WO2023210055A1 - Laser marker device, and control device for laser marker device - Google Patents

Laser marker device, and control device for laser marker device Download PDF

Info

Publication number
WO2023210055A1
WO2023210055A1 PCT/JP2022/046588 JP2022046588W WO2023210055A1 WO 2023210055 A1 WO2023210055 A1 WO 2023210055A1 JP 2022046588 W JP2022046588 W JP 2022046588W WO 2023210055 A1 WO2023210055 A1 WO 2023210055A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
printing
section
laser beam
marker device
Prior art date
Application number
PCT/JP2022/046588
Other languages
French (fr)
Japanese (ja)
Inventor
真弓 松下
友人 川村
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2023210055A1 publication Critical patent/WO2023210055A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam

Definitions

  • the present invention relates to a laser marker device that prints on a printing object using a laser, and particularly relates to a laser marker device that prints on a printing object surface that moves three-dimensionally and relatively, and a control device for the laser marker device. It is something.
  • Laser marker devices use high-energy focused laser light to melt, burn, or peel off the surface of the marking target to print information such as dates, lot numbers, and other characters, two-dimensional codes, and graphics. It is a marking device. Note that processing an object using laser light is also within the scope of the laser marker device of the present invention. However, in the following, the explanation will be given as a laser marker device equipped with a printing function.
  • Such a laser marker device has a well-known configuration, as described in, for example, Japanese Patent Laid-Open No. 2011-50978 (Patent Document 1).
  • a laser marker device adjusts the beam diameter of a laser beam from a laser oscillator using a beam diameter adjustment section, scans the laser beam in a two-dimensional direction using a galvanometer to obtain the shape to be printed, and then uses the scanned laser beam to The laser beam is guided to a condensing lens, which focuses the laser beam into a narrow beam to increase the energy density and print.
  • such a laser marker device performs printing by focusing laser light vertically onto a flat printing target surface of a printing target (product or part). Therefore, if the object to be printed is moved while the laser beam is irradiated perpendicularly to the surface to be printed, the printing area will not be restricted.
  • the laser marker device includes a laser oscillation section 50, a beam diameter adjustment section 60 that adjusts the beam diameter of the laser beam from the laser oscillation section 50, and a laser beam from the beam diameter adjustment section 60 that adjusts the beam diameter of the laser beam from the laser oscillation section 50.
  • the laser beam scanning section 70 scans in the X and Y directions corresponding to the laser beam scanning section 70, and the condenser lens section 80 condenses the laser beam from the laser beam scanning section 70.
  • Such a laser marker device has a well-known configuration.
  • the laser beam (Lb) condensed by the condenser lens unit 80 is irradiated almost perpendicularly to the printing target surface of the printing target (Wk), and moreover, is in focus. Therefore, the energy density increases in this portion, making it possible to perform good printing.
  • the cross-sectional shape of the printing target (Wk) is a curved surface, circular in this example, the range where the laser light (Lb) is irradiated with high energy density is vertically It is limited to the printing area (Pa) that includes the irradiated area. Note that the printing area (Pa) is roughly determined by the adjustment range of the focus in the direction of the printing object (Z-axis direction) and the range of the depth of focus.
  • the conventional laser marker device has a problem in that when the printing target surface has a three-dimensional shape, the printing area cannot be expanded.
  • An object of the present invention is to provide a new laser marker device and a control device for the laser marker device that can expand the printing area for a moving printing object having a three-dimensional printing surface. .
  • the present invention includes a laser oscillation section for generating a laser beam, a laser beam scanning section for scanning the laser beam emitted from the laser oscillation section, and a laser beam emitted from the laser beam scanning section on a printing target.
  • a laser marker device is equipped with a condensing lens section for condensing light onto a printing target surface, a laser oscillation section, and a control section for controlling a laser beam scanning section.
  • a tracking mirror unit is provided that reflects and irradiates the moving printing target, and the control unit controls the laser beam emitted from the tracking mirror unit to be incident on the printing target surface of the printing target at a predetermined angle.
  • the laser beam is characterized in that the angle of emission from the tracking mirror section is adjusted in response to the relative movement of the laser beam and the object to be printed.
  • FIG. 2 is an explanatory diagram illustrating the configuration of a laser marker device according to a first embodiment of the present invention and its operation at time t0.
  • FIG. 2 is an explanatory diagram illustrating the operation of the laser marker device shown in FIG. 1 at time t1.
  • FIG. 2 is an explanatory diagram illustrating the operation of the laser marker device shown in FIG. 1 at time t2.
  • FIG. 2 is an explanatory diagram illustrating the relationship between the printing target and the incident angle of laser light.
  • FIG. 6 is an explanatory diagram illustrating a table in which the output angle at the tracking mirror section is stored with respect to the distance between the printing target and the tracking mirror section.
  • FIG. 6 is an explanatory diagram illustrating a table in which a beam diameter in a beam diameter adjustment section is stored with respect to a distance between a printing target and a tracking mirror section.
  • 2 is a flowchart diagram showing a processing flow of the laser marker device shown in FIG. 1.
  • FIG. 7 is an explanatory diagram illustrating the configuration of a laser marker device according to a second embodiment of the present invention and its operation at time t4.
  • 9 is an explanatory diagram illustrating the operation of the laser marker device shown in FIG. 8 at time t5.
  • FIG. FIG. 7 is an explanatory diagram illustrating the configuration of a laser marker device according to a third embodiment of the present invention and its operation at time t4.
  • FIG. 12 is an explanatory diagram illustrating a modification of the tracking mirror section in FIG. 11.
  • FIG. 12 is a perspective view showing a printing target printed by the laser marker device in FIG. 11.
  • FIG. It is an explanatory view explaining the composition of a conventional laser marker device, and its operation.
  • FIGS. 1 to 3 show the configuration and operation of a laser marker device according to the first embodiment of the present invention, and FIGS. 1 to 3 show changes in the printing area over time. It shows.
  • the laser marker device 10 includes a laser oscillation section 11, a beam diameter adjustment section 12 that adjusts the beam diameter of the laser light from the laser oscillation section 11, and a laser beam from the beam diameter adjustment section 12 that adjusts the beam diameter of the laser light in two dimensions. It is composed of a laser beam scanning section 13 that scans in the X direction and Y direction corresponding to the plane, and a condensing lens section 14 that condenses the laser beam from the laser beam scanning section 13.
  • the present embodiment is characterized in that a tracking mirror section 15 is provided after the condenser lens section 15.
  • the laser marker device 10 also includes a control section 16 and a GUI (Graphical User Interface) section 17.
  • the control section 16 can control the laser oscillation section 11, the beam diameter adjustment section 12, the laser beam scanning section 13, and the tracking mirror section 15.
  • the GUI unit 17 has a setting function for performing various settings, and is an input device configured with a liquid crystal display such as a touch panel.
  • the beam diameter adjustment unit 12 has a function of adjusting the beam diameter of the laser beam, and includes a known mechanism that adjusts the distance between multiple lenses using an electric motor, a variable focus lens mechanism that can electrically adjust the refractive index, etc. can be used.
  • the laser beam scanning unit 13 scans the laser beam used for printing in the X direction and Y direction corresponding to a two-dimensional plane, and can use a known galvanometer.
  • a galvanometer has the function of reflecting incident laser light according to the shape to be printed, and is composed of a reflecting mirror and an electric motor that drives the reflecting mirror.
  • the tracking mirror unit 15 is a feature of the present embodiment, and is configured to change the incident angle of the laser beam to the printing target surface of the printing target (Wk1) in the vertical direction in response to the movement of the printing target (Wk1). It has the ability to adjust to get closer.
  • the tracking mirror section 15, like a galvanometer, is composed of a reflecting mirror and an electric motor that controls the reflecting mirror.
  • the printing target (Wk1) is placed on a conveyance mechanism 18 such as a belt conveyor and is being moved, and in FIG. 1, it moves in the direction of the thick black arrow.
  • the moving speed of the printing object (Wk1) can be determined by the transport mechanism 18, and the moving speed is determined to be a speed at which the printing operation described below can be executed.
  • the relationship between the printing target (Wk1) and the laser beam emitted from the tracking mirror unit 15 is that the printing target (Wk1) may move or the laser beam may move. expressed as "relative movement". In this embodiment, the printing target (Wk1) is moved.
  • the cross-sectional shape of the printing target (Wk1) is a curved surface, and in this example, it is circular. Therefore, the surface to be printed has an arc shape.
  • the arrangement position of the tracking mirror section 15 with respect to the transport mechanism 18 is the emission position (Lo) of the laser beam from the tracking mirror section 15.
  • a printing object detection section 19 is provided in a part of the transport mechanism 18, and detects that the printing object (Wk1) has reached the printing area, and transmits this to the control section 16.
  • the control unit 16 controls the laser oscillation unit 11, the beam diameter adjustment unit 12, the laser beam scanning unit 13, and the tracking mirror unit 15 according to the detection signal from the printing object detection unit 19 to execute the printing operation. It has the function to
  • FIG. 1 shows the printing state at time t0.
  • the control section 16 directs the laser beam to the tracking mirror section 15 via the laser oscillation section 11 to the condensing lens section 14. Make it incident.
  • the printing target (Wk1) moves upstream from the placement position of the tracking mirror unit 15. There is.
  • the tracking mirror section 15 emits the laser beam (Lb) toward the printing target (Wk1).
  • the laser light (Lb) is the laser light that is reflected from the condenser lens section 14.
  • the tracking mirror unit 15 has an output angle set by the control unit 16 so that the laser beam (Lb) focused by the condenser lens unit 14 is incident almost perpendicularly to the printing target surface of the printing target (Wk1). regulated by the control of That is, the tracking mirror unit 15 is controlled so that the laser beam (Lb) tracks the printing target surface of the printing target (Wk1) in response to the movement of the printing target (Wk1).
  • the beam diameter of the laser light is adjusted by the beam diameter adjustment unit 12 so that the energy density of the laser light (Lb) irradiated onto the printing target surface of the moving printing target (Wk1) is maintained approximately constant. is adjusted.
  • the beam diameter of the laser beam (Lb) is adjusted by the beam diameter adjusting section 12 by the control section 16 so that the laser beam (Lb) is focused on the surface to be printed.
  • the focus is adjusted on the printing target surface of the printing target (Wk)
  • the energy density increases in this area, and good printing can be performed.
  • FIG. 2 shows the printing state at time t1 after time has elapsed. At this time t1, the printing target (Wk1) has reached the front of the tracking mirror section 15.
  • control section 16 causes the laser beam to enter the tracking mirror section 15 via the laser oscillation section 11 to the condensing lens section 14.
  • the printing target (Wk1) and the tracking mirror section 15 are in a positional relationship in which they face each other directly.
  • the tracking mirror section 15 emits the laser beam (Lb) toward the printing target (Wk1).
  • the tracking mirror unit 15 has an output angle set by the control unit 16 so that the laser beam (Lb) focused by the condenser lens unit 14 is incident almost perpendicularly to the printing target surface of the printing target (Wk1). regulated by the control of The tracking mirror unit 15 is controlled so that the laser beam (Lb) tracks the printing surface of the printing object (Wk1) in response to the movement of the printing object (Wk1) as described above.
  • the beam diameter of the laser beam (Lb) is adjusted by the beam diameter adjusting section 12 by the control section 16 so that the laser beam (Lb) is focused on the surface to be printed.
  • the focus is adjusted on the printing target surface of the printing target (Wk)
  • the energy density increases in this area, and good printing can be performed.
  • FIG. 3 shows the printing state at time t2 after time has elapsed. At this time t2, the printing target (Wk1) is moving away from the tracking mirror section 15.
  • control section 16 causes the laser beam to enter the tracking mirror section 15 via the laser oscillation section 11 to the condensing lens section 14. At this time, since there is a gap (-L) between the printing target (Wk1) and the tracking mirror unit 15, the printing target (Wk1) moves downstream from the placement position of the tracking mirror unit 15. ing.
  • the tracking mirror section 15 emits the laser beam (Lb) toward the printing target (Wk1).
  • the tracking mirror unit 15 has an output angle set by the control unit 16 so that the laser beam (Lb) focused by the condenser lens unit 14 is incident almost perpendicularly to the printing target surface of the printing target (Wk1). regulated by the control of
