WO2023197826A1 - 一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车 - Google Patents

一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车 Download PDF

Info

Publication number
WO2023197826A1
WO2023197826A1 PCT/CN2023/082135 CN2023082135W WO2023197826A1 WO 2023197826 A1 WO2023197826 A1 WO 2023197826A1 CN 2023082135 W CN2023082135 W CN 2023082135W WO 2023197826 A1 WO2023197826 A1 WO 2023197826A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
cooling
alloy steel
wear
preparation
Prior art date
Application number
PCT/CN2023/082135
Other languages
English (en)
French (fr)
Inventor
陈波
范汇吉
崔海霞
Original Assignee
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Publication of WO2023197826A1 publication Critical patent/WO2023197826A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This application relates to the field of engineering machinery materials, specifically to a medium carbon low alloy steel material, a delivery pipe, its preparation method and a concrete pump truck.
  • the conveying pipe is a wearing part of the concrete pump truck and is mainly used for conveying concrete materials. During the working process, the conveying pipe withstands the high pressure and high-speed impact of concrete, which requires the conveying pipe to have high wear resistance, good strength and impact resistance. Pipe bursting and wear are the main failure modes of conveying pipes, which directly affect the service life. The service life of the delivery pipe is insufficient and frequent replacement not only affects the construction period, but also increases the cost of use and affects the competitiveness of the product in the market.
  • Conveyor pipes are mainly divided into single-layer pipes and double-layer pipes.
  • Double-layer pipes can be divided into alloy steel pipes, high-chromium cast iron pipes and ceramic pipes according to different inner pipe materials.
  • Double-layer pipes are mainly used for pump truck delivery pipes over 40 meters in length due to their high wear resistance.
  • the wear resistance of single-layer pipe is not as good as that of double-layer pipe, but due to its low price and simple preparation process, it is widely used as pump truck delivery pipe under 40 meters.
  • the single-layer conveyor pipe in the industry is made of medium carbon manganese steel (40Mn2, 50Mn, NM55, NM62) seamless steel pipes and is prepared by induction quenching of the inner wall.
  • the depth of the hardened layer is about 2.8mm, the hardness of the inner wall is between 55-60HRC, and the overall resistance is
  • the tensile strength is about 800MPa, the impact energy is about 20J, and the service life of pumping C30 concrete is about 30,000 cubic meters.
  • the currently used single-layer pipes have been treated by induction quenching to achieve higher hardness on the inner wall surface, they also have the following shortcomings: (1) The delivery pipe has been cooled by induction quenching and water spraying, and there is a large residual stress inside, which is prone to deformation and cracking. . (2) The strength and impact energy of the conveying pipe are relatively low, and the ability to resist the impact deformation of concrete is weak, resulting in the entrance end of the conveying pipe wearing out quickly under the strong impact of concrete. (3) There is a hardness gradient from the inner wall to the outer wall of the delivery pipe. Once the hardened layer is worn, the base body will wear rapidly due to low hardness.
  • This application provides a medium carbon low alloy steel material, a delivery pipe, a preparation method thereof and a concrete pump truck to solve the problem of rapid wear of the delivery pipe.
  • the first aspect of this application provides a medium carbon low alloy steel material, which is composed of the following mass fractions of chemical components: C: 0.55%-0.60%, Mn: 0.80%-1.40%, Si: ⁇ 0.3%, Cr: 0.2%-0.4%, Ni: 0.2%-0.4%, P: ⁇ 0.020%, S: ⁇ 0.020%, Ti: 0.04%-0.10%, V: 0.05%-0.15%, Re: 0.001%-0.003%, the balance is Fe.
  • the above-mentioned Re is selected from any one or a combination of more of lanthanum, cerium, praseodymium and neodymium.
  • a second aspect of the present application provides a delivery pipe, including a pipe body, which is integrally formed using any medium carbon low alloy steel material of the first aspect.
  • the hardness of the above-mentioned pipe body is 40-45HRC, and/or the tensile strength is ⁇ 1300MPa, and/or the impact energy is ⁇ 50J, and/or the microstructure is tempered martensite.
  • the above-mentioned pipe body includes a straight pipe and two end flanges.
  • the two end flanges are integrally formed with the straight pipe and are provided at both ends of the straight pipe in one-to-one correspondence.
  • the above-mentioned delivery pipe also includes a wear-resistant sleeve, which is disposed in the inner cavity of the end flange and interference-fits with the end flange.
  • the third aspect of the present application provides a method for preparing any of the above delivery pipes.
  • the preparation method includes: preparing a medium carbon low alloy steel material from raw materials composed of the following mass fractions of chemical components: C: 0.55%-0.60 %, Mn: 0.80%-1.40%, Si: ⁇ 0.3%, Cr: 0.2%-0.4%, Ni: 0.2%-0.4%, P: ⁇ 0.020%, S: ⁇ 0.020%, Ti: 0.04%-0.10 %, V: 0.05%-0.15%, Re: 0.001%-0.003%, the balance is Fe, the medium carbon low alloy steel material is seamless steel pipe; the seamless steel pipe is cut to length and the end flange is formed in sequence. Processing and heat treatment to obtain a conveying pipe.
  • the heat treatment includes heating, insulation, primary cooling and secondary cooling in sequence.
  • the cooling rate of primary cooling is 25 ⁇ 35°C/s, and the cooling rate of secondary cooling is smaller than the cooling rate of primary cooling. .
  • the above-mentioned step of forming the end flange includes sequentially performing upsetting processing and cutting processing to form the end flange.
  • the above-mentioned upsetting process includes heating the end of the seamless steel pipe to 1100-1200°C and then upsetting it to the target thickness.
  • the above-mentioned upsetting process includes: induction heating the end of the seamless steel pipe to 1100-1200°C and then upsetting it to the target thickness using a hydraulic press.
  • the above-mentioned heat treatment includes: heating the workpiece obtained by the end flange forming process to 850-880°C and keeping it warm for 1 to 2 hours; performing a primary cooling after the heat preservation is completed, preferably forced cooling to achieve primary cooling, preferably forced cooling to air.
  • a primary cooling preferably forced cooling to achieve primary cooling, preferably forced cooling to air.
  • Cold or oil cooling when the primary cooling is to 200-150°C, secondary cooling is performed, and the residual temperature is used for self-tempering in the secondary cooling; it is preferred that the secondary cooling is air cooling.
  • the above-mentioned conveying pipe also includes a wear-resistant sleeve
  • the preparation method also includes a process of pressing the wear-resistant sleeves on both ends of the workpiece obtained after heat treatment.
  • the above-mentioned preparation method after pressing the wear-resistant sleeve also includes the process of shot blasting and powder spraying, preferably powder spraying.
  • the installed temperature is 150-200°C.
  • the above-mentioned process of preparing medium-carbon low-alloy steel materials includes the processes of smelting, casting, perforating, rolling pipes, sizing, and straightening raw materials.
  • a concrete pump truck including a delivery pipe, and the delivery pipe is any delivery pipe of the second aspect of the present application.
  • the presence of C can improve the strength of steel, but excess carbon will greatly increase the hardness of the steel and make processing more difficult.
  • the mass fraction of C is between 0.55-0.60%, the strength of the steel can be improved and the processing difficulty will be increased.
  • the hardness is within the range suitable for subsequent processing.
  • Si is an effective deoxidizing element, but too high silicon content will reduce the toughness of steel.
  • Select Si mass fraction ⁇ 0.3%.
  • the mass fraction of Mn in the range of 0.80%-1.40% can improve both strength and toughness. Controlling the mass fraction of Cr between 0.2% and 0.4% can improve the hardenability of steel, thereby improving the hardness uniformity of the formed delivery pipe and reducing the hardness gradient.
  • V has the effect of precipitation strengthening and grain refinement, which can significantly improve strength and toughness.
  • Ti forms Ti(CN) with carbon and nitrogen in the steel, which can refine the grains, significantly improve the hardenability, and improve the strength and toughness of the steel.
  • the rare earth element Re can refine grains, purify grain boundaries, and improve toughness.
  • P and S are impurity elements and the content of both is controlled not to exceed 0.020%. Therefore, on the basis of controlling the contents of the main chemical components of C, Mn, Si, Cr and Ni, the medium carbon low alloy material of the present application further uses trace alloy elements Ti, V and Re and controls the respective dosages to achieve improved performance. The purpose is to improve the toughness and wear resistance of the material, thereby improving the impact resistance of the delivery pipe made of this material and mitigating its wear.
  • Figure 1 shows a schematic cross-sectional structural view of a delivery pipe in the prior art.
  • Figure 2 shows a schematic cross-sectional structural view of a delivery pipe according to an embodiment of the present application.
