WO2023216223A1 - 电芯、电池单体、电池和用电设备 - Google Patents

电芯、电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2023216223A1
WO2023216223A1 PCT/CN2022/092642 CN2022092642W WO2023216223A1 WO 2023216223 A1 WO2023216223 A1 WO 2023216223A1 CN 2022092642 W CN2022092642 W CN 2022092642W WO 2023216223 A1 WO2023216223 A1 WO 2023216223A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
battery core
battery
coating layer
layer
Prior art date
Application number
PCT/CN2022/092642
Other languages
English (en)
French (fr)
Inventor
唐怀超
彭龙庆
李婷
陈黔军
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280043269.0A priority Critical patent/CN117501519A/zh
Priority to PCT/CN2022/092642 priority patent/WO2023216223A1/zh
Publication of WO2023216223A1 publication Critical patent/WO2023216223A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/122Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of battery technology, and in particular, to a battery core, a battery cell, a battery and an electrical device.
  • Batteries especially lithium-ion secondary batteries, are widely used in electric equipment such as battery cars, electric vehicles, electric toys, and power tools.
  • the electrode assembly of the battery cell is usually covered with a layer of Mylar diaphragm to strengthen the insulation before the battery core is put into the case.
  • the Mylar diaphragm will increase the thickness of the entire battery core and reduce the energy density.
  • the Mylar diaphragm has poor fixation, is prone to aging, and is prone to insulation failure, posing safety risks.
  • the present disclosure provides an electric core, a battery cell, a battery and an electrical device, aiming to improve the energy density and safety performance of the battery cell.
  • a first aspect of the present disclosure provides a battery core, which includes a battery core body.
  • the battery core body includes at least one electrode assembly, and the battery core body has two oppositely arranged end surfaces and a battery core side surface connected between the two end surfaces.
  • the tabs of an electrode assembly are led out from at least one of the two end surfaces, wherein the battery core also includes a battery core protective layer, the battery core protective layer covers at least part of the side of the battery core body, and the battery core protective layer includes an inorganic coating layer Or organic-inorganic composite structure coating layer.
  • the battery core protective layer of the battery core body includes an inorganic coating layer or an organic-inorganic composite structure coating layer
  • the inorganic coating layer or organic-inorganic composite structure coating layer forms a uniform, dense, high-strength, small-thickness film, which is conducive to blocking
  • the particles in the casing of the battery cell pierce the separator of the electrode assembly of the battery cell, thereby helping to avoid short circuits caused by overlapping between the pole pieces of the electrode assembly or between the pole pieces and the casing of the battery cell, causing battery cell failure.
  • Improve safety performance improve safety performance.
  • the Mylar diaphragm in the related technology can be eliminated, thereby reducing the overall thickness of the electrode assembly and the battery core, and correspondingly increasing the energy density.
  • the battery core protective layer with an inorganic coating layer or an organic-inorganic composite structure coating layer can prevent particles in the case from puncturing the separator of the electrode assembly, compared with related technologies, it can increase the mechanical strength of the outer separator and prevent the outer layer from breaking.
  • the safety hazard caused by damage can also reduce the overall thickness of the electrode assembly and battery core, and accordingly increase the energy density.
  • the battery core side includes a first side and a second side that are oppositely arranged and a third side and a fourth side that are oppositely arranged.
  • the third side and the fourth side are respectively connected to the first side and the second side. side, and the area of the first side and the second side is greater than the area of the third side and the fourth side
  • the battery core protective layer includes a first protective layer and a second protective layer, the first protective layer is disposed on the first side, The two protective layers are arranged on the second side.
  • the first side and the second side of the battery cell body are the large surface of the battery core.
  • the large surface of the battery core is closer to the inner wall of the housing 22 of the battery cell 20 and is closer to the inner wall of the housing body 221.
  • the area where physical contact may occur is larger, so the risk of a short circuit between the pole pieces corresponding to the large surface of the battery core and the case body 221 is greater than that of the pole pieces corresponding to the rest of the side of the battery core.
  • a first protective layer and a second protective layer are respectively provided on the first side and the second side of the battery core, which is conducive to more effective protection of the battery core body and can reduce the risk of particles in the housing piercing the separator.
  • the battery core protection layer further includes a third protection layer and a fourth protection layer, the third protection layer is disposed on the third side, and the fourth protection layer is disposed on the fourth side.
  • Providing a third protective layer and a fourth protective layer respectively on the third side and the fourth side of the battery cell body can provide more effective and comprehensive protection to the battery cell body, which is helpful to further reduce the risk of particles in the casing piercing the separator.
  • the thickness of the first protective layer and the second protective layer is less than the thickness of the third protective layer and the fourth protective layer; or the thickness of the first protective layer and the second protective layer is greater than the thickness of the third protective layer. and the thickness of the fourth protective layer; or the thicknesses of the first protective layer, the second protective layer, the third protective layer and the fourth protective layer are equal.
  • the thickness of the first protective layer and the second protective layer is smaller than the thickness of the third protective layer and the fourth protective layer.
  • the battery core will expand with use, and the expansion force mainly acts between the large surface of the battery core and the casing, making the thickness of the first protective layer and the second protective layer greater than the thickness of the third protective layer and the fourth protective layer.
  • the protection of the large surface of the battery core has been strengthened to prevent insulation failure of the battery core protective layer due to the expansion force of the battery core.
  • the thicknesses of the first protective layer, the second protective layer, the third protective layer and the fourth protective layer are set to be equal, when the battery core protective layer is formed, such as when the battery core protective layer is formed by vapor deposition, the entire battery core can be protected.
  • the sides are covered with a battery core protective layer to improve the manufacturing efficiency of the battery cells.
  • the inorganic material coating layer or the organic-inorganic composite structure coating layer is directly attached to the battery core body.
  • the mylar diaphragm In the related technology of arranging a mylar diaphragm outside the battery core body, the mylar diaphragm is placed outside the battery core body, but is not closely connected with the electrode assembly. It is easy to move relative to the electrode assembly, and there is a risk of insulation protection failure. , the inorganic material coating layer or the organic-inorganic composite structure coating layer is directly attached to the battery core body, and the relative position with the battery core body is stable, which is conducive to ensuring protective performance.
  • the inorganic material coating layer or the organic-inorganic composite structure coating layer of the battery core protective layer is formed into an integrated structure through vapor deposition, spraying or sputtering.
  • nano-scale and micron-scale inorganic coatings or organic-inorganic composite structure coatings can be formed through vapor deposition, which is beneficial to the film formation to be more uniform, dense, high-strength, and small in thickness, and is conducive to effectively blocking particles from puncturing the membrane.
  • the thickness of the inorganic material coating layer or the organic-inorganic composite structure coating layer is 0.01 ⁇ m-1000 ⁇ m. In the battery core of some embodiments, the thickness of the inorganic material coating layer or the organic-inorganic composite structure coating layer is 0.05 ⁇ m-5 ⁇ m.
  • Properly setting the thickness of the inorganic material coating layer or the organic-inorganic composite structure coating layer can not only effectively protect the battery core body, but also prevent the waste of materials and processing time, save production costs and improve production efficiency.
  • a second aspect of the present disclosure provides a battery cell, which includes the battery core and the casing of the first aspect of the present disclosure.
  • the casing includes a casing main body, the battery core is located in the accommodation space of the casing main body, and the battery core has a cell protective layer. Opposite to the inner wall of the housing body.
  • the battery core protective layer is arranged between the battery core body and the inner wall of the casing main body, which is beneficial to blocking the battery core body and the casing main body, preventing short circuits between the pole pieces of the battery core body and the casing main body, and improving the efficiency of the battery core and its location. battery safety.
  • the cell protective layer of the battery core is fixedly connected to the inner wall of the casing main body; or the casing further includes a casing protective layer disposed on the inner wall of the casing main body, and the casing protective layer is connected to the inner wall of the casing main body.
  • the battery core protective layers are arranged at relative intervals, and the shell protective layer includes an inorganic material coating layer or an organic-inorganic composite structure coating layer.
  • the battery core protective layer of the battery core When the battery core protective layer of the battery core is fixedly connected to the inner wall of the housing body, the battery core protective layer is filled between the battery core body and the housing body.
  • the battery core body and the housing body are relatively fixed, which is beneficial to preventing particles from entering the battery.
  • the main body of the core helps block particles from puncturing the membrane and improves the protective effect.
  • the casing includes a casing protective layer disposed on the inner wall of the casing main body.
  • the casing protective layer and the battery core protective layer are relatively spaced apart.
  • the casing protective layer includes an inorganic material coating layer or an organic-inorganic composite structure coating layer, which is beneficial to Realize insulation protection between the case body and the battery core body, effectively preventing short circuits between the case body and the pole pieces of the battery core body.
  • the inorganic material coating layer or the organic-inorganic composite structure coating layer of the cell protective layer is formed between the cell body and the inner wall of the case body through vapor deposition; or the cell protective layer
  • the inorganic material coating layer or organic-inorganic composite structure coating layer and the case protective layer are formed simultaneously between the battery core body and the inner wall of the case body through vapor deposition.
  • the inorganic material coating layer or organic-inorganic composite structure coating layer that forms the battery core protective layer between the battery core body and the inner wall of the case body is formed by vapor deposition, or the inorganic material coating layer or organic-inorganic material coating layer that simultaneously forms the battery core protective layer
  • the inorganic material coating layer or the organic-inorganic composite structure coating layer of the composite structure coating layer and the shell protective layer can form the inorganic coating layer or the organic-inorganic composite structure coating layer of the nano-scale and micron-scale battery core protective layer;
  • the inorganic material coating layer or organic-inorganic composite structure coating layer of the shell protective layer is conducive to the formation of a more uniform, dense, high-strength, small-thickness film, which is conducive to effectively blocking particles from puncturing the membrane.
  • the cell protective layer fills the gap between the side surfaces of the cell body and the inner wall of the case body.
  • the battery core protective layer fills the gap between the side surface of the battery core body and the inner wall of the housing body, it can prevent particles from moving in the gap between the side surface of the battery core body and the inner wall of the housing body, which helps prevent particles from puncturing the separator. .
  • a third aspect of the present disclosure provides a battery, including the battery cell element of the second aspect of the present disclosure.
  • the battery of the present disclosure has the advantages of the battery cell of the present disclosure.
  • a fourth aspect of the disclosure provides an electrical device.
  • the electrical device includes the battery of the third aspect of the disclosure.
  • the battery is used to provide power to the electrical device.
  • the electrical equipment of the present disclosure has the advantages of the battery of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a vehicle as an electrical device according to an embodiment of the present disclosure.
  • Figure 2 is a schematic structural diagram of a battery according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of the exploded structure of a battery cell in a battery according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional structural view of the battery cell in the embodiment shown in FIG. 3 .
  • FIG. 5 is an exploded structural diagram of a battery cell in a battery according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional structural view of the battery cell in the embodiment shown in FIG. 5 .
  • FIG. 7 is a schematic cross-sectional structural diagram of a battery cell according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional structural diagram of a battery cell according to an embodiment of the present disclosure.
  • Figure 9 is a schematic cross-sectional structural diagram of a battery cell according to an embodiment of the present disclosure.
  • Figure 10 is a schematic cross-sectional structural diagram of a battery cell according to an embodiment of the present disclosure.
  • Figure 11 is a schematic cross-sectional structural diagram of a battery cell according to an embodiment of the present disclosure.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • the Mylar diaphragm is thicker, taking up space and reducing the energy density of the battery;
  • the Mylar diaphragm is usually fixed by bonding with the lower plastic.
  • the Mylar diaphragm will fall off after being soaked in the electrolyte, causing the Mylar diaphragm to not cover the electrode assembly well, causing the electrode assembly and the battery cell casing to be damaged. Contact may occur, posing safety risks;
  • the Mylar diaphragm will age. When the Mylar diaphragm ages, it may rupture and the insulation will fail at the rupture.
