WO2023207057A1 - 像素驱动电路、驱动方法及显示装置 - Google Patents

像素驱动电路、驱动方法及显示装置 Download PDF

Info

Publication number
WO2023207057A1
WO2023207057A1 PCT/CN2022/133802 CN2022133802W WO2023207057A1 WO 2023207057 A1 WO2023207057 A1 WO 2023207057A1 CN 2022133802 W CN2022133802 W CN 2022133802W WO 2023207057 A1 WO2023207057 A1 WO 2023207057A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch unit
terminal
voltage
compensation capacitor
unit
Prior art date
Application number
PCT/CN2022/133802
Other languages
English (en)
French (fr)
Inventor
周仁杰
郑浩旋
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2023207057A1 publication Critical patent/WO2023207057A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present application relates to the field of display technology, and in particular, to a pixel driving circuit, a driving method and a display device.
  • OLED organic light emitting display
  • the present application provides a pixel driving circuit, a driving method and a display device.
  • a first embodiment of the present application provides a pixel driving circuit, including:
  • the first end of the compensation capacitor unit is coupled to the driving voltage end, and the second end is coupled to the data voltage end;
  • a first switch unit the control terminal of the first switch unit is coupled to the first terminal of the compensation capacitor unit, the input terminal is coupled to the driving voltage terminal, and the output terminal is coupled to a light-emitting device;
  • a first discharge module in the first stage, reduces the driving voltage written at the first end of the compensation capacitor unit to a first set threshold
  • the second discharge module reduces the data voltage written at the second end of the compensation capacitor unit to a second set threshold in the second stage; wherein in the second stage, the first discharge module and the compensation capacitor The first terminal of the unit is disconnected, so that the first terminal voltage of the compensation capacitor unit jumps to a target voltage, and the target voltage is greater than the threshold voltage of the first switching unit.
  • a second embodiment of the present application provides a driving method applied to the above-mentioned pixel driving circuit, including:
  • the driving voltage written at the first end of the compensation capacitor unit is reduced to a first set threshold
  • the data voltage written on the second end of the compensation capacitor unit is reduced to a second set threshold, and the first discharge module is disconnected from the first end of the compensation capacitor unit, so that the compensation capacitor
  • the first terminal voltage of the unit jumps to a target voltage, the target voltage being greater than the threshold voltage of the first switching unit;
  • the second discharging module is turned off, and the first switch unit is controlled to be turned on by the target voltage at the first end of the compensation capacitor unit, so as to drive the light-emitting device to emit light through the driving voltage.
  • a third embodiment of the present application provides a display device, including a display panel and a pixel driving circuit as described above.
  • the display panel includes a plurality of pixel units, and each of the pixel units includes a plurality of light-emitting devices.
  • the pixel driving circuit, driving method and display device provided by this application can make the current through the OLED diode independent of the negative electrode of the power supply and the threshold voltage of each thin film transistor, thereby making the display uniform; in addition, through The two discharge modules discharge the compensation capacitor unit at different stages, thereby providing a discharge channel for the compensation capacitor unit at each stage, which can eliminate parasitic charges in the circuit.
  • this application is highly efficient. This method effectively eliminates the parasitic charges generated during the operation of the entire circuit, thereby avoiding the impact of parasitic charges on the driving of organic luminescent devices.
  • FIG. 1 is a schematic structural diagram of a pixel driving circuit in an embodiment of the present application.
  • FIG. 2 is the second structural schematic diagram of the pixel driving circuit in the embodiment of the present application.
  • Figure 3 is a schematic diagram of timing control corresponding to Figure 1.
  • Figure 4 is a timing control schematic diagram corresponding to Figure 2.
  • FIG. 5 is a schematic structural diagram of a display device in an embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise explicitly and specifically limited. It should be noted that the pixel driving circuit, driving method and display device disclosed in this application can be used in the field of display technology, and can also be used in any field other than the field of display technology. The pixel driving circuit, driving method and display device disclosed in this application can also be used in any field other than the field of display technology. The application fields are not limited.
  • Figure 1 is a schematic structural diagram of a pixel driving circuit provided by an embodiment of the present application. As shown in Figure 1, it specifically includes: a compensation capacitor unit C. The first end A of the compensation capacitor unit C is coupled to the driving voltage terminal Vdd. , the second terminal B is coupled to the data voltage terminal Vdata; the first switch unit T11, the control terminal of the first switch unit T11 is coupled to the first terminal A of the compensation capacitor unit C, and the input terminal is coupled to the driving voltage terminal Vdd , the output end is coupled to a light-emitting device; the first discharging module 1 reduces the driving voltage written in the first end A of the compensation capacitor unit C to the first set threshold in the first stage; and the second discharging module 2, In the second stage, the data voltage written on the second terminal B of the compensation capacitor unit C is reduced to the second set threshold; wherein in the second stage, the voltage between the first discharge module and the compensation capacitor unit C is The first terminal A is disconnected, so that the voltage of the first terminal A of the compensation capacitor unit C jumps
  • both the first set threshold and the second set threshold can be configured using different circuit structures based on requirements.
  • the first discharge module is configured so that n thin film transistors are connected in series and connected to a ground terminal, so that the voltage dividing principle can be used to reduce the voltage of the first terminal A of the compensation capacitor unit C to the sum of the threshold voltages of n thin film transistors.
  • the present application can also use other methods to reduce the driving voltage written in the first terminal A of the compensation capacitor unit C to the first set threshold, for example, connecting a voltage between the ground terminal and the first terminal A of the compensation capacitor unit C.
  • the voltage dividing resistor is used to adjust the voltage at the first terminal A of the compensation capacitor unit C through the size of the resistor.
  • the first discharge module includes: a first discharge switch unit T21, the control terminal of the first discharge switch unit T21 is coupled to the first scan line S1, and the input terminal is coupled to The output terminal of the driving voltage terminal Vdd is coupled to a ground terminal.
  • the first discharge switch unit T21 is controlled to be turned on through the first scan line S1.
  • the first discharge switch unit T21 When the first discharge switch unit T21 is turned on, the first discharge switch unit T21 is coupled to the driving voltage terminal Vdd, and the compensation capacitor The first terminal A of the unit C is coupled to the driving voltage terminal Vdd, and the first terminal A of the compensation capacitor unit C and the first discharge switch unit T21 are simultaneously coupled to the driving voltage terminal Vdd, so that the first terminal A of the compensation capacitor unit C is coupled to the driving voltage terminal Vdd. Terminal A and the first discharge switch unit T21 are also in a "coupled" state. At this time, the first terminal A of the compensation capacitor unit C can be discharged through the first discharge switch unit T21, and the compensation capacitor unit C is discharged by the first discharge switch unit T21.
  • the output terminal of is coupled to the ground terminal, so that when the first discharge switch unit T21 is turned on, the first terminal A of the compensation capacitor unit C is discharged to the threshold voltage Vth of the first discharge switch unit T21. Therefore, it can be understood that this The first set threshold in the embodiment is Vth, which will not be explained too much here.
