoto Kasei Co., Ltd.
  • the content of the surfactant is preferably 0.001% by mass or more and 1% by mass or less based on 100% by mass of the entire resin.
  • a resin composition can be obtained by mixing and dissolving the components (A), (B), and (C), and if necessary, a curing accelerator, an adhesion improver, a surfactant, etc. I can do it.
  • the dissolution method examples include heating and stirring.
  • the heating temperature is preferably set within a range that does not impair the performance of the resin composition, and is usually 25°C to 80°C.
  • the order in which the components are dissolved is not particularly limited, and for example, a method may be used in which the compounds with the lowest solubility are dissolved in order.
  • the rotation speed is preferably set within a range that does not impair the performance of the resin composition, and is usually 200 rpm to 2000 rpm. Even when stirring, heating may be performed as necessary, and the temperature is usually 25°C to 80°C.
  • ingredients that tend to generate bubbles during stirring and dissolution such as surfactants and some adhesion improvers, by adding them last after dissolving other ingredients, it is possible to prevent dissolution of other ingredients due to bubble generation. can be prevented.
  • the viscosity of the resin composition of the present invention is preferably 2 to 5,000 mPa ⁇ s at 25°C. By adjusting the solid content concentration so that the viscosity is 2 mPa ⁇ s or more, it becomes easy to obtain a desired film thickness. On the other hand, if the viscosity is 5,000 mPa ⁇ s or less, it becomes easy to obtain a highly uniform coating film.
  • the viscosity measurement here is a measurement using an old E type viscometer/DVE type viscometer of the TVE-25 type viscometer (manufactured by Toki Sangyo Co., Ltd.), and 1.1 mL of the resin composition of the present invention was sampled. and inject into the sample cup.
  • the resin composition of the present invention having such a viscosity can be easily produced by adjusting the combined content of components (A) and (B) to 5 to 60% by mass in 100% by mass of the resin composition of the present invention. can be obtained.
  • the solid content concentration refers to the total concentration (mass %) of components other than the solvent when the entire resin composition containing the solvent is taken as 100 mass %.
  • the obtained resin composition is preferably filtered using a filter to remove dust and particles.
  • filter pore diameters include, but are not limited to, 10.0 ⁇ m, 5.0 ⁇ m, 3.0 ⁇ m, 1.0 ⁇ m, 0.5 ⁇ m, 0.2 ⁇ m, and 0.1 ⁇ m.
  • Materials for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), and polyethylene and nylon are preferred.
  • the cured product of the present invention is obtained by curing the resin composition of the present invention.
  • the cured product of the present invention has a low dielectric loss tangent and a low coefficient of linear thermal expansion.
  • the cured product is obtained by heating the resin composition. For heating, an even device, a hot plate, an infrared ray, a flash annealing device, a laser annealing device, or the like can be used.
  • the cured product of the present invention can be produced, for example, by the following method. First, the resin composition of the present invention is applied onto a substrate and dried to obtain a resin film. Next, the cured product of the present invention can be obtained by heat-treating the resin film.
  • the heat treatment of the resin film may be carried out by increasing the temperature in stages, or may be carried out while increasing the temperature continuously.
  • the heat treatment is preferably carried out for 5 minutes to 5 hours.
  • An example is a case in which heat treatment is performed at 140° C. for 30 minutes and then further heat treated at 320° C. for 60 minutes.
  • the heat treatment temperature is preferably 140°C or higher and 400°C or lower.
  • the heat treatment temperature is preferably 140°C or higher, more preferably 160°C or higher in order to remove the solvent in the resin film.
  • the temperature is preferably 280°C or lower, more preferably 250°C or lower, and even more preferably 220°C or lower.
  • the cured product of the present invention may be used as an insulating film or a protective film.
  • insulating films or protective films include passivation films for semiconductors, surface protection films for semiconductor elements, interlayer insulating films, interlayer insulating films for multilayer wiring for high-density packaging, and insulating layers for organic electroluminescent elements. , but is not limited to this, and includes various structures.
  • the electronic component or antenna element of the present invention comprises a cured product of the resin composition of the present invention.
  • the method for manufacturing an electronic component of the present invention includes a step of applying and drying the resin composition of the present invention to form a resin film, a step of patterning the resin film as necessary, and a step of heat-treating the resin film to harden it. and the process of forming an object.
  • the resin composition of the present invention is first applied to a substrate to obtain a coated film of the resin composition.
  • the substrate include, but are not limited to, silicon wafers, ceramics, gallium arsenide, organic circuit boards, inorganic circuit boards, and substrates on which constituent materials such as circuits are arranged.
  • Examples of the coating method include spin coating, slit coating, dip coating, spray coating, and printing.
  • the thickness of the coating film varies depending on the coating method, solid content concentration of the composition, viscosity, etc., but the coating is usually done so that the film thickness after drying is 0.1 to 150 ⁇ m.
  • the substrate to which the resin composition is applied may be pretreated with the adhesion improver described above.
  • the pretreatment method includes, for example, adding 0.5 to 20% of the adhesion improver to a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, diethyl adipate, etc.
  • a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, diethyl adipate, etc.
  • a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lac
  • the coating film of the resin composition is dried to form a resin film. Drying is preferably carried out using an oven, hot plate, infrared rays, etc. at a temperature of 50° C. to 140° C. for 1 minute to 2 hours.
  • dry etching includes a step of applying the resin composition of the present invention to a substrate, a step of volatilizing the solvent at a temperature of 80° C. or higher and lower than 150° C., a curing step at a temperature of 150° C. or higher and 350° C. or lower, and a carbon dioxide laser or It includes a process of ablation processing using a UV laser.
  • the UV laser irradiation conditions are not particularly limited, but excimer lasers such as ArF (193 nm), KrF (248 nm), XeCl (308 nm), and XeCl (351 nm), and YAG laser (355 nm) light are usually used. .
  • excimer lasers such as ArF (193 nm), KrF (248 nm), XeCl (308 nm), and XeCl (351 nm), and YAG laser (355 nm) light are usually used.
  • the resolution of the carbon dioxide laser is inferior to that of the UV laser, since the device cost is low and the carbon dioxide laser is excellent in economic efficiency, the carbon dioxide laser may be used in applications that do not require high definition.
  • One embodiment of the electronic component of the present invention is an electronic component having two or more layers of wiring and an insulating film, the insulating film being disposed between the two or more layers of wiring, and the insulating film of the present invention It is a cured product.
  • the cured product of the present invention By disposing the cured product of the present invention as an insulating film between wirings, it is possible to form a multilayer wiring structure in which two or more layers of rewiring are separated by an insulating film made of the cured product of the resin composition of the present invention. can.
  • strong stress is applied to the insulating film, which causes cracks to occur after the package reliability test.
  • there is no upper limit to the number of layers in a multilayer wiring structure those having 10 layers or less are often used.
  • examples of semiconductor devices include, for example, a chip-first fan-out wafer level package or a chip-first fan-out panel level package.
  • a chip-first fan-out wafer-level package or a chip-first fan-out panel level package is a chip-first fan-out panel level package in which an extended portion is provided around the semiconductor chip using a sealing resin such as epoxy resin, and rewiring is performed from the electrodes on the semiconductor chip to the expanded portion. It is a semiconductor package that secures the necessary number of terminals by mounting solder balls on the extended portion.
  • wiring is installed so as to straddle the boundary line formed by the main surface of the semiconductor chip and the main surface of the sealing resin, and the cured material is placed between the wirings. It is arranged as an insulating film.
  • a method for manufacturing a semiconductor device using a re-distribution layer (RDL) first process will be described.
  • a barrier metal such as Ti is formed by sputtering on a support substrate such as a glass substrate or silicon wafer, and then a Cu seed (seed layer) is formed on top of it by sputtering, and then an electrode pad made of Cu is formed by plating. do.
  • the resin composition of the present invention is applied to the entire surface of the support substrate on which the electrode pads are formed and dried to form a resin film.
  • a line and space, square or hole pattern is formed on the obtained resin film as necessary.
  • a layer of cured material is formed by heat treatment.
  • This layer becomes an insulating film.
  • a seed layer is formed again by sputtering, and metal wiring (rewiring) made of Cu is formed by plating. Thereafter, the steps from the seed layer process to the metal wiring formation process are repeated to form a multilayer wiring structure.
  • the resin composition of the present invention is applied again, patterned, and heat treated to harden it to form an insulating film, and then a Cu post is placed on top of the metal wiring in the opening of the insulating film using a plating method. Form using.
  • the pitch of the Cu posts and the pitch of the conductive parts of the semiconductor chip are made equal.
  • the pitch of the conductive parts of the semiconductor chip is finer than the pitch of the electrode pads, and each redistribution layer that makes up the multilayer wiring structure gradually increases the pitch of the wiring from the electrode pads to the Cu posts.
  • Multi-layer In a multilayer wiring structure, the thickness of adjacent insulating films also becomes the same or becomes thinner as the distance from the semiconductor chip increases.
  • a semiconductor chip is connected to the Cu post via a solder bump. Thereby, the electrode pads and the semiconductor chip are electrically connected via the metal wiring and the solder bumps. Thereafter, the semiconductor chip is sealed with a sealing resin to form a semiconductor package, and then the support substrate and the rewiring layer are separated to separate the semiconductor package. In this way, a semiconductor device having a multilayer wiring structure using the RDL first process can be obtained.
  • the antenna element of the present invention is an antenna element comprising at least one or more antenna wiring, a ground, and an insulating film that insulates between the ground and the antenna wiring,
  • the antenna wiring includes at least one type selected from the group consisting of a meandering loop antenna, a coiled loop antenna, a meandering monopole antenna, a meandering dipole antenna, and a microstrip antenna,
  • the exclusive area of each antenna part in the antenna wiring is 1000 mm 2 or less
  • the insulating film is a cured product of the present invention.
  • FIG. 1 is a schematic diagram of an example of a coplanar feeding type microstrip antenna, which is a type of planar antenna.
  • FIG. 1a shows a cross-sectional view
  • FIG. 1b shows a top view.
  • the resin composition of the present invention is applied onto copper foil and prebaked.
  • the copper foil is laminated and thermally cured to form a cured product having copper foil on both sides.
  • an antenna element having a microstrip line (MSL) copper wiring antenna pattern shown in FIG. 1b is obtained.
  • MSL microstrip line
  • the insulating film 16 is the substrate of the antenna and is made of the cured product of the present invention.
  • the ground 15 is a copper foil that covers the entire surface of the insulating film 16.
  • the antenna section 11, the matching circuit 12, and the MSL feed line 13 on the upper layer of the insulating film 16 show a cross section of the antenna wiring obtained by the patterning.
  • the ground wiring thickness J and the antenna wiring thickness K can have any thickness depending on the impedance design, but are generally 2 to 20 ⁇ m.
  • the antenna section 11, matching circuit 12 and MSL feed line 13 are arranged as shown in FIG. 1b. 14 indicates a power feeding point.
  • the width W and length L of the antenna portion 11 are designed to be 1/2 ⁇ r.
  • the antenna length L may be set to 1/2 ⁇ r or less depending on the impedance design.
  • Another aspect of the electronic component of the present invention is an electronic component including a semiconductor package including at least a semiconductor element, a rewiring layer, a sealing resin, a ground wire, and an antenna wire,
  • the redistribution layer includes copper wiring and an insulating film
  • the sealing resin is between the ground wiring and the antenna wiring
  • the insulating layer of the rewiring layer and/or the sealing resin be the cured product of the present invention.
  • FIG. 2 is a schematic diagram of a cross section of a semiconductor package including an IC chip (semiconductor element), a rewiring layer, a sealing resin, and an antenna element.
  • a rewiring layer two layers of copper wiring and three layers of insulating film is formed of copper wiring 209 and an insulating film 210 formed from the cured product of the present invention.
  • Barrier metal 211 and solder bumps 212 are formed on the pads of the redistribution layer (copper wiring 209 and insulating film 210).
  • a first sealing resin 208 made of the cured product of the present invention is formed, and a copper wiring 206 serving as a ground for the antenna is further formed thereon.
  • a first via wiring 207 is formed to connect the ground wiring 206 and the rewiring layer (copper wiring 209 and insulating film 210) via a via hole formed in the first sealing resin 208.
  • a second sealing resin 205 made of the cured product of the present invention is formed on the first sealing resin 208 and the ground wiring 206, and a planar antenna wiring 204 is formed thereon.
  • a second via wiring connects the planar antenna wiring 204 and the rewiring layer (copper wiring 209 and insulating film 210) through via holes formed in the first sealing resin 208 and the second sealing resin 205.
  • 203 is formed.
  • the thickness of each layer of the insulating film 210 is preferably 10 to 20 ⁇ m, and the thickness of the first sealing resin and the second sealing resin is preferably 50 to 200 ⁇ m and 100 to 400 ⁇ m, respectively. Since the cured product of the present invention shows little deterioration after a reliability test, the obtained semiconductor package including the antenna element can be a highly reliable package that does not generate cracks.
  • the weight average molecular weight (Mw) of component (A) was confirmed using a GPC (gel permeation chromatography) device Waters 2690-996 (manufactured by Nippon Waters Co., Ltd.).
  • the copper foil was taken out and removed by etching with an aqueous ferric chloride solution to obtain a cured product.
  • This film was cut into strips with a width of 3 cm and a length of 10 cm, and the dielectric loss tangent at a frequency of 1 GHz was measured at a room temperature of 23.0° C. and a humidity of 45.0% RH using a perturbation cavity cavity method according to ASTM D2520.
  • the evaluation criteria are as follows. The lower the dielectric loss tangent, the more it is possible to suppress transmission loss.
  • the value of the dielectric loss tangent is less than 0.005
  • B The value of the dielectric loss tangent is 0.005 or more and less than 0.008
  • C The value of the dielectric loss tangent is 0.008 or more and less than 0.012
  • D The value of the dielectric loss tangent is 0.005 or more and less than 0.008. 012 or above.
  • the value of the linear thermal expansion coefficient is less than 25 ppm
  • B The value of the linear thermal expansion coefficient is 25 ppm or more and less than 40 ppm
  • C The value of the linear thermal expansion coefficient is 40 ppm or more and less than 60 ppm
  • D The value of the linear thermal expansion coefficient is 60 ppm or more.
  • Ttop value is 0 ⁇ m or more and less than 5 ⁇ m
  • the evaluation criteria are as follows. A: No aggregates B: Very slight aggregates (level that poses no problem in practical use) C: Aggregates present (at a level that poses a practical problem). (5) Evaluation of chemical resistance After spin-coating varnish on a 4-inch silicon wafer using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.), the varnish was applied using a hot plate (SCW-636 manufactured by Dainippon Screen Manufacturing Co., Ltd.). was prebaked for 3 minutes at 120° C. to produce a prebaked film with a thickness of 11 ⁇ m.
  • SCW-636 manufactured by Dainippon Screen Manufacturing Co., Ltd.
  • ODPA 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride
  • PBOM 1,1'-(4,4'-oxybenzoyl)diimidazole
  • TFMB 2,2'-bis(trifluoromethyl) -4,4'-diaminobiphenyl 6FAP: 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane preamine 1075: Dimer diamine compound containing the compound represented by the above formula (3) (trade name , manufactured by Croda Japan Co., Ltd.) (average amine value: 205)
  • MAP m-Aminophenol
  • OPE-2st-1200 Oligophenylene ether (number average molecular weight: 1200) (manufactured by Mitsubishi Gas Chemical Co., Ltd.)
  • MIR-3000-70MT Biphenylaralkyl maleimide compound (manufactured by Nippon Kayaku Co., Ltd.) Rico
  • Examples 1 to 26 and Comparative Examples 1 to 6 The ingredients and amounts shown in Table 2-1, Table 2-2, Table 2-3 and Table 2-4 were blended and stirred using a stirrer to obtain a varnish. The properties of the obtained varnish were evaluated in terms of linear thermal expansion coefficient, dielectric loss tangent, and coatability using the above evaluation methods. The evaluation results are shown in Tables 2-1 to 2-4 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention addresses the problem of providing: a resin composition which has a low dielectric loss tangent and a low linear thermal expansion coefficient, while exhibiting excellent coatability to substrates; a cured product which is obtained from this resin composition; an insulating film; an antenna element; and an electronic component. In order to solve the problem, a resin composition according to the present invention contains (A) a resin which contains at least one substance that is selected from the group consisting of a polyimide, a polyamide, a polybenzoxazole, precursors thereof and copolymers thereof, (B) inorganic particles which have an average particle diameter of 150 nm to 5 µm, and (C) an ester-based solvent. With respect to this resin composition, the component (A) contains a diamine residue of formula (1) and/or formula (2); and if Bm (mass) is the content of the component (B) and Cm (mass) is the content of the component (C), 0.1 ≤ (Bm/Cm) ≤ 3.0 is satisfied.

Description

樹脂組成物、硬化物、アンテナ素子、及び電子部品Resin compositions, cured products, antenna elements, and electronic components
 樹脂組成物、硬化物、アンテナ素子、及び電子部品に関する。 Regarding resin compositions, cured products, antenna elements, and electronic components.
 半導体素子の表面保護膜や層間絶縁膜、有機電界解素子の絶縁層やTFT基板の平坦化膜の代表的な材料として、耐熱性や電気絶縁性等に優れたポリイミド系樹脂が挙げられる。
近年は、半導体の用途拡大、性能向上に伴い、製造工程の効率化によるコスト削減及び高集積化の取り組みがされている。そこで、多層の金属再配線を形成する半導体デバイスに注目が集められている。特に高速無線通信のための高周波通信デバイス用途においては、伝送損失を低減するために絶縁膜の低誘電正接化が求められている。また、金属配線の多層化により、反り量低減のために、絶縁膜の低線熱膨張化が求められている。
Typical materials for surface protection films and interlayer insulating films of semiconductor devices, insulating layers of organic electrolytic devices, and flattening films of TFT substrates include polyimide resins that have excellent heat resistance, electrical insulation, and the like.
