WO2023212925A1 - 一种驱动装置和电动汽车 - Google Patents

一种驱动装置和电动汽车 Download PDF

Info

Publication number
WO2023212925A1
WO2023212925A1 PCT/CN2022/091199 CN2022091199W WO2023212925A1 WO 2023212925 A1 WO2023212925 A1 WO 2023212925A1 CN 2022091199 W CN2022091199 W CN 2022091199W WO 2023212925 A1 WO2023212925 A1 WO 2023212925A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
chip
switch
drive
driving
Prior art date
Application number
PCT/CN2022/091199
Other languages
English (en)
French (fr)
Inventor
孔雪娟
封宁波
张星
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2022/091199 priority Critical patent/WO2023212925A1/zh
Publication of WO2023212925A1 publication Critical patent/WO2023212925A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present application relates to the technical field of electric vehicles, and in particular to a driving device and an electric vehicle.
  • Electric vehicles mainly include wheels, motors, drive devices and inverters.
  • the motor is connected to the inverter, can obtain electrical energy from the inverter, convert the electrical energy into mechanical energy, and output the driving torque used to drive the electric vehicle.
  • the driving device is connected to the inverter and can provide driving signals to multiple switches in the inverter to control the operation of the motor.
  • driving torque safety is one of the important functional safety goals of electric vehicles. As the functional safety requirements of electric vehicles become higher and higher, the driving device needs to meet a specific safety level to ensure the safe operation of electric vehicles.
  • the driving device is provided with a watchdog chip, a control chip and a driving circuit, and the driving circuit includes multiple driving chips.
  • multiple devices installed in the drive device all use devices with certain safety levels. These devices with specific safety levels can form three shutdown paths for the driving torque output by the motor.
  • the first turn-off path can be realized through the pin in the driver chip used to receive the pulse width modulation (PWM) signal.
  • PWM pulse width modulation
  • the second turn-off path and the third turn-off path can be realized through the other two pins in the driver chip, and these two pins are respectively connected to specific functional circuits in the driver chip.
  • the inverter includes multiple bridge arms, and each bridge arm includes at least two switches. Each switch needs to be equipped with a driver chip for providing a drive signal.
  • the driver chips configured with multiple switching devices in the inverter are all driver chips with high safety levels. If you choose a conventional car-grade driver chip without a safety level, the car-grade driver chip does not have the functional circuits corresponding to the second turn-off path and the third turn-off path in the high-safety level driver chip. Therefore, when the drive device adopts When using a car-standard drive chip, the driving torque cannot be turned off through the second turn-off path and the third turn-off path. In severe cases, the electric vehicle may be in a state of loss of control.
  • This application provides a driving device and an electric vehicle, which are used to meet the safety level requirements of the driving device while using a car-standard driving chip.
  • the present application provides a driving device that can be used in an electric vehicle.
  • the electric vehicle includes a motor, an inverter for powering the motor, and a driver for providing a driving signal for a switch in the inverter. device.
  • the driving device includes: a control chip, a watchdog chip, a driving logic circuit and multiple driving chips. Multiple driver chips correspond to multiple switches in the inverter.
  • control chip is connected to the watchdog chip and the drive off logic circuit, and is used to receive the operating parameters of the motor, generate the driving torque according to the operating parameters, and use the driving torque to determine the pulse width modulation PWM signal of each switch in the inverter, And output the PMW signal of each switch to the drive logic circuit; and when it is determined that the drive torque is abnormal or the operating parameters exceed the set threshold, send a first signal to the drive logic circuit to characterize the torque abnormality or motor operation abnormality; gatekeeping
  • the dog chip is connected to the drive logic circuit and is used for fault monitoring of the control chip. When a control chip failure is determined, a second signal used to characterize the control chip failure is sent to the drive logic circuit; the drive logic circuit is connected to multiple drive chips.
  • each The driver chip Used to generate the drive control signal and enable signal of each switch based on the signals sent by the watchdog chip and the control chip, and output the drive control signal and enable signal of each switch to the corresponding drive chip of the switch respectively; each The driver chip is provided with a first pin, a second pin and a third pin. The first pin and the second pin are both connected to the driver logic circuit. The third pin is used to connect to the switch corresponding to the driver chip.
  • the driver The chip is configured to receive the drive control signal of the corresponding switch through the first pin, receive the enable signal of the corresponding switch through the second pin, and adjust the drive signal output to the connected switch according to the received drive control signal and enable signal.
  • the signals on the three turn-off paths of the driving torque need to be sent to the drive logic circuit.
  • the drive logic circuit can generate an enable signal output to the enable pin of the drive chip based on the signals on the three turn-off paths. , and generate drive control signals output to the PWM signal receiving pins of the drive chip.
  • the driving logic circuit will output a corresponding signal and adjust the driving signal output by the driving chip to control the driving torque output by the shutdown circuit.
  • the pins occupied by the driver chip are functional pins that both the vehicle-standard drive signal and the specific safety level driver chip have. Therefore, the vehicle-standard driver chip can be used to realize the driving torque shutdown of the three shutdown paths, which satisfies the driving requirements.
  • the safety level requirements of the device can generate an enable signal output to the enable pin of the drive chip based on the signals on the three turn-off paths. , and generate drive control signals output to the PWM signal receiving pins of the drive chip.
  • the first signal includes: an upper bridge shutdown signal, an upper bridge shutdown enable signal, a lower bridge shutdown signal, or a lower bridge shutdown enable signal.
  • the control chip can send signals to control the upper and lower arm switches respectively.
  • the driving logic circuit includes: an upper bridge driving logic circuit and a lower bridge driving logic circuit.
  • the upper bridge drive logic circuit is connected to the drive chip corresponding to the switch of the upper bridge arm of the inverter, and is used to generate the signal of each switch in the upper bridge arm of the inverter based on the signals sent by the watchdog chip and the control chip.
  • Drive control signals and enable signals and output the drive control signals and enable signals of each switch to the corresponding drive chip of the switch
  • the lower bridge drive logic circuit is connected to the drive chip corresponding to the switch in the lower arm of the inverter, Used to generate the drive control signal and enable signal of each switch in the lower arm of the inverter based on the signals sent by the watchdog chip and the control chip, and output the drive control signal and enable signal of each switch to The driver chip corresponding to the switch.
  • the states of the switches in the upper arm and the lower arm of the inverter are mostly complementary states, and when the inverter stops providing driving signals to the switches in the lower arm or the switches in the upper arm, it can also be achieved
  • the effect of turning off the driving torque output by the motor, therefore, the upper arm switch and the lower arm switch in the inverter can be controlled separately.
  • the upper-bridge drive logic circuit is specifically configured to: in response to receiving the second signal or the upper-bridge enable signal, generate an enable signal for each switch in the upper-bridge arm; and according to the received first The two signals, the upper bridge turn-off signal and the PWM signal of the switch in the upper arm, determine the drive control signal of each switch in the upper arm, and output the drive control signal of each switch to the corresponding driver chip of the switch.
  • the low-bridge drive logic circuit is specifically configured to: in response to receiving the second signal or the low-bridge turn-off signal, generate an enable signal for each switch in the low-bridge arm; and according to the received first The two signals, the lower bridge turn-off signal and the PWM signal of the switch in the lower arm, determine the drive control signal of each switch in the lower arm, and output the drive control signal of each switch to the corresponding drive chip of the switch.
  • the upper-bridge driving logic circuit includes a plurality of first logic circuits. Each first logic circuit corresponds one-to-one to each switch of the switch in the upper arm.
  • the low-bridge driving logic circuit includes a plurality of second logic circuits. Each second logic circuit corresponds one-to-one to each switch of the switch in the lower bridge arm.
  • the first logic circuit is connected to the watchdog chip and the control chip.
  • the first logic circuit is used to connect to the driving chip connected to the corresponding switch.
  • the driving control of the corresponding switch is generated. signal and enable signal and output to the connected driver chip.
  • the second logic circuit is connected to the watchdog chip and the control chip.
  • the second logic circuit is used to connect to the drive chip connected to the corresponding switch. According to the signals sent by the watchdog chip and the control chip, generate the drive control chip and the corresponding switch. Enable the signal and output it to the connected driver chip.
  • the inverter in the electric vehicle when the inverter in the electric vehicle is a three-phase inverter, the inverter can include three bridge arms, and the phases of the alternating current generated by each bridge arm are 120° different from each other. , correspondingly, the turn-on and turn-off timing of each switch is different.
  • each switch can be independently controlled by using the first logic circuit and the second logic circuit.
  • the upper bridge driving logic circuit includes: a first AND gate circuit, a second AND gate circuit, a first OR gate circuit, a second OR gate circuit, and a third OR gate circuit.
  • the first input end of the first AND gate circuit is connected to the control chip, the second input end of the first AND gate circuit is connected to the watchdog chip, and the output end of the first AND gate circuit is connected to the upper bridge drive logic circuit.
  • the second pin of the driver chip is connected; the first input terminal of the second AND gate circuit is connected with the control chip, the second input terminal of the second AND gate circuit is connected with the watchdog chip, and the output terminals of the second AND gate circuit are respectively Connected to the first input terminal of the first OR gate circuit, the first input terminal of the second OR gate circuit and the first input terminal of the third OR gate circuit; the second input terminal of the first OR gate circuit is connected to the control chip, The output end of the first OR gate circuit is connected to the first pin of the driver chip connected to the first switch in the upper arm; the second input end of the second OR gate circuit is connected to the control chip, and the output of the second OR gate circuit The terminal is connected to the first pin of the driver chip connected to the second switch in the upper arm; the second input terminal of the third OR
  • the low-bridge driving logic circuit includes: a first inverter, a third AND gate circuit, a fourth OR gate circuit, a fifth OR gate circuit, a sixth OR gate circuit, and a seventh OR gate. circuit and the eighth OR gate circuit.
  • the first input terminal of the first inverter is connected to the watchdog chip, the output terminal of the first inverter is connected to the first input terminal of the fourth OR gate circuit; the second input terminal of the fourth OR gate circuit Connected to the control chip, the output end of the fourth OR gate circuit is connected to the second pin of the driver chip connected to the lower bridge drive logic circuit; the first input end of the third AND gate circuit is connected to the control chip, and the third AND gate circuit
  • the second input terminal is connected to the watchdog chip, the input terminal of the third AND gate circuit is connected to the first input terminal of the fifth OR gate circuit; the second input terminal of the fifth OR gate circuit is connected to the first input terminal of the first inverter.
  • the output end is connected, and the input end of the fifth OR gate circuit is respectively connected to the first input end of the sixth OR gate circuit, the first input end of the seventh OR gate circuit, and the first input end of the eighth OR gate circuit;
  • the sixth The second input end of the OR gate circuit is connected to the control chip, the output end of the sixth OR gate circuit is connected to the first pin of the driver chip connected to the first switch in the lower bridge arm;
  • the second input end of the seventh OR gate circuit is connected The output terminal of the seventh OR gate circuit is connected to the first pin of the driver chip connected to the second switch in the lower arm;
  • the second input terminal of the eighth OR gate circuit is connected to the control chip, and the second input terminal of the eighth OR gate circuit is connected to the control chip.
  • the output end of the eight-OR gate circuit is connected to the first pin of the driver chip connected to the third switch in the lower bridge arm.
  • the upper-bridge drive logic circuit is also used to output a third signal that represents the driving state of the upper-arm switch; the lower-bridge drive logic circuit is also used to output a fourth signal that represents the driving state of the lower-arm switch.
  • the status of the upper arm switch and the lower arm switch can be determined through the third signal and the fourth signal.
  • the power supply of the motor by the inverter can be determined, so that the driving torque of the motor can be determined. Output situation.
  • the driving device further includes: a shutdown path self-test circuit and a shutdown path monitoring circuit.
  • the shutdown path self-check circuit is used to receive the enable signal, the third signal and the fourth signal output by the driving logic circuit when the driving device is started, and when the received signal is abnormal, notify the driving logic circuit and the driving chip to shut down. Cut off the driving torque output by the motor.
  • the shutdown path monitoring circuit is used to receive the enable signal, the third signal and the fourth signal, and when the received signal is abnormal, notify the driving logic circuit and the driving chip to shut down the driving torque output by the motor.
  • the driving torque shutdown status of each shutdown path can be monitored during the power-on self-test process and power-on operation of the driving device through the shutdown path self-test circuit and the shutdown path.
  • the driving device further includes a conversion circuit.
  • the conversion circuit is connected to the output end of the inverter, and is used to convert the electrical parameters in the form of analog signals output by the output end of the inverter into digital signals, and output the electrical parameters of the digital signals to the shutdown path self-test circuit.
  • the shutdown path self-test circuit is also used to: when the driving device starts, determine the setting interval of the electrical parameters output by the inverter according to the preset duty cycle of the driving signal output by the driving device. In the received digital signal electrical parameters When the set range is exceeded, the drive logic circuit and drive chip are notified to shut off the drive torque output by the motor.
  • the output voltage of the inverter can be adjusted by adjusting the duty cycle of the driving signal output by the driving device. Therefore, during the power-on self-test of the driving device, the duty cycle of the driving signal output by the driving device can be used to calculate the output voltage fluctuation interval corresponding to the duty cycle under normal circumstances, and the electrical parameters output by the conversion circuit are compared with The comparison result of the calculated voltage fluctuation interval determines the operating status of the drive device.
  • the driving device further includes an isolator connected between the output end of the inverter and the conversion circuit.
  • the driving device is the control side of the electric vehicle, that is, the low-voltage side of the electric vehicle.
  • the output side of the inverter is the high-voltage side of the electric vehicle.
  • electrical isolation between the low-voltage side and the high-voltage side can be achieved through an isolator.
  • this application provides an electric vehicle, which includes a motor, an inverter, and a driving device provided in the first aspect of this application and any of its designs.
  • the driving device is connected to the inverter, and the driving device is used to provide a driving signal for the switch in the inverter; the inverter is connected to the motor, and the inverter supplies power to the motor after receiving the driving signal sent by the driving device; for output driving torque.
  • Figure 1 is a schematic structural diagram of a driving device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of an electric vehicle provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram 2 of a driving device provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a driving logic circuit provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram 2 of a driving logic circuit provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an upper bridge drive logic circuit provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a low-bridge drive logic circuit provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram three of a driving device provided by an embodiment of the present application.
  • connection in the embodiments of this application can be understood as electrical connection, and the connection between two electrical components can be a direct or indirect connection between two electrical components.
  • a and B can be connected directly, or A and B can be connected indirectly through one or more other electrical components.
  • a and B can be connected, or A and C can be connected directly.
  • C and B are directly connected, and A and B are connected through C.