  • the inventor provides a battery core, a battery cell, a battery and electrical equipment.
  • the protective layer covers at least part of the sides of the battery core body.
  • the protective layer is closely combined with the outer surface of the battery cell body, which can improve the performance of the battery cell. Technical effects of energy density and safety.
  • Embodiments of the present disclosure provide an electrical device that uses a battery as a power source, and the battery is configured to provide electric energy to the electrical device.
  • Electrical devices can be, but are not limited to, mobile phones, portable devices, laptops, battery cars, electric cars, ships, spacecraft, electric toys and power tools, etc.
  • spacecraft include airplanes, rockets, space shuttles and spaceships, etc.
  • Electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • Electric tools include metal cutting power tools, grinding power tools, assembly power tools and railway tools. Power tools such as power drills, power grinders, power wrenches, power screwdrivers, hammers, impact drills, concrete vibrators, and planers.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module that includes one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell mainly includes electrode components and electrolyte.
  • the electrode components are composed of positive electrode sheets, negative electrode sheets and isolation membranes. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode current collector that is coated with the positive electrode active material layer.
  • the cathode current collector without coating the cathode active material layer serves as the cathode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode current collector that is coated with the negative electrode active material layer.
  • the negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode lugs is multiple and stacked together, and the number of negative electrode lugs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • vehicle D in some embodiments of the present disclosure as an example.
  • Figure 1 is a schematic structural diagram of a vehicle D provided by some embodiments of the present disclosure.
  • Vehicle D can be a fuel vehicle, a gas vehicle, or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle, or a range-extended vehicle.
  • Vehicle D is provided with battery B inside, and battery B can be placed at the bottom, head, or tail of vehicle D. Battery B may be used to power vehicle D, for example, as the operating power source of vehicle D.
  • battery B can not only be used as an operating power source of vehicle D, but also can be used as a driving power source of vehicle D, replacing or partially replacing fuel or natural gas to provide driving power for vehicle D.
  • Figure 2 is an exploded view of battery B provided by some embodiments of the present disclosure.
  • Battery B includes a case 1 and battery cells 20 accommodated in the case 1 .
  • the box body 1 includes a box shell 11 and a box cover 12 that is fastened to the box shell 11 .
  • the box body 1 is used to provide an accommodation space for the battery cells 20 .
  • the box 1 is a rectangular parallelepiped as a whole. In embodiments not shown in the figures, the box 1 can also be in other shapes, such as a cylinder.
  • battery B there are a plurality of battery cells 20, and the plurality of battery cells 20 can be connected in series, in parallel, or in a mixed manner.
  • Mixed connection means that multiple battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 is accommodated in the box 1 .
  • battery B may be composed of multiple battery cells 20 connected in series, parallel, or mixed to form a battery pack 2 .
  • the battery pack 2 may be in the form of a battery module.
  • a plurality of battery packs 2 are connected in series, parallel or mixed to form a whole, and are accommodated in the box 1 .
  • Battery B may also include other structures.
  • battery B may also include a bus component for realizing electrical connections between multiple battery cells 20 .
  • a battery cell mainly includes a battery core, a casing and an end cap assembly.
  • the battery core may include one or two or more electrode components.
  • the battery core is sealed in the accommodation space of the housing through the end cover of the end cover assembly, and the accommodation space is filled with electrolyte.
  • the electrode assembly is arranged in the accommodation space of the housing.
  • the electrode assembly is the component in the battery cell where electrochemical reactions occur.
  • the electrode assembly may be of a rolled structure.
  • the strip-shaped first pole piece, separator and second pole piece are sequentially stacked and wound more than two times to form an electrode assembly, and the electrode assembly can be in a flat shape.
  • the electrode assembly can be directly rolled into a flat shape, so that the electrode assembly has a roughly hexahedral structure, or it can be rolled into a hollow cylindrical structure first, and then flattened into a flat shape after being rolled.
  • the flat surface is approximately parallel to the winding axis and is the outer surface with the largest area.
  • a flat surface can be a relatively flat surface and does not need to be a pure plane.
  • the electrode assembly may also have a laminated structure, that is, the electrode assembly includes a plurality of first pole pieces and a plurality of second pole pieces, and the separator is disposed between the first pole pieces and the second pole pieces.
  • the first pole piece and the second pole piece are stacked.
  • the casing is a component used to provide an accommodation space for accommodating the electrode assembly, electrolyte, and other components therein.
  • the housing can be of various shapes and sizes, such as cuboid, cylinder, hexagonal prism, etc. Specifically, the shape of the housing can be determined according to the specific shape and size of the electrode assembly.
  • the material of the shell can be selected from copper, iron, aluminum, stainless steel, aluminum alloy, plastic and other materials.
  • the end cap refers to a component that covers the opening of the casing to isolate the internal environment of the battery cell from the external environment.
  • the shape of the end cap can be adapted to the shape of the housing to fit the housing.
  • the end cap can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap is less likely to deform when subjected to extrusion and collision, allowing the battery cell to have higher structural strength. Safety features could also be improved.
  • Functional components such as electrode terminals can be provided on the end cap. The electrode terminal may be used to electrically connect with the electrode assembly for outputting or inputting electrical energy of the battery cell.
  • the end cap may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold value.
  • the pressure relief mechanism is, for example, an explosion-proof valve.
  • the explosion-proof valve is usually provided on the end cover of the battery cell.
  • the explosion-proof valve can be, for example, a part of the flat surface of the end cover, or it can be welded to the flat surface of the end cover.
  • the end cap can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not limited in the embodiments of the present disclosure.
  • the housing and the end cover may be independent components.
  • the housing is provided with an opening, and the end cover covers the opening at the opening to form an internal environment of the battery cell.
  • the end cover and the shell can also be integrated.
  • the end cover and the shell can form a common connection surface before other components are installed into the shell.
  • an insulating member may be provided inside the end cover, and the insulating member may be used to isolate the electrical connection components in the case from the end cover to reduce the risk of short circuit.
  • the insulating member may be an insulating plate, which may be made of plastic, rubber, or other materials.
  • the embodiment of the present disclosure provides a battery core 23, which includes a battery core body 231.
  • the battery core body 231 includes at least one electrode assembly and has two oppositely arranged end surfaces 231A and 231B and is connected to The cell side between the two end faces 231A and 231B.
  • the tabs of the electrode assembly are led out from at least one of the two end surfaces 231A and 231B.
  • the battery core 23 also includes a battery core protective layer 232 .
  • the battery core protection layer 232 covers at least part of the side of the battery core body 231, and the battery core protection layer 232 includes an inorganic coating layer or an organic-inorganic composite structure coating layer.
  • the cell protective layer 232 of the cell body 231 includes an inorganic coating layer or an organic-inorganic composite structure coating layer
  • the inorganic coating layer or the organic-inorganic composite structure coating layer forms a uniform, dense, high-strength, small-thickness film, which is beneficial to Block the particles in the casing 22 of the battery cell 20 from puncturing the separator of the electrode assembly of the battery cell 23, thereby helping to avoid overlapping between the pole pieces of the electrode assembly or between the pole pieces and the casing 22 of the battery cell 20 It can lead to short circuit and battery core failure and improve safety performance.
  • the Mylar diaphragm in the related art can be eliminated, thereby reducing the overall thickness of the electrode assembly and the battery core, and correspondingly increasing the energy density. .
  • the battery core protective layer with an inorganic coating layer or an organic-inorganic composite structure coating layer can prevent particles in the case from puncturing the separator of the electrode assembly, compared with related technologies, it is possible to eliminate the need to coat ceramic particles or deposit inorganic materials on the surface of the separator. material, thereby reducing the overall thickness of the electrode assembly and battery core, and correspondingly increasing the energy density.
  • the inorganic coating layer may include, for example, an aluminum oxide coating layer, a silicon oxide coating layer, a zirconium oxide coating layer, a hafnium oxide coating layer, a titanium oxide coating layer, a magnesium oxide coating layer, a zinc oxide coating layer, At least one of a stone coating layer, an aluminum hydroxide coating layer, a magnesium hydroxide coating layer, and a lithium fluoride coating layer.
  • the organic-inorganic composite structure coating layer can be formed by hybridizing organic and inorganic materials, or can be arranged in layers.
  • the coating layer of the organic-inorganic composite structure is arranged in layers, it can be a combination of a single organic coating layer and a single inorganic coating layer, a single organic coating layer and multiple inorganic coating layers, or a combination of multiple organic coating layers and a single inorganic coating layer.
  • the coating layer is compounded or multiple organic coating layers are compounded with multiple inorganic coating layers.
  • the materials of each organic coating layer can be the same or different.
  • the materials of each inorganic coating layer The materials of the layers can be the same or different.
  • the battery core side surfaces include a first side surface 231C and a second side surface 231D that are positioned opposite each other, and a third side surface 231E and a fourth side surface 231F that are positioned opposite each other.
  • the third side 231E and the fourth side 231F respectively connect the first side 231C and the second side 231D, and the areas of the first side 231C and the second side 231D are larger than the areas of the third side 231E and the fourth side 231F.
  • the cell protection layer 232 includes a first protection layer 2321 and a second protection layer 2322.
  • the first protective layer 2321 is provided on the first side 231C; the second protective layer 2322 is provided on the second side 231D.
  • the first side 231C and the second side 231D of the battery cell body 231 are the large surfaces of the battery cells.
  • the large surface of the battery cells is close to the inner wall of the housing body 221 of the housing 22 of the battery cell 20 and can be connected to the inner wall of the housing body 221 of the battery cell 20 .
  • the inner wall of the case body 221 has a larger area where physical contact may occur. Therefore, the risk of a short circuit between the pole pieces corresponding to the large surface of the battery core and the case body 221 is greater than that of the pole pieces corresponding to the rest of the side of the battery core.
  • the first protective layer 2321 and the second protective layer 2322 are respectively provided on the first side 231C and the second side 231D of the battery core body 231, which is conducive to more effective protection of the battery core body 231 and effectively reduces the size of the casing 22 Risk of inner particles piercing the septum.
  • the battery core protection layer 232 further includes a third protection layer 2323 and a fourth protection layer 2324 .
  • the third protective layer 2323 is provided on the third side 231E; the fourth protective layer 2324 is provided on the fourth side 231F.
  • gaps will occur between the Mylar diaphragm outside the cell body and the case body, especially when there are multiple electrode assemblies. Particles, metal wires, etc. in these gaps may cause irritation. Broken diaphragm, creating risk of short circuit.
  • Providing the third protective layer 2323 and the fourth protective layer 2324 respectively on the third side 231E and the fourth side 231F of the battery core body 231 can provide more effective and comprehensive protection for the battery core body 231 , which is beneficial to further reducing the internal pressure of the casing 22 . Risk of particles piercing the septum.
  • the thickness of the first protective layer 2321 and the second protective layer 2322 is greater than the thickness of the third protective layer 2323 and the fourth protective layer 2324; or as shown in Figure As shown in Figure 10, the thickness of the first protective layer 2321 and the second protective layer 2322 is greater than the thickness of the third protective layer 2323 and the fourth protective layer 2324; or as shown in Figure 11, the first protective layer 2321 and the second protective layer 2322 , the thicknesses of the third protective layer 2323 and the fourth protective layer 2324 are equal.
  • the thickness of the first protective layer 2321 and the second protective layer 2322 is greater than the thickness of the third protective layer 2323 and the fourth protective layer 2324.
  • the battery core protection is formed after the battery core body 231 is placed in the housing body 221 of the housing 22. When layer 232 is used, the gap between the first protective layer 2321 and the second protective layer 2322 and the case body 221 is completely filled with the battery core protective layer 232, thereby improving the protection effect of the large surface of the battery core.
  • the battery core 23 will expand with use, and the expansion force mainly acts between the large surface of the battery core and the casing 22, making the first protective layer 2321 and the second protective layer 2322 thicker than the third protective layer 2323 and the fourth protective layer.
  • the thickness of layer 2324 relatively strengthens the protection of the large surface of the battery core, and is conducive to preventing insulation failure of the battery core protective layer due to the influence of the expansion force of the battery core.
  • the thickness of the first protective layer 2321, the second protective layer 2322, the third protective layer 2323 and the fourth protective layer 2324 is set to be equal.