In recent years, as semiconductor applications have expanded and performance has improved, efforts have been made to reduce costs and increase integration by increasing the efficiency of manufacturing processes. Therefore, attention is being focused on semiconductor devices that form multilayer metal rewiring. Particularly in high-frequency communication device applications for high-speed wireless communications, insulating films are required to have a low dielectric loss tangent in order to reduce transmission loss. Furthermore, with the increase in the number of layers of metal wiring, there is a demand for lower linear thermal expansion of insulating films in order to reduce the amount of warpage.
 絶縁膜の低線熱膨張化には無機粒子を高充填する方法が挙げられる。例えば低誘電正接を示すダイマー酸(二量体脂肪酸)などから誘導される脂肪族ジアミン化合物を原料とするポリイミドにシリカ粒子を含有することにより、低誘電正接化及び低線熱膨張化を行う例や(特許文献1)、平均粒子径が0.1μm以下のナノシリカを添加することで低線熱膨張係数のコーティング材料を示す例(特許文献2)が挙げられる。 One way to reduce the linear thermal expansion of an insulating film is to fill it with a high amount of inorganic particles. For example, an example of achieving low dielectric loss tangent and low linear thermal expansion by incorporating silica particles into polyimide made from an aliphatic diamine compound derived from dimer acid (dimer fatty acid), etc., which exhibits low dielectric loss tangent. (Patent Document 1), and an example (Patent Document 2) that shows a coating material with a low coefficient of linear thermal expansion by adding nanosilica having an average particle size of 0.1 μm or less.
特開2021-105146号公報Japanese Patent Application Publication No. 2021-105146 特開2018-36329号公報Japanese Patent Application Publication No. 2018-36329
 上記用途における絶縁膜は様々な厚みが要求される。そこで厚みに制限のあるシート材料よりも、薄膜を作成でき、塗布時の回転数によって厚みを簡便に調整可能なコーティング材料が要求される。
しかしながらコーティング材料として従来の技術を適用した場合、例えば特許文献1ではシリカ粒子の凝集やチキソ性のために均一な膜の作成が困難である。また特許文献2では、ナノシリカの大きな比表面積のために、十分に線熱膨張係数が下がらないことや、表面上の水酸基が誘電正接を悪化させるといった課題があった。
The insulating films used in the above applications are required to have various thicknesses. Therefore, there is a need for a coating material that can form a thin film and whose thickness can be easily adjusted by changing the number of rotations during coating, rather than a sheet material that has a limited thickness.
However, when conventional techniques are applied as a coating material, for example, in Patent Document 1, it is difficult to create a uniform film due to agglomeration and thixotropy of silica particles. Further, in Patent Document 2, there were problems in that the coefficient of linear thermal expansion was not sufficiently lowered due to the large specific surface area of nanosilica, and that the hydroxyl groups on the surface deteriorated the dielectric loss tangent.
 上記課題を解決するため、本発明は次のものに関する。 In order to solve the above problems, the present invention relates to the following.
 [1]
(A)ポリイミド、ポリベンゾオキサゾール、これらの前駆体、ポリアミド及びそれらの共重合体、からなる群より選ばれる少なくとも一種類を含む樹脂、
(B)平均粒子径150nm以上、5μm以下の無機粒子、及び
(C)エステル系溶剤を含む樹脂組成物であって、
前記(A)成分は、下記式(1)で表されるジアミン残基及び/または下記式(2)で表されるジアミン残基を含有し、
樹脂組成物中における前記(B)成分の含有量をBm(質量)、前記(C)成分の含有量をCm(質量)としたときに、0.1≦(Bm/Cm)≦3.0を満たす、
樹脂組成物。
[1]
(A) a resin containing at least one type selected from the group consisting of polyimide, polybenzoxazole, precursors thereof, polyamide, and copolymers thereof;
(B) a resin composition comprising inorganic particles with an average particle diameter of 150 nm or more and 5 μm or less, and (C) an ester solvent,
The component (A) contains a diamine residue represented by the following formula (1) and/or a diamine residue represented by the following formula (2),
When the content of the component (B) in the resin composition is Bm (mass) and the content of the component (C) is Cm (mass), 0.1≦(Bm/Cm)≦3.0 satisfy,
Resin composition.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(1)中、a、b、c及びdは、a+b=6~17及びc+d=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。 In formula (1), a, b, c, and d are integers of 1 or more satisfying a+b=6 to 17 and c+d=8 to 19, and the broken line portion is a carbon-carbon single bond or a carbon-carbon double bond. means.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(2)中、e、f、g及びhはe+f=6~17、g+h=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。 In formula (2), e, f, g, and h are integers of 1 or more satisfying e+f=6 to 17 and g+h=8 to 19, and the broken line portion indicates a carbon-carbon single bond or a carbon-carbon double bond. means.
 [2]
前記(A)成分の全ジアミン残基100モル%中、式(1)で表されるジアミン残基及び式(2)で表されるジアミン残基の合計含有量が1モル%以上、30モル%以下の範囲である[1]に記載の樹脂組成物。
[2]
The total content of diamine residues represented by formula (1) and diamine residues represented by formula (2) is 1 mol% or more and 30 mol% of the total diamine residues of the component (A) (100 mol%) % or less.
 [3]
前記(B)成分の含有量が、樹脂組成物中の固形分を100質量%としたとき、50質量%以上、80質量%以下である、[1]または[2]に記載の樹脂組成物。
[3]
The resin composition according to [1] or [2], wherein the content of the component (B) is 50% by mass or more and 80% by mass or less, when the solid content in the resin composition is 100% by mass. .
 [4]
前記(C)成分の含有量が、樹脂組成物中の溶剤全体を100質量%としたとき、40質量%以上である、[1]~[3]のいずれかに記載の樹脂組成物。
[4]
The resin composition according to any one of [1] to [3], wherein the content of the component (C) is 40% by mass or more when the total solvent in the resin composition is 100% by mass.
 [5]
前記(C)成分はグリコールエステル系溶剤を含む[1]~[4]のいずれかに記載の樹脂組成物。
[5]
The resin composition according to any one of [1] to [4], wherein the component (C) contains a glycol ester solvent.
 [6]
前記(C)成分はグリコールエステル系溶剤であり、前記(C)成分の含有量が、樹脂組成物中の溶剤全体を100質量%としたとき、40質量%以上である[1]~[5]のいずれかに記載の樹脂組成物。
[6]
The component (C) is a glycol ester solvent, and the content of the component (C) is 40% by mass or more when the total solvent in the resin composition is 100% by mass [1] to [5] ] The resin composition according to any one of the above.
 [7]
前記(B)成分の平均粒子径が150nm以上、1μm以下の無機粒子である[1]~[6]のいずれかに記載の樹脂組成物。
[7]
The resin composition according to any one of [1] to [6], wherein the component (B) is an inorganic particle having an average particle diameter of 150 nm or more and 1 μm or less.
 [8]
前記樹脂組成物が、さらに(D)成分として、熱硬化性樹脂を含有し、該(D)成分がポリフェニレンエーテル樹脂、マレイミド樹脂、ポリブタジエン樹脂、及びベンゾシクロブテン樹脂からなる群より選択される1種類以上を含有する、[1]~[7]のいずれかに記載の樹脂組成物。
[8]
The resin composition further contains a thermosetting resin as component (D), and the component (D) is selected from the group consisting of polyphenylene ether resin, maleimide resin, polybutadiene resin, and benzocyclobutene resin. The resin composition according to any one of [1] to [7], which contains at least one type of resin.
 [9]
[1]~[8]のいずれかに記載の樹脂組成物を硬化してなる、硬化物。
[9]
A cured product obtained by curing the resin composition according to any one of [1] to [8].
 [10]
[9]に記載の硬化物を具備する電子部品。
[10]
An electronic component comprising the cured product according to [9].
 [11]
2層以上の配線および絶縁膜を有する電子部品であって、該絶縁膜が該2層以上の配線間に配置されてなり、該絶縁膜が[9]に記載の硬化物である、電子部品。
[11]
An electronic component having two or more layers of wiring and an insulating film, the insulating film being disposed between the two or more layers of wiring, and the insulating film being the cured product according to [9]. .
 [12]
少なくとも、1以上のアンテナ配線、グランド及びグランドとアンテナ配線間を絶縁する絶縁膜、を具備するアンテナ素子であって、
該アンテナ配線がミアンダ状ループアンテナ、コイル状ループアンテナ、ミアンダ状モノポールアンテナ、ミアンダ状ダイポールアンテナ及びマイクロストリップアンテナからなる群から選ばれる少なくとも一種類以上を含み、
該アンテナ配線におけるアンテナ部一つあたりの専有面積が1000mm以下であり、
該絶縁膜は[9]に記載の硬化物である、アンテナ素子。
[12]
An antenna element comprising at least one or more antenna wiring, a ground, and an insulating film that insulates between the ground and the antenna wiring,
The antenna wiring includes at least one type selected from the group consisting of a meandering loop antenna, a coiled loop antenna, a meandering monopole antenna, a meandering dipole antenna, and a microstrip antenna,
The exclusive area of each antenna part in the antenna wiring is 1000 mm 2 or less,
An antenna element in which the insulating film is a cured product according to [9].
 [13]
 少なくとも、半導体素子、再配線層、封止樹脂、グランド配線及びアンテナ配線を具備する半導体パッケージを含む電子部品であって、
該再配線層は銅配線および絶縁膜を含み、該封止樹脂はグランド配線とアンテナ配線の間にあり、
該再配線層の絶縁層、及び/または、該封止樹脂、が[9]に記載の硬化物である電子部品。
[13]
An electronic component including a semiconductor package including at least a semiconductor element, a rewiring layer, a sealing resin, a ground wiring, and an antenna wiring,
The redistribution layer includes copper wiring and an insulating film, the sealing resin is between the ground wiring and the antenna wiring,
An electronic component in which the insulating layer of the rewiring layer and/or the sealing resin is the cured product according to [9].
 本発明によれば、基板への塗布性に優れ、低誘電正接、低線熱膨張係数を有する樹脂組成物、その樹脂組成物から得られる硬化物、絶縁膜、アンテナ素子、並びに電子部品を提供するものである。 According to the present invention, there is provided a resin composition that has excellent applicability to a substrate, a low dielectric loss tangent, and a low coefficient of linear thermal expansion, a cured product obtained from the resin composition, an insulating film, an antenna element, and an electronic component. It is something to do.
平面アンテナの一種である共面給電型のマイクロストリップアンテナの一例の概略図である。1 is a schematic diagram of an example of a coplanar feeding type microstrip antenna, which is a type of planar antenna. ICチップ(半導体素子)、再配線層、封止樹脂及びアンテナ素子を具備する半導体パッケージの一例の断面に関する概略図である。1 is a schematic diagram of a cross section of an example of a semiconductor package including an IC chip (semiconductor element), a rewiring layer, a sealing resin, and an antenna element.
 以下、本発明を詳細に説明する。
本発明の樹脂組成物は、(A)ポリイミド、ポリベンゾオキサゾール、これらの前駆体、ポリアミド及びそれらの共重合体、からなる群より選ばれる少なくとも一種類を含む樹脂、
(B)平均粒子径150nm以上5μm以下の無機粒子、及び
(C)エステル系溶剤を含み、
前記(A)成分は、式(1)のジアミン残基及び/または式(2)のジアミン残基を含有し、
前記(B)成分の含有量をBm(質量)、前記(C)成分の含有量をCm(質量)としたときに、0.1≦(Bm/Cm)≦3.0を満たす。
The present invention will be explained in detail below.
The resin composition of the present invention includes (A) a resin containing at least one type selected from the group consisting of polyimide, polybenzoxazole, precursors thereof, polyamide, and copolymers thereof;
(B) inorganic particles with an average particle diameter of 150 nm or more and 5 μm or less, and (C) an ester solvent,
The component (A) contains a diamine residue of formula (1) and/or a diamine residue of formula (2),
When the content of the component (B) is Bm (mass) and the content of the component (C) is Cm (mass), 0.1≦(Bm/Cm)≦3.0 is satisfied.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(1)中、a、b、c及びdは、a+b=6~17及びc+d=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。 In formula (1), a, b, c, and d are integers of 1 or more satisfying a+b=6 to 17 and c+d=8 to 19, and the broken line portion is a carbon-carbon single bond or a carbon-carbon double bond. means.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(2)中、e、f、g及びhはe+f=6~17、g+h=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。
<(A)ポリイミド、ポリベンゾオキサゾール、これらの前駆体、ポリアミド及びそれらの共重合体、からなる群より選ばれる少なくとも一種類を含む樹脂>
 本発明の樹脂組成物は、(A)ポリイミド、ポリベンゾオキサゾール、これらの前駆体、ポリアミド及びそれらの共重合体、からなる群より選ばれる少なくとも一種類を含む樹脂(以下、(A)成分と呼称する場合がある)を含有する。本発明において、「それらの共重合体」とは、ポリイミド、ポリベンゾオキサゾール、これらの前駆体及びポリアミドからなる群から選択される二種以上が共重合された共重合体を表す。
In formula (2), e, f, g, and h are integers of 1 or more satisfying e+f=6 to 17 and g+h=8 to 19, and the broken line portion indicates a carbon-carbon single bond or a carbon-carbon double bond. means.
<(A) Resin containing at least one type selected from the group consisting of polyimide, polybenzoxazole, precursors thereof, polyamide, and copolymers thereof>
The resin composition of the present invention comprises a resin (hereinafter referred to as component (A)) containing at least one type selected from the group consisting of (A) polyimide, polybenzoxazole, precursors thereof, polyamide, and copolymers thereof. ). In the present invention, "a copolymer thereof" refers to a copolymer obtained by copolymerizing two or more selected from the group consisting of polyimide, polybenzoxazole, their precursors, and polyamide.
 ポリイミド、ポリアミド、ポリイミド前駆体、ポリベンゾオキサゾール及びポリベンゾオキサゾール前駆体について説明する。 Polyimide, polyamide, polyimide precursor, polybenzoxazole, and polybenzoxazole precursor will be explained.
 ポリイミド前駆体は、脱水閉環することによりイミド環を有するポリイミドとなる構造を有していれば、特に限定されない。
ポリイミド前駆体は、テトラカルボン酸、対応するテトラカルボン酸二無水物またはテトラカルボン酸ジエステルジクロリドなどと、ジアミン、対応するジイソシアネート化合物またはトリメチルシリル化ジアミンなどと、を反応させることによって得られるものが挙げられ、テトラカルボン酸及び/またはその誘導体残基と、ジアミン及び/またはその誘導体残基を有する。ポリイミド前駆体としては、例えば、ポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミドまたはポリイソイミドが挙げられる。
The polyimide precursor is not particularly limited as long as it has a structure that becomes a polyimide having an imide ring by dehydration and ring closure.
Examples of polyimide precursors include those obtained by reacting tetracarboxylic acid, the corresponding tetracarboxylic dianhydride, or tetracarboxylic diester dichloride, etc. with diamine, the corresponding diisocyanate compound, or trimethylsilylated diamine, etc. , a tetracarboxylic acid and/or its derivative residue, and a diamine and/or its derivative residue. Examples of the polyimide precursor include polyamic acid, polyamic acid ester, polyamic acid amide, and polyisoimide.
 ポリイミドはイミド環を有するものであれば、特に限定されない。
ポリイミドとしては、例えば、上記のポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミド又はポリイソイミドを、加熱又は酸若しくは塩基などを用いた反応により、脱水閉環させることによって得られるものが挙げられ、テトラカルボン酸及び/またはその誘導体残基と、ジアミン及び/又はその誘導体残基を有する。また、上記脱水閉環の過程で反応時間を調整したり、ポリイミドを重合した後にポリアミド酸を引き続き重合させたりすることで共重合体とすることもできる。
The polyimide is not particularly limited as long as it has an imide ring.
Examples of the polyimide include those obtained by dehydrating and ring-closing the above-mentioned polyamic acid, polyamic acid ester, polyamic acid amide, or polyisoimide by heating or reaction using an acid or a base. and/or a derivative residue thereof, and a diamine and/or a derivative residue thereof. Furthermore, a copolymer can be obtained by adjusting the reaction time during the dehydration ring closure process, or by polymerizing polyimide and then polymerizing polyamic acid.
 ポリアミドはアミド結合を有するものであれば、特に限定されない。
ポリアミドとしては、例えば、ジカルボン酸、対応するジカルボン酸二塩化物又はジカルボン酸活性ジエステルなどと、ジアミン、対応するジイソシアネート化合物またはトリメチルシリル化ジアミンなどと、を反応させることによって得られるものが挙げられ、ジカルボン酸及び/またはその誘導体残基と、ジアミン及び/またはその誘導体残基を有する。
The polyamide is not particularly limited as long as it has an amide bond.
Examples of polyamides include those obtained by reacting dicarboxylic acids, corresponding dicarboxylic acid dichlorides, dicarboxylic acid active diesters, etc. with diamines, corresponding diisocyanate compounds, trimethylsilylated diamines, etc. It has an acid and/or its derivative residue and a diamine and/or its derivative residue.
 ポリベンゾオキサゾール前駆体は、脱水閉環することによりベンゾオキサゾール環を有するポリベンゾオキサゾールとなる構造を有していれば、特に限定されない。
ポリベンゾオキサゾール前駆体としては、例えば、ジカルボン酸、対応するジカルボン酸二塩化物又はジカルボン酸活性ジエステルなどと、ジアミンとしてビスアミノフェノール化合物などと、を反応させることによって得られるものが挙げられ、ジカルボン酸及び/またはその誘導体残基と、ビスアミノフェノール化合物及び/またはその誘導体残基を有する。ポリベンゾオキサゾール前駆体としては、例えば、ポリヒドロキシアミドが挙げられる。
The polybenzoxazole precursor is not particularly limited as long as it has a structure that becomes a polybenzoxazole having a benzoxazole ring upon dehydration and ring closure.
