WO2023193282A1 - 一种束斑测量方法、装置、设备及介质 - Google Patents

一种束斑测量方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023193282A1
WO2023193282A1 PCT/CN2022/085983 CN2022085983W WO2023193282A1 WO 2023193282 A1 WO2023193282 A1 WO 2023193282A1 CN 2022085983 W CN2022085983 W CN 2022085983W WO 2023193282 A1 WO2023193282 A1 WO 2023193282A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
beam spot
waveform
target
sequence
Prior art date
Application number
PCT/CN2022/085983
Other languages
English (en)
French (fr)
Inventor
劳大鹏
朱金台
杨晨
***
余北
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/085983 priority Critical patent/WO2023193282A1/zh
Publication of WO2023193282A1 publication Critical patent/WO2023193282A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Definitions

  • the present application relates to the field of electronics, and in particular to a beam spot measurement method, device, equipment and medium.
  • the electron beam lithography machine In large-scale integrated circuit processing technology, photolithography and inspection are one of the important key technologies. Compared with the current most advanced extreme ultraviolet lithography machine (extreme ultra-violet, EUV), the electron beam lithography machine has higher etching accuracy because the wavelength of electrons is shorter, which is an important technical route. At the same time, scanning electron microscopy is also an important means in modern large-scale integrated circuit processing technology. As shown in Figure 1, the electron beam is generated by the electrons generated by the cathode 101, and then converged into a small electron beam spot on the focal plane 105 after being accelerated by the anode 102, collimated by the collimator 103, and focused by the electron lens 104. . The position of the electron beam spot is an important indicator. For an M ⁇ N electron beam array, it is necessary to accurately measure the mutual positions of the beam spots irradiated by the M ⁇ N electron beam.
  • a knife-edge sensor is used to measure the shape and position of the electron beam.
  • the existing technology cannot accurately measure the relative position between multiple electron beam spots. position, at the same time, using the movement of the machine equipped with the knife edge detector, or using the electron beam itself to scan through the deflector to cause the detector and the electron beam to move relative to each other, there will be undesirable jitter (position jitter and velocity jitter) during the movement ), which may cause the detection structure to fail to detect the electron beam or the electron beam position to be inaccurate.
  • Embodiments of the present application provide a beam spot measurement method, device, equipment and medium for measuring and positioning the electron beam spot.
  • the first aspect of the embodiment of the present application provides a beam spot measurement method, including:
  • a shielding element is provided between the detector and the electron beam generation system.
  • the shielding element is made of heavy metal (such as tungsten or titanium).
  • the shielding element is used to shield the electron beam generation system.
  • the electron beam is emitted by the system, and the shielding element is provided with at least one first gap that allows the electron beam to pass through, and the signal change includes the waveform of the signal change detected by the detector when the electron beam sweeps through the shielding element;
  • the detector includes at least one analog to digit converter (analog to digit convertor, ADC), and the signal change is the signal change value output by the ADC after converting the voltage signal of the electron beam into a digital signal.
  • ADC analog to digit converter
  • the target area where the beam spot of the electron beam sweeps on the detector is located according to the first waveform of the signal change.
  • the first waveform is the waveform generated by the beam spot sweeping through the first gap sequence of the target.
  • the shielding element Different first gap sequences are provided at different positions.
  • the target first gap sequence is a first gap sequence in the shielding element.
  • Each first gap sequence includes at least one first gap and a first gap sequence arranged between the first gap. The arrangement and combination of the first gaps and the first gaps are different in different first gap sequences.
  • the detector outputs a signal change after the beam spot is scanned, and the first waveform in the signal change is used to determine the arrangement and combination of the first gap and the first spacing in the target area of the blocking element swept by the beam spot.
  • the first gap sequence the beam spot scans is. Since the relative position between the detector and the shielding element is fixed, the projection position of each first gap sequence on the shielding element on the detector is also fixed. From this, the target area swept by the beam spot on the detector can be determined. Therefore, the first gap sequence scanned by the beam spot is determined through the first waveform, and the area scanned by the beam spot on the detector is determined through the first gap sequence, thereby improving the accuracy of beam spot detection.