  • the first discharge module 1 includes: a first discharge switch unit T21, the control terminal of the first discharge switch unit T21 is coupled to the first scan line S1, and the input The terminal is coupled between the first terminal A of the compensation capacitor unit C and the control terminal of the first switching unit T11, and the output terminal is coupled to a ground terminal.
  • the input terminal of the first discharge switch unit T21 is coupled between the first terminal A of the compensation capacitor unit C and the control terminal of the first switch unit T11, so that the first discharge switch unit T21 is not connected to the driving voltage.
  • the terminal Vdd is coupled.
  • the first discharge module 1 may include multiple discharge switch units.
  • the first discharge module 1 may also include a second discharge switch unit T22, and the control end of the second discharge switch unit T22 is coupled to the scan line.
  • the input terminal and the output terminal are coupled between the first switch unit T11 element and the ground terminal, that is, the first discharge switch unit T21 and the second discharge switch unit T22 are arranged in series.
  • the first discharge switch unit T21 and the second discharge switch unit T22 are controlled by a scan line, they can be turned on and off at the same time. When both are turned on at the same time, the first terminal A of the compensation capacitor unit C is Discharge to the sum of the threshold voltages of the first discharge switch unit T21 and the second discharge switch unit T22.
  • the threshold voltages of the first discharge switch unit T21 and the second discharge switch unit T22 are the same, that is, at this time, the first terminal A of the compensation capacitor unit C is discharged to 2Vth.
  • the second discharge module 2 includes: a third discharge switch unit T23, the control terminal of the third discharge switch unit T23 is coupled to the second scan line S2, and the input terminal is coupled to Between the second terminal B of the compensation capacitor unit C and the data voltage terminal Vdata.
  • the third discharge switch unit T23 has the same principle as the first discharge switch unit T21 or the second discharge switch unit T22. It is controlled to be turned on through a scan line. When turned on, due to the input terminal coupling It is connected between the second terminal B of the compensation capacitor unit C and the data voltage terminal Vdata, so that the voltage of the second terminal B of the compensation capacitor unit C can be reduced to Vth.
  • the voltage of the second terminal B of the compensation capacitor unit C drops to Vth.
  • the first discharge module is disconnected from the first terminal A of the compensation capacitor unit C. Due to the change of the capacitor voltage The voltage difference will not change suddenly. Therefore, when the voltage of the second terminal B of the compensation capacitor unit C drops to Vth, the original voltage of the first terminal A is Vth and the voltage of the second terminal B is Vdata. The drop formed by the second terminal B The difference is: Vdata-Vth.
  • the voltage of the first terminal A jumps from Vth to Vdata, thereby turning on the first switch unit T11 through Vdata, so that the driving voltage terminal Vdd drives the light-emitting device to emit light.
  • the first discharge module of the present application includes two discharge switch units (the above-mentioned first discharge switch unit T21 and the second discharge switch Unit T22), in this embodiment, in the above-mentioned second stage, the voltage of the second terminal B of the compensation capacitor unit C drops to Vth, and at this time, the first discharge module is disconnected from the first terminal A of the compensation capacitor unit C, Since the voltage difference of the capacitor voltage will not change suddenly, when the voltage of the second terminal B of the compensation capacitor unit C drops to Vth, the original voltage of the first terminal A is 2Vth, the voltage of the second terminal B is Vdata, and the voltage of the second terminal B is Vdata.
  • the drop difference formed by B is: Vdata-Vth.
  • the voltage of the first terminal A jumps from 2Vth to Vdata+Vth, thereby turning on the first switching unit T11 through Vdata+Vth, so that the driving voltage terminal Vdd drives the light-emitting device to emit light. .
  • a second switch unit T12 can be configured between the drive voltage terminal Vdd and the compensation capacitor unit C.
  • the second switch unit T12 controls whether the drive voltage continues to be coupled to the first terminal of the compensation capacitor unit C. terminal A, and the first switch unit T11 can be turned off by controlling the second switch unit T12 to be turned on, thereby preventing the pixel light-emitting unit from emitting light when the first switch unit T11 is turned on when it is not necessary to emit light.
  • the control terminal of the first discharge switch unit T21 is coupled to the first scan line S1
  • the input terminal is coupled to the driving voltage terminal Vdd
  • the output terminal is coupled to is connected to a ground terminal, so that during discharge, the first discharge switch unit T21 and the second switch unit T12 of this embodiment together form a "discharge module".
  • the second terminal of the compensation capacitor unit C The voltage of B drops to Vth.
  • the first discharge module is disconnected from the first terminal A of the compensation capacitor unit C.
  • the voltage difference of the capacitor voltage will not change suddenly, when the voltage drop of the second terminal B of the compensation capacitor unit C After reaching Vth, the original voltage of the first terminal A is 2Vth, the voltage of the second terminal B is Vdata, and the drop difference formed by the second terminal B is: Vdata-Vth.
  • the voltage of the first terminal A changes from 2Vth (first The threshold voltage Vth of the discharge switch unit T21 + the threshold voltage Vth of the second switch unit T12 jumps to Vdata + Vth, thereby turning on the first switch unit T11 through Vdata + Vth, so that the driving voltage terminal Vdd drives the light-emitting device to emit light.
  • the pixel driving circuit further includes: a third switch unit, the control terminal of the third switch unit is coupled to the fourth scan line S4, the input terminal is coupled to the data voltage terminal Vdata, and the output terminal is coupled to the data voltage terminal Vdata.
  • the terminal is coupled to the second terminal B of the compensation capacitor unit C.
  • the third switch unit controls the voltage written at the second terminal B of the compensation capacitor unit C, so that the voltage at the second terminal B of the compensation capacitor unit C can be switched to Vdata or reduced to Vth.
  • the pixel driving circuit further includes: a diode element D1, the cathode of the diode element D1 is coupled to the power supply of the driving voltage, and the anode serves as the driving voltage terminal Vdd.
  • the diode element D1 of this embodiment can avoid the voltage reversal and current backflow of the second switching unit T12 and the first discharge switching unit T21 in the above embodiment.
  • the output terminals of the first switch unit T11, the first discharge switch unit T21 and the third discharge switch unit T23 of the present application are all coupled to the ground terminal.
  • the ground terminal of the present application Located at the display screen of the display device, when interference occurs, the above components are affected by the same interference, so no external power supply is required. Compared with other drive compensation circuits, it can reduce one voltage and one control unit, saving energy consumption and costs.
  • the first switching unit T11 is directly connected to the pixel light-emitting element OLED, so there is no other loss, which can greatly reduce the driving loss.
  • the first switching unit T11 of the present application is directly connected to the driving voltage terminal Vdd, which can ensure the current Input is stable.
  • the current of the panel may flow back to the driving voltage terminal Vdd, thereby affecting the stability of the current provided by the driving voltage terminal Vdd.
  • the diode of the present application Component D1 can prevent the large current from the panel from flowing back to the driving voltage terminal Vdd.
  • Coupled in this application may be a direct or indirect electrical connection. For example, if A and B are coupled, A and B may be directly electrically connected, or A and B may be electrically connected through C. , this application does not limit this.
  • all switch units in the present application are thin film transistors in the OLED display device, and will not be described in detail here.