  • the switch in the embodiment of the present application may be a relay, a metal oxide semiconductor field effect transistor (MOSFET), a bipolar junction transistor (BJT), an insulated gate double One or more of various types of switch transistors such as insulated gate bipolar transistor (IGBT), silicon carbide (SiC) transistor, etc., which will not be listed one by one in the embodiments of this application.
  • the packaging form of each switch may be a single-tube package or a multi-tube package, which is not limited in the embodiment of the present application.
  • Each switch may include a first electrode, a second electrode and a control electrode, wherein the control electrode is used to control the switching tube to be turned on or off.
  • the control electrode of the switch is the gate
  • the first electrode of the switch can be the source
  • the second electrode can be the drain
  • the first electrode can be the drain and the second electrode can be the source.
  • the driving device disclosed in this application can be applied to equipment using motor braking.
  • this equipment includes but is not limited to: electric cars, electric ships, electric drones, electric trains, electric trucks, electric trucks, robots, industrial equipment, smart logistics, smart factories, etc.
  • the driving device can be used in an electric vehicle, also known as a new energy vehicle, which is a vehicle driven by electric energy.
  • the electric vehicle 20 mainly includes a motor 21, wheels 22, an inverter 23 and a driving device 24.
  • the motor 21 can obtain electric energy from the inverter 23, convert the obtained electric energy into mechanical energy, and output a driving torque for driving the rotation of the wheel 22. After receiving the above driving torque, the wheel 22 rotates and drives the electric vehicle. Car 20 moves.
  • the electric vehicle 20 also includes a high-voltage battery and a low-voltage battery, and the high-voltage battery 104 can be a large-capacity, high-power storage battery.
  • the inverter 23 is connected to the high-voltage battery, and the inverter 23 can convert the DC power output by the high-voltage battery into AC power, and use the AC power to power the motor 21 .
  • the inverter 23 is composed of multiple switching devices.
  • the driving device 24 can be connected to the multiple switching devices in the inverter 23 and provide corresponding driving signals for each switch in the inverter 23 to achieve
  • the inverter 23 is controlled to convert direct current into alternating current.
  • the driving device 24 stops or only outputs driving signals to some switches in the inverter 23
  • the motor cannot obtain the voltage required for normal operation, and accordingly, it cannot output the driving torque for driving the wheels 22 to rotate. Therefore, the driving device 24 is one of the important devices for controlling the driving torque output by the motor 21. Since the safety of the torque output by the motor 21 is one of the important functional safety goals of electric vehicles, as the functional safety requirements of electric vehicles are increasing, The higher the level, the drive 24 also needs to meet a specific safety level.
  • the driving device 24 can control to turn off the driving torque output by the motor 21 when the electric vehicle is running normally, and can also turn off the driving torque output by the motor 21 when the electric vehicle fails to ensure the safe operation of the electric vehicle.
  • the driving device mainly cuts off the driving torque output by the motor through three shutdown paths.
  • the driving device mainly includes a driving circuit, a control chip and a watchdog chip.
  • the driving circuit includes a plurality of driving chips, and each driving chip is connected to a switching device in the inverter in a one-to-one correspondence.
  • high-safety driving devices mainly perform driving torque shutoff in the following three situations: (1) When the electric vehicle is driving normally, the driving torque value is determined based on the operating parameters of the motor, and the driving torque value is used to generate each The drive signal of the switch is used to control the drive signal output by the drive chip, thereby controlling the drive torque output by the motor. At this time, each PWM signal and the devices these two signals pass through constitute the first turn-off path of the driving torque; (2) The control chip detects an abnormality in the driving torque calculated using the operating parameters of the motor or detects the value of the operating parameters.
  • the functional safety management unit in the control chip When it deviates from its normal working parameter range, the functional safety management unit in the control chip outputs a corresponding signal to the drive circuit to control the drive signal output by the drive chip, thereby achieving control of the drive torque output by the motor. At this time, the signal output by the functional safety management unit and the device through which the signal passes constitute the second shutdown path of the driving torque; (3)
  • the control chip regularly sends a watchdog signal to the watchdog chip, and the watchdog chip uses the received The watchdog signal monitors the control chip for faults. When the watchdog chip monitors a fault in the control chip, it outputs a corresponding signal to the drive circuit to control the drive signal output by the drive chip, thereby controlling the drive torque output by the motor. At this time, the signal output by the watchdog chip and the device through which the signal passes constitute the third turn-off path of the driving torque.
  • the first shutdown path can be realized through the pin in the driver chip that receives the PWM signal.
  • the second shutdown path and the third shutdown path are both realized through the other two pins in the driver chip. These two pins are respectively connected to the functional circuits set inside the driver chip. These functional circuits only have drivers with specific safety levels. The chip only has it. If you use a car-standard driver chip without a safety level, the driver chip does not have these functional circuits. Therefore, when the driver device is damaged or works abnormally, it cannot pass the second shutdown path and the third shutdown path. If the driving torque is cut off along the path, it will cause abnormal operation of the electric vehicle. In serious cases, it will cause the electric vehicle to lose control and cause casualties.
  • this application considers changing the signal output to the drive chip to realize the multiplexing of the drive torque cut-off path, thereby meeting the safety requirements of electric vehicles.
  • the driving device 30 mainly includes a control chip 31 , a watchdog chip 32 , a driving logic circuit 33 and a plurality of driving chips 34 .
  • the plurality of driving chips 34 correspond to the plurality of switches in the inverter.
  • control chip 31 is connected to the watchdog chip 32 and the driving logic circuit 33 for receiving the operating parameters of the motor, generating the driving torque according to the operating parameters, and using the driving torque to determine the pulse width modulation of each switch in the inverter.
  • PWM signal and output the PMW signal of each switch to the drive logic circuit 33; and when it is determined that the drive torque is abnormal or the operating parameter exceeds the set threshold, send a signal to the drive logic circuit 33 that is used to characterize the drive torque abnormality or the motor operation abnormality.
  • the first signal; the watchdog chip 32 is connected to the drive logic circuit 33 for fault monitoring of the control chip 31, and when a fault of the control chip is determined, a second signal used to characterize the control chip fault is sent to the drive logic circuit 33;
  • the driving logic circuit 33 is connected to a plurality of driving chips 34, and is used to generate the driving control signal and enable signal of each switch according to the signals sent by the watchdog chip 32 and the control chip 33, and combine the driving control signal and the enabling signal of each switch.
  • the enable signals are respectively output to the drive chips 34 corresponding to the switches; each drive chip 34 is provided with a first pin, a second pin and a third pin, and the first pin and the second pin are both connected to the drive logic circuit 33 connection, the third pin is used to connect to the switch corresponding to the driver chip 34, the driver chip 34 is used to receive the drive control signal of the corresponding switch through the first pin, and use the second pin to receive the enable signal of the corresponding switch. According to the reception The drive control signal and enable signal adjust the drive signal output to the connected switch.
  • the setting interval may be a fluctuation interval of the operating parameters of the motor during normal driving of the electric vehicle.
  • the control chip 31 samples the operating parameters of the motor and uses the operating parameters to determine the driving torque required by the electric vehicle.
  • the driving torque can be used to determine the PWM signal of each switch in the inverter.
  • PWM The signal passes through the drive logic circuit 33, the first pin of the drive chip 34, and the second pin of the drive chip 34 to form a first shutdown path; the control chip 31 detects that the operating parameters exceed the set range or the generated drive torque is abnormal.
  • a first signal can be generated to represent abnormal driving torque or abnormal motor operation.
  • the first signal passes through the driving logic circuit 33 , the first pin of the driving chip 34 and the second pin of the driving chip 34 to form a second link.
  • the watchdog chip 32 performs fault monitoring on the control chip 31 and generates a second signal representing the fault of the control chip 31 when a fault of the control chip 31 is determined.
  • the second signal passes through the drive logic circuit 33 and the first tube of the drive chip 34
  • the third pin and the second pin of the driver chip 34 form a third turn-off path.
  • the drive logic circuit 33 receives signals on these three turn-off paths and generates signals output to the first pin and the second pin of the drive chip 34 , that is, the three turn-off paths of the drive torque use the drive The same pins on the chip 34 are turned off.
  • the drive logic circuit will adjust the drive control signals output to the first pin and the second pin of the drive chip 34 and an enable signal to control the drive chip and inverter to shut off the driving torque output by the motor.
  • the driving signal output by each driving chip 34 is transmitted to the corresponding switch in the inverter. Since the driving logic of the switch in the upper arm is different from the driving logic of the switch in the lower arm, And the driving torque output by the motor can be turned off by turning on only the upper arm switch or only the lower arm switch. Therefore, the driving logic circuit 33 for controlling the driving signal output of the driving chip 31 may include two parts. They are the upper bridge driving logic circuit 331 and the lower bridge driving logic circuit 332 respectively.
  • electric vehicles also include a high-voltage battery connected to an inverter.
  • the inverter can convert the DC power output by the high-voltage battery into AC power and power the motor in the electric vehicle. If the motor in the electric vehicle is a device powered by single-phase alternating current, the inverter in the electric vehicle is a single-phase inverter that outputs single-phase alternating current.
  • the single-phase inverter mainly includes two inverters. Bridge arms, each bridge arm may include two switches, the switch in the two bridge arms connected to the positive pole of the high-voltage battery constitutes the upper bridge arm switch, and the switch in the two bridge arms connected to the negative pole of the high-voltage battery constitutes the lower bridge arm switch.
  • the inverter in the electric vehicle is a three-phase inverter that outputs three-phase alternating current.
  • the three-phase inverter mainly includes three
  • the inverter bridge arm can include two switches in each bridge arm.
  • the switch among the three bridge arms connected to the positive pole of the high-voltage battery constitutes the upper bridge arm switch.
  • the switch among the three bridge arms connected to the negative pole of the high-voltage battery constitutes the lower bridge. arm switch.
  • Each switch can invert the received DC power when receiving the driving signal sent by the corresponding driving chip.
  • the upper bridge drive logic circuit 331 is connected to the drive chip 34 corresponding to the upper bridge arm switch in the inverter, and is used to generate the upper bridge arm switch in the inverter based on the signals sent by the watchdog chip 32 and the control chip 31.
  • the drive control signal and enable signal of each switch in the bridge arm are output to the corresponding drive chip of the switch.
  • the lower bridge drive logic circuit 332 is connected to the drive chip 34 corresponding to the lower bridge arm switch in the inverter, and is used to generate each switch in the lower bridge arm of the inverter based on the signals sent by the watchdog chip 32 and the control chip 31
  • the drive control signal and enable signal of each switch are output to the corresponding drive chip of the switch.
  • the inverter in the electric vehicle is a three-phase inverter that outputs three-phase alternating current
  • the three-phase alternating current can be composed of three single-phase alternating currents with a phase difference of 120°.
  • the three single-phase alternating currents can They are U-phase alternating current, V-phase alternating current and W-phase alternating current. Therefore, the three-phase inverter can include U-phase bridge arm, V-phase bridge arm and W-phase bridge arm.
  • the U-phase bridge arm can output U-phase AC power
  • the V-phase bridge arm can output V-phase AC single
  • the W-phase bridge arm Can output W-phase alternating current.
  • the switch in the U-phase bridge arm connected to the positive electrode of the high-voltage battery, the switch in the V-phase bridge arm connected to the positive electrode of the high-voltage battery, and the switch in the W-phase bridge arm connected to the positive electrode of the high-voltage battery constitute the upper bridge arm switch.
  • the switch connected to the negative electrode of the high-voltage battery, the switch connected to the V-phase bridge arm to the negative electrode of the high-voltage battery, and the switch connected to the W-phase bridge arm to the negative electrode of the high-voltage battery constitute the lower bridge arm switch.
  • the upper bridge drive logic circuit 331 is specifically used to: respond to the received second signal and the upper bridge enable signal, generate an enable signal for each switch in the upper bridge arm; and according to the received The upper bridge turn-off signal, the second signal and the PWM signal of the switch in the upper arm are determined to determine the drive control signal of each switch in the upper arm, and the drive control signal of each switch is output to the drive chip corresponding to the switch.
  • the low-bridge drive logic circuit 332 is specifically configured to: generate an enable signal for each switch in the low-bridge arm in response to receiving the second signal and the low-bridge turn-off signal; and based on the received low-bridge turn-off signal, the second signal and the PWM signal of the switch in the lower arm, determine the drive control signal of each switch in the lower arm, and output the drive control signal of each switch to the corresponding driver chip of the switch.
  • the upper bridge driving logic circuit 331 includes a first AND gate circuit Z1 , a second AND gate circuit Z2 , a first OR gate circuit Z3 , a second OR gate circuit Z4 and a third OR gate circuit Z5 .
  • the first input terminal of the first AND gate circuit Z1 is connected to the control chip 31 and receives the upper bridge enable signal
  • the second input terminal of the first AND gate circuit Z1 is connected to the watchdog chip 32 and receives the second signal.
  • the output end of the first AND gate circuit Z1 is connected to the second pin of the driver chip connected to the upper bridge drive logic circuit 331; the first input end of the second AND gate circuit Z2 is connected to the control chip and receives the upper bridge shutdown signal,
  • the second input terminal of the second AND gate circuit Z2 is connected to the watchdog chip 32 and receives the second signal.
  • the output terminal of the second AND gate circuit Z2 is connected to the first input terminal of the first OR gate circuit Z3 and the second OR gate circuit Z3 respectively.
  • the first input terminal of the gate circuit Z4 is connected to the first input terminal of the third OR gate circuit Z4; the second input terminal of the first OR gate circuit Z3 is connected to the control chip 31 and receives the positive electrode of the high-voltage battery in the U-phase bridge arm.
  • the PWM signal of the switch, the output end of the first OR gate circuit Z3 is connected to the first pin of the driver chip corresponding to the switch in the U-phase bridge arm connected to the positive electrode of the high-voltage battery; the second input end of the second OR gate circuit Z4 Connected to the control chip 31 and receiving the PWM signal of the switch in the V-phase bridge arm connected to the positive electrode of the high-voltage battery, the output end of the second OR gate circuit Z4 is connected to the driver chip corresponding to the switch in the V-phase bridge arm connected to the positive electrode of the high-voltage battery.
  • the first pin is connected; the second input terminal of the third OR gate circuit Z5 is connected with the control chip 31 and receives the PWM signal of the switch in the W-phase bridge arm connected to the positive electrode of the high-voltage battery, and the output terminal of the third OR gate circuit Z5 is connected with The first pin of the driver chip corresponding to the switch in the W-phase bridge arm is connected to the positive electrode of the high-voltage battery.
  • Z1 outputs the enable signal of the driver chip connected to the three switches in the upper arm, and outputs the enable signal to the second pin of the driver chip, hereinafter referred to as the EN pin.
  • Z3 outputs the drive control signal of the driver chip corresponding to the switch connected to the positive electrode of the high-voltage battery in the U-phase bridge arm, and outputs the drive control signal to the first pin of the driver chip, hereinafter referred to as the PWM-IN pin.
  • Z4 outputs the drive control signal of the driver chip corresponding to the switch connected to the high-voltage battery in the V-phase bridge arm, and outputs the drive control signal to the PWM-IN pin of the driver chip.
  • Z5 outputs the drive control signal of the driver chip corresponding to the switch connected to the high-voltage battery in the W-phase bridge arm, and outputs the drive control signal to the PWM-IN pin of the driver chip.
  • the state of the enable signal can be determined based on the corresponding relationship between the input signal of the upper-bridge drive logic circuit and the enable signal shown in Table 1. Among them, 1 represents a low-level signal, 0 represents a high-level signal, and X represents any value between 0 and 1. This application uses low-level signals as valid signals as an example for explanation.
