WO2023223617A1 - 船舶 - Google Patents

船舶 Download PDF

Info

Publication number
WO2023223617A1
WO2023223617A1 PCT/JP2023/005544 JP2023005544W WO2023223617A1 WO 2023223617 A1 WO2023223617 A1 WO 2023223617A1 JP 2023005544 W JP2023005544 W JP 2023005544W WO 2023223617 A1 WO2023223617 A1 WO 2023223617A1
Authority
WO
WIPO (PCT)
Prior art keywords
stern
ship
width direction
line
hull
Prior art date
Application number
PCT/JP2023/005544
Other languages
English (en)
French (fr)
Inventor
大輔 松本
信 川淵
雅也 窪田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023223617A1 publication Critical patent/WO2023223617A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/08Shape of aft part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/40Other means for varying the inherent hydrodynamic characteristics of hulls by diminishing wave resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/40Stern posts; Stern frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • Patent Document 1 discloses a ship in which an additional member with a triangular cross section is attached to the stern end of an existing transom stern. This additional member projects rearward from the stern end and is inclined slightly backward from horizontal. This reduces wave-making resistance when the ship navigates.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a ship that can reduce hull resistance.
  • a ship includes a stern end surface and a stern bottom surface connected to the stern end surface, and the stern bottom surface extends across the width direction of the ship and extends upward toward the stern side.
  • a main bottom surface that slopes toward the stern; a slanted surface that is provided at the center of the rear end of the main bottom surface in the width direction of the ship and extends downward toward the stern side; a lower stern having a rear surface flush with the stern end surface, the main bottom surface and the lower stern being smoothly connected without forming a connecting line at the boundary between the main bottom surface and the lower stern.
  • hull resistance can be reduced.
  • FIG. 1 is a side view of a ship according to an embodiment of the present disclosure.
  • FIG. 2 is a downward perspective view showing the stern of the ship according to the embodiment of the present disclosure.
  • 1 is a diagram of the stern of a ship according to an embodiment of the present disclosure viewed from the rear.
  • FIG. 1 is a view of the stern of a ship according to an embodiment of the present disclosure viewed from below.
  • FIG. 1 is a side view of the stern of a ship according to an embodiment of the present disclosure.
  • FIG. FIG. 3 is a diagram showing a change in the coefficient of residual resistance with respect to the Froude number for a ship according to an embodiment of the present disclosure.
  • a ship 1 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 6.
  • the ship 1 will be described using, as an example, a slender ship with a fast sailing speed.
  • Examples of such ships 1 include ferries such as ROPAX, passenger ships, container ships, pure car and truck carriers (PCTCs), and cargo ships such as RORO ships.
  • a ship 1 As shown in FIG. 1, a ship 1 has a transom stern structure. The ship 1 is formed into an elongated shape in the traveling direction D1. That is, the captain direction of the ship 1 coincides with the traveling direction D1 of the ship 1.
  • the direction perpendicular to the traveling direction D1 of the ship 1 and the direction along the horizontal plane may be referred to as the ship width direction D2.
  • the ship 1 includes a hull 2, a propulsion device 20, and a rudder 30.
  • the hull 2 includes a side 3, a bottom 4, an upper deck 5, a bow 6, and a stern 10.
  • a pair of sides 3 are provided facing each other in the ship width direction D2. Each side 3 extends in the traveling direction D1.
  • the bottom 4 connects the lower portions of the pair of sides 3.
  • the bottom 4, like the side 3, extends in the traveling direction D1.
  • the boundary between the bottom 4 and the side 3 is shown by a broken line in FIG. 2, but the bottom 4 and the side 3 are smoothly connected without forming a connecting line at the boundary between the bottom 4 and the side 3.
  • the upper deck 5 is provided over the upper portions of the pair of sides 3.
  • the upper deck 5, like the side 3, extends in the traveling direction D1.
  • a superstructure (not shown) such as a bridge is installed on the upper deck 5.
  • the bow 6 is located on the front side of the hull 2 in the traveling direction D1.
  • the stern 10 is located on the rear side of the hull 2 in the traveling direction D1.
  • the bow 6 and the stern 10 are connected by the side 3, the bottom 4, and the upper deck 5.
  • the hull 2 is formed into a box shape by the side 3, bottom 4, upper deck 5, bow 6, and stern 10.
  • the front side of the ship 1 in the traveling direction D1 will be referred to as the "bow side”
  • the rear side of the ship 1 in the traveling direction D1 will be referred to as the "stern side”.
  • the stern 10 includes a stern end surface 11 and a stern bottom surface 12.
  • the stern end surface 11 is formed into a planar shape extending vertically in the up-down direction.
  • the stern end surface 11 is perpendicular to the traveling direction D1 (ship direction).
  • the stern end surface 11 is formed symmetrically with respect to a hull centerline C extending in the traveling direction D1 of the hull 2.
  • the dimension of the stern end surface 11 in the ship width direction D2 gradually becomes smaller toward the bottom.
  • the lower edge of the stern end surface 11 is formed into a dome shape that is curved downward when viewed from the stern side.
  • the stern bottom surface 12 is continuous with the stern end surface 11. Further, the stern bottom surface 12 is continuous with the side 3 and the bottom 4 of the ship. Details of the shape of the stern bottom surface 12 will be described later.
  • the propulsion device 20 is provided below the stern bottom surface 12.
  • the propulsion device 20 of this embodiment is a propeller 21.
  • the stern 10 of this embodiment is a so-called single-shaft stern.
  • One propeller 21 is arranged on the hull centerline C when viewed from below.
  • the propeller 21 is connected to the bottom 4 via a propeller shaft 22.
  • the propeller shaft 22 extends in the traveling direction D1.
  • the propeller shaft 22 passes through the bottom 4 of the ship.
  • the front end of the propeller shaft 22 is connected to a prime mover (not shown) provided in the bottom 4 of the ship.
  • the driving force of a prime mover within the ship bottom 4 is transmitted to the propeller 21 via a propeller shaft 22 .
  • the propeller 21 is rotated by the driving force of the prime mover.
  • the rotation of the propeller 21 generates a propulsive force on the ship 1 .
  • the ship 1 may have a center skeg and two propellers 21 or two azimuth propulsors instead of the single-shaft stern and one propeller 21.
  • the rudder 30 is located closer to the stern than the propeller 21.
  • the rudder 30 is provided along the hull center line C when viewed from below.
  • the rudder 30 is attached to the stern bottom surface 12 via a rudder post 31.
  • the rudder post 31 projects downward from the stern bottom surface 12.
  • the lower end of the rudder post 31 is connected to the front portion of the upper end of the rudder 30 .
  • the rudder 30 is provided around a rudder post 31 so that its angle can be changed.
  • a perpendicular that passes through the intersection of the load waterline WL and the bow 6 and extends in the vertical direction will be referred to as a front perpendicular F. P.
  • a perpendicular line passing through the central axis of the rudder post 31 and extending vertically is called a rear perpendicular line A. P. It is called.
  • the distance between the two in the traveling direction D1 is referred to as the perpendicular length Lpp.
  • a perpendicular line passing through the center of the propeller 21 and extending in the vertical direction is a propeller center perpendicular line P. C. It is called.
  • the stern bottom surface 12 includes a main bottom surface 13 and a stern lower portion 14.