  • the laser beam emitted from the tracking mirror section 15 is directed to a perpendicular line (PL) of the printing target surface (Wp) extending from the emission point (P/reflection point) of the tracking mirror section 15.
  • PL perpendicular line
  • Wp printing target surface
  • P/reflection point emission point
  • the beam diameter of the laser beam (Lb) is adjusted by the beam diameter adjusting section 12 by the control section 16 so that the laser beam (Lb) is focused on the surface to be printed. In this way, since the focus is adjusted on the printing target surface of the printing target (Wk1), the energy density is increased in this area, and good printing can be performed.
  • the printing area (Pa) on the three-dimensional printing surface of the printing object (Wk1) can be expanded significantly compared to the conventional printing area. become.
  • the printing operation shown in FIGS. 1 to 3 is performed again as indicated by the broken line arrow in order to start the printing operation for the next printing object (Wk2) as shown in FIG.
  • the tracking mirror section 15 controls the emission angle of the laser beam (Lb) so as to track the moving printing target (Wk1). This exit angle can be determined based on the distance from the position (Lo) of the tracking mirror section 15 to the printing target surface of the printing target. In this case, it is assumed that the laser beam (Lb) is perpendicularly incident on the surface to be printed.
  • FIG. 5 shows a table that describes the relationship between the output angle and the distance from the position of the tracking mirror unit 15 to the printing target surface of the printing target.
  • L indicates the distance from the position (Lo) of the tracking mirror unit 15 to the moving printing target. Note that the distance (L) is defined as the length in the direction in which the conveying means 18 along which the printing target object (Wk1) moves extends.
  • indicates the emission angle of the optical axis of the laser beam (Lb) with respect to the moving printing target (Wk1), starting from the position (Lo) of the tracking mirror unit 15. Note that the emission angle ( ⁇ ) is defined as the angle in the direction in which the laser beam (Lb) travels with respect to the direction in which the conveying means 18 in which the printing target object moves extends.
  • the distance (L) is determined by multiplying the moving speed by the elapsed time from when the printing target (Wk1) passed by the detecting section 19, and calculating the distance (L) between the detecting section 19 and the tracking mirror section. By subtracting from the distance up to 15, the distance (L) between the printing target (Wk1) and the tracking mirror section 15 can be determined.
  • the focal length changes as the printing target (Wk1) moves. In other words, the focal length becomes shorter as the lens approaches the tracking mirror section 15, so it is necessary to take measures to deal with this.
  • the focal length can be adjusted by adjusting the beam diameter using the beam diameter adjustment section 12.
  • the focal length can be shortened by increasing the beam diameter, and the focal length can be increased by decreasing the beam diameter.
  • FIG. 6 shows a table that describes the relationship between the beam diameter and the focal length from the position (Lo) of the tracking mirror unit 15 to the printing target surface of the printing target (Wk1).
  • L indicates the distance from the position (Lo) of the tracking mirror unit 15 to the moving printing target.
  • the distance (L) is defined as the length in the direction in which the conveyance mechanism 18 along which the printing target (Wk1) moves extends.
  • D indicates the diameter of the beam diameter of the laser light (Lb) adjusted by the beam diameter adjustment section 12. Note that the beam diameter (D) is the beam diameter necessary for the laser beam (Lb) to focus on the printing target surface of the moving printing target (Wk1).
  • the beam diameter (D) is set to a predetermined value.
  • the diameter of the beam is "D0”. Then, as the printing target (Wk1) moves away from the tracking mirror section 15, the beam diameter (D) becomes smaller.
  • the beam diameter (D) has a relationship of "D+4 ⁇ D+3 ⁇ D+2 ⁇ D+1".
  • the beam diameter (D) is "D-4 ⁇ D-3 ⁇ D-2 ⁇ D -1'' relationship.
  • the beam diameter of the laser light (Lb) is adjusted so that the energy density of the laser light irradiated onto the printing target surface of the printing target that is relatively moving is maintained approximately constant.
  • the control unit 16 controls the movement of the printing target (Wk1).
  • the output angle ( ⁇ ) from the table in FIG. 5 and the beam diameter (D) from the table in FIG. 6 may be read out and used to control the tracking mirror section 15 and the beam diameter adjustment section 12. .
  • the printing area (Pa) on the three-dimensional printing surface of the printing object (Wk1) can be expanded significantly compared to the conventional printing area.
  • the exit angle ( ⁇ ) and beam diameter (D) are determined by table search, so the calculation speed can be increased.
  • the present invention is not limited to this, and it is also possible to obtain the exit angle ( ⁇ ) and beam diameter (D) by arithmetic operations based on the same idea.
  • the object to be printed (Wk1) is photographed to obtain an image, and while tracking this image, the distance from the surface to be printed to the tracking mirror section 15 and the tracking mirror section are determined from the image of the surface to be printed (target).
  • the emission angle of the laser beam (Lb) from 15 can also be determined. Further, as described above, the beam diameter is adjusted based on the distance.
  • the energy density is calculated by measuring the laser power using a power meter and the spot diameter on the printing target (Wk1) according to the emission angle using a camera, etc., and the beam is adjusted so that the energy density remains constant.
  • the diameter adjustment section can be controlled.
  • the output of the laser light emitted from the laser oscillation unit 11 is controlled to ensure the energy density necessary for printing.
  • the energy density is controlled to be approximately constant by the control unit 16 so that printing can be performed.
  • the output of the laser beam is controlled in accordance with the distance, similar to the relationship shown in FIG. All you have to do is control the output of .
  • This processing flow can be executed by operating the input panel of the GUI section 17.
  • Step S10" to “Step S15” are control steps for generating print data in the control unit 16 based on the setting information input by the GUI unit 17.
  • Step S10 the user inputs the print pattern and print position on the input panel of the GUI section 17.
  • step S11 printing conditions are set.
  • the printing conditions include the output of the laser beam, the repetition frequency and printing resolution when a pulsed laser is used as the light source, and the scanning speed of the galvanometer that is the laser beam scanning section 13.
  • Step S12 shape recognition of the printing target (Wk1) is performed. This process can be obtained by capturing an image of the printing target with a camera.
  • the printing pattern is corrected in step S13.
  • print data is generated in step S14, and print coordinates are generated in step S15 for scanning.
  • Step S16 a printing operation is performed based on the printing conditions set in the control step described above. Then, as shown in FIGS. 1 to 3, the output angle ( ⁇ ) of the tracking mirror section 15 is controlled in step S17, and the beam diameter (D) of the beam diameter adjustment section 12 is controlled in step S18. control. Through these control steps, printing on one printing object (Wk1) is completed in “Step S19". When this printing is completed, the process returns to "step S16" again, and as shown in FIG. 3, the printing operation on the next printing object (Wk2) is started.
  • a tracking mirror section that reflects the laser light emitted from the condenser lens section and irradiates the moving printing target object, and the tracking mirror section responds to the movement of the printing object.
  • the printing area can be expanded for a moving printing object that has a three-dimensional printing surface.
  • the second embodiment is an example in which printing is performed on three printing objects (Wk1), (Wk2), and (Wk3) in a time-sharing manner. Note that the adjustment of the emission angle ( ⁇ ) and the beam diameter (D) of the laser beam (Lb) is the same as in the embodiment described above, so the explanation will be omitted.
  • the tracking mirror unit 15 executes printing on the printing objects (Wk1), (Wk2), and (Wk3).
  • the moving speeds of the printing objects (Wk1), (Wk2), and (Wk3) are set to speeds at which the printing operations described below can be executed.
  • the second printing is performed on each of the plurality of printing objects (Wk1), (Wk2), and (Wk3).
  • the printing area can be expanded for a moving printing object that has a three-dimensional printing surface. Furthermore, printing can be performed on a plurality of printing objects (three in this embodiment), making it possible to improve printing efficiency.
  • printing is first performed on the right side surface (Wsr) of the printing object (Wk4).
  • the printing object (Wk4) moves and reaches the position of the printing object (Wk5)
  • printing is performed on the bottom surface (Wsb).
  • the printing object (Wk5) further moves and reaches the position of the printing object (Wk6), it operates to print on the left side surface (Wsl).
  • printing is performed on the right side surface (Wsr) of the printing object (Wk4), then printing is performed on the bottom surface (Wsb) of the printing object (Wk5), Furthermore, it operates to print on the left side surface of the printing object (Wk6).
  • printing can be performed on the left and right side surfaces and the bottom surface of the printing object in a time-sharing manner.
  • the printing target (Wk1) moves from the position shown by the broken line (near the detection part) to the position shown by the solid line, and further moves to the position shown by the broken line. Accordingly, the laser beam (Lb) is also emitted so as to track the printing target (Wk1).
  • the laser beam (Lb) emitted from the condenser lens section 14 is controlled in the X direction by the first tracking mirror section 15-1, and the laser beam (Lb) emitted from the first tracking mirror section 15-1 is controlled in the Y direction by the second tracking mirror section 15-2, and is irradiated onto the printing area of the printing target (Wk1).
  • the first tracking mirror section 15-1 may control the laser beam (lb) in the Y direction
  • the second tracking mirror section 15-2 may control the laser beam (lb) in the X direction. be.
  • FIG. 11 the first tracking mirror section 15-1 and the second tracking mirror section 15-2 are configured separately, but FIG. 12 shows an integrated configuration.
  • a thin cubic mirror body 20 is provided with a reflecting mirror 21 extending in the axial direction along its surface.
  • the mirror body 20 can rotate in the X direction about the rotation axis (O1) and can rotate in the Y direction about the rotation axis (O2) orthogonal to the rotation axis (O1). Rotation in these directions allows the first tracking mirror section 15-1 and the second tracking mirror section 15-2 to perform operations.
  • the mirror body 20 can be driven by an electric motor.
  • FIG. 13 shows an example of the result of printing in a two-dimensional direction on a cylindrical printing object (Wk1) using the laser marker device 10 shown in FIG. 11. In this way, even with a cylindrical shape, good printing can be performed on the printing surface (Pt) along the circumferential surface.
  • the present invention includes a laser oscillation section for generating a laser beam, a laser beam scanning section for scanning the laser beam emitted from the laser oscillation section, and a laser beam scanning section for scanning the laser beam emitted from the laser beam scanning section.
  • a laser marker device includes a condensing lens section for condensing a laser beam onto a printing target surface of a printing object, a control section for controlling a laser oscillation section and a laser beam scanning section, the condensing lens section
  • a tracking mirror section is provided that reflects laser light emitted from the mirror and irradiates it to a relatively moving printing object, and the control section controls the control section so that the laser light emitted from the tracking mirror section is directed to the printing surface of the printing object. It is characterized in that the output angle from the tracking mirror section is adjusted in response to the movement of the printing target so that the light is incident at a predetermined angle.
  • the present invention it is possible to expand the printing area for a moving printing object that has a three-dimensional printing surface.
  • the present invention is not limited to the few embodiments described above, and includes various modifications.
  • the above-mentioned embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • SYMBOLS 10 Laser marker device, 11... Laser oscillation part, 12... Beam diameter adjustment part, 13... Laser beam scanning part, 14... Condensing lens part, 15... Tracking mirror part, 16... Control part, 17... GUI part, 18 ...Conveyance mechanism, 19...Print object detection section, Wk1 to Wk3...Print object.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

Provided is a novel laser marker device with which it is possible to expand a printing region, with respect to a printing subject which moves relatively and which comprises a three-dimensional printing surface. The laser marker device comprises: a laser oscillation unit 11 for generating laser light; a beam diameter adjustment unit 12 for adjusting the beam diameter of the laser light emitted by the laser oscillation unit 11; a laser light scanning unit 13 for scanning the laser light emitted by the beam diameter adjustment unit 12; a condensing lens unit 14 for condensing the laser light emitted by the laser light scanning unit 13 onto a printing surface of a printing subject; and a control unit 16 that controls the laser oscillation unit 11, the beam diameter adjustment unit 12, and the laser light scanning unit 13. A tracking mirror unit 15 is provided to reflect the laser light emitted from the condensing lens unit 14 and project the laser light onto the printing subject which moves. The control unit 16 adjusts an emission angle from the tracking mirror unit 15 in response to the movement of the printing subject Wk1 so that the laser light emitted from the tracking mirror unit 15 is incident at a prescribed angle on the printing surface of the printing subject Wk1.