  • the state of the drive control signal can be determined based on the correspondence between the input signal of the upper-bridge drive logic circuit and the drive control signal shown in Table 2.
  • the control chip 31 samples the operating parameters of the motor, uses the sampled operating parameters to calculate the driving torque required by the electric vehicle, and uses the driving torque to calculate the PWM signal of each switch in the upper arm, and converts the U-phase bridge arm
  • the PWM signal of the switch connected to the positive pole of the high-voltage battery is output to Z3
  • the PWM signal of the switch connected to the V-phase bridge arm and the positive pole of the high-voltage battery is output to Z4
  • the PWM signal of the switch connected to the W-phase bridge arm and the positive pole of the high-voltage battery is output. Give it to Z5.
  • the enable signals received by the three drive chips are normal high-level signals, and the third of Z3 One input terminal, the first input terminal of Z4 and the first input terminal of Z5 are all high-level signals.
  • the PWM-IN pins of the three driver chips receive the corresponding PWM signals.
  • the driver signals output by each driver chip The state is mainly controlled by the level state of the received PWM signal. When it is necessary to shut down or adjust the driving torque output by the motor, it can be achieved by outputting a PWM signal that meets the demand to meet the power demand of electric vehicles.
  • the control chip 31 samples the operating parameters of the motor, and when detecting that the operating parameters of the motor exceed the set range, it is determined that the motor is operating abnormally.
  • a low-level upper-bridge shutdown signal and a low-level upper-bridge enable signal are generated.
  • the EN pins of the three driver chips receive the above-mentioned low-level voltage.
  • the driving signal output by the driving chip is turned off.
  • the inverter cannot output the current and voltage required for the normal operation of the motor, thereby turning off the driving torque output by the motor and ensuring that the electric vehicle is in a safe state.
  • the watchdog chip 32 receives the dog feeding signal sent by the control chip 31, and uses the dog feeding signal to perform fault monitoring on the control chip 31. When it is determined that the control chip 31 is faulty, it can send a second signal in a low level state.
  • the EN pins of the three driver chips receive the above-mentioned low-level signals and control the driver chips to turn off the driving torque output by the motor to ensure that the electric vehicle is in a safe state.
  • the low-bridge driving logic circuit 332 includes a first inverter Z6, a third AND gate circuit Z7, a fourth OR gate circuit Z8, a fifth OR gate circuit Z9, a sixth OR gate circuit Z10, a seventh OR gate circuit Z11 and eighth OR gate circuit Z12.
  • the first input terminal of the first inverter Z6 is connected to the watchdog chip 32 and receives the second signal, and the output terminal of the first inverter Z6 is connected to the first input terminal of the fourth OR gate circuit Z7;
  • the second input end of the four-OR gate circuit Z7 is connected to the control chip and receives the lower bridge enable signal, and the output end of the fourth OR gate circuit Z7 is connected to the EN pin of the driver chip connected to the lower bridge drive logic circuit 332;
  • the third The first input terminal of the AND gate circuit Z8 is connected with the control chip to turn off the lower bridge signal.
  • the second input terminal of the third AND gate circuit Z8 is connected with the watchdog chip 32 and receives the second signal.
  • the input terminal of the third AND gate circuit Z8 is The terminal is connected to the first input terminal of the fifth OR gate circuit Z9; the second input terminal of the fifth OR gate circuit Z9 is connected to the output terminal of the first inverter Z6, and the input terminal of the fifth OR gate circuit Z9 is respectively connected to the output terminal of the first inverter Z6.
  • the first input terminal of the six OR gate circuit Z10, the first input terminal of the seventh OR gate circuit Z11 and the first input terminal of the eighth OR gate circuit Z12 are connected; the second input terminal of the sixth OR gate circuit Z10 is connected to the control chip 31 connects and receives the PWM signal of the switch in the U-phase bridge arm connected to the negative pole of the high-voltage battery.
  • the output end of the sixth OR gate circuit Z10 is connected to the PWM-IN of the driver chip corresponding to the switch in the U-phase bridge arm connected to the positive pole of the high-voltage negative pole. pin connection; the second input end of the seventh OR gate circuit Z11 is connected to the control chip 31 and receives the PWM signal of the switch in the V-phase bridge arm connected to the negative pole of the high-voltage battery, and the output end of the seventh OR gate circuit Z10 is connected to the V-phase
  • the PWM-IN pin of the driver chip corresponding to the switch in the bridge arm connected to the positive electrode of the high-voltage negative electrode is connected;
  • the second input end of the eighth OR gate circuit Z12 is connected to the control chip 31 and receives the signal in the W-phase bridge arm connected to the negative electrode of the high-voltage battery.
  • the PWM signal of the switch, the output end of the eighth OR gate circuit Z12 is connected to the PWM-IN pin of the driver chip corresponding to the switch in the VW bridge arm connected to the high-voltage
  • Z7 outputs the enable signal of the driver chip connected to the three switches in the lower bridge arm, and outputs the enable chip to the EN pin of the driver chip.
  • Z10 outputs the U-phase bridge arm and the negative electrode of the high-voltage battery.
  • the connected switch corresponds to the drive control signal of the driver chip, and outputs the drive control signal to the PWM-IN pin of the driver chip.
  • the switch in the Z11 output UV phase bridge arm connected to the negative pole of the high-voltage battery corresponds to the drive control signal of the driver chip, and the drive control signal is output to the PWM-IN pin of the driver chip.
  • the switch in the Z12 output W-phase bridge arm connected to the negative pole of the high-voltage battery corresponds to the drive control signal of the driver chip, and the drive control signal is output to the PWM-IN pin of the driver chip.
  • the state of the enable signal can be determined based on the corresponding relationship between the input signal of the low-bridge drive logic circuit and the enable signal shown in Table 3.
  • the state of the drive control signal can be determined based on the correspondence between the input signal of the lower-side drive logic circuit and the drive control signal shown in Table 4.
  • the control chip 31 samples the operating parameters of the motor, uses the sampled operating parameters to calculate the driving torque required by the electric vehicle, and uses the driving torque to calculate the PWM signal of the switch in each lower arm, and converts the U-phase bridge arm
  • the PWM signal of the switch connected to the negative pole of the high-voltage battery is output to Z10
  • the PWM signal of the switch connected to the V-phase bridge arm and the negative pole of the high-voltage battery is output to Z11
  • the PWM signal of the switch connected to the W-phase bridge arm and the negative pole of the high-voltage battery is output. Give it to Z12.
  • the enable signals received by the three drive chips are all high-level signals for normal operation, and Z10
  • the first input terminal of Z11, the first input terminal of Z12 and the first input terminal of Z12 are all high-level signals.
  • the PWM-IN pins of the three driver chips receive the corresponding PWM signals.
  • Each driver chip outputs The driving signal state is mainly controlled by the level state of the received PWM signal. When it is necessary to turn off or adjust the driving torque output by the motor, this can be achieved by outputting a PWM signal that meets the demand to meet the power demand of electric vehicles.
  • the control chip 31 samples the operating parameters of the motor, and when detecting that the operating parameters of the motor exceed the set range, it is determined that the motor is operating abnormally.
  • a low-level low-level low-level shutdown signal and a low-level low-level low-level enable signal are generated.
  • the EN pins of the three driver chips receive the above-mentioned low-level low-level power signals.
  • the driving signal output by the driving chip is turned off.
  • the inverter cannot output the current and voltage required for the normal operation of the motor. In this way, the driving torque output by the motor is turned off and the electric vehicle is ensured to be in a safe state.
  • the watchdog chip 32 receives the dog feeding signal sent by the control chip 31, and uses the dog feeding signal to perform fault monitoring on the control chip 31. When it is determined that the control chip 31 is faulty, it can send a second signal in a low level state. When the EN pins of the three driver chips receive the above-mentioned low-level signals, the driver signals output by the driver chips are turned off. At this time, the inverter cannot output the current and voltage required for the normal operation of the motor, thus turning off the driving torque output by the motor to ensure that the electric vehicle is in a safe state.
  • both the control chip and the watchdog chip can use existing high-security chips to generate signals on the three shutdown paths. This application does not impose specific restrictions here.
  • the driving device 30 of the present application is used to provide driving signals for the inverter.
  • signals of corresponding level states can be output through three shutdown paths to drive the inverter.
  • the logic circuit After receiving the above signals, the logic circuit generates the drive control signal and enable signal required to control the drive chip to turn off the driving torque, thereby achieving the purpose of turning off the driving torque of the three turn-off paths.
  • the enable pin and the pin that receives the drive PWM signal in the existing non-safety-level car-standard driver chip can be used to realize three shutdown paths of the driving torque, meeting the safety level requirements of electric vehicles.
  • the above is only a low-level signal effective driving torque shutdown method.
  • the upper-bridge drive logic circuit and the lower-bridge drive logic circuit can use high-level active logic gate circuits to achieve shutdown.
  • the driving torque output by the motor can be used to achieve shutdown.
  • the driving logic circuit can stop providing driving signals to all switches in the inverter, or provide driving signals to some switches. For example, it can only The lower arm switch provides the driving signal. At this time, the inverter cannot output the three-phase AC power required for normal operation of the motor, thereby turning off the driving torque output by the motor. Therefore, according to its driving torque cut-off mode, the driving logic circuit of the present application can also be composed of other logic gate circuits.
  • the inverter when the inverter outputs three-phase alternating current, since the three-phase alternating current is composed of three single-phase alternating currents with a phase difference of 120°, one of the driving signals sent by the driver chip used to control the inverter to output three-phase alternating current is There is a fixed delay between them.
  • the upper-bridge driving logic circuit 331 may include multiple first logic circuits
  • the lower-bridge driving logic circuit 332 may include multiple second logic circuits.
  • each first logic circuit corresponds to each switch in the upper bridge arm switch.
  • the upper bridge drive circuit includes three first logic circuits, and the first first logic circuit is neutralized with the U-phase bridge arm.
  • the switch tube connected to the positive electrode of the high-voltage battery corresponds to the second first logic circuit corresponding to the switch tube connected to the positive electrode of the high-voltage battery in the V-phase bridge arm.
  • the third first logic circuit corresponds to the switch tube connected to the positive electrode of the high-voltage battery in the W-phase bridge arm. corresponding to the switch tube.
  • each second logic circuit corresponds one-to-one to each switch in the lower-side switch.
  • the lower bridge drive circuit includes three second logic circuits.
  • the first second logic circuit corresponds to the switch tube in the U-phase bridge arm and is connected to the negative electrode of the high-voltage battery.
  • the second second logic circuit corresponds to the switch tube in the V-phase bridge arm.
  • the third second logic circuit corresponds to the switch tube connected to the negative electrode of the high-voltage battery in the W-phase bridge arm.
  • the first logic circuit is connected to the watchdog chip 32 and the control chip 31.
  • the first logic circuit is used to connect to the driver chip connected to the corresponding switch. According to the signals sent by the watchdog chip 32 and the control chip 31, generate The drive control signal and enable signal of the corresponding switch are output to the connected driver chip;
  • the second logic circuit is connected to the watchdog chip 32 and the control chip 31, and the second logic circuit is used to connect to the driver chip connected to the corresponding switch, According to the signals sent by the watchdog chip 32 and the control chip 31, a drive control chip and an enable signal corresponding to the switch are generated and output to the connected drive chip.
  • the signals on the three turn-off paths constructed by the control chip 31 and the watchdog chip 32 pass through the drive logic circuit to generate corresponding drive control signals and enable signals, and send the drive control signals and enable signals to the driver.
  • the chip realizes the shutdown of the driving torque. Since this application uses a car-standard driver chip without a safety level, in order to ensure the safety level of the electric vehicle, as shown in FIG. 8 , the drive device 30 may also include a shutdown path that detects whether the three shutdown paths are effectively shut down. detection circuit and shutdown path monitoring circuit.
  • the upper bridge drive logic circuit can also output a third signal that represents the driving state of the upper bridge switch; the lower bridge drive logic circuit can also output a fourth signal that represents the driving state of the lower bridge switch.
  • the state of the third signal can be determined according to the corresponding relationship between the input signal of the upper-bridge driving logic circuit 331 and the third signal shown in Table 5.
  • the state of the fourth signal can be determined according to the corresponding relationship between the input signal of the low-side drive logic circuit 332 and the fourth signal shown in Table 6.
  • the shutdown path self-test circuit is connected to the drive logic circuit.
  • the shutdown path self-test circuit is used to receive the enable signal, the third signal and the fourth signal output by the drive logic circuit when the driving device is started. And when the received signal is abnormal, the drive logic circuit and the drive chip are notified to turn off the drive torque output by the motor.
  • the shutdown path monitoring circuit is connected to the drive logic circuit. The shutdown path monitoring circuit is used to receive the enable signal, the third signal and the fourth signal, and when the received signal is abnormal, shut down the motor output through the drive logic circuit and the drive chip. driving torque.
  • the shutdown path self-test circuit can detect the level status of multiple signals received during the power-on self-test of the driving device and determine each Whether the shutdown path is shut down reliably.
  • the shutdown path monitoring circuit can detect the level status of multiple signals output by the driving logic circuit during the operation of the driving device, and determine whether each shutdown path is reliably turned off.
  • the control watchdog chip 32 and the control chip 31 sequentially output the three shutdown paths required to shut down the driving torque
  • the shutdown path self-test circuit sequentially detects the signals output by the driving logic circuit 33.
  • the shutdown path monitoring circuit monitors the level status of multiple signals output by the driving logic circuit 33, determines whether the level status of the current output signal meets the requirements of full driving torque, and determines whether When the level status of the received signal is abnormal and cannot meet the realization of the driving torque shutdown path, the driving logic circuit and the driving chip can be notified to shut down the driving torque output by the motor.
  • the driving device further includes a conversion circuit.
  • the conversion circuit is connected to the shutdown path self-test circuit.
  • the conversion circuit is used to connect to the output end of the inverter, and to convert the electrical parameters in the form of analog signals output by the output end of the inverter into digital signals, and to convert the electrical parameters of the digital signals into digital signals.
  • the electrical parameters are output to the shutdown path self-test circuit.
  • the shutdown path self-test circuit is also used to: when the driving device starts, determine the setting interval of the electrical parameters output by the inverter according to the preset duty cycle of the driving signal output by the driving device. In the received digital signal electrical parameters When the set range is exceeded, the drive logic circuit and drive chip are notified to shut off the drive torque output by the motor.
  • the conversion circuit is an isolated digital-to-analog converter.
  • the conversion circuit is a non-isolated digital-to-analog converter
  • the driving device further includes an isolator.
  • the isolator is used to achieve isolation between the inverter and the driving device, and the analog-to-digital converter is used to connect the inverter to the driving device.
  • the electrical parameters in the form of output digital signals are converted into analog signals.
  • this application also provides an electric vehicle, which includes wheels, an inverter, a motor, and the driving device 30 provided in the embodiment of this application.
  • the driving device 30 is connected to the inverter and is used to provide driving signals for multiple switches in the inverter.
  • the electric vehicle provided by this application also includes a high-voltage battery.
  • the inverter is connected to the high-voltage battery and the motor, and when receiving the drive signal sent by the driving device, converts the DC power output by the high-voltage battery into AC power and supplies power to the motor.
  • the motor is connected to the wheel, and the motor is used to output driving torque to the wheel to drive the wheel to drive the electric vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)