  • the main bottom surface 13 is smoothly connected to the bottom 4 of the ship.
  • the main bottom surface 13 extends rearward in the traveling direction D1 from the rear end of the boat bottom 4 toward the stern end surface 11.
  • the perpendicular line passing through the front end of the main bottom surface 13 will be defined as line AA.
  • Line AA is the propeller center perpendicular line P. in the traveling direction D1.
  • FIG. 3 the stern end surface 11 and the outline of the cross section of the stern 10 as seen from the stern side are disclosed.
  • the cross section of the stern 10 disclosed in FIG. 3 is a cross section perpendicular to the traveling direction D1.
  • D1 the outline of the cross section along line AA (double-dashed line) and the rear perpendicular line A.
  • P. The outline of the cross section along the line (dotted chain line) and the stern end A.
  • E An outline (solid line) of the stern end surface 11 along the stern end surface 11 is shown.
  • FIG. 4 the outline of the cross section of the stern 10 as seen from below is disclosed.
  • the cross section of the stern 10 disclosed in FIG. 4 is a cross section perpendicular to the vertical direction.
  • a plurality of outlines of the cross section of the stern 10 having different heights (z) of the bottom 4 from the base line BL are disclosed.
  • ba, cb, and dc are all equal.
  • the knuckle line NL shown in FIG. 4 is just a comparative example and does not exist in this embodiment.
  • FIG. 5 the outline of the cross section of the stern 10 as seen from the ship width direction D2 is disclosed.
  • the cross section of the stern 10 disclosed in FIG. 5 is a cross section perpendicular to the ship width direction D2.
  • FIG. 5 the outline of a cross-section along the hull centerline C and the outline of a plurality of cross-sections located outside the hull centerline C in the ship width direction D2 are disclosed.
  • the lower end of the outline of each cross-section shown in FIG. 5 is located upward as it is located further outward in the ship width direction D2 from the hull center line C. 3 to 5, only the shape of the hull 2 is illustrated, and the propulsion device 20 and rudder 30 are omitted.
  • the main bottom surface 13 extends across the ship's width direction D2 and is connected to the side 3.
  • the main bottom surface 13 is inclined upward toward the stern side. Further, the main bottom surface 13 is formed into a smooth curved surface without any ridgeline.
  • the stern lower part 14 is provided at the center of the rear end of the main bottom surface 13 in the ship width direction D2.
  • the stern lower part 14 is smoothly connected to the main bottom surface 13 without forming a connecting line at the boundary.
  • the stern lower part 14 is integrally formed with the main bottom surface 13. That is, the lower stern section 14 is not an addition to the hull 2, but is the outer shape of the hull 2 itself.
  • the lower stern section 14 has an inclined surface 15 and a rear surface 16.
  • the inclined surface 15 extends downward toward the stern side (see especially FIG. 5).
  • the shape of the inclined surface 15 is disclosed on the stern side.
  • the front end of the inclined surface 15 is connected to the line AA and the rear perpendicular line A. P. It is located between.
  • the front end of the inclined surface 15 is connected to the rear perpendicular line A. P. It is located above.
  • the center portion of the stern bottom surface 12 in the ship width direction D2 is located from the AA line to the rear perpendicular line A. P. up to the rear perpendicular A. P. From the stern end A. E. It slopes downward toward the stern.
  • the inclined surface 15 is located closer to the stern than the propulsion device 20.
  • the lower edge of the rear end of the inclined surface 15 is located below the lower edge of the stern end surface 11.
  • the lower edge of the inclined surface 15 is formed into a dome shape that is curved downward when viewed from the stern side.
  • the stern end A. E. The outline (solid line) of the stern end surface 11 in A. and the rear perpendicular A.
  • P. The outline line (dotted chain line) of the cross section intersects between the hull center line C in the ship width direction D2 and the outermost end (end on the side 3 side) in the ship width direction D2.
  • the stern end A. E. The outline of the stern end surface 11 and the rear perpendicular line A.
  • the position in the ship width direction D2 where the outline of the cross section intersects is shown by line BB. On the inside of the BB line in the ship width direction D2, the stern end A. E.
  • the rear perpendicular line A. is located below the outline of the cross section at A. P. approaches upwardly the outline of the cross section at .
  • the stern end A. E. The outline of the stern end surface 11 at A. P.
  • the rear perpendicular line A. P. It is spaced upward from the outline of the cross section at.
  • the stern end A. E. The outline of the stern end surface 11 at A. P. , and almost overlap at the outermost end in the ship width direction D2.
  • the rear end portion of the stern bottom surface 12 including the inclined surface 15 is inclined downward as it goes toward the stern side on the inside of the BB line in the ship width direction D2, and is also wider than the BB line. On the outside in direction D2, it slopes upward toward the stern side. That is, the boundary between the inclined surface 15 and the main bottom surface 13 in the ship width direction D2 is located on the line BB.
  • the outline at the same vertical position changes upward to be perpendicular to the ship width direction D2. More specifically, the contour line at the same vertical position at the rear end of the stern bottom surface 12 including the inclined surface 15 becomes less concave toward the hull center line C as the height from the bottom 4 increases. At the same time, it approaches the gunwale 3, and near the gunwale 3 it has a convex shape that slightly protrudes to the side opposite to the hull centerline C. Further, the outline of the rear end portion of the stern bottom surface 12 including the inclined surface 15 at the same vertical position has a shape extending along the side 3 at the same height as the side 3.
  • the entire stern bottom surface 12 including the inclined surface 15 is formed into a smooth curved surface.
  • the rear surface 16 is connected to the stern side of the inclined surface 15 and is flush with the stern end surface 11.
  • the boundary between the rear surface 16 and the stern end surface 11 is illustrated by a broken line in FIGS. 2 and 3, the rear surface 16 and the stern end surface 11 form a connecting line at the boundary between the rear surface 16 and the stern end surface 11. Connected smoothly without any problem.
  • the rear surface 16 is formed into a U-shape that opens upward when viewed from the stern side.
  • the Froude number Fn of the planned speed is set to 0.20 or more and 0.50 or less.
  • the length Lpp between perpendicular lines of the ship 1 is 50 m or more and 400 m or less.
  • the height H1 to the lower end of the stern lower part 14 is set to 70% or more and 130% or less, more preferably 80% or more and 120% or less of the height H2 from the base line BL of the bottom 4 to the load water line WL. .
  • the stern end A. is indicated by line BB in Figure 3.
  • the distance W1 in the ship width direction D2 between the hull center line C and the hull center line C is the distance W1 in the ship width direction D2 between the outermost end of the hull 2 in the ship width direction D2 and the hull center line C.
  • the distance W2 of D2 is set to 10% or more and 80% or less, more preferably 20% or more and 60% or less. Note that the distance W2 is 1/2 the dimension of the hull 2 in the width direction D2 (width of the hull 2).
  • the stern bottom surface 12 includes a main bottom surface 13 and a stern lower portion 14 .
  • the main bottom surface 13 extends across the ship width direction D2 and slopes upward toward the stern side.
  • the stern lower part 14 is provided at the center of the rear end of the main bottom surface 13 in the ship width direction D2.