  • all thin film transistors are formed through the same process, so that the threshold voltage of each thin film transistor can be regarded as Vth, and the threshold voltage error between each other is small and can be ignored.
  • the further known current formula of the organic light-emitting diode OLED is:
  • I 1/2Cox( ⁇ W/L)(Vgs-Vth) 2 .
  • I is the current of the organic light-emitting diode OLED
  • is the carrier mobility of the driving thin film transistor
  • W and L are the width and length of the channel of the driving thin film transistor respectively
  • Vgs is the gap between the gate and source of the driving thin film transistor.
  • the voltage and Vth are the threshold voltages of driving thin film transistors.
  • Voled is the OLED anode voltage when the pixel emits light
  • Ioled is the current of the OLED. It can be seen from this formula that the current through the light-emitting pixel is only related to Vdata and Voled, and is related to the first switching unit T11 element and the second switching unit T12 element. are irrelevant. Therefore, the current I flowing through the organic light-emitting diode OLED has nothing to do with the threshold voltage Vth of the first switching unit T11 and the second switching unit T12, the threshold voltage Vth_OLED of the organic light-emitting diode OLED, and the negative power supply voltage VSS.
  • the compensation function is realized, which can effectively compensate the threshold voltage changes of the first switching unit T11 and the organic light-emitting diode OLED, so that the display brightness of the AMOLED is more uniform and the display quality is improved.
  • this application discharges the compensation capacitor unit C at different stages through two discharge modules, thereby providing a discharge channel for the compensation capacitor unit C at each stage, which can eliminate parasitic charges in the circuit.
  • This application can On the premise of pixel drive compensation, the parasitic charges generated during the operation of the entire circuit are effectively eliminated, thereby avoiding the impact of parasitic charges on OLED driving.
  • a display device 20 in an embodiment of the present application includes a display panel and a pixel driving circuit 22 as in Embodiment 1.
  • the display panel includes a plurality of pixel units, and each pixel unit includes a plurality of light emitting units.
  • Device 23 each light-emitting device is coupled to the output end of the first switching unit T11 of the pixel driving circuit in Embodiment 1 of the present application through a wire 21 .
  • the display device provided by the embodiments of the present application can be a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, or any other product or component with a display function.
  • the display device in this application discharges the compensation capacitor unit C at different stages through two discharge modules, thereby providing a discharge channel for the compensation capacitor unit C at each stage, which can eliminate parasitic charges in the circuit.
  • the application can effectively eliminate the parasitic charges generated during the operation of the entire circuit on the premise of being able to perform pixel drive compensation, thereby avoiding the impact of parasitic charges on OLED driving.
  • An embodiment of the present application further provides a driving method for a display device.
  • the driving method is performed using the pixel driving circuit in the above-mentioned Embodiment 1, and specifically includes:
  • S4 Turn off the second discharge module, and control the first switch unit T11 to be turned on through the target voltage of the first terminal A of the compensation capacitor unit C, so as to drive the light-emitting device to emit light through the driving voltage.
  • Figure 3 is a timing diagram corresponding to the embodiment of Figure 2. As shown in Figure 3, the entire process is divided into four intervals:
  • Stage 1 Turn on the third switch unit and the second switch unit T12, turn off the third discharge switch unit T23, the first discharge switch unit T21 and the first switch unit T11. At this time, the second terminal B of the compensation capacitor unit C is charged. to Vdata, the first terminal A is charged to Vdd.
  • Stage 2 (corresponding to the first stage in Embodiment 1): open the second switch unit T12 and the first discharge switch unit T21, and close the third switch unit, the third discharge switch unit T23 and the first switch unit T11.
  • Stage 2 open the second switch unit T12 and the first discharge switch unit T21, and close the third switch unit, the third discharge switch unit T23 and the first switch unit T11.
  • Stage 3 (corresponding to the second stage in Embodiment 1): The third discharge switch unit T23 is turned on, and the third switch unit, the second switch unit T12, the first discharge switch unit T21 and the first switch unit T11 are turned off.
  • the voltage of the second terminal B of the compensation capacitor unit C jumps from Vdata to Vth, and at the same time, the voltage of the first terminal A of the compensation capacitor unit C jumps from Vdata to Vdata+Vth.
  • Stage 4 Turn off the third switch unit, the third discharge switch unit T23, the second switch unit T12 and the first discharge switch unit T21. Since the voltage at the first terminal A of the compensation capacitor unit C is Vdata+Vth greater than Vth, the first The switch unit T11 is turned on, and the input terminal of the first switch unit T11 is coupled to the driving voltage terminal Vdd, so that the pixel light-emitting element OLED passes current and emits light.
  • Figure 4 is a timing diagram corresponding to the embodiment of Figure 2. As shown in Figure 4, the entire process is divided into four intervals:
  • Stage 1 Turn on the third switch unit and the second switch unit T12, turn off the third discharge switch unit T23, the first discharge switch unit T21, the first switch unit T11 and the second discharge switch unit T22. At this time, the compensation capacitor unit The second terminal B of C is charged to Vdata, and the first terminal A is charged to Vdd.
  • Stage 2 (corresponding to the first stage in Embodiment 1): open the second discharge switch unit T22 and the first discharge switch unit T21, close the third switch unit, the third discharge switch unit T23 and the first switch unit T11, At this time, the first terminal A of the compensation capacitor unit C is discharged to 2Vth.
  • Stage 3 (corresponding to the second stage in Embodiment 1): open the third discharge switch unit T23, the third switch unit, the second switch unit T12, the first discharge switch unit T21, the second discharge switch unit T22 and the first The switch unit T11 is turned off. At this time, the voltage of the second terminal B of the compensation capacitor unit C jumps from Vdata to Vth, and at the same time, the voltage of the first terminal A of the compensation capacitor unit C jumps from Vdata to Vdata+Vth.
  • Stage 4 Turn off the third switch unit, the third discharge switch unit T23, the second switch unit T12, the second discharge switch unit T22 and the first discharge switch unit T21. Since the voltage of the first terminal A of the compensation capacitor unit C is Vdata +Vth is greater than Vth, the first switch unit T11 is turned on, and the input terminal of the first switch unit T11 is coupled to the driving voltage terminal Vdd, so that the pixel light-emitting element OLED passes current and emits light.
  • the driving method provided by the embodiment of the present application when driving the light-emitting diode OLED, the current through the light-emitting diode OLED has nothing to do with the negative electrode of the power supply and the threshold voltage of each thin film transistor, thereby making the display uniform.
  • this application uses the timing control of the above circuit to discharge the compensation capacitor unit C at different stages through two discharge modules, thereby providing a discharge channel for the compensation capacitor unit C at each stage, which can eliminate parasitic charges in the circuit.
  • this application effectively eliminates the parasitic charges generated during the operation of the entire circuit on the premise of being able to perform pixel driving compensation, thereby avoiding the impact of parasitic charges on the driving of the organic luminescent device.
  • the driving circuit embodiments, the display device embodiments and the driving method and debugging method embodiments provided in the embodiments of the present application can all be referenced to each other, and the embodiments of the present application do not limit this.