Abstract

一种驱动装置和电动汽车,用于采用车规驱动芯片的同时,满足电动汽车对安全等级的需求。驱动装置包括控制芯片、看门狗芯片、驱动逻辑电路和多个驱动芯片;多个驱动芯片与逆变器中的多个开关对应;控制芯片与看门狗芯片和驱动逻辑电路连接,接收电机的运行参数,确定每个开关的脉冲宽度调制PWM信号并输出给驱动逻辑电路;以及向驱动逻辑电路发送第一信号;看门狗芯片与驱动逻辑电路连接,用于发送第二信号;驱动逻辑电路生成每个开关的驱动控制信号和使能信号;驱动芯片包括第一管脚、第二管脚和第三管脚,第一管脚和第二管脚与驱动逻辑电路连接,第三管脚用于与对应的开关连接,根据接收的驱动控制信号和使能信号调整连接的开关的驱动信号。

Description

一种驱动装置和电动汽车 技术领域
本申请涉及电动汽车技术领域,尤其涉及一种驱动装置和电动汽车。
背景技术
电动汽车主要包括车轮、电机、驱动装置和逆变器。电机与逆变器连接,可以从逆变器上获取电能,将电能转换为机械能,并输出用于驱动电动汽车运行的驱动扭矩。驱动装置与逆变器连接,可以为逆变器中的多个开关提供驱动信号,从而控制电机的运行。实际使用时,驱动扭矩安全是电动汽车的重要功能安全目标之一,随着电动汽车功能安全的要求越来越高,需要驱动装置满足特定的安全等级,来保证电动汽车的运行安全。
参见图1所示,驱动装置内设置有看门狗芯片、控制芯片和驱动电路,驱动电路中包括多个驱动芯片。为了实现电动汽车对驱动装置的安全等级需求,驱动装置内设置的多个器件均采用具备一定安全等级的器件,这些具备特定安全等级的器件可以构成电机输出的驱动扭矩的三条关断路径。其中,第一条关断路径可以通过驱动芯片中用于接收脉冲宽度调制(pulse width modulation,PWM)信号的管脚实现。第二条关断路径和第三条关断路径可以通过驱动芯片中另外两个管脚实现,这两个管脚分别与驱动芯片内特定的功能电路连接。
实际应用时,逆变器中包括多个桥臂,每个桥臂上至少包括两个开关,每个开关均需要配置一个用于提供驱动信号的驱动芯片。为了实现驱动装置的安全等级需求,逆变器中的多个开关器件配置的驱动芯片均为具备高安全等级的驱动芯片。若选用常规没有安全等级的车规驱动芯片,由于车规驱动芯片不具备高安全等级的驱动芯片中第二条关断路径和第三条关断路径对应的功能电路,因此,当驱动装置采用车规驱动芯片时,无法通过第二条关断路径和第三条关断路径实现驱动扭矩的关断,严重时会造成电动汽车处于失控状态。
有鉴于此,电动汽车的驱动装置还需要进一步研究。
发明内容
本申请提供一种驱动装置和电动汽车,用于使用车规驱动芯片的同时,满足驱动装置的安全等级需求。
第一方面,本申请提供一种驱动装置,该驱动装置可以应用在电动汽车中,电动汽车包括电机、用于为电机供电的逆变器和用于为逆变器中开关提供驱动信号的驱动装置。
其中,驱动装置包括:控制芯片、看门狗芯片、驱动逻辑电路和多个驱动芯片。多个驱动芯片与逆变器中的多个开关一一对应。
具体地,控制芯片与看门狗芯片和驱动关逻辑电路连接,用于接收电机的运行参数,根据运行参数生成驱动扭矩,利用驱动扭矩确定逆变器中每个开关的脉冲宽度调制PWM信号,并将每个开关的PMW信号输出给驱动逻辑电路;以及在确定驱动扭矩异常或者运行参数超出设定阈值时,向驱动逻辑电路发送用于表征扭矩异常或电机运行异常的第一信号;看门狗芯片与驱动逻辑电路连接,用于对控制芯片进行故障监控,在确定控制芯片故障时,向驱动逻辑电路发送用于表征控制芯片故障的第二信号;驱动逻辑电路与多个驱动 芯片连接,用于根据看门狗芯片和控制芯片发送的信号生成每个开关的驱动控制信号和使能信号,并将每个开关的驱动控制信号和使能信号分别输出给开关对应的驱动芯片;每个驱动芯片设置有第一管脚、第二管脚和第三管脚,第一管脚和第二管脚均与驱动逻辑电路连接,第三管脚用于与驱动芯片对应的开关连接,驱动芯片用于通过第一管脚接收对应开关的驱动控制信号,利用第二管脚接收对应开关的使能信号,根据接收的驱动控制信号和使能信号调整输出给连接的开关的驱动信号。
采用上述驱动装置,驱动扭矩的三条关断路径上的信号均需要发送给驱动逻辑电路,驱动逻辑电路可以根据三条关断路径上的信号,生成输出给驱动芯片的使能管脚的使能信号,以及生成输出给驱动芯片的PWM信号接收管脚的驱动控制信号。此时,当三条关断路径中任一条关断路径需要进行驱动扭矩关断时,驱动逻辑电路均会输出相应的信号,调整驱动芯片输出的驱动信号,来控制关断电路输出的驱动扭矩,此时,驱动芯片所占用的管脚为车规驱动信号和特定安全等级驱动芯片均具有的功能管脚,因此,采用车规驱动芯片即可实现三条关断路径的驱动扭矩关断,满足驱动装置的安全等级要求。
在一种可能的实现方式中,第一信号包括:上桥关断信号、上桥关断使能信号、下桥关断信号或下桥关断使能信号。实际应用时,当驱动扭矩异常或者运行参数超出设定区间时,控制芯片可以发送分别控制上桥臂和下桥臂开关的信号。
在一种可能的实现方式中,驱动逻辑电路包括:上桥驱动逻辑电路和下桥驱动逻辑电路。
其中,上桥驱动逻辑电路与逆变器中上桥臂的开关对应的驱动芯片连接,用于根据看门狗芯片和控制芯片发送的信号,生成逆变器中上桥臂中每个开关的驱动控制信号和使能信号,并将每个开关的驱动控制信号和使能信号输出给开关对应的驱动芯片;下桥驱动逻辑电路与逆变器中下桥臂中开关对应的驱动芯片连接,用于根据看门狗芯片和控制芯片发送的信号,生成逆变器中下桥臂中每个开关的驱动控制信号和使能信号,并将每个开关的驱动控制信号和使能信号输出给开关对应的驱动芯片。
采用上述驱动装置,由于逆变器中上桥臂和下桥臂中开关的状态多为互补状态、且当停止为下桥臂中的开关或者上桥臂中的开关提供驱动信号,也可以实现关断电机输出的驱动扭矩的效果,因此,可以对逆变器中的上桥臂开关和下桥臂开关进行分别控制。
在一种可能的实现方式中,上桥驱动逻辑电路具体用于:响应于接收到第二信号或上桥使能信号,生成上桥臂中每个开关的使能信号;以及根据接收的第二信号、上桥关断信号和上桥臂中开关的PWM信号,确定上桥臂中每个开关的驱动控制信号,并将每个开关的驱动控制信号输出给开关对应的驱动芯片。
在一种可能的实现方式中,下桥驱动逻辑电路具体用于:响应于接收到第二信号或下桥关断信号,生成下桥臂中每个开关的使能信号;以及根据接收的第二信号、下桥关断信号和下桥臂中开关的PWM信号,确定下桥臂中每个开关的驱动控制信号,并将每个开关的驱动控制信号输出给开关对应的驱动芯片。
在一种可能的实现方式中,上桥驱动逻辑电路包括多个第一逻辑电路。每个第一逻辑电路与上桥臂中开关的每个开关一一对应。下桥驱动逻辑电路包括多个第二逻辑电路。每个第二逻辑电路与下桥臂中开关的每个开关一一对应。
其中,第一逻辑电路与看门狗芯片和控制芯片连接,第一逻辑电路用于与对应的开关连接的驱动芯片相连,根据看门狗芯片和控制芯片发送的信号,生成对应开关的驱动控制 信号和使能信号并输出给连接的驱动芯片。第二逻辑电路与看门狗芯片和控制芯片连接,第二逻辑电路用于与对应的开关连接的驱动芯片相连,根据看门狗芯片和控制芯片发送的信号,生成对应开关的驱动控制芯片和使能信号并输出给连接的驱动芯片。
采用上述驱动装置,当电动汽车内的逆变器为三相逆变器时,逆变器中可以包括三个桥臂,且每个桥臂生成的交流电的相位之间彼此之间相差120°,相应的每个开关的导通和关断时序不同,为了实现精准的控制电动汽车的运行,可以利用第一逻辑电路和第二逻辑电路对每个开关进行独立控制。
在一种可能的实现方式中,上桥驱动逻辑电路包括:第一与门电路、第二与门电路、第一或门电路、第二或门电路和第三或门电路。
其中,第一与门电路的第一输入端与控制芯片连接,第一与门电路的第二输入端与看门狗芯片连接,第一与门电路的输出端与上桥驱动逻辑电路连接的驱动芯片的第二管脚连接;第二与门电路的第一输入端与控制芯片连接,第二与门电路的第二输入端与看门狗芯片连接,第二与门电路的输出端分别与第一或门电路的第一输入端、第二或门电路的第一输入端和第三或门电路的第一输入端连接;第一或门电路的第二输入端与控制芯片连接,第一或门电路的输出端与上桥臂中第一个开关相连的驱动芯片的第一管脚连接;第二或门电路的第二输入端与控制芯片连接,第二或门电路的输出端与上桥臂中第二个开关相连的驱动芯片的第一管脚连接;第三或门电路的第二输入端与控制芯片连接,第三或门电路的输出端与上桥臂中第三个开关相连的驱动芯片的第一管脚连接。
在一种可能的实现方式中,下桥驱动逻辑电路包括:第一反相器、第三与门电路、第四或门电路、第五或门电路、第六或门电路、第七或门电路和第八或门电路。
其中,第一反相器的第一输入端与看门狗芯片连接,第一反相器的输出端与第四或门电路的第一输入端连接;第四或门电路的第二输入端与控制芯片连接,第四或门电路的输出端与下桥驱动逻辑电路连接的驱动芯片的第二管脚连接;第三与门电路的第一输入端与控制芯片连接,第三与门电路的第二输入端与看门狗芯片连接,第三与门电路的输入端与第五或门电路的第一输入端连接;第五或门电路的第二输入端与第一反相器的输出端连接,第五或门电路的输入端分别与第六或门电路的第一输入端、第七或门电路的第一输入端和第八或门电路的第一输入端连接;第六或门电路的第二输入端与控制芯片连接,第六或门电路的输出端与下桥臂中第一个开关相连的驱动芯片的第一管脚连接;第七或门电路的第二输入端与控制芯片连接,第七或门电路的输出端与下桥臂中第二个开关相连的驱动芯片的第一管脚连接;第八或门电路的第二输入端与控制芯片连接,第八或门电路的输出端与下桥臂中第三个开关相连的驱动芯片的第一管脚连接。
在一种可能的实现方式中,上桥驱动逻辑电路还用于输出表征上桥臂开关驱动状态的第三信号;下桥驱动逻辑电路还用于输出表征下桥臂开关驱动状态的第四信号。
采用上述驱动装置,可以通过第三信号和第四信号,确定上桥臂开关的状态和下桥臂开关的状态,通过上述信号可以确定逆变器为电机的供电情况,从而电机的驱动扭矩的输出情况。
在一种可能的实现方式中,驱动装置还包括:关断路径自检电路和关断路径监控电路。
其中,关断路径自检电路用于在驱动装置启动时,接收驱动逻辑电路输出的使能信号、第三信号和第四信号,以及在接收的信号异常时,通知驱动逻辑电路和驱动芯片关断电机输出的驱动扭矩。关断路径监控电路用于接收使能信号、第三信号和第四信号,以及在接 收的信号异常时,通知驱动逻辑电路和驱动芯片关断电机输出的驱动扭矩。
采用上述驱动装置,可以通过关断路径自检电路和关断路径,在驱动装置上电自检过程以及上电运行过程中,对每个关断路径驱动扭矩关断状态进行监控。
在一种可能的实现方式中,驱动装置还包括转换电路。转换电路与逆变器的输出端连接,用于将逆变器的输出端输出的模拟信号形式的电参数转换为数字信号,并将数字信号的电参数输出给关断路径自检电路。关断路径自检电路还用于:驱动装置启动时,根据预设的驱动装置输出的驱动信号的占空比,确定逆变器输出的电参数的设定区间,在接收的数字信号电参数超出设定区间时,通知驱动逻辑电路和驱动芯片关断电机输出的驱动扭矩。
采用上述驱动装置,在驱动装置上电自检过程中,可以通过调整驱动装置输出的驱动信号的占空比,调整逆变器的输出电压。因此,在驱动装置上电自检过程中,可以根据驱动装置输出的驱动信号的占空比,计算出正常情况下该占空比对应的输出电压波动区间,并通过转换电路输出的电参数与计算出的电压波动区间的比较结果,确定驱动装置的运行状态。
在一种可能的实现方式中,驱动装置还包括连接在逆变器输出端与转换电路之间的隔离器。
采用上述驱动装置,驱动装置为电动汽车的控制侧,即为电动汽车的低压侧。逆变器的输出侧为电动汽车的高压侧。为了保证低压侧和高压侧之间的安全,可以通过隔离器实现低压侧与高压侧之间的电气隔离。
第二方面,本申请提供一种电动汽车,该电动汽车包括电机、逆变器和本申请第一方面及其任一设计中提供的驱动装置。
其中,驱动装置与逆变器连接,驱动装置用于为逆变器中的开关提供驱动信号;逆变器与电机连接,逆变器在接收驱动装置发送的驱动信号后为电机供电;电机用于输出驱动扭矩。
附图说明
图1为本申请实施例提供的一种驱动装置的结构示意图一;
图2为本申请实施例提供的一种电动汽车的结构示意图;
图3为本申请实施例提供的一种驱动装置的结构示意图二;
图4为本申请实施例提供的一种驱动逻辑电路的结构示意图一;
图5为本申请实施例提供的一种驱动逻辑电路的结构示意图二;
图6为本申请实施例提供的一种上桥驱动逻辑电路的结构示意图;