  • the battery core protective layer 232 can be formed by vapor deposition, for example. At this time, the entire battery core side is covered with the battery core protective layer 232, thereby improving the manufacturing efficiency of the battery core 23.
  • the inorganic material coating layer or the organic-inorganic composite structure coating layer is directly attached to the battery core body 231 .
  • the mylar diaphragm In the related technology of arranging a mylar diaphragm outside the battery core body, the mylar diaphragm is placed outside the battery core body 231, but is not closely connected with the electrode assembly, and is easy to move relative to the electrode assembly, causing insulation protection failure.
  • the inorganic material coating layer or the organic-inorganic composite structure coating layer is directly attached to the battery core body 231, and the relative position with the battery core body 231 is stable, which is conducive to ensuring the protective performance.
  • the inorganic coating layer or the organic-inorganic composite structure coating layer is formed into an integrated structure by vapor deposition, spraying or sputtering.
  • an integrated inorganic coating layer or an organic-inorganic composite structure coating layer through vapor deposition, spraying or sputtering is beneficial to the uniformity, density and integrity of the coating layer, resulting in higher strength.
  • nano-scale and micron-scale inorganic coatings or organic-inorganic composite structure coatings can be formed through vapor deposition, which is beneficial to the film formation to be more uniform, dense, high-strength, and small in thickness, and is conducive to effectively blocking particles from puncturing the membrane.
  • the thickness of the inorganic coating layer or the organic-inorganic composite structure coating layer is 0.01 ⁇ m-1000 ⁇ m.
  • the thickness of the inorganic coating layer or the organic-inorganic composite structure coating layer is 0.05 ⁇ m-5 ⁇ m.
  • Properly setting the thickness of the inorganic coating layer or the organic-inorganic composite structure coating layer can effectively protect the battery core body 231, prevent waste of materials and processing time, save production costs, and improve production efficiency.
  • an embodiment of the present disclosure also provides a battery, including a battery core 23 and a casing 22 of the embodiment of the present disclosure.
  • the housing 22 includes a housing body 221 , the battery core 23 is located in the accommodation space of the housing body 221 , and the battery core protective layer 232 of the battery core 23 is opposite to the inner wall of the housing body 221 .
  • the battery core protective layer 232 is disposed between the battery core body 231 and the inner wall of the casing main body 221, which is beneficial to blocking the battery core body 231 and the casing main body 221, and preventing short circuits between the pole pieces of the battery core body 231 and the casing main body 221. , improving the safety of the battery core 232 and the battery in which it is located.
  • the cell protective layer 232 of the cell 23 is fixedly connected to the inner wall of the housing body 221 .
  • the casing 22 also includes a casing protective layer 222 disposed on the inner wall of the casing main body 221 .
  • the casing protective layer 222 is relatively spaced apart from the battery core protective layer 232 It is provided that the shell protective layer 222 includes an inorganic material coating layer or an organic-inorganic composite structure coating layer.
  • the casing 22 also includes a casing protective layer 222 disposed on the inner wall of the casing main body 221.
  • the casing protective layer 222 is spaced apart from the battery core protective layer 232.
  • the casing protective layer 222 includes an inorganic material coating layer or an organic-inorganic material coating layer.
  • the composite structure coating layer is conducive to achieving insulation protection between the case body 221 and the cell body 231, and effectively prevents short circuits between the case body 221 and the pole pieces of the cell body 231.
  • the inorganic coating layer or the organic-inorganic composite structure coating layer of the cell protective layer 232 is formed between the cell body 231 and the inner wall of the case body 221 through vapor deposition; or the cell protective layer
  • the inorganic coating layer or organic-inorganic composite structure coating layer of 232 and the casing protective layer 222 are formed simultaneously on the battery core body 231 and the casing body 221 through vapor deposition. between inner walls.
  • the inorganic coating layer or the organic-inorganic composite structure coating layer of the battery core protective layer 232 is formed between the battery core body 231 and the inner wall of the housing body 221 by vapor deposition, or the inorganic material coating layer of the battery core protective layer 232 is formed simultaneously.
  • the inorganic material coating layer or the organic-inorganic composite structure coating layer of the organic-inorganic composite structure coating layer and the shell protective layer 222 can form a nano-scale and micron-scale inorganic material coating layer or an organic-inorganic composite structure coating layer.
  • the inorganic material coating layer or the organic-inorganic composite structure coating layer of the shell protective layer 222 it is beneficial to form a more uniform, dense, high-strength, small-thickness film, thereby helping to effectively block particles from puncturing the membrane.
  • the cell protective layer 232 fills the gap between the side surfaces of the cell body 231 and the inner wall of the case body 221 .
  • the battery core protective layer 232 fills the gap between the side surface of the battery core body 231 and the inner wall of the housing body 221, it can prevent particles from moving in the gap between the side surface of the battery core body 231 and the inner wall of the housing body 221, which is beneficial to Avoid particles piercing the septum.
  • An embodiment of the present disclosure also provides an electrical device.
  • the electrical device includes the battery of the embodiment of the present disclosure, and the battery is used to provide power to the electrical device.
  • the electrical equipment of the present disclosure has the advantages of the battery of the present disclosure.
  • the structure of the battery core 23 and the battery cell 20 in which the battery core 23 is located in some embodiments of the present disclosure will be described below with reference to FIGS. 3 to 11 .
  • the battery of the embodiment of the present disclosure includes the battery cell 20 of the embodiment of the present disclosure.
  • the battery cell 20 includes an end cover assembly 21 , a housing 22 and a battery core 23 .
  • the end cap assembly 21 includes an end cap 211 , a first electrode terminal 212 , a second electrode terminal 213 , an explosion-proof valve 214 and an insulating plate 215 .
  • the end cap 211 is used to cooperate with the casing 22 to encapsulate the first electrode assembly 2311 and the second electrode assembly 2312 in the sealed accommodation space formed by the end cap 211 and the casing 22 .
  • the first electrode terminal 212 is a positive terminal; the second electrode terminal 213 is a negative terminal.
  • the positive terminal and the negative terminal can be electrically connected to the tabs of the corresponding electrode components through connecting pieces (not shown) respectively.
  • the insulating plate 215 is arranged between the end cover 211 and the connecting piece to achieve insulation between the end cover 211 and each electrode assembly.
  • the battery core 23 includes a battery core body 231 and a battery core protective layer 232 .
  • the cell body 231 includes two electrode assemblies, namely a first electrode assembly 2311 and a second electrode assembly 2312.
  • the positive electrode tab 23111 of the first electrode assembly 2311 and the positive electrode tab 23121 of the second electrode assembly 2312 are electrically connected to the first electrode terminal 212 on the end cap 211 of the end cap assembly 21 .
  • the negative electrode tab 23112 of the first electrode assembly 2311 and the negative electrode tab 23122 of the second electrode assembly 2312 are connected to the second electrode terminal 213 on the end cap 211 of the end cap assembly 21 .
  • the cell body 231 of the cell 23 has two opposite end faces 231A and 231B and a cell side connected between the two end faces 231A and 231B.
  • the tabs 23111, 23112, 23121 and 23122 of the two electrode assemblies 2311 and 2312 are led out from the end surface 231A (the upper end surface in Figure 3).
  • the side surfaces of the cell include a first side surface 231C and a second side surface 231D that are positioned opposite each other, and a third side surface 231E and a fourth side surface 231F that are positioned opposite each other.
  • the third side 231E and the fourth side 231F connect the first side 231C and the second side 231D respectively.
  • the areas of the first side 231C and the second side 231D are larger than the areas of the third side 231E and the fourth side 231F, that is, the first side 231C and the second side 231D are the large surfaces of the battery cells of the battery body 231 .
  • the cell protective layer 232 is disposed on the side of the cell body 231 , and the cell protective layer 232 includes an inorganic coating layer or an organic-inorganic composite structure coating layer.
  • the housing 22 includes a housing body 221 , the battery core ( 23 ) is located in the accommodation space of the housing body ( 221 ), and the battery core protective layer 232 of the battery core 23 is opposite to the inner wall of the housing body 221 .
  • the cell protection layer 232 includes a first protection layer 2321 and a second protection layer 2322 .
  • the first protective layer 2321 is provided on the first side 231C
  • the second protective layer 2322 is provided on the second side 231D.
  • the battery core protective layer 232 of the battery core 23 is fixedly connected to the inner wall of the housing body 221 . That is, the sides of the first protective layer 2321 and the second protective layer 2322 away from the cell body 231 are respectively fixedly connected to the inner wall of the housing body 221 .
  • the battery core protective layer 232 only includes an inorganic coating layer.
  • the inorganic coating layer includes an alumina coating layer.
  • the inorganic cladding layer is formed by vapor deposition.
  • the first electrode assembly 2311 and the second electrode assembly 2312 of the battery core body 231 of this embodiment are both wound electrode assemblies.
  • One large surface of the first electrode assembly 2311 and the second electrode assembly 2312 are attached to each other.
  • the other large surface of the first electrode assembly 2311 forms the first side 231C of the cell body 231.
  • the other large surface of the second electrode assembly 2312 The second side 231D of the cell body 231 is formed.
  • the housing body 221 is an aluminum shell, and the cell protective layer 232 of the cell 23 is formed between the first side 231C and the second side 231D of the cell body 231 and the inner wall of the aluminum shell.
  • the cell protective layer 232 includes an equal gap thickness.
  • Insulating, high-strength first protective layer 2321 and second protective layer 2322, the first protective layer 2321 and the second protective layer 2322 block particles near the first side 231C and the second side 231D from penetrating the first electrode assembly 2311 and the separator of the second electrode assembly 2312, thereby improving the safety of the battery core 23.
  • the battery core 23 does not need to be provided with a Mylar diaphragm, and the separators of the first electrode assembly 2311 and the second electrode assembly 2312 do not need to be coated with ceramic particles or deposited with inorganic substances.
  • the cell protection layer 232 also includes a third protection layer 2323 and a fourth protection layer 2324.
  • the third protective layer 2323 is provided on the third side 231E; the fourth protective layer 2324 is provided on the fourth side 231F.
  • the battery core body 231 only includes one electrode assembly 231 .
  • the housing 22 also includes a housing protective layer 222 provided on the inner wall of the housing body 221 .
  • the casing protective layer 222 and the battery core protective layer 232 are relatively spaced apart.
  • the housing protective layer 222 includes an inorganic protective layer.
  • the inorganic coating layer of the cell protective layer 232 and the inorganic protective layer of the case protective layer 222 are simultaneously formed between the cell body 231 and the inner wall of the case body 221 through vapor deposition.
  • the housing protective layer 222 includes a first housing protective layer part 2221 opposite to the first protective layer 2321 and a second housing protective layer part 2222 opposite to the second protective layer 2322.
  • the battery core body 231 only includes one electrode assembly 231 .
  • the thickness of the first protective layer 2321 and the second protective layer 2322 is smaller than the thickness of the third protective layer 2323 and the fourth protective layer 2324 .
  • the thicknesses of the first protective layer 2321 and the second protective layer 2322 are equal to the thicknesses of the third protective layer 2323 and the fourth protective layer 2324 .
  • the aluminum oxide coating layer is used as an example to illustrate the case where the battery core protective layer 232 and the case protective layer 222 only include inorganic coating layers, as mentioned above, the above The alumina coating layer in each embodiment can be replaced with an inorganic coating layer of other materials. As far as the inorganic coating layer is concerned, it can also include an inorganic coating layer formed of different inorganic materials.
  • the alumina coating layer in each of the above embodiments The cladding may also be replaced by an organic-inorganic composite structural cladding consistent with that previously described.
  • the cell protective layer 232 and the case protective layer 222 (if any) of the cell 23 of the embodiment of the present disclosure may be formed by vapor deposition.
  • the cavity structure of the casing body 221 of the battery cell without liquid injection can be directly utilized, and the reactants are sequentially introduced into the casing body 221 containing the battery cell body 231 through the liquid injection holes, and finally generate There is a certain thickness of the cell protective layer 232 and the case protective layer 222 (if any).
  • the cells, batteries and electrical equipment of the embodiments of the present disclosure have at least one of the following advantages:
  • the battery core protective layer is located on the side of the battery core body and is filled between the battery core body and the inner wall of the casing body. It includes a uniform, dense and high-strength inorganic coating layer or an organic-inorganic composite structure coating layer, which helps to prevent particles in the casing. Puncturing the diaphragm of the electrode assembly causes overlap between the pole pieces and between the pole pieces and the inner wall of the aluminum shell, thereby helping to avoid internal short circuits that lead to cell failure.
  • the related technology Mylar diaphragm can be eliminated, simplifying the structure of the battery core.
  • the battery core protective layer and casing protective layer are formed by vapor deposition.
  • the film formation is uniform and dense, with good insulation and high-strength protective effects.
  • the preparation speed is fast and the efficiency is high. Mass production can be achieved.
  • Each protective layer The thickness and type of protective materials are controllable, and the generation of protective layer materials will not affect the performance of the battery core.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