  • Figure 3 shows the metallographic structure diagram of the delivery pipe in Example 1 of the present application.
  • Figure 4 shows the metallographic structure diagram of the delivery tube of Comparative Example 10 of the present application.
  • this application attempts to improve the impact resistance of the conveyor pipe from the perspective of optimizing the element composition, thereby alleviating its wear. Based on this, this application provides a medium carbon low alloy steel material, a conveyor pipe, its preparation method and concrete Pump truck.
  • a medium carbon low alloy steel material which is composed of the following mass fractions of chemical components: C: 0.55%-0.60%, Mn: 0.80%-1.40%, Si: ⁇ 0.3%, Cr: 0.2%-0.4%, Ni: 0.2%-0.4%, P: ⁇ 0.020%, S: ⁇ 0.020%, Ti: 0.04%-0.10%, V: 0.05%-0.15%, Re: 0.001 %-0.003%, the balance is Fe.
  • the presence of C can improve the strength of steel, but excess carbon will greatly increase the hardness of the steel and make processing more difficult.
  • the mass fraction of C is between 0.55-0.60%, the strength of the steel can be improved and the hardness will be at a suitable level. within the scope of subsequent processing.
  • Si is an effective deoxidizing element, but too high silicon content will reduce the toughness of steel.
  • Select Si mass fraction ⁇ 0.3%.
  • the mass fraction of Mn in the range of 0.80%-1.40% can improve both strength and toughness.
  • Controlling the mass fraction of Cr between 0.2% and 0.4% can improve the hardenability of steel, thereby improving the hardness uniformity of the formed delivery pipe and reducing the hardness gradient.
  • V has the effect of precipitation strengthening and grain refinement, which can significantly improve strength and toughness.
  • Ti forms Ti(CN) with carbon and nitrogen in the steel, which can refine the grains, significantly improve the hardenability, and improve the strength and toughness of the steel.
  • the rare earth element Re can refine grains, purify grain boundaries, and improve toughness.
  • P and S are impurity elements and the content of both is controlled not to exceed 0.020%. Therefore, on the basis of controlling the contents of the main chemical components of C, Mn, Si, Cr and Ni, the medium carbon low alloy material of the present application further uses trace alloy elements Ti, V and Re and controls the respective dosages to achieve improved performance. The purpose is to improve the toughness and wear resistance of the material, thereby improving the impact resistance of the delivery pipe made of this material and mitigating its wear.
  • the rare earth element Re can be selected from any one or a combination of lanthanum, cerium, praseodymium, and neodymium to better refine grains, purify grain boundaries, and improve the toughness of steel.
  • a delivery pipe including a pipe body, which is integrally formed using any of the above-mentioned medium carbon low alloy steel materials.
  • the medium carbon low alloy material of the present application further uses trace alloy elements Ti, V and Re and controls their respective dosages. , achieving the purpose of improving the toughness and wear resistance of the material, thereby improving the impact resistance of the delivery pipe formed by this material and mitigating its wear.
  • the hardness of the above-mentioned pipe body is 40-45HRC, and/or the tensile strength is ⁇ 1300MPa, and/or the impact energy is ⁇ 50J, and/or the microstructure is tempered martensite.
  • the hardness of the pipe body is between 40-45HRC, on the one hand, the overall hardness of the pipe body is relatively high, on the other hand, there is no obvious hardness gradient on the whole pipe body, so the pipe body will not be damaged due to the wear of the surface hardened layer. the problem of rapid wear and tear.
  • the conveyor pipe When the impact energy of the pipe body is ⁇ 50J, the conveyor pipe has a strong ability to resist the impact deformation of concrete, which effectively improves the wear resistance of the entrance end of the conveyor pipe and makes the service life of the conveyor pipe reach more than 50,000 cubic meters.
  • the microstructure is tempered martensite
  • the hardness and wear resistance of the pipe body are higher, and because the internal stress of the tempered martensite structure is lower, the toughness of the pipe body is improved.
  • the above-mentioned pipe body 1 includes a straight pipe 11 and two end flanges 12.
  • the two end flanges 12 are integrally formed with the straight pipe 11 and correspond one to one. Set at both ends of the straight pipe 11.
  • the end flange is made at the end using the one-piece molding process, thereby avoiding the problem of early failure of the delivery pipe caused by cracking at the welding position when the end flange and the straight pipe are connected by welding.
  • the above-mentioned delivery pipe also includes a wear-resistant sleeve 2 .
  • the wear-resistant sleeve 2 is disposed in the inner cavity of the end flange 12 and is an interference fit with the end flange 12 .
  • the setting of the wear-resistant sleeve improves the wear-resistant ability at the entrance.
  • a method for preparing any of the above delivery pipes includes:
  • Medium carbon low alloy steel materials are prepared from raw materials consisting of the following mass fractions of chemical composition: C: 0.55%-0.60%, Mn: 0.80%-1.40%, Si: ⁇ 0.3%, Cr: 0.2%-0.4%, Ni: 0.2%-0.4%, P: ⁇ 0.020%, S: ⁇ 0.020%, Ti: 0.04%-0.10%, V: 0.05%-0.15%, Re: 0.001%-0.003%, the balance is Fe, medium and low carbon
  • the alloy steel material is a seamless steel pipe; the seamless steel pipe is sequentially cut to length, end flange forming and heat treated to obtain a conveyor pipe.
  • the heat treatment includes sequential heating, insulation, primary cooling and secondary cooling.
  • the cooling rate of primary cooling is 25 ⁇ 35°C/s, and the cooling rate of secondary cooling is smaller than the cooling rate of primary cooling.
  • the medium carbon low alloy material of the present application further uses trace alloy elements Ti, V and Re and controls their respective dosages. , achieving the purpose of improving the toughness and wear resistance of the material, thereby improving the impact resistance of the delivery pipe formed by this material and mitigating its wear.
  • the seamless steel pipe is cut to length using a sawing machine; the end flange is made at the end using end flange forming processing, thus avoiding the need for welding of the end flange and the straight pipe.
  • the cooling rate of the primary cooling of the heat treatment is controlled to fully release the internal residual stress and reduce the probability of deformation and cracking of the delivery pipe.
  • the above-mentioned step of forming the end flange includes sequential upsetting processing and cutting processing to form the end flange. Upsetting and cutting processes are used to achieve the integrated forming of the end flange and straight pipe, which is simple to operate and easy to implement.
  • the upsetting process includes heating the end of the seamless steel pipe to 1100-1200°C and then upsetting it to the target thickness.
  • the upsetting treatment includes induction heating the end of the seamless steel pipe to 1100-1200°C and then upsetting the end of the seamless steel pipe to the target thickness using a hydraulic press.
  • the end of the seamless steel pipe is heated to 1100-1200°C to make the steel pipe have good forgeability; the hydraulic press is used to upsetting to the target thickness to ensure the stability of the processing. And improve the processing efficiency.
  • the above-mentioned heat treatment includes: heating the workpiece obtained by the end flange forming process to 850-880°C and holding it for 1 to 2 hours; cooling it once after the heat preservation is completed, It is preferable to use forced cooling to achieve primary cooling, preferably forced cooling to be air cooling or oil cooling; when the primary cooling is to 200-150°C, perform secondary cooling, and use the residual temperature to self-temper in the secondary cooling; preferably the secondary cooling is air cooling . After insulation, the workpiece is cooled at a rate of 25 to 35°C/s.
  • the cooling rate is moderate, which significantly reduces the internal residual stress of the workpiece, makes the overall hardness more uniform, and significantly reduces the tendency of deformation and cracking of the resulting delivery pipe. It is preferred to use air cooling or oil cooling to achieve a cooling rate of 25 to 35°C/s to achieve low-cost cooling.
  • the above-mentioned delivery pipe further includes a wear-resistant sleeve
  • the preparation method further includes a process of press-fitting the wear-resistant sleeves on both ends of the workpiece obtained after heat treatment.
  • the wear resistance of the delivery pipe For example, use an interference fit between the wear-resistant sleeve and the end flange, and use special pressing equipment to press the wear-resistant sleeve into the end flange.
  • the preparation method of some embodiments further includes a process of shot blasting and powder spraying.
  • shot blasting is to remove oxide scale and other impurities on the outer wall of the conveying pipe.
  • Powder spraying refers to spraying powder coating on the outer surface of the conveying pipe to improve the quality of the conveying pipe.
  • the preferred temperature for powder coating is 150-200°C.
  • the above-mentioned raw materials can be used to prepare medium-low carbon alloy steel materials using conventional processes in the art.