图7为本申请实施例提供的一种下桥驱动逻辑电路的结构示意图;
图8为本申请实施例提供的一种驱动装置的结构示意图三。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或***实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述 关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请实施例中“连接”可以理解为电连接,两个电学元件连接可以是两个电学元件之间的直接或间接连接。例如,A与B连接,既可以是A与B直接连接,也可以是A与B之间通过一个或多个其它电学元件间接连接,例如A与B连接,也可以是A与C直接连接,C与B直接连接,A与B之间通过C实现了连接。
需要指出的是,本申请实施例中的开关可以是继电器、金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,MOSFET),双极结型管(bipolar junction transistor,BJT),绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)、碳化硅(SiC)晶体管等多种类型的开关管中的一种或多种,本申请实施例对此不再一一列举。各个开关的封装形式可以是单管封装,也可以是多管封装,本申请实施例对此并不多作限制。每个开关皆可以包括第一电极、第二电极和控制电极,其中,控制电极用于控制开关管的导通或断开。当开关管导通时,开关管的第一电极和第二电极之间可以传输电流,当开关断开时,开关的第一电极和第二电极之间无法传输电流。以为MOSFET例,开关的控制电极为栅极,开关的第一电极可以是源极,第二电极可以是漏极,或者,第一电极可以是漏极,第二电极可以是源极。
本申请所公开的驱动装置可以应用于使用电机制动的设备。其中,该设备包括但不限于:电动汽车、电动轮船、电动无人机、电动火车、电动货车、电动卡车、机器人、工业设备、智能物流、智能工厂等。
在一种具体的应用场景中,驱动装置可以应用于电动汽车内,汽车又称为新能源汽车,是一种以电能驱动的汽车。如图2所示,电动汽车20主要包括电机21、车轮22、逆变器23和驱动装置24。
电动汽车行驶时,电机21可以从逆变器23上获取电能,并将获取的电能转换为机械能,并输出用于驱动车轮22旋转的驱动扭矩,车轮22接收到上述驱动扭矩之后旋转并带动电动汽车20移动。
实际使用时,电动汽车20中还包括高压电池和低压电池,高压电池104可以为大容量、高功率的蓄电池。逆变器23与高压电池连接,逆变器23可以将高压电池输出的直流电转换为交流电,并利用该交流电为电机21供电。
实际使用时,逆变器23由多个开关器件组成,驱动装置24可以与逆变器23中的多个开关器件连接,并为逆变器23中的每个开关提供相应的驱动信号,实现控制逆变器23将直流电转换为交流电。当驱动装置24停止或者仅为逆变器23中的部分开关输出驱动信号时,此时电机无法获取正常工作所需的电压,相应的,也无法输出用于驱动车轮22旋转的驱动扭矩。因此,驱动装置24是实现控制电机21输出的驱动扭矩的重要设备之一,由于电机21输出的扭矩安全是电动汽车的重要的功能安全目标之一,随着电动汽车的功能安全的要求越来越高,驱动装置24也需要满足特定的安全等级。
实际使用时,驱动装置24可以电动汽车正常运行时,控制关断电机21输出的驱动扭矩,也可以在电动汽车故障时,关断电机21输出的驱动扭矩,保证电动汽车的安全运行。 实际应用时,驱动装置主要通过三条关断路径来关断电机输出的驱动扭矩。参见图1所示,驱动装置主要包括驱动电路、控制芯片和看门狗芯片。其中,驱动电路中包括多个驱动芯片,每个驱动芯片与逆变器中的一个开关器件一一对应连接。
目前,高安全等级的驱动装置主要以下三种情况进行驱动扭矩关断,分别是:(1)电动汽车正常行驶时,根据电机的运行参数确定驱动扭矩值,并利用该驱动扭矩值生成每个开关的驱动信号,来控制驱动芯片输出的驱动信号,从而实现电机输出的驱动扭矩的控制。此时,每个PWM信号以及这两个信号经过的器件构成驱动扭矩的第一条关断路径;(2)控制芯片检测到利用电机的运行参数计算的驱动扭矩异常或者检测到运行参数的数值偏离其正常工作时的参数区间时,控制芯片内的功能安全管理单元输出相应的信号给驱动电路,来控制驱动芯片输出的驱动信号,从而实现电机输出的驱动扭矩的控制。此时,功能安全管理单元输出的信号以及该信号经过的器件构成驱动扭矩的第二条关断路径;(3)控制芯片定期发送看门狗信号给看门狗芯片,看门狗芯片利用接收的看门狗信号对控制芯片进行故障监控。看门狗芯片监控到控制芯片故障时,向驱动电路输出相应的信号,来控制驱动芯片输出的驱动信号,从而实现电机输出的驱动扭矩的控制。此时,看门狗芯片输出的信号以及该信号经过的器件构成驱动扭矩的第三条关断路径。
实际使用时,第一条关断路径可以通过驱动芯片中接收PWM信号的管脚实现。第二条关断路径和第三条关断路径均通过驱动芯片中的另外两个管脚实现,这两个管脚分别连接驱动芯片内部设置的功能电路,这些功能电路只有特定安全等级的驱动芯片才具备,若使用无安全等级的车规驱动芯片,该驱动芯片不具备这些功能电路,因此,当驱动装置器件损坏或者工作异常时,无法通过第二条关断路径和第三条关断路径实现驱动扭矩的关断,会造成电动汽车运行异常,严重时会造成电动汽车失控,人员伤亡。
为了解决上述问题,本申请考虑改变输出给驱动芯片的信号,实现驱动扭矩关断路径的复用,从而满足电动汽车的安全需求。
示例性地,参见图3所示,为本申请提供的驱动装置的结构示意图。如图3所示,驱动装置30中主要包括控制芯片31、看门狗芯片32、驱动逻辑电路33和多个驱动芯片34。其中,多个驱动芯片34与逆变器中的多个开关一一对应。
具体地,控制芯片31与看门狗芯片32和驱动逻辑电路33连接,用于接收电机的运行参数,根据运行参数生成驱动扭矩,并利用驱动扭矩确定逆变器中每个开关的脉冲宽度调制PWM信号,并将每个开关的PMW信号输出给驱动逻辑电路33;以及在确定驱动扭矩异常或者运行参数超出设定阈值时,向驱动逻辑电路33发送用于表征驱动扭矩异常或电机运行异常的第一信号;看门狗芯片32与驱动逻辑电路33连接,用于对控制芯片31进行故障监控,在确定控制芯片故障时,向驱动逻辑电路33发送用于表征控制芯片故障的第二信号;驱动逻辑电路33与多个驱动芯片34连接,用于根据看门狗芯片32和控制芯片33发送的信号生成每个开关的驱动控制信号和使能信号,并将每个开关的驱动控制信号和使能信号分别输出给开关对应的驱动芯片34;每个驱动芯片34设置有第一管脚、第二管脚和第三管脚,第一管脚和第二管脚均与驱动逻辑电路33连接,第三管脚用于与驱动芯片34对应的开关连接,驱动芯片34用于通过第一管脚接收对应开关的驱动控制信号,利用第二管脚接收对应开关的使能信号,根据接收的驱动控制信号和使能信号调整输出给连接的开关的驱动信号。其中,设定区间可以是电动汽车正常行驶过程中电机的运行参数的波动区间。
继续参见图3所示,控制芯片31对电机的运行参数进行采样,并利用该运行参数确定电动汽车所需的驱动扭矩,可以利用该驱动扭矩确定逆变器中每个开关的PWM信号,PWM信号经过驱动逻辑电路33、驱动芯片34的第一管脚和驱动芯片34的第二管脚构成第一条关断路径;控制芯片31在检测到运行参数超出设定区间或者生成的驱动扭矩异常时,可以生成用于表征驱动扭矩异常或电机运行异常的第一信号,第一信号经过驱动逻辑电路33、驱动芯片34的第一管脚和驱动芯片34的第二管脚构成第二条关断路径;看门狗芯片32对控制芯片31进行故障监控,在确定控制芯片31故障时生成表征控制芯片31故障的第二信号,第二信号经过驱动逻辑电路33、驱动芯片34的第一管脚和驱动芯片34的第二管脚构成第三条关断路径。
继续参照图3所示,驱动逻辑电路33接收这三条关断路径上的信号,并生成输出给驱动芯片34第一管脚和第二管脚的信号,即驱动扭矩的三条关断路径使用驱动芯片34上相同的管脚进行关断,当任一关断路径需要进行驱动扭矩关断时,驱动逻辑电路均会调整输出给驱动芯片34的第一管脚和第二管脚的驱动控制信号以及使能信号,来控制驱动芯片和逆变器关断电机输出的驱动扭矩。
示例性的,如图4所示,每个驱动芯片34输出的驱动信号分别传输给逆变器中对应的开关,由于上桥臂中开关的驱动逻辑和下桥臂中开关的驱动逻辑不同、且可以通过仅导通上桥臂开关或者仅导通下桥臂开关,实现关断电机输出的驱动扭矩,因此,用于控制驱动芯片31输出驱动信号的驱动逻辑电路33可以包括两个部分,分别是上桥驱动逻辑电路331和下桥驱动逻辑电路332。
实际应用时,电动汽车中还包括用于与逆变器连接的高压电池,逆变器可以将高压电池输出的直流电转换为交流电,并为电动汽车内的电机供电。若电动汽车内的电机为采用单相交流电供电的设备,电动汽车内的逆变器为输出单相交流电的单相逆变器,此时单相逆变器主要包括两个用于逆变的桥臂,每个桥臂中可以包括两个开关,两个桥臂中与高压电池正极连接的开关构成上桥臂开关,两个桥臂中与高压电池负极连接的开关构成下桥臂开关。同理,若电动汽车内的电机为采用三相交流电供电的设备,电动汽车内的逆变器为输出三相交流电的三相逆变器,此时三相逆变器主要包括三个用于逆变的桥臂,每个桥臂中可以包括两个开关,三个桥臂中与高压电池正极连接的开关构成上桥臂开关,三个桥臂中与高压电池负极连接的开关构成下桥臂开关。各个开关可以在接收对应的驱动芯片发送的驱动信号时,对接收的直流电进行逆变处理。
应理解,本申请实施例对逆变器的结构并不多作限制,相应的,对驱动芯片34的数量也不作限制。
参见图4所示,上桥驱动逻辑电路331与逆变器中上桥臂开关对应的驱动芯片34连接,用于根据看门狗芯片32和控制芯片31发送的信号,生成逆变器中上桥臂中每个开关的驱动控制信号和使能信号,并将每个开关的驱动控制信号和使能信号输出给开关对应的驱动芯片。下桥驱动逻辑电路332与逆变器中下桥臂开关对应的驱动芯片34连接,用于根据看门狗芯片32和控制芯片31发送的信号,生成逆变器中下桥臂中每个开关的驱动控制信号和使能信号,并将每个开关的驱动控制信号和使能信号输出给开关对应的驱动芯片。
继续参见图4所示,若电动汽车内的逆变器为输出三相交流电的三相逆变器,三相交流电可以由三个相位相差120°的单相交流电构成,三个单相交流电可以分别为U相交流电、V相交流电和W相交流电。因此,三相逆变器中可以包括U相桥臂、V相桥臂和W 相桥臂,U相桥臂可以输出U相交流电,V相桥臂可以输出V相交流单,W相桥臂可以输出W相交流电。其中,U相桥臂中与高压电池正极连接的开关、V相桥臂与高压电池正极连接的开关和W相桥臂与高压电池的正极连接的开关构成上桥臂开关,U相桥臂中与高压电池负极连接的开关、V相桥臂与高压电池负极连接的开关和W相桥臂与高压电池的负极连接的开关构成下桥臂开关。
实际使用时,参见图5所示,上桥驱动逻辑电路331具体用于:响应于接收的第二信号和上桥使能信号,生成上桥臂中每个开关的使能信号;以及根据接收的上桥关断信号、第二信号和上桥臂中开关的PWM信号,确定上桥臂中每个开关的驱动控制信号,并将每个开关的驱动控制信号输出给开关对应的驱动芯片。下桥驱动逻辑电路332具体用于:响应于接收到第二信号和下桥关断信号时,生成下桥臂中每个开关的使能信号;以及根据接收的下桥关断信号、第二信号和下桥臂中开关的PWM信号,确定下桥臂中每个开关的驱动控制信号,并将每个开关的驱动控制信号输出给开关对应的驱动芯片。
下面,结合实施例对上桥驱动逻辑电路331、下桥驱动逻辑电路332的电路结构以及驱动控制芯片和使能信号的生成过程进行详细介绍。
上桥驱动逻辑电路331:
参见图6所示,上桥驱动逻辑电路331包括第一与门电路Z1、第二与门电路Z2、第一或门电路Z3、第二或门电路Z4和第三或门电路Z5。
