WO2023226546A1 - 一种从锂黏土中回收锂的方法 - Google Patents

一种从锂黏土中回收锂的方法 Download PDF

Info

Publication number
WO2023226546A1
WO2023226546A1 PCT/CN2023/081687 CN2023081687W WO2023226546A1 WO 2023226546 A1 WO2023226546 A1 WO 2023226546A1 CN 2023081687 W CN2023081687 W CN 2023081687W WO 2023226546 A1 WO2023226546 A1 WO 2023226546A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
clay
roasting
leaching
acid
Prior art date
Application number
PCT/CN2023/081687
Other languages
English (en)
French (fr)
Inventor
包冬莲
李长东
阮丁山
陈若葵
乔延超
李波
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023226546A1 publication Critical patent/WO2023226546A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of lithium extraction from lithium ore, and specifically relates to a method for recovering lithium from lithium clay.
  • lithium as a key element in lithium-ion batteries, has attracted more and more attention from the industry.
  • Lithium salt products represented by lithium carbonate and lithium hydroxide are in short supply in the market and prices remain high. Therefore, the further development of lithium resources is very urgent.
  • lithium salt products on the market mainly come from lithium extraction from spodumene, lithium extraction from lepidolite, lithium extraction from salt lakes, and lithium recovery from retired lithium-ion batteries.
  • lithium clay was once ignored due to the low grade of lithium oxide.
  • many large-scale lithium clay mines have been discovered at home and abroad, with lithium carbonate equivalents exceeding one million tons, and the reserves are very considerable.
  • the mining and smelting of clay minerals has great development prospects.
  • Patent application CN110358931A discloses an ion exchange method for extracting lithium from carbonated clay lithium ore. This method uses ferric salt and roasted clay clinker to achieve lithium leaching in the form of ion exchange at 85°C, but the leaching rate is biased. Low, the consumption of iron salt is high, and industrialization is difficult; patent application CN111893318A discloses a method for extracting lithium from lithium-containing clay. This method roasts the ball-milled lithium clay with calcium carbonate, sodium sulfate, and potassium sulfate in a certain proportion. , crushed and leached to obtain a lithium-containing solution.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a method for recovering lithium from lithium clay. This method has simple process, high feasibility, low process energy consumption, and is suitable for low-grade lithium clay. Soil has a higher lithium leaching rate.
  • a method for recovering lithium from lithium clay including the following steps:
  • S1 Crush the lithium clay raw material to obtain lithium clay powder, and perform the first roasting of the lithium clay powder to obtain the primary roasting material;
  • S2 Mix the primary roasting material with an additive and then grind it to obtain a grinding material;
  • the additive is at least one of sodium salt, potassium salt, sodium hydroxide or potassium hydroxide;
  • the secondary roasting material is leached by adding a leaching agent, and solid-liquid separation is performed to obtain a leaching liquid.
  • step S1 the lithium content of the lithium clay raw material is 0.1-0.8 wt%.
  • the particle size of the lithium clay powder is 50-300 mesh.
  • the particle size of the lithium clay powder is 100-200 mesh.
  • the temperature of the first roasting is 600-1200°C.
  • the temperature of the first roasting is 600-900°C.
  • the first roasting time is 1-8 hours.
  • the first roasting time is 2-4 hours.
  • the additive in step S2, is at least one of NaOH, KOH, Na 2 CO 3 , K 2 CO 3 , CH 3 COONa, CH 3 COOK, NaHCO 3 or KHCO 3 .
  • Na and K have smaller ionic radii and higher ion exchange kinetics.
  • it avoids the introduction of Ca and Mg, which increases the difficulty of subsequent lithium solution recovery and reduces subsequent impurity removal costs.
  • the mass ratio of the additive to the primary roasting material is 1: (5-30).
  • the mass ratio of the additive to the primary roasting material is 1: (10-20).