提供一种电芯、电池单体、电池和用电设备。电芯包括电芯本体,电芯本体包括至少一个电极组件,且电芯本体具有相对设置的两个端面和连接于两个端面之间的电芯侧面,任一电极组件的极耳从两个端面中至少一个端面引出,其中,电芯还包括电芯防护层,电芯防护层覆盖至少部分电芯本体的侧面,并且电芯防护层包括无机包覆层或有机无机复合结构包覆层。该电芯利于降低电芯与壳体间的短路风险。电池单体包括该电芯,电池包括该电池单体,用电设备包括该电池。

Description

电芯、电池单体、电池和用电设备 技术领域
本公开涉及电池技术领域,特别是涉及一种电芯、电池单体、电池和用电设备。
背景技术
电池,尤其是锂离子二次电池被广泛地应用在电瓶车、电动汽车、电动玩具和电动工具等用电设备上。
相关技术中,为了防止电池单体中隔膜被颗粒刺破,通常在电芯入壳前会在电芯的电极组件外面包覆一层迈拉(Mylar)膜片,起到加强绝缘的作用,但是迈拉(Mylar)膜片会增加整个电芯的厚度,减少能量密度,并且迈拉(Mylar)膜片的固定性较差、容易老化,容易绝缘失效,存在安全隐患。
发明内容
本公开提供一种电芯、电池单体、电池和用电设备,旨在提高电池单体的能量密度和安全性能。
本公开第一方面提供一种电芯,包括电芯本体,电芯本体包括至少一个电极组件,且电芯本体具有相对设置的两个端面和连接于两个端面之间的电芯侧面,任一电极组件的极耳从两个端面中至少一个端面引出,其中,电芯还包括电芯防护层,电芯防护层覆盖至少部分电芯本体的侧面,并且电芯防护层包括无机包覆层或有机无机复合结构包覆层。
由于电芯本体的电芯防护层包括无机包覆层或有机无机复合结构包覆层,无机包覆层或有机无机复合结构包覆层成膜均匀、致密、强度高、厚度小,利于阻断电池单体的壳体内的颗粒刺破电芯的电极组件的隔膜,从而利于避免电极组件的极片与极片之间或极片与电池单体的壳体搭接导致短路而引起电芯失效,提高安全性能。
由于设置于具有无机包覆层或有机无机复合结构包覆层的电芯防护层,可以取消相关技术中的Mylar膜片,从而可以减少电极组件及电芯的整体厚度,相应地增加能量密度。
由于具有无机包覆层或有机无机复合结构包覆层的电芯防护层能阻止壳体 内的颗粒刺破电极组件的隔膜,与相关技术相比,可以增加外层隔膜的机械强度,防止外层破损带来的安全隐患,同时也可以减少电极组件及电芯的整体厚度,相应地增加能量密度。
在一些实施例的电芯中,电芯侧面包括相对设置的第一侧面和第二侧面以及相对设置的第三侧面和第四侧面,第三侧面和第四侧面分别连接第一侧面和第二侧面,并且第一侧面和第二侧面的面积大于第三侧面和第四侧面的面积,电芯防护层包括第一防护层和第二防护层,第一防护层设置于第一侧面上,第二防护层设置于第二侧面上。
电芯本体的第一侧面和第二侧面为电芯本体的电芯大面,电芯大面距离电池单体20的壳体22壳体主体221的内壁较近且与壳体主体221的内壁可能产生物理接触的面积较大,因此电芯大面对应的极片相比于电芯侧面的其余部分对应的极片与壳体主体221之间产生短路的风险更大,在电芯本体的第一侧面和第二侧面上分别设置第一防护层和第二防护层,利于对电芯本体进行较为有效的防护,可以减少壳体内颗粒刺破隔膜的风险。
在一些实施例的电芯中,电芯防护层还包括第三防护层和第四防护层,第三防护层设置于第三侧面上;第四防护层设置于第四侧面上。
在电芯本体的第三侧面和第四侧面上分别设置第三防护层和第四防护层可以对电芯本体进行更有效更全面的防护,利于进一步减少壳体内颗粒刺破隔膜的风险。
在一些实施例的电芯中,第一防护层和第二防护层的厚度小于第三防护层和第四防护层的厚度;或者第一防护层和第二防护层的厚度大于第三防护层和第四防护层的厚度;或者第一防护层、第二防护层、第三防护层和第四防护层的厚度相等。
第一防护层和第二防护层的厚度小于第三防护层和第四防护层的厚度,在将电芯本体置于壳体的壳体本体中之后形成电芯防护层时,利于实现第一防护层和第二防护层与壳体本体之间的间隙全部由电芯防护层充满,从而利于提高电芯大面的防护效果。
电芯会随着使用发生膨胀,膨胀力主要作用于电芯大面和壳体之间,将第一防护层和第二防护层的厚度大于第三防护层和第四防护层的厚度,相对加强了对电芯大面的防护,利于防止受电芯膨胀力影响导致电芯防护层绝缘失效。
将第一防护层、第二防护层、第三防护层和第四防护层的厚度设置为相等,可 以在形成电芯防护层时,如通过气相沉积形成电芯防护层时,实现整个电芯侧面一起被包覆上电芯防护层,提高电芯的制造效率。
在一些实施例的电芯中,无机材料包覆层或有机无机复合结构包覆层直接附着于电芯本体上。
在电芯本体外设置mylar膜片的相关技术中,mylar膜片是套在电芯本体的外面,但是和电极组件并不是紧密相连的,容易和电极组件发生相对移动,存在绝缘防护失效的风险,无机材料包覆层或有机无机复合结构包覆层直接附着于电芯本体上,与电芯本体的相对位置稳定,利于确保防护性能。
在一些实施例的电芯中,电芯防护层的无机材料包覆层或有机无机复合结构包覆层通过气相沉积、喷涂或溅射形成为一体结构。
通过气相沉积、喷涂或溅射等方式形成一体结构的无机包覆层或有机无机复合结构包覆层,利于包覆层均匀致密整体性强,与电芯本体的表面结合牢固。其中,通过气相沉积可以形成纳米级及微米级的无机包覆层或有机无机复合结构包覆层,利于成膜更加均匀、致密、强度高、厚度小,利于有效阻断颗粒刺破隔膜。
在一些实施例的电芯中,无机材料包覆层或有机无机复合结构包覆层的厚度为0.01μm-1000μm。在一些实施例的电芯中,无机材料包覆层或有机无机复合结构包覆层的厚度为0.05μm-5μm。
合理设置无机材料包覆层或有机无机复合结构包覆层的厚度,即能对电芯本体形成有效防护,又能防止材料和加工时间浪费,节约生产成本、提高生产效率。
本公开第二方面提供一种电池单体,包括本公开第一方面的电芯和壳体,壳体包括壳体主体,电芯位于壳体主体的容纳空间内,电芯的电芯防护层与壳体主体的内壁相对。
电芯防护层设置于电芯本体和壳体主体的内壁之间,利于阻隔电芯本体和壳体主体,防止电芯本体的极片与壳体主体之间发生短路,提高电芯及其所在的电池的安全性。
在一些实施例的电池单体中,电芯的电芯防护层与壳体主体的内壁固定连接;或者壳体还包括设置于壳体主体的内壁上的壳体防护层,壳体防护层与电芯防护层相对间隔设置,壳体防护层包括无机材料包覆层或有机无机复合结构包覆层。
电芯的电芯防护层与壳体主体的内壁固定连接时,电芯主体与壳体主体之间填 充电芯防护层,电芯主体与壳体主体之间相对固定,有利于防止颗粒进入电芯主体,利于阻断颗粒刺破隔膜,提高防护效果。
壳体包括设置于壳体主体的内壁上的壳体防护层,壳体防护层与电芯防护层相对间隔设置,壳体防护层包括无机材料包覆层或有机无机复合结构包覆层,利于实现壳体主体和电芯主体之间绝缘防护,有效防止壳体主体与电芯主体的极片产生短路。
在一些实施例的电池单体中,电芯防护层的无机材料包覆层或有机无机复合结构包覆层通过气相沉积形成于电芯本体和壳体主体的内壁之间;或者电芯防护层的无机材料包覆层或有机无机复合结构包覆层和壳体防护层的无机材料包覆层或有机无机复合结构包覆层通过气相沉积同时形成于电芯本体和壳体主体的内壁之间。
通过气相沉积在电芯本体和壳体主体的内壁之间形成电芯防护层的无机材料包覆层或有机无机复合结构包覆层或者同时形成电芯防护层的无机材料包覆层或有机无机复合结构包覆层和壳体防护层的无机材料包覆层或有机无机复合结构包覆层,可以形成纳米级及微米级电芯防护层的无机包覆层或有机无机复合结构包覆层以及壳体防护层的无机材料包覆层或有机无机复合结构包覆层,利于成膜更加均匀、致密、强度高、厚度小,从而利于有效阻断颗粒刺破隔膜。
在一些实施例的电池单体中,电芯防护层充满电芯本体的侧面与壳体主体的内壁之间的间隙。
由于电芯防护层充满电芯本体的侧面与壳体主体的内壁之间的间隙,可以防止电芯本体的侧面与壳体主体的内壁之间的间隙内的颗粒活动,利于避免颗粒刺破隔膜。
本公开第三方面提供一种电池,包括本公开第二方面的电池单体要。本公开的电池具有本公开的电池单体具有的优点。
本公开第四方面提供一种用电设备,用电设备包括本公开第三方面的电池,电池用于为用电设备提供电力。本公开的用电设备具有本公开的电池具有的优点。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本公开一实施例的作为用电设备的车辆的结构示意图。
图2为本公开一实施例的电池的结构示意图。
图3为本公开一实施例的电池中电池单体的分解结构示意图。
图4为图3所示实施例的电池单体的剖视结构示意图。
图5为本公开一实施例的电池中电池单体的分解结构示意图。
图6为图5所示实施例的电池单体的剖视结构示意图。
图7为本公开一实施例的电池单体的剖视结构示意图。
图8为本公开一实施例的电池单体的剖视结构示意图。
图9为本公开一实施例的电池单体的剖视结构示意图。
图10为本公开一实施例的电池单体的剖视结构示意图。
图11为本公开一实施例的电池单体的剖视结构示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本公开的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本公开的原理,但不能用来限制本公开的范围,即本公开不限于所描述的实施例。