  • the steps of the display panel manufacturing method embodiments provided in the embodiments of the present application can be increased or decreased accordingly according to the situation. Any person familiar with the technical field can easily think of changing methods within the technical scope disclosed in the present application, and all methods should be covered. It is within the protection scope of this application and therefore will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

提供一种像素驱动电路、驱动方法及显示装置,可以使经由有机发光二极管的电流与电源负极以及各薄膜晶体管的阈值电压无关,从而使显示均一化;此外通过两个放电模块在不同阶段对补偿电容单元(C)进行放电,进而在各个阶段均为补偿电容单元(C)提供了泄放通道,可以消除电路中的寄生电荷,能够在进行像素驱动补偿的前提下,高效地消除整个电路在运行过程中产生的寄生电荷,从而避免了寄生电荷对有机电致发光器件驱动的影响。

Description

像素驱动电路、驱动方法及显示装置
相关申请的交叉引用
本申请要求2021年04月27日提交的中国专利申请202210453420.X的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及显示技术领域,特别是涉及一种像素驱动电路、驱动方法及显示装置。
背景技术
随着液晶显示领域的发展,有机发光显示器(Organic Light Emitting Display,OLED)显示技术的自主发光、轻薄等优势逐渐在TV、手机以及笔电等产品中得到了很大的应用,由于OLED属于电流驱动,当薄膜晶体管(Thin Film Transistor,TFT)的阈值电压Vth发生偏移的时候,OLED的电流驱动将不会稳定,发生变化,进而造成亮度不均,目前通过驱动补偿电路来进行电流补偿,但存在无法消除电路寄生电荷的问题。
发明内容
本申请是提供一种像素驱动电路、驱动方法及显示装置。
本申请第一方面实施例提供一种像素驱动电路,包括:
补偿电容单元,所述补偿电容单元的第一端耦接驱动电压端,第二端耦接数据电压端;
第一开关单元,所述第一开关单元的控制端耦接所述补偿电容单元的第一端,输入端耦接驱动电压端,输出端耦接一发光器件;
第一放电模块,在第一阶段将所述补偿电容单元第一端写入的驱动电压降低至第一设定阈值;以及
第二放电模块,在第二阶段将所述补偿电容单元第二端写入的数据电压降低至第二设定阈值;其中在所述第二阶段,所述第一放电模块与所述补偿电容单元的第一端断开,以使所述补偿电容单元的第一端电压跳变至目标电压,所述目标电压大于所述第一开关单元的阈值电压。
本申请第二方面实施例提供一种应用于上述像素驱动电路的驱动方法,包括:
向补偿电容单元的第一端写入驱动电压,第二端写入数据电压;
在第一阶段,将所述补偿电容单元第一端写入的驱动电压降低至第一设定阈值;
在第二阶段将所述补偿电容单元第二端写入的数据电压降低至第二设定阈值,并断开第一放电模块与所述补偿电容单元的第一端,以使所述补偿电容单元的第一端电压跳变至目标电压,所述目标电压大于第一开关单元的阈值电压;
断开第二放电模块,通过所述补偿电容单元第一端的目标电压控制所述第一开关单元导通,以通过所述驱动电压驱动发光器件发光。
本申请第三方面实施例提供一种显示装置,包括显示面板以及如上所述的像素驱动电路,所述显示面板包括多个像素单元,每个所述像素单元包括多个发光器件。
由上述技术方案可知,本申请提供的一种像素驱动电路、驱动方法及显示装置,可以将经由OLED二极管的电流与电源负极以及各薄膜晶体管的阈值电压无关,从而可以使得显示均一化;此外通过两个放电模块在不同阶段对补偿电容单元进行放电,进而在各个阶段均为补偿电容单元提供了泄放通道,可以消除电路中的寄生电荷,本申请在能够进行像素驱动补偿的前提下,高效地消除整个电路在运行过程中产生的寄生电荷,从而避免了寄生电荷对有机致发光器件驱动的影响。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图 是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例中像素驱动电路的结构示意图之一。
图2是本申请实施例中像素驱动电路的结构示意图之二。
图3是图1对应的时序控制示意图。
图4是图2对应的时序控制示意图。
图5是本申请实施例中一种显示装置的结构示意图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。需要说明的是,本申请公开的像素驱动电路、驱动方法及显示装置可用于显示技术领域,也可用于除显示技术领域之外的任意领域,本申请公开的像素驱动电路、驱动方法及显示装置的应用领域不做限定。
实施例1
图1是本申请实施例提供的一种像素驱动电路的结构示意图,如图1所示,其具体包括:补偿电容单元C,所述补偿电容单元C的第一端A耦接驱动电压端Vdd,第二端B耦接数据电压端Vdata;第一开关单元T11,所述第一开关单元T11的控制端耦接所述补偿电容单元C的第一端A,输入端耦接驱动电压端Vdd,输出端耦接一发光器件;第一放电模块1,在第一阶段将所述补偿电容单元C第一端A写入的驱动电压降低至第一设定阈值;以及第二放电模块2,在第二阶段将所述补偿电 容单元C第二端B写入的数据电压降低至第二设定阈值;其中在所述第二阶段,所述第一放电模块与所述补偿电容单元C的第一端A断开,以使所述补偿电容单元C的第一端A电压跳变至目标电压,所述目标电压大于所述第一开关单元T11的阈值电压。
可以理解,本申请中,第一设定阈值和第二设定阈值均可以基于需求采用不同电路结构进行配置。
可以理解,寄生电荷存在于整个电路中,并且无法被准确检测。
示例性的,当需要使得补偿电容单元C的第一端A写入的驱动电压降低到n个薄膜晶体管的阈值电压之和时,则将第一放电模块配置为n个薄膜晶体管串联并接入到一接地端,从而可以利用分压原理,使得补偿电容单元C的第一端A电压降低到n个薄膜晶体管的阈值电压之和。
可以理解,本申请也可以利用其他方式将补偿电容单元C的第一端A写入的驱动电压降低到第一设定阈值,例如在接地端与补偿电容单元C第一端A之间接入一个分压电阻,进而通过电阻的大小来调节补偿电容单元C第一端A的电压。
在一实施例中,如图1所示,所述第一放电模块包括:第一放电开关单元T21,所述第一放电开关单元T21的控制端耦接第一扫描线S1,输入端耦接所述驱动电压端Vdd,输出端耦接一接地端。本实施例中,将第一放电开关单元T21通过第一扫描线S1控制导通,当第一放电开关单元T21导通时,第一放电开关单元T21与驱动电压端Vdd耦接,而补偿电容单元C的第一端A与驱动电压端Vdd耦接,进而补偿电容单元C的第一端A与第一放电开关单元T21同时耦接在驱动电压端Vdd上,从而补偿电容单元C的第一端A与第一放电开关单元T21也处于“耦接“状态,此时补偿电容单元C第一端A可以通过第一放电开关单元T21进行放电,而补偿电容单元C由于第一放电开关单元T21的输出端耦接接地端,从而可以当第一放电开关单元T21导通时,补偿电容单元C的第一端A放电至第一放电开关单元T21的阈值电压Vth,因此可以理解的是,本实施例中的第一设定阈值为Vth,在此不做过多释义。