  • the grinding speed is 100-1200 rpm.
  • the grinding speed is 500-800 rpm.
  • the grinding time is 1-12 hours. Preferably, the grinding time is 2-6 hours.
  • step S2 the grinding uses one of a planetary ball mill, a horizontal ball mill, a crusher or a vibrating ball mill.
  • the acid is at least one of hydrochloric acid, sulfuric acid or nitric acid.
  • the mass concentration of the acid is 2-50%. Preferably, the mass concentration of the acid is 5-10%.
  • the mass ratio of the acid to the abrasive is (0.2-2):1.
  • the mass ratio of the acid to the grinding material is (0.5-1):1.
  • the structure of lithium-containing clay minerals is complex, and there are various structures such as volcanic rock type and carbonate rock type. Considering process compatibility and cost, adding a small amount of acid and roasting at low temperature is beneficial to the leaching of residual lithium and is also beneficial to different lithium-containing structures. Extraction of lithium from clay minerals.
  • the temperature of the second roasting is 150-300°C.
  • the temperature of the second roasting is 200-250°C.
  • the second roasting time is 1-10 h.
  • the second roasting time is 2-4 hours.
  • step S4 the leachate is recycled as the leachant to enrich lithium.
  • the leaching agent is water, or at least one selected from sulfuric acid, hydrochloric acid, nitric acid or saturated carbonic acid solution. Further, the concentration of sulfuric acid, hydrochloric acid or nitric acid is 1-2mol/L.
  • the leaching agent is water.
  • the present invention realizes lithium extraction from lithium clay based on primary roasting, high-energy grinding and secondary acidification roasting.
  • the structural hydroxyl groups in the clay mineral are first removed through primary roasting, which increases the lattice spacing of the clay mineral and is conducive to the removal of lithium ions. Intercalation and exchange; then through high-energy grinding, local high-energy collision occurs between the material and the additive, which further destroys the structure of the clay mineral and provides the activation energy required for the reaction, causing ion exchange between Na + /K + and Li + in the clay mineral.
  • ground simultaneously The process reduces the particle size, which is beneficial to improving ion exchange kinetics.
  • the ground lithium exists in the form of carbonate/bicarbonate, etc.
  • This process can achieve the separation of most of the lattice lithium; and then through secondary acidification and roasting, Add a certain amount of acid to convert the detached lithium into easily soluble lithium salts.
  • the acid is used to deeply extract lithium from the clay ore during the roasting process.
  • the acidified and roasted materials are leached using a leaching agent.
  • the leached lithium solution can be Cyclic leaching achieves lithium enrichment. This process is suitable for leaching lithium from low-grade lithium clay ores, with high leaching rate, high lithium concentration in the leach solution, and strong process compatibility. It is suitable for the extraction of lithium from different lithium-containing clay ores and has great application prospects.
  • Figure 1 is a process flow diagram of the present invention.
  • a method of recovering lithium from lithium clay Refer to Figure 1. The specific process is:
  • the obtained secondary roasting material is leached by adding pure water at a liquid-to-solid ratio of 3:1 mL/g.
  • the leachate and leaching residue are separated to obtain the leachate.
  • the leachate is used as a leachant and circulated for three times to achieve lithium enrichment.
  • the enriched leachate is subjected to lithium Recycle.
  • the composition of the lithium clay, the leaching residue and the leaching liquid in this example an inductively coupled plasma emission spectrometer was used (ICP-OES) and atomic absorption spectrophotometer detection, the detection results are shown in Table 1.
  • the lithium leaching rate (leaching liquid volume * lithium concentration) / (leaching material mass * lithium content) * 100%.