Examples of the polybenzoxazole precursor include those obtained by reacting a dicarboxylic acid, a corresponding dicarboxylic acid dichloride, or a dicarboxylic acid activated diester, with a bisaminophenol compound as a diamine, and It has an acid and/or its derivative residue and a bisaminophenol compound and/or its derivative residue. Examples of the polybenzoxazole precursor include polyhydroxyamide.
 ポリベンゾオキサゾールはベンゾオキサゾール環を有するものであれば、特に限定されない。
ポリベンゾオキサゾールとしては、例えば、ジカルボン酸と、ジアミンとしてビスアミノフェノール化合物と、をポリリン酸を用いた反応により、脱水閉環させることによって得られるものや、上記のポリヒドロキシアミドを、加熱または無水リン酸、塩基もしくはカルボジイミド化合物などを用いた反応により、脱水閉環させることによって得られるものが挙げられ、ジカルボン酸及び/またはその誘導体残基と、ビスアミノフェノール化合物及び/またはその誘導体残基を有する。また、上記脱水閉環の過程で反応時間を調整したり、ポリベンゾオキサゾールを重合した後にポリアミドを引き続き重合させたりすることで共重合体とすることもできる。
Polybenzoxazole is not particularly limited as long as it has a benzoxazole ring.
Examples of polybenzoxazole include those obtained by dehydrating and ring-closing a dicarboxylic acid and a bisaminophenol compound as a diamine using polyphosphoric acid, and those obtained by subjecting the above polyhydroxyamide to heating or anhydrous phosphorus. Examples include those obtained by dehydration and ring closure through a reaction using an acid, a base, a carbodiimide compound, etc., and have a dicarboxylic acid and/or its derivative residue and a bisaminophenol compound and/or its derivative residue. Further, a copolymer can be obtained by adjusting the reaction time during the dehydration ring closure process or by polymerizing polyamide after polymerizing polybenzoxazole.
 ポリイミド及び/またはポリイミド前駆体は、以下に記載するテトラカルボン酸残基及び/またはその誘導体残基を含有することができる。テトラカルボン酸残基としては、例えば、芳香族テトラカルボン酸、脂環式テトラカルボン酸又は脂肪族テトラカルボン酸の残基が挙げられる。これらのテトラカルボン酸残基は、カルボキシ基の酸素原子以外に、酸素原子以外のヘテロ原子を有してもよい。 The polyimide and/or polyimide precursor can contain the tetracarboxylic acid residue and/or its derivative residue described below. Examples of the tetracarboxylic acid residue include aromatic tetracarboxylic acid, alicyclic tetracarboxylic acid, and aliphatic tetracarboxylic acid residues. These tetracarboxylic acid residues may have a heteroatom other than an oxygen atom in addition to the oxygen atom of the carboxy group.
 テトラカルボン酸残基及びその誘導体残基としては、例えば、ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸、ピロメリット酸、ビシクロヘキサンテトラカルボン酸、ペンタンテトラカルボン酸、ヘキサンテトラカルボン酸、シクロプロパンテトラカルボン酸、シクロブタンテトラカルボン酸、シクロペンタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3‘,4,4’-ジフェニルスルホンテトラカルボン酸、4,4’-オキシジフタル酸、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸、3,3’,4,4’-ビフェニルテトラカルボン酸、4,4’-(4,4’イソプロピリデンジフェノキシ)ジフタル酸などの化合物、又は、それらのテトラカルボン酸二無水物、テトラカルボン酸二塩化物若しくはテトラカルボン酸活性ジエステルなどの残基が挙げられるがこれらに限定されない。ポリイミド及び/またはポリイミド前駆体は、これらの残基を、単独でまたは2種以上を組み合わせて含有してもよい。 Examples of tetracarboxylic acid residues and derivative residues thereof include butanetetracarboxylic acid, cyclopentanetetracarboxylic acid, pyromellitic acid, bicyclohexanetetracarboxylic acid, pentanetetracarboxylic acid, hexanetetracarboxylic acid, and cyclopropanetetracarboxylic acid. Acid, cyclobutanetetracarboxylic acid, cyclopentanetetracarboxylic acid, cyclohexanetetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 3,3',4,4'-diphenylsulfonetetracarboxylic acid, 4 , 4'-oxydiphthalic acid, 4,4'-(hexafluoroisopropylidene)diphthalic acid, 3,3',4,4'-biphenyltetracarboxylic acid, 4,4'-(4,4'isopropylidene diphenoxy) ) compounds such as diphthalic acid, or residues thereof such as tetracarboxylic dianhydrides, tetracarboxylic dichlorides, or tetracarboxylic active diesters. The polyimide and/or polyimide precursor may contain these residues alone or in combination of two or more.
 ポリアミド、ポリベンゾオキサゾール及びポリベンゾオキサゾール前駆体中のジカルボン酸残基及びその誘導体残基としては、トリカルボン酸残基及び/またはその誘導体残基を含有しても構わない。ジカルボン酸残基及びトリカルボン酸残基としては、例えば、芳香族ジカルボン酸、芳香族トリカルボン酸、脂環式ジカルボン酸、脂環式トリカルボン酸、脂肪族ジカルボン酸又は脂肪族トリカルボン酸の残基が挙げられる。これらのジカルボン酸残基及びトリカルボン酸残基は、カルボキシ基の酸素原子以外に、酸素原子以外のヘテロ原子を有してもよい。 The dicarboxylic acid residues and derivative residues thereof in the polyamide, polybenzoxazole, and polybenzoxazole precursor may contain tricarboxylic acid residues and/or derivative residues thereof. Examples of dicarboxylic acid residues and tricarboxylic acid residues include residues of aromatic dicarboxylic acids, aromatic tricarboxylic acids, alicyclic dicarboxylic acids, alicyclic tricarboxylic acids, aliphatic dicarboxylic acids, and aliphatic tricarboxylic acids. It will be done. These dicarboxylic acid residues and tricarboxylic acid residues may have a heteroatom other than an oxygen atom in addition to the oxygen atom of the carboxy group.
 ジカルボン酸残基及びその誘導体残基としては、例えば、フタル酸、イソフタル酸、テレフタル酸、4,4’-ジカルボキシビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジカルボキシビフェニル、4,4’-ベンゾフェノンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、ヘキサン-1,6-ジカルボン酸、コハク酸、又は、それらのジカルボン酸無水物、ジカルボン酸塩化物、ジカルボン酸活性エステル若しくはジホルミル化合物などの残基が挙げられるがこれらに限定されない。 Examples of dicarboxylic acid residues and derivative residues thereof include phthalic acid, isophthalic acid, terephthalic acid, 4,4'-dicarboxybiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-dicarboxylic acid, and Carboxybiphenyl, 4,4'-benzophenonedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, hexane-1,6-dicarboxylic acid, succinic acid, or their dicarboxylic acid anhydrides, dicarboxylic acids Examples include, but are not limited to, residues such as acid chlorides, dicarboxylic acid active esters, or diformyl compounds.
 トリカルボン酸残基及びその誘導体残基としては、例えば、1,2,4-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボン酸、2,4,5-ベンゾフェノントリカルボン酸、2,4,4’-ビフェニルトリカルボン酸もしくは3,3’,4’-トリカルボキシジフェニルエーテル、1,2,4-シクロヘキサントリカルボン酸、1,3,5-シクロヘキサントリカルボン酸または、それらのトリカルボン酸無水物、トリカルボン酸塩化物、トリカルボン酸活性エステルもしくはジホルミルモノカルボン酸などの残基が挙げられるがこれらに限定されない。 Examples of tricarboxylic acid residues and derivative residues thereof include 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 2,4,5-benzophenonetricarboxylic acid, 2,4,4' - biphenyltricarboxylic acid or 3,3',4'-tricarboxydiphenyl ether, 1,2,4-cyclohexanetricarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid or their tricarboxylic acid anhydrides, tricarboxylic acid chlorides, Examples include, but are not limited to, residues such as tricarboxylic acid active esters or diformyl monocarboxylic acid.
 ジアミン残基及びその誘導体残基としては、例えば、芳香族ジアミン、ビスアミノフェノール化合物、脂環式ジアミン、脂環式ジヒドロキシジアミン、脂肪族ジアミン又は脂肪族ジヒドロキシジアミンの残基が挙げられる。これらジアミン残基及びその誘導体残基は、アミノ基及びその誘導体が有する窒素原子、酸素原子以外に、ヘテロ原子を有してもよい。 Examples of diamine residues and derivative residues thereof include residues of aromatic diamines, bisaminophenol compounds, alicyclic diamines, alicyclic dihydroxydiamines, aliphatic diamines, and aliphatic dihydroxydiamines. These diamine residues and their derivative residues may have a hetero atom in addition to the nitrogen atom and oxygen atom that the amino group and its derivative have.
 ジアミン残基及びビスアミノフェノール化合物残基並びにそれらの誘導体残基としては、例えば、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルサルファイド、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、ベンジジン、3,3’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、o-トリジン、4,4”-ジアミノターフェニル、1,5-ジアミノナフタレン、2,5-ジアミノピリジン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、1,2-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、ビス(4-アミノシクロヘキシル)メタン、3,6-ジヒドロキシ-1,2-シクロヘキサンジアミン、2,5-ジヒドロキシ-1,4-シクロヘキサンジアミン、ビス(3-ヒドロキシ-4-アミノシクロヘキシル)メタン、4,4’-ビス(p-アミノフェノキシ)ビフェニル、2,2-ビス[4-(p-アミノフェノキシ)フェニル]プロパン、ヘキサヒドロ-4,7-メタノインダニレンジメチレンジアミン、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンなどの化合物、または、それらのジイソシアネート化合物若しくはトリメチルシリル化ジアミンの残基が挙げられるがこれらに限定されない。 Examples of diamine residues, bisaminophenol compound residues, and derivative residues thereof include 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfone, 4,4' -diaminodiphenyl sulfide, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,6-diaminotoluene, benzidine, 3,3'-dimethylbenzidine, 3,3' -dimethoxybenzidine, o-tolidine, 4,4''-diaminotaphenyl, 1,5-diaminonaphthalene, 2,5-diaminopyridine, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 1,2- Cyclohexanediamine, 1,4-cyclohexanediamine, bis(4-aminocyclohexyl)methane, 3,6-dihydroxy-1,2-cyclohexanediamine, 2,5-dihydroxy-1,4-cyclohexanediamine, bis(3-hydroxy -4-aminocyclohexyl)methane, 4,4'-bis(p-aminophenoxy)biphenyl, 2,2-bis[4-(p-aminophenoxy)phenyl]propane, hexahydro-4,7-methanoindanilene Methylenediamine, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, bis(3-amino-4-hydroxyphenyl)propane, bis(4- Amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(4-amino-3-hydroxyphenyl)sulfone, 2,2-bis(3-amino-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis(4-amino-3-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane, etc. compounds or their diisocyanate compounds or trimethylsilylated diamine residues.
 (A)成分は、式(1)のジアミン残基及び/または式(2)のジアミン残基を含有する。
式(1)のジアミン残基または式(2)のジアミン残基は、リノール酸またはオレイン酸などの不飽和脂肪酸の二量体であるダイマー酸に由来する骨格を有する構造であり、得られる硬化物の信頼性の観点から2重結合を含有しない構造が好ましく、式(3)で表される構造が経済性や得られる硬化物の伸度などの観点から特に好ましい。
Component (A) contains a diamine residue of formula (1) and/or a diamine residue of formula (2).
The diamine residue of formula (1) or the diamine residue of formula (2) has a structure having a skeleton derived from dimer acid, which is a dimer of unsaturated fatty acids such as linoleic acid or oleic acid, and the resulting curing A structure containing no double bond is preferred from the viewpoint of product reliability, and a structure represented by formula (3) is particularly preferred from the viewpoint of economical efficiency and elongation of the resulting cured product.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(3)で示される構造を有するジアミンの具体例は、ダイマージアミンの市販品としては、BASF(株)製の「“バーサミン(登録商標)”551」、「“バーサミン(登録商標)”552」、クローダジャパン(株)製の「“プリアミン(登録商標)”1073」、「“プリアミン(登録商標)”1074」、「“プリアミン(登録商標)”1075」などが挙げられる。ここで、「“バーサミン(登録商標)”551」、「“プリアミン(登録商標)”1074」はいずれも式(4)で表される化合物を含むダイマージアミン化合物であり、「“バーサミン(登録商標)”552」、「“プリアミン(登録商標)”1073」、「“プリアミン(登録商標)”1075」はいずれも、式(3)で表される化合物を含むダイマージアミン化合物である。 Specific examples of diamines having the structure represented by formula (3) include "Versamine (registered trademark)" 551 and "Versamine (registered trademark)" 552 manufactured by BASF Corporation as commercially available dimer diamines. ”, “Priamine (registered trademark)” 1073, “Priamine (registered trademark)” 1074, and “Priamine (registered trademark) 1075” manufactured by Croda Japan Co., Ltd. Here, "Versamine (registered trademark)" 551" and "Priamine (registered trademark)" 1074" are both dimer diamine compounds containing the compound represented by formula (4), and "Versamine (registered trademark)" )"552," "Priamine (registered trademark)" 1073, and "Priamine (registered trademark)" 1075 are all dimer diamine compounds containing the compound represented by formula (3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 またトリマートリアミンとダイマージアミンの混合物を用いてもよい。トリマートリアミンとダイマージアミンの市販品としてはクローダジャパン(株)製の「“プリアミン(登録商標)”1071」などが挙げられる。 A mixture of trimer triamine and dimer diamine may also be used. Commercially available products of trimer triamine and dimer diamine include "Priamine (registered trademark)" 1071 manufactured by Croda Japan Co., Ltd.
 (A)成分は、(A)成分の全ジアミン残基100モル%中、式(1)のジアミン残基及び式(2)のジアミン残基の合計を1モル%以上、30モル%以下含有することが好ましく、より好ましくは1モル%以上、15モル%以下で含有する。
(A)成分が、(A)成分の全ジアミン残基100モル%中、式(1)のジアミン残基及び式(2)のジアミン残基の合計を1モル%以上含有することによって、比誘電率及び誘電正接を低くすることができる。
また、(A)成分が、(A)成分の全ジアミン残基100モル%中、式(1)のジアミン残基及び式(2)のジアミン残基の合計を30モル%以下含有することによって、線熱膨張係数を低くすることができる。
Component (A) contains a total of 1 mol% or more and 30 mol% or less of diamine residues of formula (1) and diamine residues of formula (2) out of 100 mol% of all diamine residues of component (A). The content is preferably 1 mol% or more and 15 mol% or less.
(A) component contains a total of 1 mol % or more of the diamine residue of formula (1) and the diamine residue of formula (2) in 100 mol % of the total diamine residues of component (A), so that the ratio The dielectric constant and dielectric loss tangent can be lowered.
Furthermore, by component (A) containing a total of 30 mol% or less of diamine residues of formula (1) and diamine residues of formula (2) in 100 mol% of all diamine residues of component (A), , the coefficient of linear thermal expansion can be lowered.
 また、樹脂組成物の保存安定性を向上させるため、(A)成分は主鎖末端をモノアミン、酸無水物、モノカルボン酸、モノ酸ク口リド化合物、モノ活性エステル化合物などの末端封止剤で封止することが好ましい。また、(A)成分の末端を水酸基、力ルボキシル基、スルホン酸基、チオール基、ビニル基、エチニル基またはアリル基を有する末端封止剤により封止することで、樹脂の溶剤への溶解性や得られる硬化物の機械特性を好ましい範囲に容易に調整することができる。末端封止剤の導入割合は、(A)成分の全アミン成分100モル部に対して、(A)成分の分子量が高くなり、溶剤への溶解性が低下することを抑制するため、好ましくは0.1モル部以上、特に好ましくは5モル部以上である。また、(A)成分の分子量が低くなることで、得られる硬化物の機械特性低下を抑えるため、末端封止剤の導入割合は、好ましくは60モル部以下、特に好ましくは50モル部以下である。複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。 In addition, in order to improve the storage stability of the resin composition, component (A) is used to terminate the main chain with an end-capping agent such as a monoamine, an acid anhydride, a monocarboxylic acid, a monoacid salt compound, or a monoactive ester compound. It is preferable to seal with. In addition, by capping the terminal of component (A) with an end capping agent having a hydroxyl group, hydroxyl group, sulfonic acid group, thiol group, vinyl group, ethynyl group, or allyl group, the solubility of the resin in a solvent can be improved. The mechanical properties of the resulting cured product can be easily adjusted to a preferred range. The introduction ratio of the terminal capping agent is preferably in order to prevent the molecular weight of component (A) from increasing and the solubility in the solvent to decrease with respect to 100 mole parts of the total amine components of component (A). The amount is 0.1 part by mole or more, particularly preferably 5 parts by mole or more. Furthermore, in order to suppress deterioration of the mechanical properties of the obtained cured product due to the lower molecular weight of component (A), the introduction ratio of the terminal capping agent is preferably 60 parts by mole or less, particularly preferably 50 parts by mole or less. be. A plurality of different terminal groups may be introduced by reacting a plurality of terminal capping agents.
 モノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物としては、特許第6740903号[0038]~[0042]に記載の化合物を用いることができる。 As the monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound, and monoactive ester compound, compounds described in Patent No. 6740903 [0038] to [0042] can be used.
 また、本発明において、(A)成分に導入された末端封止剤は、ガスク口マ卜グラフィー(GC)、熱分解ガスク口マ卜グラフ(PGC)、赤外スペク卜ル及び/またはNMR測定で容易に検出できる。 In addition, in the present invention, the terminal capping agent introduced into the component (A) can be used in gas profile analysis (GC), pyrolysis gas profile (PGC), infrared spectrum and/or NMR measurement. can be easily detected.