在本方面其他实施例中,如图2所示,所述第一放电模块1包括: 第一放电开关单元T21,所述第一放电开关单元T21的控制端耦接第一扫描线S1,输入端耦接在所述补偿电容单元C的第一端A与所述第一开关单元T11的控制端之间,输出端耦接一接地端。该实施例中,第一放电开关单元T21的输入端耦接在补偿电容单元C的第一端A与第一开关单元T11的控制端之间,从而第一放电开关单元T21并不与驱动电压端Vdd耦接,当第一放电开关单元T21导通时,补偿电容单元C的第一端A放电至第一放电开关单元T21的阈值电压Vth。
进一步的,第一放电模块1可以包括多个放电开关单元,示例性的,第一放电模块1还包括第二放电开关单元T22,并且第二放电开关单元T22的控制端与所述扫描线耦接,输入端和输出端耦接在所述第一开关单元T11元件与所述接地端之间,也即第一放电开关单元T21与第二放电开关单元T22串联设置,本实施例中,可以知晓,由于第一放电开关单元T21和第二放电开关单元T22通过一个扫描线控制,两者可以同时导通和关闭,当两者同时导通时,此时补偿电容单元C的第一端A放电至第一放电开关单元T21和第二放电开关单元T22阈值电压之和。
示例性的,某些实施例中,第一放电开关单元T21和第二放电开关单元T22的阈值电压相同,即此时补偿电容单元C的第一端A放电至2Vth。
进一步的,在某些实施例中,所述第二放电模块2包括:第三放电开关单元T23,所述第三放电开关单元T23的控制端耦接第二扫描线S2,输入端耦接在所述补偿电容单元C第二端B与数据电压端Vdata之间。
如图1或图2所示,第三放电开关单元T23与第一放电开关单元T21或第二放电开关单元T22的原理相同,其通过一扫描线控制导通,导通时,由于输入端耦接在补偿电容单元C第二端B和数据电压端Vdata之间,因此可以使得补偿电容单元C第二端B的电压降至Vth。
需要说明的是,在上述的第二阶段,补偿电容单元C的第二端B的电压降至Vth,此时第一放电模块与补偿电容单元C的第一端A断开,由于电容电压的压差不会突变,因此当补偿电容单元C的第二端B的电压降至Vth之后,原本第一端A的电压为Vth,第二端B的电压为Vdata, 第二端B形成的下降差为:Vdata-Vth,此时第一端A的电压从Vth跳变到Vdata,从而通过Vdata导通第一开关单元T11,从而使得驱动电压端Vdd驱动发光器件发光。
此外,在一实施例中,为了避免Vdata可能小于第一开关单元T11阈值电压的情况,本申请的第一放电模块包括两个放电开关单元(上述的第一放电开关单元T21和第二放电开关单元T22),该实施例中,在上述的第二阶段,补偿电容单元C的第二端B的电压降至Vth,此时第一放电模块与补偿电容单元C的第一端A断开,由于电容电压的压差不会突变,因此当补偿电容单元C的第二端B的电压降至Vth之后,原本第一端A的电压为2Vth,第二端B的电压为Vdata,第二端B形成的下降差为:Vdata-Vth,此时第一端A的电压从2Vth跳变到Vdata+Vth,从而通过Vdata+Vth导通第一开关单元T11,使得驱动电压端Vdd驱动发光器件发光。
进一步的,在上述实施例中,可以在驱动电压端Vdd与补偿电容单元C之间配置一第二开关单元T12,通过第二开关单元T12控制驱动电压是否持续耦接补偿电容单元C的第一端A,以及可以通过控制第二开关单元T12打开时,将第一开关单元T11关闭,从而避免在不需要发光时,像素发光单元在第一开关单元T11打开时发光。
该实施例中,结合上述第一放电开关单元T21的实施例,所述第一放电开关单元T21的控制端耦接第一扫描线S1,输入端耦接所述驱动电压端Vdd,输出端耦接一接地端,从而在放电时,第一放电开关单元T21和本实施例的第二开关单元T12共同构成“放电模块”,此时在上述的第二阶段,补偿电容单元C的第二端B的电压降至Vth,此时第一放电模块与补偿电容单元C的第一端A断开,由于电容电压的压差不会突变,因此当补偿电容单元C的第二端B的电压降至Vth之后,原本第一端A的电压为2Vth,第二端B的电压为Vdata,第二端B形成的下降差为:Vdata-Vth,此时第一端A的电压从2Vth(第一放电开关单元T21的阈值电压Vth+第二开关单元T12的阈值电压Vth)跳变到Vdata+Vth,从而通过Vdata+Vth导通第一开关单元T11,使得驱动电压端Vdd驱动发 光器件发光。
进一步的,在本申请实施例中,所述像素驱动电路还包括:第三开关单元,所述第三开关单元的控制端耦接第四扫描线S4,输入端耦接数据电压端Vdata,输出端耦接所述补偿电容单元C的第二端B。本实施例中,通过第三开关单元控制补偿电容单元C第二端B写入的电压,从而可以切换补偿电容单元C第二端B的电压为Vdata或者降低至Vth。
此外,本申请实施例,所述像素驱动电路还包括:二极管元件D1,所述二极管元件D1的负极耦接所述驱动电压的电源,正极作为所述驱动电压端Vdd。本实施例的二极管元件D1可以避免上述实施例中的第二开关单元T12和第一放电开关单元T21的电压反向以及电流回流。
此外,在上述实施例中,本申请的第一开关单元T11、第一放电开关单元T21以及第三放电开关单元T23的输出端均耦接接地端,在一实施例中,本申请的接地端位于显示装置的显示屏处,当发生地受干扰时,上述元件受到的干扰相同,从而不需要***供电,相比其他驱动补偿电路能减少一个电压和一个控制单元,节省能耗和成本。
本申请实施例中,第一开关单元T11与像素发光元件OLED直接连接,因此不存在其他损耗,可以大大降低驱动损耗,此外本申请第一开关单元T11与驱动电压端Vdd直连,可以保证电流输入稳定。
进一步的,在本申请实施例中,高温下,由于面板的漏电流增加,可能会发生面板的电流回灌至驱动电压端Vdd,进而影响驱动电压端Vdd提供的电流稳定性,本申请的二极管元件D1可以防止面板端的大电流倒灌回来至驱动电压端Vdd。
本领域普通技术人员明了,本申请的“耦接”可以是直接或间接的电连接,例如A与B耦接,则可以是A与B直接电连接,也可以是A与B通过C电连接,本申请对此不做限制。
此外可以理解的是,本申请的所有开关单元在OLED显示装置中均为薄膜晶体管,本申请在此不做赘述。并且本申请的实施例中,所有薄膜晶体管均通过相同工艺制作形成,这样每个薄膜晶体管的阈值电压均可视为Vth,彼此之间的阈值电压误差较小,可以忽略不计。
进一步已知的经有机发光二极管OLED的电流公式为:
I=1/2Cox(μW/L)(Vgs-Vth) 2
I为有机发光二极管OLED的电流、μ为驱动薄膜晶体管的载流子迁移率、W和L分别为驱动薄膜晶体管的沟道的宽度和长度、Vgs为驱动薄膜晶体管的栅极与源极之间的电压、Vth为驱动薄膜晶体管的阈值电压,本申请定义1/2Cox(μW/L)为K,即K为薄膜晶体管结构参数。则像素点工作电流:
Ioled=K(VGS-Vth) 2
=K(Vth+Vdata-Voled-Vth) 2
=K(Vdata-Voled) 2
Voled为像素发光时的OLED阳极电压,Ioled为OLED的电流,从该公式中可以看出,经由发光像素的电流仅与Vdata和Voled相关,与第一开关单元T11元件、第二开关单元T12元件均无关,因此流经所述有机发光二极管OLED的电流I与所述第一开关单元T11、第二开关单元T12的阈值电压Vth、有机发光二极管OLED的阈值电压Vth_OLED、及电源负电压VSS无关,实现了补偿功能,能够有效补偿第一开关单元T11及有机发光二级管OLED的阈值电压变化,使AMOLED的显示亮度较均匀,提升显示品质。
可以看出,本申请通过两个放电模块在不同阶段对补偿电容单元C进行放电,进而在各个阶段均为补偿电容单元C提供了泄放通道,可以消除电路中的寄生电荷,本申请在能够进行像素驱动补偿的前提下,高效地消除整个电路在运行过程中产生的寄生电荷,从而避免了寄生电荷对OLED驱动的影响。
实施例2
如图5所示,本申请实施例中一种显示装置20,包括显示面板以及如实施例1中的像素驱动电路22,所述显示面板包括多个像素单元,每个像素单元包括多个发光器件23,每个发光器件与本申请实施例1中的像素驱动电路的第一开关单元T11的输出端通过导线21耦接。
在具体实施时,本申请实施例提供的显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解,本申请中的显示装置通过两个放电模块在不同阶段对补偿电容单元C进行放电,进而在各个阶段均为补偿电容单元C提供了泄放通道,可以消除电路中的寄生电荷,本申请在能够进行像素驱动补偿的前提下,高效地消除整个电路在运行过程中产生的寄生电荷,从而避免了寄生电荷对OLED驱动的影响。