  • the calculated lithium leaching rate in S5 is 90.5%.
  • the lithium concentration in the leaching liquid reaches 90.5% after three cycles of enrichment. 3095ppm.
  • a method for recovering lithium from lithium clay is:
  • the obtained secondary roasting material is leached by adding pure water at a liquid-to-solid ratio of 3:1 mL/g.
  • the solid-liquid separation is performed to obtain the leachate and leaching residue.
  • the leachate is used as a leachant and circulated for three times to achieve lithium enrichment.
  • the composition of the lithium clay, the leaching residue and the leaching liquid in this embodiment were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • Table 2 The detection results are shown in Table 2.
  • the lithium leaching rate (leaching liquid volume * lithium concentration) / (leaching material mass * lithium content) * 100%
  • the calculated lithium leaching rate in S5 is 89.2%
  • the lithium concentration in the leach liquid reaches 89.2% after three cycles of enrichment. 3375 ppm.
  • a method for recovering lithium from lithium clay is:
  • the obtained secondary roasting material is leached by adding pure water at a liquid-to-solid ratio of 3:1 mL/g.
  • the solid-liquid separation is performed to obtain the leachate and leaching residue.
  • the leachate is used as a leachant and circulated for three times to achieve lithium enrichment.
  • the composition of the lithium clay, the leaching residue and the leaching liquid in this embodiment were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • the calculated lithium leaching rate in S5 is 95.5%.
  • the lithium concentration in the leaching liquid reaches 95.5% after three cycles of enrichment. 3998ppm.
  • a method for recovering lithium from lithium clay is:
  • the obtained secondary roasting material is leached by adding pure water at a liquid-to-solid ratio of 3:1 mL/g.
  • the solid-liquid separation is performed to obtain the leachate and leaching residue.
  • the leachate is used as a leachant and circulated for three times to achieve lithium enrichment.
  • the composition of the lithium clay, the leaching residue and the leaching liquid in this embodiment were tested using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • the calculated lithium leaching rate in S5 is 97.5%.
  • the lithium concentration in the leaching liquid reaches 97.5% after three cycles of enrichment. 4025ppm.
  • a method for recovering lithium from lithium clay The difference from Example 1 is that no acid is added to the secondary roasting.
  • the specific process is:
  • the obtained secondary roasting mixture is leached with pure water at a liquid-to-solid ratio of 3:1 mL/g.
  • the solid-liquid separation is performed to obtain the leachate and leaching residue.
  • the leachate is used as a leachant and circulated for three times to achieve lithium enrichment.
  • the composition of the lithium clay as well as the leaching residue and leachate of this comparative example were tested using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • the calculated lithium leaching rate in S5 is 72.3%.
  • the lithium concentration in the leaching liquid reaches 72.3% after three cycles of enrichment. 2573ppm.
  • Comparative Example 1 has not been acidified and roasted. As can be seen from Table 5, the leaching rate of lithium is low. This is because Comparative Example 1 has only undergone high-energy ball milling. The ball milling process itself is a solid-phase reaction with limited reaction kinetics. The ball milling process alone is Lithium cannot be completely leached. Example: Adding a small amount of acid and performing acidification roasting at low temperature can deeply extract lithium from clay minerals and increase the lithium leaching rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种从锂黏土中回收锂的方法,将锂黏土粉料进行第一次焙烧,将一次焙烧料与添加剂混合后进行研磨,得到研磨料,将研磨料与酸混合后进行第二次焙烧,二次焙烧料加入浸出剂进行浸出,得到浸出液。基于一次焙烧、高能研磨和二次酸化焙烧的方式实现锂黏土的锂提取,先通过一次焙烧脱除黏土矿中的结构羟基,致使黏土矿晶格间距增大,有利于锂离子的脱嵌和交换;再通过高能研磨进一步破坏黏土矿的结构,使得Na +/K +同黏土矿中的Li +发生离子交换;再通过二次酸化焙烧将脱离的锂转化为易溶解的锂盐,同时酸在焙烧过程中用于深度提取黏土矿中的锂,该工艺适用于低品位锂黏土锂的浸出。