  • the stern lower part 14 has an inclined surface 15 that extends downward toward the stern side, and a rear surface 16 that is connected to the stern side of the inclined surface 15 and is flush with the stern end surface 11.
  • the main bottom surface 13 and the stern lower portion 14 are smoothly connected to each other without forming a connecting line at the boundary between the main bottom surface 13 and the stern lower portion 14.
  • a water current flowing along the stern 10 when the ship 1 navigates is deflected downward by the inclined surface 15 of the stern lower part 14.
  • the stern 10 is pushed upward, and the amount of sinking of the stern 10 is reduced. Therefore, the hull resistance caused by the sinking of the stern 10 can be significantly reduced.
  • Significant reductions in hull resistance improve fuel efficiency and reduce operating costs.
  • the main bottom surface 13 and the stern lower part 14 are smoothly connected, so that the water flow and the hull surface pressure change gradually. This further reduces hull resistance.
  • the rear end portion of the stern bottom surface 12 including the inclined surface 15 changes from a downward slope to an upward slope as it goes outward in the ship width direction D2.
  • the outline at the same vertical position expands in the ship width direction D2 toward the stern side.
  • the proportion of the submerged area of the stern 10 occupied by the inclined surface 15 increases. This increases the lift force that pushes up the inclined surface 15 when the ship 1 navigates. Therefore, the amount of sinking of the stern 10 is further suppressed. Therefore, the hull resistance can be further reduced.
  • the outline at the same vertical position changes upward to be perpendicular to the ship width direction D2.
  • the entire stern bottom surface 12 including the inclined surface 15 of this embodiment is formed into a smooth curved shape.
  • the water flow and the hull surface pressure change more gently near the stern bottom surface 12. This further reduces hull resistance.
  • the ship 1 further includes a propulsion device 20 below the stern bottom surface 12.
  • the inclined surface 15 is located closer to the stern than the propulsion device 20.
  • the stern lower part 14 is integrally formed with the main bottom surface 13.
  • the height H1 to the lower end of the stern lower part 14 is set to 70% or more and 130% or less, more preferably 80% or more and 120% or less of the height H2 from the base line BL of the bottom 4 to the load water line WL. .
  • E. The outline of the stern end surface 11 and the rear perpendicular line A.
  • P. The distance W1 in the ship width direction D2 between the hull center line C and the hull center line C is the distance W1 in the ship width direction D2 between the outermost end of the hull 2 in the ship width direction D2 and the hull center line C.
  • the distance W2 of D2 is set to 10% or more and 80% or less, more preferably 20% or more and 60% or less.
  • the lower end height H1 and distance W1 are set as above.
  • the lower end height H1 is set to 80% or more and 120% or less of the height H2, and the distance W1 is set to 20% or more and 60% or less of the distance W2.
  • the horizontal axis of FIG. 6 shows the Froude number Fn, and the vertical axis shows the residual resistance coefficient Cr.
  • the residual resistance coefficient Cr is a coefficient indicating the magnitude of residual resistance, and the residual resistance includes viscous pressure resistance and wave-forming resistance.
  • the triangular points in the figure are the CFD calculation results of the comparative example (ship 1 not equipped with the stern 10 of this embodiment), and the diamond points are the CFD calculation results of the ship 1 equipped with the stern 10 of this embodiment.
  • the CFD calculation results of the ship 1 equipped with the stern 10 according to the present embodiment are connected by straight lines and illustrated as a so-called line graph.
  • FIG. 6 shows the transition of the residual resistance coefficient Cr with respect to the Froude number Fn in the range from 0.23 to 0.26.
  • the residual resistance coefficient Cr changes in the range from 0.003 to 0.009.
  • the residual resistance coefficient Cr of the ship 1 including the stern 10 of this embodiment increases as the Froude number Fn increases.
  • the line AA is the propeller center perpendicular line P. in the traveling direction D1. C. and rear perpendicular A. P. However, it is not limited to this.
  • line AA is the propeller center perpendicular line P. C. and the advancing direction D1 position may overlap.
  • the stern lower part 14 is formed integrally with the main bottom surface 13, but the present invention is not limited to this.
  • the stern lower part 14 may be provided on the main bottom surface 13 afterward.
  • the ship 1 includes a stern end surface 11 and a stern bottom surface 12 continuous to the stern end surface 11, and the stern bottom surface 12 extends across the ship width direction D2 and extends toward the stern side. Therefore, the main bottom surface 13 slopes upward, and the slope surface 15 is provided at the center of the rear end of the main bottom surface 13 in the ship width direction D2 and extends downward toward the stern side.
  • a stern lower part 14 having a rear surface 16 connected to the stern side of the stern end face 11 and flush with the stern end surface 11, and the main bottom surface 13 and the stern lower part 14 are connected to the stern end surface 11, and the main bottom surface 13 and the stern lower part 14 are are connected smoothly without forming a connecting line at the border.
  • a water current flowing along the stern 10 when the ship 1 navigates is deflected downward by the inclined surface 15 of the stern lower part 14.
  • the stern 10 is pushed upward, and the amount of sinking of the stern 10 is reduced. Therefore, the hull resistance caused by the sinking of the stern 10 can be significantly reduced.
  • the main bottom surface 13 and the lower stern portion 14 are smoothly connected, so that the water flow and the hull surface pressure change gradually. This further reduces hull resistance.
  • a ship 1 according to a second aspect is the ship 1 according to (1), in which the rear end portion of the stern bottom surface 12 including the slope surface 15 is inclined downwardly toward the outside in the ship width direction D2. It may also change to an upward slope.
  • the ship 1 according to the third aspect is the ship 1 according to (1) or (2), in which the rear end portion of the stern bottom surface 12 including the inclined surface 15 has an outline at the same vertical position. may expand in the ship width direction D2 toward the stern side.
  • the proportion of the submerged area of the stern 10 occupied by the inclined surface 15 increases. This increases the lift force that pushes up the inclined surface 15 when the ship 1 navigates. Therefore, the amount of sinking of the stern 10 is further suppressed.
  • the ship 1 according to the fourth aspect is the ship 1 according to (3), in which at the rear end portion of the stern bottom surface 12 including the inclined surface 15, the outline at the same vertical position points upward. Accordingly, it may change perpendicularly to the ship width direction D2.
  • a ship 1 according to a fifth aspect is the ship 1 according to any one of (1) to (4), in which the entire stern bottom surface 12 including the inclined surface 15 is formed into a smooth curved surface. You can leave it there.
  • the water flow and the hull surface pressure change more gently near the stern bottom surface 12.
  • the ship 1 of the sixth aspect is the ship 1 according to any one of (1) to (5), further comprising a propulsion device 20 below the stern bottom surface 12, and the inclined surface 15 is the ship 1 according to any one of (1) to (5). It may be located on the stern side of the propulsion device 20.
  • the ship 1 according to the seventh aspect is the ship 1 according to any one of (1) to (6), in which the stern lower part 14 may be integrally formed with the main bottom surface 13.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

