WO2023218959A1 - 半導体装置、および、半導体装置の製造方法 - Google Patents

半導体装置、および、半導体装置の製造方法 Download PDF

Info

Publication number
WO2023218959A1
WO2023218959A1 PCT/JP2023/016432 JP2023016432W WO2023218959A1 WO 2023218959 A1 WO2023218959 A1 WO 2023218959A1 JP 2023016432 W JP2023016432 W JP 2023016432W WO 2023218959 A1 WO2023218959 A1 WO 2023218959A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
terminal
recess
tip
resin
Prior art date
Application number
PCT/JP2023/016432
Other languages
English (en)
French (fr)
Inventor
弘招 松原
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023218959A1 publication Critical patent/WO2023218959A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads

Definitions

  • the present disclosure relates to a semiconductor device and a method for manufacturing a semiconductor device.
  • Patent Document 1 discloses an example of an SOP (Small Outline Package) type semiconductor device.
  • the semiconductor device disclosed in the document includes a semiconductor element, a die pad, a terminal, and a sealing resin.
  • a semiconductor element is mounted on a die pad and is electrically connected to a terminal via a bonding wire.
  • the semiconductor element, die pad, and a portion of the terminal are covered with a sealing resin.
  • An exterior plating layer made of an alloy containing Sn is formed on the portion of the terminal exposed from the sealing resin in order to improve solder adhesion when the terminal is bonded to the wiring board with solder.
  • the outer plating layer is formed before the terminal is separated from the lead frame, no outer plating layer is formed on the tip end surface of the terminal. Therefore, when a terminal is bonded to a wiring board with solder, the solder is difficult to adhere to the tip end surface of the terminal, and a solder fillet may not be formed. In this case, a visual inspection determines that solder adhesion is defective.
  • An object of the present disclosure is to provide a semiconductor device that is improved over conventional ones.
  • an object of the present disclosure is to provide a semiconductor device that can suppress solder adhesion defects when mounted on a wiring board.
  • a semiconductor device provided by a first aspect of the present disclosure includes a semiconductor element, a sealing resin that covers the semiconductor element, and a first direction that is electrically conductive to the semiconductor element and perpendicular to the thickness direction from the sealing resin.
  • the terminal includes a terminal protruding from the terminal, and a plating layer disposed on the terminal.
  • the terminal has a distal end surface that is an end surface protruding from the sealing resin, a first surface facing the first side in the thickness direction, and a recessed portion recessed from both the distal end surface and the first surface. , is provided.
  • the plating layer includes a recess plating portion disposed in at least a portion of the recess.
  • a method for manufacturing a semiconductor device provided by a second aspect of the present disclosure provides a terminal portion having a first surface facing the first side in the thickness direction, and a recessed portion recessed from the first surface in the thickness direction. forming a plating layer on the terminal portion; and cutting the terminal portion along a cutting line intersecting the recess using a cutting die. .
  • FIG. 1 is a plan view showing a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view showing the semiconductor device of FIG. 1, and is a view through a sealing resin.
  • FIG. 3 is a front view showing the semiconductor device of FIG. 1.
  • 4 is a left side view showing the semiconductor device of FIG. 1.
  • FIG. 5 is a sectional view taken along line VV in FIG. 2.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a partially enlarged view of FIG. 5.
  • FIG. 8 is a partially enlarged view of FIG. 4.
  • FIG. 9 is a partially enlarged view of FIG. 5.
  • FIG. 10 is a plan view showing steps related to the method for manufacturing the semiconductor device of FIG. 1.
  • FIG. 10 is a plan view showing steps related to the method for manufacturing the semiconductor device of FIG. 1.
  • FIG. 10 is a plan view showing steps related to the method for manufacturing the semiconductor device of FIG. 1.
  • FIG. 11 is a bottom view showing steps related to the method for manufacturing the semiconductor device of FIG. 1.
  • FIG. 12 is a cross-sectional view showing steps related to the method for manufacturing the semiconductor device shown in FIG.
  • FIG. 13 is a plan view showing steps related to the method for manufacturing the semiconductor device of FIG. 1.
  • FIG. 14 is a plan view showing steps related to the method for manufacturing the semiconductor device of FIG. 1.
  • FIG. 15 is a cross-sectional view showing steps related to the method for manufacturing the semiconductor device shown in FIG.
  • FIG. 16 is a cross-sectional view showing steps related to the method for manufacturing the semiconductor device shown in FIG.
  • FIG. 17 is a partially enlarged view of FIG. 16.
  • FIG. 18 is a cross-sectional view showing steps related to the method for manufacturing the semiconductor device shown in FIG. FIG.
  • FIG. 19 is a cross-sectional view showing steps related to the method for manufacturing the semiconductor device shown in FIG.
  • FIG. 20 is a partially enlarged view of FIG. 19.
  • FIG. 21 is a partially enlarged sectional view showing the semiconductor device of FIG. 1 mounted on a wiring board.
  • FIG. 22 is a partially enlarged left side view showing a semiconductor device according to a first modification of the first embodiment of the present disclosure.
  • 23 is a partially enlarged bottom view showing the semiconductor device of FIG. 22.
  • FIG. FIG. 24 is a partially enlarged left side view showing a semiconductor device according to a second modification of the first embodiment of the present disclosure.
  • 25 is a partially enlarged bottom view showing the semiconductor device of FIG. 24.
  • FIG. 26 is a partially enlarged left side view showing a semiconductor device according to a third modification of the first embodiment of the present disclosure.
  • FIG. 27 is a partially enlarged bottom view showing the semiconductor device of FIG. 26.
  • FIG. 28 is a partially enlarged cross-sectional view showing a semiconductor device according to a second embodiment of the present disclosure.
  • FIG. 29 is a partially enlarged left side view showing the semiconductor device of FIG. 28.
  • FIG. 30 is a partially enlarged cross-sectional view showing steps related to the method for manufacturing the semiconductor device of FIG. 28.
  • FIG. 31 is a partially enlarged cross-sectional view showing a semiconductor device according to a third embodiment of the present disclosure.
  • 32 is a partially enlarged left side view showing the semiconductor device of FIG. 31.
  • FIG. FIG. 33 is a partially enlarged cross-sectional view showing a semiconductor device according to a fourth embodiment of the present disclosure.
  • First embodiment: 1 to 9 show an example of a semiconductor device according to the present disclosure.
  • the semiconductor device A10 of this embodiment includes a first semiconductor element 11, a second semiconductor element 12, an insulating element 13, a conductive member 2, a plurality of wires 61 to 64, and a sealing resin 7.
  • the conductive member 2 includes a first die pad 3, a second die pad 4, a plurality of first terminals 51, a plurality of second terminals 52, a plurality of pad portions 53, 55, a pair of connection portions 54, and a pair of connection portions 56.
  • the semiconductor device A10 is surface mounted on a wiring board of an inverter device such as an electric vehicle or a hybrid vehicle. Note that the use and function of the semiconductor device A10 are not limited.
  • the package format of the semiconductor device A10 is SOP (Small Outline Package). However, the package format of the semiconductor device A10 is not limited to SOP.
  • FIG. 1 is a plan view showing the semiconductor device A10.
  • FIG. 2 is a plan view showing the semiconductor device A10.
  • the outer shape of the sealing resin 7 is shown by an imaginary line (two-dot chain line) that is transmitted through the sealing resin 7.
  • FIG. 3 is a front view showing the semiconductor device A10.
  • FIG. 4 is a left side view showing the semiconductor device A10.
  • FIG. 5 is a sectional view taken along line VV in FIG. 2.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a partially enlarged view of FIG. 5.
  • FIG. 8 is a partially enlarged view of FIG. 4.
  • FIG. 9 is a partially enlarged view of FIG. 5.
  • the semiconductor device A10 has a rectangular shape when viewed in the thickness direction (planar view).
  • the thickness direction of the semiconductor device A10 is referred to as the z direction
  • the direction along one side of the semiconductor device A10 perpendicular to the z direction (left-right direction in FIGS. 1 and 2) is referred to as the x direction, the z direction, and the x direction.
  • the direction perpendicular to (vertical direction in FIGS. 1 and 2) is defined as the y direction. Note that the shape and dimensions of the semiconductor device A10 are not limited.
  • the first semiconductor element 11, the second semiconductor element 12, and the insulating element 13 are elements that serve as the functional center of the semiconductor device A10.
  • the first semiconductor element 11 is mounted on a part of the conductive member 2 (the first die pad 3 described later), and is located at the center of the semiconductor device A10 in the y direction and closer to the x1 side in the x direction. It is located.
  • the first semiconductor element 11 has a rectangular shape that is long in the y direction when viewed in the z direction.
  • the first semiconductor element 11 is a control element.
  • the first semiconductor element 11 includes a circuit that converts a control signal input from an ECU or the like into a PWM control signal, a transmission circuit that transmits the PWM control signal to the second semiconductor element 12, and an electrical signal from the second semiconductor element 12. and a receiving circuit for receiving.
  • the first semiconductor element 11 has an element main surface 111 and an element back surface 112 facing oppositely to each other in the z direction.
  • the element main surface 111 faces the z1 side in the z direction.
  • the back surface 112 of the element faces the z2 side in the z direction.
  • a plurality of electrodes 11A are provided on the main surface 111 of the element. The plurality of electrodes 11A are electrically connected to a circuit configured in the first semiconductor element 11.
  • the second semiconductor element 12 is mounted on a part of the conductive member 2 (second die pad 4, which will be described later), and is located at the center of the semiconductor device A10 in the y direction and closer to the x2 side in the x direction. It is located.
  • the second semiconductor element 12 has a rectangular shape that is long in the y direction when viewed in the z direction.
  • the second semiconductor element 12 is a driving element.
  • the second semiconductor element 12 includes a receiving circuit that receives the PWM control signal transmitted from the first semiconductor element 11, and generates a drive signal for a switching element (eg, IGBT, MOSFET, etc.) based on the received PWM control signal.
  • a switching element eg, IGBT, MOSFET, etc.
  • the second semiconductor element 12 has an output circuit (gate driver) and a transmission circuit that transmits an electrical signal to the first semiconductor element 11.
  • the second semiconductor element 12 has an element main surface 121 and an element back surface 122 facing oppositely to each other in the z direction.
  • the element main surface 121 faces the z1 side in the z direction.
  • the back surface 122 of the element faces the z2 side in the z direction.
  • a plurality of electrodes 12A are provided on the element main surface 121.
  • the plurality of electrodes 12A are electrically connected to a circuit configured in the second semiconductor element 12.
  • the insulating element 13 is mounted on a part of the conductive member 2 (first die pad 3) and is placed at the center of the semiconductor device A10 in the y direction.
  • the insulating element 13 is located on the x2 side in the x direction with respect to the first semiconductor element 11, and is located on the x1 side in the x direction with respect to the second semiconductor element 12. That is, the insulating element 13 is located between the first semiconductor element 11 and the second semiconductor element 12 in the x direction.
  • the insulating element 13 has a rectangular shape that is long in the y direction when viewed in the z direction.
  • the insulating element 13 is an element for transmitting PWM control signals and other electrical signals in an insulated state.
  • the insulating element 13 receives the PWM control signal from the first semiconductor element 11 via the wire 63 and transmits the received PWM control signal to the second semiconductor element 12 via the wire 64 in an insulated state. Further, the insulating element 13 receives an electrical signal from the second semiconductor element 12 via the wire 64, and transmits the received electrical signal to the first semiconductor element 11 via the wire 63 in an insulated state. That is, the insulating element 13 insulates the first semiconductor element 11 and the second semiconductor element 12 from each other while relaying signals between the first semiconductor element 11 and the second semiconductor element 12.
  • the insulation element 13 is an inductive insulation element.
  • An inductive insulating element performs electrical signal transmission in an insulated state by inductively coupling two inductors (coils).
  • the insulating element 13 has a substrate made of Si, and an inductor made of Cu is formed on the substrate.
  • the inductors include a transmitting inductor and a receiving inductor, and these inductors are stacked on each other in the thickness direction (z direction) of the insulating element 13.
  • a dielectric layer made of SiO 2 or the like is interposed between the transmitting inductor and the receiving inductor.
  • the transmitting inductor and the receiving inductor are electrically insulated by the dielectric layer.
  • the insulating element 13 may be of a capacitive type.
  • An example of the capacitive insulation element is a capacitor.
  • the insulating element 13 has an element main surface 131 and an element back surface 132 facing oppositely to each other in the z direction.
  • the element main surface 131 faces the z1 side in the z direction.
  • the back surface 132 of the element faces the z2 side in the z direction.
  • the element main surface 131 is provided with a plurality of first electrodes 13A and a plurality of second electrodes 13B.
  • Each of the plurality of first electrodes 13A and the plurality of second electrodes 13B is electrically connected to either the transmitting inductor or the receiving inductor.
  • the plurality of first electrodes 13A are arranged along the y direction closer to the x1 side in the x direction.
  • the plurality of second electrodes 13B are arranged along the y direction near the center in the x direction.
  • the first semiconductor element 11 transmits the PWM control signal to the second semiconductor element 12 via the insulation element 13. Note that the first semiconductor element 11 may also transmit signals other than the PWM control signal to the second semiconductor element 12.
  • the second semiconductor element 12 transmits an electrical signal to the first semiconductor element 11 via the insulation element 13. Note that the information indicated by the electrical signal transmitted from the second semiconductor element 12 to the first semiconductor element 11 is not limited.
  • a half-bridge circuit in which a low-side switching element and a high-side switching element are connected in a totem pole shape is generally used in a motor driver circuit in an inverter device such as a hybrid vehicle.
  • an insulated gate driver In an insulated gate driver, only one of the low-side switching elements and the high-side switching elements is turned on at any given time.
  • the source of the low-side switching element and the reference potential of the insulated gate driver that drives the switching element are connected to ground, so the gate-source voltage operates based on ground.
  • the source of the high-side switching element and the reference potential of the insulated gate driver that drives the switching element are connected to the output node of the half-bridge circuit.
  • the reference potential of the insulated gate driver that drives the high-side switching element changes.
  • the high-side switching element is on, the reference potential becomes a voltage (for example, 600 V or more) equivalent to the voltage applied to the drain of the high-side switching element.
  • the ground of the first semiconductor element 11 and the second semiconductor element 12 is separated to ensure insulation.
  • a voltage of 600 V or more is transiently applied to the second semiconductor element 12 compared to the ground of the first semiconductor element 11. be done.
  • an input side circuit including the second semiconductor element 12 and an output side circuit including the first semiconductor element 11 are insulated by an insulating element 13. That is, the insulating element 13 insulates the input side circuit, which has a relatively low potential, and the output side circuit, which has a relatively high potential.
  • the conductive member 2 is a member that constitutes a conductive path between the first semiconductor element 11 and the second semiconductor element 12 and the wiring board of the inverter device in the semiconductor device A10.
  • the conductive member 2 is made of an alloy containing Cu in its composition, for example.
  • the conductive member 2 is formed from a lead frame 81, which will be described later.
  • the conductive member 2 mounts a first semiconductor element 11 , a second semiconductor element 12 , and an insulating element 13 .
  • the conductive member 2 includes a first die pad 3, a second die pad 4, a plurality of first terminals 51, a plurality of second terminals 52, a plurality of pad portions 53, 55, a pair of connection portions 54, and a pair of connection parts 56.
  • the first die pad 3 is located at the center of the semiconductor device A10 in the y direction and closer to the x1 side in the x direction.
  • the second die pad 4 is arranged on the x2 side in the x direction with respect to the first die pad 3 and away from the first die pad 3.
  • the first die pad 3 has a first semiconductor element 11 and an insulating element 13 mounted thereon.
  • the first die pad 3 is electrically connected to the first semiconductor element 11 and is one element of the input side circuit described above.
  • the first die pad 3 has, for example, a rectangular (or substantially rectangular) shape when viewed in the z direction.
  • the first die pad 3 has a main surface 31 and a back surface 32.
  • the main surface 31 and the back surface 32 are located apart from each other in the z direction, as shown in FIGS. 5 and 6.
  • the main surface 31 faces the z1 side, and the back surface 32 faces the z2 side.
  • the first semiconductor element 11 and the insulating element 13 are mounted on the main surface 31 .
  • the first semiconductor element 11 and the insulating element 13 are bonded to the main surface 31 of the first die pad 3 with a conductive bonding material 19, as shown in FIGS. 6 and 8.
  • the conductive bonding material 19 is, for example, solder.
  • the conductive bonding material 19 is not limited, and may be a metal paste, sintered metal, or the like.
  • the second die pad 4 has a second semiconductor element 12 mounted thereon.
  • the second die pad 4 is electrically connected to the second semiconductor element 12 and is one element of the output side circuit described above.
  • the second die pad 4 has, for example, a rectangular (or substantially rectangular) shape when viewed in the z direction.
  • the second die pad 4 has a main surface 41 and a back surface 42.
  • the main surface 41 and the back surface 42 are located apart from each other in the z direction, as shown in FIG.
  • the main surface 41 faces the z1 side, and the back surface 42 faces the z2 side.
  • the second semiconductor element 12 is mounted on the main surface 41 .
  • the plurality of first terminals 51 are members that constitute a conductive path between the semiconductor device A10 and the wiring board by being joined to the wiring board of the inverter device. Each first terminal 51 is appropriately electrically connected to the first semiconductor element 11 and is one element of the input side circuit described above. As shown in FIGS. 1, 2, and 4, the plurality of first terminals 51 are spaced apart from each other and arranged at regular intervals along the y direction. Each of the plurality of first terminals 51 is located on the x1 side in the x direction with respect to the first die pad 3, and protrudes from the sealing resin 7 (resin side surface 73 to be described later) on the x1 side in the x direction.
  • the plurality of first terminals 51 include a power supply terminal to which voltage is supplied, a ground terminal, an input terminal to which a control signal is input, an input terminal to which other electric signals are input, and an output terminal to output other electric signals. Contains such as.
  • the semiconductor device A10 includes ten first terminals 51. Note that the number of first terminals 51 is not limited. Moreover, the signals that each first terminal 51 inputs and outputs are not limited.
  • Each first terminal 51 has an elongated rectangular shape extending along the x direction, and includes a portion exposed from the sealing resin 7 and a portion covered with the sealing resin 7. As shown in FIGS. 3 and 5, the portion of the first terminal 51 exposed from the sealing resin 7 is bent into a gullwing shape bent toward the z2 side in the z direction.
  • each first terminal 51 includes a tip surface 511, a bottom surface 512, and a recess 513.
  • the tip surface 511 is the end surface of the first terminal 51 that protrudes from the sealing resin 7 .
  • the tip surface 511 is a cross section formed by cutting the lead frame in a cutting process described later.
  • the bottom surface 512 is a surface that is bonded to face the wiring board when the semiconductor device A10 is surface mounted on the wiring board of the inverter device, and faces the z2 side in the z direction.
  • the recess 513 is recessed from the tip surface 511 toward the x2 side in the x direction and from the bottom surface 512 toward the z1 side in the z direction.
  • the dimension T1 of the recessed portion 513 in the z direction is between 1/4 and 3/4 of the dimension T2 in the z direction of the full thickness portion 514, which is the portion of the first terminal 51 where the bottom surface 512 is located.
  • the dimension of the recessed portion 513 in the x direction is not particularly limited, but is approximately the same as the dimension T1. In this embodiment, the recess 513 extends over the entire first terminal 51 in the y direction.
  • a plating layer 25 is disposed on the entire portion of the first terminal 51 exposed from the sealing resin 7 except for the tip end surface 511.
  • the plating layer 25 is dotted. Note that the area where the plating layer 25 is arranged is not limited.
  • the plating layer 25 contains, for example, Sn. Note that the constituent material of the plating layer 25 is not limited.
  • the plating layer 25 makes sure that the solder adheres well to the exposed portion and prevents the exposed portion caused by the solder bonding. Prevent erosion.
  • the plating layer 25 includes a recessed plating portion 25a. The recess plated portion 25a is arranged in the recess 513.
  • a recess is provided in advance in the lead frame and then the plating layer 25 is formed, so the recess plating portion 25a is arranged over the entire recess 513. Note that the recess plated portion 25a only needs to be disposed on at least a portion of the recess 513.
  • each first terminal 51 includes a first bent portion 516 and a second bent portion 517.
  • the first bent portion 516 and the second bent portion 517 are portions of the first terminal 51 exposed from the sealing resin 7, and are formed by bending.