Description

一种从锂黏土中回收锂的方法 技术领域
本发明属于锂矿石提锂技术领域,具体涉及一种从锂黏土中回收锂的方法。
背景技术
随着锂离子电池的迅速推广,锂作为锂离子电池中的关键元素,愈发受到行业关注,以碳酸锂和氢氧化锂为代表的锂盐产品,市场已经供不应求,价格高居不下。所以,锂资源的进一步开发显得十分迫切。
目前,市场上的锂盐产品主要来源于锂辉石提锂、锂云母提锂、盐湖提锂以及退役锂离子电池中的锂回收,而锂黏土由于氧化锂品位较低一度被忽视,近年随着矿物勘探工作的深入开展,国内外均发现许多大型的锂黏土矿,其碳酸锂当量均在百万吨级以上,储量非常可观。相对于十分有限、日渐枯竭、价格高昂的锂辉石、锂云母矿,黏土矿的开采和冶炼十分具有发展前景。
针对锂黏土中锂的回收,目前国内相关提锂技术十分有限。专利申请CN110358931A公布了一种离子交换法提取碳酸粘土型锂矿中锂的方法,该法通过三价铁盐和焙烧黏土熟料在85℃以离子交换的形式实现锂的浸出,但浸出率偏低,铁盐的消耗较高,工业化难度较大;专利申请CN111893318A公布了一种含锂黏土提锂的方法,该法将球磨后的锂黏土同碳酸钙、硫酸钠、硫酸钾按一定比例焙烧,粉碎后浸出得到含锂溶液,该法产生大量的钙硅废渣,难以处理,渣中氧化锂含量达到0.2%,仅适用于氧化锂品位较高的黏土矿;专利CN103849761B公布了一种低品位含锂粘土矿提锂的方法,该法提出了一种“改性焙烧-堆浸”的新工艺,但焙烧过程引入了氟化钙,氟离子对设备的腐蚀性较大,产生的氟化氢也对大气存在污染。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种从锂黏土中回收锂的方法,该方法工艺简单,可行性高,过程能耗低,对低品位的锂黏 土具有较高的锂浸出率。
根据本发明的一个方面,提出了一种从锂黏土中回收锂的方法,包括以下步骤:
S1:将锂黏土原料进行破碎,得到锂黏土粉料,将所述锂黏土粉料进行第一次焙烧,得到一次焙烧料;
S2:将所述一次焙烧料与添加剂混合后进行研磨,得到研磨料;所述添加剂为钠盐、钾盐、氢氧化钠或氢氧化钾中的至少一种;
S3:将所述研磨料与酸混合后进行第二次焙烧,得到二次焙烧料;
S4:所述二次焙烧料加入浸出剂进行浸出,固液分离得到浸出液。
在本发明的一些实施方式中,步骤S1中,所述锂黏土原料的锂含量0.1-0.8wt%。
在本发明的一些实施方式中,步骤S1中,所述锂黏土粉料的粒径为50-300目。优选的,所述锂黏土粉料的粒径为100-200目。
在本发明的一些实施方式中,步骤S1中,所述第一次焙烧的温度为600-1200℃。优选的,所述第一次焙烧的温度为600-900℃。
在本发明的一些实施方式中,步骤S1中,所述第一次焙烧的时间为1-8h。优选的,所述第一次焙烧的时间为2-4h。
在本发明的一些实施方式中,步骤S2中,所述添加剂为NaOH、KOH、Na2CO3、K2CO3、CH3COONa、CH3COOK、NaHCO3或KHCO3中的至少一种。与Ca、Mg相比,Na、K的离子半径较小,离子交换动力学较高,同时避免Ca、Mg的引入增加后续锂溶液回收的难度,降低后续除杂成本。
在本发明的一些实施方式中,步骤S2中,所述添加剂与一次焙烧料的质量比为1:(5-30)。优选的,所述添加剂与一次焙烧料的质量比为1:(10-20)。
在本发明的一些实施方式中,步骤S2中,所述研磨的转速为100-1200rpm。优选的,所述研磨的转速为500-800rpm。
在本发明的一些实施方式中,步骤S2中,所述研磨的时间为1-12h。优选的,所述研磨的时间为2-6h。
在本发明的一些实施方式中,步骤S2中,所述研磨采用行星式球磨机、卧式球磨机、破碎机或振动球磨机中的一种。
在本发明的一些实施方式中,步骤S3中,所述酸为盐酸、硫酸或硝酸中的至少一种。
在本发明的一些实施方式中,步骤S3中,所述酸的质量浓度为2-50%。优选的,所述酸的质量浓度为5-10%。
在本发明的一些实施方式中,步骤S3中,所述酸与所述研磨料的质量比为(0.2-2):1。优选的,所述酸与所述研磨料的质量比为(0.5-1):1。含锂黏土矿结构复杂,存在火山岩型、碳酸岩型等多种结构,考虑到工艺兼容性和成本,加少量的酸在低温下进行焙烧,有利于残锂的浸出,也有利于不同含锂黏土矿中锂的提取。