  • locating the target area swept by the electron beam on the detector according to the first waveform of the signal change includes: determining the position of the wave peak in the first waveform as the position of the first gap; It is determined that the position without a wave peak in the first waveform is the first pitch; the first waveform is determined according to the arrangement of the first gap and the first pitch; the waveform generated by the beam spot scanning the target first gap sequence; The projection of the first gap sequence of the target on the detector is determined to be the target area.
  • the target first gap sequence is one of multiple first gap sequences.
  • the beam spot In the process of the beam spot scanning the target first gap sequence from left to right, when the beam spot scans the first gap, the beam spot The spot passes through the first first gap and is illuminated on the detector, forming a wave peak in the first waveform measured by the detector. The beam spot continues to scan to the right, illuminating the first first gap and the second first gap.
  • the first spacing blocks the beam spot, so the detector does not detect a signal, and there is no signal peak in the first waveform corresponding to this position.
  • the beam spot completes scanning the first gap sequence of the target from left to right, the complete first waveform can be obtained.
  • the arrangement and combination of the first gaps and the first intervals scanned by the beam spot can be analyzed, and the area scanned by the beam spot is determined to be the area where the target first gap sequence is located.
  • the positioning of the beam spot scanning area is realized.
  • a plurality of second gap sequences are provided on one side of each first gap sequence in the shielding element.
  • the second gap sequence is a sequence that the beam spot scans after scanning the first gap sequence.
  • Different The gaps between the second gap sequence are arranged in different ways; after positioning the beam spot of the electron beam in the target area scanned on the detector according to the first waveform of the signal change, the method further includes: a third waveform according to the signal change.
  • the second waveform locates the target sub-area that the beam spot sweeps in the target area.
  • the second waveform is a waveform generated by the beam spot sweeping through the target second gap sequence.
  • the target second gap sequence is the at least one second gap sequence. One of the gap sequences.
  • a blocking element is provided above the detector, and a plurality of first gap sequences and second gap sequences are provided on the blocking element. Since the relative position between the detector and the shielding element is fixed, the projection position of each second gap sequence on the shielding element on the detector is also fixed.
  • the beam spot scans the target through the first waveform, it is determined On the basis of the area, as long as you know the second gap sequence swept by the beam spot, you can know which sub-area of the target area on the detector the beam spot has swept. Therefore, when it is determined that the second waveform is the waveform generated by the beam spot scanning the target's second gap sequence, it can be known that the projection of the target's second gap sequence on the detector is the target sub-region swept by the beam spot. Therefore, by setting the second gap sequence on the shielding element, the second positioning of the beam spot is achieved, thereby further refining the positioning of the beam spot based on the first positioning, and improving the accuracy of the beam spot position measurement. Accuracy.
  • the target area includes a plurality of second gap sequences, and each second gap sequence is respectively provided with a plurality of second gaps with different sizes and/or shapes on the scanning path of the beam spot.
  • the arrangement and combination of the plurality of second gaps in the two-gap sequence are different; the positioning of the target sub-area swept by the beam spot in the target area according to the second waveform of the signal change includes: according to the second waveform
  • the projection on the detector is the target sub-area swept by the beam spot.
  • the second waveform is a waveform generated by the beam spot scanning the target second gap sequence in the shielding element.
  • the target second gap sequence is the area scanned by the beam spot after scanning the target first gap sequence.
  • the shielding element Different second gap sequences are provided at different positions, and the gaps are arranged in different ways between different second gap sequences. This enables secondary positioning of the beam spot to be achieved through the second gap sequence.
  • the plurality of second gaps in each second gap sequence have the same shape and different sizes
  • determining the order of the plurality of second gaps according to the duration of the peak in the second waveform includes: according to the first The duration of the wave peak in the two waveforms determines the size of the swept second gap, wherein the longer the duration, the larger the second gap; the ordering of the plurality of second gaps is obtained according to the size of the second gap.