 (A)成分は、重量平均分子量が5,000以上100,000以下であることが好ましい。重量平均分子量が8,000以上であれば、硬化後の硬化物の機械特性を向上させることができる。より好ましくは重量平均分子量が12,000以上である。一方、重量平均分子量が100,000以下であれば、有機溶剤への溶解性を向上でき、さらに重量平均分子量が50,000以下であれば、有機溶剤に溶解した際の粘度を適切な範囲にさせることができるため好ましい。 The weight average molecular weight of component (A) is preferably 5,000 or more and 100,000 or less. If the weight average molecular weight is 8,000 or more, the mechanical properties of the cured product after curing can be improved. More preferably, the weight average molecular weight is 12,000 or more. On the other hand, if the weight average molecular weight is 100,000 or less, solubility in organic solvents can be improved, and if the weight average molecular weight is 50,000 or less, the viscosity when dissolved in organic solvents can be adjusted to an appropriate range. This is preferable because it allows
 重量平均分子量(Mw)は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて確認できる。例えば展開溶剤をN-メチル-2-ピロリドン(以下、NMPと省略する場合がある)として測定し、ポリスチレン換算で求めることができる。また、(A)樹脂として2種以上の樹脂を含有する場合、少なくとも1種の重量平均分子量が上記範囲内であればよい。 The weight average molecular weight (Mw) can be confirmed using GPC (gel permeation chromatography). For example, it can be determined by measuring the developing solvent as N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as NMP) and converting it into polystyrene. Moreover, when containing two or more types of resin as (A) resin, it is sufficient if the weight average molecular weight of at least one type is within the above range.
 <(B)平均粒子径150nm以上、5μm以下の無機粒子>
 本発明の樹脂組成物は、(B)平均粒子径150nm以上、5μm以下の無機粒子(以下、(B)成分と呼称する場合がある)を含有する。(B)成分を含有することにより塗布性を損なわずに、硬化物の熱膨張係数、誘電正接を低くすることができる。無機粒子の材質としては、シリカ、中空シリカ、アルミナ、チタニア、窒化ケイ素、窒化硼素、窒化アルミニウム、酸化鉄、ガラスやその他金属酸化物、金属窒化物、金属炭酸塩、硫酸バリウムなどの金属硫酸塩等を単独でまたは2種以上混合して用いることができる。これらの中でシリカが低線熱膨張性、低誘電正接、低吸湿率の点で好ましく使用することができる。
<(B) Inorganic particles with an average particle diameter of 150 nm or more and 5 μm or less>
The resin composition of the present invention contains (B) inorganic particles having an average particle diameter of 150 nm or more and 5 μm or less (hereinafter sometimes referred to as component (B)). By containing component (B), the thermal expansion coefficient and dielectric loss tangent of the cured product can be lowered without impairing coating properties. Inorganic particle materials include silica, hollow silica, alumina, titania, silicon nitride, boron nitride, aluminum nitride, iron oxide, glass, and other metal oxides, metal nitrides, metal carbonates, and metal sulfates such as barium sulfate. These can be used alone or in combination of two or more. Among these, silica can be preferably used because of its low linear thermal expansion, low dielectric loss tangent, and low moisture absorption.
 (B)成分の平均粒子径は凝集物の抑制や塗布性の向上の観点より、5μm以下であり、より好ましくは2μm以下、さらに好ましくは1μm以下である。一方、低線熱膨張性や低誘電正接性の観点から、平均粒子径は150nm以上であり、好ましくは300nm以上である。上記平均粒子径として、メディアン径(d50)の値が採用される。上記平均粒子径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。 The average particle diameter of component (B) is 5 μm or less, more preferably 2 μm or less, and even more preferably 1 μm or less, from the viewpoint of suppressing aggregates and improving coating properties. On the other hand, from the viewpoint of low linear thermal expansion and low dielectric loss tangent, the average particle diameter is 150 nm or more, preferably 300 nm or more. As the above-mentioned average particle diameter, the value of the median diameter (d 50 ) is adopted. The above average particle diameter can be measured using a laser diffraction scattering type particle size distribution measuring device.
 (B)成分は、表面処理されていることが好ましく、カップリング剤による表面処理物であることがより好ましく、シランカップリング剤による表面処理物であることが更に好ましい。これにより、樹脂組成物中に配合した際に分散性が向上し、塗布性が向上する。上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、フェニルアミノシラン、イミダゾールシラン、ビニルシラン及びエポキシシラン等が挙げられ、より好ましくはアミノシラン、フェニルアミノシランである。 The component (B) is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and even more preferably a surface-treated product with a silane coupling agent. This improves dispersibility and coatability when blended into a resin composition. Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, and an aluminum coupling agent. Examples of the silane coupling agent include methacrylsilane, acrylicsilane, aminosilane, phenylaminosilane, imidazolesilane, vinylsilane, and epoxysilane, with aminosilane and phenylaminosilane being more preferred.
 (B)成分の含有量は、樹脂組成物中の固形分を100質量%としたとき、低線熱膨張性や低誘電正接の観点から、50質量%以上が好ましく、より好ましくは60質量%以上である。一方凝集物の抑制や塗布性の向上の観点より、80質量%以下であることが好ましく、より好ましくは70質量%以下である。固形分とは、樹脂組成物中の溶剤を除いた成分のことである。 The content of component (B) is preferably 50% by mass or more, more preferably 60% by mass from the viewpoint of low linear thermal expansion and low dielectric loss tangent, when the solid content in the resin composition is 100% by mass. That's all. On the other hand, from the viewpoint of suppressing aggregates and improving coating properties, the content is preferably 80% by mass or less, more preferably 70% by mass or less. The solid content refers to the components of the resin composition excluding the solvent.
 <(C)エステル系溶剤>
 本発明の樹脂組成物は、(C)エステル系溶剤(以下、(C)成分と呼ぶ場合がある。)を含有する。
(C)エステル系溶剤とは、エステル結合を有する分子量1000未満の溶剤である。例えば、(C)成分は酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸secブチル、酢酸メトキシブチル、酢酸アミル、酢酸ノルマルプロピル、酢酸イソプロピル、乳酸メチル、乳酸エチル、乳酸ブチル、3-メチル-3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ブチルカルビトールアセテート、エチルカルビトールアセテート等が挙げられるが、これらに限定されるものではない。樹脂組成物は、これらのエステル系溶剤を、単独でまたは2種以上を組み合わせて含有してもよい。また(C)成分は直鎖状のエステル系溶剤が好ましい。
<(C) Ester solvent>
The resin composition of the present invention contains (C) an ester solvent (hereinafter sometimes referred to as component (C)).
(C) The ester solvent is a solvent having an ester bond and a molecular weight of less than 1000. For example, component (C) is ethyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, amyl acetate, n-propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate, 3-methyl-3-methoxy Examples include, but are not limited to, butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, butyl carbitol acetate, ethyl carbitol acetate, etc. isn't it. The resin composition may contain these ester solvents alone or in combination of two or more. Further, component (C) is preferably a linear ester solvent.
 (C)成分が、グリコールエステル系溶剤を含むことがより好ましい。また(C)成分が、グリコールエステル系溶剤のみからなることがさらに好ましい。グリコールエステル系溶剤とは、グリコールの水酸基の片方または両方が、エステル化した構造を有する溶剤をいう。なかでも、(C)成分は、アルキレングリコールモノアルキルエーテルアセテートが好ましく、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートであることがより好ましい。(C)成分を含むことにより、樹脂組成物中の(B)成分を樹脂組成物系中に安定化させることが可能であり、塗布性を大幅に改善することが可能となる。 It is more preferable that component (C) contains a glycol ester solvent. Moreover, it is more preferable that component (C) consists only of a glycol ester solvent. A glycol ester solvent refers to a solvent having a structure in which one or both of the hydroxyl groups of glycol are esterified. Among these, component (C) is preferably alkylene glycol monoalkyl ether acetate, more preferably ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, or propylene glycol monoethyl ether acetate. By including the component (C), the component (B) in the resin composition can be stabilized in the resin composition system, and the coating properties can be significantly improved.
 前記(C)成分の含有量は、樹脂組成物中の溶剤全体を100質量%としたとき、好ましくは40質量%以上、より好ましくは70質量%以上、さらに好ましくは100質量%である。(C)成分の含有量が多いほど、(B)成分の分散安定性が向上する。 The content of the component (C) is preferably 40% by mass or more, more preferably 70% by mass or more, and even more preferably 100% by mass, when the total solvent in the resin composition is 100% by mass. The greater the content of component (C), the better the dispersion stability of component (B).
 また本発明の樹脂組成物は(C)成分以外の溶剤を含有してもよい。例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、N,N‐ジメチルイソ酪酸アミド、メトキシ-N,N-ジメチルプロピオンアミドなどの極性の非プロトン性溶剤、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトンなどのケトン類、ジアセトンアルコール、3-メチル-3-メトキシブタノールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類等が挙げられる。樹脂組成物はこれらを2種以上含有してもよい。 Furthermore, the resin composition of the present invention may contain a solvent other than the component (C). For example, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone, N,N'-dimethylpropylene urea, N, Polar aprotic solvents such as N-dimethylisobutyric acid amide and methoxy-N,N-dimethylpropionamide, ethers such as tetrahydrofuran, dioxane, propylene glycol monomethyl ether, and propylene glycol monoethyl ether, acetone, methyl ethyl ketone, diisobutyl ketone, etc. Examples include ketones, alcohols such as diacetone alcohol and 3-methyl-3-methoxybutanol, and aromatic hydrocarbons such as toluene and xylene. The resin composition may contain two or more of these.
 溶剤の含有量は、固形分100質量部に対して、組成物を溶解させやすい点から、30質量部以上含有することが好ましく、膜厚1μm以上の塗膜を形成させやすい点から、1,500質量部以下含有することが好ましい。 The content of the solvent is preferably 30 parts by mass or more based on 100 parts by mass of the solid content in order to easily dissolve the composition, and in order to easily form a coating film with a thickness of 1 μm or more, 1. The content is preferably 500 parts by mass or less.
 本発明の樹脂組成物は、前記(B)成分の含有量をBm(質量)、前記(C)成分の含有量をCm(質量)としたときに、0.1≦(Bm/Cm)≦3.0であり、より好ましくは、0.1≦(Bm/Cm)≦2.4、さらに好ましくは0.1≦(Bm/Cm)≦1.8である。塗布性には(B)成分と(C)成分の比率が重要であることを見出し、(B)成分に対して、ある一定以上の(C)成分が必要となることがわかった。よって0.1≦(Bm/Cm)≦3.0の範囲とすることで、(B)成分の樹脂組成物系中に安定化させることが可能であり、塗布性を大幅に改善することが可能となる。 In the resin composition of the present invention, when the content of the component (B) is Bm (mass) and the content of the component (C) is Cm (mass), 0.1≦(Bm/Cm)≦ 3.0, more preferably 0.1≦(Bm/Cm)≦2.4, still more preferably 0.1≦(Bm/Cm)≦1.8. It has been found that the ratio of component (B) to component (C) is important for coating properties, and it has been found that a certain amount or more of component (C) is required relative to component (B). Therefore, by setting the range of 0.1≦(Bm/Cm)≦3.0, it is possible to stabilize the component (B) in the resin composition system, and the applicability can be significantly improved. It becomes possible.
 <(D)熱硬化性樹脂>
 本発明の樹脂組成物は、さらに(D)熱硬化性樹脂(以下、(D)成分と呼ぶ場合がある。)を含有し、該(D)成分がポリフェニレンエーテル樹脂、マレイミド樹脂、ポリブタジエン樹脂、及びベンゾシクロブテン樹脂からなる群より選択される1種類以上を含有することが好ましい。これら樹脂を使用した場合、極性が低いため、(A)成分との相溶性が良く、塗布性が良いおよび誘電正接が低いままで、耐薬品性を向上することができる。
ポリフェニレンエーテル樹脂とは、樹脂の構造中に式(5)記載の構造が繰り返し含まれる樹脂であれば特に制限されないが、好ましくは樹脂の構造中に式(5)記載の構造を複数有する態様であり、特に好ましくは樹脂の構造中の繰り返し単位数として式(5)記載の構造を最も多く含む態様である。なお、本発明で言うポリフェニレンエーテル樹脂は、樹脂の構造中に式(5)記載の構造が含まれる樹脂でありさえすれば、他の構造との共重合体であってもよい。
<(D) Thermosetting resin>
The resin composition of the present invention further contains (D) a thermosetting resin (hereinafter sometimes referred to as (D) component), and the (D) component is polyphenylene ether resin, maleimide resin, polybutadiene resin, and benzocyclobutene resin. When these resins are used, since they have low polarity, they have good compatibility with component (A), and can improve chemical resistance while maintaining good coating properties and a low dielectric loss tangent.
The polyphenylene ether resin is not particularly limited as long as the structure of the formula (5) is repeatedly included in the resin structure, but it is preferably a resin having a plurality of structures described by the formula (5) in the resin structure. Particularly preferred is an embodiment in which the number of repeating units in the resin structure is the largest in the structure represented by formula (5). Note that the polyphenylene ether resin referred to in the present invention may be a copolymer with another structure as long as the resin structure includes the structure described in formula (5).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(5)中、R~Rは同じでも異なっていても良く、水素原子、ハロゲン原子、または炭素数1~30のアルキル基、アルコキシ基、フルオロアルキル基、フェニル基、またはフェノキシ基を示す。 In formula (5), R 1 to R 4 may be the same or different, and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 30 carbon atoms, an alkoxy group, a fluoroalkyl group, a phenyl group, or a phenoxy group. show.
 ポリフェニレンエーテル樹脂の数平均分子量は500以上5000以下であることが好ましい。より好ましくは1000以上4000以下である。数平均分子量を500以上にすることによって、架橋密度を低減し、樹脂組成物の靭性を向上することができる。5000以下にすることによって、ポリイミド等の他成分との相溶性を向上し、熱硬化性樹脂組成物を均一構造にして、物性を安定させることができる。ポリフェニレンエーテル樹脂の架橋性官能基には、フェノール性水酸基、アクリル基、ビニル基、及びエポキシ基などが挙げられるがこれらに限定されない。これらの架橋性官能基は、分子鎖の両末端についているのが好ましいが、片側の末端だけについていてもよい。フェニレンエーテル樹脂が含有する架橋性官能基は、これらの架橋性官能基のなかでもビニル基が好ましい。ビニル基で熱架橋した熱硬化性樹脂組成物は、極性が低い為、比誘電率と誘電正接を低くすることができる。このような樹脂として三菱ガス化学(株)製のOPE-2stなどが挙げられる。 The number average molecular weight of the polyphenylene ether resin is preferably 500 or more and 5000 or less. More preferably, it is 1000 or more and 4000 or less. By setting the number average molecular weight to 500 or more, the crosslinking density can be reduced and the toughness of the resin composition can be improved. By setting the molecular weight to 5,000 or less, the compatibility with other components such as polyimide can be improved, the thermosetting resin composition can be made into a uniform structure, and the physical properties can be stabilized. The crosslinkable functional groups of the polyphenylene ether resin include, but are not limited to, phenolic hydroxyl groups, acrylic groups, vinyl groups, and epoxy groups. These crosslinkable functional groups are preferably attached to both ends of the molecular chain, but may be attached only to one end. The crosslinkable functional group contained in the phenylene ether resin is preferably a vinyl group among these crosslinkable functional groups. Since a thermosetting resin composition thermally crosslinked with a vinyl group has low polarity, it is possible to lower the dielectric constant and dielectric loss tangent. Examples of such resins include OPE-2st manufactured by Mitsubishi Gas Chemical Co., Ltd.
 マレイミド樹脂は、熱硬化性樹脂組成物溶液の粘度を低くする観点から、有機溶剤に溶解するマレイミド樹脂でありさえすれば良く、特に制限はない。マレイミド樹脂としては、例えば、フェニルメタンマレイミド、メタフェニレンビスマレイミド、4,4’-ジフェニルメタンビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2’-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルホンビスマレイミド、ポリフェニルメタンマレイミド、ノボラック型マレイミド化合物、ビフェニルアラルキル型マレイミド化合物、及びこれらマレイミド樹脂のプレポリマーなどが挙げられる。 The maleimide resin is not particularly limited as long as it is a maleimide resin that dissolves in an organic solvent from the viewpoint of lowering the viscosity of the thermosetting resin composition solution. Examples of maleimide resins include phenylmethane maleimide, metaphenylene bismaleimide, 4,4'-diphenylmethane bismaleimide, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, 2,2'-bis[4 -(4-maleimidophenoxy)phenyl]propane, 4-methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide-(2,2,4-trimethyl)hexane, 4,4-diphenyl ether bismaleimide, 4 , 4-diphenylsulfone bismaleimide, polyphenylmethanemaleimide, novolak-type maleimide compounds, biphenylaralkyl-type maleimide compounds, and prepolymers of these maleimide resins.
 ポリブタジエン樹脂とは、樹脂の構造中に式(6)記載の構造が含まれる樹脂であれば特に制限されないが、好ましくは樹脂の構造中に式(6)記載の構造を複数有する態様である。 The polybutadiene resin is not particularly limited as long as the structure of the resin includes the structure described by formula (6), but preferably has a plurality of structures described by formula (6) in the resin structure.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ポリブタジエン樹脂の平均分子量は500以上5000以下であることが好ましい。このようなポリブタジエン樹脂として、日本曹達(株)製のB1000、B2000、B3000、トタル・ルブリカンツ・ジャパン(株)製のRicon130、Ricon131、Ricon142、Ricon150、Ricon152、Ricon153、Ricon156、Ricon157、Ricon130MA8、Ricon130MA13、Ricon130MA20、Ricon156MA17、Ricon100、Ricon181などが挙げられる。 The average molecular weight of the polybutadiene resin is preferably 500 or more and 5000 or less. Examples of such polybutadiene resins include B1000, B2000, and B3000 manufactured by Nippon Soda Co., Ltd., and Ricon 130, Ricon 131, Ricon 142, Ricon 150, Ricon 152, Ricon 153, Ricon 156, and Ricon 15 manufactured by Total Lubricants Japan Co., Ltd. 7, Ricon130MA8, Ricon130MA13, Examples include Ricon130MA20, Ricon156MA17, Ricon100, and Ricon181.