在本发明的一些实施方式中,步骤S3中,所述第二次焙烧的温度为150-300℃。优选的,所述第二次焙烧的温度为200-250℃。
在本发明的一些实施方式中,步骤S3中,所述第二次焙烧的时间为1-10h。优选的,所述第二次焙烧的时间为2-4h。
在本发明的一些实施方式中,步骤S4中,所述浸出液作为所述浸出剂循环使用以富集锂。
在本发明的一些实施方式中,步骤S4中,所述浸出剂为水,或者选自的硫酸、盐酸、硝酸或饱和碳酸溶液中的至少一种。进一步的,所述硫酸、盐酸或硝酸的浓度为1-2mol/L。
在本发明的一些优选的实施方式中,步骤S4中,所述浸出剂为水。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
本发明基于一次焙烧、高能研磨和二次酸化焙烧的方式实现锂黏土的锂提取,先通过一次焙烧脱除黏土矿中的结构羟基,致使黏土矿晶格间距增大,有利于锂离子的脱嵌和交换;再通过高能研磨使物料和添加剂之间发生局部高能碰撞,进一步破坏黏土矿的结构,提供反应所需活化能,使得Na+/K+同黏土矿中的Li+发生离子交换,同时研磨过 程减小颗粒尺寸,有利于提高离子交换动力学,研磨后的锂以碳酸盐/碳酸氢盐等形式存在,该过程能实现大部分的晶格锂的脱离;再通过二次酸化焙烧,加入一定量的酸,将脱离的锂转化为易溶解的锂盐,同时酸在焙烧过程中用于深度提取黏土矿中的锂,酸化焙烧后的物料利用浸出剂浸出,浸出的锂溶液可通过循环浸出实现锂的富集。该工艺适用于低品位锂黏土锂的浸出,浸出率高,浸出液锂浓度高,工艺兼容性强,适用于不同含锂黏土矿中锂的提取,极具应用前景。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明的工艺流程图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种从锂黏土中回收锂的方法,参照图1,具体过程为:
S1:将含锂黏土破碎至100目;
S2:将得到破碎混料在800℃下进行焙烧,焙烧时间为2h,得到一次焙烧料;
S3:取500g一次焙烧料与碳酸氢钠按15:1的质量比在行星式球磨机中进行混合球磨,转速设为800rpm,研磨4h;
S4:将研磨后的混料按质量比1:2与10%的硫酸混合,混合均匀后在250℃下焙烧2h,得到二次焙烧料;
S5:得到的二次焙烧料按液固比3:1mL/g加入纯水进行浸出,分离得到浸出液与浸出渣,浸出液作为浸出剂循环浸出三次实现锂的富集,富集后的浸出液进行锂回收。
对本实施例的锂黏土组成以及浸出渣和浸出液,采用电感耦合等离子体发射光谱仪 (ICP-OES)和原子吸收分光光度计检测,检测结果如表1所示。其中锂的浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,计算得到S5中锂的浸出率为90.5%,浸出液中的锂浓度经过三次循环富集后达到3095ppm。
表1实施例1锂黏土原料及浸出液组成
实施例2
一种从锂黏土中回收锂的方法,具体过程为:
S1:将含锂黏土破碎至100目;
S2:将得到破碎混料在800℃下进行焙烧,焙烧时间为2h,得到一次焙烧料;
S3:取500g一次焙烧料与碳酸氢钾按15:1的质量比在行星式球磨机中进行混合球磨,转速设为800rpm,研磨4h;
S4:将研磨后的混料按质量比1:2与10%的硫酸混合,混合均匀后在250℃下焙烧2h,得到二次焙烧料;
S5:得到的二次焙烧料按液固比3:1mL/g加入纯水进行浸出,固液分离得到浸出液与浸出渣,浸出液作为浸出剂循环浸出三次实现锂的富集。
对本实施例的锂黏土组成以及浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表2所示。其中锂的浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,计算得到S5中锂的浸出率为89.2%,浸出液中的锂浓度经过三次循环富集后达到3375ppm。
表2实施例2锂黏土原料及浸出液组成