其中,第一与门电路Z1的第一输入端与控制芯片31连接并接收上桥使能信号,第一与门电路Z1的第二输入端与看门狗芯片32连接并接收第二信号,第一与门电路Z1的输出端与上桥驱动逻辑电路331连接的驱动芯片的第二管脚连接;第二与门电路Z2的第一输入端与控制芯片连接并接收上桥关断信号,第二与门电路Z2的第二输入端与看门狗芯片32连接并接收第二信号,第二与门电路Z2的输出端分别与第一或门电路Z3的第一输入端、第二或门电路Z4的第一输入端和第三或门电路Z4的第一输入端连接;第一或门Z3电路的第二输入端与控制芯片31连接并接收U相桥臂中与高压电池正极连接的开关的PWM信号,第一或门电路Z3的输出端与U相桥臂中与高压电池正极连接的开关对应的驱动芯片的第一管脚连接;第二或门电路Z4的第二输入端与控制芯片31连接并接收V相桥臂中与高压电池正极连接的开关的PWM信号,第二或门电路Z4的输出端与V相桥臂中与高压电池正极连接的开关对应的驱动芯片的第一管脚连接;第三或门电路Z5的第二输入端与控制芯片31连接并接收W相桥臂中与高压电池正极连接的开关的PWM信号,第三或门电路Z5的输出端与W相桥臂中与高压电池正极连接的开关对应的驱动芯片的第一管脚连接。
继续参见图6所示,Z1输出上桥臂中三个开关连接的驱动芯片的使能信号,并将使能信号输出给驱动芯片的第二管脚,以下简称为EN管脚。Z3输出U相桥臂中与高压电池正极连接的开关对应的驱动芯片的驱动控制信号,并将驱动控制信号输出给驱动芯片的第一管脚,以下简称PWM-IN管脚。Z4输出V相桥臂中与高压电池连接的开关对应的驱动芯片的驱动控制信号,并将驱动控制信号输出给驱动芯片的PWM-IN管脚。Z5输出W相桥臂中与高压电池连接的开关对应的驱动芯片的驱动控制信号,并将驱动控制信号输出给驱动芯片的PWM-IN管脚。
实际应用时,可以根据表1所示的上桥驱动逻辑电路的输入信号与使能信号之间的对应关系,确定使能信号的状态。其中,1为表征低电平信号,0为高电平,X为0和1中的 任一数值。本申请以低电平信号为有效信号为例进行说明。
上桥使能信号 第二信号 使能信号
0 0 0
X 1 1
1 0 1
X 0 X
表1上桥驱动逻辑电路的输入信号与使能信号之间的对应关系
实际应用时,可以根据表2所示的上桥驱动逻辑电路的输入信号与驱动控制信号之间的对应关系,确定驱动控制信号的状态。
第二信号 上桥关断信号 PWM信号 驱动控制信号
0 0 X X
0 1 X 1
1 X X 0
表2上桥驱动逻辑电路的输入信号与驱动控制信号之间的对应关系
下面,结合图6所示的上桥驱动逻辑电路331、表1和表2,对驱动装置30的关断路径的实现过程进行示例性说明。
第一条关断路径
控制芯片31对电机的运行参数进行采样,并利用采样的运行参数计算电动汽车所需的驱动扭矩,并利用该驱动扭矩计算出上桥臂中每个开关的PWM信号,并将U相桥臂与高压电池正极连接的开关的PWM信号输出给Z3,将V相桥臂与高压电池正极连接的开关的PWM信号输出给Z4,并将W相桥臂与高压电池正极连接的开关的PWM信号输出给Z5。在控制芯片31检测驱动扭矩和运行参数均正常、且看门狗芯片32监控到控制芯片31处于正常状态时,三个驱动芯片接收的使能信号为正常的高电平信号、且Z3的第一输入端、Z4的第一输入端和Z5的第一输入端均是高电平信号,三个驱动芯片的PWM-IN管脚接收的是对应的PWM信号,每个驱动芯片输出的驱动信号状态主要由接收的PWM信号的电平状态控制,当需要关断或者调整电机输出的驱动扭矩时,可以通过输出满足需求的PWM信号实现,以满足电动汽车对动力的需求。
第二条关断路径
控制芯片31对电机的运行参数进行采样,在检测电机的运行参数超出设定区间,确定电机运行异常。当电机运行异常或者计算的驱动扭矩异常时,生成低电平状态的上桥关断信号和低电平状态的上桥使能信号,此时三个驱动芯片的EN管脚接收到上述低电平信号时,关断驱动芯片输出的驱动信号。此时,逆变器无法输出电机正常工作所需的电流和电压,从而实现关断电机输出的驱动扭矩,保证电动汽车处于安全状态。
第三条关断路径
看门狗芯片32接收控制芯片31发送的喂狗信号,并利用上述喂狗信号对控制芯片31进行故障监控,在确定控制芯片31故障时,可以发送低电平状态的第二信号,此时三个驱动芯片的EN管脚接收到上述低电平信号,并控制驱动芯片关断电机输出的驱动扭矩,保证电动汽车处于安全状态。
下桥驱动逻辑电路332:
参见图7所示,下桥驱动逻辑电路332包括第一反相器Z6、第三与门电路Z7、第四或门电路Z8、第五或门电路Z9、第六或门电路Z10、第七或门电路Z11和第八或门电路Z12。
其中,第一反相器Z6的第一输入端与看门狗芯片32连接并接收第二信号,第一反相器Z6的输出端与第四或门电路Z7的第一输入端连接;第四或门电路Z7的第二输入端与控制芯片连接并接收下桥使能信号,第四或门电路Z7的输出端与下桥驱动逻辑电路332连接的驱动芯片的EN管脚连接;第三与门电路Z8的第一输入端与控制芯片连接下桥关断信号,第三与门电路的第二输入端与看门狗芯片32连接并接收第二信号,第三与门电路Z8的输入端与第五或门电路Z9的第一输入端连接;第五或门电路Z9的第二输入端与第一反相器Z6的输出端连接,第五或门电路Z9的输入端分别与第六或门电路Z10的第一输入端、第七或门电路Z11的第一输入端和第八或门电路Z12的第一输入端连接;第六或门电路Z10的第二输入端与控制芯片31连接并接收U相桥臂中与高压电池负极连接的开关的PWM信号,第六或门电路Z10的输出端与U相桥臂中与高压负极正极连接的开关对应的驱动芯片的PWM-IN管脚连接;第七或门电路Z11的第二输入端与控制芯片31连接并接收V相桥臂中与高压电池负极连接的开关的PWM信号,第七或门电路Z10的输出端与V相桥臂中与高压负极正极连接的开关对应的驱动芯片的PWM-IN管脚连接;第八或门电路Z12的第二输入端与控制芯片31连接并接收W相桥臂中与高压电池负极连接的开关的PWM信号,第八或门电路Z12的输出端与VW桥臂中与高压负极正极连接的开关对应的驱动芯片的PWM-IN管脚连接。
继续参见图7所示,Z7输出下桥臂中三个开关连接的驱动芯片的使能信号,并将使能芯片输出给驱动芯片的EN管脚,Z10输出U相桥臂中与高压电池负极连接的开关对应驱动芯片的驱动控制信号,并将驱动控制信号输出给驱动芯片的PWM-IN管脚。Z11输出UV相桥臂中与高压电池负极连接的开关对应驱动芯片的驱动控制信号,并将驱动控制信号输出给驱动芯片的PWM-IN管脚。Z12输出W相桥臂中与高压电池负极连接的开关对应驱动芯片的驱动控制信号,并将驱动控制信号输出给驱动芯片的PWM-IN管脚。
实际应用时,可以根据表3所示的下桥驱动逻辑电路的输入端信号与使能信号之间的对应关系,确定使能信号的状态。
下桥使能信号 第二信号 使能信号
0 0 0
X 1 1
X 0 0
1 0 1
表3下桥逻辑电路的输入信号与使能信号之间的对应关系
实际应用时,可以根据表4所示的下桥驱动逻辑电路的输入信号与驱动控制信号之间的对应关系,确定驱动控制信号的状态。
第二信号 下桥关断信号 PWM信号 驱动控制信号
0 0 0 X
0 1 X 1
1 X X 1
表4下桥驱动逻辑电路的输入信号与驱动控制信号之间的对应关系
下面,结合图7所示的下桥驱动逻辑电路332、表3和表4,对驱动装置30的关断路径的实现过程进行示例性说明。
第一条关断路径
控制芯片31对电机的运行参数进行采样,并利用采样的运行参数计算电动汽车所需的驱动扭矩,并利用该驱动扭矩计算出每个下桥臂中开关的PWM信号,并将U相桥臂与高压电池负极连接的开关的PWM信号输出给Z10,将V相桥臂与高压电池负极连接的开关的PWM信号输出给Z11,并将W相桥臂与高压电池负极连接的开关的PWM信号输出给Z12。在控制芯片31检测驱动扭矩和运行参数均正常、且看门狗芯片32监控到控制芯片31处于正常状态时,三个驱动芯片接收的使能信号均为正常工作的高电平信号、且Z10的第一输入端、Z11的第一输入端和Z12的第一输入端均为高电平信号,三个驱动芯片的PWM-IN管脚接收的是对应的PWM信号,每个驱动芯片输出的驱动信号状态主要由接收的PWM信号的电平状态控制,当需要关断或者调整电机输出的驱动扭矩时,可以通过输出满足需求的PWM信号实现,以满足电动汽车对动力的需求。
第二条关断路径
控制芯片31对电机的运行参数进行采样,在检测到电机运行参数超出设定区间,确定电机运行异常。当电机运行异常或者计算的驱动扭矩异常时,生成低电平状态的下桥关断信号和低电平状态的下桥使能信号,此时三个驱动芯片的EN管脚接收到上述低电平信号时,关断驱动芯片输出的驱动信号。此时,逆变器无法输出电机正常工作所需的电流和电压。从而实现关断电机输出的驱动扭矩,保证电动汽车处于安全状态。
第三条关断路径
看门狗芯片32接收控制芯片31发送的喂狗信号,并利用上述喂狗信号对控制芯片31进行故障监控,在确定控制芯片31故障时,可以发送低电平状态的第二信号,此时三个驱动芯片的EN管脚接收到上述低电平信号时,关断驱动芯片输出的驱动信号。此时,逆变器无法输出电机正常工作所需的电流和电压,从而关断电机输出的驱动扭矩,保证电动汽车处于安全状态。
实际使用时,控制芯片和看门狗芯片均可以采用现有的高安全等级的芯片,用于产生三条关断路径上的信号,本申请这里不做具体限制。
参见图6和图7所示,采用本申请的驱动装置30为逆变器提供驱动信号,当发生故障或者未发生故障时,均可以通过三条关断路径上输出相应电平状态的信号,驱动逻辑电路接收到上述信号后,生成用于控制驱动芯片关断驱动扭矩所需的驱动控制信号和使能信号,从而实现三条关断路径的驱动扭矩关断目的。采用上述结构,可以利用现有的无安全等级的车规驱动芯片中的使能管脚和接收驱动PWM信号的管脚实现驱动扭矩的三条关断路径,满足了电动汽车对安全等级的需求。
应理解,上述只是一种低电平信号有效的驱动扭矩关断方式,在其它实施方式中,上桥驱动逻辑电路和下桥驱动逻辑电路可以采用高电平有效的逻辑门电路,实现关断电机输出的驱动扭矩。
需要说明的是,上述驱动逻辑电路的描述仅为示例,实际使用时,驱动逻辑电路可以通过停止为逆变器中的所有开关提供驱动信号,或者为部分开关提供驱动信号,例如,可以仅为下桥臂开关提供驱动信号,此时逆变器无法为电机输出正常工作所需的三相交流电, 实现关断电机输出的驱动扭矩。因此,根据其驱动扭矩关断方式,本申请的驱动逻辑电路还可以采用其它逻辑门电路构成。
实际使用时,当逆变器输出三相交流电时,由于三相交流电由三个相位相差120°的单相交流电构成,因此用于控制逆变器输出三相交流电的驱动芯片发送的驱动信号之间存在固定的时延。为了实现对逆变器中每个器件的精准控制,上桥驱动逻辑电路331中可以包括多个第一逻辑电路,下桥驱动逻辑电路332包括多个第二逻辑电路。
其中,每个第一逻辑电路与上桥臂开关中的每个开关一一对应,例如,上桥驱动电路包括三个第一逻辑电路,第一个第一逻辑电路与U相桥臂中和高压电池正极连接的开关管对应,第二个第一逻辑电路与V相桥臂中和高压电池正极连接的开关管对应,第三个第一逻辑电路与W相桥臂中和高压电池正极连接的开关管对应。同理,每个第二逻辑电路与下桥臂开关中的每个开关一一对应。例如,下桥驱动电路包括三个第二逻辑电路,第一个第二逻辑电路与U相桥臂中和高压电池负极连接的开关管对应,第二个第二逻辑电路与V相桥臂中和高压电池负极连接的开关管对应,第三个第二逻辑电路与W相桥臂中和高压电池负极连接的开关管对应。
具体地,第一逻辑电路与看门狗芯片32和控制芯片31连接,第一逻辑电路用于与对应的开关连接的驱动芯片相连,根据看门狗芯片32和控制芯片31发送的信号,生成对应开关的驱动控制信号和使能信号并输出给连接的驱动芯片;第二逻辑电路与看门狗芯片32和控制芯片31连接,第二逻辑电路用于与对应的开关连接的驱动芯片相连,根据看门狗芯片32和控制芯片31发送的信号,生成对应开关的驱动控制芯片和使能信号并输出给连接的驱动芯片。
实际使用时,控制芯片31和看门狗芯片32构建的三条关断路径上的信号经过驱动逻辑电路生成相应的驱动控制信号和使能信号,并通过将驱动控制信号和使能信号发送给驱动芯片实现驱动扭矩的关断。由于本申请采用的是无安全等级的车规驱动芯片,为了保证电动汽车的安全等级,参见图8所示,驱动装置30中还可以包括检测三条关断路径是否有效关断的关断路径自检电路和关断路径监控电路。
实际使用时,上桥驱动逻辑电路还可以输出表征上桥开关驱动状态的第三信号;下桥驱动逻辑电路还可以输出表征下桥开关驱动状态的第四信号。
实际使用时,可以根据表5所示的上桥驱动逻辑电路331的输入信号与第三信号之间的对应关系,确定第三信号的状态。
第二信号 上桥关断信号 PWM信号 第三信号
0 0 X 0
0 1 X 1
1 X X 0
实际使用时,可以根据表6所示的下桥驱动逻辑电路332的输入信号与第四信号之间的对应关系,确定第四信号的状态。
第二信号 下桥关断信号 PWM信号 第四信号
0 0 X 0