  • the first bent portion 516 is a portion bent toward the z2 side in the z direction.
  • the minimum value R1 of the radius of curvature of the inner surface of the first bent portion 516 is the z of the full thickness portion 514 of the first terminal 51 (the portion of the first terminal 51 where the bottom surface 512 is located)
  • the dimension in the direction (that is, the thickness dimension of the first terminal 51) is equal to or larger than T2.
  • the second bent portion 517 is located between the first bent portion 516 and the distal end surface 511, and is a portion bent toward the x1 side in the x direction. As shown in FIG. 9, the minimum value R2 of the radius of curvature of the inner surface of the second bent portion 517 is also greater than or equal to the dimension T2 of the full thickness portion 514 of the first terminal 51 in the z direction.
  • the plurality of first terminals 51 include a first terminal 51a and a first terminal 51b.
  • the first terminal 51a is disposed closest to the y1 side in the y direction among the plurality of first terminals 51.
  • the first terminal 51b is disposed closest to the y2 side in the y direction among the plurality of first terminals 51.
  • the plurality of pad portions 53 are connected to the x2 side in the x direction of the plurality of first terminals 51 other than the first terminals 51a and 51b, respectively.
  • the shape of each pad portion 53 when viewed in the z direction is not limited.
  • the upper surface (the surface facing the z1 side) of each pad portion 53 is flat (or substantially flat), and a wire 61 described later is bonded thereto.
  • the upper surface of each pad portion 53 may be plated.
  • the plating layer formed by the plating process is made of a metal containing Ag, for example, and covers the upper surface of the pad portion 53.
  • the plating layer protects the lead frame 81 (described later) from impact during wire bonding of the wire 61 while increasing the bonding strength of the wire 61.
  • the entire surface of the pad portion 53 is covered with the sealing resin 7.
  • the pair of connecting portions 54 are connected to the first terminal 51a or the first terminal 51b and the first die pad 3, respectively.
  • the connecting portion 54 connected to the first terminal 51a extends in the y direction, and the end portion on the y direction y2 side is connected to the vicinity of the center in the x direction of the end portion on the y direction y1 side of the first die pad 3.
  • the connecting portion 54 connected to the first terminal 51b extends in the y direction, and the end portion on the y direction y1 side is connected to the vicinity of the center in the x direction of the end portion on the y direction y2 side of the first die pad 3.
  • each connection portion 54 is flat (or substantially flat), and a wire 61 described later is joined thereto.
  • the upper surface of each connection portion 54 may be covered with a plating layer (for example, a metal containing Ag) similarly to the upper surface of the pad portion 53.
  • the entire surface of the connecting portion 54 is covered with the sealing resin 7.
  • the plurality of second terminals 52 are members that are joined to the wiring board of the inverter device, thereby forming a conductive path between the semiconductor device A10 and the wiring board.
  • Each second terminal 52 is appropriately electrically connected to the second semiconductor element 12 and is one element of the output side circuit described above.
  • the plurality of second terminals 52 are spaced apart from each other and arranged at regular intervals along the y direction.
  • Each of the plurality of second terminals 52 is located on the x2 side in the x direction with respect to the second die pad 4, and protrudes from the sealing resin 7 (resin side surface 74 to be described later) in the x2 side in the x direction.
  • the plurality of second terminals 52 include a power terminal to which a voltage is supplied, a ground terminal, an output terminal to output a drive signal, an input terminal to which other electric signals are input, an output terminal to output other electric signals, etc. Contains.
  • the semiconductor device A10 includes ten second terminals 52. Note that the number of second terminals 52 is not limited. Moreover, the signals that each second terminal 52 inputs and outputs are not limited.
  • Each second terminal 52 has an elongated rectangular shape extending along the x direction, and includes a portion exposed from the sealing resin 7 and a portion covered by the sealing resin 7. As shown in FIGS. 3 and 5, the portion of the second terminal 52 exposed from the sealing resin 7 is bent into a gullwing shape bent toward the z2 side in the z direction.
  • each second terminal 52 includes a tip surface 521, a bottom surface 522, and a recess 523.
  • the distal end surface 521 is the end surface of the second terminal 52 that protrudes from the sealing resin 7 .
  • the tip surface 521 is a cross section formed by cutting the lead frame in a cutting process described later.
  • the bottom surface 522 is a surface that is bonded to face the wiring board when the semiconductor device A10 is surface mounted on the wiring board of the inverter device, and faces the z2 side in the z direction.
  • the recess 523 is recessed from the tip surface 521 toward the x1 side in the x direction and from the bottom surface 522 toward the z1 side in the z direction.
  • the dimension of the recess 523 in the z direction is 1/4 or more and 3/4 or less of the dimension in the z direction of the full thickness part 524, which is the part of the second terminal 52 where the bottom surface 522 is located. It is.
  • the dimension of the recess 523 in the x direction is not particularly limited, but is approximately the same as the dimension in the z direction. In this embodiment, the recess 523 extends over the entire second terminal 52 in the y direction.
  • the plating layer 25 is disposed on the entire portion of the second terminal 52 exposed from the sealing resin 7 other than the tip end surface 521. Note that the area where the plating layer 25 is arranged is not limited to the above. Similar to the recess 513, the recess plating portion 25a is also arranged in the recess 523.
  • each second terminal 52 includes a first bent portion 526 and a second bent portion 527.
  • the first bent portion 526 and the second bent portion 527 are portions of the second terminal 52 exposed from the sealing resin 7, and are formed by bending.
  • the first bent portion 526 is a portion bent toward the z2 side in the z direction.
  • the minimum value of the radius of curvature of the inner surface of the first bent portion 526 is greater than or equal to the dimension in the z direction of the full thickness portion 524 of the second terminal 52 (that is, the thickness dimension of the second terminal 52).
  • the second bent portion 527 is located between the first bent portion 526 and the distal end surface 521, and is a portion bent toward the x2 side in the x direction.
  • the minimum value of the radius of curvature of the inner surface of the second bent portion 527 is also greater than or equal to the dimension of the full thickness portion 524 of the second terminal 52 in the z direction.
  • the plurality of second terminals 52 include a second terminal 52a and a second terminal 52b.
  • the second terminal 52a is arranged second from the y1 side in the y direction among the plurality of second terminals 52.
  • the second terminal 52b is arranged second from the y2 side in the y direction among the plurality of second terminals 52.
  • the plurality of pad portions 55 are respectively connected to the x1 side in the x direction of the plurality of second terminals 52 other than the second terminals 52a and 52b.
  • the shape of each pad portion 55 when viewed in the z direction is not limited.
  • the upper surface (the surface facing the z1 side) of each pad portion 55 is flat (or substantially flat), and a wire 62 described later is bonded thereto.
  • the upper surface of each pad section 55 may be covered with a plating layer (for example, a metal containing Ag) similarly to the upper surface of the pad section 53.
  • the entire surface of the pad portion 55 is covered with the sealing resin 7.
  • the pair of connecting portions 56 are connected to the second terminal 52a or 52b and the second die pad 4, respectively.
  • the end of the connecting portion 56 connected to the second terminal 52a on the y-direction y2 side is connected to the vicinity of the center of the end of the second die pad 4 on the y-direction y1 side in the x-direction.
  • the end of the connecting portion 56 connected to the second terminal 52b on the y-direction y1 side is connected to the vicinity of the center of the end of the second die pad 4 on the y-direction y2 side in the x-direction.
  • the second terminal 52a and the second terminal 52b are connected to the second die pad 4 via the pair of connection parts 56, and support the second die pad 4.
  • each connection portion 56 is flat (or approximately flat), and a wire 62 described later is bonded thereto.
  • the upper surface of each connection portion 56 may be covered with a plating layer (for example, a metal containing Ag) similarly to the upper surface of the pad portion 53.
  • the entire surface of the connecting portion 56 is covered with the sealing resin 7.
  • the shape of the conductive member 2 is not limited to the above.
  • the first die pad 3 may be supported by any first terminal 51. That is, the pair of connection parts 54 may be connected to the first die pad 3 and any first terminal 51.
  • the second die pad 4 may be supported by any second terminal 52. That is, the pair of connecting portions 56 may be connected to any second terminal 52 and second die pad 4.
  • the plurality of wires 61 to 64 together with the conductive member 2, constitute a conduction path for the first semiconductor element 11, the second semiconductor element 12, and the insulating element 13 to perform predetermined functions.
  • the material of each of the plurality of wires 61 to 64 is, for example, a metal containing Au, Cu, or Al.
  • the plurality of wires 61 constitute a conduction path between the first semiconductor element 11 and the plurality of first terminals 51, as shown in FIGS. 2 and 5.
  • the first semiconductor element 11 is electrically connected to at least one of the plurality of first terminals 51 through the plurality of wires 61 .
  • the plurality of wires 61 are one element of the input side circuit described above. As shown in FIG. 2, each of the plurality of wires 61 has one end electrically connected to one of the electrodes 11A of the first semiconductor element 11, and the other end connected to one of the plurality of pad portions 53 and the pair of connection portions 54. It is electrically conductive. Note that the number of wires 61 connected to each pad portion 53 and each connection portion 54 is not limited.
  • the plurality of wires 62 constitute a conduction path between the second semiconductor element 12 and the plurality of second terminals 52, as shown in FIGS. 2 and 5.
  • the second semiconductor element 12 is electrically connected to at least one of the plurality of second terminals 52 through the plurality of wires 62 .
  • the plurality of wires 62 are one element of the output side circuit described above. As shown in FIG. 2, each of the plurality of wires 62 has one end electrically connected to one of the electrodes 12A of the second semiconductor element 12, and the other end connected to one of the plurality of pad portions 55 and the pair of connection portions 56. It is electrically conductive. Note that the number of wires 62 joined to each pad portion 55 and each connection portion 54 is not limited.
  • the plurality of wires 63 constitute a conduction path between the first semiconductor element 11 and the insulating element 13, as shown in FIGS. 2 and 5.
  • the first semiconductor element 11 and the insulating element 13 are electrically connected to each other by the plurality of wires 63 .
  • the plurality of wires 63 are one element of the input side circuit described above. As shown in FIG. 2, each of the plurality of wires 63 is electrically connected to one of the electrodes 11A of the first semiconductor element 11 and one of the first electrodes 13A of the insulating element 13.
  • the plurality of wires 64 constitute a conduction path between the second semiconductor element 12 and the insulating element 13, as shown in FIGS. 2 and 5.
  • the second semiconductor element 12 and the insulating element 13 are electrically connected to each other by the plurality of wires 64 .
  • the plurality of wires 64 are one element of the output side circuit described above. As shown in FIG. 2, each of the plurality of wires 64 is electrically connected to one of the electrodes 12A of the second semiconductor element 12 and one of the second electrodes 13B of the insulating element 13.
  • the sealing resin 7 includes a first semiconductor element 11, a second semiconductor element 12, an insulating element 13, a first die pad 3, a second die pad 4, a pair of connecting parts 54, and a pair of connecting parts 56. , respectively, cover a plurality of pad portions 53, 55, a plurality of wires 61 to 64, and a portion of each of a plurality of first terminals 51 and second terminals 52, respectively.
  • the sealing resin 7 has electrical insulation properties.
  • the sealing resin 7 is made of a material containing, for example, a black epoxy resin.
  • the sealing resin 7 has a rectangular shape when viewed in the z direction.
  • the sealing resin 7 has a resin top surface 71, a resin bottom surface 72, and resin side surfaces 73 to 76.
  • the resin top surface 71 and the resin bottom surface 72 are located apart from each other in the z direction.
  • the resin top surface 71 and the resin bottom surface 72 face opposite to each other in the z direction.
  • the resin top surface 71 is located on the z1 side in the z direction, and faces the z1 side similarly to the main surface 31 of the first die pad 3.
  • the resin bottom surface 72 is located on the z2 side in the z direction, and faces the z2 side similarly to the back surface 32 of the first die pad 3.
  • Each of the resin top surface 71 and the resin bottom surface 72 is flat (or substantially flat).
  • Each of the resin side surfaces 73 to 76 is connected to the resin top surface 71 and the resin bottom surface 72, and is sandwiched between the resin top surface 71 and the resin bottom surface 72 in the z direction.
  • the resin side surface 73 and the resin side surface 74 are located apart from each other in the x direction.
  • the resin side surface 73 and the resin side surface 74 face oppositely to each other in the x direction.
  • the resin side surface 73 is located on the x1 side in the x direction, and the resin side surface 74 is located on the x2 side in the x direction.
  • the resin side surface 75 and the resin side surface 76 are located apart from each other in the y direction, and are connected to the resin side surface 73 and the resin side surface 74.
  • the resin side surface 75 and the resin side surface 76 face opposite to each other in the y direction.
  • the resin side surface 75 is located on the y1 side in the y direction, and the resin side surface 76 is located on the y2 side in the y direction.
  • a portion of each of the plurality of first terminals 51 protrudes from the resin side surface 73.
  • a portion of each of the plurality of second terminals 52 protrudes from the resin side surface 74.
  • the resin side surface 73 includes a first resin region 731, a second resin region 732, and a third resin region 733.
  • the first resin region 731 has one end in the z direction connected to the resin top surface 71 and the other end in the z direction connected to the third resin region 733 .
  • the first resin region 731 is inclined with respect to the resin top surface 71 and the yz plane.
  • the second resin region 732 has one end in the z direction connected to the resin bottom surface 72 and the other end in the z direction connected to the third resin region 733 .
  • the second resin region 732 is inclined with respect to the resin bottom surface 72 and the yz plane.
  • the third resin region 733 has one end in the z direction connected to the first resin region 731 and the other end in the z direction connected to the second resin region 732 .
  • the third resin region 733 is along the yz plane. When viewed in the z direction, the third resin region 733 is located outward from the resin top surface 71 and the resin bottom surface 72. A portion of each of the plurality of first terminals 51 is exposed from the third resin region 733.
  • the resin side surface 74 includes a fourth resin region 741, a fifth resin region 742, and a sixth resin region 743.
  • the fourth resin region 741 has one end in the z direction connected to the resin top surface 71 and the other end in the z direction connected to the sixth resin region 743 .
  • the fourth resin region 741 is inclined with respect to the resin top surface 71 and the yz plane.
  • the fifth resin region 742 has one end in the z direction connected to the resin bottom surface 72 and the other end in the z direction connected to the sixth resin region 743 .
  • the fifth resin region 742 is inclined with respect to the resin bottom surface 72 and the yz plane.
  • the sixth resin region 743 is connected to the fourth resin region 741 at one end in the z direction, and connected to the fifth resin region 742 at the other end in the z direction.
  • the sixth resin region 743 is along the yz plane. When viewed in the z direction, the sixth resin region 743 is located outward from the resin top surface 71 and the resin bottom surface 72. A portion of each of the plurality of second terminals 52 is exposed from the sixth resin region 743.
  • the resin side surface 75 includes a seventh resin region 751, an eighth resin region 752, and a ninth resin region 753.
  • the seventh resin region 751 has one end in the z direction connected to the resin top surface 71 and the other end in the z direction connected to the ninth resin region 753 .
  • the seventh resin region 751 is inclined with respect to the resin top surface 71 and the xz plane.
  • the eighth resin region 752 has one end in the z direction connected to the resin bottom surface 72 and the other end in the z direction connected to the ninth resin region 753 .
  • the eighth resin region 752 is inclined with respect to the resin bottom surface 72 and the xz plane.
  • the ninth resin region 753 is connected to the seventh resin region 751 at one end in the z direction, and connected to the eighth resin region 752 at the other end in the z direction.
  • the ninth resin region 753 is along the xz plane. When viewed in the z direction, the ninth resin region 753 is located outward from the resin top surface 71 and the resin bottom surface 72.
  • the resin side surface 76 includes a tenth resin region 761, an eleventh resin region 762, and a twelfth resin region 763.
  • the tenth resin region 761 has one end in the z direction connected to the resin top surface 71 and the other end in the z direction connected to the twelfth resin region 763 .
  • the tenth resin region 761 is inclined with respect to the resin top surface 71 and the xz plane.
  • the 11th resin region 762 has one end in the z direction connected to the resin bottom surface 72 and the other end in the z direction connected to the 12th resin region 763.
  • the eleventh resin region 762 is inclined with respect to the resin bottom surface 72 and the xz plane.
  • the twelfth resin region 763 has one end in the z direction connected to the tenth resin region 761 and the other end in the z direction connected to the eleventh resin region 762 .
  • the twelfth resin region 763 is along the xz plane. When viewed in the z direction, the twelfth resin region 763 is located outward from the resin top surface 71 and the resin bottom surface 72.
  • FIGS. 10 and 13 to 14 are plan views showing steps related to the method for manufacturing the semiconductor device A10.
  • FIG. 11 is a bottom view showing steps related to the manufacturing method of the semiconductor device A10.
  • FIGS. 15 to 16, and FIGS. 18 to 19 are cross-sectional views showing steps related to the manufacturing method of the semiconductor device A10, and show cross sections corresponding to the cross section taken along line VV in FIG. .
  • FIG. 17 is a partially enlarged view of FIG. 16.
  • FIG. 20 is a partially enlarged view of FIG. 19. Note that the x direction, y direction, and z direction shown in these figures indicate the same directions as in FIGS. 1 to 8.
  • Lead frame 81 is a plate-shaped material.
  • the base material of the lead frame 81 is made of Cu.
  • the lead frame 81 may be formed by etching or the like on a metal plate, or may be formed by punching a metal plate. In this embodiment, the lead frame 81 is formed by etching.
  • Lead frame 81 has a main surface 81A and a back surface 81B that are spaced apart in the z direction.
  • the lead frame 81 includes an outer frame 811, a first die pad 812A, a second die pad 812B, a plurality of first leads 813, a plurality of second leads 814, a plurality of connection parts 815, and a dam bar 816.
  • the outer frame 811 and the dam bar 816 do not constitute the semiconductor device A10.
  • the first die pad 812A is a portion that will become the first die pad 3 later.
  • the second die pad 812B is a portion that will become the second die pad 4 later.
  • the plurality of first leads 813 are portions that will later become the plurality of first terminals 51 and pad portions 53.
  • the plurality of second leads 814 are portions that will become the plurality of second terminals 52 and pad portions 55 later.
  • the plurality of connecting portions 815 are portions that will later become a pair of connecting portions 54 and a pair of connecting portions 56.
  • a recess 813b is formed in a terminal portion 813a including a portion of the first lead 813 that will become the first terminal 51, and a portion of the second lead 814 that will become the second terminal 52.
  • a recess 814b is formed in the terminal portion 814a including the terminal portion 814a.
  • the recess 813b and the recess 814b are dotted.
  • the recess 813b and the recess 814b are recesses that are recessed from the back surface 81B toward the z1 side in the z direction.
  • Recess 813b and recess 814b are formed, for example, by half etching.
  • each recess 813b extends over the entire terminal portion 813a in the y direction.
  • Each recess 814b extends over the entire terminal portion 814a in the y direction.
  • the first semiconductor element 11 and the insulating element 13 are bonded to the first die pad 812A by die bonding, and the second semiconductor element 12 is bonded to the second die pad 812B by die bonding.
  • each of the plurality of wires 61 to 64 is formed by wire bonding.
  • a sealing resin 7 is formed.
  • the sealing resin 7 is formed by transfer molding.
  • the lead frame 81 is housed in a mold having a plurality of cavities.
  • a portion of the lead frame 81 that will become the conductive member 2 covered with the sealing resin 7 in the semiconductor device A10 is accommodated in one of the plurality of cavities.
  • fluidized resin is poured into each of the plurality of cavities from the pot via a runner.
  • resin burrs located outside of each of the plurality of cavities are removed using high-pressure water or the like.
  • a plating layer 25 is formed on the lead frame 81 exposed from the sealing resin 7. As a result, the plating layer 25 is placed on the terminal portion 813a and the terminal portion 814a. At this time, the plating layer 25 is also placed in the recess 813b of the terminal portion 813a and the recess 814b of the terminal portion 814a.
  • the lead frame 81 is bent.
  • the forming die 86 is used to bend the terminal portion 813a and the terminal portion 814a.
  • the forming mold 86 includes a forming die 861, a forming punch 862, and a stripper block 863.
  • a lead frame 81 covered with a sealing resin 7 is placed on the forming die 861 .
  • the stripper block 863 presses and fixes the terminal portions 813a and 814a with the forming die 861.
  • the terminal portion 813a and the terminal portion 814a are bent.
  • the terminal portion 813a and the terminal portion 814a are formed in a gullwing shape bent toward the z2 side in the z direction.
  • the terminal portion 813a of the lead frame 81 is bent at the portion that abuts the shoulder portion 861a of the forming die 861 to form a first bent portion 813c.