实施例3
一种从锂黏土中回收锂的方法,具体过程为:
S1:将含锂黏土破碎至100目;
S2:将得到破碎混料在800℃下进行焙烧,焙烧时间为2h,得到一次焙烧料;
S3:取500g一次焙烧料与碳酸氢钠按10:1的质量比在行星式球磨机中进行混合球磨,转速设为800rpm,研磨4h;
S4:将研磨后的混料按质量比1:2与10%的硫酸混合,混合均匀后在250℃下焙烧2h,得到二次焙烧料;
S5:得到的二次焙烧料按液固比3:1mL/g加入纯水进行浸出,固液分离得到浸出液与浸出渣,浸出液作为浸出剂循环浸出三次实现锂的富集。
对本实施例的锂黏土组成以及浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表3所示。其中锂的浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,计算得到S5中锂的浸出率为95.5%,浸出液中的锂浓度经过三次循环富集后达到3998ppm。
表3实施例3锂黏土原料及浸出液组成
实施例4
一种从锂黏土中回收锂的方法,具体过程为:
S1:将含锂黏土破碎至100目;
S2:将得到破碎混料在800℃下进行焙烧,焙烧时间为2h,得到一次焙烧料;
S3:取500g一次焙烧料与碳酸氢钠按15:1的质量比在行星式球磨机中进行混合球磨,转速设为800rpm,研磨10h;
S4:将研磨后的混料按质量比1:2与10%的硫酸混合,混合均匀后在250℃下焙烧2h,得到二次焙烧料;
S5:得到的二次焙烧料按液固比3:1mL/g加入纯水进行浸出,固液分离得到浸出液与浸出渣,浸出液作为浸出剂循环浸出三次实现锂的富集。
对本实施例的锂黏土组成以及浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表4所示。其中锂的浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,计算得到S5中锂的浸出率为97.5%,浸出液中的锂浓度经过三次循环富集后达到4025ppm。
表4实施例4锂黏土原料及浸出液组成
对比例1
一种从锂黏土中回收锂的方法,与实施例1的区别在于,二次焙烧未加入酸,具体过程为:
S1:将含锂黏土破碎至100目;
S2:将得到破碎混料在800℃下进行焙烧,焙烧时间为2h,得到一次焙烧料;
S3:取500g一次焙烧料与碳酸氢钠按质量比15:1的比例在行星式球磨机中进行混合球磨,转速设为800rpm,研磨4h。
S4:将研磨后的混料在250℃下焙烧2h,得到二次焙烧料;
S5:得到的二次焙烧混料按液固比3:1mL/g加入纯水进行浸出,固液分离得到浸出液与浸出渣,浸出液作为浸出剂循环浸出三次实现锂的富集。
对本对比例的锂黏土组成以及浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表1所示。其中锂的浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,计算得到S5中锂的浸出率为72.3%,浸出液中的锂浓度经过三次循环富集后达到2573ppm。
表5对比例1锂黏土原料及浸出液组成
对比例1未经过酸化焙烧,从表5可以看出,锂的浸出率较低,这是由于对比例1仅经过高能球磨,球磨过程本身属于固相反应,反应动力学有限,仅靠球磨过程不能使锂浸出彻底。实施例加少量的酸在低温下进行酸化焙烧,能够深度提取黏土矿中的锂,提高锂浸出率。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种从锂黏土中回收锂的方法,其特征在于,包括以下步骤:
    S1:将锂黏土原料进行破碎,得到锂黏土粉料,将所述锂黏土粉料进行第一次焙烧,得到一次焙烧料;
    S2:将所述一次焙烧料与添加剂混合后进行研磨,得到研磨料;所述添加剂为钠盐、钾盐、氢氧化钠或氢氧化钾中的至少一种;
    S3:将所述研磨料与酸混合后进行第二次焙烧,得到二次焙烧料;
    S4:所述二次焙烧料加入浸出剂进行浸出,固液分离,得到浸出液。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述锂黏土粉料的粒径为50-300目。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述第一次焙烧的温度为600-1200℃。
  4. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述添加剂为NaOH、KOH、Na2CO3、K2CO3、CH3COONa、CH3COOK、NaHCO3或KHCO3中的至少一种。
  5. 根据权利要求1或4所述的方法,其特征在于,步骤S2中,所述添加剂与一次焙烧料的质量比为1:(5-30)。
  6. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述研磨的转速为100-1200rpm。
  7. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述酸为盐酸、硫酸或硝酸中的至少一种。
  8. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述第二次焙烧的温度为150-300℃。
  9. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述浸出液作为所述浸出剂循环使用以富集锂。
  10. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述浸出剂为水,或者选自硫酸、盐酸、硝酸、碳酸中的至少一种。
PCT/CN2023/081687 2022-05-27 2023-03-15 一种从锂黏土中回收锂的方法 WO2023226546A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210586861.7 2022-05-27
CN202210586861.7A CN114891998A (zh) 2022-05-27 2022-05-27 一种从锂黏土中回收锂的方法