この船舶は、船尾端面と、船尾端面に連なる船尾底面と、を備え、船尾底面は、船幅方向にわたって広がり、船尾側に向かうにしたがって上方に向かって傾斜する主底面と、主底面の後端部の船幅方向中央部に設けられて、船尾側に向かうにしたがって下方に延びる傾斜面及び、傾斜面の船尾側に接続されて船尾端面と面一をなす後面を有する船尾下部と、を備え、主底面と船尾下部とが、これら主底面と船尾下部との境界に接続線を形成することなく滑らかに接続されている。

Description

船舶
 本開示は、船舶に関する。
 本願は、2022年5月19日に、日本に出願された特願2022-082117号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、三角形断面の付加部材を既存のトランサムスターン船尾端に付設した船舶が開示されている。この付加部材は、船尾端から後方に突出し、水平からやや後方下がりに傾斜している。これにより、船舶が航行する際の造波抵抗が低減される。
日本国特許第3490392号公報
 ところで、近年の船舶では、燃費性向上による運航コストの低減がより一層求められている。このため、航走時の船体抵抗低減が重要となり、上述した従来の船尾形状を改良して船体抵抗をさらに低減することが望まれている。
 本開示は、上記課題を解決するためになされたものであって、船体抵抗を低減することができる船舶を提供することを目的とする。
 上記課題を解決するために、本開示に係る船舶は、船尾端面と、前記船尾端面に連なる船尾底面と、を備え、前記船尾底面は、船幅方向にわたって広がり、船尾側に向かうにしたがって上方に向かって傾斜する主底面と、前記主底面の後端部の船幅方向中央部に設けられて、船尾側に向かうにしたがって下方に延びる傾斜面及び、該傾斜面の船尾側に接続されて前記船尾端面と面一をなす後面を有する船尾下部と、を備え、前記主底面と前記船尾下部とが、これら前記主底面と前記船尾下部との境界に接続線を形成することなく滑らかに接続されている。
 本開示の船舶によれば、船体抵抗を低減することができる。
本開示の実施形態に係る船舶の側面図である。 本開示の実施形態に係る船舶の船尾を示す下方斜視図である。 本開示の実施形態に係る船舶の船尾を後方から見た図である。 本開示の実施形態に係る船舶の船尾を下方から見た図である。 本開示の実施形態に係る船舶の船尾を側方から見た図である。 本開示の実施形態に係る船舶についてフルード数に対する剰余抵抗係数の変化を示す図である。
 以下、本開示の実施形態に係る船舶1について、図1から図6を参照して説明する。本実施形態では、船舶1として、痩せ型で航海速力の速い船舶を一例に説明する。このような船舶1の例として、ROPAX等のフェリー、客船、コンテナ船、自動車専用船(PCTC;Pure Car and Truck Carrier)、RORO船等の貨物船が挙げられる。
(船舶)
 図1に示すように、船舶1は、トランサムスターン構造の船舶である。船舶1は、進行方向D1に細長い形状に形成されている。すなわち、船舶1の船長方向は、船舶1の進行方向D1と一致している。
 以下、船舶1の進行方向D1と直交する方向、かつ、水平面に沿う方向を船幅方向D2と称する場合がある。
 図1、図2に示すように、船舶1は、船体2と、推進器20と、舵30と、を備える。
(船体)
 船体2は、舷側3と、船底4と、上甲板5と、船首6と、船尾10と、を備える。
 舷側3は、船幅方向D2に対向して一対設けられている。各舷側3は、進行方向D1に延びている。船底4は、一対の舷側3の下側部分を接続している。船底4は、舷側3と同様に進行方向D1に延びている。船底4と舷側3との境界は、図2に破線で図示されているが、船底4と舷側3は、これら船底4と舷側3との境界に接続線を形成することなく滑らかに接続されている。上甲板5は、一対の舷側3の上部に亘って設けられている。上甲板5は、舷側3と同様に進行方向D1に延びている。上甲板5には、船橋等、不図示の上部構造が設置される。船首6は、船体2の進行方向D1前側に位置している。船尾10は、船体2の進行方向D1後側に位置している。船首6と船尾10とは、舷側3、船底4、及び上甲板5によって接続されている。
 これら舷側3、船底4、上甲板5、船首6及び船尾10により、船体2は箱型に形成されている。
 以下、船舶1の進行方向D1前側を「船首側」と称し、船舶1の進行方向D1後側を「船尾側」と称して説明する。
(船尾)
 船尾10は、船尾端面11と、船尾底面12と、を備える。
(船尾端面)
 船尾端面11は、鉛直上下方向に延びる平面状に形成されている。本実施形態では、船尾端面11は、進行方向D1(船長方向)と直交している。船尾端面11は、船体2の進行方向D1に延びる船体中心線Cを基準として左右対称に形成されている。船尾端面11の船幅方向D2の寸法は、下方に向かうにしたがって、次第に小さくなっている。船尾端面11の下縁は、船尾側から見て下方に張り出すように湾曲したドーム状に形成されている。
(船尾底面)
 船尾底面12は、船尾端面11に連なっている。また、船尾底面12は、舷側3及び船底4に連なっている。
 船尾底面12の形状の詳細については、後述する。
(推進器)
 推進器20は、船尾底面12の下方に設けられている。本実施形態の推進器20は、プロペラ21である。
 本実施形態の船尾10は、いわゆる1軸船尾である。プロペラ21は、下方から見て、船体中心線C上に1基配置されている。プロペラ21は、プロペラ軸22を介して船底4に接続されている。プロペラ軸22は、進行方向D1に延びている。プロペラ軸22は、船底4を貫通している。プロペラ軸22の前端部は、船底4内に設けられた不図示の原動機に接続されている。プロペラ21には、プロペラ軸22を介して船底4内の原動機の駆動力が伝達される。プロペラ21は、原動機の駆動力によって回転する。プロペラ21の回転によって、船舶1に推進力が生じる。
 なお、船舶1は、1軸船尾及び1基のプロペラ21に代えて、センタースケグと、2基のプロペラ21または2基のアジマス推進器と、を有してもよい。
(舵)
 舵30は、プロペラ21よりも船尾側に位置している。舵30は、下方から見て船体中心線Cに沿って設けられている。舵30は、舵柱31を介して船尾底面12に装着されている。舵柱31は、船尾底面12から下方に突出している。舵柱31の下端には、舵30の上端の前部が接続されている。舵30は、舵柱31回りに角度変更可能に設けられている。