  • the first bent portion 813c becomes the first bent portion 516.
  • the minimum value R3 of the radius of curvature of the shoulder portion 861a of the forming die 861 is greater than or equal to the thickness dimension T2 of the lead frame 81.
  • the minimum value R1 (see FIG. 9) of the radius of curvature of the inner surface of the first bent portion 813c becomes equal to or greater than the thickness dimension T2 of the lead frame 81.
  • the terminal portion 813a is bent at a portion that comes into contact with the shoulder portion 862a of the forming punch 862 to form a second bent portion 813d.
  • the second bent portion 813d becomes the second bent portion 517.
  • the minimum value R4 of the radius of curvature of the shoulder portion 862a of the forming punch 862 is greater than or equal to the thickness dimension T2 of the lead frame 81.
  • the minimum value R2 (see FIG. 9) of the radius of curvature of the inner surface of the second bent portion 813d becomes equal to or greater than the thickness dimension T2 of the lead frame 81.
  • the terminal portion 814a is also formed with a first bent portion 814c and a second bent portion 814d.
  • the first bent portion 814c becomes the first bent portion 526
  • the second bent portion 814d becomes the second bent portion 527.
  • the minimum value of the radius of curvature of the inner surface of the first bent portion 814c and the minimum value of the radius of curvature of the inner surface of the second bent portion 814d are also greater than or equal to the thickness dimension T2 of the lead frame 81.
  • the lead frame 81 is cut.
  • the cutting die 85 is used to cut the terminal portion 813a and the terminal portion 814a along the cutting line CL shown in FIG.
  • One cutting line CL intersects each recess 813b and extends in the y direction.
  • the other cutting line CL intersects each recess 814b and extends in the y direction.
  • the cutting die 85 employs a so-called upper cut method in which the terminal portion 813a and the terminal portion 814a are cut from the z2 side in the z direction.
  • the cutting die 85 includes a cut die 851, a cut punch 852, and a stripper block 853.
  • a lead frame 81 covered with sealing resin 7 is placed on the stripper block 853 .
  • the cut die 851 presses and fixes the terminal portions 813a and 814a with the stripper block 853.
  • the cut punch 852 is fixed, and the cut die 851 and stripper block 853 move toward the z2 side in the z direction. Thereby, the cut punch 852 moves from the z2 side to the z1 side in the z direction relative to the cut die 851 and the stripper block 853.
  • the cut punch 852 cuts the terminal portion 813a and the terminal portion 814a protruding outward from the cut die 851 between the cut punch 852 and the cut die 851.
  • the terminal portion 813a the first terminal 51 is separated from the first lead 813, and by cutting the terminal portion 814a, the second terminal 52 is separated from the second lead 814.
  • the portion of the recess 813b located at the first terminal 51 becomes the recess 513
  • the portion of the recess 814b located at the second terminal 52 becomes the recess 523.
  • the semiconductor device A10 is manufactured.
  • FIG. 21 is a partially enlarged cross-sectional view showing a state in which the semiconductor device A10 is mounted on the wiring board 9. As shown in FIG.
  • the semiconductor device A10 is mounted on a wiring board 9, and a plurality of first terminals 51 and second terminals 52 are bonded to wiring (not shown) formed on the wiring board 9 by solder 95. .
  • the solder 95 since the recess plating portion 25a is arranged in the recess 513 of the first terminal 51, the solder 95 also adheres to the recess 513, forming a solder fillet.
  • the second terminal 52 since the recessed portion plating portion 25a is also arranged in the recessed portion 523, the solder 95 also adheres to the recessed portion 523, forming a solder fillet.
  • each first terminal 51 includes a recess 513.
  • the recess 513 is recessed from the tip surface 511 toward the x2 side in the x direction and from the bottom surface 512 toward the z1 side in the z direction.
  • the recessed portion plating portion 25a is arranged in the recessed portion 513. Therefore, when the first terminal 51 is bonded to the wiring board 9 with the solder 95 during mounting of the semiconductor device A10, the solder 95 also adheres to the recess 513, forming a solder fillet. Similarly, the solder 95 adheres to the recessed portion 523 of each second terminal 52, forming a solder fillet. Thereby, the semiconductor device A10 can suppress solder adhesion defects when mounted on the wiring board 9.
  • the dimension T1 of the recessed portion 513 in the z direction is 1/4 or more and 3/4 or less of the dimension T2 of the full thickness portion 514 in the z direction.
  • the dimension of the recessed portion 523 in the z direction is 1/4 or more and 3/4 or less of the dimension of the full thickness portion 524 in the z direction. Therefore, in the semiconductor device A10, the strength of the lead frame 81 in which the recesses 813b and 814b are formed during manufacturing can be maintained, and a solder fillet can be appropriately formed by the solder 95 that adheres to the recesses 513 and 523 during mounting.
  • the recess 513 extends over the entire first terminal 51 in the y direction. Therefore, the solder fillet formed by the solder 95 attached to the recess 513 has a shape that spreads more in the y direction than when the recess 513 is formed only on a part of the first terminal 51 in the y direction. The same applies to the recessed portion 523. Thereby, the semiconductor device A10 can further suppress defective solder adhesion when mounted on the wiring board 9.
  • the minimum value R1 of the radius of curvature of the inner surface of the first bent portion 516 of the first terminal 51 is greater than or equal to the dimension T2 in the z direction of the full thickness portion 514 of the first terminal 51.
  • the minimum value R2 of the radius of curvature of the inner surface of the second bent portion 517 of the first terminal 51 is also greater than or equal to the dimension T2 of the full thickness portion 514 of the first terminal 51 in the z direction.
  • first terminal 51 cracks and plating cracks occur at the second bent portion 517 during bending compared to the case where the minimum radius of curvature R2 of the inner surface of the second bent portion 517 is less than the dimension T2. is suppressed.
  • the minimum value of the radius of curvature of the inner surface is greater than or equal to the dimension in the z direction of the full thickness portion 524 of the second terminal 52. Therefore, the occurrence of cracks and plating cracks in the first bent portion 526 and the second bent portion 527 during bending of the second terminal 52 is also suppressed.
  • the minimum value R3 of the radius of curvature of the shoulder portion 861a of the forming die 861 of the forming die 86 is greater than or equal to the thickness dimension T2 of the lead frame 81.
  • the forming mold 86 can form the minimum radius of curvature R1 of the inner surface of the first bent portion 813c (516) to be greater than or equal to the thickness dimension T2 of the lead frame 81.
  • the minimum value R4 of the radius of curvature of the shoulder portion 862a of the forming punch 862 is greater than or equal to the thickness dimension T2 of the lead frame 81.
  • the forming mold 86 can form the minimum radius of curvature R2 of the inner surface of the second bent portion 813d (517) to be greater than or equal to the thickness dimension T2 of the lead frame 81.
  • the forming mold 86 can form the minimum radius of curvature of the inner surface of the first bent part 814c (526) to be equal to or larger than the thickness dimension T2 of the lead frame 81, and
  • the minimum value of the radius of curvature of the inner surface of the lead frame 81 can be formed to be equal to or larger than the thickness dimension T2 of the lead frame 81.
  • the cutting die 85 may adopt a so-called down cut method in which the terminal portion 813a and the terminal portion 814a are cut from the z1 side in the z direction. Since the first terminal 51 (second terminal 52) is provided with the recess 513 (recess 523), even if a burr protruding toward the z2 side in the z direction occurs due to the down-cut method, the first terminal 51 (second terminal 52) 52) to the wiring board 9.
  • the semiconductor device A10 may have terminals protruding from the sealing resin 7 and may be surface mounted on a wiring board or the like.
  • FIGS. 22 and 23 are diagrams for explaining a semiconductor device A11 according to a first modification of the first embodiment.
  • FIG. 22 is a partially enlarged left side view of the semiconductor device A11, and corresponds to FIG. 8.
  • FIG. 23 is a partially enlarged bottom view of the first terminal 51 viewed from the z2 side in the z direction.
  • the plating layer 25 is dotted.
  • the semiconductor device A11 is different from the semiconductor device A10 in the range in which the recess 513 is formed.
  • the recess 513 according to this modification is formed only in a part of the center of the first terminal 51 in the y direction. Therefore, on both sides of the recess 513 in the y direction, the bottom surface 512 is connected to the tip surface 511.
  • the recess 513 according to this modification can be formed by forming the recess 813b only in the center of the terminal portion 813a in the y direction, without forming it over the entire y direction.
  • FIGS. 24 and 25 are diagrams for explaining a semiconductor device A12 according to a second modification of the first embodiment.
  • FIG. 24 is a partially enlarged left side view of the semiconductor device A12, and corresponds to FIG. 8.
  • FIG. 25 is a partially enlarged bottom view of the first terminal 51 viewed from the z2 side in the z direction.
  • the plating layer 25 is dotted.
  • the semiconductor device A12 is different from the semiconductor device A10 in the range in which the recess 513 is formed.
  • the recessed portion 513 according to this modification is divided into two parts, which are formed at both ends of the first terminal 51 in the y direction. Therefore, in the central portion of the recess 513 in the y direction, the bottom surface 512 is connected to the tip surface 511.
  • the recess 513 according to this modification can be formed by forming the recess 813b only at both ends of the terminal portion 813a in the y direction, without forming the recess 813b over the entirety of the terminal portion 813a in the y direction.
  • the position and range of arrangement of the recess 513 are not limited. However, for the purpose of suppressing solder adhesion defects when mounted on the wiring board 9, it is preferable that the recess 513 extends over the entire first terminal 51 in the y direction, as in the semiconductor device A10. is desirable.
  • FIGS. 26 and 27 are diagrams for explaining a semiconductor device A13 according to a third modification of the first embodiment.
  • FIG. 26 is a partially enlarged left side view of the semiconductor device A13, and corresponds to FIG. 8.
  • FIG. 27 is a partially enlarged bottom view of the first terminal 51 viewed from the z2 side in the z direction.
  • the plating layer 25 is dotted.
  • the recess 513 of the semiconductor device A13 is formed not by half etching but by stamping. Since the recess 513 according to this modification is formed by pushing away the constituent material, the width dimension (dimension in the y direction) W1 of the first terminal 51 in the recess 513 is the entire thickness where the bottom surface 512 is located. It is larger than the width dimension (dimension in the y direction) W2 in the portion 514.
  • the shape of the recess 513 in the z direction is rectangular, but the shape is not limited to this.
  • the shape of the recess 513 when viewed in the z direction may be another shape such as a semicircular shape.
  • FIG. 28 to 30 are diagrams for explaining a semiconductor device A20 according to a second embodiment of the present disclosure.
  • FIG. 28 is a partially enlarged sectional view showing the semiconductor device A20, and corresponds to FIG. 7.
  • FIG. 29 is a partially enlarged left side view showing the semiconductor device A20, and corresponds to FIG. 8.
  • FIG. 30 is a partially enlarged cross-sectional view illustrating steps related to the method for manufacturing the semiconductor device A20, and corresponds to FIG. 20.
  • the semiconductor device A20 of this embodiment differs from the first embodiment in that a plating layer 25 is disposed on a part of the tip surface 511.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that each part of the first embodiment and each modification example described above may be combined arbitrarily.
  • the plating layer 25 includes a tip plating portion 25b.
  • the tip plating portion 25b is arranged on a part of the tip surface 511.
  • the plating layer 25 including the tip plating portion 25b is dotted.
  • the cut punch 852 of the cutting die 85 used in the cutting process includes an edge portion 852a that cuts the terminal portion 813a.
  • the edge portion 852a has a curved surface.
  • the edge portion 852a has a larger radius of curvature than the edge portion 851a of the cut die 851 that cuts the terminal portion 813a.
  • a part of the plating layer 25 (recess plating portion 25a) disposed in the recess 813b of the terminal portion 813a is extended, and the end face 511, which is the cross section of the terminal portion 813a, is extended. It is arranged as a tip plated portion 25b. Similarly, the tip plated portion 25b is arranged on the tip surface 521.
  • the terminal portion 813a and the terminal portion 814a are cut from the z-direction z2 side by the upper cut cutting die 85. Therefore, the tip plating portion 25b is arranged on the z-direction z2 side of the tip surface 511. As a result, a tip plating portion 25b that is continuous with the plating layer 25 of the recess 513 (recess plating portion 25a) is disposed on the tip surface 511. Similarly, a tip plated portion 25b that is continuous with the plated layer 25 of the recess 523 (recess plated portion 25a) is arranged on the tip surface 521 as well.
  • a burr 511c is formed on the tip end surface 511 and projects toward the z1 side in the z direction, and as shown in FIG. 28, a portion of the tip end surface 511 that connects to the recess 513 is inclined with respect to the z direction.
  • each first terminal 51 includes a recess 513, and the recess plating portion 25a is arranged in the recess 513, so that the solder 95 is also attached to the recess 513 when the semiconductor device A10 is mounted. , a solder fillet is formed. Similarly, the solder 95 adheres to the recessed portion 523 of each second terminal 52, forming a solder fillet. Thereby, the semiconductor device A20 can suppress solder adhesion defects when mounted on the wiring board 9. Furthermore, according to the present embodiment, the tip plated portion 25b is disposed on the tip surface 511 (the tip surface 521) and is continuous with the concave plated portion 25a disposed in the concave portion 513 (concave portion 523).
  • the solder 95 also adheres to a part of the tip surface 511 (the tip surface 521), so that a solder fillet can be formed more appropriately.
  • the semiconductor device A20 has the same configuration as the semiconductor device A10, and thus achieves the same effects as the semiconductor device A10.
  • FIG. 31 and 32 are diagrams for explaining a semiconductor device A30 according to a third embodiment of the present disclosure.
  • FIG. 31 is a partially enlarged sectional view showing the semiconductor device A30, and corresponds to FIG. 7.
  • FIG. 32 is a partially enlarged left side view showing the semiconductor device A30, and corresponds to FIG. 8.
  • the semiconductor device A30 of this embodiment differs from the second embodiment in that a plating layer 25 is disposed on the z-direction z1 side of the tip surface 511.
  • the configuration and operation of other parts of this embodiment are similar to those of the second embodiment. Note that each part of the first to second embodiments and each modification example described above may be combined arbitrarily.
  • the tip plating portion 25b is arranged on the z-direction z1 side of the tip surface 511.
  • the plating layer 25 including the tip plating portion 25b is dotted.
  • the cut punch 852 cuts the terminal portion 813a and the terminal portion 814a from the z1 side in the z direction using the down cut type cutting die 85.
  • a part of the plating layer 25 disposed on the upper surface 515, which is the surface facing the z-direction z1 side of the terminal portion 813a extends to the tip surface 511, which is the cross section of the terminal portion 813a. , are arranged as the tip plating portion 25b.
  • the tip plating portion 25b is arranged on the z-direction z1 side of the tip surface 511.
  • the z-direction z2 side of the tip surface 511 is exposed from the tip plating portion 25b.
  • the ratio of the area of the tip surface 511 where the tip plated part 25b is arranged and the area exposed from the tip plated part 25b is determined by the radius of curvature of the edge part 852a of the cut punch 852 or the ratio between the cut die 851 and the cut punch 852. Adjustable by the clearance between.
  • the tip plated portion 25b is arranged on the tip surface 521.
  • a burr 511c that protrudes toward the z2 side in the z direction is formed on the tip surface 511, and as shown in FIG. 31, a portion of the tip surface 511 that connects to the upper surface 515 is inclined with respect to the z direction.
  • each first terminal 51 includes a recess 513, and the recess plating portion 25a is arranged in the recess 513, so that the solder 95 is also attached to the recess 513 when the semiconductor device A10 is mounted. , a solder fillet is formed. Similarly, the solder 95 adheres to the recessed portion 523 of each second terminal 52, forming a solder fillet. Thereby, the semiconductor device A30 can suppress solder adhesion defects when mounted on the wiring board 9.
  • the tip plating portion 25b is arranged on the z-direction z1 side of the tip surface 511 (tip surface 521), and the tip plating portion 25b is arranged on the z-direction z2 side of the tip surface 511 (tip surface 521). exposed from. Solder 95 is difficult to adhere to tip surface 511 (tip surface 521) exposed from tip plating portion 25b. By increasing the exposed area of the tip surface 511 (tip surface 521) from the tip plating portion 25b, it is possible to prevent the solder fillet from being formed on the tip surface 511 (tip surface 521) beyond the recess 513 (recess 523). Further, the semiconductor device A30 has the same configuration as the semiconductor device A10, and thus achieves the same effects as the semiconductor device A10.
  • FIG. 33 is a diagram for explaining a semiconductor device A40 according to the fourth embodiment of the present disclosure.
  • FIG. 33 is a partially enlarged sectional view showing the semiconductor device A40, and corresponds to FIG. 7.
  • the semiconductor device A40 of this embodiment differs from the first embodiment in that a plating layer 25 is disposed on the entire surface of the tip surface 511.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that each part of the first to third embodiments and each modification example described above may be combined arbitrarily.
  • the tip plating portion 25b is arranged on the entire surface of the tip surface 511 and the tip surface 521.
  • the method of manufacturing the semiconductor device A40 according to the fourth embodiment is different from that of the first embodiment.
  • the terminal portions 813a and 814a are bent and cut.
  • the plating layer 25 is formed on the first terminal 51 and the second terminal 52 exposed from the sealing resin 7.
  • the plating layer 25 formed on the tip surface 511 and the tip surface 521 is the tip plating portion 25b.
  • the plating layer 25 formed in the recess 513 and the recess 523 is the recess plating portion 25a.
  • each first terminal 51 includes a recess 513, and the recess plating portion 25a is arranged in the recess 513, so that the solder 95 is also attached to the recess 513 when the semiconductor device A10 is mounted. , a solder fillet is formed. Similarly, the solder 95 adheres to the recessed portion 523 of each second terminal 52, forming a solder fillet. Thereby, the semiconductor device A40 can suppress solder adhesion defects when mounted on the wiring board 9. Further, according to the present embodiment, the tip plating portion 25b is arranged on the entire surface of the tip surface 511 (the tip surface 521).
  • the semiconductor device A40 has the same configuration as the semiconductor device A10, and thus achieves the same effects as the semiconductor device A10.
  • the semiconductor device and the method for manufacturing a semiconductor device according to the present disclosure are not limited to the embodiments described above.
  • the specific configuration of each part of the semiconductor device according to the present disclosure and the specific processing of each step of the semiconductor device manufacturing method according to the present disclosure can be variously changed in design.
  • the present disclosure includes the embodiments described in the appendix below.
  • the plating layer includes a recess plating portion (25a) disposed in at least a portion of the recess.
  • the first dimension (T1) in the thickness direction of the recess is 1/4 or more of the second dimension (T2) in the thickness direction of the full thickness portion (514) where the first surface of the terminal is located.
  • the semiconductor device according to Supplementary Note 1 wherein the semiconductor device has a temperature of /4 or less.
  • Appendix 3. The semiconductor device according to appendix 1 or 2, wherein the plating layer includes a tip plating portion (25b) disposed on at least a portion of the tip surface.
  • Appendix 4. (Fourth embodiment, FIG. 33) The semiconductor device according to appendix 3, wherein the tip plating portion is arranged on the entire surface of the tip surface. Appendix 5. (Second embodiment, FIGS.
  • the semiconductor device according to any one of appendices 1 to 6, wherein the first surface is connected to the tip surface.
  • Appendix 9. (Third modification of the first embodiment, FIG. 27) The dimension of the terminal in the second direction perpendicular to the thickness direction and the first direction is larger in the part where the recess is located than in the part where the first surface is located.
  • Appendix 10. ( Figure 9) The terminal further includes a first bent portion (516) bent toward the first side in the thickness direction, Supplementary note that the minimum value (R1) of the radius of curvature of the inner surface of the first bent portion is greater than or equal to the second dimension (T2) in the thickness direction of the full thickness portion in which the first surface of the terminal is located. 10.
  • Appendix 11. ( Figure 9) The terminal further includes a second bent portion (517) located between the first bent portion and the distal end surface, The semiconductor device according to appendix 10, wherein a minimum value (R2) of the radius of curvature of the inner surface of the second bent portion is equal to or larger than the second dimension.
  • Appendix 12. The semiconductor device according to any one of appendices 1 to 11, wherein the plating layer contains Sn. Appendix 13.
  • a method for manufacturing a semiconductor device comprising the step of cutting the terminal portion along a cutting line intersecting the recess using a cutting die.
  • the cutting mold includes a cutting die and a cutting punch, The method for manufacturing a semiconductor device according to appendix 13, wherein the cut punch cuts the terminal portion from the first side.
  • the cutting mold includes a cutting die and a cutting punch, 14. The method for manufacturing a semiconductor device according to appendix 13, wherein the cut punch cuts the terminal portion from a second side opposite to the first side in the thickness direction.
  • the cut punch includes a first edge portion that cuts the terminal portion, 16.
  • Appendix 17. ( Figure 17) Further comprising a step of bending the terminal portion with a forming mold (86) before the cutting step,
  • the forming mold includes a forming die (861) and a forming punch (862),