Description

レーザーマーカー装置、及びレーザーマーカー装置用制御装置Laser marker device and control device for laser marker device
 本発明は、印字対象物にレーザーによって印字を行うレーザーマーカー装置に係り、特に立体的、且つ相対的に移動している印字対象面に印字を行うレーザーマーカー装置、及びレーザーマーカー装置用制御装置に関するものである。 The present invention relates to a laser marker device that prints on a printing object using a laser, and particularly relates to a laser marker device that prints on a printing object surface that moves three-dimensionally and relatively, and a control device for the laser marker device. It is something.
 レーザーマーカー装置は、レーザー光を集光した高いエネルギーを用いて印字対象物の表面を溶かしたり、焼いたり、剥離して、日付やロット番号などの文字や、2次元コードや図形などの情報をマーキングする機器である。尚、レーザー光を使用して対象物を加工することも、本発明のレーザーマーカー装置の範疇である。ただ、以下では、印字機能を備えるレーザーマーカー装置として説明を進める。 Laser marker devices use high-energy focused laser light to melt, burn, or peel off the surface of the marking target to print information such as dates, lot numbers, and other characters, two-dimensional codes, and graphics. It is a marking device. Note that processing an object using laser light is also within the scope of the laser marker device of the present invention. However, in the following, the explanation will be given as a laser marker device equipped with a printing function.
 このようなレーザーマーカー装置は、例えば特開2011-50978号公報(特許文献1)に記載されているように周知の構成である。レーザーマーカー装置は、一般的にレーザー発振器からのレーザー光をビーム径調整部でビーム径を調整し、ガルバノメーターで印字すべき形状になるように二次元方向に走査し、走査されたレーザー光を集光レンズに導き、集光レンズでレーザー光を細く集光してエネルギー密度を高めて印字するものである。 Such a laser marker device has a well-known configuration, as described in, for example, Japanese Patent Laid-Open No. 2011-50978 (Patent Document 1). Generally, a laser marker device adjusts the beam diameter of a laser beam from a laser oscillator using a beam diameter adjustment section, scans the laser beam in a two-dimensional direction using a galvanometer to obtain the shape to be printed, and then uses the scanned laser beam to The laser beam is guided to a condensing lens, which focuses the laser beam into a narrow beam to increase the energy density and print.
特開2011-50978号公報Japanese Patent Application Publication No. 2011-50978
 ところで、このようなレーザーマーカー装置は、専ら印字対象物(製品や部品)の平面状の印字対象面にレーザー光を垂直方向に集光して印字を行っている。したがって、レーザー光を印字対象面に垂直に照射した状態で印字対象物を移動させれば、印字領域は制限されないものとなる。 By the way, such a laser marker device performs printing by focusing laser light vertically onto a flat printing target surface of a printing target (product or part). Therefore, if the object to be printed is moved while the laser beam is irradiated perpendicularly to the surface to be printed, the printing area will not be restricted.
 しかしながら、印字対象物の印字対象面が立体的な場合(例えば、弧状、曲面状)は、印字領域が制限されるという課題を生じる。例えば、印字対象物の断面が円形状の場合の例について図14を用いて説明する。 However, when the printing target surface of the printing object is three-dimensional (for example, arcuate or curved), a problem arises in that the printing area is limited. For example, an example in which the cross section of the printing target is circular will be described using FIG. 14.
 図14において、レーザーマーカー装置は、レーザー発振部50と、このレーザー発振部50からのレーザー光のビーム径を調整するビーム径調整部60と、ビーム径調整部60からのレーザー光を二次元平面に対応するX方向とY方向に走査するレーザー光走査部70と、レーザー光走査部70からのレーザー光を集光する集光レンズ部80から構成されている。このようなレーザーマーカー装置は良く知られた構成である。 In FIG. 14, the laser marker device includes a laser oscillation section 50, a beam diameter adjustment section 60 that adjusts the beam diameter of the laser beam from the laser oscillation section 50, and a laser beam from the beam diameter adjustment section 60 that adjusts the beam diameter of the laser beam from the laser oscillation section 50. The laser beam scanning section 70 scans in the X and Y directions corresponding to the laser beam scanning section 70, and the condenser lens section 80 condenses the laser beam from the laser beam scanning section 70. Such a laser marker device has a well-known configuration.
 そして、集光レンズ部80で集光されたレーザー光(Lb)は、印字対象物(Wk)の印字対象面に対してほぼ垂直に照射され、しかも印字対象物(Wk)の印字対象面で焦点が合わされている。したがって、この部分でエネルギー密度が大きくなって、良好な印字が可能となる。 The laser beam (Lb) condensed by the condenser lens unit 80 is irradiated almost perpendicularly to the printing target surface of the printing target (Wk), and moreover, is in focus. Therefore, the energy density increases in this portion, making it possible to perform good printing.
 ところが、図14にあるように、印字対象物(Wk)の断面形状が曲面、この例では円形である場合、レーザー光(Lb)が高いエネルギー密度をもって照射される範囲は、レーザー光が垂直に照射される部分を含んだ印字領域(Pa)に制限される。尚、印字領域(Pa)は、大まかには印字対象物方向(Z軸方向)の焦点の調整範囲と焦点深度の範囲によって決まる。 However, as shown in FIG. 14, when the cross-sectional shape of the printing target (Wk) is a curved surface, circular in this example, the range where the laser light (Lb) is irradiated with high energy density is vertically It is limited to the printing area (Pa) that includes the irradiated area. Note that the printing area (Pa) is roughly determined by the adjustment range of the focus in the direction of the printing object (Z-axis direction) and the range of the depth of focus.
 そして、印字領域(Pa)を外れると、レーザー光が印字対象面に対して垂直に照射されず、しかも焦点が合わないので、印字対象面に対してエネルギー密度を高くできず良好な印字ができない。このように、従来のレーザーマーカー装置においては、印字対象面が立体的な形状であると、印字領域を拡張できないという課題を有している。 If the laser beam is outside the printing area (Pa), the laser beam is not irradiated perpendicularly to the printing target surface and is not focused, so the energy density cannot be increased to the printing target surface and good printing cannot be done. . As described above, the conventional laser marker device has a problem in that when the printing target surface has a three-dimensional shape, the printing area cannot be expanded.
 本発明の目的は、立体的な印字対象面を備えた移動する印字対象物に対して印字領域を拡張することができる新規なレーザーマーカー装置、及びレーザーマーカー装置用制御装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a new laser marker device and a control device for the laser marker device that can expand the printing area for a moving printing object having a three-dimensional printing surface. .
 本発明は、レーザー光を発生させるためのレーザー発振部と、レーザー発振部より出射されるレーザー光を走査するためのレーザー光走査部と、レーザー光走査部より出射されるレーザー光を印字対象物の印字対象面に集光させるための集光レンズ部と、レーザー発振部、レーザー光走査部を制御する制御部を備えたレーザーマーカー装置であって、集光レンズ部から出射されるレーザー光を反射して移動している印字対象物に照射する追跡ミラー部を設け、制御部は、追跡ミラー部から出射されるレーザー光が、印字対象物の印字対象面に対して所定の角度で入射するように、印字対象物とレーザー光の相対的な移動に対応して追跡ミラー部からの出射角を調整する、ことを特徴としている。 The present invention includes a laser oscillation section for generating a laser beam, a laser beam scanning section for scanning the laser beam emitted from the laser oscillation section, and a laser beam emitted from the laser beam scanning section on a printing target. A laser marker device is equipped with a condensing lens section for condensing light onto a printing target surface, a laser oscillation section, and a control section for controlling a laser beam scanning section. A tracking mirror unit is provided that reflects and irradiates the moving printing target, and the control unit controls the laser beam emitted from the tracking mirror unit to be incident on the printing target surface of the printing target at a predetermined angle. The laser beam is characterized in that the angle of emission from the tracking mirror section is adjusted in response to the relative movement of the laser beam and the object to be printed.
 本発明によれば、立体的な印字対象面を備えた印字対象物に対して印字領域を拡張することができる。 According to the present invention, it is possible to expand the printing area for a printing target having a three-dimensional printing target surface.
本発明の第1の実施形態になるレーザーマーカー装置の構成と、時刻t0における動作を説明する説明図である。FIG. 2 is an explanatory diagram illustrating the configuration of a laser marker device according to a first embodiment of the present invention and its operation at time t0. 図1に示すレーザーマーカー装置の時刻t1における動作を説明する説明図である。FIG. 2 is an explanatory diagram illustrating the operation of the laser marker device shown in FIG. 1 at time t1. 図1に示すレーザーマーカー装置の時刻t2における動作を説明する説明図である。FIG. 2 is an explanatory diagram illustrating the operation of the laser marker device shown in FIG. 1 at time t2. 印字対象物とレーザー光の入射角の関係を説明する説明図である。FIG. 2 is an explanatory diagram illustrating the relationship between the printing target and the incident angle of laser light. 印字対象物と追跡ミラー部の間の距離に対する追跡ミラー部における出射角が記憶されたテーブルを説明する説明図である。FIG. 6 is an explanatory diagram illustrating a table in which the output angle at the tracking mirror section is stored with respect to the distance between the printing target and the tracking mirror section. 印字対象物と追跡ミラー部の間の距離に対するビーム径調整部におけるビーム径が記憶されたテーブルを説明する説明図である。FIG. 6 is an explanatory diagram illustrating a table in which a beam diameter in a beam diameter adjustment section is stored with respect to a distance between a printing target and a tracking mirror section. 図1に示すレーザーマーカー装置の処理フローを示すフローチャート図である。2 is a flowchart diagram showing a processing flow of the laser marker device shown in FIG. 1. FIG. 本発明の第2の実施形態になるレーザーマーカー装置の構成と、時刻t4における動作を説明する説明図である。FIG. 7 is an explanatory diagram illustrating the configuration of a laser marker device according to a second embodiment of the present invention and its operation at time t4. 図8に示すレーザーマーカー装置の時刻t5における動作を説明する説明図である。9 is an explanatory diagram illustrating the operation of the laser marker device shown in FIG. 8 at time t5. FIG. 本発明の第3の実施形態になるレーザーマーカー装置の構成と、時刻t4における動作を説明する説明図である。FIG. 7 is an explanatory diagram illustrating the configuration of a laser marker device according to a third embodiment of the present invention and its operation at time t4. 本発明の第4の実施形態になるレーザーマーカー装置の構成と、その動作を説明する説明図である。It is an explanatory view explaining the composition of the laser marker device which becomes the 4th embodiment of the present invention, and its operation. 図11における追跡ミラー部の変形例を説明する説明図である。12 is an explanatory diagram illustrating a modification of the tracking mirror section in FIG. 11. FIG. 図11におけるレーザーマーカー装置によって印字された印字対象物を示した斜視図である。12 is a perspective view showing a printing target printed by the laser marker device in FIG. 11. FIG. 従来のレーザーマーカー装置の構成と、その動作を説明する説明図である。It is an explanatory view explaining the composition of a conventional laser marker device, and its operation.
 本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 The embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the following embodiments, and various modifications and applications can be made within the technical concept of the present invention. It is included in the scope.
 図1~図3は、本発明の第1の実施形態になるのレーザーマーカー装置の構成と、その動作を示したものであり、図1~図3は、時間の経過に伴う印字領域の変化を示している。 1 to 3 show the configuration and operation of a laser marker device according to the first embodiment of the present invention, and FIGS. 1 to 3 show changes in the printing area over time. It shows.
 図1において、レーザーマーカー装置10は、レーザー発振部11と、このレーザー発振部11からのレーザー光のビーム径を調整するビーム径調整部12と、ビーム径調整部12からのレーザー光を二次元平面に対応するX方向とY方向に走査するレーザー光走査部13と、レーザー光走査部13からのレーザー光を集光する集光レンズ部14から構成されている。そして、本実施形態では集光レンズ部15の後に追跡ミラー部15を設けたことを特徴としている。 In FIG. 1, the laser marker device 10 includes a laser oscillation section 11, a beam diameter adjustment section 12 that adjusts the beam diameter of the laser light from the laser oscillation section 11, and a laser beam from the beam diameter adjustment section 12 that adjusts the beam diameter of the laser light in two dimensions. It is composed of a laser beam scanning section 13 that scans in the X direction and Y direction corresponding to the plane, and a condensing lens section 14 that condenses the laser beam from the laser beam scanning section 13. The present embodiment is characterized in that a tracking mirror section 15 is provided after the condenser lens section 15.
 また、レーザーマーカー装置10は、制御部16、及びGUI(Graphical User Interface)部17を備えている。制御部16は、レーザー発振部11、ビーム径調整部12、レーザー光走査部13、及び追跡ミラー部15を制御することができる。GUI部17は、各種設定を行う設定機能を備えており、タッチパネル等の液晶ディスプレイから構成された入力装置である。 The laser marker device 10 also includes a control section 16 and a GUI (Graphical User Interface) section 17. The control section 16 can control the laser oscillation section 11, the beam diameter adjustment section 12, the laser beam scanning section 13, and the tracking mirror section 15. The GUI unit 17 has a setting function for performing various settings, and is an input device configured with a liquid crystal display such as a touch panel.
 ビーム径調整部12は、レーザー光のビーム径を調整する機能を備えており、公知の複数のレンズ間距離を電動モータによって調整する機構や、屈折率が電気的に調整できる焦点可変レンズ機構等を用いることができる。 The beam diameter adjustment unit 12 has a function of adjusting the beam diameter of the laser beam, and includes a known mechanism that adjusts the distance between multiple lenses using an electric motor, a variable focus lens mechanism that can electrically adjust the refractive index, etc. can be used.