在本公开的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本公开的具体结构进行限定。在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本公开中的具体含义。
在生产电池单体的过程中工艺步骤较多,导致电池单体内部会存在一些颗粒,这些颗粒产生的主要原因一方面是来料时就不可避免的会有一些细小颗粒混入其中,另一方面是在生产过程中存在多次焊接工艺,焊接产生的焊渣有一定机率进入电池单体内部。在电池使用过程中,电池单体内部的颗粒在一定情况下会刺破电芯的电极组件中的隔膜,导致电极组件内部极片之间以及极片与电池单体的金属壳体,如铝壳,之间短路。为了防止电池单体中颗粒刺穿隔膜,使得壳体带电,通常电极组件外面会设置Mylar膜片用于进一步的绝缘防护。
相关技术中,在电极组件外设置Mylar膜片主要有三个问题:
受材质限制,Mylar膜片的厚度较厚,占用空间,降低电池的能量密度;
Mylar膜片的固定通常是通过和下塑胶的粘接,经过电解液的浸泡会使得Mylar膜片脱落,导致Mylar膜片不能很好地包覆电极组件,使得电极组件和电池单体的壳体可能发生接触,具有安全隐患;
Mylar膜片会老化,当Mylar膜片老化时可能会发生破裂,破裂处绝缘失效。
因此,发明人提供了一种电芯、电池单体、电池和用电设备,防护层覆盖在电芯本体至少部分侧面上,防护层和电芯本体外表面紧密结合,能达到提高电池单体的能量密度和安全性的技术效果。
本公开实施例提供一种使用电池作为电源的用电设备,电池被配置为对用电设备提供电能。用电设备可以为但不限于手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的 电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体主要包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极耳的数量为多个且层叠在一起,负极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
为了方便说明,以下以本公开一些实施例的一种用电设备—车辆D为例进行说明。
请参照图1。图1为本公开一些实施例提供的车辆D的结构示意图。车辆D可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆D的内部设置有电池B,电池B可以设置在车辆D的底部或头部或尾部。电池B可以用于车辆D的供电,例如,可以作为车辆D的操作电源。
在本公开一些实施例中,电池B不仅可以作为车辆D的操作电源,还可以作为车辆D的驱动电源,代替或部分地代替燃油或天然气为车辆D提供驱动动力。
请参照图2图2为本公开一些实施例提供的电池B的***图。
电池B包括箱体1和容纳于箱体1内的电池单体20。其中,箱体1包括箱壳11和扣合于箱壳11上的箱盖12,箱体1用于为电池单体20提供容纳空间。以上实施例中,箱体1整体为长方体,在未图示的实施例中,箱体1也可以为其它形状,如圆柱体。
在电池B中,电池单体20是多个,多个电池单体20之间可串联或并联或混 联。混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体1内。
如图2所示,电池B可以是多个电池单体20先串联或并联或混联组成电池组2。电池组2可以形成电池模块的形式。多个电池组2再串联或并联或混联形成一个整体,并容纳于箱体1内。电池B还可以包括其他结构,例如,该电池B还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
电池单体主要包括电芯、壳体和端盖组件,电芯可以包括一个或两个或更多个电极组件。电芯通过端盖组件的端盖封装于壳体的容纳空间内,容纳空间内加注电解液。
电极组件设置于壳体的容纳空间内。电极组件是电池单体中发生电化学反应的部件。电极组件可以为卷绕式结构。其中,将带状的第一极片、隔膜以及第二极片依次层叠并卷绕两圈以上形成电极组件,并且电极组件可以呈扁平状。在电极组件制作时,电极组件可直接卷绕为扁平状,使电极组件大致为六面体结构,也可以先卷绕成中空的圆柱形结构,卷绕之后再压平为扁平状。扁平面大致平行于卷绕轴线且为面积最大的外表面。扁平面可以是相对平整的表面,并不要求是纯平面。
电极组件也可为叠片式结构,即电极组件中包括多个第一极片以及多个第二极片,隔膜设置在第一极片和第二极片之间。第一极片和第二极片层叠设置。
壳体是用于提供容纳空间以将电极组件、电解液以及其他部件容纳于其内的部件。壳体可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体的形状可以根据电极组件的具体形状和尺寸大小来确定。壳体的材质可以选择铜、铁、铝、不锈钢、铝合金、塑胶等材料。
端盖是指盖合于壳体的开口处以将电池单体的内部环境隔绝于外部环境的部件。端盖的形状可以与壳体的形状相适应以配合壳体。可选地,端盖可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖在受挤压碰撞时就不易发生形变,使电池单体能够具备更高的结构强度,安全性能也可以有所提高。端盖上可以设置有如电极端子等的功能性部件。电极端子可以用于与电极组件电连接,以用于输出或输入电池单体的电能。在一些实施例中,端盖上还可以设置有用于在电池单体的内部压力或温度达到阈值时泄放内部压力的泄压机构。泄压机构例如为防爆阀,防爆阀通常设在电池单体的端盖上,防爆阀例如可以为端盖的平板面的一部分,也可以与端盖的 平板面焊接。端盖的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本公开实施例对此不作限制。
壳体和端盖可以是独立的部件,壳体上设置有开口,通过在开口处使端盖盖合开口以形成电池单体的内部环境。不限地,也可以使端盖和壳体一体化,具体地,端盖和壳体可以在将其他部件装入壳前先形成一个共同的连接面,当需要封装壳体的内部时,再使端盖盖合壳体,并将壳体和端盖封装为一体。
在一些实施例的电池单体中,在端盖的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体内的电连接部件与端盖,以降低短路的风险。示例性的,绝缘件例如可以为绝缘板,可以由塑料、橡胶等材料制造。
端盖和设置于端盖上的各元件,如电极端子、防爆阀、绝缘板等形成端盖组件。
如图3至图11所示,本公开实施例提供一种电芯23,包括电芯本体231,电芯本体231包括至少一个电极组件,并具有相对设置的两个端面231A和231B和连接于两个端面231A和231B之间的电芯侧面。电极组件的极耳从两个端面231A和231B中至少一个端面引出。其中,电芯23还包括电芯防护层232。电芯防护层232覆盖至少部分电芯本体231的侧面,并且电芯防护层232包括无机包覆层或有机无机复合结构包覆层。
由于电芯本体231的电芯防护层232包括无机包覆层或有机无机复合结构包覆层,无机包覆层或有机无机复合结构包覆层成膜均匀、致密、强度高、厚度小,利于阻断电池单体20的壳体22内的颗粒刺破电芯23的电极组件的隔膜,从而利于避免电极组件的极片与极片之间或极片与电池单体20的壳体22搭接导致短路而引起电芯失效,提高安全性能。
由于设置于具有无机包覆层或有机无机复合结构包覆层的电芯防护层232,可以取消相关技术中的Mylar膜片,从而可以减少电极组件及电芯的整体厚度,相应地增加能量密度。
由于具有无机包覆层或有机无机复合结构包覆层的电芯防护层能阻止壳体内的颗粒刺破电极组件的隔膜,与相关技术相比,可以取消在隔膜表面涂布陶瓷颗粒或沉积无机物,从而可以减少电极组件及电芯的整体厚度,相应地增加能量密度。
无机包覆层例如可以包括氧化铝包覆层、氧化硅包覆层、氧化锆包覆层、氧化 铪包覆层、氧化钛包覆层、氧化镁包覆层、氧化锌包覆层、勃姆石包覆层、氢氧化铝包覆层、氢氧化镁包覆层、氟化锂包覆层中的至少一种。
有机无机复合结构包覆层可以是有机和无机杂化形成的,也可以是分层设置的。有机无机复合结构包覆层分层设置时,可以是单个有机包覆层与单个无机包覆层复合、单个有机包覆层与多个无机包覆层复合、多个有机包覆层与单个无机包覆层复合或多个有机包覆层与多个无机包覆层复合。有机无机复合结构包覆层包括多个有机包覆层时,各有机包覆层的材料可以相同,也可以不同,有机无机复合结构包覆层包括多个无机包覆层时,各无机包覆层的材料可以相同,也可以不同。
如图3至图11所示,在一些实施例的电芯23中,电芯侧面包括相对设置的第一侧面231C和第二侧面231D以及相对设置的第三侧面231E和第四侧面231F。第三侧面231E和第四侧面231F分别连接第一侧面231C和第二侧面231D,并且第一侧面231C和第二侧面231D的面积大于第三侧面231E和第四侧面231F的面积。电芯防护层232包括第一防护层2321和第二防护层2322。第一防护层2321设置于第一侧面231C上;第二防护层2322设置于第二侧面231D上。
电芯本体231的第一侧面231C和第二侧面231D为电芯本体231的电芯大面,电芯大面距离电池单体20的壳体22的壳体主体221的内壁较近且可与壳体主体221的内壁可能产生物理接触的面积较大,因此电芯大面对应的极片相比于电芯侧面的其余部分对应的极片与壳体主体221之间产生短路的风险更大,在电芯本体231的第一侧面231C和第二侧面231D上分别设置第一防护层2321和第二防护层2322,利于对电芯本体231进行较为有效的防护,有效地减少壳体22内颗粒刺破隔膜的风险。