Publications (1)

Publication Number Publication Date
WO2023226546A1 true WO2023226546A1 (zh) 2023-11-30

Family

ID=82726873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081687 WO2023226546A1 (zh) 2022-05-27 2023-03-15 一种从锂黏土中回收锂的方法

Country Status (3)

Country Link
CN (1) CN114891998A (zh)
CL (1) CL2023003179A1 (zh)
WO (1) WO2023226546A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891998A (zh) * 2022-05-27 2022-08-12 广东邦普循环科技有限公司 一种从锂黏土中回收锂的方法
CN115976337A (zh) * 2022-12-19 2023-04-18 福州大学 一种利用离子替换从锂品位极低的粘土型锂矿中提取锂离子的方法
CN115999758B (zh) * 2023-01-19 2024-07-09 广东邦普循环科技有限公司 一种锂黏土矿的选矿方法
CN117327919A (zh) * 2023-09-28 2024-01-02 中国地质科学院矿产综合利用研究所 一种从高钙黏土型锂矿中提取锂的方法
CN117025977B (zh) * 2023-10-10 2023-12-29 矿冶科技集团有限公司 从含磷黏土型锂矿中提锂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849761A (zh) * 2014-03-17 2014-06-11 河南省岩石矿物测试中心 一种低品位含锂粘土矿提锂方法
CN109890990A (zh) * 2016-08-02 2019-06-14 澳大利亚锂公司 苛性碱消化方法
CN110358934A (zh) * 2019-08-26 2019-10-22 中国科学院地球化学研究所 离子交换法提取碳酸盐粘土型锂矿中锂的方法
CN111893318A (zh) * 2020-07-16 2020-11-06 江西赣锋锂业股份有限公司 一种含锂黏土提锂的方法
WO2021146768A1 (en) * 2020-01-20 2021-07-29 Tianqi Lithium Kwinana Pty Ltd A process for producing alumina and a lithium salt
CN114891998A (zh) * 2022-05-27 2022-08-12 广东邦普循环科技有限公司 一种从锂黏土中回收锂的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042262A (zh) * 2019-05-27 2019-07-23 中国地质科学院矿产综合利用研究所 一种选择性浸出低品位沉积型锂矿的方法
AU2020417254A1 (en) * 2020-01-03 2022-07-14 Tesla, Inc. Selective extraction of lithium from clay minerals
CN111575504A (zh) * 2020-05-29 2020-08-25 贵州锂电新能源科技有限公司 一种含锂粘土岩高效浸出锂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849761A (zh) * 2014-03-17 2014-06-11 河南省岩石矿物测试中心 一种低品位含锂粘土矿提锂方法
CN109890990A (zh) * 2016-08-02 2019-06-14 澳大利亚锂公司 苛性碱消化方法
CN110358934A (zh) * 2019-08-26 2019-10-22 中国科学院地球化学研究所 离子交换法提取碳酸盐粘土型锂矿中锂的方法
WO2021146768A1 (en) * 2020-01-20 2021-07-29 Tianqi Lithium Kwinana Pty Ltd A process for producing alumina and a lithium salt
CN111893318A (zh) * 2020-07-16 2020-11-06 江西赣锋锂业股份有限公司 一种含锂黏土提锂的方法
CN114891998A (zh) * 2022-05-27 2022-08-12 广东邦普循环科技有限公司 一种从锂黏土中回收锂的方法