 レーザー光走査部13は、印字に使用されるレーザー光を二次元平面に対応するX方向とY方向に走査するものであり、公知のガルバノメーターを用いることができる。ガルバノメーターは、入射されたレーザー光を印字する形状に合せて反射させる機能を備え、反射鏡とこれを駆動する電動モータから構成されている。 The laser beam scanning unit 13 scans the laser beam used for printing in the X direction and Y direction corresponding to a two-dimensional plane, and can use a known galvanometer. A galvanometer has the function of reflecting incident laser light according to the shape to be printed, and is composed of a reflecting mirror and an electric motor that drives the reflecting mirror.
 追跡ミラー部15は、本実施形態の特徴となるものであり、印字対象物(Wk1)の移動に対応して、印字対象物(Wk1)の印字対象面に対するレーザー光の入射角が垂直方向に近づくように調整する機能を備えている。追跡ミラー部15は、ガルバノメーターと同様に、反射鏡とこれを制御する電動モータから構成されている。 The tracking mirror unit 15 is a feature of the present embodiment, and is configured to change the incident angle of the laser beam to the printing target surface of the printing target (Wk1) in the vertical direction in response to the movement of the printing target (Wk1). It has the ability to adjust to get closer. The tracking mirror section 15, like a galvanometer, is composed of a reflecting mirror and an electric motor that controls the reflecting mirror.
 印字対象物(Wk1)は、ベルトコンベア等の搬送機構18に載置されて移動されており、図1では太い黒矢印の方向に移動する。印字対象物(Wk1)の移動速度は搬送機構18によって決めることができ、また、移動速度は以下に説明する印字動作が実行できる速度に決められている。 The printing target (Wk1) is placed on a conveyance mechanism 18 such as a belt conveyor and is being moved, and in FIG. 1, it moves in the direction of the thick black arrow. The moving speed of the printing object (Wk1) can be determined by the transport mechanism 18, and the moving speed is determined to be a speed at which the printing operation described below can be executed.
 また、印字対象物(Wk1)と追跡ミラー部15から出射されるレーザー光の関係は、印字対象物(Wk1)が移動しても良いし、レーザー光が移動しても良いので、これらを「相対的な移動」として表現する。尚、本実施形態では印字対象物(Wk1)が移動する形態とされている。 Furthermore, the relationship between the printing target (Wk1) and the laser beam emitted from the tracking mirror unit 15 is that the printing target (Wk1) may move or the laser beam may move. expressed as "relative movement". In this embodiment, the printing target (Wk1) is moved.
 ここで、印字対象物(Wk1)の断面形状は曲面、この例では円形である。したがって、印字対象面は円弧形状となる。尚、搬送機構18に対する追跡ミラー部15の配置位置が、追跡ミラー部15からのレーザー光の出射位置(Lo)となる。 Here, the cross-sectional shape of the printing target (Wk1) is a curved surface, and in this example, it is circular. Therefore, the surface to be printed has an arc shape. Note that the arrangement position of the tracking mirror section 15 with respect to the transport mechanism 18 is the emission position (Lo) of the laser beam from the tracking mirror section 15.
 搬送機構18の一部には印字対象物検出部19が設けられており、印字対象物(Wk1)が、印字実施領域に到達したことを検出し、これを制御部16に送信している。制御部16は、この印字対象物検出部19の検出信号に応じて、レーザー発振部11、ビーム径調整部12、レーザー光走査部13、及び追跡ミラー部15を制御して、印字動作を実行する機能を備えている。 A printing object detection section 19 is provided in a part of the transport mechanism 18, and detects that the printing object (Wk1) has reached the printing area, and transmits this to the control section 16. The control unit 16 controls the laser oscillation unit 11, the beam diameter adjustment unit 12, the laser beam scanning unit 13, and the tracking mirror unit 15 according to the detection signal from the printing object detection unit 19 to execute the printing operation. It has the function to
 以上のような構成において、次に印字動作を説明するが、本実施形態では追跡ミラー部15を設けたことが特徴であるので、以下では、追跡ミラー部15の動作を中心に説明を行う。 In the above configuration, the printing operation will be explained next. Since this embodiment is characterized by the provision of the tracking mirror section 15, the following explanation will focus on the operation of the tracking mirror section 15.
 図1は、時刻t0における印字状態を示している。この時刻t0において、印字対象物検出部19が印字対象物(Wk1)の到達を検出すると、制御部16は、レーザー発振部11~集光レンズ部14を介してレーザー光を追跡ミラー部15に入射させる。この時、印字対象物(Wk1)と追跡ミラー部15の間は、間隔(+L)を有しているので、印字対象物(Wk1)は追跡ミラー部15の配置位置より上流側を移動している。 FIG. 1 shows the printing state at time t0. At time t0, when the printing object detection section 19 detects the arrival of the printing object (Wk1), the control section 16 directs the laser beam to the tracking mirror section 15 via the laser oscillation section 11 to the condensing lens section 14. Make it incident. At this time, since there is a distance (+L) between the printing target (Wk1) and the tracking mirror unit 15, the printing target (Wk1) moves upstream from the placement position of the tracking mirror unit 15. There is.
 この状態で、追跡ミラー部15はレーザー光(Lb)を印字対象物(Wk1)に向けて出射する。尚、レーザー光(Lb)は集光レンズ部14から到来するレーザー光を反射したものである。 In this state, the tracking mirror section 15 emits the laser beam (Lb) toward the printing target (Wk1). Note that the laser light (Lb) is the laser light that is reflected from the condenser lens section 14.
 追跡ミラー部15は、集光レンズ部14で集光されたレーザー光(Lb)を、印字対象物(Wk1)の印字対象面に対してほぼ垂直に入射するように、出射角が制御部16の制御によって調整される。つまり、追跡ミラー部15は、印字対象物(Wk1)の移動に対応して、レーザー光(Lb)が印字対象物(Wk1)の印字対象面を追跡するように制御されるものである。 The tracking mirror unit 15 has an output angle set by the control unit 16 so that the laser beam (Lb) focused by the condenser lens unit 14 is incident almost perpendicularly to the printing target surface of the printing target (Wk1). regulated by the control of That is, the tracking mirror unit 15 is controlled so that the laser beam (Lb) tracks the printing target surface of the printing target (Wk1) in response to the movement of the printing target (Wk1).
 また、印字対象物(Wk1)の移動に伴って、印字対象面と追跡ミラー部15の間の距離が変化するので、レーザー光(Lb)の焦点が印字対象面上に絞られないという現象を生じる。このため、移動している印字対象物(Wk1)の印字対象面に照射されるレーザー光(Lb)のエネルギー密度が略一定に維持されるように、ビーム径調整部12によってレーザー光のビーム径が調整される。 In addition, as the printing object (Wk1) moves, the distance between the printing object surface and the tracking mirror section 15 changes, so the phenomenon that the laser beam (Lb) is not focused on the printing object surface can be avoided. arise. For this reason, the beam diameter of the laser light is adjusted by the beam diameter adjustment unit 12 so that the energy density of the laser light (Lb) irradiated onto the printing target surface of the moving printing target (Wk1) is maintained approximately constant. is adjusted.
 更に好ましくは、印字対象面上にレーザー光(Lb)の焦点を結ぶように、ビーム径調整部12でレーザー光(Lb)のビーム径が制御部16によって調整される。このように、印字対象物(Wk)の印字対象面で焦点が合わされるので、この部分でエネルギー密度が大きくなって、良好な印字を行うことができる。 More preferably, the beam diameter of the laser beam (Lb) is adjusted by the beam diameter adjusting section 12 by the control section 16 so that the laser beam (Lb) is focused on the surface to be printed. In this way, since the focus is adjusted on the printing target surface of the printing target (Wk), the energy density increases in this area, and good printing can be performed.
 次に、時間が経過して印字対象物(Wk1)が移動した時の状態を説明する。図2は、時間が経過して時刻t1における印字状態を示している。この時刻t1において、印字対象物(Wk1)は追跡ミラー部15の正面に到達している。 Next, a description will be given of the state when the printing target (Wk1) moves over time. FIG. 2 shows the printing state at time t1 after time has elapsed. At this time t1, the printing target (Wk1) has reached the front of the tracking mirror section 15.
 図1に示した制御と同様に、制御部16は、レーザー発振部11~集光レンズ部14を介してレーザー光を追跡ミラー部15に入射させる。この時、印字対象物(Wk1)と追跡ミラー部15の間は、正対する位置関係となっている。 Similar to the control shown in FIG. 1, the control section 16 causes the laser beam to enter the tracking mirror section 15 via the laser oscillation section 11 to the condensing lens section 14. At this time, the printing target (Wk1) and the tracking mirror section 15 are in a positional relationship in which they face each other directly.
 この状態で、追跡ミラー部15はレーザー光(Lb)を印字対象物(Wk1)に向けて出射する。追跡ミラー部15は、集光レンズ部14で集光されたレーザー光(Lb)を、印字対象物(Wk1)の印字対象面に対してほぼ垂直に入射するように、出射角が制御部16の制御によって調整される。追跡ミラー部15は、上述したように印字対象物(Wk1)の移動に対応して、レーザー光(Lb)が印字対象物(Wk1)の印字対象面を追跡するように制御されている。 In this state, the tracking mirror section 15 emits the laser beam (Lb) toward the printing target (Wk1). The tracking mirror unit 15 has an output angle set by the control unit 16 so that the laser beam (Lb) focused by the condenser lens unit 14 is incident almost perpendicularly to the printing target surface of the printing target (Wk1). regulated by the control of The tracking mirror unit 15 is controlled so that the laser beam (Lb) tracks the printing surface of the printing object (Wk1) in response to the movement of the printing object (Wk1) as described above.
 また、印字対象面上にレーザー光(Lb)の焦点を結ぶように、ビーム径調整部12でレーザー光(Lb)のビーム径が制御部16によって調整される。このように、印字対象物(Wk)の印字対象面で焦点が合わされるので、この部分でエネルギー密度が大きくなって、良好な印字を行うことができる。 Furthermore, the beam diameter of the laser beam (Lb) is adjusted by the beam diameter adjusting section 12 by the control section 16 so that the laser beam (Lb) is focused on the surface to be printed. In this way, since the focus is adjusted on the printing target surface of the printing target (Wk), the energy density increases in this area, and good printing can be performed.
 次に、時間が更に経過して印字対象物(Wk1)が移動した時の状態を説明する。図3は、時間が経過して時刻t2における印字状態を示している。この時刻t2において、印字対象物(Wk1)は追跡ミラー部15から離れる方向に移動している。 Next, the state when the printing target object (Wk1) moves as time passes further will be described. FIG. 3 shows the printing state at time t2 after time has elapsed. At this time t2, the printing target (Wk1) is moving away from the tracking mirror section 15.
 図1に示した制御と同様に、制御部16は、レーザー発振部11~集光レンズ部14を介してレーザー光を追跡ミラー部15に入射させる。この時、印字対象物(Wk1)と追跡ミラー部15の間は、間隔(-L)を有しているので、印字対象物(Wk1)は追跡ミラー部15の配置位置より下流側を移動している。 Similar to the control shown in FIG. 1, the control section 16 causes the laser beam to enter the tracking mirror section 15 via the laser oscillation section 11 to the condensing lens section 14. At this time, since there is a gap (-L) between the printing target (Wk1) and the tracking mirror unit 15, the printing target (Wk1) moves downstream from the placement position of the tracking mirror unit 15. ing.
 この状態で、追跡ミラー部15はレーザー光(Lb)を印字対象物(Wk1)に向けて出射する。追跡ミラー部15は、集光レンズ部14で集光されたレーザー光(Lb)を、印字対象物(Wk1)の印字対象面に対してほぼ垂直に入射するように、出射角が制御部16の制御によって調整される。 In this state, the tracking mirror section 15 emits the laser beam (Lb) toward the printing target (Wk1). The tracking mirror unit 15 has an output angle set by the control unit 16 so that the laser beam (Lb) focused by the condenser lens unit 14 is incident almost perpendicularly to the printing target surface of the printing target (Wk1). regulated by the control of
 尚、追跡ミラー部15から出射されるレーザー光は、図4に示しているように、追跡ミラー部15の出射点(P/反射点)から延ばした印字対象面(Wp)の垂線(PL)に対して、レーザー光の光軸(La)で見て対称的に角度30°の範囲で入射すれば、許容できる印字が可能であることが知見として得られた。 Note that, as shown in FIG. 4, the laser beam emitted from the tracking mirror section 15 is directed to a perpendicular line (PL) of the printing target surface (Wp) extending from the emission point (P/reflection point) of the tracking mirror section 15. On the other hand, it has been found that acceptable printing is possible if the laser beam is incident symmetrically at an angle of 30 degrees when viewed from the optical axis (La) of the laser beam.
 また、印字対象物(Wk1)の移動に伴って印字対象面と追跡ミラー部15の間の距離が変化するので、レーザー光(Lb)の焦点が印字対象面上に絞られないという現象を生じる。このため、印字対象面上にレーザー光(Lb)の焦点を結ぶように、ビーム径調整部12でレーザー光(Lb)のビーム径が制御部16によって調整される。このように、印字対象物(Wk1)の印字対象面で焦点が合わされるので、この部分でエネルギー密度が大きくなって、良好な印字を行うことができる。 Furthermore, as the printing target (Wk1) moves, the distance between the printing target surface and the tracking mirror section 15 changes, resulting in a phenomenon in which the laser beam (Lb) is not focused on the printing target surface. . Therefore, the beam diameter of the laser beam (Lb) is adjusted by the beam diameter adjusting section 12 by the control section 16 so that the laser beam (Lb) is focused on the surface to be printed. In this way, since the focus is adjusted on the printing target surface of the printing target (Wk1), the energy density is increased in this area, and good printing can be performed.
 以上に説明した図1~図3に至る印字動作によって、印字対象物(Wk1)の立体的な印字対象面における印字領域(Pa)は、従来の印字領域に比べて大きく拡張することができるようになる。印字動作が終了すると、図3に示すように次の印字対象物(Wk2)の印字動作を開始するべく、破線矢印で示すように再び図1~図3に示す印字動作を実行する。 Through the printing operations shown in FIGS. 1 to 3 described above, the printing area (Pa) on the three-dimensional printing surface of the printing object (Wk1) can be expanded significantly compared to the conventional printing area. become. When the printing operation is completed, the printing operation shown in FIGS. 1 to 3 is performed again as indicated by the broken line arrow in order to start the printing operation for the next printing object (Wk2) as shown in FIG.
 次に、追跡ミラー部15から出射されるレーザー光(Lb)の出射角について説明する。上述したように、追跡ミラー部15は、移動する印字対象物(Wk1)を追跡するようにレーザー光(Lb)の出射角を制御されている。この出射角は、追跡ミラー部15の位置(Lo)を起点として、印字対象物の印字対象面までの距離に対応して決めることができる。尚、この場合はレーザー光(Lb)が印字対象面に垂直入射することを前提としている。 Next, the emission angle of the laser beam (Lb) emitted from the tracking mirror section 15 will be explained. As described above, the tracking mirror section 15 controls the emission angle of the laser beam (Lb) so as to track the moving printing target (Wk1). This exit angle can be determined based on the distance from the position (Lo) of the tracking mirror section 15 to the printing target surface of the printing target. In this case, it is assumed that the laser beam (Lb) is perpendicularly incident on the surface to be printed.