如图5、图6和图9至图11所示,在一些实施例的电芯23中,电芯防护层232还包括第三防护层2323和第四防护层2324。第三防护层2323设置于第三侧面231E上;第四防护层2324设置于第四侧面231F上。
相关技术中,电芯本体外的Mylar膜片与壳体本体之间,尤其是多个电极组件时Mylar膜片与电极组件之间都会产生间隙,这些间隙内的颗粒、金属丝等可能会刺破隔膜,产生短路风险。在电芯本体231的第三侧面231E和第四侧面231F上分别设置第三防护层2323和第四防护层2324可以对电芯本体231进行更有效更全面的防护,利于进一步减少壳体22内颗粒刺破隔膜的风险。
在一些实施例的电芯23中,如图6和图9所示,第一防护层2321和第二防 护层2322的厚度大于第三防护层2323和第四防护层2324的厚度;或者如图10所示,第一防护层2321和第二防护层2322的厚度大于第三防护层2323和第四防护层2324的厚度;或者如图11所示,第一防护层2321、第二防护层2322、第三防护层2323和第四防护层2324的厚度相等。
第一防护层2321和第二防护层2322的厚度大于第三防护层2323和第四防护层2324的厚度,在将电芯本体231置于壳体22的壳体本体221中之后形成电芯防护层232时,利于实现第一防护层2321和第二防护层2322与壳体本体221之间的间隙全部由电芯防护层232充满,从而利于提高电芯大面的防护效果。
电芯23会随着使用发生膨胀,膨胀力主要作用于电芯大面和壳体22之间,将第一防护层2321和第二防护层2322的厚度大于第三防护层2323和第四防护层2324的厚度,相对加强了对电芯大面的防护,利于防止受电芯膨胀力影响导致电芯防护层绝缘失效。
将第一防护层2321、第二防护层2322、第三防护层2323和第四防护层2324的厚度设置为相等,可以在形成电芯防护层232时,如通过气相沉积形成电芯防护层232时,实现整个电芯侧面一起被包覆上电芯防护层232,提高电芯23的制造效率。
在一些实施例的电芯23中,无机材料包覆层或有机无机复合结构包覆层直接附着于电芯本体231上。
在电芯本体外设置mylar膜片的相关技术中,mylar膜片是套在电芯本体231的外面,但是和电极组件并不是紧密相连的,容易和电极组件发生相对移动,存在绝缘防护失效的风险,无机材料包覆层或有机无机复合结构包覆层直接附着于电芯本体231上,与电芯本体231的相对位置稳定,利于确保防护性能。
在一些实施例的电芯23中,无机包覆层或有机无机复合结构包覆层通过气相沉积、喷涂或溅射形成为一体结构。
通过气相沉积、喷涂或溅射等方式形成一体结构的无机包覆层或有机无机复合结构包覆层,利于包覆层均匀、致密、整体性强,从而有较高的强度。其中,通过气相沉积可以形成纳米级及微米级的无机包覆层或有机无机复合结构包覆层,利于成膜更加均匀、致密、强度高、厚度小,利于有效阻断颗粒刺破隔膜。
在一些实施例的电芯23中,无机包覆层或所述有机无机复合结构包覆层的厚度为0.01μm-1000μm。
在一些实施例的电芯23中,无机包覆层或所述有机无机复合结构包覆层的厚度为0.05μm-5μm。
合理设置无机包覆层或所述有机无机复合结构包覆层的厚度,即能对电芯本体231形成有效防护,又能防止材料和加工时间浪费,节约生产成本、提高生产效率。
如图3至图11所示,本公开实施例还提供一种电池,包括本公开实施例的电芯23和壳体22。壳体22包括壳体主体221,电芯23位于壳体主体221的容纳空间内,电芯23的电芯防护层232与壳体主体221的内壁相对。
电芯防护层232设置于电芯本体231和壳体主体221的内壁之间,利于阻隔电芯本体231和壳体主体221,防止电芯本体231的极片与壳体主体221之间发生短路,提高电芯232及其所在的电池的安全性。
如图4、图6、图7和图9至图11所示,在一些实施例的电池中,电芯23的电芯防护层232与壳体主体221的内壁固定连接。如图8所示,在一些实施例的电芯23中,壳体22还包括设置于壳体主体221的内壁上的壳体防护层222,壳体防护层222与电芯防护层232相对间隔设置,壳体防护层222包括无机材料包覆层或有机无机复合结构包覆层。
电芯23的电芯防护层232与壳体主体221的内壁固定连接时,电芯主体231与壳体主体221之间填充电芯防护层232,电芯主体231与壳体主体221之间相对固定,有利于防止颗粒进入电芯主体231,利于阻断颗粒刺破隔膜,提高防护效果。壳体22还包括设置于壳体主体221的内壁上的壳体防护层222,壳体防护层222与电芯防护层232相对间隔设置,壳体防护层222包括无机材料包覆层或有机无机复合结构包覆层,利于实现壳体主体221和电芯主体231之间绝缘防护,有效防止壳体主体221与电芯主体231的极片产生短路。
在一些实施例的电池中,电芯防护层232的无机包覆层或有机无机复合结构包覆层通过气相沉积形成于电芯本体231和壳体主体221的内壁之间;或者电芯防护层232的无机包覆层或有机无机复合结构包覆层和壳体防护层222的无机材料包覆层或有机无机复合结构包覆层通过气相沉积同时形成于电芯本体231和壳体主体221的内壁之间。
通过气相沉积在电芯本体231和壳体主体221的内壁之间形成电芯防护层232的无机包覆层或有机无机复合结构包覆层或者同时形成电芯防护层232的无机材料包 覆层或有机无机复合结构包覆层和壳体防护层222的无机材料包覆层或有机无机复合结构包覆层,可以形成纳米级及微米级的无机材料包覆层或有机无机复合结构包覆层以及壳体防护层222的无机材料包覆层或有机无机复合结构包覆层,利于成膜更加均匀、致密、强度高、厚度小,从而利于有效阻断颗粒刺破隔膜。
在一些实施例的电池单体中,如图6和图9所示,电芯防护层232充满电芯本体231的侧面与壳体主体221的内壁之间的间隙。
由于电芯防护层232充满电芯本体231的侧面与壳体主体221的内壁之间的间隙,可以防止电芯本体231的侧面与壳体主体221的内壁之间的间隙内的颗粒活动,利于避免颗粒刺破隔膜。
本公开实施例还提供一种用电设备,该用电设备包括本公开实施例的电池,电池用于为用电设备提供电力。本公开的用电设备具有本公开的电池具有的优点。
以下结合图3至图11说明本公开一些实施例的电芯23及电芯23所在的电池单体20的结构。本公开实施例的电池包括本公开实施例的电池单体20。
如图3所示,电池单体20包括端盖组件21、壳体22和电芯23。
端盖组件21包括端盖211、第一电极端子212、第二电极端子213、防爆阀214和绝缘板215。端盖211用于与壳体22配合以将第一电极组件2311和第二电极组件2312封装于端盖211和壳体22形成的密闭的容纳空间内。第一电极端子212为正极端子;第二电极端子213为负极端子。正极端子和负极端子可以分别通过连接片(未图示)与对应的电极组件的极耳电连接。绝缘板215布置于端盖211与连接片之间,用于实现端盖211与各电极组件之间的绝缘。
电芯23包括电芯本体231和电芯防护层232。电芯本体231包括两个电极组件,分别为第一电极组件2311和第二电极组件2312。第一电极组件2311的正极极耳23111和第二电极组件2312的正极极耳23121与端盖组件21的端盖211上的第一电极端子212电连接。第一电极组件2311的负极极耳23112和第二电极组件2312的负极极耳23122与端盖组件21的端盖211上的第二电极端子213连接。
如图3和图4所示,电芯23的电芯本体231具有相对设置的两个端面231A和231B和连接于两个端面231A和231B之间的电芯侧面。两个电极组件2311和2312的各极耳23111、23112、23121和23122从端面231A(图3中的上端面)引出。电芯侧面包括相对设置的第一侧面231C和第二侧面231D以及相对设置的第三侧面231E 和第四侧面231F。第三侧面231E和第四侧面231F分别连接第一侧面231C和第二侧面231D。并且第一侧面231C和第二侧面231D的面积大于第三侧面231E和第四侧面231F的面积,即第一侧面231C和第二侧面231D为电芯主体231的电芯大面。
如图3和图4所示电芯防护层232设置于电芯本体231的侧面,并且电芯防护层232包括无机包覆层或有机无机复合结构包覆层。
壳体22包括壳体主体221,所述电芯(23)位于所述壳体主体(221)的容纳空间内,电芯23的电芯防护层232与壳体主体221的内壁相对。
如图3和图4所示,电芯防护层232包括第一防护层2321和第二防护层2322。第一防护层2321设置于第一侧面231C上,第二防护层2322设置于第二侧面231D上。
如图4所示,电芯23的电芯防护层232与壳体主体221的内壁固定连接。即第一防护层2321和第二防护层2322的远离电芯主体231的一侧分别固定地连接于壳体主体221的内壁上。
该电芯23中,电芯防护层232仅包括无机包覆层。无机包覆层包括氧化铝包覆层。无机包覆层通过气相沉积形成。