  • the difference between the second gap sequence and the first gap sequence is that the first gap sequence is distinguished by the ordering between the first gap and the first distance, while the second gap sequence is distinguished by the ordering of the second gap. Distinguish by size. Therefore, the longer the duration of the wave peak in the second waveform, the larger the area of the second gap. Therefore, the order of the second gap swept by the beam spot can be determined by the duration of each wave peak in the second waveform. Thus, it is determined which second gap sequence the beam spot scans is.
  • the method further includes: determining according to the second waveform that the beam spot sweeps in the target sub-area. traces of.
  • each wave peak in the second waveform it is possible to determine which second gap sequence the beam spot sweeps is, thereby determining the target sub-area swept by the beam spot. Further, it can also be determined according to The second waveform determines the trajectory of the beam spot in further detail, thereby achieving a more precise measurement of the beam spot.
  • each second gap of the second gap sequence includes a triangle pair, the triangle pair includes two triangle gaps of the same shape and arranged symmetrically, and the beam spot is determined to be at the target according to the second waveform.
  • the trajectory swept in the sub-area includes: determining the abscissa of the beam spot at each time point based on the scanning speed of the beam spot and the time scale in the second waveform; determining an adjacent one from the second waveform.
  • the target wave peak is the wave peak of the target triangle pair swept by the beam spot.
  • the target triangle pair is a triangle pair in the second gap sequence of the target.
  • the first wave peak of the target wave peak is one of the triangle pairs swept by the beam spot.
  • the wave peak of the detector output during the triangle process, and the second wave peak in the target wave peak is the wave peak of the detector output during the process when the beam spot sweeps across the other triangle in the triangle; according to the second wave peak or the third wave peak
  • the ratio of the duration of a wave peak to the total duration of the first wave peak plus the second wave peak determines the ordinate of the beam spot; the trajectory of the beam spot swept in the target sub-area is determined based on the abscissa and the ordinate.
  • the target wave peak obtained by the detector includes a first wave peak and a second wave peak, where the first wave peak is the wave peak after the beam spot scans the first triangular gap.
  • the wave peak formed in the detector is the wave peak formed in the detector after the beam spot sweeps through the second triangular gap.
  • the method based on the scanning speed of the beam spot and the time scale in the second waveform also includes: based on the interval between wave peaks in the first waveform and the interval between the first gaps in the target first gap sequence. The spacing determines the scanning speed of the beam spot.
  • the size of each first gap in the first gap sequence is known. According to the interval time between wave peaks in the first waveform, the time it takes for the beam spot to scan through the first gap can be known. Using the first gap The scanning speed of the beam spot can be obtained by dividing the size by the time it takes for the beam spot to scan across the gap.
  • the target first gap sequence is set before the target second gap sequence, or each second gap in the target second gap sequence is respectively set before the first gap sequence and is different from the second gap sequence.
  • the first gap sequence preceding the gap is not the same.
  • a first gap sequence is alternately provided between each second gap of the second gap sequence, so that a speed measurement can be performed through the first gap sequence before each second gap is scanned, or the speed can be measured once.
  • the position of each second gap is positioned to prevent the uneven scanning speed of the beam spot and the jitter of the beam spot in the Y-axis direction during the scanning process from affecting the measurement accuracy.
  • the method further includes: fitting the shape of the beam spot according to the second waveform.
  • the shape of the beam spot can be obtained through a fitting method based on the obtained second waveform, thereby achieving a more complete measurement of the beam spot.
  • the second aspect of the embodiment of the present application provides a beam spot measurement device, including:
  • An acquisition unit is used to acquire signal changes output by the detector.
  • a shielding element is provided between the detector and the electron beam generation system.
  • the shielding element is used to shield the electron beam emitted by the electron beam generation system.
  • the shielding element is provided with at least one first gap that allows the electron beam to pass through, and the signal change includes the waveform of the signal change detected by the detector when the electron beam sweeps through the shielding element;
  • the positioning unit configured to position the target area where the beam spot of the electron beam sweeps on the detector according to the first waveform of the signal change acquired by the acquisition unit, where the first waveform is the beam spot The waveform generated by sweeping the target first gap sequence.