 図5に、追跡ミラー部15の位置を起点として、印字対象物の印字対象面までの距離に対する出射角の関係を記述したテーブルを示している。 FIG. 5 shows a table that describes the relationship between the output angle and the distance from the position of the tracking mirror unit 15 to the printing target surface of the printing target.
 「L」は、追跡ミラー部15の位置(Lo)を起点とし、移動する印字対象物までの距離を示している。尚、距離(L)は、印字対象物(Wk1)が移動する搬送手段18が延びる方向の長さで定義している。 "L" indicates the distance from the position (Lo) of the tracking mirror unit 15 to the moving printing target. Note that the distance (L) is defined as the length in the direction in which the conveying means 18 along which the printing target object (Wk1) moves extends.
 また、「θ」は、追跡ミラー部15の位置(Lo)を起点とし、移動する印字対象物(Wk1)に対するレーザー光(Lb)の光軸の出射角を示している。尚、出射角(θ)は、印字対象物が移動する搬送手段18が延びる方向に対してレーザー光(Lb)が進行する方向の角度で定義している。 Further, "θ" indicates the emission angle of the optical axis of the laser beam (Lb) with respect to the moving printing target (Wk1), starting from the position (Lo) of the tracking mirror unit 15. Note that the emission angle (θ) is defined as the angle in the direction in which the laser beam (Lb) travels with respect to the direction in which the conveying means 18 in which the printing target object moves extends.
 したがって、追跡ミラー部15の位置(Lo)と、これに正対する印字対象物(Wk1)を基準とするので、印字対象物までの距離(L)は「L0=0」、出射角(θ)は「θ0=90°」となる。そして、印字対象物(Wk1)が追跡ミラー部15から遠ざかるにつれて出射角(θ)は小さくなる値を取る。 Therefore, since the position (Lo) of the tracking mirror unit 15 and the printing target (Wk1) directly facing the tracking mirror unit 15 are used as references, the distance (L) to the printing target is "L0=0", and the output angle (θ) becomes "θ0=90°". Then, as the printing target (Wk1) moves away from the tracking mirror unit 15, the output angle (θ) takes a value that becomes smaller.
 つまり、距離(L)が「L+4>L+3>L+2>L+1」の関係にあるとき、出射角(θ)は「θ+4<θ+3<θ+2<θ+1」の関係となる。同様に距離(L)が「L-4>L-3>L-2>L-1」の関係にあるとき、出射角(θ)は「θ-4<θ-3<θ-2<θ-1」の関係となる。これらの関係は、事前の実験やシミュレーションによって予め求めておくことで、テーブルに記憶することができる。 In other words, when the distance (L) has the relationship "L+4>L+3>L+2>L+1", the output angle (θ) has the relationship "θ+4<θ+3<θ+2<θ+1". Similarly, when the distance (L) is in the relationship "L-4>L-3>L-2>L-1", the exit angle (θ) is "θ-4<θ-3<θ-2<θ -1'' relationship. These relationships can be determined in advance through prior experiments or simulations and then stored in a table.
 尚、距離(L)は、搬送機構18の移動速度が既知なので、検出部19で印字対象物(Wk1)が通過した時点からの経過時間を移動速度に乗算し、検出部19と追跡ミラー部15までの距離から減算することで、印字対象物(Wk1)と追跡ミラー部15の間の距離(L)を求めることができる。 Since the moving speed of the transport mechanism 18 is known, the distance (L) is determined by multiplying the moving speed by the elapsed time from when the printing target (Wk1) passed by the detecting section 19, and calculating the distance (L) between the detecting section 19 and the tracking mirror section. By subtracting from the distance up to 15, the distance (L) between the printing target (Wk1) and the tracking mirror section 15 can be determined.
 また、印字対象物(Wk1)が移動することで焦点距離が変化する。つまり、追跡ミラー部15に近づくにつれて焦点距離が短くなるので、これに対する対応も必要となる。焦点距離を調整するには、ビーム径調整部12によってビーム径を調整することで焦点距離を調整することができる。ビーム径を大きくすれば焦点距離を短くでき、また、ビーム径を小さくすれば焦点距離を長くできる。 Additionally, the focal length changes as the printing target (Wk1) moves. In other words, the focal length becomes shorter as the lens approaches the tracking mirror section 15, so it is necessary to take measures to deal with this. The focal length can be adjusted by adjusting the beam diameter using the beam diameter adjustment section 12. The focal length can be shortened by increasing the beam diameter, and the focal length can be increased by decreasing the beam diameter.
 図6に、追跡ミラー部15の位置(Lo)を起点として、印字対象物(Wk1)の印字対象面までの焦点距離に対するビーム径の関係を記述したテーブルを示している。 FIG. 6 shows a table that describes the relationship between the beam diameter and the focal length from the position (Lo) of the tracking mirror unit 15 to the printing target surface of the printing target (Wk1).
 「L」は、追跡ミラー部15の位置(Lo)を起点とし、移動する印字対象物までの距離を示している。尚、距離(L)は、印字対象物(Wk1)が移動する搬送機構18が延びる方向の長さで定義していることは上述の通りである。 "L" indicates the distance from the position (Lo) of the tracking mirror unit 15 to the moving printing target. As described above, the distance (L) is defined as the length in the direction in which the conveyance mechanism 18 along which the printing target (Wk1) moves extends.
 また、「D」は、ビーム径調整部12で調整されるレーザー光(Lb)のビーム径の直径を示している。尚、ビーム径(D)は、移動する印字対象物(Wk1)の印字対象面で、レーザー光(Lb)が焦点を結ぶために必要なビーム径である。 Further, "D" indicates the diameter of the beam diameter of the laser light (Lb) adjusted by the beam diameter adjustment section 12. Note that the beam diameter (D) is the beam diameter necessary for the laser beam (Lb) to focus on the printing target surface of the moving printing target (Wk1).
 したがって、追跡ミラー部15の位置と、これに正対する印字対象物(Wk1)を基準とするので、印字対象物までの距離(L)は「L0=0」、ビーム径(D)は所定の直径のビーム径「D0」となる。そして、印字対象物(Wk1)が追跡ミラー部15から遠ざかるにつれて、ビーム径(D)は小さくなる。 Therefore, since the position of the tracking mirror section 15 and the printing target (Wk1) directly facing the tracking mirror part 15 are used as references, the distance (L) to the printing target is "L0=0", and the beam diameter (D) is set to a predetermined value. The diameter of the beam is "D0". Then, as the printing target (Wk1) moves away from the tracking mirror section 15, the beam diameter (D) becomes smaller.
 つまり、距離(L)が「L+4>L+3>L+2>L+1」の関係にあるとき、ビーム径(D)は「D+4<D+3<D+2<D+1」の関係となる。同様に距離(L)が「L-4>L-3>L-2>L-1」の関係にあるとき、ビーム径(D)は「D-4<D-3<D-2<D-1」の関係となる。これらの関係も、事前の実験やシミュレーションによって予め求めておくことで、テーブルに記憶することができる。尚、距離(L)は、上述した方法で求められる。 In other words, when the distance (L) has a relationship of "L+4>L+3>L+2>L+1", the beam diameter (D) has a relationship of "D+4<D+3<D+2<D+1". Similarly, when the distance (L) is in the relationship "L-4>L-3>L-2>L-1", the beam diameter (D) is "D-4<D-3<D-2<D -1'' relationship. These relationships can also be determined in advance through prior experiments or simulations and stored in a table. Note that the distance (L) is determined by the method described above.
 要は、レーザー光(Lb)のビーム径は、相対移動している印字対象物の印字対象面に照射されるレーザー光のエネルギー密度が略一定に維持されるように調整されている。 In short, the beam diameter of the laser light (Lb) is adjusted so that the energy density of the laser light irradiated onto the printing target surface of the printing target that is relatively moving is maintained approximately constant.
 このように、追跡ミラー部15の出射角(θ)と、焦点距離を調整するビーム径(D)は、テーブルに記憶されているため、制御部16は、印字対象物(Wk1)の移動に対応して、図5のテーブルから出射角(θ)と、図6のテーブルからビーム径(D)を読み出し、これを利用して、追跡ミラー部15、ビーム径調整部12を制御すればよい。このような構成を採用することによって、印字対象物(Wk1)の立体的な印字対象面における印字領域(Pa)は、従来の印字領域に比べて大きく拡張することができるようになる。 In this way, since the emission angle (θ) of the tracking mirror unit 15 and the beam diameter (D) for adjusting the focal length are stored in the table, the control unit 16 controls the movement of the printing target (Wk1). Correspondingly, the output angle (θ) from the table in FIG. 5 and the beam diameter (D) from the table in FIG. 6 may be read out and used to control the tracking mirror section 15 and the beam diameter adjustment section 12. . By employing such a configuration, the printing area (Pa) on the three-dimensional printing surface of the printing object (Wk1) can be expanded significantly compared to the conventional printing area.
 尚、上述の説明においては、テーブル検索によって出射角(θ)とビーム径(D)を求めているので、演算速度を高めることができる。ただ、これに限らず、同様の考えで算術演算によって出射角(θ)とビーム径(D)を求めることも可能である。 Note that in the above description, the exit angle (θ) and beam diameter (D) are determined by table search, so the calculation speed can be increased. However, the present invention is not limited to this, and it is also possible to obtain the exit angle (θ) and beam diameter (D) by arithmetic operations based on the same idea.
 また、印字対象物(Wk1)を撮影して画像を求め、この画像を追跡しながら印字対象面(ターゲットとなる)の画像から、印字対象面から追跡ミラー部15までの距離、及び追跡ミラー部15からのレーザー光(Lb)の出射角を求めることもできる。また、距離からビーム径を調整することは先に述べた通りである。 In addition, the object to be printed (Wk1) is photographed to obtain an image, and while tracking this image, the distance from the surface to be printed to the tracking mirror section 15 and the tracking mirror section are determined from the image of the surface to be printed (target). The emission angle of the laser beam (Lb) from 15 can also be determined. Further, as described above, the beam diameter is adjusted based on the distance.
 また、リアルタイムで、パワーメータによるレーザパワーの測定、カメラ等による出射角に応じた印字対象物(Wk1)上のスポット径を測定することで、エネルギー密度を算出し、これが一定になるようにビーム径調整部を制御することができる。 In addition, in real time, the energy density is calculated by measuring the laser power using a power meter and the spot diameter on the printing target (Wk1) according to the emission angle using a camera, etc., and the beam is adjusted so that the energy density remains constant. The diameter adjustment section can be controlled.
 更には、追跡ミラー部15から遠い位置にあるほど印字対象物(Wk1)には、レーザー光が斜入射してレーザー光のスポット径が大きくなり、印字に必要なエネルギー密度を確保できない恐れがある。このため、レーザー発振部11から出射されるレーザー光の出力を制御して、印字に必要なエネルギー密度を確保している。この場合、制御部16によってエネルギー密度を印字が可能なように略一定に制御するのが好ましく、例えばレーザー光の出力は、図6に示すような関係と同様に、距離に対応してレーザー光の出力を制御すればよい。 Furthermore, the farther the object is from the tracking mirror section 15, the more obliquely the laser beam will be incident on the object to be printed (Wk1), the larger the spot diameter of the laser beam, and there is a possibility that the energy density necessary for printing cannot be secured. . For this reason, the output of the laser light emitted from the laser oscillation unit 11 is controlled to ensure the energy density necessary for printing. In this case, it is preferable that the energy density is controlled to be approximately constant by the control unit 16 so that printing can be performed.For example, the output of the laser beam is controlled in accordance with the distance, similar to the relationship shown in FIG. All you have to do is control the output of .
 次に、制御部16で実行される印字動作を行うための処理フローを図7に基づいて説明する。この処理フローは、GUI部17の入力パネルを操作することによって実行することができる。 Next, a processing flow for performing a printing operation executed by the control unit 16 will be described based on FIG. 7. This processing flow can be executed by operating the input panel of the GUI section 17.
 「ステップS10」から「ステップS15」までは、GUI部17によって入力された設定情報に基づいて、制御部16で印字データを生成するための制御ステップである。 "Step S10" to "Step S15" are control steps for generating print data in the control unit 16 based on the setting information input by the GUI unit 17.
 先ず、「ステップS10」においては、GUI部17の入力パネルに対して、ユーザによって、印字パターンや印字位置の入力を実行する。次に、「ステップS11」において、印字条件の設定を実行する。印字条件は、レーザー光の出力、光源にパルスレーザーを用いる場合は繰返し周波数や印字の解像度、レーザー光走査部13であるガルバノメーターのスキャン速度といった条件を設定する。 First, in "Step S10", the user inputs the print pattern and print position on the input panel of the GUI section 17. Next, in "step S11", printing conditions are set. The printing conditions include the output of the laser beam, the repetition frequency and printing resolution when a pulsed laser is used as the light source, and the scanning speed of the galvanometer that is the laser beam scanning section 13.
 次に「ステップS12」において、印字対象物(Wk1)の形状認識を実行する。この処理は、カメラによって印字対象物を撮像することで求めることができる。印字対象物(Wk1)の形状認識が行われると、これに合わせて「ステップS13」で印字パターンの補正を実行する。更に、「ステップS14」で印字データの生成を実行し、次に、走査を行うために「ステップS15」で印字座標の生成を実行する。 Next, in "Step S12", shape recognition of the printing target (Wk1) is performed. This process can be obtained by capturing an image of the printing target with a camera. When the shape of the printing object (Wk1) is recognized, the printing pattern is corrected in step S13. Furthermore, print data is generated in step S14, and print coordinates are generated in step S15 for scanning.
 「ステップS10」から「ステップS15」が完了すると制御部16は、実際の印字動作を開始する。 When "Step S10" to "Step S15" are completed, the control unit 16 starts the actual printing operation.
 「ステップS16」においては、上述した制御ステップで設定された印字条件に基づいて印字動作を実行する。そして、図1から図3に示すように、「ステップS17」で追跡ミラー部15の出射角(θ)の制御を実行し、更に「ステップS18」でビーム径調整部12のビーム径(D)の制御を実行する。これらの制御ステップによって、「ステップS19」で1個の印字対象物(Wk1)への印字が完了する。この印字が完了すると、再び「ステップS16」に戻って、図3に示すように、次の印字対象物(Wk2)への印字動作を開始することになる。 In "Step S16", a printing operation is performed based on the printing conditions set in the control step described above. Then, as shown in FIGS. 1 to 3, the output angle (θ) of the tracking mirror section 15 is controlled in step S17, and the beam diameter (D) of the beam diameter adjustment section 12 is controlled in step S18. control. Through these control steps, printing on one printing object (Wk1) is completed in "Step S19". When this printing is completed, the process returns to "step S16" again, and as shown in FIG. 3, the printing operation on the next printing object (Wk2) is started.