Also Published As

Publication number Publication date
CL2023003179A1 (es) 2024-05-10
CN114891998A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2023226546A1 (zh) 一种从锂黏土中回收锂的方法
Zhang et al. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction
WO2024000838A1 (zh) 从锂黏土中提取锂的方法
CN111118294A (zh) 一种从废旧锂离子电池材料中分步回收有价金属的方法
CN113174480B (zh) 一种从含锂、铷、铯硅酸盐矿物中提取锂、铷、铯的方法
CN102244309B (zh) 一种从电动汽车锂系动力电池中回收锂的方法
CN106086471B (zh) 一种锂云母脱氟和有价金属浸出的方法
CN113104867A (zh) 一种复合硫酸盐酸化焙烧锂云母制备碳酸锂的方法
CN111484043A (zh) 一种废旧锰酸锂和磷酸铁锂正极材料的综合回收方法
CN108584994A (zh) 一种锂云母回转窑煅烧制碳酸锂的方法
CN102352442B (zh) 一种废铅酸蓄电池铅膏脱硫方法
CN109811145B (zh) 一种含锂矿物制备金属锂的方法
WO2012171481A1 (zh) 全面综合回收和基本无三废、零排放的湿法冶金方法
CN108165767A (zh) 一种基于微波和压力场联合溶浸锂辉石的方法
CN103952537B (zh) 一种从硼铁矿中提取优质铁粉和硼砂的方法
CN112111650A (zh) 选择性还原回收废旧锂离子电池有价金属的方法
CN107964597B (zh) 一种处理锂云母提取碱金属的方法
CN114436300A (zh) 一种锂辉石酸化浸取锂的方法
CN106076651B (zh) 一种泡沫浮选富集低品位含硼尾矿的方法
CN104152671B (zh) 一种由含锡铁矿制备炼铁用铁精矿的方法
Liu et al. An environmentally friendly improved chlorination roasting process for lepidolite with reduced chlorinating agent dosage and chlorinated waste gas emission
CN116497235A (zh) 一种低锂黏土提锂的方法
CN108516569B (zh) 锂云母焙烧制备硫酸锂溶液的方法
CN116262948A (zh) 一种对粘土型锂矿石进行活化并提取锂离子的方法
Ju et al. An efficient and clean method for the selective extraction and recovery of manganese from pyrolusite using ammonium sulfate roasting-water leaching and carbonate precipitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810621

Country of ref document: EP

Kind code of ref document: A1