实施例3
本申请实施例进一步提供一种显示装置的驱动方法,该驱动方法利用上述实施例1中的像素驱动电路进行,其具体包括:
S1:向所述补偿电容单元C的第一端A写入驱动电压,第二端B写入数据电压;
S2:在第一阶段,将所述补偿电容单元C第一端A写入的驱动电压降低至第一设定阈值;
S3:在第二阶段将所述补偿电容单元C第二端B写入的数据电压降低至第二设定阈值,并断开所述第一放电模块与所述补偿电容单元C的第一端A,以使所述补偿电容单元C的第一端A电压跳变至目标电压,所述目标电压大于所述第一开关单元T11的阈值电压;
S4:断开第二放电模块,通过所述补偿电容单元C第一端A的目标电压控制所述第一开关单元T11导通,以通过所述驱动电压驱动所述发光器件发光。
下面结合图1和图2的实施例对本申请上述步骤进行详细说明。
图3为图2实施例对应的时序图,如图3所示,整个过程分为四个区间:
阶段1:将第三开关单元和第二开关单元T12打开,将第三放电开关单元T23、第一放电开关单元T21以及第一开关单元T11关闭,此时补偿电容单元C的第二端B充电至Vdata,第一端A充电至Vdd。
阶段2(对应实施例1中的第一阶段):将第二开关单元T12和第一放电开关单元T21打开,将第三开关单元、第三放电开关单元T23以及第一开关单元T11关闭,此时补偿电容单元C的第一端A放电至2Vth。
阶段3(对应实施例1中的第二阶段):将第三放电开关单元T23打开,第三开关单元、第二开关单元T12、第一放电开关单元T21以及第一开关单元T11关闭,此时补偿电容单元C的第二端B的电压从Vdata跳变至Vth,同时补偿电容单元C的第一端A的电压从Vdata跳变到Vdata+Vth。
阶段4:将第三开关单元、第三放电开关单元T23、第二开关单元T12以及第一放电开关单元T21关闭,由于补偿电容单元C第一端A的电压为Vdata+Vth大于Vth,第一开关单元T11打开,第一开关单元T11的输入端耦接驱动电压端Vdd,从而使得像素发光元件OLED通入电流而发光。
图4为图2实施例对应的时序图,如图4所示,整个过程分为四个区间:
阶段1:将第三开关单元和第二开关单元T12打开,将第三放电开关单元T23、第一放电开关单元T21以及第一开关单元T11以及第二放电开关单元T22关闭,此时补偿电容单元C的第二端B充电至Vdata,第一端A充电至Vdd。
阶段2(对应实施例1中的第一阶段):将第二放电开关单元T22和第一放电开关单元T21打开,将第三开关单元、第三放电开关单元T23以及第一开关单元T11关闭,此时补偿电容单元C的第一端A放电至2Vth。
阶段3(对应实施例1中的第二阶段):将第三放电开关单元T23打开,第三开关单元、第二开关单元T12、第一放电开关单元T21、第二放电开关单元T22以及第一开关单元T11关闭,此时补偿电容单元C的第二端B的电压从Vdata跳变至Vth,同时补偿电容单元C的第一端A的电压从Vdata跳变到Vdata+Vth。
阶段4:将第三开关单元、第三放电开关单元T23、第二开关单元T12、第二放电开关单元T22以及第一放电开关单元T21关闭,由于补偿电容单元C第一端A的电压为Vdata+Vth大于Vth,第一开关单元T11打开,第一开关单元T11的输入端耦接驱动电压端Vdd,从而使得像素发光元件OLED通入电流而发光。
从上述方案可以看出,本申请实施例提供的驱动方法,在进行发光二极管OLED驱动时,其经由发光二极管OLED的电流与电源负极以及各薄膜晶体管的阈值电压无关,从而可以使得显示均一化,此外,本申请通过上述电路的时序控制,通过两个放电模块在不同阶段对补偿电容单元C进行放电,进而在各个阶段均为补偿电容单元C提供了泄放通道,可以消除电路中的寄生电荷,本申请在能够进行像素驱动补偿的前提下,高效地消除整个电路在运行过程中产生的寄生电荷,从而避免了寄生电荷对有机致发光器件驱动的影响。
需要说明的是,本申请实施例提供的驱动电路实施例、显示装置实施例和其驱动方法和调试方法实施例均可以相互参考,本申请实施例对此不做限定。本申请实施例提供的显示面板的制造方法实施例的步骤能够根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
以上所述仅为本申请的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种像素驱动电路,其中,包括:
    补偿电容单元,所述补偿电容单元的第一端耦接驱动电压端,第二端耦接数据电压端;
    第一开关单元,所述第一开关单元的控制端耦接所述补偿电容单元的第一端,输入端耦接驱动电压端,输出端耦接一发光器件;
    第一放电模块,在第一阶段将所述补偿电容单元第一端写入的驱动电压降低至第一设定阈值;以及
    第二放电模块,在第二阶段将所述补偿电容单元第二端写入的数据电压降低至第二设定阈值;
    其中,在所述第二阶段,所述第一放电模块与所述补偿电容单元的第一端断开,以使所述补偿电容单元的第一端电压跳变至目标电压,所述目标电压大于所述第一开关单元的阈值电压。
  2. 根据权利要求1所述的像素驱动电路,其中,所述第一放电模块包括:第一放电开关单元,所述第一放电开关单元的控制端耦接第一扫描线,输入端耦接所述驱动电压端,输出端耦接一接地端。
  3. 根据权利要求1所述的像素驱动电路,其中,所述第一放电模块包括:第一放电开关单元,所述第一放电开关单元的控制端耦接第一扫描线,输入端耦接在所述补偿电容单元的第一端与所述第一开关单元的控制端之间,输出端耦接一接地端。
  4. 根据权利要求3所述的像素驱动电路,其中,所述第一放电模块还包括:第二放电开关单元,所述第二放电开关单元的控制端与所述第一扫描线耦接,输入端和输出端耦接在所述第一开关单元与所述接地端之间。
  5. 根据权利要求1所述的像素驱动电路,其中,所述第二放电模块包括:
    第三放电开关单元,所述第三放电开关单元的控制端耦接第二扫描线,输入端耦接在所述补偿电容单元的第二端与数据电压端之间。
  6. 根据权利要求1所述的像素驱动电路,其中,所述像素驱动电路还包括:
    第二开关单元,所述第二开关单元的控制端耦接第三扫描线,输入端耦接所述驱动电压端,输出端耦接在所述补偿电容单元的第一端与第一开关单元的 控制端之间。
  7. 根据权利要求1所述的像素驱动电路,其中,所述像素驱动电路还包括:
    第三开关单元,所述第三开关单元的控制端耦接第四扫描线,输入端耦接数据电压端,输出端耦接所述补偿电容单元的第二端。
  8. 根据权利要求1所述的像素驱动电路,其中,所述像素驱动电路还包括:二极管元件,所述二极管元件的负极耦接所述驱动电压的电源,正极作为所述驱动电压端。
  9. 一种像素驱动方法,应用于像素驱动电路,其中,包括:
    向补偿电容单元的第一端写入驱动电压,第二端写入数据电压;
    在第一阶段,将所述补偿电容单元第一端写入的驱动电压降低至第一设定阈值;
    在第二阶段将所述补偿电容单元第二端写入的数据电压降低至第二设定阈值,并断开第一放电模块与所述补偿电容单元的第一端,以使所述补偿电容单元的第一端电压跳变至目标电压,所述目标电压大于第一开关单元的阈值电压;
    断开第二放电模块,通过所述补偿电容单元第一端的目标电压控制所述第一开关单元导通,以通过所述驱动电压驱动发光器件发光。
  10. 根据权利要求9所述的像素驱动方法,其中,所述向补偿电容单元的第一端写入驱动电压,第二端写入数据电压,包括:
    将第三开关单元和第二开关单元打开,将第三放电开关单元、第一放电开关单元以及第一开关单元关闭,所述补偿电容单元的第二端充电至所述数据电压,第一端充电至所述驱动电压。
  11. 根据权利要求10所述的像素驱动方法,其中,所述在第一阶段,将所述补偿电容单元第一端写入的驱动电压降低至第一设定阈值,包括:
    将所述第二开关单元和所述第一放电开关单元打开,将所述第三开关单元、所述第三放电开关单元以及所述第一开关单元关闭,补偿电容单元的第一端放电至所述第一设定阈值。