0 1 X 1
1 X X 1
需要说明的是,上述第三信号和第四信号的输出可以通过相关的逻辑门电路实现,本申请这里对逻辑门电路的结构并不做限定。
参见图8所示,关断路径自检电路与驱动逻辑电路连接,关断路径自检电路用于在驱动装置启动时,接收驱动逻辑电路输出的使能信号、第三信号和第四信号,以及在接收信号异常时,通知驱动逻辑电路和驱动芯片关断电机输出的驱动扭矩。关断路径监控电路与驱动逻辑电路连接,关断路径监控电路用于接收使能信号、第三信号和第四信号,以及在接收信号异常时,通过驱动逻辑电路和驱动芯片关断电机输出的驱动扭矩。
应理解,驱动装置上电启动时,驱动装置会进行三条关断路径的自检,关断路径自检电路可检测驱动装置上电自检过程中接收的多个信号的电平状态,确定各个关断路径是否可靠关断。关断路径监控电路可以在驱动装置运行过程中检测驱动逻辑电路输出的多个信号的电平状态,确定各个关断路径是否可靠关断。
具体地,当驱动装置上电启动时,控制看门狗芯片32和控制芯片31依次输出三条关断路径关断驱动扭矩所需的信号,关断路径自检电路依次检测驱动逻辑电路33输出的多个信号的电平状态,并根据多个信号的状态确定三条关断路径是否可以有效关断,以及在确定接收的信号的电平状态异常,确定三条关断路径中的一条或多条关断路径无法有效关断,可以通知驱动逻辑电路和驱动芯片关断电机输出的驱动扭矩。
具体地,在驱动装置30运行过程中,关断路径监控电路监控驱动逻辑电路33输出的多个信号的电平状态,确定当前输出信号的电平状态是否满足满驱动扭矩的要求,以及在确定接收的信号的电平状态异常,无法满足驱动扭矩关断路径的实现时,可以通知驱动逻辑电路和驱动芯片关断电机输出的驱动扭矩。
在一种可能的实现方式中,驱动装置还包括转换电路。转换电路与关断路径自检电路连接,转换电路用于与逆变器的输出端连接,以及将逆变器的输出端输出的模拟信号形式的电参数转换为数字信号,并将数字信号的电参数输出给关断路径自检电路。关断路径自检电路还用于:驱动装置启动时,根据预设的驱动装置输出的驱动信号的占空比,确定逆变器输出的电参数的设定区间,在接收的数字信号电参数超出设定区间时,通知驱动逻辑电路和驱动芯片关断电机输出的驱动扭矩。
在一示例中,转换电路为具有隔离式的数模转换器。
在另一示例中,转换电路为非隔离式数模转换器,则驱动装置中还包括隔离器,隔离器用于实现逆变器与驱动装置之间的隔离,模数转换器用于将逆变器输出的数字信号形式的电参数转换为模拟信号。
基于同一发明构思,本申请还提供一种电动汽车,该电动汽车包括车轮、逆变器、电机和本申请实施例提供的驱动装置30。
其中,驱动装置30与逆变器连接,并用于为逆变器中的多个开关提供驱动信号。
本申请提供的电动汽车还包括高压电池,逆变器与高压电池和电机连接,并在接收到驱动装置发送的驱动信号时,将高压电池输出的直流电转换为交流电,并为电机供电。
电机与车轮连接,电机用于输出驱动扭矩给车轮,以驱动车轮带动电动汽车行驶。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种驱动装置,其特征在于,应用于在电动汽车中,所述电动汽车包括电机、用于为所述电机供电的逆变器和用于为所述逆变器中开关提供驱动信号的所述驱动装置,所述驱动装置包括:控制芯片、看门狗芯片、驱动逻辑电路和多个驱动芯片;其中,所述多个驱动芯片与所述逆变器中的多个开关一一对应:
    所述控制芯片与所述看门狗芯片和所述驱动关逻辑电路连接,用于接收所述电机的运行参数,根据所述运行参数生成驱动扭矩,并利用所述驱动扭矩确定所述逆变器中每个所述开关的脉冲宽度调制PWM信号,并将每个所述开关的PMW信号输出给所述驱动逻辑电路;以及在确定所述驱动扭矩异常或者所述运行参数超出设定区间时,向所述驱动逻辑电路发送用于表征驱动扭矩异常或所述电机运行异常的第一信号;
    所述看门狗芯片与所述驱动逻辑电路连接,用于对所述控制芯片进行故障监控,在确定所述控制芯片故障时,向所述驱动逻辑电路发送用于表征所述控制芯片故障的第二信号;
    所述驱动逻辑电路与所述多个驱动芯片连接,用于根据所述看门狗芯片和所述控制芯片发送的信号生成每个所述开关的驱动控制信号和使能信号,并将每个所述开关的驱动控制信号和使能信号分别输出给开关对应的驱动芯片;
    每个所述驱动芯片包括第一管脚、第二管脚和第三管脚,所述第一管脚和所述第二管脚均与所述驱动逻辑电路连接,所述第三管脚用于与所述驱动芯片对应的开关连接,所述驱动芯片用于通过所述第一管脚接收对应开关的驱动控制信号,利用所述第二管脚接收对应开关的使能信号,根据接收的驱动控制信号和使能信号调整输出给连接的开关的驱动信号。
  2. 如权利要求1所述的驱动装置,其特征在于,所述第一信号包括:上桥关断信号、上桥关断使能信号、下桥关断信号或下桥关断使能信号。
  3. 如权利要求2所述的驱动装置,其特征在于,所述驱动逻辑电路包括:上桥驱动逻辑电路和下桥驱动逻辑电路;
    所述上桥驱动逻辑电路与所述逆变器中上桥臂的开关对应的驱动芯片连接,用于根据所述看门狗芯片和所述控制芯片发送的信号,生成所述逆变器中上桥臂中每个所述开关的驱动控制信号和使能信号,并将每个所述开关的驱动控制信号和使能信号输出给开关对应的驱动芯片;
    所述下桥驱动逻辑电路与所述逆变器中下桥臂中开关对应的驱动芯片连接,用于根据所述看门狗芯片和所述控制芯片发送的信号,生成所述逆变器中下桥臂中每个所述开关的驱动控制信号和使能信号,并将每个所述开关的驱动控制信号和使能信号输出给开关对应的驱动芯片。
  4. 如权利要求3所述的驱动装置,其特征在于,所述上桥驱动逻辑电路具体用于:响应于接收到所述第二信号或所述上桥使能信号,生成所述上桥臂中每个所述开关的使能信号;以及根据接收的所述第二信号、所述上桥关断信号和所述上桥臂中开关的PWM信号,确定所述上桥臂中每个所述开关的驱动控制信号,并将每个所述开关的驱动控制信号输出给开关对应的驱动芯片。
  5. 如权利要求3所述的驱动装置,其特征在于,所述下桥驱动逻辑电路具体用于:响应于接收到所述第二信号或所述下桥关断信号,生成所述下桥臂中每个所述开关的使能信 号;以及根据接收的所述第二信号、所述下桥关断信号和所述下桥臂中开关的PWM信号,确定所述下桥臂中每个所述开关的驱动控制信号,并将每个所述开关的驱动控制信号输出给开关对应的驱动芯片。
  6. 如权利要求3-5任一项所述的驱动装置,其特征在于,所述上桥驱动逻辑电路包括多个第一逻辑电路;其中,每个所述第一逻辑电路与所述上桥臂中开关的每个所述开关一一对应:
    所述第一逻辑电路与所述看门狗芯片和所述控制芯片连接,所述第一逻辑电路用于与对应的开关连接的驱动芯片相连,根据所述看门狗芯片和所述控制芯片发送的信号,生成对应开关的驱动控制信号和使能信号并输出给连接的驱动芯片;
    所述下桥驱动逻辑电路包括多个第二逻辑电路;其中,每个所述第二逻辑电路与所述下桥臂中开关的每个所述开关一一对应:
    所述第二逻辑电路与所述看门狗芯片和所述控制芯片连接,所述第二逻辑电路用于与对应的开关连接的驱动芯片相连,根据所述看门狗芯片和所述控制芯片发送的信号,生成对应开关的驱动控制芯片和使能信号并输出给连接的驱动芯片。
  7. 如权利要求4或5所述的驱动装置,其特征在于,所述上桥驱动逻辑电路包括:第一与门电路、第二与门电路、第一或门电路、第二或门电路和第三或门电路;
    所述第一与门电路的第一输入端与所述控制芯片连接,所述第一与门电路的第二输入端与所述看门狗芯片连接,所述第一与门电路的输出端与所述上桥驱动逻辑电路连接的驱动芯片的第二管脚连接;
    所述第二与门电路的第一输入端与所述控制芯片连接,所述第二与门电路的第二输入端与所述看门狗芯片连接,所述第二与门电路的输出端分别与所述第一或门电路的第一输入端、所述第二或门电路的第一输入端和所述第三或门电路的第一输入端连接;
    所述第一或门电路的第二输入端与所述控制芯片连接,所述第一或门电路的输出端与所述上桥臂中第一个开关相连的驱动芯片的第一管脚连接;
    所述第二或门电路的第二输入端与所述控制芯片连接,所述第二或门电路的输出端与所述上桥臂中第二个开关相连的驱动芯片的第一管脚连接;
    所述第三或门电路的第二输入端与所述控制芯片连接,所述第三或门电路的输出端与所述上桥臂中第三个开关相连的驱动芯片的第一管脚连接。
  8. 如权利要求4或5所述的驱动装置,其特征在于,所述下桥驱动逻辑电路包括:第一反相器、第三与门电路、第四或门电路、第五或门电路、第六或门电路、第七或门电路和第八或门电路;
    所述第一反相器的第一输入端与所述看门狗芯片连接,所述第一反相器的输出端与所述第四或门电路的第一输入端连接;
    所述第四或门电路的第二输入端与所述控制芯片连接,所述第四或门电路的输出端与所述下桥驱动逻辑电路连接的驱动芯片的第二管脚连接;
    所述第三与门电路的第一输入端与所述控制芯片连接,所述第三与门电路的第二输入端与所述看门狗芯片连接,所述第三与门电路的输入端与所述第五或门电路的第一输入端连接;
    所述第五或门电路的第二输入端与所述第一反相器的输出端连接,所述第五或门电路的输入端分别与所述第六或门电路的第一输入端、所述第七或门电路的第一输入端和第八 或门电路的第一输入端连接;
    所述第六或门电路的第二输入端与所述控制芯片连接,所述第六或门电路的输出端与所述下桥臂中第一个开关相连的驱动芯片的第一管脚连接;
    所述第七或门电路的第二输入端与所述控制芯片连接,所述第七或门电路的输出端与所述下桥臂中第二个开关相连的驱动芯片的第一管脚连接;
    所述第八或门电路的第二输入端与所述控制芯片连接,所述第八或门电路的输出端与所述下桥臂中第三个开关相连的驱动芯片的第一管脚连接。
  9. 如权利要求8所述的驱动装置,其特征在于,所述上桥驱动逻辑电路还用于输出表征上桥臂开关驱动状态的第三信号;
    所述下桥驱动逻辑电路还用于输出表征下桥臂开关驱动状态的第四信号。
  10. 如权利要求9所述的驱动装置,其特征在于,所述驱动装置还包括:关断路径自检电路和关断路径监控电路;
    所述关断路径自检电路用于在所述驱动装置启动时,接收所述驱动逻辑电路输出的所述使能信号、所述第三信号和所述第四信号,以及在接收的信号异常时,通知所述驱动逻辑电路和所述驱动芯片关断所述电机输出的驱动扭矩;
    所述关断路径监控电路用于接收所述使能信号、所述第三信号和所述第四信号,以及在接收的信号状态异常时,通知所述驱动逻辑电路和所述驱动芯片关断所述电机输出的驱动扭矩。
  11. 如权利要求10所述的驱动装置,其特征在于,所述驱动装置还包括:转换电路;
    所述转换电路与所述逆变器的输出端连接,用于将所述逆变器的输出端输出的模拟信号形式的电参数转换为数字信号,并将所述数字信号的电参数输出给所述关断路径自检电路;
    所述关断路径自检电路还用于:所述驱动装置启动时,根据预设的所述驱动装置的驱动信号的占空比,确定逆变器输出的电参数的设定区间,在接收的所述数字信号的电参数超出所述设定区间时,通知所述驱动逻辑电路和所述驱动芯片关断所述电机输出的驱动扭矩。
  12. 如权利要求11所述的驱动装置,其特征在于,所述驱动装置还包括连接在所述逆变器输出端与所述转换电路之间的隔离器。
  13. 一种电动汽车,其特征在于,所述电动汽车包括:电机、逆变器和如权利要求1-12任一项所述的驱动装置;
    所述驱动装置与所述逆变器连接,所述驱动装置用于为所述逆变器中的开关提供驱动信号;
    所述逆变器与所述电机连接,所述逆变器在接收所述驱动装置发送的驱动信号后为所述电机供电;
    所述电机用于输出驱动扭矩。
PCT/CN2022/091199 2022-05-06 2022-05-06 一种驱动装置和电动汽车 WO2023212925A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091199 WO2023212925A1 (zh) 2022-05-06 2022-05-06 一种驱动装置和电动汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091199 WO2023212925A1 (zh) 2022-05-06 2022-05-06 一种驱动装置和电动汽车