  • the above-mentioned process of preparing medium-carbon low-alloy steel materials includes smelting, casting, perforating, and rolling pipes of the raw materials.
  • the process of sizing and straightening The specific operations of smelting, casting, perforating, pipe rolling, sizing and straightening can be referred to the corresponding operating procedures and conditions of existing medium and low alloy steel materials, and will not be described in detail in this application.
  • a concrete pump truck including a delivery pipe, and the delivery pipe is any one of the above delivery pipes. Since the conveying pipe of the present application has better wear resistance and longer service life, the frequency of replacement of the conveying pipe of the concrete pump truck equipped with it is reduced, and the working stability and working efficiency are better.
  • End flange forming processing Forming using upsetting and cutting processing, that is, the 100mm end length area of the seamless steel pipe cut to length is first induction heated to 1100°C, and then quickly transferred to the mold cavity of the hydraulic press, and then upsetting The thickness is reduced to 10mm, and then the end flange structure is processed by cutting processing.
  • Shot blasting Use shot blasting equipment to remove impurities such as oxide scale on the outer wall of the delivery pipe.
  • Powder spray coating The outer surface of the conveying pipe is sprayed with polyester low-temperature powder coating at a powder spraying temperature of 150°C to obtain the conveying pipe of Example 1.
  • Figure 3 is a metallographic structure diagram of the delivery pipe of Example 1 measured by a metallographic microscope, showing that the metallographic structure is tempered martensite.
  • End flange forming processing Forming using upsetting and cutting processing, that is, the 90mm end area of the seamless steel pipe cut to length is first induction heated to 1150°C, then quickly transferred to the mold cavity of the hydraulic press, and then upsetting The thickness is reduced to 10mm, and then cutting is used to process the final flange structure.
  • Shot blasting Use shot blasting equipment to remove impurities such as oxide scale on the outer wall of the delivery pipe.
  • Powder spray coating The outer surface of the conveying pipe is sprayed with polyester low-temperature powder coating at a powder spraying temperature of 150°C to obtain the conveying pipe of Example 2.
  • End flange forming processing Forming using upsetting and cutting processing, that is, the 82mm length area of the end of the seamless steel pipe cut to length is first induction heated to 1200°C, then quickly transferred to the mold cavity of the hydraulic press, and then upsetting The thickness is reduced to 10mm, and then cutting is used to process the final flange structure.
  • step 4) Heat treatment: Heat the workpiece obtained in step 3) above to 850°C, hold for 1 hour, and quickly transfer to Cool the air-cooling chamber to 180°C at a cooling rate of 25°C/s, transfer it out of the air-cooling room, air-cool to room temperature, and utilize the residual temperature for self-tempering.
  • Shot blasting Use shot blasting equipment to remove impurities such as oxide scale on the outer wall of the delivery pipe.
  • Powder spray coating The outer surface of the conveying pipe is sprayed with powder coating at a powder spraying temperature of 150°C to obtain the conveying pipe of Example 3.
  • Example 1 The difference from Example 1 is that the heat treatment conditions in step 4) are different.
  • the heat treatment process of this example is as follows: heat the workpiece obtained in step 3) to 900°C, hold the heat for 1 hour, and quickly transfer it to the air-cooling room after it is released from the furnace and heat it at 40°C. /s cooling rate to 180°C, transfer out of the air-cooling chamber, air-cool to room temperature, and utilize the residual temperature for self-tempering.
  • Example 1 The difference from Example 1 is that the heat treatment conditions in step 4) are different.
  • the heat treatment process of this example is as follows: heat the workpiece obtained in step 3) to 830°C, hold the heat for 1 hour, and quickly transfer it to the air-cooling room after it is released from the furnace and heat it at 20°C. /s cooling rate to 180°C, transfer out of the air-cooling chamber, air-cool to room temperature, and utilize the residual temperature for self-tempering.
  • Example 1 The difference from Example 1 is that the chemical composition of the seamless steel pipe is different, specifically: C: 0.55%, Mn: 0.9%, Si: 0.25%, Cr: 0.2%, Ni: 0.4%, P: 0.010%, S: 0.010%, Ti: 0.02%, V: 0.10%, Re (lanthanum, cerium, praseodymium and neodymium): 0.001%, the balance is Fe.
  • C 0.55%
  • Mn 0.9%
  • Si 0.25%
  • Cr 0.2%
  • Ni 0.4%
  • P 0.010%
  • S 0.010%
  • Ti 0.02%
  • V 0.10%
  • Re lanthanum, cerium, praseodymium and neodymium
  • Example 1 The difference from Example 1 is that the chemical composition of the seamless steel pipe is different, specifically: C: 0.55%, Mn: 0.9%, Si: 0.25%, Cr: 0.2%, Ni: 0.4%, P: 0.010%, S: 0.010%, Ti: 0.12%, V: 0.10%, Re (lanthanum, cerium, praseodymium and neodymium): 0.001%, the balance is Fe.
  • Example 1 The difference from Example 1 is that the chemical composition of the seamless steel pipe is different, specifically: C: 0.55%, Mn: 0.9%, Si: 0.25%, Cr: 0.2%, Ni: 0.4%, P: 0.010%, S: 0.010%, V: 0.10%, Re (lanthanum, cerium, praseodymium and neodymium): 0.001%, the balance is Fe. The rest is the same as Example 1.
  • Example 1 The difference from Example 1 is that the chemical composition of the seamless steel pipe is different, specifically: C: 0.55%, Mn: 0.9%, Si: 0.25%, Cr: 0.2%, Ni: 0.4%, P: 0.010%, S: 0.010%, Ti: 0.05%, V: 0.03%, Re (lanthanum, cerium, praseodymium and neodymium): 0.001%, and the balance is Fe.
  • C 0.55%
  • Mn 0.9%
  • Si 0.25%
  • Cr 0.2%
  • P 0.010%
  • S 0.010%
  • Ti 0.05%
  • V 0.03%
  • Re lanthanum, cerium, praseodymium and neodymium
  • Example 1 The difference from Example 1 is that the chemical composition of the seamless steel pipe is different, specifically: C: 0.55%, Mn: 0.9%, Si: 0.25%, Cr: 0.2%, Ni: 0.4%, P: 0.010%, S: 0.010%, Ti: 0.05%, V: 0.17%, Re (lanthanum, cerium, praseodymium and neodymium): 0.001%, and the balance is Fe.
  • C 0.55%
  • Mn 0.9%
  • Si 0.25%
  • Cr 0.2%
  • P 0.010%
  • S 0.010%
  • Ti 0.05%
  • V 0.17%
  • Re lanthanum, cerium, praseodymium and neodymium
  • Example 1 The difference from Example 1 is that the chemical composition of the seamless steel pipe is different, specifically: C: 0.55%, Mn: 0.9%, Si: 0.25%, Cr: 0.2%, Ni: 0.4%, P: 0.010%, S: 0.010%, Ti: 0.05%, Re (lanthanum, cerium, praseodymium and neodymium): 0.001%, the balance is Fe. The rest is the same as Example 1.
  • Example 1 The difference from Example 1 is that the chemical composition of the seamless steel pipe is different, specifically: C: 0.55%, Mn: 0.9%, Si: 0.25%, Cr: 0.2%, Ni: 0.4%, P: 0.010%, S: 0.010%, Ti: 0.05%, V: 0.1%, Re (lanthanum, cerium, praseodymium and neodymium): 0.004%, and the balance is Fe.
  • C 0.55%
  • Mn 0.9%
  • Si 0.25%
  • Cr 0.2%
  • P 0.010%
  • S 0.010%
  • Ti 0.05%
  • V 0.1%
  • Re lanthanum, cerium, praseodymium and neodymium
  • Example 1 The difference from Example 1 is that the chemical composition of the seamless steel pipe is different, specifically: C: 0.55%, Mn: 0.9%, Si: 0.25%, Cr: 0.2%, Ni: 0.4%, P: 0.010%, S: 0.010%, Ti: 0.05%, V: 0.1%, and the balance is Fe. The rest is the same as Example 1.
  • the heat treatment process of Comparative Example 9 is as follows: the workpiece obtained in step 3) is heated to 880°C, held for 2 hours, taken out of the furnace and quickly transferred to the quenching chamber, and cooled at a cooling rate of 60°C/s. to 180°C, transfer out of the air-cooling room and air-cool to room temperature and use the residual temperature to self-temper. The rest is the same as Example 1.
  • Example 1 The difference from Example 1 lies in the heat treatment process.
  • the heat treatment process of Comparative Example 9 is as follows: heat the workpiece obtained in step 3) to 880°C, hold for 2 hours, take it out of the furnace and quickly transfer it to the cooling room to air-cool to room temperature and use the residual temperature to self-temper. .
  • the rest is the same as Example 1.
  • Figure 4 is a diagram of the metallographic structure of the delivery pipe of Comparative Example 10 measured by a metallographic microscope, showing that the metallographic structure is ferrite + pearlite.
  • Example 1 The difference from Example 1 is that the heat treatment process in step 4) of Example 1 is not performed, and the wear-resistant sleeve is press-fitted directly after the end flange is formed.
  • the mechanical properties of the delivery pipes obtained in each embodiment and comparative example were tested.
  • the testing method is as follows:
  • Tensile strength Refer to the GB/T 228.1 standard, process arc-shaped tensile specimens, and use a tensile testing machine to test the tensile strength.
  • Impact power refer to the GB/T 229 standard, process the V-notch sample, and use the pendulum impact testing machine to test the sample chamber Warm impact energy.
  • Wear resistance Refer to ASTM G105-16 standard, use a wet sand rubber wheel wear testing machine to test the weight of the sample before and after wear, and evaluate the wear resistance based on the wear weight loss.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本申请提供了中碳低合金钢材料、输送管、其制备方法和混凝土泵车。该中碳低合金钢材料,由以下质量分数的化学成分组成:C:0.55%-0.60%,Mn:0.80%-1.40%,Si:≤0.3%,Cr:0.2%-0.4%,Ni:0.2%-0.4%,P:≤0.020%,S:≤0.020%,Ti:0.04%-0.10%,V:0.05%-0.15%,Re:0.001%-0.003%,余量为Fe。本申请在控制C、Mn、Si、Cr和Ni这些主化学成分含量的基础上,通过使用微量合金元素Ti、V和Re并控制各自的用量,实现了提高材料韧性和耐磨性的目的,进而提升利用该材料形成的输送管的抗冲击性能,并缓解其磨损。