 ベンゾシクロブテン樹脂としては、例えば臭素化アリールシクロブテン化合物と不飽和アルキル基を含有する化合物をパラジウム触媒存在下で反応させることにより製造される。具体的には、ジビニルシロキサンビスベンゾシクロブテンなどが挙げられる。また市販品のベンゾシクロブテン化合物としてはダウ・ケミカル(株)製のCYCLOTENE3022-63または4026-46などが挙げられる。 The benzocyclobutene resin is produced, for example, by reacting a brominated arylcyclobutene compound and a compound containing an unsaturated alkyl group in the presence of a palladium catalyst. Specific examples include divinylsiloxane bisbenzocyclobutene. Examples of commercially available benzocyclobutene compounds include CYCLOTENE 3022-63 and 4026-46 manufactured by Dow Chemical Co., Ltd.
 (D)成分の含有量は、樹脂全体100質量中に1質量%以上50質量%以下、さらに好ましくは10質量%以上30質量%以下である。(D)成分はこれらを単独または2種類以上を混合して含有することも可能である。 The content of component (D) is from 1% by mass to 50% by mass, more preferably from 10% by mass to 30% by mass, based on 100% by mass of the entire resin. Component (D) may contain these alone or in combination of two or more.
 <熱架橋剤>
 本発明の樹脂組成物は、熱架橋剤を含有してもよい。熱架橋剤としては公知のものを使用することができる。例えば、アクリル基、メタクリル基、マレイミド基、スチリル基、エポキシ基、オキセタニル基、ベンゾオキサジン構造、アルコキシメチル基及びメチロール基からなる群から選択される1種以上の基を少なくとも2つ以上含む化合物などが挙げられるがこれらに限定されない。
<Thermal crosslinking agent>
The resin composition of the present invention may contain a thermal crosslinking agent. Known thermal crosslinking agents can be used. For example, a compound containing at least two or more groups selected from the group consisting of an acrylic group, a methacrylic group, a maleimide group, a styryl group, an epoxy group, an oxetanyl group, a benzoxazine structure, an alkoxymethyl group, and a methylol group. These include, but are not limited to.
 熱架橋剤の含有量は、樹脂全体100質量中に1質量%以上50質量%以下、さらに好ましくは3質量%以上40質量%以下である。熱架橋剤はこれらを単独または2種類以上を混合して含有することも可能である。 The content of the thermal crosslinking agent is 1% by mass or more and 50% by mass or less, more preferably 3% by mass or more and 40% by mass or less, based on 100% by mass of the entire resin. The thermal crosslinking agent may contain these alone or in a mixture of two or more.
 <硬化促進剤>
 本発明の樹脂組成物は、硬化促進剤を含有してもよい。硬化促進剤を含有することで熱架橋剤の硬化を促進して短時間で硬化させることができる。硬化促進剤としては特に限定されないが、イミダゾール類、多価フェノール類、酸無水物類、アミン類、ヒドラジド類、ポリメルカプタン類、ルイス酸-アミン錯体類、潜在性硬化剤、有機過酸化物などを用いることができる。その中でも、保存安定性と硬化物の耐熱性が優れるイミダゾール類、有機過酸化物が好ましく用いられる。これらは、単独または2種以上を混合して含有することができる。イミダゾール類としては“キュアゾール(登録商標)”2MZ、“キュアゾール(登録商標)”2PZ、“キュアゾール(登録商標)”2MZ-A、“キュアゾール(登録商標)”2MZ-OK(以上商品名、四国化成工業(株)製)などがあげられる。多価フェノール類としては、“スミライトレジン(登録商標)”PR-HF3、“スミライトレジン(登録商標)”PR-HF6(以上商品名、住友ベークライト(株)製)“カヤハード(登録商標)”KTG-105、“カヤハード(登録商標)”NHN(以上商品名、日本化薬(株)製)、“フェノライト(登録商標)”TD2131、“フェノライト(登録商標)”TD2090、“フェノライト(登録商標)”VH-4150、“フェノライト(登録商標)”KH-6021、“フェノライト(登録商標)”KA-1160、“フェノライト(登録商標)”KA-1165(以上商品名、DIC(株)製)などがあげられる。有機過酸化物としては、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-ブチルイソプロピルカルボネート、ジ-t-ブチルパーオキサイド、t-ブチルパーオクテート、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシ-2-エチルヘキサノエートなどが挙げられる。硬化促進剤の含有量は特に制限されないが、樹脂全体100質量%中に0.1質量%以上10質量%以下であることが好ましい。
<Curing accelerator>
The resin composition of the present invention may contain a curing accelerator. By containing a curing accelerator, the curing of the thermal crosslinking agent can be accelerated and cured in a short time. Curing accelerators are not particularly limited, but include imidazoles, polyhydric phenols, acid anhydrides, amines, hydrazides, polymercaptans, Lewis acid-amine complexes, latent curing agents, organic peroxides, etc. can be used. Among these, imidazoles and organic peroxides, which have excellent storage stability and heat resistance of cured products, are preferably used. These may be contained alone or in combination of two or more. The imidazoles include "Curezol (registered trademark)" 2MZ, "Curezol (registered trademark)" 2PZ, "Curezol (registered trademark)" 2MZ-A, "Curezol (registered trademark)" 2MZ-OK (the above product names, Shikoku Kasei (manufactured by Kogyo Co., Ltd.). Examples of polyhydric phenols include "Sumilite Resin (registered trademark)" PR-HF3, "Sumilite Resin (registered trademark)" PR-HF6 (all trade names, manufactured by Sumitomo Bakelite Co., Ltd.) and "Kayahard (registered trademark)". “KTG-105,” “Kayahard (registered trademark)” NHN (all product names, manufactured by Nippon Kayaku Co., Ltd.), “Phenolyte (registered trademark)” TD2131, “Phenolyte (registered trademark)” TD2090, “Phenolyte” (registered trademark)” VH-4150, “phenolite (registered trademark)” KH-6021, “phenolite (registered trademark)” KA-1160, “phenolite (registered trademark)” KA-1165 (the above product names, DIC Co., Ltd.). Examples of organic peroxides include benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t- Butyl isopropyl carbonate, di-t-butyl peroxide, t-butyl peroctate, 1,1-bis(t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis(t-butyl (peroxy)cyclohexane, t-butylperoxy-2-ethylhexanoate, and the like. Although the content of the curing accelerator is not particularly limited, it is preferably 0.1% by mass or more and 10% by mass or less based on 100% by mass of the entire resin.
 <密着改良剤>
 本発明の樹脂組成物は、密着改良剤を含有してもよい。密着改良剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物などが挙げられ、特にトリメトキシビニルシラン、トリエトキシビニルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、p―スチリルトリメトキシシランが好ましく、p―スチリルトリメトキシシランがより好ましい。密着改良剤はこれらを2種以上含有してもよい。
<Adhesion improver>
The resin composition of the present invention may contain an adhesion improver. Examples of adhesion improvers include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling of 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, etc. agents, titanium chelating agents, aluminum chelating agents, compounds obtained by reacting aromatic amine compounds with alkoxy group-containing silicon compounds, etc. In particular, trimethoxyvinylsilane, triethoxyvinylsilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane and p-styryltrimethoxysilane are preferred, and p-styryltrimethoxysilane is more preferred. The adhesion improver may contain two or more of these.
 樹脂組成物における密着改良剤の含有量は、樹脂全体100質量%中に対して、0.1~10質量%が好ましい。このような範囲とすることで、基板との密着性を高く、酸素プラズマやUVオゾン処理の耐性に優れた樹脂組成物を提供することができる。 The content of the adhesion improver in the resin composition is preferably 0.1 to 10% by mass based on 100% by mass of the entire resin. By setting it within such a range, it is possible to provide a resin composition that has high adhesion to the substrate and excellent resistance to oxygen plasma and UV ozone treatment.
 <界面活性剤>
 本発明の樹脂組成物は、界面活性剤を含有してもよい。界面活性剤を含有することにより、基板との濡れ性を向上させたり、塗布膜の膜厚均一性を向上させたりすることができる。界面活性剤としては、市販の化合物を用いることができる。具体的にはシリコーン系界面活性剤としては、東レダウコーニングシリコーン社のSHシリーズ、SDシリーズ、STシリーズ、ビックケミー・ジャパン社のBYKシリーズ、信越シリコーン社のKPシリーズ、日本油脂社のディスフォームシリーズ、東芝シリコーン社のTSFシリーズなどが挙げられ、フッ素系界面活性剤としては、大日本インキ工業社の“メガファック”(登録商標)シリーズ、住友スリーエム社のフロラードシリーズ、旭硝子社の“サーフロン”(登録商標)シリーズ、“アサヒガード”(登録商標)シリーズ、新秋田化成社のEFシリーズ、オムノヴァ・ソルーション社のポリフォックスシリーズなどが挙げられる。アクリル系及び/またはメタクリル系の重合物から得られる界面活性剤としては、共栄社化学社のポリフローシリーズ、楠本化成社の“ディスパロン”(登録商標)シリーズなどが挙げられるが、これらに限定されない。
<Surfactant>
The resin composition of the present invention may contain a surfactant. By containing a surfactant, the wettability with the substrate can be improved and the uniformity of the thickness of the coating film can be improved. As the surfactant, commercially available compounds can be used. Specifically, silicone surfactants include the SH series, SD series, and ST series from Dow Corning Toray Silicone, the BYK series from BYK Chemie Japan, the KP series from Shin-Etsu Silicone, and the Disform series from NOF Corporation. Toshiba Silicone Co., Ltd.'s TSF series, etc. are listed, and fluorine-based surfactants include Dainippon Ink Industries, Ltd.'s "Megafac" (registered trademark) series, Sumitomo 3M Co., Ltd.'s Florado series, and Asahi Glass Co., Ltd.'s "Surflon" ( (registered trademark) series, "Asahi Guard" (registered trademark) series, Shin-Akita Kasei Co., Ltd.'s EF series, and Omnova Solutions Co., Ltd.'s Polyfox series. Examples of surfactants obtained from acrylic and/or methacrylic polymers include, but are not limited to, the Polyflow series manufactured by Kyoeisha Chemical Co., Ltd. and the "Disparon" (registered trademark) series manufactured by Kusumoto Kasei Co., Ltd.
 界面活性剤の含有量は、樹脂全体100質量%中に対して0.001質量%以上1質量%以下が好ましい。上述の範囲とすることで、気泡やピンホールなどの不具合を生じることなく、樹脂組成物と基板との濡れ性や塗布膜の膜厚均一性を高めることができる。 The content of the surfactant is preferably 0.001% by mass or more and 1% by mass or less based on 100% by mass of the entire resin. By setting it as the above-mentioned range, the wettability of a resin composition and a board|substrate and the film thickness uniformity of a coating film can be improved, without producing defects, such as a bubble and a pinhole.
 <樹脂組成物を製造する方法>
 次に、本発明の樹脂組成物を製造する方法について説明する。例えば、前記(A)成分、(B)成分、及び(C)成分と、必要により、硬化促進剤、密着改良剤、界面活性剤などを混合して溶解させることにより、樹脂組成物を得ることができる。
<Method of manufacturing resin composition>
Next, a method for manufacturing the resin composition of the present invention will be explained. For example, a resin composition can be obtained by mixing and dissolving the components (A), (B), and (C), and if necessary, a curing accelerator, an adhesion improver, a surfactant, etc. I can do it.
 溶解方法としては、加熱や撹拌などが挙げられる。加熱する場合、加熱温度は樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、25℃~80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法が挙げられる。撹拌する場合、回転数は樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、200rpm~2000rpmである。撹拌する場合でも必要に応じて加熱してもよく、通常、25℃~80℃である。また、界面活性剤や一部の密着改良剤など、撹拌溶解時に気泡を発生しやすい成分については、他の成分を溶解してから最後に添加することで、気泡の発生による他成分の溶解不良を防ぐことができる。 Examples of the dissolution method include heating and stirring. When heating, the heating temperature is preferably set within a range that does not impair the performance of the resin composition, and is usually 25°C to 80°C. Further, the order in which the components are dissolved is not particularly limited, and for example, a method may be used in which the compounds with the lowest solubility are dissolved in order. When stirring, the rotation speed is preferably set within a range that does not impair the performance of the resin composition, and is usually 200 rpm to 2000 rpm. Even when stirring, heating may be performed as necessary, and the temperature is usually 25°C to 80°C. In addition, for ingredients that tend to generate bubbles during stirring and dissolution, such as surfactants and some adhesion improvers, by adding them last after dissolving other ingredients, it is possible to prevent dissolution of other ingredients due to bubble generation. can be prevented.
 本発明の樹脂組成物の粘度は、25℃において2~5,000mPa・sが好ましい。粘度が2mPa・s以上となるように固形分濃度を調整することにより、所望の膜厚を得ることが容易になる。一方粘度が5,000mPa・s以下であれば、均一性の高い塗布膜を得ることが容易になる。ここでの粘度測定はTVE-25形粘度計(東機産業(株)製)の旧E形粘度計・DVE形粘度計を用いた測定であり、本発明の樹脂組成物を1.1mL採取し、サンプルカップへ注入する。粘度に応じて、65~6000μN・mの範囲でトルクを選択し、回転数0.5~100rpmの範囲で測定する。このような粘度を有する本発明の樹脂組成物は、本発明の樹脂組成物100質量%中の(A)成分、(B)成分をあわせた含有量を5~60質量%にすることで容易に得ることができる。ここで、固形分濃度とは、溶剤を含む樹脂組成物全体を100質量%としたときの溶剤以外の成分の合計の濃度(質量%)をいう。 The viscosity of the resin composition of the present invention is preferably 2 to 5,000 mPa·s at 25°C. By adjusting the solid content concentration so that the viscosity is 2 mPa·s or more, it becomes easy to obtain a desired film thickness. On the other hand, if the viscosity is 5,000 mPa·s or less, it becomes easy to obtain a highly uniform coating film. The viscosity measurement here is a measurement using an old E type viscometer/DVE type viscometer of the TVE-25 type viscometer (manufactured by Toki Sangyo Co., Ltd.), and 1.1 mL of the resin composition of the present invention was sampled. and inject into the sample cup. Depending on the viscosity, select a torque in the range of 65 to 6000 μN·m and measure at a rotational speed of 0.5 to 100 rpm. The resin composition of the present invention having such a viscosity can be easily produced by adjusting the combined content of components (A) and (B) to 5 to 60% by mass in 100% by mass of the resin composition of the present invention. can be obtained. Here, the solid content concentration refers to the total concentration (mass %) of components other than the solvent when the entire resin composition containing the solvent is taken as 100 mass %.
 得られた樹脂組成物は、濾過フィルターを用いて濾過し、ゴミや粒子を除去することが好ましい。フィルター孔径は、例えば10.0μm、5.0μm、3.0μm、1.0μm、0.5μm、0.2μm、0.1μmなどがあるが、これらに限定されない。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあるが、ポリエチレンやナイロンが好ましい。 The obtained resin composition is preferably filtered using a filter to remove dust and particles. Examples of filter pore diameters include, but are not limited to, 10.0 μm, 5.0 μm, 3.0 μm, 1.0 μm, 0.5 μm, 0.2 μm, and 0.1 μm. Materials for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), and polyethylene and nylon are preferred.
 <硬化物>
 本発明の硬化物は、本発明の樹脂組成物を硬化してなる。本発明の硬化物は、誘電正接が低く、かつ、線熱膨張係数が低い。硬化物は樹脂組成物を加熱することによって得られる。加熱はイーブン、ホットプレート、赤外線、フラッシュアニール装置またはレーザーアニール装置などを使用することができる。
<Cured product>
The cured product of the present invention is obtained by curing the resin composition of the present invention. The cured product of the present invention has a low dielectric loss tangent and a low coefficient of linear thermal expansion. The cured product is obtained by heating the resin composition. For heating, an even device, a hot plate, an infrared ray, a flash annealing device, a laser annealing device, or the like can be used.
 本発明の硬化物は、例えば、以下の方法により製造することができる。
まず、本発明の樹脂組成物を基板上に塗布し、乾燥して樹脂膜を得る。次に、樹脂膜を熱処理することにより、本発明の硬化物を得ることができる。
The cured product of the present invention can be produced, for example, by the following method.
First, the resin composition of the present invention is applied onto a substrate and dried to obtain a resin film. Next, the cured product of the present invention can be obtained by heat-treating the resin film.
 樹脂膜の熱処理は、段階的に昇温して行ってもよいし、連続的に昇温しながら行ってもよい。熱処理は5分間~5時間実施することが好ましい。一例としては、140℃で30分熱処理した後、さらに320℃で60分熱処理する例が挙げられる。熱処理温度としては、140℃以上400℃以下が好ましい。熱処理温度は、樹脂膜中の溶媒を除去するため、140℃以上が好ましく、160℃以上がより好ましい。また膜収縮や応力を抑える観点か280℃以下が好ましく、250℃以下がより好ましく、220℃以下がさらに好ましい。 The heat treatment of the resin film may be carried out by increasing the temperature in stages, or may be carried out while increasing the temperature continuously. The heat treatment is preferably carried out for 5 minutes to 5 hours. An example is a case in which heat treatment is performed at 140° C. for 30 minutes and then further heat treated at 320° C. for 60 minutes. The heat treatment temperature is preferably 140°C or higher and 400°C or lower. The heat treatment temperature is preferably 140°C or higher, more preferably 160°C or higher in order to remove the solvent in the resin film. Further, from the viewpoint of suppressing membrane shrinkage and stress, the temperature is preferably 280°C or lower, more preferably 250°C or lower, and even more preferably 220°C or lower.
 本発明の硬化物は絶縁膜や保護膜として利用してもよい。絶縁膜または保護膜の具体例としては、半導体のパッシベーション膜、半導体素子の表面保護膜、層間絶縁膜、高密度実装用多層配線の層間絶縁膜、有機電界発光素子の絶縁層などが挙げられるが、これに制限されず、様々な構造が挙げられる。 The cured product of the present invention may be used as an insulating film or a protective film. Specific examples of insulating films or protective films include passivation films for semiconductors, surface protection films for semiconductor elements, interlayer insulating films, interlayer insulating films for multilayer wiring for high-density packaging, and insulating layers for organic electroluminescent elements. , but is not limited to this, and includes various structures.