  • Different first gap sequences are provided at different positions of the shielding element.
  • the target first gap sequence is a first gap sequence in the shielding element.
  • Each The first gap sequence includes at least one first gap and a first spacing disposed between the first gaps, and the arrangement of the first gaps and the first spacing between different first gap sequences is The combination is different.
  • this positioning unit is also used for:
  • the first waveform is determined according to the arrangement of the first gap and the first spacing, and is a waveform generated by the beam spot scanning the target first gap sequence;
  • the projection of the first gap sequence of the target on the detector is determined to be the target area.
  • a plurality of second gap sequences are provided on one side of each first gap sequence in the shielding element.
  • the second gap sequence is a sequence that the beam spot scans after scanning the first gap sequence.
  • Different The gaps between the second gap sequences are arranged in different ways; the positioning unit is also used to:
  • the target sub-area swept by the beam spot in the target area is located according to the second waveform of the signal change.
  • the second waveform is a waveform generated by the beam spot scanning the target second gap sequence.
  • the target second gap sequence is one of the at least one second gap sequence.
  • the target area includes a plurality of second gap sequences, and each second gap sequence is respectively provided with a plurality of second gaps with different sizes and/or shapes on the scanning path of the beam spot.
  • the plurality of second gaps in the two-gap sequence are arranged in different ways; the positioning unit is also used for:
  • the projection of the second gap sequence of the target on the detector is determined to be the target sub-area swept by the beam spot.
  • the plurality of second gaps in each second gap sequence have the same shape and different sizes.
  • the positioning unit is also used to:
  • the size of the swept second gap is determined according to the duration of the wave peak in the second waveform, wherein the longer the duration, the larger the second gap;
  • the ordering of the plurality of second gaps is obtained according to the size of the second gap.
  • this positioning unit is also used for:
  • the trajectory of the beam spot swept in the target sub-area is determined based on the second waveform.
  • each second gap of the second gap sequence includes a triangle pair, which includes two triangle gaps with the same shape and symmetrical arrangement.
  • the positioning unit is also used to:
  • an adjacent pair of target wave peaks is the wave peak of the target triangle pair swept by the beam spot.
  • the target triangle pair is a triangle pair in the target second gap sequence.
  • the first wave peak in the target wave peak is the wave peak of the detector output when the beam spot sweeps through one triangle in the triangle, and the second wave peak in the target wave peak is the output of the detector in the process when the beam spot sweeps across the other triangle in the triangle. the crest of the wave;
  • the trajectory of the beam spot swept in the target sub-area is determined based on the abscissa and the ordinate.
  • the scanning speed of the beam spot and the time scale in the second waveform it also includes:
  • the scanning speed of the beam spot is determined according to the spacing between wave peaks in the first waveform and the spacing between the first gaps in the target first gap sequence.
  • the target first gap sequence is set before the target second gap sequence, or each second gap in the target second gap sequence is respectively set before the first gap sequence and is different from the second gap sequence.
  • the first gap sequence preceding the gap is not the same.
  • the device further includes a fitting unit for fitting the shape of the beam spot according to the second waveform.
  • the third aspect of the embodiments of the present application provides an electronic device.
  • the electronic device includes: a processor and a memory, with program instructions stored in the memory; the processor is used to execute the program instructions stored in the memory, and execute any of the above-mentioned first aspects. method described in one item.
  • the electronic device may also include: an interactive device and an input/output (I/O) interface; the interactive device is used to obtain the operation instructions input by the user, so that the processor executes any one of the above first aspects. method described.
  • I/O input/output
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium that includes instructions that, when run on a computer device, cause the computer device to execute the method described in any one of the above first aspects.