Description

一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车
相关申请的交叉引用
本申请要求享有于2022年11月25日提交的名称为“一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车”的中国专利申请202211490716.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及工程机械材料领域,具体涉及一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车。
背景技术
输送管是混凝土泵车的易损件,主要用于混凝土物料的输送。输送管在工作过程中,承受混凝土的高压和高速冲击,要求输送管具有高耐磨性、良好的强度和抗冲击性能。爆管和磨损是输送管主要失效形式,直接影响使用寿命。输送管使用寿命不足,频繁更换,不仅影响工期,同时增加使用成本,影响产品在市场中的竞争力。
输送管主要分单层管、双层管,其中双层管根据内管材质不同又可分为合金钢管、高铬铸铁管以及陶瓷管。双层管因具有较高耐磨性,主要被用于40米以上泵车输送管。单层管耐磨性不及双层管,但因价格低,制备工艺简单,被广泛用作40米以下泵车输送管。
行业内单层输送管由中碳锰钢(40Mn2、50Mn、NM55、NM62)无缝钢管经内壁感应淬火制备而成,淬硬层深度2.8mm左右,内壁硬度在55-60HRC之间,整体抗拉强度约800MPa,冲击功约20J,泵送C30混凝土使用寿命约3万方。
现用单层管虽然经感应淬火处理,内壁表面可以获得较高硬度,但也存在以下缺点:(1)输送管经感应淬火喷水冷却,内部存在较大的残余应力,易产生变形和开裂。(2)输送管强度和冲击功相对较低,抵抗混凝土冲击变形能力较弱,导致输送管入口端在混凝土强力冲击下,磨损较快。(3)输送管内壁到外壁存在硬度梯度,一旦淬硬层磨损,基体就会因硬度低而导致快速磨损。(4)输送管直管1’和端部法兰2’采用焊接形式连接,耐磨套3’设置在端部法兰内,如图1所示,而直管材质采用中碳锰钢,碳当量高,焊接易开裂,引起早期失效。
发明内容
本申请提供了一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车,以解决输送管磨损较快的问题。
本申请的第一方面提供了一种中碳低合金钢材料,由以下质量分数的化学成分组成: C:0.55%-0.60%,Mn:0.80%-1.40%,Si:≤0.3%,Cr:0.2%-0.4%,Ni:0.2%-0.4%,P:≤0.020%,S:≤0.020%,Ti:0.04%-0.10%,V:0.05%-0.15%,Re:0.001%-0.003%,余量为Fe。
进一步地,上述Re选自镧、铈、镨、钕中的任意一种或多种的组合。
本申请的第二方面提供了一种输送管,包括管体,该管体采用上述第一方面的任意一种中碳低合金钢材料一体成型制备而成。
进一步地,上述管体的硬度在40-45HRC、和/或抗拉强度≥1300MPa、和/或冲击功≥50J、和/或显微组织为回火马氏体。
进一步地,上述管体包括直管和两个端部法兰,两个端部法兰与直管一体成型,且一一对应地设置在直管的两端。
进一步地,上述输送管还包括耐磨套,耐磨套设置在端部法兰的内腔且与端部法兰过盈配合。
本申请的第三方面提供了一种上述任一种的输送管的制备方法,该制备方法包括:由以下质量分数的化学成分组成的原材料制备中碳低合金钢材料:C:0.55%-0.60%,Mn:0.80%-1.40%,Si:≤0.3%,Cr:0.2%-0.4%,Ni:0.2%-0.4%,P:≤0.020%,S:≤0.020%,Ti:0.04%-0.10%,V:0.05%-0.15%,Re:0.001%-0.003%,余量为Fe,中碳低合金钢材料为无缝钢管;对无缝钢管依次进行定尺锯切、端部法兰成型加工和热处理,得到输送管,热处理包括依次进行的加热、保温、一次冷却和二次冷却,其中一次冷却的冷却速度为25~35℃/s,二次冷却的冷却速度小于一次冷却的冷却速度。
进一步地,上述端部法兰成型加工的步骤包括依次进行的镦粗处理和切削加工形成端部法兰。
进一步地,上述镦粗处理包括将无缝钢管的端部加热至1100-1200℃后镦粗至目标厚度。
进一步地,上述镦粗处理包括:将无缝钢管的端部感应加热至1100-1200℃后利用液压机镦粗至目标厚度。
进一步地,上述热处理包括:将端部法兰成型处理得到的工件加热至850-880℃并保温1~2小时;保温结束后进行一次冷却,优选采用强制冷却实现一次冷却,优选强制冷却为风冷或油冷;当一次冷却至200-150℃后进行二次冷却,在二次冷却中利用余温自回火;优选二次冷却为空冷。
进一步地,上述输送管还包括耐磨套,制备方法还包括在热处理后得到的工件两端压装耐磨套的过程。
进一步地,上述在压装耐磨套后制备方法还包括抛丸和喷粉涂装的过程,优选喷粉涂 装的温度为150-200℃。
进一步地,上述制备中碳低合金钢材料的过程包括将原材料进行熔炼、浇铸、穿孔、轧管、定径、矫直的过程。
根据本申请的第四方面,提供了一种混凝土泵车,包括输送管,该输送管为本申请第二方面的任意一种的输送管。
本申请中,C的存在可以提高钢的强度,但碳过量会使钢质硬度大幅增加进而使得加工难度增加,当C的质量分数在0.55-0.60%之间时,可以提高钢的强度并使硬度在适于后续加工的范围内。Si是有效的脱氧元素,但是硅含量过高又会降低钢的韧性,选择Si质量分数≤0.3%。Mn的质量分数在0.80%-1.40%范围内可以同时提高强度和韧性。Cr的质量分数控制在0.2%-0.4%可以提高钢的淬透性,进而提高所形成的输送管的硬度均匀性,降低硬度梯度。V具有析出强化和细化晶粒的作用,可显著提高强度和韧性。Ti在钢中与碳、氮形成Ti(CN),能细化晶粒,同时可显著提高淬透性,提高钢的强度和韧性。稀土元素Re可细化晶粒,净化晶界,提高韧性。P和S为杂质元素控制二者含量均不超过0.020%。因此,本申请的中碳低合金材料在控制C、Mn、Si、Cr和Ni这些主化学成分含量的基础上,通过进一步使用微量合金元素Ti、V和Re并控制各自的用量,实现了提高材料韧性和耐磨性的目的,进而提升利用该材料形成的输送管的抗冲击性能,并缓解其磨损。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1示出了现有技术的输送管的剖面结构示意图。
图2示出了本申请一种实施方式的输送管的剖面结构示意图。
图3示出了本申请实施例1的输送管的金相组织图。
图4示出了本申请对比例10的输送管的金相组织图。
在附图中,附图并未按照实际的比例绘制。
附图标记说明:
1’、直管;2’、端部法兰;3’、耐磨套。
1、管体;11、直管;12、端部法兰;2、耐磨套。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描 述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
如本申请背景技术所分析的,输送管强度和冲击功相对较低,抵抗混凝土冲击变形能力较弱,导致输送管入口端在混凝土强力冲击下,磨损较快。为了解决该问题,本申请尝试从优化元素组成的角度提升输送管的抗冲击性能,进而缓解其磨损,基于此本申请提供了一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车。