 <電子部品、アンテナ素子、及びそれらの製造方法>
 本発明の電子部品またはアンテナ素子は本発明の樹脂組成物の硬化物を具備する。
<Electronic components, antenna elements, and manufacturing methods thereof>
The electronic component or antenna element of the present invention comprises a cured product of the resin composition of the present invention.
 本発明の電子部品の製造方法は、本発明の樹脂組成物を塗布して乾燥し樹脂膜を形成する工程と、必要に応じて樹脂膜をパターン形成する工程と、樹脂膜を熱処理して硬化物を形成する工程とを含む。 The method for manufacturing an electronic component of the present invention includes a step of applying and drying the resin composition of the present invention to form a resin film, a step of patterning the resin film as necessary, and a step of heat-treating the resin film to harden it. and the process of forming an object.
 本発明の樹脂組成物を塗布して乾燥し樹脂膜を形成する工程では、まず本発明の樹脂組成物を基板に塗布し、樹脂組成物の塗布膜を得る。基板としては、例えば、シリコンウエハ、セラミックス類、ガリウムヒ素、有機回路基板、無機回路基板、及びこれらの基板に回路等の構成材料が配置されたものなどが挙げられるが、これらに限定されない。 In the step of applying and drying the resin composition of the present invention to form a resin film, the resin composition of the present invention is first applied to a substrate to obtain a coated film of the resin composition. Examples of the substrate include, but are not limited to, silicon wafers, ceramics, gallium arsenide, organic circuit boards, inorganic circuit boards, and substrates on which constituent materials such as circuits are arranged.
 塗布方法としては、例えば、スピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などの方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が0.1~150μmになるように塗布される。 Examples of the coating method include spin coating, slit coating, dip coating, spray coating, and printing. The thickness of the coating film varies depending on the coating method, solid content concentration of the composition, viscosity, etc., but the coating is usually done so that the film thickness after drying is 0.1 to 150 μm.
 塗布に先立ち、樹脂組成物を塗布する基板を予め前述した密着改良剤で前処理してもよい。前処理の方法としては、例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶剤に0.5~20質量%溶解させた溶液を用いて、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法で基板表面を処理する方法が挙げられる。基板表面を処理した後、必要に応じて、減圧乾燥処理を施してもよい。また、その後50℃~280℃の熱処理により基板と密着改良剤との反応を進行させてもよい。 Prior to coating, the substrate to which the resin composition is applied may be pretreated with the adhesion improver described above. The pretreatment method includes, for example, adding 0.5 to 20% of the adhesion improver to a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, diethyl adipate, etc. Examples of methods include spin coating, slit die coating, bar coating, dip coating, spray coating, and steam treatment using a solution in which the substrate surface is dissolved. After treating the surface of the substrate, a vacuum drying treatment may be performed as necessary. Further, the reaction between the substrate and the adhesion improver may be advanced by heat treatment at 50° C. to 280° C. thereafter.
 次に、樹脂組成物の塗布膜を乾燥して、樹脂膜を形成する。乾燥はオーブン、ホットプレート、赤外線などを使用し、50℃~140℃の範囲で1分~2時間行うことが好ましい。 Next, the coating film of the resin composition is dried to form a resin film. Drying is preferably carried out using an oven, hot plate, infrared rays, etc. at a temperature of 50° C. to 140° C. for 1 minute to 2 hours.
 樹脂膜のパターン形成方法としては、特に制限はないが、例えばウェットエッチングやドライエッチングが挙げられる。ドライエッチングについて具体的には本発明の樹脂組成物を基板に塗布する工程と、80℃以上150℃未満で溶剤を揮発させる工程と、150℃以上350℃以下で硬化する工程と、炭酸レーザーまたはUVレーザーによってアブレーション加工する工程を含む。UVレーザーの照射条件は、特に限定されるものではないが、通常ArF(193nm)、KrF(248nm)、XeCl(308nm)、XeCl(351nm)等のエキシマレーザー、YAGレーザー(355nm)光が用いられる。炭酸レーザーはUVレーザーと比較して解像度に劣るが、装置コストが安価であり、経済性に優れることから、高精細を必要としない用途では、炭酸レーザーを用いてもよい。 There are no particular restrictions on the method for forming a pattern on the resin film, but examples include wet etching and dry etching. Specifically, dry etching includes a step of applying the resin composition of the present invention to a substrate, a step of volatilizing the solvent at a temperature of 80° C. or higher and lower than 150° C., a curing step at a temperature of 150° C. or higher and 350° C. or lower, and a carbon dioxide laser or It includes a process of ablation processing using a UV laser. The UV laser irradiation conditions are not particularly limited, but excimer lasers such as ArF (193 nm), KrF (248 nm), XeCl (308 nm), and XeCl (351 nm), and YAG laser (355 nm) light are usually used. . Although the resolution of the carbon dioxide laser is inferior to that of the UV laser, since the device cost is low and the carbon dioxide laser is excellent in economic efficiency, the carbon dioxide laser may be used in applications that do not require high definition.
 本発明の電子部品の一態様は、2層以上の配線および絶縁膜を有する電子部品であって、該絶縁膜が該2層以上の配線間に配置されてなり、該絶縁膜が本発明の硬化物である。本発明の硬化物が配線間の絶縁膜として配置されることにより、2層以上の再配線が本発明の樹脂組成物の硬化物からなる絶縁膜により分離された多層配線構造を形成することができる。一般的には、多層配線構造有するパッケージでは絶縁膜に強い応力がかかり、パッケージ信頼性試験後にクラックが発生してしまう問題があるが、本発明の樹脂組成物の硬化物からなる絶縁膜を用いることで、基板の反りが低減されクラックが発生しない信頼性の高いパッケージを得ることができる。多層配線構造の層数には上限はないが、10層以下のものが多く用いられる。 One embodiment of the electronic component of the present invention is an electronic component having two or more layers of wiring and an insulating film, the insulating film being disposed between the two or more layers of wiring, and the insulating film of the present invention It is a cured product. By disposing the cured product of the present invention as an insulating film between wirings, it is possible to form a multilayer wiring structure in which two or more layers of rewiring are separated by an insulating film made of the cured product of the resin composition of the present invention. can. Generally, in a package with a multilayer wiring structure, strong stress is applied to the insulating film, which causes cracks to occur after the package reliability test. As a result, it is possible to obtain a highly reliable package in which substrate warpage is reduced and cracks do not occur. Although there is no upper limit to the number of layers in a multilayer wiring structure, those having 10 layers or less are often used.
 本発明の電子部品のうち、半導体装置の例としては、例えば、チップファーストファンアウトウエハレベルパッケージあるいはチップファーストファンアウトパネルレベルパッケージが挙げられる。チップファーストファンアウトウエハレベルパッケージあるいはチップファーストファンアウトパネルレベルパッケージとは、半導体チップの周辺にエポキシ樹脂等の封止樹脂を用いて拡張部分を設け、半導体チップ上の電極から該拡張部分まで再配線を施し、拡張部分にもハンダボールを搭載することで必要な端子数を確保した半導体パッケージである。チップファーストファンアウトウエハレベルパッケージあるいはチップファーストファンアウトパネルレベルパッケージにおいては、半導体チップの主面と封止樹脂の主面とが形成する境界線を跨ぐように配線が設置され、硬化物が配線間の絶縁膜として配置されてなる。 Among the electronic components of the present invention, examples of semiconductor devices include, for example, a chip-first fan-out wafer level package or a chip-first fan-out panel level package. A chip-first fan-out wafer-level package or a chip-first fan-out panel level package is a chip-first fan-out panel level package in which an extended portion is provided around the semiconductor chip using a sealing resin such as epoxy resin, and rewiring is performed from the electrodes on the semiconductor chip to the expanded portion. It is a semiconductor package that secures the necessary number of terminals by mounting solder balls on the extended portion. In a chip-first fan-out wafer-level package or a chip-first fan-out panel level package, wiring is installed so as to straddle the boundary line formed by the main surface of the semiconductor chip and the main surface of the sealing resin, and the cured material is placed between the wirings. It is arranged as an insulating film.
 本発明の電子部品の製造方法の一例として、再配線(Re-distribution layer:RDL)ファースト工程を用いた半導体装置の製造方法を示す。ガラス基板、シリコンウエハなどの支持基板上にTiなどのバリアメタルをスパッタリング法で形成し、さらにその上にCuシード(シード層)をスパッタリング法で形成後、メッキ法によってCuからなる電極パッドを形成する。ついで、電極パッドが形成された支持基板上の全面に本発明の樹脂組成物を塗布して乾燥し樹脂膜を形成する。得られた樹脂膜に、必要に応じてライン&スペースや、スクエアまたはホール状のパターンを形成する。そして、熱処理して硬化物の層を形成する。この層は絶縁膜となる。ついで、再びシード層をスパッタリング法で形成し、メッキ法によってCuからなる金属配線(再配線)を形成する。以降、シード層の工程から金属配線形成の工程を繰り返し行い、多層配線構造を形成する。ついで、再び本発明の樹脂組成物を塗布し、パターン形成した後、熱処理して硬化させることにより絶縁膜を形成後、絶縁膜の開口部において、金属配線の上にCuポストを、メッキ法を用いて形成する。ここでCuポストのピッチと半導体チップの導通部ピッチは等しくなるようにする。すなわち、半導体チップの導通部のピッチは電極パッドのピッチよりもファインピッチであるところ、多層配線構造を構成する各再配線層が、電極パッドからCuポストに至るまで、徐々にファインピッチ化しながら配線を多層化する。多層配線構造における、隣接する絶縁膜の厚みも、半導体チップに対して近づくにつれ、同じまたは薄くなる。ついで、Cuポストに、ハンダバンプを介して半導体チップを接続する。これによって、電極パッドと半導体チップが、金属配線及びハンダバンプを介して、電気的に接続される。この後、半導体チップを封止樹脂により封止して、半導体パッケージとした後、該支持基板と該再配線層の間を剥離して、該半導体パッケージを分離する。このようにして、RDLファースト工程を用いた多層配線構造を有する半導体装置を得ることができる。 As an example of the method for manufacturing an electronic component of the present invention, a method for manufacturing a semiconductor device using a re-distribution layer (RDL) first process will be described. A barrier metal such as Ti is formed by sputtering on a support substrate such as a glass substrate or silicon wafer, and then a Cu seed (seed layer) is formed on top of it by sputtering, and then an electrode pad made of Cu is formed by plating. do. Next, the resin composition of the present invention is applied to the entire surface of the support substrate on which the electrode pads are formed and dried to form a resin film. A line and space, square or hole pattern is formed on the obtained resin film as necessary. Then, a layer of cured material is formed by heat treatment. This layer becomes an insulating film. Then, a seed layer is formed again by sputtering, and metal wiring (rewiring) made of Cu is formed by plating. Thereafter, the steps from the seed layer process to the metal wiring formation process are repeated to form a multilayer wiring structure. Next, the resin composition of the present invention is applied again, patterned, and heat treated to harden it to form an insulating film, and then a Cu post is placed on top of the metal wiring in the opening of the insulating film using a plating method. Form using. Here, the pitch of the Cu posts and the pitch of the conductive parts of the semiconductor chip are made equal. In other words, the pitch of the conductive parts of the semiconductor chip is finer than the pitch of the electrode pads, and each redistribution layer that makes up the multilayer wiring structure gradually increases the pitch of the wiring from the electrode pads to the Cu posts. Multi-layer. In a multilayer wiring structure, the thickness of adjacent insulating films also becomes the same or becomes thinner as the distance from the semiconductor chip increases. Next, a semiconductor chip is connected to the Cu post via a solder bump. Thereby, the electrode pads and the semiconductor chip are electrically connected via the metal wiring and the solder bumps. Thereafter, the semiconductor chip is sealed with a sealing resin to form a semiconductor package, and then the support substrate and the rewiring layer are separated to separate the semiconductor package. In this way, a semiconductor device having a multilayer wiring structure using the RDL first process can be obtained.
 本発明のアンテナ素子は、少なくとも、1以上のアンテナ配線、グランド及び、グランドとアンテナ配線間を絶縁する絶縁膜を具備するアンテナ素子であって、
該アンテナ配線がミアンダ状ループアンテナ、コイル状ループアンテナ、ミアンダ状モノポールアンテナ、ミアンダ状ダイポールアンテナ及びマイクロストリップアンテナからなる群から選ばれる少なくとも一種類以上を含み、
該アンテナ配線におけるアンテナ部一つあたりの専有面積が1000mm以下であり、
前記絶縁膜は本発明の硬化物である。
The antenna element of the present invention is an antenna element comprising at least one or more antenna wiring, a ground, and an insulating film that insulates between the ground and the antenna wiring,
The antenna wiring includes at least one type selected from the group consisting of a meandering loop antenna, a coiled loop antenna, a meandering monopole antenna, a meandering dipole antenna, and a microstrip antenna,
The exclusive area of each antenna part in the antenna wiring is 1000 mm 2 or less,
The insulating film is a cured product of the present invention.
 本発明のアンテナ素子の一例について、図1を用いて説明する。図1は平面アンテナの一種である共面給電型のマイクロストリップアンテナの一例の概略図である。図1aが断面図、図1bが上面図を示す。まず形成方法について説明する。銅箔上に本発明の樹脂組成物を塗布、プリベークする。次に銅箔をラミネートし、熱硬化させることで、両面に銅箔を具備する硬化物を形成する。その後、片面の銅箔をサブストラクト法によるパターニングを行うことにより、図1bに示すマイクロストリップ線路(MSL)の銅配線のアンテナパターンを具備するアンテナ素子が得られる。 An example of the antenna element of the present invention will be explained using FIG. 1. FIG. 1 is a schematic diagram of an example of a coplanar feeding type microstrip antenna, which is a type of planar antenna. FIG. 1a shows a cross-sectional view, and FIG. 1b shows a top view. First, the formation method will be explained. The resin composition of the present invention is applied onto copper foil and prebaked. Next, the copper foil is laminated and thermally cured to form a cured product having copper foil on both sides. Thereafter, by patterning the copper foil on one side by a substrate method, an antenna element having a microstrip line (MSL) copper wiring antenna pattern shown in FIG. 1b is obtained.
 次に、図1のアンテナパターンについて説明する。図1aにおいて、絶縁膜16はアンテナの基板であり、本発明の硬化物からなる。グランド15は、絶縁膜16の全面を覆う銅箔である。絶縁膜16の上層のアンテナ部11、マッチング回路12およびMSL給電線路13は前記パターニングによって得られたアンテナ配線の断面を示す。グランド配線厚みJ及びアンテナ配線厚みKはインピーダンスの設計に応じて任意の厚みを取れるが、2~20μmが一般的である。 Next, the antenna pattern in FIG. 1 will be explained. In FIG. 1a, the insulating film 16 is the substrate of the antenna and is made of the cured product of the present invention. The ground 15 is a copper foil that covers the entire surface of the insulating film 16. The antenna section 11, the matching circuit 12, and the MSL feed line 13 on the upper layer of the insulating film 16 show a cross section of the antenna wiring obtained by the patterning. The ground wiring thickness J and the antenna wiring thickness K can have any thickness depending on the impedance design, but are generally 2 to 20 μm.
 アンテナ部11、マッチング回路12およびMSL給電線路13は図1bに示されるように配置されている。14は給電点を示す。アンテナ部11とMSL給電線路13のインピーダンスの整合を取るために、マッチング回路12の長さMは1/4λrの長さを有する(λr=(伝送電波の波長)/(絶縁材誘電率)1/2)。また、アンテナ部11の幅W及び長さLは1/2λrの長さに設計される。アンテナ部長さLはインピーダンスの設計に応じて、1/2λr以下にしてもよい。基板に本発明の硬化物を用いることで、パッケージ信頼性試験後においても、クラックが発生しない信頼性の高いアンテナ素子を提供することができる。また、これらの特性から、本発明における絶縁膜を用いたアンテナ素子は高周波向けアンテナとして適しており、アンテナ部の面積(=L×W)を1000mm以下のサイズにすることで、小型のアンテナ素子を形成することが出来る。このようにして、高効率、高利得、小型である、高周波向けアンテナ素子が得られる。 The antenna section 11, matching circuit 12 and MSL feed line 13 are arranged as shown in FIG. 1b. 14 indicates a power feeding point. In order to match the impedance of the antenna section 11 and the MSL feed line 13, the length M of the matching circuit 12 has a length of 1/4λr (λr=(wavelength of transmitted radio wave)/(permittivity of insulating material)1) /2). Further, the width W and length L of the antenna portion 11 are designed to be 1/2λr. The antenna length L may be set to 1/2λr or less depending on the impedance design. By using the cured product of the present invention for a substrate, it is possible to provide a highly reliable antenna element that does not generate cracks even after a package reliability test. In addition, due to these characteristics, the antenna element using the insulating film of the present invention is suitable as an antenna for high frequencies, and by making the area of the antenna part (=L x W) 1000 mm 2 or less, it can be made into a small antenna. elements can be formed. In this way, a high-frequency antenna element with high efficiency, high gain, and small size can be obtained.
 本発明の電子部品の別の一つの態様は、少なくとも、半導体素子、再配線層、封止樹脂、グランド配線及びアンテナ配線を具備する半導体パッケージを含む電子部品であって、
該再配線層は銅配線および絶縁膜を含み、該封止樹脂はグランド配線とアンテナ配線の間にあり、
該再配線層の絶縁層、及び/または、該封止樹脂、が本発明の硬化物であることが好ましい。
Another aspect of the electronic component of the present invention is an electronic component including a semiconductor package including at least a semiconductor element, a rewiring layer, a sealing resin, a ground wire, and an antenna wire,
The redistribution layer includes copper wiring and an insulating film, the sealing resin is between the ground wiring and the antenna wiring,
It is preferable that the insulating layer of the rewiring layer and/or the sealing resin be the cured product of the present invention.