  • Figure 1 is a schematic diagram of an electron beam generated by an electron beam lithography machine in an embodiment of the present application
  • Figure 2 is a schematic diagram of measuring beam spot position in the prior art
  • Figure 3 is a calculation principle diagram for calculating the beam spot position in the prior art
  • Figure 4 is a schematic diagram of a shielding element in the prior art
  • Figure 5 is a schematic diagram of the system of the beam spot measurement method provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of an embodiment of the beam spot measurement method provided by the embodiment of the present application.
  • Figure 7 is a schematic plan view of the detector in the beam spot measurement method provided by the embodiment of the present application.
  • Figure 8 is a top view of the blocking element in the beam spot measurement method provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the first gap sequence in the beam spot measurement method provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of the second gap sequence and the second waveform obtained after the beam spot scans the second gap sequence in the beam spot measurement method provided by the embodiment of the present application;
  • Figure 11 is a schematic diagram of the second triangle of the second gap sequence in the beam spot measurement method provided by the embodiment of the present application.
  • Figure 12 is a schematic diagram of another implementation of the blocking element in the beam spot measurement method provided by the embodiment of the present application.
  • Figure 13 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of a beam spot measurement device provided by an embodiment of the present application.
  • Embodiments of the present invention provide a beam spot measurement method, device, equipment and medium, which can enable the detector to locate the position of the beam spot through a gap sequence, thereby efficiently and accurately measuring the position of each electron beam in a multi-electron beam system.
  • Figure 1 is a schematic diagram of an electron beam generated by an electron beam lithography machine.
  • the electron beam is generated by the electrons generated by the cathode 101, and then accelerated by the anode 102, collimated by the collimator 103, and focused by the electron lens 104. Finally, they can be converged into a small electron beam spot on the focal plane 105.
  • the cathode may emit multiple electron beams, which successively pass through the anode acceleration, collimator collimation, electronic lens focusing and other modules to form an M ⁇ N electron beam spot matrix on the focal plane.
  • the mutual position between the beam spots is an important index, which will affect the splicing accuracy of the image. Determines the resolution accuracy in electron beam etching and detection systems.
  • the electron beam spot shape is equivalent to the point spread function (PSF) in the optical imaging system, so accurate beam spot shape estimation is of great value for subsequent high-definition image reconstruction.
  • PSF point spread function
  • the knife-edge sensor is a device used to measure the shape and intensity of the electron beam.
  • the device uses some geometry with beveled edges. Structures (triangles, hexagons, etc.) block the electron beam (the electron beam is detected outside the geometric structure) or detect it.
  • electrons can be detected using indirect methods (scintillator detectors convert electro-optical light into photons) or direct detection methods (semiconductor detectors, such as allowing electrons to excite electron-hole pairs in materials such as Si).
  • Figure 2 is a schematic diagram of measuring the beam spot position in the prior art.
  • the triangular structure 201 is used to detect the electron beam.
  • the current response of the detector is constant I0; as The electron beam cuts into the detection structure from left to right (passing through position 0 - position 1 - position 2 - position 3 in the triangular structure 201 in sequence), and the current gradually increases; when the electron beam completely enters the detection structure (the position in the triangular structure 201 3), the current response of the detector starts to be constant I1; when the electron beam cuts out of the detection structure (passing through positions 4 - 5 - 6 - 7 in the triangular structure 201 in sequence), the current response of the detector gradually decreases; when the electron beam completely leaves the detection structure (position 6 in the triangle structure 201), the current response of the detector is constant I0.
  • the abscissa is the position of the beam spot in the x direction
  • x1 is the position where the beam spot has just entered the triangular gap
  • x3 is the initial position where the beam spot has completely entered the triangular gap, through the x1 position and At the x3 position, we can find the midpoint between the x1 position and the x3 position.
  • the x2 position is the position where the beam spot irradiates the midpoint of the hypotenuse on the left side of the triangular gap.
  • the x4 position is the last position where the beam spot is completely located within the triangular gap
  • the x6 position is the last position before the beam spot leaves the triangular gap.
  • the midpoint x5 of the x4 position and the x6 position can be obtained.
  • the position is the position where the beam spot irradiates the midpoint of the right hypotenuse of the triangular gap.