在本申请一种典型的实施方式中,提供了一种中碳低合金钢材料,由以下质量分数的化学成分组成:C:0.55%-0.60%,Mn:0.80%-1.40%,Si:≤0.3%,Cr:0.2%-0.4%,Ni:0.2%-0.4%,P:≤0.020%,S:≤0.020%,Ti:0.04%-0.10%,V:0.05%-0.15%,Re:0.001%-0.003%,余量为Fe。
C的存在可以提高钢的强度,但碳过量会使钢质硬度大幅增加进而使得加工难度增加,当C的质量分数在0.55-0.60%之间时,可以提高钢的强度并使硬度在适于后续加工的范围内。Si是有效的脱氧元素,但是硅含量过高又会降低钢的韧性,选择Si质量分数≤0.3%。Mn的质量分数在0.80%-1.40%范围内可以同时提高强度和韧性。Cr的质量分数控制在0.2%-0.4%可以提高钢的淬透性,进而提高所形成的输送管的硬度均匀性,降低硬度梯度。V具有析出强化和细化晶粒的作用,可显著提高强度和韧性。Ti在钢中与碳、氮形成Ti(CN),能细化晶粒,同时可显著提高淬透性,提高钢的强度和韧性。稀土元素Re可细化晶粒,净化晶界,提高韧性。P和S为杂质元素控制二者含量均不超过0.020%。因此,本申请的中碳低合金材料在控制C、Mn、Si、Cr和Ni这些主化学成分含量的基础上,通过进一步使用微量合金元素Ti、V和Re并控制各自的用量,实现了提高材料韧性和耐磨性的目的,进而提升利用该材料形成的输送管的抗冲击性能,并缓解其磨损。
在一些实施方式中,上述稀土元素Re可以选自镧、铈、镨、钕中的任意一种或多种的组合,进而更好地细化晶粒,净化晶界,提高钢的韧性。
在本申请另一种典型的实施方式中,还提供了一种输送管,包括管体,该管体采用上述任一种中碳低合金钢材料一体成型制备而成。
如前所述,由于本申请的中碳低合金材料在控制C、Mn、Si、Cr和Ni这些主化学成分含量的基础上,通过进一步使用微量合金元素Ti、V和Re并控制各自的用量,实现了提高材料韧性和耐磨性的目的,进而提升利用该材料形成的输送管的抗冲击性能,并缓解其磨损。
在一些实施方式中,上述管体的硬度在40-45HRC、和/或抗拉强度≥1300MPa、和/或冲击功≥50J、和/或显微组织为回火马氏体。
其中,当管体的硬度在40-45HRC之间时,一方面管体整体硬度较高,另一方面管体整体不存在明显的硬度梯度,因此不会因为表面淬硬层的磨损导致管体的快速磨损问题。
当管体的抗拉强度≥1300MPa时,提高了管体的可加工性,因此不必依赖焊接工艺将端部法兰与直管连接,利用一体成型工艺在端部制作法兰,进而避免了焊接开裂导致的输 送管早期失效问题。
当管体的冲击功≥50J时,输送管抵抗混凝土冲击变形能力较强,从而有效提升了输送管入口端的耐磨损能力,使得输送管的使用寿命可达到5万方以上。
当显微组织为回火马氏体时,该管体的硬度和耐磨性较高,且由于回火马氏体组织的内应力较低,因此管体的韧性有所提高。
在本申请一些实施方式中,如图2所示,上述管体1包括直管11和两个端部法兰12,两个端部法兰12与直管11一体成型,且一一对应地设置在直管11的两端。
利用一体成型工艺在端部制作端部法兰,进而避免了端部法兰和直管以焊接方式连接时焊接位置开裂导致的输送管早期失效问题。
在本申请的一些实施方式中,如图2所示,上述输送管还包括耐磨套2,耐磨套2设置在端部法兰12的内腔且与端部法兰12过盈配合。耐磨套的设置提高了入口处的耐磨损能力。
在本申请另一种典型的实施方式中,提供了一种上述任一种的输送管的制备方法,该制备方法包括:
由以下质量分数的化学成分组成的原材料制备中碳低合金钢材料:C:0.55%-0.60%,Mn:0.80%-1.40%,Si:≤0.3%,Cr:0.2%-0.4%,Ni:0.2%-0.4%,P:≤0.020%,S:≤0.020%,Ti:0.04%-0.10%,V:0.05%-0.15%,Re:0.001%-0.003%,余量为Fe,中碳低合金钢材料为无缝钢管;对无缝钢管依次进行定尺锯切、端部法兰成型加工和热处理,得到输送管,所述热处理包括依次进行的加热、保温、一次冷却和二次冷却,其中一次冷却的冷却速度为25~35℃/s,二次冷却的冷却速度小于一次冷却的冷却速度。
如前所述,由于本申请的中碳低合金材料在控制C、Mn、Si、Cr和Ni这些主化学成分含量的基础上,通过进一步使用微量合金元素Ti、V和Re并控制各自的用量,实现了提高材料韧性和耐磨性的目的,进而提升利用该材料形成的输送管的抗冲击性能,并缓解其磨损。进一步地,根据设计尺寸要求,采用锯床等对无缝钢管进行定尺锯切;利用端部法兰成型加工在端部制作端部法兰,进而避免了端部法兰和直管以焊接方式连接时焊接位置开裂导致的输送管早期失效问题。同时,控制热处理的一次冷却的冷却速度,使内部残余应力充分释放,降低输送管变形和开裂几率。
在本申请一些实施方式中,上述端部法兰成型加工的步骤包括依次进行的镦粗处理和切削加工形成端部法兰。采用镦粗处理和切削加工实现端部法兰和直管的一体成型,操作简单,易于实现。
为了更好地控制法兰成型过程中的尺寸和机械性能,优选地,镦粗处理包括将无缝钢管的端部加热至1100-1200℃后镦粗至目标厚度。进一步优选镦粗处理包括:将无缝钢管的端部感应加热至1100-1200℃后利用液压机镦粗至目标厚度。将无缝钢管的端部加热至1100-1200℃,使钢管具有良好的可锻性;利用液压机镦粗至目标厚度保证了加工的稳定性, 并提高了加工效率。
为了进一步去除输送管的内部残余应力,在一些实施方式中,上述热处理包括:将端部法兰成型处理得到的工件加热至850-880℃并保温1~2小时;保温结束后进行一次冷却,优选采用强制冷却实现一次冷却,优选强制冷却为风冷或油冷;当一次冷却至200-150℃后进行二次冷却,在二次冷却中利用余温自回火;优选二次冷却为空冷。工件在保温后以25~35℃/s的速度冷却,冷却速度适中,使工件的内部残余应力显著降低,整体硬度更均匀,所得到的输送管的变形和开裂倾向显著降低。优选采用风冷或油冷的方式实现25~35℃/s的冷却速度,以实现低成本降温。
在一些实施方式中,上述输送管还包括耐磨套,该制备方法还包括在热处理后得到的工件两端压装耐磨套的过程。以进一步提高输送管的耐磨性。比如将耐磨套与端部法兰为过盈配合,采用专用压装设备,将耐磨套压入端部法兰中。
在压装耐磨套后,一些实施方式的制备方法还包括抛丸和喷粉涂装的过程。抛丸的目的是去除输送管外壁的氧化皮等杂质,喷粉涂装是指在输送管外表面喷粉末涂料,以提高输送管品质。为了提高涂装稳定性,优选喷粉涂装的温度为150-200℃。
利用上述原材料制备中低碳合金钢材料的方式可以采用本领域常规的工艺,比如在一些实施方式中,上述制备中碳低合金钢材料的过程包括将原材料进行熔炼、浇铸、穿孔、轧管、定径、矫直的过程。其中的熔炼、浇铸、穿孔、轧管、定径和矫直的具体操作可以参考现有中低合金钢材料的对应操作流程和条件,本申请不再赘述。
在本申请又一种典型的实施方式中,提供了一种混凝土泵车,包括输送管,该输送管为上述任一种的输送管。由于本申请的输送管的耐磨性较好,使用寿命较长,使得具有其的混凝土泵车输送管更换频率减少,工作稳定性和工作效率更好。
为进一步理解本发明,结合下面给出的实施例,对本发明提供的输送管及其制备方法进行具体描述。
实施例1
1)无缝钢管制备:无缝钢管化学成分组成:C:0.55%,Mn:0.9%,Si:0.25%,Cr:0.2%,Ni:0.4%,P:0.010%,S:0.010%,Ti:0.05%,V:0.10,Re(镧、铈、镨和钕):0.001%,余量为Fe。按上述合金成分进行熔炼、浇铸、穿孔、轧管、定径、矫直、水压试验,得到的热轧无缝钢管。
2)无缝钢管定尺锯切:采用锯床对无缝钢管进行定尺锯切。
3)端部法兰成型加工:采用镦粗和切削加工方式成型,即先将定尺锯切后的无缝钢管端部长度100mm区域感应加热至1100℃,迅速转移至液压机模腔内,镦粗到10mm,再采用切削加工方法加工出端部法兰结构。