本实施例的电芯主体231的第一电极组件2311和第二电极组件2312均为卷绕式电极组件。第一电极组件2311和第二电极组件2312各自的一个大面相贴合,第一电极组件2311的另一个大面形成电芯主体231的第一侧面231C,第二电极组件2312的另一个大面形成电芯主体231的第二侧面231D。壳体主体221为铝壳,电芯23的电芯防护层232形成于电芯主体231的第一侧面231C和第二侧面231D和铝壳内壁之间,电芯防护层232包括具有等间隙厚度的绝缘、高强度的第一防护层2321和第二防护层2322,第一防护层2321和第二防护层2322阻断第一侧面231C和第二侧面231D附近的颗粒刺破第一电极组件2311和第二电极组件2312的隔膜,从而提升电芯23的使用安全性。该电芯23无需设置Mylar膜片,第一电极组件2311和第二电极组件2312的隔膜也无需涂布陶瓷颗粒或沉积无机物。
如图5和图6所示,与图3和图4所示实施例不同的是电芯防护层232还包括第三防护层2323和第四防护层2324。第三防护层2323设置于第三侧面231E上;第四防护层2324设置于第四侧面231F上。
图5和图6所示实施例中未说明的部分均可参考前面的相关描述。
如图7所示,与图3和图4所示实施例不同的是,电芯主体231仅包括一个电极组件231。
图7所示实施例中未说明的部分均可参考前面的相关描述。
如图8所示,与图3和图4所示实施例不同的是,壳体22还包括设置于壳体主体221的内壁上的壳体防护层222。壳体防护层222与电芯防护层232相对间隔设置。壳体防护层222包括无机防护层。电芯防护层232的无机包覆层和壳体防护层222的无机防护层通过气相沉积同时形成于电芯本体231和壳体主体221的内壁之间。其中,壳体防护层222包括与第一防护层2321相对的第一壳体防护层部分2221和与第二防护层2322相对的第二壳体防护层部分2222。
图8所示实施例中未说明的部分均可参考前面的相关描述。
如图9所示,与图5和图6所示实施例不同的是,电芯主体231仅包括一个电极组件231。
图9所示实施例中未说明的部分均可参考前面的相关描述。
如图10所示,与图9所示实施例不同的是,第一防护层2321和第二防护层2322的厚度小于第三防护层2323和第四防护层2324的厚度。
图10所示实施例中未说明的部分均可参考前面的相关描述。
如图11所示,与图10所示实施例不同的是,第一防护层2321和第二防护层2322的厚度等于第三防护层2323和第四防护层2324的厚度。
图11所示实施例中未说明的部分均可参考前面的相关描述。以上各实施例的电芯及电池单体,虽然仅以氧化铝包覆层为例说明电芯防护层232和壳体防护层222仅包括无机包覆层的情况,然而如前所述,以上各实施例的氧化铝包覆层可替换为其它材质的无机包覆层,仅就无机包覆层而言,也可以包括不同无机材料形成的无机包覆层,以上各实施例的氧化铝包覆层也可以替换为符合此前描述的有机无机复合结构包覆层。
可以通过气相沉积的方式形成本公开实施例的电芯23的电芯防护层232以及壳体防护层222(如果有)。
本公开实施例中,可直接利用未注液电池单体的壳体主体221的腔体结构,通过注液孔向容纳有电芯主体231的壳体主体221内部依次通入反应物,最终生成具有一定厚度的电芯防护层232和壳体防护层222(如果有)。
本公开实施例的电芯、电池及用电设备,具有以下优点至少之一:
电芯防护层位于电芯主体的侧面,填充于电芯主体和壳体主体的内壁之间,包括均匀致密高强度的无机包覆层或有机无机复合结构包覆层,利于避免壳体内的颗粒刺破电极组件的隔膜而导致极片和极片之间及极片和铝壳内壁面的搭接,从而利于避免内部短路导致电芯失效。
可以取消相关技术的Mylar膜片,简化了电芯的结构。
通过气相沉积法形成电芯防护层和壳体防护层(如果有),成膜均匀致密,具有良好的绝缘和高强度防护效果,制备速度快,效率高,可实现大规模生产,各防护层厚度及防护物质种类可控,防护层物质的生成不会影响电芯性能。
虽然已经参考优选实施例对本公开进行了描述,但在不脱离本公开的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种电芯(23),包括电芯本体(231),所述电芯本体(231)包括至少一个电极组件(2311,2312),且所述电芯本体(231)具有相对设置的两个端面(231A,231B)和连接于所述两个端面(231A,231B)之间的电芯侧面,任一所述电极组件(2311,2312)的极耳(23111,23112,23121,23122)从所述两个端面(231A,231B)中至少一个端面(231A)引出,其中,所述电芯(23)还包括电芯防护层(232),所述电芯防护层(232)覆盖至少部分所述电芯本体(231)的侧面,并且所述电芯防护层(232)包括无机包覆层或有机无机复合结构包覆层。
  2. 根据权利要求1所述的电芯(23),其中,所述电芯侧面包括相对设置的第一侧面(231C)和第二侧面(231D)以及相对设置的第三侧面(231E)和第四侧面(231F),所述第三侧面(231E)和所述第四侧面(231F)分别连接所述第一侧面(231C)和所述第二侧面(231D),并且所述第一侧面(231C)和第二侧面(231D)的面积大于所述第三侧面(231E)和第四侧面(231F)的面积,所述电芯防护层(232)包括:
    第一防护层(2321),设置于所述第一侧面(231C)上;和
    第二防护层(2322),设置于所述第二侧面(231D)上。
  3. 根据权利要求2所述的电芯(23),其中,所述电芯防护层(232)还包括:
    第三防护层(2323),设置于所述第三侧面(231E)上;和
    第四防护层(2324),设置于所述第四侧面(231F)上。
  4. 根据权利要求3所述的电芯(23),其中,
    所述第一防护层(2321)和所述第二防护层(2322)的厚度小于所述第三防护层(2323)和所述第四防护层(2324)的厚度;或者
    所述第一防护层(2321)和所述第二防护层(2322)的厚度大于所述第三防护层(2323)和所述第四防护层(2324)的厚度;或者
    所述第一防护层(2321)、所述第二防护层(2322)、所述第三防护层(2323)和所述第四防护层(2324)的厚度相等。
  5. 根据权利要求1至4中任一项所述的电芯(23),其中,所述无机材料包覆层或所述有机无机复合结构包覆层直接附着于所述电芯本体(231)上。
  6. 根据权利要求1至5中任一项所述的电芯(23),其中,所述无机材料包覆层 或所述有机无机复合结构包覆层通过气相沉积、喷涂或溅射形成为一体结构。
  7. 根据权利要求1至6中任一项所述的电芯(23),其中,所述无机材料包覆层或所述有机无机复合结构包覆层的厚度为0.01μm-1000μm。
  8. 根据权利要求7所述的电芯(23),其中,所述无机材料包覆层或所述有机无机复合结构包覆层的厚度为0.05μm-5μm。
  9. 一种电池单体,包括:
    根据权利要求1至8任一项所述的电芯(23);
    壳体(22),包括壳体主体(221),所述电芯(23)位于所述壳体主体(221)的容纳空间内,所述电芯(23)的所述电芯防护层(232)与所述壳体主体(221)的内壁相对。
  10. 根据权利要求9所述的电池单体,其中,
    所述电芯(23)的所述电芯防护层(232)与所述壳体主体(221)的内壁固定连接;或者
    所述壳体(22)还包括设置于所述壳体主体(221)的内壁上的壳体防护层(222),所述壳体防护层(222)与所述电芯防护层(232)相对间隔设置,所述壳体防护层(222)包括无机材料包覆层或有机无机复合结构包覆层。
  11. 根据权利要求10所述的电池单体,其中,
    所述电芯防护层(232)的无机包覆层或有机无机复合结构包覆层通过气相沉积形成于所述电芯本体(231)和所述壳体主体(221)的内壁之间;或者
    所述电芯防护层(232)的无机材料包覆层或有机无机复合结构包覆层和所述壳体防护层(222)的无机材料包覆层或有机无机复合结构包覆层通过气相沉积同时形成于所述电芯本体(231)和所述壳体主体(221)的内壁之间。
  12. 根据权利要求9至11中任一项所述的电池单体,其中,所述电芯防护层(232)充满所述电芯本体(231)的侧面与所述壳体主体(221)的内壁之间的间隙。
  13. 一种电池,包括权利要求1至12中任一项所述的电池单体。
  14. 一种用电设备,包括根据权利要求13所述的电池,所述电池用于为所述用电设备提供电力。
PCT/CN2022/092642 2022-05-13 2022-05-13 电芯、电池单体、电池和用电设备 WO2023216223A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280043269.0A CN117501519A (zh) 2022-05-13 2022-05-13 电芯、电池单体、电池和用电设备
PCT/CN2022/092642 WO2023216223A1 (zh) 2022-05-13 2022-05-13 电芯、电池单体、电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092642 WO2023216223A1 (zh) 2022-05-13 2022-05-13 电芯、电池单体、电池和用电设备