  12. 根据权利要求11所述的像素驱动方法,其中,所述在第二阶段将所述补偿电容单元第二端写入的数据电压降低至第二设定阈值,并断开第一放电模块与所述补偿电容单元的第一端,以使所述补偿电容单元的第一端电压跳变至目标电压,所述目标电压大于第一开关单元的阈值电压,包括:
    将所述第三放电开关单元打开,所述第三开关单元、所述第二开关单元、所述第一放电开关单元以及所述第一开关单元关闭,所述补偿电容单元的第二端的电压从所述数据电压跳变至所述第二设定阈值,同时所述补偿电容单元的第一端的电压从所述数据电压跳变到所述目标电压,所述目标电压为所述数据电压和所述第二设定阈值之和。
  13. 根据权利要求12所述的像素驱动方法,其中,所述断开第二放电模块,通过所述补偿电容单元第一端的目标电压控制所述第一开关单元导通,以通过所述驱动电压驱动发光器件发光,包括:
    将所述第三开关单元、所述第三放电开关单元、所述第二开关单元以及所述第一放电开关单元关闭,所述补偿电容单元第一端的电压为所述目标电压且大于所述第二设定阈值,所述第一开关单元打开,所述第一开关单元的输入端耦接驱动电压端,以使所述发光器件通入电流而发光。
  14. 根据权利要求9所述的像素驱动方法,其中,所述向补偿电容单元的第一端写入驱动电压,第二端写入数据电压,包括:
    将第三开关单元和第二开关单元打开,将第三放电开关单元、第一放电开关单元以及第一开关单元以及第二放电开关单元关闭,所述补偿电容单元的第二端充电至所述数据电压,第一端充电至所述驱动电压。
  15. 根据权利要求14所述的像素驱动方法,其中,所述在第一阶段,将所述补偿电容单元第一端写入的驱动电压降低至第一设定阈值,包括:
    将所述第二放电开关单元和所述第一放电开关单元打开,将所述第三开关单元、所述第三放电开关单元以及所述第一开关单元关闭,所述补偿电容单元的第一端放电至所述第一设定阈值。
  16. 根据权利要求15所述的像素驱动方法,其中,所述在第二阶段将所述补偿电容单元第二端写入的数据电压降低至第二设定阈值,并断开第一放电模块与所述补偿电容单元的第一端,以使所述补偿电容单元的第一端电压跳变至目标电压,所述目标电压大于第一开关单元的阈值电压,包括:
    将所述第三放电开关单元打开,所述第三开关单元、所述第二开关单元、所述第一放电开关单元、所述第二放电开关单元以及所述第一开关单元关闭,所述补偿电容单元的第二端的电压从所述数据电压跳变至所述第二设定阈值,同时所述补偿电容单元的第一端的电压从所述数据电压跳变到所述目标电压, 所述目标电压为所述数据电压和所述第二设定阈值之和。
  17. 根据权利要求16所述的像素驱动方法,其中,所述断开第二放电模块,通过所述补偿电容单元第一端的目标电压控制所述第一开关单元导通,以通过所述驱动电压驱动发光器件发光,包括:
    将所述第三开关单元、所述第三放电开关单元、所述第二开关单元、所述第二放电开关单元以及所述第一放电开关单元关闭,所述补偿电容单元第一端的电压为所述目标电压且大于所述第二设定阈值,所述第一开关单元打开,所述第一开关单元的输入端耦接驱动电压端,以使所述发光器件通入电流而发光。
  18. 一种显示装置,其中,包括:
    显示面板,包括多个像素单元,每个所述像素单元包括多个发光器件;
    像素驱动电路,所述驱动电路包括:
    补偿电容单元,所述补偿电容单元的第一端耦接驱动电压端,第二端耦接数据电压端;
    第一开关单元,所述第一开关单元的控制端耦接所述补偿电容单元的第一端,输入端耦接驱动电压端,输出端耦接一所述发光器件;
    第一放电模块,在第一阶段将所述补偿电容单元第一端写入的驱动电压降低至第一设定阈值;以及
    第二放电模块,在第二阶段将所述补偿电容单元第二端写入的数据电压降低至第二设定阈值;
    其中,在所述第二阶段,所述第一放电模块与所述补偿电容单元的第一端断开,以使所述补偿电容单元的第一端电压跳变至目标电压,所述目标电压大于所述第一开关单元的阈值电压。
PCT/CN2022/133802 2022-04-27 2022-11-23 像素驱动电路、驱动方法及显示装置 WO2023207057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210453420.XA CN114639347A (zh) 2022-04-27 2022-04-27 像素驱动电路、驱动方法及显示装置
CN202210453420.X 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023207057A1 true WO2023207057A1 (zh) 2023-11-02

Family

ID=81950815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133802 WO2023207057A1 (zh) 2022-04-27 2022-11-23 像素驱动电路、驱动方法及显示装置

Country Status (2)

Country Link
CN (1) CN114639347A (zh)
WO (1) WO2023207057A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639347A (zh) * 2022-04-27 2022-06-17 惠科股份有限公司 像素驱动电路、驱动方法及显示装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682706A (zh) * 2012-06-06 2012-09-19 四川虹视显示技术有限公司 一种amoled像素驱动电路
CN104064140A (zh) * 2014-06-09 2014-09-24 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN203966515U (zh) * 2014-05-19 2014-11-26 京东方科技集团股份有限公司 像素驱动电路和显示装置
CN104751798A (zh) * 2015-04-10 2015-07-01 京东方科技集团股份有限公司 像素驱动电路、显示装置和像素驱动方法
CN106652904A (zh) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN112164375A (zh) * 2020-10-12 2021-01-01 福州京东方光电科技有限公司 一种像素补偿电路及其驱动方法、显示装置
US20210166614A1 (en) * 2017-02-28 2021-06-03 Boe Technology Group Co., Ltd. Pixel driving circuit and driving method thereof, display apparatus
CN113450695A (zh) * 2020-05-07 2021-09-28 重庆康佳光电技术研究院有限公司 一种MicroLED像素电路、时序控制方法及显示器
WO2021249127A1 (zh) * 2020-06-08 2021-12-16 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板及显示装置
CN113870785A (zh) * 2021-09-28 2021-12-31 福建华佳彩有限公司 一种oled像素补偿电路及oled像素补偿方法
CN114639347A (zh) * 2022-04-27 2022-06-17 惠科股份有限公司 像素驱动电路、驱动方法及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971640B (zh) * 2014-05-07 2016-08-24 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法和显示装置