Publications (1)

Publication Number Publication Date
WO2023212925A1 true WO2023212925A1 (zh) 2023-11-09

Family

ID=88646122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091199 WO2023212925A1 (zh) 2022-05-06 2022-05-06 一种驱动装置和电动汽车

Country Status (1)

Country Link
WO (1) WO2023212925A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104199370A (zh) * 2014-09-18 2014-12-10 奇瑞汽车股份有限公司 一种车用电机控制器的安全监控电路及其控制方法
CN108681318A (zh) * 2018-03-23 2018-10-19 浙江吉利汽车研究院有限公司 一种电机控制器的功能安全监控***及其方法
US20200328660A1 (en) * 2019-04-15 2020-10-15 Nio Usa, Inc. Method and system to achieve fully redundant fail-safe switch off paths for inverter system
CN112297877A (zh) * 2020-11-05 2021-02-02 中国第一汽车股份有限公司 车辆驱动***输出扭矩监控***、方法及车辆
CN112953357A (zh) * 2021-02-22 2021-06-11 上海电气集团股份有限公司 一种电机***控制方法、电机***、装置、介质及芯片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104199370A (zh) * 2014-09-18 2014-12-10 奇瑞汽车股份有限公司 一种车用电机控制器的安全监控电路及其控制方法
CN108681318A (zh) * 2018-03-23 2018-10-19 浙江吉利汽车研究院有限公司 一种电机控制器的功能安全监控***及其方法
US20200328660A1 (en) * 2019-04-15 2020-10-15 Nio Usa, Inc. Method and system to achieve fully redundant fail-safe switch off paths for inverter system
CN112297877A (zh) * 2020-11-05 2021-02-02 中国第一汽车股份有限公司 车辆驱动***输出扭矩监控***、方法及车辆
CN112953357A (zh) * 2021-02-22 2021-06-11 上海电气集团股份有限公司 一种电机***控制方法、电机***、装置、介质及芯片

Similar Documents

Publication Publication Date Title
US9154051B2 (en) Operating state circuit for an inverter and method for setting operating states of an inverter
CN107124124B (zh) 一种电机三相定子绕组主动短路***以及方法
US10998808B2 (en) Power conversion device
CN108493904B (zh) 用于车用电机关断的igbt安全关断***及方法
US9774215B2 (en) Power conversion apparatus
WO2021227589A1 (zh) 电池管理***及车辆
JP2000341960A (ja) 半導体装置
WO2022174807A1 (zh) 一种逆变器***
CN112468057A (zh) 用于车辆的电机控制方法和电路、电机驱动***以及车辆
CN114204786A (zh) 半导体电路
CN114157288A (zh) 半导体电路
WO2023212925A1 (zh) 一种驱动装置和电动汽车
JP2015527858A (ja) モーション及びコントロールシステム
CN207251512U (zh) 逆变模块驱动电源及电机驱动器
TW202133523A (zh) 欠電壓保護設備及方法
CN207251507U (zh) 主动短路电路以及电机控制器
US11894791B2 (en) Control device, motor driving apparatus, and motor driving system
CN216564501U (zh) 半导体电路
CN114172120A (zh) 一种主动短路控制电路及方法
EP3473483B1 (en) Inverter for an electric machine, electric machine for a vehicle, vehicle and method for operating an inverter
CN112019129B (zh) 驱动保护方法、桥式驱动***及电机控制器
CN113358982A (zh) 电机控制***、车辆和驱动单元绝缘检测及处理方法
WO2023006004A1 (zh) 一种电动汽车控制***和电动汽车
WO2023286627A1 (ja) 電力変換装置および電力変換方法
CN216981778U (zh) 一种具有滞回功能的半导体电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940619

Country of ref document: EP

Kind code of ref document: A1