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

半導体装置は、半導体素子と、前記半導体素子を覆う封止樹脂と、前記半導体素子に導通しかつ前記封止樹脂から厚さ方向に直交する第1方向に突出する端子と、前記端子に配置されためっき層とを備える。前記端子は、前記封止樹脂から突出した側の端面である先端面、および、前記厚さ方向の第1側を向く第1面と、前記先端面および前記第1面の両方から凹む凹部とを備える。前記めっき層は、前記凹部の少なくとも一部に配置された凹部めっき部を含んでいる。

Description

半導体装置、および、半導体装置の製造方法
 本開示は、半導体装置、および、半導体装置の製造方法に関する。
 半導体素子を備えた半導体装置は、様々な構成が提案されている。特許文献1には、SOP(Small Outline Package)タイプの半導体装置の一例が開示されている。同文献に開示された半導体装置は、半導体素子、ダイパッド、端子、および封止樹脂を備えている。半導体素子は、ダイパッドに搭載され、ボンディングワイヤを介して端子に導通している。半導体素子と、ダイパッドおよび端子の一部は、封止樹脂によって覆われている。端子の封止樹脂から露出した部分には、はんだによって配線基板に接合される際にはんだの付着を良好にするために、Snを含む合金からなる外装めっき層が形成されている。
特開2016-207714号公報
 外層めっき層は、リードフレームから端子を切り離す前に形成されるので、端子の先端面には外装めっき層が形成されていない。したがって、はんだによって端子を配線基板に接合したときに、端子の先端面にはんだが付着しにくく、はんだフィレットが形成されない場合がある。この場合、外観検査において、はんだ付着不良と判断される。
 本開示は、従来よりも改良が施された半導体装置を提供することを一の課題とする。特に本開示は、上述の事情に鑑み、配線基板に実装された際のはんだ付着不良を抑制できる半導体装置を提供することを一の課題とする。
 本開示の第1の側面によって提供される半導体装置は、半導体素子と、前記半導体素子を覆う封止樹脂と、前記半導体素子に導通しかつ前記封止樹脂から厚さ方向に直交する第1方向に突出する端子と、前記端子に配置されためっき層とを備える。前記端子は、前記封止樹脂から突出した側の端面である先端面、および、前記厚さ方向の第1側を向く第1面と、前記先端面および前記第1面の両方から凹む凹部と、を備える。前記めっき層は、前記凹部の少なくとも一部に配置された凹部めっき部を含んでいる。
 本開示の第2の側面によって提供される半導体装置の製造方法は、厚さ方向の第1側を向く第1面と、前記第1面から前記厚さ方向に凹む凹部と、を有する端子部分を含むリードフレームを準備する工程と、前記端子部分にめっき層を形成する工程と、切断金型により、前記端子部分を前記凹部と交差する切断線に沿って切断する工程と、を備えている。
 上記構成によれば、配線基板に実装された際のはんだ付着不良を抑制できる半導体装置を提供することが可能である。
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
図1は、本開示の第1実施形態に係る半導体装置を示す平面図である。 図2は、図1の半導体装置を示す平面図であり、封止樹脂を透過した図である。 図3は、図1の半導体装置を示す正面図である。 図4は、図1の半導体装置を示す左側面図である。 図5は、図2のV-V線に沿う断面図である。 図6は、図2のVI-VI線に沿う断面図である。 図7は、図5の部分拡大図である。 図8は、図4の部分拡大図である。 図9は、図5の部分拡大図である。 図10は、図1の半導体装置の製造方法に係る工程を示す平面図である。 図11は、図1の半導体装置の製造方法に係る工程を示す底面図である。 図12は、図1の半導体装置の製造方法に係る工程を示す断面図である。 図13は、図1の半導体装置の製造方法に係る工程を示す平面図である。 図14は、図1の半導体装置の製造方法に係る工程を示す平面図である。 図15は、図1の半導体装置の製造方法に係る工程を示す断面図である。 図16は、図1の半導体装置の製造方法に係る工程を示す断面図である。 図17は、図16の部分拡大図である。 図18は、図1の半導体装置の製造方法に係る工程を示す断面図である。 図19は、図1の半導体装置の製造方法に係る工程を示す断面図である。 図20は、図19の部分拡大図である。 図21は、図1の半導体装置を配線基板に実装した状態を示す部分拡大断面図である。 図22は、本開示の第1実施形態の第1変形例に係る半導体装置を示す部分拡大左側面図である。 図23は、図22の半導体装置を示す部分拡大底面図である。 図24は、本開示の第1実施形態の第2変形例に係る半導体装置を示す部分拡大左側面図である。 図25は、図24の半導体装置を示す部分拡大底面図である。 図26は、本開示の第1実施形態の第3変形例に係る半導体装置を示す部分拡大左側面図である。 図27は、図26の半導体装置を示す部分拡大底面図である。 図28は、本開示の第2実施形態に係る半導体装置を示す部分拡大断面図である。 図29は、図28の半導体装置を示す部分拡大左側面図である。 図30は、図28の半導体装置の製造方法に係る工程を示す部分拡大断面図である。 図31は、本開示の第3実施形態に係る半導体装置を示す部分拡大断面図である。 図32は、図31の半導体装置を示す部分拡大左側面図である。 図33は、本開示の第4実施形態に係る半導体装置を示す部分拡大断面図である。
 以下、本開示の好ましい実施の形態を、添付図面を参照して具体的に説明する。
 第1実施形態:
 図1~図9は、本開示に係る半導体装置の一例を示している。本実施形態の半導体装置A10は、第1半導体素子11、第2半導体素子12、絶縁素子13、導電部材2、複数のワイヤ61~64、および封止樹脂7を備えている。導電部材2は、第1ダイパッド3、第2ダイパッド4、複数の第1端子51、複数の第2端子52、複数のパッド部53,55、一対の接続部54、および一対の接続部56を含んでいる。半導体装置A10は、たとえば電気自動車またはハイブリッド自動車などのインバータ装置の配線基板に表面実装されるものである。なお、半導体装置A10の用途や機能は限定されない。半導体装置A10のパッケージ形式は、SOP(Small Outline Package)である。ただし、半導体装置A10のパッケージ形式は、SOPに限定されない。
 図1は、半導体装置A10を示す平面図である。図2は、半導体装置A10を示す平面図である。図2においては、理解の便宜上、封止樹脂7を透過して、封止樹脂7の外形を想像線(二点鎖線)で示している。図3は、半導体装置A10を示す正面図である。図4は、半導体装置A10を示す左側面図である。図5は、図2のV-V線に沿う断面図である。図6は、図2のVI-VI線に沿う断面図である。図7は、図5の部分拡大図である。図8は、図4の部分拡大図である。図9は、図5の部分拡大図である。
 半導体装置A10は、厚さ方向視(平面視)の形状が矩形状である。説明の便宜上、半導体装置A10の厚さ方向をz方向とし、z方向に直交する半導体装置A10の一方の辺に沿う方向(図1および図2における左右方向)をx方向、z方向およびx方向に直交する方向(図1および図2における上下方向)をy方向とする。なお、半導体装置A10の形状および各寸法は限定されない。
 第1半導体素子11、第2半導体素子12、および絶縁素子13は、半導体装置A10の機能中枢となる素子である。
 第1半導体素子11は、図2に示すように、導電部材2の一部(後述の第1ダイパッド3)に搭載されて、半導体装置A10のy方向における中央で、x方向におけるx1側寄りに配置されている。第1半導体素子11は、z方向視においてy方向に長い矩形状である。第1半導体素子11は、制御素子である。第1半導体素子11は、ECUなどから入力された制御信号をPWM制御信号に変換する回路と、PWM制御信号を第2半導体素子12へ送信する送信回路と、第2半導体素子12からの電気信号を受信する受信回路とを有する。第1半導体素子11は、z方向において互いに反対側を向く素子主面111および素子裏面112を有する。素子主面111は、z方向z1側を向いている。素子裏面112は、z方向z2側を向いている。素子主面111には、複数の電極11Aが設けられている。複数の電極11Aは、第1半導体素子11に構成された回路に導通する。
 第2半導体素子12は、図2に示すように、導電部材2の一部(後述の第2ダイパッド4)に搭載されて、半導体装置A10のy方向における中央で、x方向におけるx2側寄りに配置されている。第2半導体素子12は、z方向視においてy方向に長い矩形状である。第2半導体素子12は、駆動素子である。第2半導体素子12は、第1半導体素子11から送信されたPWM制御信号を受信する受信回路と、受信したPWM制御信号に基づいてスイッチング素子(たとえばIGBTやMOSFETなど)の駆動信号を生成して出力する回路(ゲートドライバ)と、電気信号を第1半導体素子11へ送信する送信回路とを有する。第2半導体素子12は、z方向において互いに反対側を向く素子主面121および素子裏面122を有する。素子主面121は、z方向z1側を向いている。素子裏面122は、z方向z2側を向いている。素子主面121には、複数の電極12Aが設けられている。複数の電極12Aは、第2半導体素子12に構成された回路に導通する。
 絶縁素子13は、図2に示すように、導電部材2の一部(第1ダイパッド3)に搭載されて、半導体装置A10のy方向における中央に配置されている。絶縁素子13は、第1半導体素子11に対してx方向x2側に位置し、第2半導体素子12に対してx方向x1側に位置する。つまり、絶縁素子13は、x方向において、第1半導体素子11と第2半導体素子12との間に位置する。絶縁素子13は、z方向視においてy方向に長い矩形状である。絶縁素子13は、PWM制御信号や他の電気信号を、絶縁状態で伝送するための素子である。絶縁素子13は、ワイヤ63を介して第1半導体素子11からPWM制御信号を受信し、受信したPWM制御信号をワイヤ64を介して第2半導体素子12へ絶縁状態で伝送する。また、絶縁素子13は、ワイヤ64を介して第2半導体素子12から電気信号を受信し、受信した電気信号を、ワイヤ63を介して第1半導体素子11へ絶縁状態で伝送する。つまり、絶縁素子13は、第1半導体素子11と第2半導体素子12との間で信号を中継しつつ、第1半導体素子11および第2半導体素子12を互いに絶縁している。
 本実施形態においては、絶縁素子13は、インダクティブ型絶縁素子である。インダクティブ型絶縁素子は、2つのインダクタ(コイル)を誘導結合させることで、絶縁状態による電気信号の伝送を行う。絶縁素子13は、Siからなる基板を有し、当該基板上に、Cuからなるインダクタが形成されている。インダクタは、送信側インダクタおよび受信側インダクタを含み、これらのインダクタは絶縁素子13の厚さ方向(z方向)において互いに積層されている。送信側インダクタと受信側インダクタとの間には、SiO2などからなる誘電体層が介装されている。誘電体層により、送信側インダクタと受信側インダクタとは、電気的に絶縁されている。本実施形態では、絶縁素子13がインダクティブ型である場合を示すが、絶縁素子13はキャパシティブ型であってもよい。キャパシティブ型の絶縁素子は、一例ではコンデンサである。
 絶縁素子13は、z方向において互いに反対側を向く素子主面131および素子裏面132を有する。素子主面131は、z方向z1側を向いている。素子裏面132は、z方向z2側を向いている。素子主面131には、複数の第1電極13Aおよび複数の第2電極13Bが設けられている。複数の第1電極13Aおよび複数の第2電極13Bの各々は、送信側インダクタおよび受信側インダクタのいずれかに導通する。絶縁素子13においては、複数の第1電極13Aは、x方向x1側寄りで、y方向に沿って配列されている。複数の第2電極13Bは、x方向中央付近で、y方向に沿って配列されている。
 第1半導体素子11は、絶縁素子13を介して、第2半導体素子12にPWM制御信号を伝送する。なお、第1半導体素子11は、第2半導体素子12に、PWM制御信号以外の信号も伝送してもよい。第2半導体素子12は、絶縁素子13を介して、第1半導体素子11に電気信号を伝送する。なお、第2半導体素子12が第1半導体素子11に伝送する電気信号が示す情報は限定されない。
 ハイブリッド自動車などのインバータ装置におけるモータドライバ回路には、ローサイドスイッチング素子とハイサイドスイッチング素子とをトーテムポール状に接続したハーフブリッジ回路が一般的に使用されている。絶縁ゲートドライバでは、任意の時点でオンになるスイッチは、ローサイドスイッチング素子かハイサイドスイッチング素子のどちらか一方のみである。高電圧領域において、ローサイドスイッチング素子のソース、および、当該スイッチング素子を駆動する絶縁ゲートドライバの基準電位はグランドに接続されているので、ゲート-ソース間電圧はグランドを基準に動作する。一方、ハイサイドスイッチング素子のソース、および、当該スイッチング素子を駆動する絶縁ゲートドライバの基準電位はハーフブリッジ回路の出力ノードに接続されている。ローサイドスイッチング素子とハイサイドスイッチング素子のどちらがオンであるかに応じて、ハーフブリッジ回路の出力ノードの電位は変化するので、ハイサイドスイッチング素子を駆動する絶縁ゲートドライバの基準電位は変化する。ハイサイドスイッチング素子がオンのときには、当該基準電位は、ハイサイドスイッチング素子のドレインに印加される電圧と等価な電圧(例えば600V以上)になる。第1半導体素子11と第2半導体素子12とは絶縁性を確保するためにグランドが分離されている。半導体装置A10が、ハイサイドスイッチング素子を駆動する絶縁ゲートドライバとして用いられた場合、第2半導体素子12には、第1半導体素子11のグランドと比較して、600V以上の電圧が過渡的に印加される。第1半導体素子11と第2半導体素子12との間に著しい電位差が生じることから、半導体装置A10においては、第2半導体素子12を含む入力側回路と、第1半導体素子11を含む出力側回路とが、絶縁素子13により絶縁されている。つまり、絶縁素子13は、相対的に低電位である入力側回路と、相対的に高電位である出力側回路とを絶縁する。
 導電部材2は、半導体装置A10において、第1半導体素子11および第2半導体素子12と、インバータ装置の配線基板との導通経路を構成する部材である。導電部材2は、たとえばCuを組成に含む合金からなる。導電部材2は、後述するリードフレーム81から形成される。導電部材2は、第1半導体素子11、第2半導体素子12、および絶縁素子13を搭載する。図2に示すように、導電部材2は、第1ダイパッド3、第2ダイパッド4、複数の第1端子51、複数の第2端子52、複数のパッド部53,55、一対の接続部54、および一対の接続部56を含んでいる。
 第1ダイパッド3は、半導体装置A10においてy方向における中央で、x方向におけるx1側寄りに配置されている。第2ダイパッド4は、第1ダイパッド3に対してx方向のx2側に、第1ダイパッド3から離れて配置されている。
 第1ダイパッド3は、図2および図5に示すように、第1半導体素子11および絶縁素子13が搭載されている。第1ダイパッド3は、第1半導体素子11に導通しており、先述した入力側回路の一要素である。第1ダイパッド3は、たとえば、z方向視形状が矩形状(あるいは略矩形状)である。第1ダイパッド3は、主面31および裏面32を有する。主面31および裏面32は、図5および図6に示すように、z方向において互いに離れて位置する。主面31はz1側を向き、裏面32はz2側を向く。主面31には、第1半導体素子11および絶縁素子13が搭載されている。
 第1半導体素子11および絶縁素子13は、図6および図8に示すように、導電性接合材19により、第1ダイパッド3の主面31に接合されている。本実施形態では、導電性接合材19は、たとえばはんだである。なお、導電性接合材19は限定されず、金属ペーストまたは焼結金属などであってもよい。
 第2ダイパッド4は、図2および図5に示すように、第2半導体素子12が搭載されている。第2ダイパッド4は、第2半導体素子12に導通しており、先述した出力側回路の一要素である。第2ダイパッド4は、たとえば、z方向視形状が矩形状(あるいは略矩形状)である。第2ダイパッド4は、主面41および裏面42を有する。主面41および裏面42は、図5に示すように、z方向において互いに離れて位置する。主面41はz1側を向き、裏面42はz2側を向く。主面41には、第2半導体素子12が搭載されている。