 かかる電子部品の一例として、ICチップ(半導体素子)、再配線層、封止樹脂及びアンテナ配線を具備する半導体パッケージについて、図2を用いて説明する。図2はICチップ(半導体素子)、再配線層、封止樹脂及びアンテナ素子を具備する半導体パッケージの断面に関する概略図である。ICチップ201の電極パッド202上に、銅配線209及び本発明の硬化物により形成された絶縁膜210による再配線層(銅配線2層、絶縁膜3層)が形成されている。再配線層(銅配線209及び絶縁膜210)のパッドにはバリアメタル211とハンダバンプ212が形成されている。前記ICチップ201を封止するため、本発明の硬化物による第1の封止樹脂208が形成され、さらにその上にアンテナ用のグランドとなる銅配線206が形成されている。第1の封止樹脂208内に形成されたビアホールを介して、グランド配線206と再配線層(銅配線209及び絶縁膜210)を接続する第1のビア配線207が形成されている。第1の封止樹脂208及びグランド配線206上に、本発明の硬化物による第2の封止樹脂205が形成され、その上に平面アンテナ配線204が形成されている。第1の封止樹脂208及び第2の封止樹脂205内に形成されたビアホールを介して、平面アンテナ配線204と再配線層(銅配線209及び絶縁膜210)を接続する第2のビア配線203が形成されている。絶縁膜210の一層あたりの厚みとしては10~20μmが好ましく、第1の封止樹脂及び第2の封止樹脂の厚みとしてはそれぞれ、50~200μm及び100~400μmが好ましい。本発明の硬化物は信頼性試験後の劣化が小さいため、得られるアンテナ素子を具備する半導体パッケージは、クラックが発生しない信頼性の高いパッケージを得ることができる。 As an example of such an electronic component, a semiconductor package including an IC chip (semiconductor element), a rewiring layer, a sealing resin, and an antenna wiring will be described with reference to FIG. FIG. 2 is a schematic diagram of a cross section of a semiconductor package including an IC chip (semiconductor element), a rewiring layer, a sealing resin, and an antenna element. On the electrode pad 202 of the IC chip 201, a rewiring layer (two layers of copper wiring and three layers of insulating film) is formed of copper wiring 209 and an insulating film 210 formed from the cured product of the present invention. Barrier metal 211 and solder bumps 212 are formed on the pads of the redistribution layer (copper wiring 209 and insulating film 210). In order to seal the IC chip 201, a first sealing resin 208 made of the cured product of the present invention is formed, and a copper wiring 206 serving as a ground for the antenna is further formed thereon. A first via wiring 207 is formed to connect the ground wiring 206 and the rewiring layer (copper wiring 209 and insulating film 210) via a via hole formed in the first sealing resin 208. A second sealing resin 205 made of the cured product of the present invention is formed on the first sealing resin 208 and the ground wiring 206, and a planar antenna wiring 204 is formed thereon. A second via wiring connects the planar antenna wiring 204 and the rewiring layer (copper wiring 209 and insulating film 210) through via holes formed in the first sealing resin 208 and the second sealing resin 205. 203 is formed. The thickness of each layer of the insulating film 210 is preferably 10 to 20 μm, and the thickness of the first sealing resin and the second sealing resin is preferably 50 to 200 μm and 100 to 400 μm, respectively. Since the cured product of the present invention shows little deterioration after a reliability test, the obtained semiconductor package including the antenna element can be a highly reliable package that does not generate cracks.
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。まず、各実施例及び比較例における評価方法について説明する。 The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. First, evaluation methods in each example and comparative example will be explained.
 (1)分子量測定
 (A)成分の重量平均分子量(Mw)は、GPC(ゲルパーミエーションクロマトグラフィー)装置Waters2690-996(日本ウォーターズ(株)製)を用いて確認した。展開溶媒をN-メチル-2-ピロリドン(以降NMPと呼ぶ)として測定し、ポリスチレン換算で重量平均分子量(Mw)及び分散度(PDI=Mw/Mn)を計算した。
(1) Molecular Weight Measurement The weight average molecular weight (Mw) of component (A) was confirmed using a GPC (gel permeation chromatography) device Waters 2690-996 (manufactured by Nippon Waters Co., Ltd.). The developing solvent was measured as N-methyl-2-pyrrolidone (hereinafter referred to as NMP), and the weight average molecular weight (Mw) and dispersity (PDI=Mw/Mn) were calculated in terms of polystyrene.
 (2)誘電正接の測定
 ワニスを銅箔(NA-VLP厚み15μm:三井金属(株)製)上にバーコーター(宝泉(株)製)を用いて、プリベーク後の膜厚が20μmとなるように塗工し、100℃で30分間乾燥を行った。その後、イナートオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、酸素濃度20ppm以下で3.5℃/分で220℃まで昇温し、それぞれの温度で1時間加熱処理を行なった。温度が50℃以下になったところで銅箔を取り出し、第二塩化鉄水溶液でエッチング除去して硬化物を得た。この膜を幅3cm、長さ10cmの短冊状に切断し、室温23.0℃、湿度45.0%RH下で、ASTMD2520準拠の摂動方式空洞共振器法により周波数1GHzにおける誘電正接を測定した。評価基準は以下のとおりである。誘電正接が低いほど、伝送損失を抑えることが可能である。
A:誘電正接の値が0.005未満
B:誘電正接の値が0.005以上0.008未満
C:誘電正接の値が0.008以上0.012未満
D:誘電正接の値が0.012以上。
(2) Measurement of dielectric loss tangent Apply varnish on copper foil (NA-VLP thickness 15 μm, manufactured by Mitsui Kinzoku Co., Ltd.) using a bar coater (manufactured by Hosen Co., Ltd.) until the film thickness after pre-baking is 20 μm. The coating was applied in the following manner and dried at 100°C for 30 minutes. Thereafter, using an inert oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.), the temperature was raised to 220°C at a rate of 3.5°C/min with an oxygen concentration of 20 ppm or less, and heat treatment was performed at each temperature for 1 hour. I did it. When the temperature became 50° C. or lower, the copper foil was taken out and removed by etching with an aqueous ferric chloride solution to obtain a cured product. This film was cut into strips with a width of 3 cm and a length of 10 cm, and the dielectric loss tangent at a frequency of 1 GHz was measured at a room temperature of 23.0° C. and a humidity of 45.0% RH using a perturbation cavity cavity method according to ASTM D2520. The evaluation criteria are as follows. The lower the dielectric loss tangent, the more it is possible to suppress transmission loss.
A: The value of the dielectric loss tangent is less than 0.005 B: The value of the dielectric loss tangent is 0.005 or more and less than 0.008 C: The value of the dielectric loss tangent is 0.008 or more and less than 0.012 D: The value of the dielectric loss tangent is 0.005 or more and less than 0.008. 012 or above.
 (3)キュア後の硬化物の線熱膨張係数の測定
 前述の「(2)誘電正接の測定」と同様にして硬化物の自立膜を作製し、この膜を幅0.5cm、長さ3.0cmになるように片刃で切り出し、熱機械分析装置(セイコーインスツル製、TMA/SS6100)を用いて窒素気流下80mL/min条件下において、10℃/minの速度で25℃から400℃まで昇温し測定した。評価基準は以下のとおりである。線熱膨張係数が低いほうが基板との反りを低減できることを表す。
A:線熱膨張係数の値が25ppm未満
B:線熱膨張係数の値が25ppm以上40ppm未満
C:線熱膨張係数の値が40ppm以上60ppm未満
D:線熱膨張係数の値が60ppm以上。
(3) Measurement of the coefficient of linear thermal expansion of the cured product after curing A self-supporting film of the cured product was prepared in the same manner as in “(2) Measurement of dielectric loss tangent” above, and this film was 0.5 cm wide and 3 cm long. It was cut out with a single blade to a length of .0 cm, and was analyzed at a rate of 10°C/min from 25°C to 400°C under a nitrogen flow of 80 mL/min using a thermomechanical analyzer (Seiko Instruments, TMA/SS6100). The temperature was raised and measured. The evaluation criteria are as follows. A lower coefficient of linear thermal expansion means that warpage with the substrate can be reduced.
A: The value of the linear thermal expansion coefficient is less than 25 ppm B: The value of the linear thermal expansion coefficient is 25 ppm or more and less than 40 ppm C: The value of the linear thermal expansion coefficient is 40 ppm or more and less than 60 ppm D: The value of the linear thermal expansion coefficient is 60 ppm or more.
 (4)塗布性の評価
 ワニスを4インチシリコンウエハにスピンコーター(ミカサ(株)製1H-360S)を用いてスピンコートした後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて120℃で3分間プリベークし、膜厚11μmのプリベーク膜を作製した。これを表面粗さ測定機((株)東京精密製SURFCOM1400D)を用いて、ウエハの中心から±20mmの範囲を測定した。中心と中心から20mm離れた位置での高さの差(Ttop)を測定し、評価を行った。評価基準は以下のとおりである。
A:Ttopの値が0μm以上5μm未満
B:Ttopの値が5μm以上15μm未満
C:Ttopの値が15μm以上35μm未満
D:Ttopの値が35μm以上50μm未満
E:Ttopの値が50μm以上。
(4) Evaluation of coating properties After spin-coating the varnish on a 4-inch silicon wafer using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.), a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) was applied. A prebaked film having a thickness of 11 μm was prepared by prebaking at 120° C. for 3 minutes. This was measured in a range of ±20 mm from the center of the wafer using a surface roughness measuring device (SURFCOM1400D manufactured by Tokyo Seimitsu Co., Ltd.). The difference in height (Ttop) between the center and a position 20 mm away from the center was measured and evaluated. The evaluation criteria are as follows.
A: Ttop value is 0 μm or more and less than 5 μm B: Ttop value is 5 μm or more and less than 15 μm C: Ttop value is 15 μm or more and less than 35 μm D: Ttop value is 35 μm or more and less than 50 μm E: Ttop value is 50 μm or more.
 また得られたサンプルの外観を目視で行い凝集物の有無を目視で確認した。評価基準は以下のとおりである。
A:凝集物なし
B:ごくわずかに凝集物あり(実用上問題がないレベル)
C:凝集物あり(実用上問題があるレベル)。
(5)耐薬品性の評価
 ワニスを4インチシリコンウエハにスピンコーター(ミカサ(株)製1H-360S)を用いてスピンコートした後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて120℃で3分間プリベークし、膜厚11μmのプリベーク膜を作製した。その後、イナートオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、酸素濃度20ppm以下で3.5℃/分で220℃まで昇温し、1時間加熱処理を行なった。温度が50℃以下になったところでシリコンウエハを取り出し、その硬化膜を有機薬液(ジメチルスルホキシド:25%TMAH水溶液=92:2)に65℃で60分間浸漬させ、膜の剥がれや溶出の有無を観察した。評価基準は以下の通りである。
A:パターンの剥がれ無く、膜厚変化(膨潤または溶出量を示す)が5%以下のもの
B:パターンの剥がれ無く、膜厚変化が5%を超えて20%以下のもの
C:パターンが剥がれ膜が残らない場合や膜厚変化が20%を超えるもの
 以下、合成例、実施例で使用する化合物の略称を記載する。
ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物
PBOM:1,1’-(4,4’-オキシベンゾイル)ジイミダゾール
TFMB:2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル
6FAP:2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパ

プリアミン1075:前記式(3)で表される化合物を含むダイマージアミン化合物(商品名、クローダジャパン(株)製)(平均アミン価:205)
MAP:m-アミノフェノール
OPE-2st-1200:オリゴフェニレンエーテル(数平均分子量:1200)(三菱ガス化学(株)製)
MIR-3000-70MT:ビフェニルアラルキル型マレイミド化合物(日本化薬(株)製)
Ricon130MA8:マレイン酸変性ポリブタジエン樹脂(数平均分子量:2700)(トタル・ルブリカンツ・ジャパン(株)製)
CYCLOTENE4026-46:ベンゾシクロブテン溶液(商品名、ダウ・ケミカル(株)製)
NC-3000:エポキシ樹脂(日本化薬(株)製)
YC100C:シリカ粒子(商品名、(株)アドマテックス製、平均粒子径100nm)
SO-E1:シリカ粒子(商品名、(株)アドマテックス製、平均粒子径0.3μm)
SO-E5:シリカ粒子(商品名、(株)アドマテックス製、平均粒子径1.5μm)
FB-3SDC:シリカ粒子(商品名、デンカ(株)製、平均粒子径3.0μm)
FB-8S:シリカ粒子(商品名、デンカ(株)製、平均粒子径6.7μm)
AA04:アルミナ粒子(“スミコランダム(登録商標)”AA04、住友化学工業(株)製、平均粒子径0.4μm)
UHP-S2:窒化ホウ素粒子(“ショウビーエヌ(登録商標)”UHP-S2、昭和電工(株)製、平均粒子径0.7μm)
KBM-573:N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学(株)製)
NMP:N-メチル-2-ピロリドン
EL:乳酸エチル
PGMEA:プロピレングリコールメチルエーテルアセテート
EGMEA:エチレングリコールモノメチルエーテルアセテート
L-1980N:シリコン系界面活性剤(“ディスパロン(登録商標)”L-1980N、楠本化成(株)製)。
In addition, the appearance of the obtained sample was visually inspected to visually confirm the presence or absence of aggregates. The evaluation criteria are as follows.
A: No aggregates B: Very slight aggregates (level that poses no problem in practical use)
C: Aggregates present (at a level that poses a practical problem).
(5) Evaluation of chemical resistance After spin-coating varnish on a 4-inch silicon wafer using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.), the varnish was applied using a hot plate (SCW-636 manufactured by Dainippon Screen Manufacturing Co., Ltd.). was prebaked for 3 minutes at 120° C. to produce a prebaked film with a thickness of 11 μm. Thereafter, using an inert oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.), the temperature was raised to 220° C. at a rate of 3.5° C./min at an oxygen concentration of 20 ppm or less, and heat treatment was performed for 1 hour. When the temperature dropped to below 50°C, the silicon wafer was taken out and the cured film was immersed in an organic chemical solution (dimethyl sulfoxide: 25% TMAH aqueous solution = 92:2) at 65°C for 60 minutes to check for peeling or elution of the film. Observed. The evaluation criteria are as follows.
A: No pattern peeling and film thickness change (indicating swelling or elution amount) of 5% or less B: No pattern peeling and film thickness change of more than 5% and 20% or less C: Pattern peeling Cases where no film remains or film thickness change exceeds 20% Below, abbreviations of compounds used in synthesis examples and examples are described.
ODPA: 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride PBOM: 1,1'-(4,4'-oxybenzoyl)diimidazole TFMB: 2,2'-bis(trifluoromethyl) -4,4'-diaminobiphenyl 6FAP: 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane preamine 1075: Dimer diamine compound containing the compound represented by the above formula (3) (trade name , manufactured by Croda Japan Co., Ltd.) (average amine value: 205)
MAP: m-Aminophenol OPE-2st-1200: Oligophenylene ether (number average molecular weight: 1200) (manufactured by Mitsubishi Gas Chemical Co., Ltd.)
MIR-3000-70MT: Biphenylaralkyl maleimide compound (manufactured by Nippon Kayaku Co., Ltd.)
Ricon130MA8: Maleic acid-modified polybutadiene resin (number average molecular weight: 2700) (manufactured by Total Lubricants Japan Co., Ltd.)
CYCLOTENE4026-46: Benzocyclobutene solution (trade name, manufactured by Dow Chemical Co., Ltd.)
NC-3000: Epoxy resin (manufactured by Nippon Kayaku Co., Ltd.)
YC100C: Silica particles (trade name, manufactured by Admatex Co., Ltd., average particle diameter 100 nm)
SO-E1: Silica particles (trade name, manufactured by Admatex Co., Ltd., average particle size 0.3 μm)
SO-E5: Silica particles (trade name, manufactured by Admatex Co., Ltd., average particle diameter 1.5 μm)
FB-3SDC: Silica particles (trade name, manufactured by Denka Corporation, average particle size 3.0 μm)
FB-8S: Silica particles (trade name, manufactured by Denka Co., Ltd., average particle diameter 6.7 μm)
AA04: Alumina particles (“Sumicorundum (registered trademark)” AA04, manufactured by Sumitomo Chemical Co., Ltd., average particle size 0.4 μm)
UHP-S2: Boron nitride particles (“Shobi-N (registered trademark)” UHP-S2, manufactured by Showa Denko K.K., average particle size 0.7 μm)
KBM-573: N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
NMP: N-methyl-2-pyrrolidone EL: Ethyl lactate PGMEA: Propylene glycol methyl ether acetate EGMEA: Ethylene glycol monomethyl ether acetate L-1980N: Silicone surfactant ("Disparon (registered trademark)" L-1980N, Kusumoto Kasei) Co., Ltd.).
 [合成例1 ポリイミド(P-1)の合成]
 乾燥窒素気流下、ODPA31.02g(0.100モル)をNMP234.67gに60℃で溶解させた。ここに、MAP1.09g(0.010モル)をNMP5gとともに加え、60℃で15分間反応させた。その後、プリアミン1075 8.04g(アミノ基として0.028モル)、TFMB25.93g(0.081モル)をNMP20gとともに加えて、60℃で2時間反応させた。次いで200℃まで昇温し3時間反応させた。反応終了後、室温まで冷却し、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリイミド(P-1)の粉末を得た。
[Synthesis Example 1 Synthesis of polyimide (P-1)]
Under a stream of dry nitrogen, 31.02 g (0.100 mol) of ODPA was dissolved in 234.67 g of NMP at 60°C. To this, 1.09 g (0.010 mol) of MAP was added together with 5 g of NMP, and the mixture was reacted at 60° C. for 15 minutes. Thereafter, 8.04 g of preamine 1075 (0.028 mol as an amino group) and 25.93 g of TFMB (0.081 mol) were added together with 20 g of NMP, and the mixture was reacted at 60° C. for 2 hours. Next, the temperature was raised to 200°C and the reaction was carried out for 3 hours. After the reaction was completed, the solution was cooled to room temperature and poured into 3 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried in a ventilation dryer at 50° C. for three days to obtain polyimide (P-1) powder.