 以下、満載喫水線WLと船首6との交点を通り、上下方向に延びる垂線を前部垂線F.P.と称し、舵柱31の中心軸を通り上下方向に延びる垂線を後部垂線A.P.と称する。また、前部垂線F.P.と後部垂線A.P.との間の進行方向D1の距離を垂線間長Lppと称する。また、プロペラ21の中心を通り上下方向に延びる垂線をプロペラ中心垂線P.C.と称する。また、船尾底面12の後端を船尾端A.E.と称する。
(船尾底面の形状の詳細)
 以下、図2、及び図3から図5を参照して船尾底面12の形状の詳細について説明する。
 図2に示すように、船尾底面12は、主底面13と、船尾下部14と、を備える。
(主底面)
 主底面13は、船底4に滑らかに接続されている。主底面13は、船底4の後端から船尾端面11に向けて進行方向D1後側に延びている。以下、主底面13の前端を通る垂線をA-A線と定義する。A-A線は、進行方向D1でプロペラ中心垂線P.C.と後部垂線A.P.との間に位置している。
 主底面13と舷側3との境界は、図2で破線で図示されているが、主底面13と舷側3は、これら主底面13と舷側3との境界に接続線を形成することなく滑らかに接続されている。同様に、主底面13と船底4との境界は、図2に破線で図示されているが、主底面13と船底4は、これら主底面13と船底4との境界に接続線を形成することなく滑らかに接続されている。
 図3では、船尾側から見た、船尾端面11及び、船尾10の断面の外形線が開示されている。図3で開示される船尾10の断面は、進行方向D1に直交する断面である。図3では、代表例として、A-A線に沿う断面の外形線(二点鎖線)と、後部垂線A.P.に沿う断面の外形線(一点鎖線)と、船尾端A.E.に沿う船尾端面11の外形線(実線)と、が図示されている。
 図4では、下方から見た、船尾10の断面の外形線が開示されている。図4で開示される船尾10の断面は、上下方向に直交する断面である。図4では、船底4の基線BLからの高さ(z)が異なる船尾10の断面の外形線が複数開示されている。船底4の基線BLからの高さ(z)を低い順にz=a,b,c,dとして、図4には、高さz=a,b,c,dの4つの断面の外形線が図示されている。z=aは、船尾端A.E.の下端付近の高さであり、z=dは、船尾底面12の上端の高さである。寸法差b-a,c-b,及びd-cは全て等しい。さらに、図4には、高さz=a,b,c,dの4つの断面の外形線に加えて、高さz=a,bの間の高さ、高さz=b,cの間の高さ、及びz=c,dの間の高さの断面の外形線が図示されている。
 また、図4では、比較例として、高さz=aの断面の位置にナックルラインNLの一例が破線で図示されている。図4に示すナックルラインNLは、あくまでも比較例であり、本実施形態には存在しない。
 図5では、船幅方向D2から見た、船尾10の断面の外形線が開示されている。図5で開示される船尾10の断面は、船幅方向D2に直交する断面である。図5では、船体中心線Cに沿う断面の外形線、及び船体中心線Cよりも船幅方向D2外側に位置する複数の断面の外形線が開示されている。図5に示される各断面の外形線の下端は、船体中心線Cから船幅方向D2外側に位置するほど、上方に位置する。
 図3から図5では、船体2の形状のみが図示され、推進器20及び舵30は省略されている。
 図3から図5に示すように、主底面13は、船幅方向D2にわたって広がり、舷側3に接続されている。主底面13は、船尾側に向かうにしたがって上方に向かって傾斜している。また、主底面13は、稜線の存在しない滑らかな曲面状に形成されている。
(船尾下部)
 図2に示すように、船尾下部14は、主底面13の後端部の船幅方向D2中央部に設けられている。船尾下部14は、主底面13との境界に接続線を形成することなく滑らかに接続されている。本実施形態では、船尾下部14は、主底面13と一体形成されている。すなわち、船尾下部14は、船体2への付加物ではなく、船体2の外面形状そのものである。船尾下部14は、傾斜面15及び後面16を有する。
 傾斜面15と主底面13との境界は、図2に破線で図示されているが、傾斜面15と主底面13は、これら傾斜面15と主底面13との境界に接続線を形成することなく滑らかに接続されている。傾斜面15は、船尾側に向かうにしたがって下方に延びている(特に図5参照)。図5に示す断面の外形線のうち下から4本目の外形線において、後部垂線A.P.よりも船尾側が傾斜面15の形状を開示している。傾斜面15の前端は、A-A線と後部垂線A.P.との間に位置している。本実施形態では、傾斜面15の前端は、後部垂線A.P.上に位置している。すなわち、本実施形態では、船尾底面12の船幅方向D2中央部は、A-A線から後部垂線A.P.までは、船尾側に向かうにしたがって上方に向かって傾斜し、後部垂線A.P.から船尾端A.E.までは、船尾側に向かうにしたがって下方に向かって傾斜している。
 傾斜面15は、推進器20よりも船尾側に位置する。傾斜面15の後端の下縁は、船尾端面11の下縁よりも下方に位置している。傾斜面15の下縁は、船尾側から見て下方に張り出すように湾曲したドーム状に形成されている。
 また、傾斜面15を含む船尾底面12の後端部は、船幅方向D2外側に向かうにしたがって下方傾斜から上方傾斜に変化している。この点について、図3を参照してより詳細に説明する。
 例えば図3に示すように、進行方向D1に直交する船尾10の断面うち、船尾端A.E.における船尾端面11の外形線(実線)と、後部垂線A.P.における断面の外形線(一点鎖線)とは、船幅方向D2における船体中心線Cと船幅方向D2の最外側端(舷側3側の端)との間で交差している。図3では、船尾端A.E.における船尾端面11の外形線と、後部垂線A.P.における断面の外形線とが交差する船幅方向D2位置がB-B線で図示されている。B-B線よりも船幅方向D2内側では、船尾端A.E.における船尾端面11の外形線は、後部垂線A.P.における断面の外形線よりも下方に位置するとともに、船幅方向D2外側に向かうにしたがって、後部垂線A.P.における断面の外形線に上方に接近している。また、B-B線よりも船幅方向D2外側では、船尾端A.E.における船尾端面11の外形線は、後部垂線A.P.における断面の外形線よりも上方に位置するとともに、船幅方向D2外側に向かうにしたがって、後部垂線A.P.における断面の外形線から上方に離間している。さらに、舷側3側に接近すると、船尾端A.E.における船尾端面11の外形線は、再び後部垂線A.P.における断面の外形線に接近し始め、船幅方向D2の最外側端で殆ど重なる。