 複数の第1端子51は、インバータ装置の配線基板に接合されることで、半導体装置A10と当該配線基板との導電経路を構成する部材である。各第1端子51は、第1半導体素子11に適宜導通しており、先述した入力側回路の一要素である。図1、図2、および図4に示すように、複数の第1端子51は、互いに離間しつつ、y方向に沿って等間隔で配列されている。複数の第1端子51は、いずれも、第1ダイパッド3に対してx方向のx1側に位置し、封止樹脂7(後述の樹脂側面73)からx方向のx1側に突出している。複数の第1端子51は、電圧が供給される電源端子、グランド端子、制御信号を入力される入力端子、その他の電気信号が入力される入力端子、および、その他の電気信号を出力する出力端子などを含んでいる。本実施形態では、半導体装置A10は、10個の第1端子51を備えている。なお、第1端子51の数は限定されない。また、各第1端子51が入出力する信号は限定されない。
 各第1端子51は、x方向に沿って延びた長矩形状であり、封止樹脂7から露出した部分と封止樹脂7に覆われた部分とを含む。図3および図5に示すように、第1端子51のうち封止樹脂7から露出した部分は、z方向z2側に屈曲したガルウィング状に曲げ加工が施されている。
 図7および図8に示すように、各第1端子51は、先端面511、底面512、および凹部513を備えている。先端面511は、第1端子51の封止樹脂7から突出した側の端面である。先端面511は、後述する切断工程において、リードフレームを切断することにより形成された断面である。底面512は、半導体装置A10をインバータ装置の配線基板に表面実装させる際に、配線基板に対向して接合される面であり、z方向z2側を向いている。凹部513は、先端面511からx方向x2側に凹み、かつ、底面512からz方向z1側に凹む凹部である。凹部513のz方向の寸法T1は、第1端子51のうち底面512が位置する部分である全厚部514のz方向の寸法T2の1/4以上3/4以下である。凹部513のx方向の寸法は、特に限定されないが、寸法T1と同程度である。本実施形態では、凹部513は、y方向において第1端子51の全体に渡って延びている。
 第1端子51の封止樹脂7から露出した部分のうち、先端面511以外の全体には、めっき層25が配置されている。図8においては、めっき層25に点描を付している。なお、めっき層25が配置される領域は、限定されない。めっき層25は、たとえばSnを含んでいる。なお、めっき層25の構成材料は限定されない。めっき層25は、はんだ接合によって半導体装置A10をインバータ装置の配線基板に表面実装させる際に、当該露出した部分へのはんだの付着を良好なものにしつつ、はんだ接合に起因した当該露出した部分の浸食を防止する。めっき層25は、凹部めっき部25aを含んでいる。凹部めっき部25aは、凹部513に配置されている。本実施形態では、後述するように、製造工程において、リードフレームにあらかじめ凹部を設けたうえで、めっき層25を形成するので、凹部めっき部25aは、凹部513の全体に配置されている。なお、凹部めっき部25aは、凹部513の少なくとも一部に配置されていればよい。
 また、図3、図5および図9に示すように、各第1端子51は、第1屈曲部516および第2屈曲部517を備えている。第1屈曲部516および第2屈曲部517は、第1端子51のうち封止樹脂7から露出した部分であり、曲げ加工により形成されている。第1屈曲部516は、z方向z2側に屈曲する部分である。図9に示すように、第1屈曲部516の内側の面の曲率半径の最小値R1は、第1端子51の全厚部514(第1端子51のうち底面512が位置する部分)のz方向の寸法(すなわち、第1端子51の厚さ寸法)T2以上である。第2屈曲部517は、第1屈曲部516と先端面511との間に位置し、x方向x1側に屈曲する部分である。図9に示すように、第2屈曲部517の内側の面の曲率半径の最小値R2も、第1端子51の全厚部514のz方向の寸法T2以上である。
 複数の第1端子51は、第1端子51aおよび第1端子51bを含んでいる。第1端子51aは、複数の第1端子51の中で、y方向の最もy1側に配置されている。第1端子51bは、複数の第1端子51の中で、y方向の最もy2側に配置されている。
 複数のパッド部53は、第1端子51a,51b以外の複数の第1端子51のx方向x2側にそれぞれつながっている。各パッド部53のz方向視形状は限定されない。各パッド部53の上面(z1側を向く面)は、平坦(あるいは略平坦)であり、後述するワイヤ61が接合されている。各パッド部53の上面には、めっき処理が施されていてもよい。当該めっき処理により形成されるめっき層は、たとえばAgを含む金属からなり、パッド部53の上面を覆う。当該めっき層は、ワイヤ61の接合強度を高めつつ、ワイヤ61のワイヤボンディング時の衝撃からリードフレーム81(後述)を保護する。パッド部53は、全面にわたって封止樹脂7に覆われている。
 一対の接続部54はそれぞれ、第1端子51aまたは第1端子51bと、第1ダイパッド3とにつながっている。第1端子51aにつながる接続部54は、y方向に延び、y方向y2側の端部が第1ダイパッド3のy方向y1側の端部のx方向中央付近につながっている。第1端子51bにつながる接続部54は、y方向に延び、y方向y1側の端部が第1ダイパッド3のy方向y2側の端部のx方向中央付近につながっている。このように、第1端子51aおよび第1端子51bは、一対の接続部54を介して第1ダイパッド3につながっており、第1ダイパッド3を支持している。各接続部54の上面(z1側を向く面)は、平坦(あるいは略平坦)であり、後述するワイヤ61が接合されている。各接続部54の上面は、パッド部53の上面と同様に、めっき層(たとえばAgを含む金属)で覆われていてもよい。接続部54は、全面にわたって封止樹脂7に覆われている。
 複数の第2端子52は、複数の第1端子51と同様に、インバータ装置の配線基板に接合されることで、半導体装置A10と当該配線基板との導電経路を構成する部材である。各第2端子52は、第2半導体素子12に適宜導通しており、先述した出力側回路の一要素である。図1および図2に示すように、複数の第2端子52は、互いに離間しつつ、y方向に沿って等間隔で配列されている。複数の第2端子52は、いずれも、第2ダイパッド4に対してx方向のx2側に位置し、封止樹脂7(後述の樹脂側面74)からx方向のx2側に突出している。複数の第2端子52は、電圧が供給される電源端子、グランド端子、駆動信号を出力する出力端子、その他の電気信号が入力される入力端子、および、その他の電気信号を出力する出力端子などを含んでいる。本実施形態では、半導体装置A10は、10個の第2端子52を備えている。なお、第2端子52の数は限定されない。また、各第2端子52が入出力する信号は限定されない。
 各第2端子52は、x方向に沿って延びた長矩形状であり、封止樹脂7から露出した部分と封止樹脂7に覆われた部分とを含む。図3および図5に示すように、第2端子52のうち封止樹脂7から露出した部分は、z方向z2側に屈曲したガルウィング状に曲げ加工が施されている。
 図5に示すように、各第2端子52は、先端面521、底面522、および凹部523を備えている。先端面521は、第2端子52の封止樹脂7から突出した側の端面である。先端面521は、後述する切断工程において、リードフレームを切断することにより形成された断面である。底面522は、半導体装置A10をインバータ装置の配線基板に表面実装させる際に、配線基板に対向して接合される面であり、z方向z2側を向いている。凹部523は、先端面521からx方向x1側に凹み、かつ、底面522からz方向z1側に凹む凹部である。第1端子51の場合と同様、凹部523のz方向の寸法は、第2端子52のうち底面522が位置する部分である全厚部524のz方向の寸法の1/4以上3/4以下である。凹部523のx方向の寸法は、特に限定されないが、z方向の寸法と同程度である。本実施形態では、凹部523は、y方向において第2端子52の全体に渡って延びている。
 第2端子52の封止樹脂7から露出した部分のうち、先端面521以外の全体には、第1端子51と同様、めっき層25が配置されている。なお、めっき層25が配置される領域は、上記に限定されない。凹部513と同様、凹部523にも、凹部めっき部25aが配置されている。
 また、図3および図5に示すように、各第2端子52は、第1屈曲部526および第2屈曲部527を備えている。第1屈曲部526および第2屈曲部527は、第2端子52のうち封止樹脂7から露出した部分であり、曲げ加工により形成されている。第1屈曲部526は、z方向z2側に屈曲する部分である。第1屈曲部526の内側の面の曲率半径の最小値は、第2端子52の全厚部524のz方向の寸法(すなわち、第2端子52の厚さ寸法)以上である。第2屈曲部527は、第1屈曲部526と先端面521との間に位置し、x方向x2側に屈曲する部分である。第2屈曲部527の内側の面の曲率半径の最小値も、第2端子52の全厚部524のz方向の寸法以上である。
 複数の第2端子52は、第2端子52aおよび第2端子52bを含んでいる。第2端子52aは、複数の第2端子52の中で、y方向y1側から2番目に配置されている。第2端子52bは、複数の第2端子52の中で、y方向y2側から2番目に配置されている。
 複数のパッド部55は、第2端子52a,52b以外の複数の第2端子52のx方向x1側にそれぞれつながっている。各パッド部55のz方向視形状は限定されない。各パッド部55の上面(z1側を向く面)は、平坦(あるいは略平坦)であり、後述するワイヤ62が接合されている。各パッド部55の上面は、パッド部53の上面と同様に、めっき層(たとえばAgを含む金属)で覆われていてもよい。パッド部55は、全面にわたって封止樹脂7に覆われている。
 一対の接続部56はそれぞれ、第2端子52aまたは第2端子52bと、第2ダイパッド4とにつながっている。第2端子52aにつながる接続部56は、y方向y2側の端部が第2ダイパッド4のy方向y1側の端部のx方向中央付近につながっている。第2端子52bにつながる接続部56は、y方向y1側の端部が第2ダイパッド4のy方向y2側の端部のx方向中央付近につながっている。このように、第2端子52aおよび第2端子52bは、一対の接続部56を介して第2ダイパッド4につながっており、第2ダイパッド4を支持している。各接続部56の上面(z1側を向く面)は、平坦(あるいは略平坦)であり、後述するワイヤ62が接合されている。各接続部56の上面は、パッド部53の上面と同様に、めっき層(たとえばAgを含む金属)で覆われていてもよい。接続部56は、全面にわたって封止樹脂7に覆われている。
 なお、導電部材2の形状は上記に限定されない。たとえば、第1ダイパッド3は、どの第1端子51に支持されてもよい。すなわち、一対の接続部54が、第1ダイパッド3と、どの第1端子51とにつながってもよい。また、第2ダイパッド4は、どの第2端子52に支持されてもよい。すなわち、一対の接続部56は、どの第2端子52と第2ダイパッド4とにつながってもよい。
 複数のワイヤ61~64は、図2に示すように、導電部材2とともに、第1半導体素子11、第2半導体素子12、および絶縁素子13が所定の機能を果たすための導通経路を構成している。複数のワイヤ61~64の各々の材料は、たとえばAu、Cu、またはAlを含む金属である。
 複数のワイヤ61は、図2および図5に示すように、第1半導体素子11と、複数の第1端子51との導通経路を構成する。複数のワイヤ61によって、第1半導体素子11は、複数の第1端子51の少なくともいずれかに導通する。複数のワイヤ61は、先述した入力側回路の一要素である。複数のワイヤ61の各々は、図2に示すように、一方端が第1半導体素子11のいずれかの電極11Aに導通接合され、他方端が複数のパッド部53および一対の接続部54のいずれかに導通接合されている。なお、各パッド部53および各接続部54に接合されるワイヤ61の数は限定されない。
 複数のワイヤ62は、図2および図5に示すように、第2半導体素子12と、複数の第2端子52との導通経路を構成する。複数のワイヤ62によって、第2半導体素子12は、複数の第2端子52の少なくともいずれかに導通する。複数のワイヤ62は、先述した出力側回路の一要素である。複数のワイヤ62の各々は、図2に示すように、一方端が第2半導体素子12のいずれかの電極12Aに導通接合され、他方端が複数のパッド部55および一対の接続部56のいずれかに導通接合されている。なお、各パッド部55および各接続部54に接合されるワイヤ62の数は限定されない。
 複数のワイヤ63は、図2および図5に示すように、第1半導体素子11と絶縁素子13との導通経路を構成する。複数のワイヤ63によって、第1半導体素子11と絶縁素子13とは、互いに導通する。複数のワイヤ63は先述した入力側回路の一要素である。複数のワイヤ63の各々は、図2に示すように、第1半導体素子11のいずれかの電極11Aと絶縁素子13のいずれかの第1電極13Aとに導通接合されている。
 複数のワイヤ64は、図2および図5に示すように、第2半導体素子12と絶縁素子13との導通経路を構成する。複数のワイヤ64によって、第2半導体素子12と絶縁素子13とは、互いに導通する。複数のワイヤ64は先述した出力側回路の一要素である。複数のワイヤ64の各々は、図2に示すように、第2半導体素子12のいずれかの電極12Aと絶縁素子13のいずれかの第2電極13Bとに導通接合されている。
 封止樹脂7は、図1に示すように、第1半導体素子11、第2半導体素子12、絶縁素子13、第1ダイパッド3、第2ダイパッド4、一対の接続部54、一対の接続部56、それぞれ複数のパッド部53,55、およびそれぞれ複数のワイヤ61~64と、それぞれ複数の第1端子51および第2端子52の各々の一部とを覆っている。封止樹脂7は、電気絶縁性を有する。封止樹脂7は、たとえば黒色のエポキシ樹脂を含む材料からなる。封止樹脂7は、z方向視において、矩形状である。
 図3および図4に示すように、封止樹脂7は、樹脂頂面71、樹脂底面72、および樹脂側面73~76を有する。
 樹脂頂面71および樹脂底面72は、z方向において互いに離れて位置する。樹脂頂面71および樹脂底面72は、z方向において互いに反対側を向く。樹脂頂面71は、z方向のz1側に位置し、第1ダイパッド3の主面31と同じく、z1側を向く。樹脂底面72はz方向のz2側に位置し、第1ダイパッド3の裏面32と同じく、z2側を向く。樹脂頂面71および樹脂底面72の各々は、平坦(あるいは略平坦)である。
 樹脂側面73~76の各々は、樹脂頂面71および樹脂底面72につながるとともに、z方向において樹脂頂面71と樹脂底面72とに挟まれている。樹脂側面73および樹脂側面74は、x方向において互いに離れて位置する。樹脂側面73および樹脂側面74は、x方向において互いに反対側を向く。樹脂側面73はx方向のx1側に位置し、樹脂側面74はx方向のx2側に位置する。樹脂側面75および樹脂側面76は、y方向において互いに離れて位置し、かつ、樹脂側面73および樹脂側面74につながっている。樹脂側面75および樹脂側面76は、y方向において互いに反対側を向く。樹脂側面75はy方向のy1側に位置し、樹脂側面76はy方向のy2側に位置する。図1に示すように、樹脂側面73から、複数の第1端子51の各々の一部が突出している。また、樹脂側面74から、複数の第2端子52の各々の一部が突出している。
 図3および図4に示すように、樹脂側面73は、樹脂第1領域731、樹脂第2領域732、および樹脂第3領域733を含む。樹脂第1領域731は、z方向の一端が樹脂頂面71につながり、かつ、z方向の他端が樹脂第3領域733につながっている。樹脂第1領域731は、樹脂頂面71およびyz平面に対して傾斜している。樹脂第2領域732は、z方向の一端が樹脂底面72につながり、かつ、z方向の他端が樹脂第3領域733につながっている。樹脂第2領域732は、樹脂底面72およびyz平面に対して傾斜している。樹脂第3領域733は、z方向の一端が樹脂第1領域731につながり、かつ、z方向の他端が樹脂第2領域732につながっている。樹脂第3領域733は、yz平面に沿っている。z方向視において、樹脂第3領域733は、樹脂頂面71および樹脂底面72よりも外方に位置する。樹脂第3領域733から、複数の第1端子51の各々の一部が露出している。
 図3に示すように、樹脂側面74は、樹脂第4領域741、樹脂第5領域742、および樹脂第6領域743を含む。樹脂第4領域741は、z方向の一端が樹脂頂面71につながり、かつ、z方向の他端が樹脂第6領域743につながっている。樹脂第4領域741は、樹脂頂面71およびyz平面に対して傾斜している。樹脂第5領域742は、z方向の一端が樹脂底面72につながり、かつ、z方向の他端が樹脂第6領域743につながっている。樹脂第5領域742は、樹脂底面72およびyz平面に対して傾斜している。樹脂第6領域743は、z方向の一端が樹脂第4領域741につながり、かつ、z方向の他端が樹脂第5領域742につながっている。樹脂第6領域743は、yz平面に沿っている。z方向視において、樹脂第6領域743は、樹脂頂面71および樹脂底面72よりも外方に位置する。樹脂第6領域743から、複数の第2端子52の各々の一部が露出している。