 [合成例2 ポリイミド前駆体(P-2)の合成]
 乾燥窒素気流下、ODPA31.02g(0.100モル)をNMP234.67gに60℃で溶解させた。ここに、MAP1.09g(0.010モル)をNMP5gとともに加え、60℃で15分間反応させた。その後、プリアミン1075 8.04g(アミノ基として0.028モル)、TFMB25.93g(0.081モル)をNMP20gとともに加えて、60℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール(三菱レイヨン(株)製)21.45g(0.180mol)をNMP20gで希釈した溶液を10分かけて滴下した。滴下後、60℃で3時間撹拌した。反応終了後、室温まで冷却し、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリイミド前駆体(P-2)の粉末を得た。
[Synthesis Example 2 Synthesis of polyimide precursor (P-2)]
Under a stream of dry nitrogen, 31.02 g (0.100 mol) of ODPA was dissolved in 234.67 g of NMP at 60°C. To this, 1.09 g (0.010 mol) of MAP was added together with 5 g of NMP, and the mixture was reacted at 60° C. for 15 minutes. Thereafter, 8.04 g of preamine 1075 (0.028 mol as an amino group) and 25.93 g of TFMB (0.081 mol) were added together with 20 g of NMP, and the mixture was reacted at 60° C. for 2 hours. Thereafter, a solution prepared by diluting 21.45 g (0.180 mol) of N,N-dimethylformamide dimethyl acetal (manufactured by Mitsubishi Rayon Co., Ltd.) with 20 g of NMP was added dropwise over 10 minutes. After the dropwise addition, the mixture was stirred at 60°C for 3 hours. After the reaction was completed, the solution was cooled to room temperature and poured into 3 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried in a ventilation dryer at 50° C. for three days to obtain a powder of polyimide precursor (P-2).
 [合成例3 ポリアミド(P-3)の合成]
 乾燥窒素気流下、PBOM22.93g(0.100モル)をNMP234.67gに60℃で溶解させた。ここに、MAP1.09g(0.010モル)をNMP5gとともに加え、85℃で15分間反応させた。その後、プリアミン1075 8.04g(アミノ基として0.028モル)、TFMB25.93g(0.081モル)をNMP20gとともに加えて、85℃で3時間反応させた。反応終了後、室温まで冷却し、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリアミド(P-3)の粉末を得た。
[Synthesis Example 3 Synthesis of polyamide (P-3)]
Under a stream of dry nitrogen, 22.93 g (0.100 mol) of PBOM was dissolved in 234.67 g of NMP at 60°C. To this, 1.09 g (0.010 mol) of MAP was added together with 5 g of NMP, and the mixture was reacted at 85° C. for 15 minutes. Thereafter, 8.04 g of preamine 1075 (0.028 mol as an amino group) and 25.93 g of TFMB (0.081 mol) were added together with 20 g of NMP, and the mixture was reacted at 85° C. for 3 hours. After the reaction was completed, the solution was cooled to room temperature and poured into 3 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried in a ventilation dryer at 50° C. for three days to obtain polyamide (P-3) powder.
 [合成例4 ポリベンゾオキサゾール前駆体(P-4)の合成]
 乾燥窒素気流下、PBOM22.93g(0.100モル)をNMP234.67gに60℃で溶解させた。ここに、MAP1.09g(0.010モル)をNMP5gとともに加え、85℃で15分間反応させた。その後、プリアミン1075 8.04g(アミノ基として0.10モル)、6FAP29.67g(0.081モル)をNMP20gとともに加えて、85℃で3時間反応させた。反応終了後、室温まで冷却し、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリオキサゾール前駆体(P-4)の粉末を得た。
[Synthesis Example 4 Synthesis of polybenzoxazole precursor (P-4)]
Under a stream of dry nitrogen, 22.93 g (0.100 mol) of PBOM was dissolved in 234.67 g of NMP at 60°C. To this, 1.09 g (0.010 mol) of MAP was added together with 5 g of NMP, and the mixture was reacted at 85° C. for 15 minutes. Thereafter, 8.04 g of preamine 1075 (0.10 mol as an amino group) and 29.67 g of 6FAP (0.081 mol) were added together with 20 g of NMP, and the mixture was reacted at 85° C. for 3 hours. After the reaction was completed, the solution was cooled to room temperature and poured into 3 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with water, and then dried in a ventilation dryer at 50° C. for three days to obtain a powder of polyoxazole precursor (P-4).
 [合成例5~7 ポリイミド(P-5)~(P-7)の合成]
 以下表1に示す通りのモル比で、合成例1と同様にして実施し、ポリイミド(P-5)~(P-7)を合成した。
[Synthesis Examples 5 to 7 Synthesis of polyimides (P-5) to (P-7)]
Polyimides (P-5) to (P-7) were synthesized in the same manner as in Synthesis Example 1 using the molar ratios shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 [実施例1~26及び比較例1~6]
 表2-1、表2-2、表2-3及び表2-4に示す成分と配合量で配合し、撹拌機を用いて撹拌し、ワニスを得た。得られたワニスの特性を上記評価方法により、線熱膨張係数、誘電正接、塗布性を評価した。評価結果を下記の表2-1~表2-4に示す。
[Examples 1 to 26 and Comparative Examples 1 to 6]
The ingredients and amounts shown in Table 2-1, Table 2-2, Table 2-3 and Table 2-4 were blended and stirred using a stirrer to obtain a varnish. The properties of the obtained varnish were evaluated in terms of linear thermal expansion coefficient, dielectric loss tangent, and coatability using the above evaluation methods. The evaluation results are shown in Tables 2-1 to 2-4 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
1a 断面図
1b 上面図
11 アンテナ部
12 マッチング回路
13 MSL給電線路
14 給電点
15 グランド
16 絶縁膜
J グランド配線厚み
K アンテナ配線厚み
L アンテナ部長さ
M マッチング回路長さ
W アンテナ部幅
201 ICチップ
202 電極パッド
203 第2のビア配線
204 平面アンテナ配線
205 第2の封止樹脂
206 グランド配線
207 第1のビア配線
208 第1の封止樹脂
209 銅配線
210 絶縁膜
211 バリアメタル
212 ハンダバンプ
1a Cross-sectional view 1b Top view 11 Antenna section 12 Matching circuit 13 MSL feed line 14 Feeding point 15 Ground 16 Insulating film J Ground wiring thickness K Antenna wiring thickness L Antenna section length M Matching circuit length W Antenna section width 201 IC chip 202 Electrode Pad 203 Second via wiring 204 Planar antenna wiring 205 Second sealing resin 206 Ground wiring 207 First via wiring 208 First sealing resin 209 Copper wiring 210 Insulating film 211 Barrier metal 212 Solder bump

Claims (13)

  1. (A)ポリイミド、ポリベンゾオキサゾール、これらの前駆体、ポリアミド及びそれらの共重合体、からなる群より選ばれる少なくとも一種類を含む樹脂、
    (B)平均粒子径150nm以上、5μm以下の無機粒子、及び
    (C)エステル系溶剤を含む樹脂組成物であって、
    前記(A)成分は、下記式(1)で表されるジアミン残基及び/または下記式(2)で表されるジアミン残基を含有し、
    樹脂組成物中における前記(B)成分の含有量をBm(質量)、前記(C)成分の含有量をCm(質量)としたときに、0.1≦(Bm/Cm)≦3.0を満たす、
    樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、a、b、c及びdは、a+b=6~17及びc+d=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、e、f、g及びhはe+f=6~17、g+h=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。)
    (A) a resin containing at least one type selected from the group consisting of polyimide, polybenzoxazole, precursors thereof, polyamide, and copolymers thereof;
    (B) a resin composition comprising inorganic particles with an average particle diameter of 150 nm or more and 5 μm or less, and (C) an ester solvent,
    The component (A) contains a diamine residue represented by the following formula (1) and/or a diamine residue represented by the following formula (2),
    When the content of the component (B) in the resin composition is Bm (mass) and the content of the component (C) is Cm (mass), 0.1≦(Bm/Cm)≦3.0 satisfy,
    Resin composition.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), a, b, c and d are integers of 1 or more satisfying a+b=6 to 17 and c+d=8 to 19, and the broken line part is a carbon-carbon single bond or a carbon-carbon double bond. (means combination)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), e, f, g, and h are integers of 1 or more satisfying e+f=6 to 17 and g+h=8 to 19, and the broken line part is a carbon-carbon single bond or a carbon-carbon double bond. )
  2. 前記(A)成分の全ジアミン残基100モル%中、式(1)で表されるジアミン残基及び式(2)で表されるジアミン残基の合計含有量が1モル%以上、30モル%以下の範囲である請求項1に記載の樹脂組成物。 The total content of diamine residues represented by formula (1) and diamine residues represented by formula (2) is 1 mol% or more and 30 mol% of the total diamine residues of the component (A) (100 mol%) % or less.
  3. 前記(B)成分の含有量が、樹脂組成物中の固形分を100質量%としたとき、50質量%以上、80質量%以下である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the content of the component (B) is 50% by mass or more and 80% by mass or less, when the solid content in the resin composition is 100% by mass.
  4. 前記(C)成分の含有量が、樹脂組成物中の溶剤全体を100質量%としたとき、40質量%以上である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the content of the component (C) is 40% by mass or more, based on 100% by mass of the entire solvent in the resin composition.
  5. 前記(C)成分はグリコールエステル系溶剤を含む請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the component (C) contains a glycol ester solvent.
  6. 前記(C)成分はグリコールエステル系溶剤であり、前記(C)成分の含有量が、樹脂組成物中の溶剤全体を100質量%としたとき、40質量%以上である請求項1または2に記載の樹脂組成物。 Component (C) is a glycol ester solvent, and the content of component (C) is 40% by mass or more when the entire solvent in the resin composition is 100% by mass. The resin composition described.
  7. 前記(B)成分の平均粒子径が150nm以上、1μm以下の無機粒子である請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the component (B) is an inorganic particle having an average particle diameter of 150 nm or more and 1 μm or less.
  8. 前記樹脂組成物が、さらに(D)成分として、熱硬化性樹脂を含有し、
    該(D)成分がポリフェニレンエーテル樹脂、マレイミド樹脂、ポリブタジエン樹脂、及びベンゾシクロブテン樹脂からなる群より選択される1種類以上を含有する、請求項1または2に記載の樹脂組成物。
    The resin composition further contains a thermosetting resin as component (D),
    The resin composition according to claim 1 or 2, wherein the component (D) contains one or more selected from the group consisting of polyphenylene ether resin, maleimide resin, polybutadiene resin, and benzocyclobutene resin.
  9. 請求項1または2に記載の樹脂組成物を硬化してなる、硬化物。 A cured product obtained by curing the resin composition according to claim 1 or 2.
  10. 請求項9に記載の硬化物を具備する電子部品。 An electronic component comprising the cured product according to claim 9.
  11. 2層以上の配線および絶縁膜を有する電子部品であって、該絶縁膜が該2層以上の配線間に配置されてなり、該絶縁膜が請求項9に記載の硬化物である、電子部品。 An electronic component having two or more layers of wiring and an insulating film, the insulating film being disposed between the two or more layers of wiring, and the insulating film being the cured product according to claim 9. .
  12. 少なくとも、1以上のアンテナ配線、グランド及びグランドとアンテナ配線間を絶縁する絶縁膜、を具備するアンテナ素子であって、
    該アンテナ配線がミアンダ状ループアンテナ、コイル状ループアンテナ、ミアンダ状モノポールアンテナ、ミアンダ状ダイポールアンテナ及びマイクロストリップアンテナからなる群から選ばれる少なくとも一種類以上を含み、
    該アンテナ配線におけるアンテナ部一つあたりの専有面積が1000mm以下であり、
    該絶縁膜は請求項9に記載の硬化物である、アンテナ素子。
    An antenna element comprising at least one or more antenna wiring, a ground, and an insulating film that insulates between the ground and the antenna wiring,
    The antenna wiring includes at least one type selected from the group consisting of a meandering loop antenna, a coiled loop antenna, a meandering monopole antenna, a meandering dipole antenna, and a microstrip antenna,
    The exclusive area of each antenna part in the antenna wiring is 1000 mm 2 or less,
    An antenna element, wherein the insulating film is a cured product according to claim 9.
  13.  少なくとも、半導体素子、再配線層、封止樹脂、グランド配線及びアンテナ配線を具備する半導体パッケージを含む電子部品であって、
    該再配線層は銅配線および絶縁膜を含み、該封止樹脂はグランド配線とアンテナ配線の間にあり、
    該再配線層の絶縁層、及び/または、該封止樹脂、が請求項9に記載の硬化物である電子部品。
    An electronic component including a semiconductor package including at least a semiconductor element, a rewiring layer, a sealing resin, a ground wiring, and an antenna wiring,
    The redistribution layer includes copper wiring and an insulating film, the sealing resin is between the ground wiring and the antenna wiring,
    An electronic component, wherein the insulating layer of the rewiring layer and/or the sealing resin are the cured product according to claim 9.
PCT/JP2023/018261 2022-05-23 2023-05-16 Resin composition, cured product, antenna element and electronic component WO2023228815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-083531 2022-05-23
JP2022083531 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023228815A1 true WO2023228815A1 (en) 2023-11-30

Family

ID=88919222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018261 WO2023228815A1 (en) 2022-05-23 2023-05-16 Resin composition, cured product, antenna element and electronic component

Country Status (2)

Country Link
TW (1) TW202402938A (en)
WO (1) WO2023228815A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184594A (en) * 2017-04-24 2018-11-22 味の素株式会社 Resin composition
JP2020172663A (en) * 2020-07-28 2020-10-22 味の素株式会社 Resin composition
WO2021020344A1 (en) * 2019-08-01 2021-02-04 東レ株式会社 Photosensitive resin composition, photosensitive sheet, cured film, method for producing cured film, interlayer insulating film and electronic component
JP2021095570A (en) * 2019-12-16 2021-06-24 荒川化学工業株式会社 Adhesive composition, film-like adhesive, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate and printed wiring board, and multilayer wiring board and method for manufacturing the same
JP2021105146A (en) * 2019-12-27 2021-07-26 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
JP2022125999A (en) * 2021-02-17 2022-08-29 荒川化学工業株式会社 Polyimide resin composition, adhesive composition, film-like adhesive, adhesive sheet, copper foil with resin, copper-clad laminate, printed wiring board, and polyimide film
JP2022132145A (en) * 2021-02-26 2022-09-07 荒川化学工業株式会社 Adhesive composition, cured product, adhesive sheet, copper foil with resin, copper-clad laminate, and printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184594A (en) * 2017-04-24 2018-11-22 味の素株式会社 Resin composition
WO2021020344A1 (en) * 2019-08-01 2021-02-04 東レ株式会社 Photosensitive resin composition, photosensitive sheet, cured film, method for producing cured film, interlayer insulating film and electronic component
JP2021095570A (en) * 2019-12-16 2021-06-24 荒川化学工業株式会社 Adhesive composition, film-like adhesive, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate and printed wiring board, and multilayer wiring board and method for manufacturing the same
JP2021105146A (en) * 2019-12-27 2021-07-26 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
JP2020172663A (en) * 2020-07-28 2020-10-22 味の素株式会社 Resin composition
JP2022125999A (en) * 2021-02-17 2022-08-29 荒川化学工業株式会社 Polyimide resin composition, adhesive composition, film-like adhesive, adhesive sheet, copper foil with resin, copper-clad laminate, printed wiring board, and polyimide film
JP2022132145A (en) * 2021-02-26 2022-09-07 荒川化学工業株式会社 Adhesive composition, cured product, adhesive sheet, copper foil with resin, copper-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
TW202402938A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP7059632B2 (en) Resin composition
JP7003659B2 (en) Resin composition
JP6848434B2 (en) Resin and photosensitive resin composition
US20220204696A1 (en) Phenolic functionalized polyimides and compositions thereof
WO2021187355A1 (en) Photosensitive resin composition, photosensitive sheet, cured film, method for producing cured film, electronic component, antenna element, semiconductor package, and display device
JP2013197441A (en) Method of manufacturing circuit board with cured material layer
US8541099B2 (en) Heat-resistant resin
WO2017081922A1 (en) Semiconductor device, and manufacturing method for same
JP2021155717A (en) Resin composition, cured film, cured film pattern manufacturing method, and electronic component
WO2013179943A1 (en) Adhesive sheet for production of semiconductor device having bump electrodes and production method for semiconductor device
TW202202575A (en) Resin composition, cured product of resin composition, resin sheet, printed wiring board, semiconductor chip package, and semiconductor device A resin composition comprising (A) an epoxy resin and (B) a resin composition of hardener
WO2023228815A1 (en) Resin composition, cured product, antenna element and electronic component
JP7131133B2 (en) resin composition
JPWO2020158202A1 (en) Curable resin compositions, dry films, cured products, and electronic components
JP7052384B2 (en) A resin composition for a temporary protective film, and a method for manufacturing a semiconductor electronic component using the resin composition.
JP4218282B2 (en) Composition for polyimidesiloxane insulating film, insulating film, and method for forming insulating film
JP2001089656A (en) Composition for polyimide-based insulation film, insulation film and formation of insulation film
US20220289976A1 (en) Thermosetting resin composition, thermosetting resin sheet, electronic component, and electronic device
WO2013111241A1 (en) Polyimide precursor and resin composition using same
JP4273777B2 (en) Insulating film composition, insulating film, and method of forming insulating film
JP2001329096A (en) Low dielectric constant polymer
TWI836943B (en) Resin composition
WO2022239232A1 (en) Method for selecting photosensitive resin composition, method for producing patterned cured film, cured film, semiconductor device, and method for producing semiconductor device
KR101109871B1 (en) Polyamic acid resin composition, cured film produced using the resin composition, and semiconductor device
JP2024064435A (en) Resin composition, cured film of resin composition and manufacturing method thereof, insulating film, protective film, and electronic component

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023532472

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811689

Country of ref document: EP

Kind code of ref document: A1