4)热处理:将上述步骤3)得到的工件加热至880℃,保温时间2h,出炉迅速转移至风冷室,以35℃/s的冷速冷却至180℃,转移出风冷室空冷至室温并利用余温自回火。
5)耐磨套压装:将耐磨套与端部法兰为过盈配合,采用压装设备,将耐磨套压入法兰环中。
6)抛丸:采用抛丸设备去除输送管外壁氧化皮等杂质。
7)喷粉涂装:输送管外表面喷聚酯型低温粉末涂料,喷粉温度150℃,得到实施例1的输送管。图3为金相显微镜测得的实施例1的输送管的金相组织图,显示金相组织为回火马氏体。
实施例2
1)无缝钢管制备:无缝钢管化学成分组成:C:0.57%,Mn:1.2%,Si:0.25%,Cr:0.3%,Ni:0.3%,P:0.010%,S:0.010%,Ti:0.10%,V:0.15,Re(镧、铈、镨和钕):0.002%,余量为Fe。按上述合金成分进行熔炼、浇铸、穿孔、轧管、定径、矫直、水压试验,得到的热轧无缝钢管。
2)无缝钢管定尺锯切:采用锯床对无缝钢管进行定尺锯切。
3)端部法兰成型加工:采用镦粗和切削加工方式成型,即先将定尺锯切后的无缝钢管端部长度90mm区域感应加热至1150℃,迅速转移至液压机模腔内,镦粗到10mm,再采用切削加工方法加工出最终法兰结构。
4)热处理:将上述步骤3)得到的工件加热至850℃,保温时间1h,出炉迅速转移至风冷室,以25℃/s的冷速冷却至180℃,转移出风冷室空冷至室温并利用余温自回火。
5)耐磨套压装:将耐磨套与端部法兰为过盈配合,采用压装设备,将耐磨套压入法兰环中。
6)抛丸:采用抛丸设备去除输送管外壁氧化皮等杂质。
7)喷粉涂装:输送管外表面喷聚酯型低温粉末涂料,喷粉温度150℃,得到实施例2的输送管。
实施例3
1)无缝钢管制备:无缝钢管化学成分组成:C:0.60%,Mn:1.4%,Si:0.25%,Cr:0.4%,Ni:0.2%,P:0.010%,S:0.010%,Ti:0.08%,V:0.05,Re(镧、铈、镨和钕):0.003%,余量为Fe。按上述合金成分进行熔炼、浇铸、穿孔、轧管、定径、矫直、水压试验,得到的热轧无缝钢管。
2)无缝钢管定尺锯切:采用锯床对无缝钢管进行定尺锯切。
3)端部法兰成型加工:采用镦粗和切削加工方式成型,即先将定尺锯切后的无缝钢管端部长度82mm区域感应加热至1200℃,迅速转移至液压机模腔内,镦粗到10mm,再采用切削加工方法加工出最终法兰结构。
4)热处理:将上述步骤3)得到的工件加热至850℃,保温时间1h,出炉迅速转移至 风冷室,以25℃/s的冷速冷却至180℃,转移出风冷室空冷至室温并利用余温自回火。
5)耐磨套压装:将耐磨套与端部法兰为过盈配合,采用压装设备,将耐磨套压入法兰环中。
6)抛丸:采用抛丸设备去除输送管外壁氧化皮等杂质。
7)喷粉涂装:输送管外表面喷粉末涂料,喷粉温度150℃,得到实施例3的输送管。
实施例4
与实施例1的区别在于步骤4)的热处理条件不同,本实施例的热处理过程如下:将步骤3)得到的工件加热至900℃,保温时间1h,出炉迅速转移至风冷室,以40℃/s的冷速冷却至180℃,转移出风冷室空冷至室温并利用余温自回火。
实施例5
与实施例1的区别在于步骤4)的热处理条件不同,本实施例的热处理过程如下:将步骤3)得到的工件加热至830℃,保温时间1h,出炉迅速转移至风冷室,以20℃/s的冷速冷却至180℃,转移出风冷室空冷至室温并利用余温自回火。
对比例1
与实施例1的区别在于无缝钢管的化学成分不同,具体为:C:0.55%,Mn:0.9%,Si:0.25%,Cr:0.2%,Ni:0.4%,P:0.010%,S:0.010%,Ti:0.02%,V:0.10%,Re(镧、铈、镨和钕):0.001%,余量为Fe。其余与实施例1相同。
对比例2
与实施例1的区别在于无缝钢管的化学成分不同,具体为:C:0.55%,Mn:0.9%,Si:0.25%,Cr:0.2%,Ni:0.4%,P:0.010%,S:0.010%,Ti:0.12%,V:0.10%,Re(镧、铈、镨和钕):0.001%,余量为Fe。
对比例3
与实施例1的区别在于无缝钢管的化学成分不同,具体为:C:0.55%,Mn:0.9%,Si:0.25%,Cr:0.2%,Ni:0.4%,P:0.010%,S:0.010%,V:0.10%,Re(镧、铈、镨和钕):0.001%,余量为Fe。其余与实施例1相同。
对比例4
与实施例1的区别在于无缝钢管的化学成分不同,具体为:C:0.55%,Mn:0.9%,Si:0.25%,Cr:0.2%,Ni:0.4%,P:0.010%,S:0.010%,Ti:0.05%,V:0.03%,Re(镧、铈、镨和钕):0.001%,余量为Fe。其余与实施例1相同。
对比例5
与实施例1的区别在于无缝钢管的化学成分不同,具体为:C:0.55%,Mn:0.9%,Si:0.25%,Cr:0.2%,Ni:0.4%,P:0.010%,S:0.010%,Ti:0.05%,V:0.17%,Re(镧、铈、镨和钕):0.001%,余量为Fe。其余与实施例1相同。
对比例6
与实施例1的区别在于无缝钢管的化学成分不同,具体为:C:0.55%,Mn:0.9%,Si:0.25%,Cr:0.2%,Ni:0.4%,P:0.010%,S:0.010%,Ti:0.05%,Re(镧、铈、镨和钕):0.001%,余量为Fe。其余与实施例1相同。
对比例7
与实施例1的区别在于无缝钢管的化学成分不同,具体为:C:0.55%,Mn:0.9%,Si:0.25%,Cr:0.2%,Ni:0.4%,P:0.010%,S:0.010%,Ti:0.05%,V:0.1%,Re(镧、铈、镨和钕):0.004%,余量为Fe。其余与实施例1相同。
对比例8
与实施例1的区别在于无缝钢管的化学成分不同,具体为:C:0.55%,Mn:0.9%,Si:0.25%,Cr:0.2%,Ni:0.4%,P:0.010%,S:0.010%,Ti:0.05%,V:0.1%,余量为Fe。其余与实施例1相同。
对比例9
与实施例1的区别在于热处理过程,对比例9的热处理过程如下:将步骤3)得到的工件加热至880℃,保温时间2h,出炉迅速转移至急冷室,以60℃/s的冷速冷却至180℃,转移出风冷室空冷至室温并利用余温自回火。其余与实施例1相同。
对比例10
与实施例1的区别在于热处理过程,对比例9的热处理过程如下:将步骤3)得到的工件加热至880℃,保温时间2h,出炉迅速转移至冷却室空冷至室温并利用余温自回火。其余与实施例1相同。图4为金相显微镜测得的对比例10的输送管的金相组织图,显示金相组织为铁素体+珠光体。
对比例11
与实施例1的区别在于,没有进行实施例1的步骤4)的热处理过程,直接端部法兰成型加工后进行耐磨套压装。
对各实施例和对比例获得的输送管进行力学性能检测,检测方法如下:
抗拉强度:参照GB/T 228.1标准,加工弧形拉伸试样,利用拉伸试验机测试抗拉强度。
冲击功:参照GB/T 229标准,加工V型缺口试样,利用摆锤冲击试验机测试试样室 温冲击功。
整体硬度:参照GB/T 230.1标准,利用数显洛氏硬度计测试钢管内壁硬度。
耐磨性:参照ASTM G105-16标准,利用湿砂橡胶轮磨损试验机测试样件磨损前后的重量,以磨损失重来评价耐磨性。
结果记录在表1中。
表1
在中碳低合金钢材料基础上,通过添加适当微量合金元素Ti、V和Re并控制各自的用量,结合热处理工艺,实现了提高钢强韧性和耐磨性的目的,进而提升利用该材料形成 的输送管的抗冲击性能,并缓解其磨损,使得输送管的使用寿命可达到5万方以上。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (13)