  • a graph as shown in Figure 3 can be obtained.
  • Figure 3 is a calculation principle diagram for calculating the beam spot position in the prior art.
  • the origin 301 of the coordinate system is the position of the vertex of the triangular gap.
  • This coordinate system records the position of the beam spot at each time during the process of cutting into the triangular gap from left to right, where, x2 and x5 are the x-axis coordinates of the intersection point between the center point of the beam spot and the two hypotenuses of the triangle.
  • ⁇ 1 and ⁇ 2 are the angles of the two base angles of the triangle gap respectively.
  • the two triangle gaps can be converted
  • the abscissa and ordinate coordinates of the beam spot center point are obtained, thereby locating the position of the beam spot.
  • the shape of the beam spot can be determined by the response curve between the electron beam and the hypotenuse of the gap.
  • the beam spot is circular, at least one hypotenuse is required.
  • the beam spot is an elliptical shape, a response curve with at least three hypotenuses is required. Fit an elliptical shape.
  • the specific fitting method of the beam spot shape is an existing technology. Those skilled in the art can choose a method for fitting the beam spot shape according to actual needs.
  • the invention of the embodiments of the present application mainly lies in the determination of the position of the center point of the beam spot. Therefore, the fitting method of the beam spot shape will not be described in detail.
  • each gap 401 is used to measure a beam spot in the electron beam spot matrix.
  • an electron beam needs to be measured multiple times to reduce various random errors such as the processing error of the knife edge detector, the motion error of the machine equipped with the knife edge detector, (electronic lens deflector error), etc. , so for multi-electron beam systems, the detection efficiency needs to be improved.
  • Embodiments of the present application provide a beam spot measurement method that enables the detector to locate the position of the beam spot through a gap sequence, so that even if the machine has undesirable jitter, it can still efficiently and accurately measure the multi-electron beam system.
  • the position of each electron beam is described in detail below with reference to the accompanying drawings.
  • FIG. 5 is a schematic diagram of the system provided by the method provided by the embodiment of the present application.
  • the electron beam generation system 51 and the machine platform 52 arranged below the electron beam generation system, and the machine platform 52 is provided with a During the specific working process of the knife edge detector 53, the cathode 501 of the electron beam generation system 51 emits multiple electron beams, which are sequentially accelerated by the anode 502, collimated by the collimator 503, and focused by the electron lens 504 on the focal plane 505.
  • An M ⁇ N electron beam spot matrix is formed.
  • the beam spot matrix is irradiated on the machine table.
  • the knife edge detector 53 is installed on the machine table. The knife edge detector 53 and the beam spot array will be moved by the machine table or the electron beam.
  • the deflector generates lateral movement so that the beam spot matrix sweeps across the knife edge detector 53.
  • the knife edge detector 53 includes a detector and a shielding element disposed between the detector and the electron beam generation system, with a gap provided in the shielding element. .
  • the beam spot matrix sweeps across the shielding element, the beam spot passes through the gap and irradiates the detector, causing the detector to induce a signal change due to the irradiation of the beam spot, so that the system performs the steps of the embodiments of the present application according to the signal change of the detector. Beam spot measurement method provided.
  • the beam spot measurement method provided by the embodiment of the present application includes the following steps.
  • a shielding element is provided between the detector and the electron beam generation system.
  • the shielding element is made of heavy metal (such as tungsten or titanium), thereby blocking the electron beam and preventing the beam spot from passing through the shielding element.
  • the shielding element is provided with a gap, and the signal change includes the waveform of the signal change detected by the detector when the electron beam sweeps through the shielding element.
  • the electron beam generated by the electron beam system is an M ⁇ N electron beam array.
  • Figure 7 is a schematic plan view of the detector provided by the embodiment of the present application, as shown in Figure 7
  • the detector includes an M ⁇ N measurement unit array, where each measurement unit 701 is used to detect the beam spot of an electron beam 702 in the electron beam array.
  • the measurement unit may be a semiconductor detector and/or an analog A combination of converters (analog to digit convertor, ADC), thereby converting the current intensity signal of the beam spot of the electron beam 702 into an output digital signal.