CN104751779A (zh) * 2014-11-25 2015-07-01 上海和辉光电有限公司 显示装置、oled像素驱动电路及其驱动方法
CN104575398B (zh) * 2015-02-10 2017-04-05 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN206194348U (zh) * 2016-11-18 2017-05-24 京东方科技集团股份有限公司 像素电路、显示面板和显示设备
CN106652915A (zh) * 2017-02-09 2017-05-10 鄂尔多斯市源盛光电有限责任公司 一种像素电路、显示面板、显示装置及驱动方法
CN108538249B (zh) * 2018-06-22 2021-05-07 京东方科技集团股份有限公司 像素驱动电路及方法、显示装置
US11727868B2 (en) * 2019-06-03 2023-08-15 Boe Technology Group Co., Ltd. Pixel circuit for threshold compensation, driving method thereof and display device for providing signals
CN115410530B (zh) * 2022-08-30 2023-07-18 惠科股份有限公司 像素补偿电路、驱动方法和显示面板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682706A (zh) * 2012-06-06 2012-09-19 四川虹视显示技术有限公司 一种amoled像素驱动电路
CN203966515U (zh) * 2014-05-19 2014-11-26 京东方科技集团股份有限公司 像素驱动电路和显示装置
CN104064140A (zh) * 2014-06-09 2014-09-24 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104751798A (zh) * 2015-04-10 2015-07-01 京东方科技集团股份有限公司 像素驱动电路、显示装置和像素驱动方法
US20210166614A1 (en) * 2017-02-28 2021-06-03 Boe Technology Group Co., Ltd. Pixel driving circuit and driving method thereof, display apparatus
CN106652904A (zh) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN113450695A (zh) * 2020-05-07 2021-09-28 重庆康佳光电技术研究院有限公司 一种MicroLED像素电路、时序控制方法及显示器
WO2021249127A1 (zh) * 2020-06-08 2021-12-16 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板及显示装置
CN112164375A (zh) * 2020-10-12 2021-01-01 福州京东方光电科技有限公司 一种像素补偿电路及其驱动方法、显示装置
CN113870785A (zh) * 2021-09-28 2021-12-31 福建华佳彩有限公司 一种oled像素补偿电路及oled像素补偿方法
CN114639347A (zh) * 2022-04-27 2022-06-17 惠科股份有限公司 像素驱动电路、驱动方法及显示装置

Also Published As

Publication number Publication date
CN114639347A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2022062747A1 (zh) 像素电路、像素驱动方法、显示面板和显示装置
US10297195B2 (en) Pixel circuit and driving method thereof, array substrate, display panel and display device
US20210082348A1 (en) Amoled pixel driving circuit, driving method and terminal
US10181283B2 (en) Electronic circuit and driving method, display panel, and display apparatus
WO2015169043A1 (zh) 补偿像素电路及显示装置
US20160005356A1 (en) Oled Pixel Circuit, Driving Method of the Same, and Display Device
US10997920B2 (en) Pixel drive circuit and drive method, and display apparatus
CN104751804A (zh) 一种像素电路、其驱动方法及相关装置
US11817052B2 (en) Organic light-emitting display panel and display method therefor
US11749193B2 (en) Pixel circuit, method for driving a pixel circuit, display panel, and display apparatus
WO2021203497A1 (zh) 像素驱动电路和显示面板
US11749199B1 (en) Pixel driving circuit and display device
US11942036B2 (en) Pixel circuit, pixel circuit driving method and display device
WO2023142804A1 (zh) 驱动电压补偿电路、驱动电路及显示装置
US10510297B2 (en) Pixel circuit, driving method thereof, display panel and display device
WO2023207057A1 (zh) 像素驱动电路、驱动方法及显示装置
CN113593475B (zh) 像素电路、驱动方法和显示装置
CN114822413A (zh) 像素电路、像素驱动方法及显示装置
WO2021249164A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
US11211005B2 (en) Pixel driving circuit, display device and driving method
US11887543B1 (en) Pixel drive circuit, display panel, and display device
US11710452B2 (en) Pixel circuit, pixel driving method, display panel, and display device
WO2021139645A1 (zh) 像素电路、像素驱动方法和显示装置
US11735111B1 (en) Driving circuit, driving method and display panel
US11854487B1 (en) Pixel drive circuit, display panel, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939872

Country of ref document: EP

Kind code of ref document: A1