 図4に示すように、樹脂側面75は、樹脂第7領域751、樹脂第8領域752、および樹脂第9領域753を含む。樹脂第7領域751は、z方向の一端が樹脂頂面71につながり、かつ、z方向の他端が樹脂第9領域753につながっている。樹脂第7領域751は、樹脂頂面71およびxz平面に対して傾斜している。樹脂第8領域752は、z方向の一端が樹脂底面72につながり、かつ、z方向の他端が樹脂第9領域753につながっている。樹脂第8領域752は、樹脂底面72およびxz平面に対して傾斜している。樹脂第9領域753は、z方向の一端が樹脂第7領域751につながり、かつ、z方向の他端が樹脂第8領域752につながっている。樹脂第9領域753は、xz平面に沿っている。z方向視において、樹脂第9領域753は、樹脂頂面71および樹脂底面72よりも外方に位置する。
 図3および図4に示すように、樹脂側面76は、樹脂第10領域761、樹脂第11領域762、および樹脂第12領域763を含む。樹脂第10領域761は、z方向の一端が樹脂頂面71につながり、かつ、z方向の他端が樹脂第12領域763につながっている。樹脂第10領域761は、樹脂頂面71およびxz平面に対して傾斜している。樹脂第11領域762は、z方向の一端が樹脂底面72につながり、かつ、z方向の他端が樹脂第12領域763につながっている。樹脂第11領域762は、樹脂底面72およびxz平面に対して傾斜している。樹脂第12領域763は、z方向の一端が樹脂第10領域761につながり、かつ、z方向の他端が樹脂第11領域762につながっている。樹脂第12領域763は、xz平面に沿っている。z方向視において、樹脂第12領域763は、樹脂頂面71および樹脂底面72よりも外方に位置する。
 次に、半導体装置A10の製造方法の一例について、図10~図20を参照して以下に説明する。図10、図13~図14は、半導体装置A10の製造方法に係る工程を示す平面図である。図11は、半導体装置A10の製造方法に係る工程を示す底面図である。図12、図15~図16、図18~図19は、半導体装置A10の製造方法に係る工程を示す断面図であり、図2のV-V線に沿う断面に相当する断面を示している。図17は、図16の部分拡大図である。図20は、図19の部分拡大図である。なお、これらの図に示すx方向、y方向およびz方向は、図1~図8と同じ方向を示している。
 まず、図10~図12に示すように、リードフレーム81を準備する。リードフレーム81は、板状の材料である。本実施形態においては、リードフレーム81の母材は、Cuからなる。リードフレーム81は、金属板にエッチング処理等を施すことにより形成されてもよいし、金属板に打ち抜き加工を施すことにより形成されてもよい。本実施形態では、リードフレーム81は、エッチング処理により形成されている。リードフレーム81は、z方向に離間する主面81Aおよび裏面81Bを有する。また、リードフレーム81は、外枠811、第1ダイパッド812A、第2ダイパッド812B、複数の第1リード813、複数の第2リード814、複数の接続部815、およびダムバー816を備えている。このうち、外枠811およびダムバー816は、半導体装置A10を構成しない。第1ダイパッド812Aは、後に第1ダイパッド3となる部位である。第2ダイパッド812Bは、後に第2ダイパッド4となる部位である。複数の第1リード813は、後に複数の第1端子51およびパッド部53となる部位である。複数の第2リード814は、後に複数の第2端子52およびパッド部55となる部位である。複数の接続部815は、後に一対の接続部54および一対の接続部56となる部位である。
 図11および図12に示すように、第1リード813のうち第1端子51になる部分を含む端子部分813aには、凹部813bが形成され、第2リード814のうち第2端子52になる部分を含む端子部分814aには、凹部814bが形成されている。図11においては、凹部813bおよび凹部814bに点描を付している。凹部813bおよび凹部814bは、裏面81Bからz方向z1側に凹む凹部である。凹部813bおよび凹部814bは、たとえばハーフエッチングによって形成される。なお、凹部813bおよび凹部814bの形成方法は限定されない。各凹部813bは、y方向において端子部分813aの全体に渡って延びている。各凹部814bは、y方向において端子部分814aの全体に渡って延びている。
 次いで、図13に示すように、第1半導体素子11および絶縁素子13をダイボンディングにより第1ダイパッド812Aに接合し、第2半導体素子12をダイボンディングにより第2ダイパッド812Bに接合する。次いで、複数のワイヤ61~64の各々をワイヤボンディングにより形成する。
 次いで、図14および図15に示すように、封止樹脂7を形成する。封止樹脂7は、トランスファモールド成形により形成される。本工程においては、複数のキャビティを有する金型にリードフレーム81を収納する。この際、リードフレーム81のうち、半導体装置A10において封止樹脂7に覆われた導電部材2になる部分が、複数のキャビティのいずれかに収容されるようにする。その後、ポットからランナーを介して複数のキャビティの各々に流動化した樹脂を流し込む。複数のキャビティの中において流動化した封止樹脂7を固化させた後、複数のキャビティの各々に対して外方に位置する樹脂バリを高圧水などで除去する。以上により封止樹脂7の形成が完了する。
 次いで、封止樹脂7から露出しているリードフレーム81にめっき層25を形成する。これにより、端子部分813aおよび端子部分814aにめっき層25が配置される。このとき、端子部分813aの凹部813b、および、端子部分814aの凹部814bにもめっき層25が配置される。
 次いで、図16および図17に示すように、リードフレーム81の曲げ加工を行う。当該工程では、フォーミング金型86を用いて、端子部分813aおよび端子部分814aに曲げ加工を施す。フォーミング金型86は、フォーミングダイ861、フォーミングポンチ862、およびストリッパブロック863を備えている。フォーミングダイ861は、封止樹脂7に覆われたリードフレーム81が載置される。ストリッパブロック863は、フォーミングダイ861との間で、端子部分813aおよび端子部分814aを押さえつけて固定させる。そして、フォーミングポンチ862がz方向z2側に移動することで、端子部分813aおよび端子部分814aを屈曲させる。これにより、図18に示すように、端子部分813aおよび端子部分814aは、z方向z2側に屈曲したガルウィング状に形成される。
 図17に示すように、リードフレーム81の端子部分813aは、フォーミングダイ861の肩部861aに当接する部分が屈曲されて、第1屈曲部813cが形成される。第1屈曲部813cは、第1屈曲部516になる。フォーミングダイ861の肩部861aの曲率半径の最小値R3は、リードフレーム81の厚さ寸法T2以上である。これにより、第1屈曲部813cの内側の面の曲率半径の最小値R1(図9参照)が、リードフレーム81の厚さ寸法T2以上になる。また、端子部分813aは、フォーミングポンチ862の肩部862aに当接する部分が屈曲されて、第2屈曲部813dが形成される。第2屈曲部813dは、第2屈曲部517になる。フォーミングポンチ862の肩部862aの曲率半径の最小値R4は、リードフレーム81の厚さ寸法T2以上である。これにより、第2屈曲部813dの内側の面の曲率半径の最小値R2(図9参照)が、リードフレーム81の厚さ寸法T2以上になる。端子部分814aも、端子部分813aと同様に、第1屈曲部814cおよび第2屈曲部814dが形成される。第1屈曲部814cは第1屈曲部526になり、第2屈曲部814dは、第2屈曲部527になる。第1屈曲部814cの内側の面の曲率半径の最小値、および、第2屈曲部814dの内側の面の曲率半径の最小値も、リードフレーム81の厚さ寸法T2以上になる。
 次いで、図19および図20に示すように、リードフレーム81の切断を行う。当該工程では、切断金型85を用いて、図18に示す切断線CLに沿って、端子部分813aおよび端子部分814aを切断する。一方の切断線CLは、各凹部813bと交差し、y方向に延びている。他方の切断線CLは、各凹部814bと交差し、y方向に延びている。本実施形態では、切断金型85は、端子部分813aおよび端子部分814aをz方向z2側から切断する、いわゆるアッパーカット方式を採用している。切断金型85は、カットダイ851、カットポンチ852、およびストリッパブロック853を備えている。ストリッパブロック853は、封止樹脂7に覆われたリードフレーム81が載置される。カットダイ851は、ストリッパブロック853との間で、端子部分813aおよび端子部分814aを押さえつけて固定させる。カットポンチ852は、固定されており、カットダイ851およびストリッパブロック853がz方向z2側に移動する。これにより、カットポンチ852は、カットダイ851およびストリッパブロック853に対して相対的に、z方向z2側からz1側へ移動する。カットポンチ852は、カットダイ851との間で、カットダイ851から外側にはみ出している端子部分813aおよび端子部分814aを切断する。端子部分813aの切断により、第1端子51が第1リード813から切り離され、端子部分814aの切断により、第2端子52が第2リード814から切り離される。これにより、凹部813bのうち第1端子51に位置する部分が凹部513になり、凹部814bのうち第2端子52に位置する部分が凹部523になる。
 以上に示した工程を経ることで、半導体装置A10が製造される。
 次に、半導体装置A10の配線基板への実装について説明する。図21は、半導体装置A10を配線基板9に実装した状態を示す部分拡大断面図である。
 図21に示すように、半導体装置A10は配線基板9に実装され、複数の第1端子51および第2端子52が配線基板9に形成された配線(図示なし)に、はんだ95によって接合される。このとき、第1端子51の凹部513に凹部めっき部25aが配置されているので、凹部513にもはんだ95が付着して、はんだフィレットが形成されている。第2端子52も同様に、凹部523にも凹部めっき部25aが配置されているので、凹部523にもはんだ95が付着して、はんだフィレットが形成されている。
 次に、半導体装置A10の作用効果について説明する。
 本実施形態によると、各第1端子51は凹部513を備えている。凹部513は、先端面511からx方向x2側に凹み、かつ、底面512からz方向z1側に凹む凹部である。凹部513には、凹部めっき部25aが配置されている。したがって、半導体装置A10の実装時に、はんだ95によって第1端子51を配線基板9に接合した際に、凹部513にもはんだ95が付着して、はんだフィレットが形成される。各第2端子52の凹部523も同様に、はんだ95が付着して、はんだフィレットが形成される。これにより、半導体装置A10は、配線基板9に実装された際のはんだ付着不良を抑制できる。
 また、本実施形態によると、凹部513のz方向の寸法T1は、全厚部514のz方向の寸法T2の1/4以上3/4以下である。また、凹部523のz方向の寸法は、全厚部524のz方向の寸法の1/4以上3/4以下である。したがって、半導体装置A10は、製造時に凹部813b,814bが形成されたリードフレーム81の強度を保ち、かつ、実装時に凹部513,523に付着したはんだ95によってはんだフィレットを適切に形成できる。
 また、本実施形態によると、凹部513は、y方向において第1端子51の全体に渡って延びている。したがって、凹部513に付着したはんだ95によるはんだフィレットは、凹部513がy方向において第1端子51の一部にのみ形成されている場合と比較して、よりy方向に広がる形状になる。凹部523についても同様である。これにより、半導体装置A10は、配線基板9に実装された際のはんだ付着不良をより抑制できる。
 また、本実施形態によると、第1端子51の第1屈曲部516の内側の面の曲率半径の最小値R1は、第1端子51の全厚部514のz方向の寸法T2以上である。第1端子51は、第1屈曲部516の内側の面の曲率半径の最小値R1が寸法T2未満の場合と比較して、曲げ加工時の第1屈曲部516でのクラックおよびめっき割れの発生が抑制される。また、第1端子51の第2屈曲部517の内側の面の曲率半径の最小値R2も、第1端子51の全厚部514のz方向の寸法T2以上である。第1端子51は、第2屈曲部517の内側の面の曲率半径の最小値R2が寸法T2未満の場合と比較して、曲げ加工時の第2屈曲部517でのクラックおよびめっき割れの発生が抑制される。同様に、第2端子52の第1屈曲部526および第2屈曲部527も、内側の面の曲率半径の最小値が第2端子52の全厚部524のz方向の寸法以上である。したがって、第2端子52も、曲げ加工時の第1屈曲部526および第2屈曲部527でのクラックおよびめっき割れの発生が抑制される。
 また、本実施形態によると、フォーミング金型86のフォーミングダイ861の肩部861aの曲率半径の最小値R3は、リードフレーム81の厚さ寸法T2以上である。これにより、フォーミング金型86は、第1屈曲部813c(516)の内側の面の曲率半径の最小値R1を、リードフレーム81の厚さ寸法T2以上に形成できる。また、フォーミングポンチ862の肩部862aの曲率半径の最小値R4は、リードフレーム81の厚さ寸法T2以上である。これにより、フォーミング金型86は、第2屈曲部813d(517)の内側の面の曲率半径の最小値R2を、リードフレーム81の厚さ寸法T2以上に形成できる。同様に、フォーミング金型86は、第1屈曲部814c(526)の内側の面の曲率半径の最小値を、リードフレーム81の厚さ寸法T2以上に形成でき、第2屈曲部814d(527)の内側の面の曲率半径の最小値を、リードフレーム81の厚さ寸法T2以上に形成できる。
 なお、本実施形態では、切断金型85がアッパーカット方式を採用している場合について説明したが、これに限られない。切断金型85は、端子部分813aおよび端子部分814aをz方向z1側から切断する、いわゆるダウンカット方式を採用してもよい。第1端子51(第2端子52)は凹部513(凹部523)を備えているので、ダウンカット方式によって、z方向z2側に突出するバリが発生しても、第1端子51(第2端子52)を配線基板9に接合する際の妨げにならない。
 なお、半導体装置A10のパッケージ形式、搭載される半導体素子の種類および個数、導電部材2の形状および配置、ならびに端子の本数などは、特に限定されない。半導体装置A10は、封止樹脂7から端子が突出して、配線基板などに表面実装されるものであればよい。
 図22~図27は、第1実施形態にかかる半導体装置A10の変形例を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付して、重複する説明を省略する。
 第1変形例:
 図22および図23は、第1実施形態の第1変形例にかかる半導体装置A11を説明するための図である。図22は、半導体装置A11の部分拡大左側面図であり、図8に対応する図である。図23は、第1端子51をz方向z2側から視た部分拡大底面図である。図22および図23においては、めっき層25に点描を付している。半導体装置A11は、凹部513の形成された範囲が、半導体装置A10と異なる。本変形例に係る凹部513は、y方向において第1端子51の中央の一部にのみ形成されている。したがって、凹部513のy方向の両側では、底面512が先端面511につながっている。リードフレーム81において、凹部813bを端子部分813aのy方向の全体に渡って形成せずに、y方向の中央にのみ形成することで、本変形例に係る凹部513が形成できる。
 第2変形例:
 図24および図25は、第1実施形態の第2変形例にかかる半導体装置A12を説明するための図である。図24は、半導体装置A12の部分拡大左側面図であり、図8に対応する図である。図25は、第1端子51をz方向z2側から視た部分拡大底面図である。図24および図25においては、めっき層25に点描を付している。半導体装置A12は、凹部513の形成された範囲が、半導体装置A10と異なる。本変形例に係る凹部513は2個の部分に分かれて、第1端子51のy方向の両端部にそれぞれ形成されている。したがって、凹部513のy方向の中央部分では、底面512が先端面511につながっている。リードフレーム81において、凹部813bを端子部分813aのy方向の全体に渡って形成せずに、y方向の両端部分にのみ形成することで、本変形例に係る凹部513が形成できる。