 このように、傾斜面15を含む船尾底面12の後端部はB-B線よりも船幅方向D2内側では、船尾側に向かうにしたがって下方に傾斜するとともに、B-B線よりも船幅方向D2外側では、船尾側に向かうにしたがって上方に傾斜する。すなわち、船幅方向D2における傾斜面15と主底面13との境界は、B-B線に位置していることになる。
 また、図4に示すように、傾斜面15を含む船尾底面12の後端部では、同一の上下方向位置の外形線が船尾側に向かうにしたがって船幅方向D2に拡がっている。
 さらに、傾斜面15を含む船尾底面12の後端部では、同一の上下方向位置の外形線が上方に向かうにしたがって船幅方向D2に直交するように変化している。より詳細には、傾斜面15を含む船尾底面12の後端部における同一の上下方向位置の外形線は、船底4からの高さが高くなるにしたがって船体中心線C側に凹む形状が小さくなるとともに舷側3に接近し、舷側3の近傍では船体中心線Cとは反対側に僅かに張り出した凸形状となる。また、傾斜面15を含む船尾底面12の後端部における同一の上下方向位置の外形線は、舷側3と同じ高さでは、舷側3に沿って延びる形状となる。
 また、図3、図4に示すように、傾斜面15を含む船尾底面12の全体は、滑らかな曲面状に形成されている。
 図3に示すように、後面16は、傾斜面15の船尾側に接続されて船尾端面11と面一をなしている。後面16と船尾端面11との境界は、図2と図3に破線で図示されているが、後面16と船尾端面11は、これら後面16と船尾端面11との境界に接続線を形成することなく滑らかに接続されている。後面16は、船尾側から見て上方に開口するU字状に形成されている。
(船舶の寸法)
 続いて、本実施形態に係る船舶1の計画速力、及び寸法について説明する。
 本実施形態の船舶1では、計画速力のフルード数Fnが0.20以上0.50以下に設定されている。
 また、船舶1の垂線間長Lppは、50m以上400m以下である。船底4の基線BLから船尾端A.E.における船尾下部14の下端までの高さH1は、船底4の基線BLから満載喫水線WLまでの高さH2に対し70%以上130%以下、より好ましくは80%以上120%以下に設定されている。図3のB-B線で示される船尾端A.E.における船尾端面11の外形線と、後部垂線A.P.における断面の外形線とが交差する船幅方向D2位置と船体中心線Cとの船幅方向D2の距離W1は、船体2の船幅方向D2最外側端と船体中心線Cとの船幅方向D2の距離W2に対して10%以上80%以下、より好ましくは20%以上60%以下に設定されている。なお、距離W2は、船体2の船幅方向D2の寸法(船体2の船幅)の1/2倍である。
(作用効果)
 本実施形態の船舶1は、下記作用効果を奏する。
 本実施形態では、船尾底面12は、主底面13と、船尾下部14と、を備える。主底面13は、船幅方向D2にわたって広がり、船尾側に向かうにしたがって上方に向かって傾斜する。船尾下部14は、主底面13の後端部の船幅方向D2中央部に設けられている。船尾下部14は、船尾側に向かうにしたがって下方に延びる傾斜面15及び、傾斜面15の船尾側に接続されて船尾端面11と面一をなす後面16を有する。主底面13と船尾下部14とが、これら主底面13と船尾下部14との境界に接続線を形成することなく滑らかに接続されている。
 船舶1が航行する際に船尾10に沿って流れる水流が、船尾下部14の傾斜面15で下方に偏向される。これにより、船尾10が上方へ押し上げられ、船尾10の沈下量が低減される。よって、船尾10が沈下することによって生じていた船体抵抗を大幅に低減することができる。船体抵抗が大幅に低減されると、燃費が改善され、運航コストが低減される。
 ところで、図4に示す比較例のように、船尾底面12にナックルラインNL等の曲率が急激に変化する曲率急変部が存在すると、この曲率急変部の近傍で水流が急激に変化する。これにより、船体表面圧力が急激に変化し、船体抵抗が増大する。これに対し、本実施形態では、主底面13と船尾下部14とが滑らかに接続されているため、水流及び船体表面圧力が緩やかに変化する。これにより、船体抵抗がより一層低減される。
 本実施形態では、傾斜面15を含む船尾底面12の後端部は、船幅方向D2外側に向かうにしたがって下方傾斜から上方傾斜に変化する。
 これにより、船尾底面12のうち水没箇所にのみ傾斜面15を設けることが可能となる。よって、従来の船舶1の形状を可能な限り維持することができる。したがって、本実施形態の船尾10を適用することが容易となる。
 本実施形態の傾斜面15を含む船尾底面12の後端部では、同一の上下方向位置の外形線が船尾側に向かうにしたがって船幅方向D2に拡がる。
 本実施形態によれば、船尾10の没水面積のうち傾斜面15が占める割合が増大する。これにより、船舶1が航行する際に傾斜面15を押し上げる揚力が増大する。このため、船尾10の沈下量がより一層抑制される。したがって、より一層船体抵抗を低減することができる。
 本実施形態の傾斜面15を含む船尾底面12の後端部では、同一の上下方向位置の外形線が上方に向かうにしたがって船幅方向D2に直交するように変化する。
 これにより、従来の船舶1の形状を可能な限り維持することができる。したがって、本実施形態の船尾10を適用することが容易となる。
 本実施形態の傾斜面15を含む船尾底面12の全体は、滑らかな曲面状に形成されている。
 本実施形態によれば、船尾底面12近傍において、水流及び船体表面圧力がより一層緩やかに変化する。これにより、船体抵抗がより一層低減される。
 本実施形態では、船舶1は、船尾底面12の下方に推進器20をさらに備える。傾斜面15は、推進器20よりも船尾側に位置する。
 本実施形態によれば、推進器20と船尾底面12とのクリアランスを、振動特性を維持するために必要な規定の間隔に維持することが容易となる。
 本実施形態では、船尾下部14は、主底面13と一体形成されている。
 これにより、船尾下部14を形成する際、主底面13と船尾下部14との境界に接続線が形成されないようにすることが容易となる。したがって、より確実に、船尾底面12近傍の水流及び船体表面圧力の変化を緩やかにし、船体抵抗を低減することができる。
 本実施形態では、船底4の基線BLから船尾端A.E.における船尾下部14の下端までの高さH1は、船底4の基線BLから満載喫水線WLまでの高さH2に対し70%以上130%以下、より好ましくは80%以上120%以下に設定されている。また、図3のB-B線で示される船尾端A.E.における船尾端面11の外形線と、後部垂線A.P.における断面の外形線とが交差する船幅方向D2位置と船体中心線Cとの船幅方向D2の距離W1は、船体2の船幅方向D2最外側端と船体中心線Cとの船幅方向D2の距離W2に対して10%以上80%以下、より好ましくは20%以上60%以下に設定されている。