 このように、本実施形態においては、集光レンズ部から出射されるレーザー光を反射して移動する印字対象物に照射する追跡ミラー部を設け、印字対象物の移動に対応して追跡ミラー部で出射されたレーザー光の印字対象物の印字対象面に対する入射角が垂直方向に近づくように、印字対象物の移動に応じて追跡ミラー部の出射角を調整する、構成を提案している。 As described above, in this embodiment, a tracking mirror section is provided that reflects the laser light emitted from the condenser lens section and irradiates the moving printing target object, and the tracking mirror section responds to the movement of the printing object. We have proposed a configuration in which the emission angle of the tracking mirror section is adjusted in accordance with the movement of the printing object so that the incident angle of the laser beam emitted from the printing object surface approaches the vertical direction.
 この構成によれば、立体的な印字対象面を備えた移動する印字対象物に対して、印字領域を拡張することができる。 According to this configuration, the printing area can be expanded for a moving printing object that has a three-dimensional printing surface.
 次に、上述した追跡ミラー部15を用いて、複数の印字対象物(Wk)の印字対象面に時分割で印字する第2の実施形態を説明する。第2の実施形態は、3個の印字対象物(Wk1)、(Wk2)、(Wk3)に対して、時分割で印字する例である。尚、レーザー光(Lb)の出射角(θ)やビーム径(D)の調整は、先に述べた実施形態の通りであるので説明は省略する。 Next, a second embodiment will be described in which time-sharing printing is performed on the printing target surfaces of a plurality of printing objects (Wk) using the tracking mirror unit 15 described above. The second embodiment is an example in which printing is performed on three printing objects (Wk1), (Wk2), and (Wk3) in a time-sharing manner. Note that the adjustment of the emission angle (θ) and the beam diameter (D) of the laser beam (Lb) is the same as in the embodiment described above, so the explanation will be omitted.
 図8において、時刻t4で追跡ミラー部15は、印字対象物(Wk1)、(Wk2)、(Wk3)の印字を実行する。ここで、印字対象物(Wk1)、(Wk2)、(Wk3)の移動速度は、以下に述べる印字動作が実行できる速度に設定されている。 In FIG. 8, at time t4, the tracking mirror unit 15 executes printing on the printing objects (Wk1), (Wk2), and (Wk3). Here, the moving speeds of the printing objects (Wk1), (Wk2), and (Wk3) are set to speeds at which the printing operations described below can be executed.
 具体的には、先ず印字対象物(Wk1)に対して、レーザー光(Lb-1)で必要な印字領域(Pa1)に印字を実行する。この印字が終了すると、次に破線矢印に示すように、先行する印字対象物(Wk2)に対してレーザー光(Lb-2)で必要な印字領域(Pa2)に印字を実行する。更にこの印字が終了すると、次に先行する印字対象物(Wk3)に対してレーザー光(Lb-3)で必要な印字領域(Pa3)に印字を実行する。このよう印字動作を実行することによって、印字対象物(Wk1)、(Wk2)、(Wk3)の夫々に、1回目の印字が施される。 Specifically, first, printing is performed on the printing target (Wk1) in a necessary printing area (Pa1) using a laser beam (Lb-1). When this printing is completed, next, as shown by the broken line arrow, printing is performed in the necessary printing area (Pa2) on the preceding printing object (Wk2) using the laser beam (Lb-2). Further, when this printing is completed, printing is performed on the next preceding printing object (Wk3) in a necessary printing area (Pa3) using a laser beam (Lb-3). By performing the printing operation in this manner, the first printing is performed on each of the printing objects (Wk1), (Wk2), and (Wk3).
 次に、時間が経過して時刻t5になると、図9に示すように印字対象物(Wk1)、(Wk2)、(Wk3)は、搬送機構18によって移動されて位置を変えている。したがって、印字対象物(Wk1)に対して、レーザー光(Lb-1)で印字領域(Pa1)に隣接する印字領域に印字を実行する。この印字領域は、印字領域(Pa1)の下側となる。 Next, when time t5 passes, the printing objects (Wk1), (Wk2), and (Wk3) are moved by the transport mechanism 18 and change their positions, as shown in FIG. Therefore, printing is performed on the printing target (Wk1) in a printing area adjacent to the printing area (Pa1) using the laser beam (Lb-1). This printing area is below the printing area (Pa1).
 この印字が終了すると、次に破線矢印に示すように、先行する印字対象物(Wk2)に対して、レーザー光(Lb-2)で印字領域(Pa2)に隣接する印字領域に印字を実行する。この印字領域は、印字領域(Pa2)の左側となる。更にこの印字が終了すると、次に先行する印字対象物(Wk3)に対して、レーザー光(Lb-3)で印字領域(Pa3)に隣接する印字領域に印字を実行する。この印字領域は、印字領域(Pa3)の上側となる。 When this printing is completed, next, as shown by the broken line arrow, printing is performed on the preceding printing object (Wk2) in the printing area adjacent to the printing area (Pa2) using the laser beam (Lb-2). . This printing area is on the left side of the printing area (Pa2). Furthermore, when this printing is completed, printing is performed on the next preceding printing object (Wk3) in a printing area adjacent to the printing area (Pa3) using a laser beam (Lb-3). This printing area is above the printing area (Pa3).
 このような印字動作を実行することによって、複数の印字対象物(Wk1)、(Wk2)、(Wk3)の夫々に、2回目の印字が施される。 By performing such a printing operation, the second printing is performed on each of the plurality of printing objects (Wk1), (Wk2), and (Wk3).
 したがって、本実施形態によっても立体的な印字対象面を備えた移動する印字対象物に対して、印字領域を拡張することができる。しかも、複数個(本実施形態では3個)の印字対象物に印字を実行することができ、印字効率を向上することが可能となる。 Therefore, according to this embodiment as well, the printing area can be expanded for a moving printing object that has a three-dimensional printing surface. Furthermore, printing can be performed on a plurality of printing objects (three in this embodiment), making it possible to improve printing efficiency.
 次に、上述した追跡ミラー部15を用いて、断面形状が矩形の移動する印字対象物(Wk)を印字する第3の実施形態を説明する。尚、この第3の実施形態でも、第1の実施形態、及び第2の実施形態にある印字方法を適用できるものである。 Next, a third embodiment will be described in which a moving printing target (Wk) having a rectangular cross-sectional shape is printed using the tracking mirror section 15 described above. Note that the printing methods in the first and second embodiments can also be applied to this third embodiment.
 図10において、第1の実施形態の印字方法の場合は、先ず印字対象物(Wk4)の右側の側面(Wsr)に印字する。次に、印字対象物(Wk4)が移動して印字対象物(Wk5)の位置に達すると、底面(Wsb)に印字する。更に印字対象物(Wk5)が移動して印字対象物(Wk6)の位置に達すると、左側の側面(Wsl)に印字するように動作する。このような方法によって、印字対象物の左右側面と底面に印字を実行することができる。 In FIG. 10, in the case of the printing method of the first embodiment, printing is first performed on the right side surface (Wsr) of the printing object (Wk4). Next, when the printing object (Wk4) moves and reaches the position of the printing object (Wk5), printing is performed on the bottom surface (Wsb). When the printing object (Wk5) further moves and reaches the position of the printing object (Wk6), it operates to print on the left side surface (Wsl). By such a method, printing can be performed on the left and right side surfaces and the bottom surface of the printing object.
 また、第2の実施形態の印字方法の場合は、先ず印字対象物(Wk4)の右側の側面(Wsr)に印字し、次に、印字対象物(Wk5)の底面(Wsb)に印字し、更に印字対象物(Wk6)の左側の側面に印字するように動作する。このような方法によって、印字対象物の左右側面と底面に、時分割的に印字を実行することができる。 In addition, in the case of the printing method of the second embodiment, first, printing is performed on the right side surface (Wsr) of the printing object (Wk4), then printing is performed on the bottom surface (Wsb) of the printing object (Wk5), Furthermore, it operates to print on the left side surface of the printing object (Wk6). By such a method, printing can be performed on the left and right side surfaces and the bottom surface of the printing object in a time-sharing manner.
 次に、2個の追跡ミラー部15を用いて、印字対象物(Wk)の二次元方向の印字を実行する第4の実施形態を説明する。この実施形態では、第1の実施形態を基に説明する。 Next, a fourth embodiment will be described in which two tracking mirror units 15 are used to perform two-dimensional printing on a printing target (Wk). This embodiment will be explained based on the first embodiment.
 図11において、印字対象物(Wk1)は破線で示す位置(検出部付近)から実線で示す位置に移動し、更に破線で示す位置に移動する。これにしたがって、レーザー光(Lb)も印字対象物(Wk1)を追跡するように出射される。 In FIG. 11, the printing target (Wk1) moves from the position shown by the broken line (near the detection part) to the position shown by the solid line, and further moves to the position shown by the broken line. Accordingly, the laser beam (Lb) is also emitted so as to track the printing target (Wk1).
 そして、集光レンズ部14から出射されたレーザー光(Lb)は、第1追跡ミラー部15-1でX方向に制御され、第1追跡ミラー部15-1から出射されたレーザー光(Lb)は、第2追跡ミラー部15-2でY方向に制御されて、印字対象物(Wk1)の印字領域に照射される。これによって、印字対象物(Wk1)の印字対象面に、2次元方向の印字を実行することが可能となる。尚、第1追跡ミラー部15-1でY方向にレーザー光(lb)を制御し、第2追跡ミラー部15-2で X方向にレーザー光(lb)を制御しても良いことはもちろんである。 The laser beam (Lb) emitted from the condenser lens section 14 is controlled in the X direction by the first tracking mirror section 15-1, and the laser beam (Lb) emitted from the first tracking mirror section 15-1 is controlled in the Y direction by the second tracking mirror section 15-2, and is irradiated onto the printing area of the printing target (Wk1). This makes it possible to perform printing in two-dimensional directions on the printing target surface of the printing target (Wk1). It goes without saying that the first tracking mirror section 15-1 may control the laser beam (lb) in the Y direction, and the second tracking mirror section 15-2 may control the laser beam (lb) in the X direction. be.
 また、図11では、第1追跡ミラー部15-1と第2追跡ミラー部15-2は別々の構成とされているが、図12には一体型の構成を示している。 Further, in FIG. 11, the first tracking mirror section 15-1 and the second tracking mirror section 15-2 are configured separately, but FIG. 12 shows an integrated configuration.
 図12において、薄型の立方体形状のミラー本体20には、その表面に沿って軸方向に延びた反射鏡21が設けられている。そして、このミラー本体20は、回転軸線(O1)を中心にしてX方向に回転し、回転軸線(O1)に直交する回転軸線(O2)を中心にしてY方向に回転することができる。これらの方向の回転によって、第1追跡ミラー部15-1と第2追跡ミラー部15-2のような動作を実行することができる。ミラー本体20の駆動は、電動モータで行うことができる。 In FIG. 12, a thin cubic mirror body 20 is provided with a reflecting mirror 21 extending in the axial direction along its surface. The mirror body 20 can rotate in the X direction about the rotation axis (O1) and can rotate in the Y direction about the rotation axis (O2) orthogonal to the rotation axis (O1). Rotation in these directions allows the first tracking mirror section 15-1 and the second tracking mirror section 15-2 to perform operations. The mirror body 20 can be driven by an electric motor.
 図13には、図11に示すレーザーマーカー装置10によって、円筒形状の印字対象物(Wk1)に、二次元方向に印字した結果の例を示している。このように、円筒形状であっても、円周面に沿った印字面(Pt)に良好な印字を実行できるようになる。 FIG. 13 shows an example of the result of printing in a two-dimensional direction on a cylindrical printing object (Wk1) using the laser marker device 10 shown in FIG. 11. In this way, even with a cylindrical shape, good printing can be performed on the printing surface (Pt) along the circumferential surface.
 以上に述べたように、本発明は、レーザー光を発生させるためのレーザー発振部と、レーザー発振部より出射されるレーザー光を走査するためのレーザー光走査部と、レーザー光走査部より出射されるレーザー光を印字対象物の印字対象面に集光させるための集光レンズ部と、レーザー発振部、レーザー光走査部を制御する制御部を備えたレーザーマーカー装置であって、集光レンズ部から出射されるレーザー光を反射して相対的に移動する印字対象物に照射する追跡ミラー部を設け、制御部は、追跡ミラー部から出射されるレーザー光が、印字対象物の印字対象面に対して所定の角度で入射するように、印字対象物の移動に対応して追跡ミラー部からの出射角を調整する、ことを特徴としている。 As described above, the present invention includes a laser oscillation section for generating a laser beam, a laser beam scanning section for scanning the laser beam emitted from the laser oscillation section, and a laser beam scanning section for scanning the laser beam emitted from the laser beam scanning section. A laser marker device includes a condensing lens section for condensing a laser beam onto a printing target surface of a printing object, a control section for controlling a laser oscillation section and a laser beam scanning section, the condensing lens section A tracking mirror section is provided that reflects laser light emitted from the mirror and irradiates it to a relatively moving printing object, and the control section controls the control section so that the laser light emitted from the tracking mirror section is directed to the printing surface of the printing object. It is characterized in that the output angle from the tracking mirror section is adjusted in response to the movement of the printing target so that the light is incident at a predetermined angle.
 本発明によれば、立体的な印字対象面を備えた移動する印字対象物に対して印字領域を拡張することができる。 According to the present invention, it is possible to expand the printing area for a moving printing object that has a three-dimensional printing surface.
 尚、本発明は上記したいくつかの実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成について、他の構成の追加、削除、置換をすることも可能である。 Note that the present invention is not limited to the few embodiments described above, and includes various modifications. The above-mentioned embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace other configurations with respect to the configuration of each embodiment.
 10…レーザーマーカー装置、11…レーザー発振部、12…ビーム径調整部、13…レーザー光走査部、14…集光レンズ部、15…追跡ミラー部、16…制御部、17…GUI部、18…搬送機構、19…印字対象物検出部、Wk1~Wk3…印字対象物。 DESCRIPTION OF SYMBOLS 10... Laser marker device, 11... Laser oscillation part, 12... Beam diameter adjustment part, 13... Laser beam scanning part, 14... Condensing lens part, 15... Tracking mirror part, 16... Control part, 17... GUI part, 18 ...Conveyance mechanism, 19...Print object detection section, Wk1 to Wk3...Print object.