  1. 一种中碳低合金钢材料,其特征在于,由以下质量分数的化学成分组成:C:0.55%-0.60%,Mn:0.80%-1.40%,Si:≤0.3%,Cr:0.2%-0.4%,Ni:0.2%-0.4%,P:≤0.020%,S:≤0.020%,Ti:0.04%-0.10%,V:0.05%-0.15%,Re:0.001%-0.003%,余量为Fe。
  2. 根据权利要求1所述的中碳低合金钢材料,其特征在于,所述Re选自镧、铈、镨、钕中的任意一种或多种的组合。
  3. 一种输送管,包括管体,其特征在于,所述管体采用权利要求1或2所述的中碳低合金钢材料一体成型制备而成。
  4. 根据权利要求3所述的输送管,其特征在于,所述管体的硬度在40-45HRC、和/或抗拉强度≥1300MPa、和/或冲击功≥50J、和/或显微组织为回火马氏体。
  5. 根据权利要求3所述的输送管,其特征在于,所述管体包括直管和两个端部法兰,所述两个端部法兰与所述直管一体成型,且一一对应地设置在所述直管的两端。
  6. 根据权利要求5所述的输送管,其特征在于,所述输送管还包括耐磨套,所述耐磨套设置在所述端部法兰的内腔且与所述端部法兰过盈配合。
  7. 一种权利要求3至6的任一项所述的输送管的制备方法,其特征在于,所述制备方法包括:
    由以下质量分数的化学成分组成的原材料制备中碳低合金钢材料:C:0.55%-0.60%,Mn:0.80%-1.40%,Si:≤0.3%,Cr:0.2%-0.4%,Ni:0.2%-0.4%,P:≤0.020%,S:≤0.020%,Ti:0.04%-0.10%,V:0.05%-0.15%,Re:0.001%-0.003%,余量为Fe,所述中碳低合金钢材料为无缝钢管;
    对所述无缝钢管依次进行定尺锯切、端部法兰成型加工和热处理,得到所述输送管,所述热处理包括依次进行的加热、保温、一次冷却和二次冷却,其中所述一次冷却的冷却速度为25~35℃/s,所述二次冷却的冷却速度小于所述一次冷却的冷却速度。
  8. 根据权利要求7所述的制备方法,其特征在于,所述端部法兰成型加工的步骤包括依次进行的镦粗处理和切削加工形成端部法兰;
    优选地,所述镦粗处理包括将所述无缝钢管的端部加热至1100-1200℃后镦粗至目标厚度;
    进一步优选所述镦粗处理包括:
    将所述无缝钢管的端部感应加热至1100-1200℃后利用液压机镦粗至目标厚度。
  9. 根据权利要求7所述的制备方法,其特征在于,所述热处理包括:
    将端部法兰成型处理得到的工件加热至850-880℃并保温1~2小时;
    保温结束后进行所述一次冷却,优选采用强制冷却实现所述一次冷却,优选所述强制冷却为风冷或油冷;
    当一次冷却至200-150℃后进行二次冷却,在二次冷却中利用余温自回火;
    优选二次冷却为空冷。
  10. 根据权利要求7至9中任一项所述的制备方法,其特征在于,所述输送管还包括耐磨套,所述制备方法还包括在热处理后得到的工件两端压装耐磨套的过程。
  11. 根据权利要求10所述的制备方法,其特征在于,在压装耐磨套后所述制备方法还包括抛丸和喷粉涂装的过程,优选所述喷粉涂装的温度为150-200℃。
  12. 根据权利要求7至11中任一项所述的制备方法,其特征在于,所述制备中碳低合金钢材料的过程包括将原材料进行熔炼、浇铸、穿孔、轧管、定径、矫直的过程。
  13. 一种混凝土泵车,包括输送管,其特征在于,所述输送管为权利要求3至6中任一项所述的输送管。
PCT/CN2023/082135 2022-11-25 2023-03-17 一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车 WO2023197826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211490716.5A CN115896625B (zh) 2022-11-25 2022-11-25 一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车
CN202211490716.5 2022-11-25