 計画速力のフルード数Fnが0.20以上0.50以下に設定され、船舶1の垂線間長Lppが50m以上400m以下である場合、下端高さH1及び距離W1が上記のように設定されていることにより、本実施形態の船尾下部14による船体抵抗低減効果が最も有効に発揮される。
 次に、上述した本実施形態の船尾10の形状による効果をCFD(Computational Fluid Dynamics)計算により確認した結果について、図6を参照して説明する。このCFD計算では、下端高さH1が高さH2に対し80%以上120%以下に設定され、距離W1が距離W2に対して20%以上60%以下に設定されている。図6の横軸は、フルード数Fnを示し、縦軸は、剰余抵抗係数Crを示す。ここで、剰余抵抗係数Crは、剰余抵抗の大きさを示す係数であり、剰余抵抗には、粘性圧力抵抗と造波抵抗とが含まれる。
 図中の三角点は、比較例(本実施形態の船尾10を備えない船舶1)のCFD計算結果であり、菱形点は本実施形態に係る船尾10を備えた船舶1のCFD計算結果である。本実施形態に係る船尾10を備えた船舶1のCFD計算結果は、直線により接続されて、いわゆる折れ線グラフとして図示されている。
 図6には、0.23以上0.26以下の領域のフルード数Fnに対する剰余抵抗係数Crの推移が図示されている。図6に示す各計算結果では、剰余抵抗係数Crは、0.003以上0.009以下の領域で推移している。本実施形態の船尾10を備える船舶1の剰余抵抗係数Crは、フルード数Fnが増加するにしたがって増大している。
 図6に示すように、フルード数Fnが0.245付近で、比較例から約7%だけ剰余抵抗係数Crが低減している。この結果は、本実施形態の船舶1に船体抵抗を低減する効果があることを示している。
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態ではA-A線は、進行方向D1でプロペラ中心垂線P.C.と後部垂線A.P.との間に位置しているとしたが、これに限るものではない。例えば、A-A線は、プロペラ中心垂線P.C.と進行方向D1位置が重なっていてもよい。
 なお、上記実施形態では船尾下部14は、主底面13と一体形成されているとしたが、これに限るものではない。例えば、船尾下部14は、主底面13に後付けで設けられていてもよい。
<付記>
 各実施形態に記載の船舶1は、例えば以下のように把握される。
(1)第1の態様に係る船舶1は、船尾端面11と、前記船尾端面11に連なる船尾底面12と、を備え、前記船尾底面12は、船幅方向D2にわたって広がり、船尾側に向かうにしたがって上方に向かって傾斜する主底面13と、前記主底面13の後端部の船幅方向D2中央部に設けられて、船尾側に向かうにしたがって下方に延びる傾斜面15及び、該傾斜面15の船尾側に接続されて前記船尾端面11と面一をなす後面16を有する船尾下部14と、を備え、前記主底面13と前記船尾下部14とが、これら前記主底面13と前記船尾下部14との境界に接続線を形成することなく滑らかに接続されている。
 船舶1が航行する際に船尾10に沿って流れる水流が、船尾下部14の傾斜面15で下方に偏向される。これにより、船尾10が上方へ押し上げられ、船尾10の沈下量が低減される。よって、船尾10が沈下することによって生じていた船体抵抗を大幅に低減することができる。
 ところで、船尾底面12にナックルライン等の曲率が急激に変化する曲率急変部が存在すると、この曲率急変部の近傍で水流が急激に変化する。これにより、船体表面圧力が急激に変化し、船体抵抗が増大する。これに対し、本態様では、主底面13と船尾下部14とが滑らかに接続されているため、水流及び船体表面圧力が緩やかに変化する。これにより、船体抵抗がより一層低減される。
(2)第2の態様の船舶1は、(1)の船舶1であって、前記傾斜面15を含む前記船尾底面12の後端部は、船幅方向D2外側に向かうにしたがって下方傾斜から上方傾斜に変化してもよい。
 これにより、船尾底面12のうち水没箇所にのみ傾斜面15を設けることが可能となる。よって、従来の船舶1の形状を可能な限り維持することができる。
(3)第3の態様の船舶1は、(1)又は(2)の船舶1であって、前記傾斜面15を含む前記船尾底面12の後端部では、同一の上下方向位置の外形線が船尾側に向かうにしたがって船幅方向D2に拡がってもよい。
 本態様によれば、船尾10の没水面積のうち傾斜面15が占める割合が増大する。これにより、船舶1が航行する際に傾斜面15を押し上げる揚力が増大する。このため、船尾10の沈下量がより一層抑制される。
(4)第4の態様の船舶1は、(3)の船舶1であって、前記傾斜面15を含む前記船尾底面12の後端部では、同一の上下方向位置の外形線が上方に向かうにしたがって船幅方向D2に直交するように変化してもよい。
 これにより、従来の船舶1の形状を可能な限り維持することができる。
(5)第5の態様の船舶1は、(1)から(4)のいずれかの船舶1であって、前記傾斜面15を含む前記船尾底面12の全体は、滑らかな曲面状に形成されていてもよい。
 本態様によれば、船尾底面12近傍において、水流及び船体表面圧力がより一層緩やかに変化する。
(6)第6の態様の船舶1は、(1)から(5)のいずれかの船舶1であって、前記船尾底面12の下方に推進器20をさらに備え、前記傾斜面15は、前記推進器20よりも船尾側に位置してもよい。
 本態様によれば、推進器20と船尾底面12とのクリアランスを、振動特性を維持するために必要な規定の間隔に維持することが容易となる。
(7)第7の態様の船舶1は、(1)から(6)のいずれかの船舶1であって、前記船尾下部14は、前記主底面13と一体形成されていてもよい。
 これにより、船尾下部14を形成する際、主底面13と船尾下部14との境界に接続線が形成されないようにすることが容易となる。
 本開示によれば、船体抵抗を低減することができる船舶を提供することができる。
1…船舶 2…船体 3…舷側 4…船底 5…上甲板 6…船首 10…船尾 11…船尾端面 12…船尾底面 13…主底面 14…船尾下部 15…傾斜面 16…後面 20…推進器 21…プロペラ 22…プロペラ軸 30…舵 31…舵柱 C…船体中心線 D1…進行方向 D2…船幅方向 WL…満載喫水線 BL…基線 F.P.…前部垂線 A.P.…後部垂線 Lpp…垂線間長 A.E.…船尾端 P.C.…プロペラ中心線 H1…下端高さ H2…高さ W1…距離 W2…距離 NL…ナックルライン(比較例)