Claims (15)

  1.  レーザー光を発生させるためのレーザー発振部と、前記レーザー発振部から出射される前記レーザー光を走査するためのレーザー光走査部と、前記レーザー光走査部より出射される前記レーザー光を印字対象物の印字対象面に集光させるための集光レンズ部と、前記レーザー発振部、前記レーザー光走査部を制御する制御部を備えたレーザーマーカー装置であって、
     前記集光レンズ部から出射される前記レーザー光を反射して移動している前記印字対象物に照射する追跡ミラー部を設け、
     前記制御部は、
     前記追跡ミラー部から出射される前記レーザー光が、前記印字対象物の前記印字対象面に対して所定の角度で入射するように、前記印字対象物と前記レーザー光の相対的な移動に対応して前記追跡ミラー部からの出射角を調整する
    ことを特徴とするレーザーマーカー装置。
    a laser oscillation unit for generating a laser beam; a laser beam scanning unit for scanning the laser beam emitted from the laser oscillation unit; and a laser beam scanning unit for scanning the laser beam emitted from the laser beam scanning unit; A laser marker device comprising: a condensing lens section for condensing light onto a printing target surface; a control section for controlling the laser oscillation section and the laser beam scanning section;
    a tracking mirror unit that reflects the laser beam emitted from the condensing lens unit and irradiates the moving printing target;
    The control unit includes:
    The laser beam emitted from the tracking mirror section corresponds to the relative movement between the printing object and the laser beam so that the laser beam is incident on the printing object surface of the printing object at a predetermined angle. A laser marker device characterized in that the output angle from the tracking mirror section is adjusted by adjusting the angle of emission from the tracking mirror section.
  2.  請求項1に記載のレーザーマーカー装置であって、
     前記制御部は、前記所定の角度が前記印字対象面に対して垂直入射する前記レーザー光の光軸を基準にして30°の範囲内の角度になるように、前記追跡ミラー部を制御する
    ことを特徴とするレーザーマーカー装置。
    The laser marker device according to claim 1,
    The control unit controls the tracking mirror unit so that the predetermined angle is within a range of 30° with respect to the optical axis of the laser beam that is perpendicularly incident on the printing target surface. A laser marker device featuring:
  3.  請求項2に記載のレーザーマーカー装置であって、
     前記追跡ミラー部の出射角は、予め求められてテーブルに記憶されており、
     前記制御部は、前記テーブルから前記出射角を読み出して前記追跡ミラー部からの前記レーザー光の前記出射角を調整する
    ことを特徴とするレーザーマーカー装置。
    The laser marker device according to claim 2,
    The output angle of the tracking mirror section is determined in advance and stored in a table,
    The laser marker device is characterized in that the control section reads the emission angle from the table and adjusts the emission angle of the laser beam from the tracking mirror section.
  4.  請求項2に記載のレーザーマーカー装置であって、
     更に前記レーザー光のビーム径を調整するビーム径調整部を有し、前記ビーム径調整部によって前記レーザー光のビーム径を調整する
    ことを特徴とするレーザーマーカー装置。
    The laser marker device according to claim 2,
    A laser marker device further comprising a beam diameter adjustment section that adjusts a beam diameter of the laser light, the beam diameter adjustment section adjusting the beam diameter of the laser light.
  5.  請求項4に記載のレーザーマーカー装置であって、
     前記ビーム径は、相対移動している前記印字対象物の前記印字対象面に照射される前記レーザー光のエネルギー密度が略一定に維持されるように、調整される
    ことを特徴とするレーザーマーカー装置。
    The laser marker device according to claim 4,
    A laser marker device characterized in that the beam diameter is adjusted so that the energy density of the laser beam irradiated onto the printing target surface of the printing target that is relatively moving is maintained substantially constant. .
  6.  請求項4に記載のレーザーマーカー装置であって、
     前記制御部は、相対移動している前記印字対象物の前記印字対象面に前記レーザー光の焦点が結ばれるように、前記ビーム径調整部によって前記レーザー光のビーム径を調整する
    ことを特徴とするレーザーマーカー装置。
    The laser marker device according to claim 4,
    The control unit may adjust the beam diameter of the laser beam by the beam diameter adjustment unit so that the laser beam is focused on the printing target surface of the printing target that is relatively moving. Laser marker device.
  7.  請求項6に記載のレーザーマーカー装置であって、
     前記印字対象物の前記印字対象面に焦点を結ぶ前記レーザー光のビーム径が予め求められてテーブルに記憶されており、
     前記制御部は、前記テーブルから前記ビーム径を読み出して前記ビーム径調整部からの前記レーザー光の前記ビーム径を調整する
    ことを特徴とするレーザーマーカー装置。
    The laser marker device according to claim 6,
    A beam diameter of the laser beam focused on the printing target surface of the printing target is determined in advance and stored in a table,
    The laser marker device is characterized in that the control section reads the beam diameter from the table and adjusts the beam diameter of the laser light from the beam diameter adjustment section.
  8.  請求項1に記載のレーザーマーカー装置であって、
     前記制御部は、搬送機構を移動する複数の前記印字対象物の前記印字対象面に、時分割で前記レーザー光を照射する印字するように前記追跡ミラー部を制御する
    ことを特徴とするレーザーマーカー装置。
    The laser marker device according to claim 1,
    The laser marker is characterized in that the control unit controls the tracking mirror unit so as to time-divisionally irradiate the laser light onto the printing target surfaces of the plurality of printing objects moving through the conveyance mechanism. Device.
  9.  請求項1に記載のレーザーマーカー装置であって、
     前記追跡ミラー部は、前記印字対象物の前記印字対象面に対して2次元方向に前記レーザー光を出射する
    することを特徴とするレーザーマーカー装置。
    The laser marker device according to claim 1,
    The laser marker device is characterized in that the tracking mirror section emits the laser beam in a two-dimensional direction with respect to the printing target surface of the printing target.
  10.  請求項1に記載のレーザーマーカー装置であって、
     前記制御部は、前記印字対象面におけるエネルギー密度が略一定になるように前記レーザー発振部から出射される前記レーザー光の出力を調整する
    ことを特徴とするレーザーマーカー装置。
    The laser marker device according to claim 1,
    The laser marker device is characterized in that the control section adjusts the output of the laser light emitted from the laser oscillation section so that the energy density on the printing target surface is substantially constant.
  11.  レーザー光を発生させるためのレーザー発振部と、前記レーザー発振部から出射される前記レーザー光を走査するためのレーザー光走査部と、前記レーザー光走査部より出射される前記レーザー光を印字対象物の印字対象面に集光させるための集光レンズ部と、前記集光レンズ部から出射される前記レーザー光を反射して移動している前記印字対象物に照射する追跡ミラー部とを有するレーザーマーカー装置を制御するための制御部を備えたレーザーマーカー装置用制御装置であって、
     前記制御部は、前記追跡ミラー部から出射される前記レーザー光が、前記印字対象物の前記印字対象面に対して所定の角度で入射するように、前記印字対象物と前記レーザー光の相対的な移動に対応して前記追跡ミラー部からの出射角を調整する
    ことを特徴とするレーザーマーカー装置用制御装置。
    a laser oscillation unit for generating a laser beam; a laser beam scanning unit for scanning the laser beam emitted from the laser oscillation unit; and a laser beam scanning unit for scanning the laser beam emitted from the laser beam scanning unit. a condensing lens section for condensing the light onto a printing target surface; and a tracking mirror section that reflects the laser beam emitted from the condensing lens section and irradiates the moving printing target object. A control device for a laser marker device, comprising a control unit for controlling the marker device,
    The control section controls the relative relationship between the printing object and the laser beam so that the laser beam emitted from the tracking mirror section is incident on the printing object surface of the printing object at a predetermined angle. A control device for a laser marker device, characterized in that the output angle from the tracking mirror section is adjusted in accordance with the movement of the laser marker device.
  12.  請求項11に記載のレーザーマーカー装置用制御装置であって、
     前記制御部は、前記所定の角度が前記印字対象面に対して垂直入射する前記レーザー光の光軸を基準にして30°の範囲内の角度になるように、前記追跡ミラー部を制御する
    ことを特徴とするレーザーマーカー装置用制御装置。
    The control device for a laser marker device according to claim 11,
    The control unit controls the tracking mirror unit so that the predetermined angle is within a range of 30° with respect to the optical axis of the laser beam that is perpendicularly incident on the printing target surface. A control device for a laser marker device, characterized by:
  13.  請求項12に記載のレーザーマーカー装置用制御装置であって、
     前記追跡ミラー部の出射角は、予め求められてテーブルに記憶されており、
     前記制御部は、前記テーブルから前記出射角を読み出して前記追跡ミラー部からの前記レーザー光の前記出射角を調整する
    ことを特徴とするレーザーマーカー装置用制御装置。
    The control device for a laser marker device according to claim 12,
    The output angle of the tracking mirror section is determined in advance and stored in a table,
    The control device for a laser marker device, wherein the control unit reads the emission angle from the table and adjusts the emission angle of the laser beam from the tracking mirror unit.
  14.  請求項12に記載のレーザーマーカー装置用制御装置であって、
     前記レーザーマーカー装置は更に前記レーザー光のビーム径を調整するビーム径調整部を有し、
     前記制御部は、前記ビーム径調整部によって前記レーザー光のビーム径を調整する
    ことを特徴とするレーザーマーカー装置用制御装置。
    The control device for a laser marker device according to claim 12,
    The laser marker device further includes a beam diameter adjustment section that adjusts the beam diameter of the laser light,
    A control device for a laser marker device, wherein the control section adjusts the beam diameter of the laser beam by the beam diameter adjustment section.
  15.  請求項14に記載のレーザーマーカー装置用制御装置であって、
     前記ビーム径は、前記制御部によって相対移動している前記印字対象物の前記印字対象面に照射される前記レーザー光のエネルギー密度が略一定に維持されるように調整されることを特徴とするレーザーマーカー装置用制御装置。
    The laser marker device control device according to claim 14,
    The beam diameter is adjusted by the control unit so that the energy density of the laser beam irradiated onto the printing target surface of the printing target that is relatively moving is maintained substantially constant. Control device for laser marker equipment.
PCT/JP2022/046588 2022-04-26 2022-12-19 Laser marker device, and control device for laser marker device WO2023210055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022072219A JP2023161713A (en) 2022-04-26 2022-04-26 Laser marker apparatus and control device for laser marker apparatus
JP2022-072219 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023210055A1 true WO2023210055A1 (en) 2023-11-02