 第1~2変形例から理解されるように、凹部513の配置位置および配置範囲は限定されない。ただし、配線基板9に実装された際のはんだ付着不良を抑制するという目的のためには、半導体装置A10のように、凹部513がy方向において第1端子51の全体に渡って延びているのが望ましい。
 第3変形例:
 図26および図27は、第1実施形態の第3変形例にかかる半導体装置A13を説明するための図である。図26は、半導体装置A13の部分拡大左側面図であり、図8に対応する図である。図27は、第1端子51をz方向z2側から視た部分拡大底面図である。図26および図27においては、めっき層25に点描を付している。半導体装置A13の凹部513は、ハーフエッチングではなく、スタンピングで形成されたものである。本変形例に係る凹部513は、構成材料を周囲に押しのけることで形成されているので、第1端子51は、凹部513における幅寸法(y方向の寸法)W1が、底面512が位置する全厚部514における幅寸法(y方向の寸法)W2より大きくなっている。
 なお、第1実施形態では、凹部513のz方向視形状が矩形状である場合について説明したが、これに限られない。凹部513のz方向視形状は、半円形状などの他の形状であってもよい。
 図28~図33は、本開示の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。
 第2実施形態:
 図28~図30は、本開示の第2実施形態に係る半導体装置A20を説明するための図である。図28は、半導体装置A20を示す部分拡大断面図であり、図7に対応する図である。図29は、半導体装置A20を示す部分拡大左側面図であり、図8に対応する図である。図30は、半導体装置A20の製造方法に係る工程を示す部分拡大断面図であり、図20に対応する図である。本実施形態の半導体装置A20は、先端面511の一部にめっき層25が配置されている点で、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1実施形態および各変形例の各部が任意に組み合わせられてもよい。
 本実施形態では、めっき層25は、先端めっき部25bを含んでいる。先端めっき部25bは、先端面511の一部に配置されている。図29においては、先端めっき部25bを含むめっき層25に点描を付している。図30に示すように、切断工程において用いる切断金型85のカットポンチ852は、端子部分813aを切断するエッジ部852aを備えている。本実施形態では、エッジ部852aは曲面を有している。エッジ部852aは、カットダイ851が備える、端子部分813aを切断するエッジ部851aより、曲率半径が大きい。したがって、端子部分813aの切断により、端子部分813aの凹部813bに配置されていためっき層25(凹部めっき部25a)の一部が延びて、端子部分813aを切断した断面である先端面511に、先端めっき部25bとして配置される。先端面521も同様に、先端めっき部25bが配置される。
 また、本実施形態によると、切断工程において、端子部分813aおよび端子部分814aは、アッパーカット方式の切断金型85により、z方向z2側から切断される。したがって、先端面511のz方向z2側に、先端めっき部25bが配置される。これにより、先端面511には、凹部513のめっき層25(凹部めっき部25a)と連続した先端めっき部25bが配置される。同様に、先端面521にも、凹部523のめっき層25(凹部めっき部25a)と連続した先端めっき部25bが配置される。また、先端面511には、z方向z1側に突出するバリ511cが形成され、図28に示すように、先端面511の凹部513につながる部分はz方向に対して傾斜している。
 本実施形態においても、各第1端子51は凹部513を備えており、凹部513に凹部めっき部25aが配置されているので、半導体装置A10の実装時に、凹部513にもはんだ95が付着して、はんだフィレットが形成される。各第2端子52の凹部523も同様に、はんだ95が付着して、はんだフィレットが形成される。これにより、半導体装置A20は、配線基板9に実装された際のはんだ付着不良を抑制できる。さらに、本実施形態によると、先端面511(先端面521)には、凹部513(凹部523)に配置された凹部めっき部25aと連続した先端めっき部25bが配置されている。これにより、先端面511(先端面521)の一部にもはんだ95が付着するので、はんだフィレットをより適切に形成できる。また、半導体装置A20は、半導体装置A10と共通する構成をとることにより、半導体装置A10と同等の効果を奏する。
 第3実施形態:
 図31~図32は、本開示の第3実施形態に係る半導体装置A30を説明するための図である。図31は、半導体装置A30を示す部分拡大断面図であり、図7に対応する図である。図32は、半導体装置A30を示す部分拡大左側面図であり、図8に対応する図である。本実施形態の半導体装置A30は、先端面511のz方向z1側にめっき層25が配置されている点で、第2実施形態と異なっている。本実施形態の他の部分の構成および動作は、第2実施形態と同様である。なお、上記の第1~2実施形態および各変形例の各部が任意に組み合わせられてもよい。
 本実施形態では、先端めっき部25bが、先端面511のz方向z1側に配置されている。図32においては、先端めっき部25bを含むめっき層25に点描を付している。本実施形態では、切断工程において、ダウンカット方式の切断金型85により、カットポンチ852がz方向z1側から端子部分813aおよび端子部分814aを切断する。端子部分813aの切断により、端子部分813aのz方向z1側を向く面である上面515に配置されていためっき層25の一部が延びて、端子部分813aを切断した断面である先端面511に、先端めっき部25bとして配置される。したがって、先端面511のz方向z1側に、先端めっき部25bが配置される。一方、先端面511のz方向z2側は、先端めっき部25bから露出している。先端面511のうち先端めっき部25bが配置される領域と、先端めっき部25bから露出する領域との割合は、カットポンチ852のエッジ部852aの曲率半径、または、カットダイ851とカットポンチ852との間のクリアランスによって、調整可能である。先端面521も同様に、先端めっき部25bが配置される。また、先端面511には、z方向z2側に突出するバリ511cが形成され、図31に示すように、先端面511の上面515につながる部分はz方向に対して傾斜している。
 本実施形態においても、各第1端子51は凹部513を備えており、凹部513に凹部めっき部25aが配置されているので、半導体装置A10の実装時に、凹部513にもはんだ95が付着して、はんだフィレットが形成される。各第2端子52の凹部523も同様に、はんだ95が付着して、はんだフィレットが形成される。これにより、半導体装置A30は、配線基板9に実装された際のはんだ付着不良を抑制できる。さらに、本実施形態によると、先端面511(先端面521)のz方向z1側には先端めっき部25bが配置され、先端面511(先端面521)のz方向z2側は、先端めっき部25bから露出している。先端めっき部25bから露出している先端面511(先端面521)にははんだ95が付着しにくい。先端面511(先端面521)の先端めっき部25bからの露出領域を大きくすることで、はんだフィレットが凹部513(凹部523)を超えて先端面511(先端面521)に形成されないようにできる。また、半導体装置A30は、半導体装置A10と共通する構成をとることにより、半導体装置A10と同等の効果を奏する。
 第4実施形態:
 図33は、本開示の第4実施形態に係る半導体装置A40を説明するための図である。図33は、半導体装置A40を示す部分拡大断面図であり、図7に対応する図である。本実施形態の半導体装置A40は、先端面511の全面にめっき層25が配置されている点で、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~3実施形態および各変形例の各部が任意に組み合わせられてもよい。
 本実施形態では、先端面511および先端面521の全面に先端めっき部25bが配置されている。第4実施形態に係る半導体装置A40の製造方法は、第1実施形態とは異なっている。第4実施形態に係る製造方法では、封止樹脂7を形成した後、めっき層25を形成する前に、端子部分813aおよび端子部分814aの屈曲および切断を行う。端子部分813aおよび端子部分814aの切断後、封止樹脂7から露出している第1端子51および第2端子52にめっき層25を形成する。先端面511および先端面521に形成されためっき層25が先端めっき部25bである。また、凹部513および凹部523に形成されためっき層25が凹部めっき部25aである。
 本実施形態においても、各第1端子51は凹部513を備えており、凹部513に凹部めっき部25aが配置されているので、半導体装置A10の実装時に、凹部513にもはんだ95が付着して、はんだフィレットが形成される。各第2端子52の凹部523も同様に、はんだ95が付着して、はんだフィレットが形成される。これにより、半導体装置A40は、配線基板9に実装された際のはんだ付着不良を抑制できる。さらに、本実施形態によると、先端面511(先端面521)の全面に、先端めっき部25bが配置されている。先端面511(先端面521)の全面にもはんだ95が付着するので、先端面511(先端面521)も覆うはんだフィレットを形成できる。また、半導体装置A40は、半導体装置A10と共通する構成をとることにより、半導体装置A10と同等の効果を奏する。
 本開示に係る半導体装置および半導体装置の製造方法は、先述した実施形態に限定されるものではない。本開示に係る半導体装置の各部の具体的な構成、および、本開示に係る半導体装置の製造方法の各工程の具体的な処理は、種々に設計変更自在である。本開示は、以下の付記に記載された実施形態を含む。
 付記1.
 半導体素子(11)と、
 前記半導体素子を覆う封止樹脂(7)と、
 前記半導体素子に導通し、かつ、前記封止樹脂から厚さ方向(z方向)に直交する第1方向(x方向)に突出する端子(51)と、
 前記端子に配置されためっき層(25)と、
を備え、
 前記端子は、前記封止樹脂から突出した側の端面である先端面(511)、および、前記厚さ方向の第1側(z方向z2側)を向く第1面(512)と、前記先端面および前記第1面の両方から凹む凹部(513)と、を備え、
 前記めっき層は、前記凹部の少なくとも一部に配置された凹部めっき部(25a)を含んでいる、半導体装置。
 付記2.(図7)
 前記凹部の前記厚さ方向の第1寸法(T1)は、前記端子の前記第1面が位置する全厚部(514)の前記厚さ方向の第2寸法(T2)の1/4以上3/4以下である、付記1に記載の半導体装置。
 付記3.
 前記めっき層は、前記先端面の少なくとも一部に配置された先端めっき部(25b)を含んでいる、付記1または2に記載の半導体装置。
 付記4.(第4実施形態、図33)
 前記先端めっき部は、前記先端面の全面に配置されている、付記3に記載の半導体装置。
 付記5.(第2実施形態、図28、図29)
 前記先端めっき部は、前記先端面の前記第1側に位置する、付記3に記載の半導体装置。
 付記6.(第3実施形態、図31、図32)
 前記先端めっき部は、前記先端面の前記第1側とは反対側の第2側(z方向z1側)に位置する、付記3に記載の半導体装置。
 付記7.
 前記厚さ方向と前記第1方向とに直交する第2方向(y方向)において、前記凹部は、前記端子の全体に渡って延びている、付記1ないし6のいずれかに記載の半導体装置。
 付記8.(第1実施形態第1,2変形例、図22~図25)
 前記第1面は、前記先端面につながっている、付記1ないし6のいずれかに記載の半導体装置。
 付記9.(第1実施形態第3変形例、図27)
 前記端子の、前記厚さ方向と前記第1方向とに直交する第2方向の寸法は、前記第1面が位置する部分より、前記凹部が位置する部分の方が大きい、付記1ないし8のいずれかに記載の半導体装置。
 付記10.(図9)
 前記端子は、前記厚さ方向の前記第1側に屈曲する第1屈曲部(516)をさらに備え、
 前記第1屈曲部の内側の面の曲率半径の最小値(R1)は、前記端子の前記第1面が位置する全厚部の前記厚さ方向の第2寸法(T2)以上である、付記1ないし9のいずれかに記載の半導体装置。
 付記11.(図9)
 前記端子は、前記第1屈曲部と前記先端面との間に位置する第2屈曲部(517)をさらに備え、
 前記第2屈曲部の内側の面の曲率半径の最小値(R2)は、前記第2寸法以上である、付記10に記載の半導体装置。
 付記12.
 前記めっき層はSnを含んでいる、付記1ないし11のいずれかに記載の半導体装置。
 付記13.
 厚さ方向の第1側を向く第1面と、前記第1面から前記厚さ方向に凹む凹部と、を有する端子部分を含むリードフレームを準備する工程と、
 前記端子部分にめっき層を形成する工程と、
 切断金型により、前記端子部分を前記凹部と交差する切断線に沿って切断する工程と、を備えている、半導体装置の製造方法。
 付記14.
 前記切断金型は、カットダイおよびカットポンチを備え、
 前記カットポンチは、前記第1側から前記端子部分を切断する、付記13に記載の半導体装置の製造方法。
 付記15.
 前記切断金型は、カットダイおよびカットポンチを備え、
 前記カットポンチは、前記厚さ方向において前記第1側とは反対側の第2側から前記端子部分を切断する、付記13に記載の半導体装置の製造方法。
 付記16.
 前記カットポンチは、前記端子部分を切断する第1エッジ部を備え、
 前記第1エッジ部は、曲面を有している、付記14または15に記載の半導体装置の製造方法。
 付記17.(図17)
 前記切断する工程の前に、フォーミング金型(86)により、前記端子部分を屈曲させる工程をさらに備え、
 前記フォーミング金型は、フォーミングダイ(861)およびフォーミングポンチ(862)を備え、
 前記フォーミングダイの肩部(861a)の曲率半径の最小値(R3)は、前記リードフレームの前記厚さ方向の寸法(T2)以上である、付記13ないし16のいずれかに記載の半導体装置の製造方法。
 付記18.(図17)
 前記フォーミングポンチの肩部(862a)の曲率半径の最小値(R4)は、前記リードフレームの前記厚さ方向の寸法以上である、付記17に記載の半導体装置の製造方法。
A10,A11,A12,A13,A20,A30,A40:半導体装置
11:第1半導体素子    111:素子主面
112:素子裏面    11A:電極
12:第2半導体素子    121:素子主面
122:素子裏面    12A:電極
13:絶縁素子    131:素子主面
132:素子裏面    13A:第1電極
13B:第2電極    19:導電性接合材
25:めっき層    25a:凹部めっき部
25b:先端めっき部    2:導電部材
3:第1ダイパッド    31:主面
32:裏面    4:第2ダイパッド
41:主面    42:裏面
51,51a,51b:第1端子    511:先端面
511c:バリ    512:底面
513:凹部    514:全厚部
515:上面    516:第1屈曲部
517:第2屈曲部    53:パッド部
54:接続部    52,52a,52b:第2端子
521:先端面    521c:バリ
522:底面    523:凹部
524:全厚部    525:上面
526:第1屈曲部    527:第2屈曲部
55:パッド部    56:接続部
61~64:ワイヤ    7:封止樹脂
71:樹脂頂面    72:樹脂底面
73~76:樹脂側面    731:樹脂第1領域
732:樹脂第2領域    733:樹脂第3領域
741:樹脂第4領域    742:樹脂第5領域
743:樹脂第6領域    751:樹脂第7領域
752:樹脂第8領域    753:樹脂第9領域
761:樹脂第10領域    762:樹脂第11領域
763:樹脂第12領域    81:リードフレーム
81A:主面    81B:裏面
811:外枠    812A:第1ダイパッド
812B:第2ダイパッド    813:第1リード
813a:端子部分    813b:凹部
813c:第1屈曲部    813d:第2屈曲部
814:第2リード    814a:端子部分
814b:凹部    814c:第1屈曲部
814d:第2屈曲部    815:接続部
816:ダムバー    85:切断金型
851:カットダイ    851a:エッジ部
852:カットポンチ    852a:エッジ部
853:ストリッパブロック    86:フォーミング金型
861:ダイブロック    861a:肩部
862:ポンチ    862a:肩部
863:ストリッパブロック    9:配線基板
95:はんだ