Claims (7)

  1.  船尾端面と、
     前記船尾端面に連なる船尾底面と、
     を備え、
     前記船尾底面は、
     船幅方向にわたって広がり、船尾側に向かうにしたがって上方に向かって傾斜する主底面と、
     前記主底面の後端部の船幅方向中央部に設けられて、船尾側に向かうにしたがって下方に延びる傾斜面及び、該傾斜面の船尾側に接続されて前記船尾端面と面一をなす後面を有する船尾下部と、
     を備え、
     前記主底面と前記船尾下部とが、これら前記主底面と前記船尾下部との境界に接続線を形成することなく滑らかに接続されている船舶。
  2.  前記傾斜面を含む前記船尾底面の後端部は、船幅方向外側に向かうにしたがって下方傾斜から上方傾斜に変化する請求項1に記載の船舶。
  3.  前記傾斜面を含む前記船尾底面の後端部では、同一の上下方向位置の外形線が船尾側に向かうにしたがって船幅方向に拡がる請求項1または2に記載の船舶。
  4.  前記傾斜面を含む前記船尾底面の後端部では、同一の上下方向位置の外形線が上方に向かうにしたがって船幅方向に直交するように変化する請求項3に記載の船舶。
  5.  前記傾斜面を含む前記船尾底面の全体は、滑らかな曲面状に形成されている請求項1または2に記載の船舶。
  6.  前記船尾底面の下方に推進器をさらに備え、
     前記傾斜面は、前記推進器よりも船尾側に位置する請求項1または2に記載の船舶。
  7.  前記船尾下部は、前記主底面と一体形成されている請求項1または2に記載の船舶。
PCT/JP2023/005544 2022-05-19 2023-02-16 船舶 WO2023223617A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-082117 2022-05-19
JP2022082117A JP2023170395A (ja) 2022-05-19 2022-05-19 船舶

Publications (1)

Publication Number Publication Date
WO2023223617A1 true WO2023223617A1 (ja) 2023-11-23

Family

ID=88835219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005544 WO2023223617A1 (ja) 2022-05-19 2023-02-16 船舶

Country Status (2)

Country Link
JP (1) JP2023170395A (ja)
WO (1) WO2023223617A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154475A (ja) * 2000-11-22 2002-05-28 Kawasaki Heavy Ind Ltd トランサムスターン型船尾形状及びその造波抵抗低減方法
JP2007253697A (ja) * 2006-03-22 2007-10-04 Mitsui Eng & Shipbuild Co Ltd 船舶
JP2013159245A (ja) * 2012-02-06 2013-08-19 National Maritime Research Institute 二軸船尾双胴型船舶および二軸船尾双胴型船舶の設計方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154475A (ja) * 2000-11-22 2002-05-28 Kawasaki Heavy Ind Ltd トランサムスターン型船尾形状及びその造波抵抗低減方法
JP2007253697A (ja) * 2006-03-22 2007-10-04 Mitsui Eng & Shipbuild Co Ltd 船舶
JP2013159245A (ja) * 2012-02-06 2013-08-19 National Maritime Research Institute 二軸船尾双胴型船舶および二軸船尾双胴型船舶の設計方法

Also Published As

Publication number Publication date
JP2023170395A (ja) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6118880B1 (ja) 船舶
CN104619582B (zh) 商用货船
US7192322B2 (en) Line design and propulsion system for a directionally stable, seagoing boat with rudder propeller drive system
JP6590813B2 (ja) 改良船体形状を有する船舶
JP2002513716A (ja) 単一・三・双胴構造を有した船舶用船体
JP6354082B2 (ja) 船舶
CN112272637B (zh) 小风阻船舶
JP5638215B2 (ja) 風圧抵抗の少ない船舶及びその設計方法
US8740660B2 (en) Pod drive installation and hull configuration for a marine vessel
JP4009643B2 (ja) 船舶の船首形状
WO2023223617A1 (ja) 船舶
KR20160136456A (ko) 파랑중 저항증가 저감스텝을 구비한 선체구조
EP1545968B1 (en) Vessel provided with a foil situated below the waterline
KR101654489B1 (ko) 선박
KR101875099B1 (ko) 조파 저항이 저감된 비대선의 선체
JP2003514702A (ja) 舵取り推進機に最適な船体を備え針路の安定した高速海洋船
JP4216858B2 (ja) 船舶
JP5969170B2 (ja) 船舶
JP5896598B2 (ja) 船舶
JP2006008091A (ja) 小型高速船の船型
JP5028000B2 (ja) 船舶
JP7177957B1 (ja) 船舶
JP2023130867A (ja) 船舶
JP5863235B2 (ja) 船舶
JP2018122711A (ja) 船舶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807235

Country of ref document: EP

Kind code of ref document: A1