Publications (1)

Publication Number Publication Date
WO2023216223A1 true WO2023216223A1 (zh) 2023-11-16

Family

ID=88729533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092642 WO2023216223A1 (zh) 2022-05-13 2022-05-13 电芯、电池单体、电池和用电设备

Country Status (2)

Country Link
CN (1) CN117501519A (zh)
WO (1) WO2023216223A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202423399U (zh) * 2011-12-12 2012-09-05 东莞新能源科技有限公司 金属壳体动力电池
JP2018106833A (ja) * 2016-12-22 2018-07-05 トヨタ自動車株式会社 二次電池
CN207602628U (zh) * 2017-11-29 2018-07-10 宁德新能源科技有限公司 电极组件及二次电池
JP2020035598A (ja) * 2018-08-29 2020-03-05 株式会社豊田自動織機 蓄電モジュール
CN112567562A (zh) * 2018-08-10 2021-03-26 株式会社村田制作所 固态电池
CN215496867U (zh) * 2021-03-30 2022-01-11 天能电池集团股份有限公司 一种轻量化圆柱电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202423399U (zh) * 2011-12-12 2012-09-05 东莞新能源科技有限公司 金属壳体动力电池
JP2018106833A (ja) * 2016-12-22 2018-07-05 トヨタ自動車株式会社 二次電池
CN207602628U (zh) * 2017-11-29 2018-07-10 宁德新能源科技有限公司 电极组件及二次电池
CN112567562A (zh) * 2018-08-10 2021-03-26 株式会社村田制作所 固态电池
JP2020035598A (ja) * 2018-08-29 2020-03-05 株式会社豊田自動織機 蓄電モジュール
CN215496867U (zh) * 2021-03-30 2022-01-11 天能电池集团股份有限公司 一种轻量化圆柱电池

Also Published As

Publication number Publication date
CN117501519A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2024060403A1 (zh) 电池单体、电池、用电装置以及焊接设备
WO2023070677A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2022247292A1 (zh) 电池单体、电池以及用电装置
CN114503334A (zh) 电极组件及其相关电池、装置、制造方法和制造装置
WO2023216727A1 (zh) 电极组件、电池单体、电池和用电设备
JP2023534585A (ja) 電池単体およびその製造方法と製造システム、電池および電力使用装置
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
EP4391183A1 (en) End cover, battery cell, battery, and electric apparatus
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023025104A1 (zh) 电池单体、电池以及用电装置
WO2023216223A1 (zh) 电芯、电池单体、电池和用电设备
WO2023082155A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
CN114696012A (zh) 电池单体及其制造方法、电池以及用电装置
WO2023216254A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023173414A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2024077557A1 (zh) 电池单体、电池及用电设备
WO2023045490A1 (zh) 电极组件及制造方法和***、电池单体、电池和用电装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
CN117199729B (zh) 电池单体、电池以及用电装置
CN221201353U (zh) 端盖组件、电池单体、电池及用电装置
WO2023178600A1 (zh) 集流构件、电池单体、电池及用电设备
WO2023245430A1 (zh) 电池单体、电池及用电设备
WO2024045058A1 (zh) 电池单体、电池及用电设备
WO2023197133A1 (zh) 电池单体的壳体、电池单体、电池以及用电装置
WO2023220886A1 (zh) 端盖、电池单体、电池及用电设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280043269.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022941177

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022941177

Country of ref document: EP

Effective date: 20240411