Claims (18)

  1.  半導体素子と、
     前記半導体素子を覆う封止樹脂と、
     前記半導体素子に導通し、かつ、前記封止樹脂から厚さ方向に直交する第1方向に突出する端子と、
     前記端子に配置されためっき層と、
    を備え、
     前記端子は、前記封止樹脂から突出した側の端面である先端面、および、前記厚さ方向の第1側を向く第1面と、前記先端面および前記第1面の両方から凹む凹部と、を備え、
     前記めっき層は、前記凹部の少なくとも一部に配置された凹部めっき部を含んでいる、半導体装置。
  2.  前記凹部の前記厚さ方向の第1寸法は、前記端子の前記第1面が位置する全厚部の前記厚さ方向の第2寸法の1/4以上3/4以下である、請求項1に記載の半導体装置。
  3.  前記めっき層は、前記先端面の少なくとも一部に配置された先端めっき部を含んでいる、請求項1または2に記載の半導体装置。
  4.  前記先端めっき部は、前記先端面の全面に配置されている、請求項3に記載の半導体装置。
  5.  前記先端めっき部は、前記先端面の前記第1側に位置する、請求項3に記載の半導体装置。
  6.  前記先端めっき部は、前記先端面の前記第1側とは反対側の第2側に位置する、請求項3に記載の半導体装置。
  7.  前記厚さ方向と前記第1方向とに直交する第2方向において、前記凹部は、前記端子の全体に渡って延びている、請求項1ないし6のいずれかに記載の半導体装置。
  8.  前記第1面は、前記先端面につながっている、請求項1ないし6のいずれかに記載の半導体装置。
  9.  前記端子の、前記厚さ方向と前記第1方向とに直交する第2方向の寸法は、前記第1面が位置する部分より、前記凹部が位置する部分の方が大きい、請求項1ないし8のいずれかに記載の半導体装置。
  10.  前記端子は、前記厚さ方向の前記第1側に屈曲する第1屈曲部をさらに備え、
     前記第1屈曲部の内側の面の曲率半径の最小値は、前記端子の前記第1面が位置する全厚部の前記厚さ方向の第2寸法以上である、請求項1ないし9のいずれかに記載の半導体装置。
  11.  前記端子は、前記第1屈曲部と前記先端面との間に位置する第2屈曲部をさらに備え、
     前記第2屈曲部の内側の面の曲率半径の最小値は、前記第2寸法以上である、請求項10に記載の半導体装置。
  12.  前記めっき層はSnを含んでいる、請求項1ないし11のいずれかに記載の半導体装置。
  13.  厚さ方向の第1側を向く第1面と、前記第1面から前記厚さ方向に凹む凹部と、を有する端子部分を含むリードフレームを準備する工程と、
     前記端子部分にめっき層を形成する工程と、
     切断金型により、前記端子部分を前記凹部と交差する切断線に沿って切断する工程と、を備えている、半導体装置の製造方法。
  14.  前記切断金型は、カットダイおよびカットポンチを備え、
     前記カットポンチは、前記第1側から前記端子部分を切断する、請求項13に記載の半導体装置の製造方法。
  15.  前記切断金型は、カットダイおよびカットポンチを備え、
     前記カットポンチは、前記厚さ方向において前記第1側とは反対側の第2側から前記端子部分を切断する、請求項13に記載の半導体装置の製造方法。
  16.  前記カットポンチは、前記端子部分を切断する第1エッジ部を備え、
     前記第1エッジ部は、曲面を有している、請求項14または15に記載の半導体装置の製造方法。
  17.  前記切断する工程の前に、フォーミング金型により、前記端子部分を屈曲させる工程をさらに備え、
     前記フォーミング金型は、フォーミングダイおよびフォーミングポンチを備え、
     前記フォーミングダイの肩部の曲率半径の最小値は、前記リードフレームの前記厚さ方向の寸法以上である、請求項13ないし16のいずれかに記載の半導体装置の製造方法。
  18.  前記フォーミングポンチの肩部の曲率半径の最小値は、前記リードフレームの前記厚さ方向の寸法以上である、請求項17に記載の半導体装置の製造方法。
PCT/JP2023/016432 2022-05-13 2023-04-26 半導体装置、および、半導体装置の製造方法 WO2023218959A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022079839 2022-05-13
JP2022-079839 2022-05-13
JP2023-068389 2023-04-19
JP2023068389 2023-04-19

Publications (1)

Publication Number Publication Date
WO2023218959A1 true WO2023218959A1 (ja) 2023-11-16

Family

ID=88730381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016432 WO2023218959A1 (ja) 2022-05-13 2023-04-26 半導体装置、および、半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2023218959A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134852A (ja) * 1990-09-27 1992-05-08 Dainippon Printing Co Ltd リードフレーム
JP2005209999A (ja) * 2004-01-26 2005-08-04 Ricoh Co Ltd 半導体装置及びリードフレーム、並びに半導体装置の製造方法
WO2006109566A1 (ja) * 2005-04-08 2006-10-19 Rohm Co., Ltd. 半導体装置
JP2016051734A (ja) * 2014-08-28 2016-04-11 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134852A (ja) * 1990-09-27 1992-05-08 Dainippon Printing Co Ltd リードフレーム
JP2005209999A (ja) * 2004-01-26 2005-08-04 Ricoh Co Ltd 半導体装置及びリードフレーム、並びに半導体装置の製造方法
WO2006109566A1 (ja) * 2005-04-08 2006-10-19 Rohm Co., Ltd. 半導体装置
JP2016051734A (ja) * 2014-08-28 2016-04-11 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Similar Documents

Publication Publication Date Title
US10770380B2 (en) Semiconductor device and method for manufacturing semiconductor device
US20050218494A1 (en) Semiconductor device, a method of manufacturing the same and an electronic device
TW200522328A (en) Semiconductor device and manufacturing method thereof
JPWO2012053205A1 (ja) 半導体装置およびその製造方法
CN102903693A (zh) 功率器件封装模块及其制造方法
JP2022055599A (ja) 半導体装置
WO2022054550A1 (ja) 半導体装置
WO2022145177A1 (ja) 半導体装置
JP7399995B2 (ja) 半導体装置
WO2023218959A1 (ja) 半導体装置、および、半導体装置の製造方法
JP2008016469A (ja) 半導体装置
WO2022137996A1 (ja) 半導体装置
WO2023218941A1 (ja) 半導体装置、および、半導体装置の製造方法
WO2022085394A1 (ja) 半導体装置
TWI495072B (zh) 半導體裝置
JP5564369B2 (ja) リードフレーム、半導体装置及びその製造方法
US10818581B2 (en) Method of manufacturing semiconductor device and semiconductor device
JP6718540B2 (ja) 半導体装置
JP7074046B2 (ja) 半導体装置とその製造方法
WO2022158304A1 (ja) 半導体装置
JP2004140156A (ja) パッケージ型電子部品におけるリード端子の切断方法
WO2023140042A1 (ja) 半導体装置
JP5613100B2 (ja) 半導体装置の製造方法
JP6967335B2 (ja) 半導体装置
JP4329187B2 (ja) 半導体素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803438

Country of ref document: EP

Kind code of ref document: A1