Family

ID=88518320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046588 WO2023210055A1 (en) 2022-04-26 2022-12-19 Laser marker device, and control device for laser marker device

Country Status (2)

Country Link
JP (1) JP2023161713A (en)
WO (1) WO2023210055A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255423A (en) * 2011-08-08 2011-12-22 Keyence Corp Laser beam machining device, laser beam machining condition setting device, laser beam machining condition setting method, laser beam machining condition setting program, computer-readable recording medium, and recording apparatus
JP2012106288A (en) * 2011-12-26 2012-06-07 Keyence Corp Laser beam machining apparatus, laser beam machining data setting device, laser beam machining data setting method, laser beam machining data setting program, and computer-readable recording medium, and recording equipment
JP2013111070A (en) * 2011-12-01 2013-06-10 Edm Kk Printing system
JP2015074400A (en) * 2013-10-10 2015-04-20 トリニティ工業株式会社 Vehicular interior component and decorative method thereof
JP2020200853A (en) * 2019-06-07 2020-12-17 本田技研工業株式会社 Marking method of metallic belt for continuously variable transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255423A (en) * 2011-08-08 2011-12-22 Keyence Corp Laser beam machining device, laser beam machining condition setting device, laser beam machining condition setting method, laser beam machining condition setting program, computer-readable recording medium, and recording apparatus
JP2013111070A (en) * 2011-12-01 2013-06-10 Edm Kk Printing system
JP2012106288A (en) * 2011-12-26 2012-06-07 Keyence Corp Laser beam machining apparatus, laser beam machining data setting device, laser beam machining data setting method, laser beam machining data setting program, and computer-readable recording medium, and recording equipment
JP2015074400A (en) * 2013-10-10 2015-04-20 トリニティ工業株式会社 Vehicular interior component and decorative method thereof
JP2020200853A (en) * 2019-06-07 2020-12-17 本田技研工業株式会社 Marking method of metallic belt for continuously variable transmission

Also Published As

Publication number Publication date
JP2023161713A (en) 2023-11-08

Similar Documents

Publication Publication Date Title
JP6395970B2 (en) Laser processing apparatus and laser processing method
TW503677B (en) Laser processing apparatus
JP2008203434A (en) Scanning mechanism, method of machining material to be machined and machining apparatus
JP2010082663A (en) Laser beam machine
KR101026356B1 (en) Laser scanning device
CN112975112A (en) Detection device
JPH09159945A (en) Device and method for detecting mirror angle
WO2023210055A1 (en) Laser marker device, and control device for laser marker device
US7858923B2 (en) Light beam scanning apparatus and image forming apparatus provided with the same
JP2008062259A (en) Laser beam machining apparatus, method and program for laser beam machining
JP2002001561A (en) Oval hole machining method and its apparatus
JP6877951B2 (en) Light irradiation device and light reader
JP2005103614A (en) Laser marking apparatus and work distance adjustment method for the same
CN112496527B (en) Optical device and article manufacturing method
JP2005014089A (en) Laser marking method
WO2016052385A1 (en) Storage medium and laser processing device
JP2003161907A (en) Laser beam diameter varying device
KR102602118B1 (en) Scan head device and method for reflecting or transmitting a beam for a scanner, scanning device having a scan head device, and scanner having a scan head device
JP2006259127A (en) Optical device
JP2009012014A (en) Laser beam machining apparatus, and its setting method and setting program
JPWO2019065533A1 (en) Glass substrate cutting device, cutting method, program, and storage medium
TWI843287B (en) Laser machining device
JP2005103553A (en) Laser marking device
JP2012030251A (en) Laser beam machining device
JP6915640B2 (en) Laser marker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940326

Country of ref document: EP

Kind code of ref document: A1