Publications (1)

Publication Number Publication Date
WO2023197826A1 true WO2023197826A1 (zh) 2023-10-19

Family

ID=86492952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082135 WO2023197826A1 (zh) 2022-11-25 2023-03-17 一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车

Country Status (2)

Country Link
CN (1) CN115896625B (zh)
WO (1) WO2023197826A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073083A (ja) * 1999-08-31 2001-03-21 Nippon Steel Corp 耐摩耗性に優れたアズロール電縫鋼管
JP2003147478A (ja) * 2001-11-12 2003-05-21 Sumitomo Metals (Kokura) Ltd 非調質鋼
CN112662944A (zh) * 2020-12-03 2021-04-16 宝钢特钢韶关有限公司 轴承钢及其制备方法
CN112695248A (zh) * 2020-12-10 2021-04-23 包头钢铁(集团)有限责任公司 一种含稀土混凝土输送用耐磨热轧无缝钢管及其生产方法
CN115013601A (zh) * 2022-07-01 2022-09-06 江苏徐工工程机械研究院有限公司 混凝土输送管及其制造方法和混凝土泵车

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU514038A1 (ru) * 1975-02-20 1976-05-15 Уральский научно-исследовательский институт черных металлов Сталь
CN102506237B (zh) * 2011-11-01 2014-07-09 三一汽车制造有限公司 混凝土输送管及其制造方法
CN102913687B (zh) * 2012-10-30 2014-12-10 三一汽车制造有限公司 输送管的制造方法
CN104295802B (zh) * 2014-08-22 2017-12-22 中联重科股份有限公司 混凝土输送管及其加工方法
CN104565559A (zh) * 2014-12-24 2015-04-29 衡阳华菱钢管有限公司 泥浆输送管的制造方法及泥浆输送管
CN107475609A (zh) * 2017-08-09 2017-12-15 侯宇岷 一种耐磨钢棒用钢、耐磨钢棒及其制备方法
CN110409903A (zh) * 2018-04-28 2019-11-05 中国电力科学研究院有限公司 一种输电塔及输电塔支撑柱
CN109913749A (zh) * 2019-03-06 2019-06-21 鞍钢股份有限公司 一种经济型耐磨无缝钢管及其制造方法
CN111020370B (zh) * 2019-10-31 2021-07-20 鞍钢股份有限公司 一种混凝土泵车用单层耐磨无缝钢管及其制造方法
CN112267073A (zh) * 2020-09-30 2021-01-26 东北大学 具有优异低温韧性和焊接性能的耐腐蚀磨损钢板及其制备方法
EP4053301A1 (en) * 2021-03-01 2022-09-07 Villares Metals S.A. Martensitic steel and method of manufacturing a martensitic steel
CN114058969B (zh) * 2021-11-16 2022-12-09 江苏徐工工程机械研究院有限公司 一种合金钢及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073083A (ja) * 1999-08-31 2001-03-21 Nippon Steel Corp 耐摩耗性に優れたアズロール電縫鋼管
JP2003147478A (ja) * 2001-11-12 2003-05-21 Sumitomo Metals (Kokura) Ltd 非調質鋼
CN112662944A (zh) * 2020-12-03 2021-04-16 宝钢特钢韶关有限公司 轴承钢及其制备方法
CN112695248A (zh) * 2020-12-10 2021-04-23 包头钢铁(集团)有限责任公司 一种含稀土混凝土输送用耐磨热轧无缝钢管及其生产方法
CN115013601A (zh) * 2022-07-01 2022-09-06 江苏徐工工程机械研究院有限公司 混凝土输送管及其制造方法和混凝土泵车

Also Published As

Publication number Publication date
CN115896625B (zh) 2024-04-30
CN115896625A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
AU2015353251B2 (en) Low-alloy high-strength high-tenacity steel panel and method for manufacturing same
JP4475440B1 (ja) 継目無鋼管およびその製造方法
CN101413088B (zh) 耐硫化氢应力腐蚀的石油套管及其制造方法
WO2014154104A1 (zh) 一种低合金高韧性耐磨钢板及其制造方法
JP5157072B2 (ja) 耐切断割れ性に優れた引張強度900MPa以上の高強度・高靭性厚鋼板の製造方法
CN107218209B (zh) 一种石油开采用缸套及其制备方法
JP2004292857A (ja) 非調質継目無鋼管
CN107974621B (zh) 一种经济型直缝埋弧焊管用x80管线钢板及生产方法
CN107974622B (zh) 一种厚度≥26.4mm的直缝埋弧焊管用X80管线钢板及生产方法
WO2017050227A1 (zh) 一种高强韧性无缝钢管及其制造方法
CN109371335B (zh) 一种超高强度海洋软管用钢及其制备方法
CN113453812B (zh) 燃料喷射管用钢管及使用其的燃料喷射管
WO2023197826A1 (zh) 一种中碳低合金钢材料、输送管、其制备方法和混凝土泵车
JP3257339B2 (ja) 耐磨耗性の優れた高炭素電縫鋼管の製造方法
CN103966526A (zh) 大壁厚油气输送管件三通用钢板及其生产方法
JP7458685B2 (ja) 高強度の抗崩壊オイルケーシングおよびその製造方法
CN114875331A (zh) 一种具有优良心部疲劳性能的610MPa级厚钢板及其生产方法
JP3558198B2 (ja) 高温sr特性に優れた高強度ライザー鋼管
JP5472423B2 (ja) 耐切断割れ性に優れた高強度・高靱性厚鋼板
CN111996454A (zh) 机械密封用不锈钢及其制成的机械密封铸件及其制备方法
JP2004269964A (ja) 高強度鋼板の製造方法
CN101724791A (zh) 抗辐射性能优良的中高温特厚钢板及其制造方法
JP3536752B2 (ja) 耐水素誘起割れ性に優れた薄肉鋼板およびその製造方法
WO2024149253A1 (zh) 一种屈服强度345MPa以上的搪玻璃用钢及其制造方法
WO2023241471A1 (zh) 一种抗延迟开裂耐磨蚀钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787474

Country of ref document: EP

Kind code of ref document: A1