  • ADC analog to digit convertor
  • the first waveform is a waveform generated when the beam spot sweeps through the target first gap sequence in the shielding element.
  • Different first gap sequences are provided at different positions of the shielding element. There are different first gap sequences between the different first gap sequences. The arrangement and combination of the first gap and the first gap are different.
  • Figure 8 is a top view of the shielding element provided by the embodiment of the present application. Different positions are provided in the shielding element.
  • First gap sequence 801. Different first gap sequences respectively include a plurality of first gaps and a first spacing between the plurality of first gaps.
  • the first gap in the first gap sequence is a rectangular strip. The long side of the strip-shaped gap is perpendicular to the direction of beam spot scanning.
  • the first gap can also be in other shapes, which is not limited by the embodiment of the present application.
  • Different first gap sequences have different arrangements and combinations of first gaps and first intervals. The arrangement and combination means the number and order of the first gaps and the first spacing.
  • the alternating arrangement of the first gaps and the first spacing is an arrangement and combination (that is, there is a first spacing between each first gap). ;
  • FIG. 9 is a schematic diagram of the first gap sequence provided by the embodiment of the present application.
  • the target first gap sequence 901 is one of multiple first gap sequences.
  • the beam spot starts from the left.
  • the beam spot sweeps through the first gap 9011
  • the beam spot passes through the first first gap 9011 and irradiates the measurement unit.
  • a wave peak is formed in a waveform 902, and the beam spot continues to scan to the right.
  • the gap 9012 blocks the beam spot, so the measurement unit does not detect To the beam spot, there is no signal peak in the first waveform 902 at this position.
  • the complete first waveform 902 can be obtained.
  • the measurement unit measures the signal and inputs signal 1.
  • the measurement unit cannot detect the signal and inputs signal 0, thus completing the measurement of the first gap.
  • a set of digital sequences 903 composed of 0s and 1s is obtained.
  • the digital sequences 903 obtained by scanning different first gap sequences are different. As shown in Figure 9, there are three different first gap sequences ABC, and distinction is achieved based on the difference in the obtained digital sequence 903.
  • the first gaps and spacings in different first gap sequences are arranged in different ways, so that each first gap sequence can be uniquely distinguished from other first gap sequences.
  • the measurement unit obtains the first waveform, based on the measured arrangement relationship between the first gaps and spacings, it can be known that the first waveform is the waveform generated by the beam spot scanning the first gap sequence of the target.
  • a blocking element is provided above the measurement unit, and a plurality of first gap sequences are provided on the blocking element. Since the relative position between the measurement unit and the shielding element is fixed, the projection position of each first gap sequence on the shielding element on the measurement unit is also fixed, as long as the first gap swept by the beam spot is known sequence, you can know which area on the measurement unit the beam spot has swept. Therefore, when it is determined that the first waveform is the waveform generated by the beam spot scanning the target's first gap sequence, it can be known that the projection of the target's first gap sequence on the detector is the target area swept by the beam spot.
  • the first gap sequence is a sequence composed of several long strips of first gaps, which is similar to the structure of a barcode.
  • the second gap sequence is a sequence composed of several second gaps, and each second gap is a geometric figure with a hypotenuse.
  • the duration length of the wave peak formed and the ratio between the wave peak and non-wave peaks will be different, so that the wave peak duration can be determined according to the wave peak duration.
  • the duty cycle of the wave peak determines the first characteristic and the second characteristic of the waveform generated by the beam spot scanning the first gap sequence and the second gap sequence.
  • the waveform that satisfies the first characteristic in the signal change is the first waveform
  • the waveform that satisfies the second characteristic in the signal change is the second waveform. This achieves the extraction of the first waveform and the second waveform during signal changes, so as to facilitate subsequent analysis of the first waveform and the second waveform in subsequent steps.
  • a matrix of multiple electron beams is detected by an array of measurement units in the detector.
  • Each measurement unit is used to measure the beam spot of one electron beam. Since the area of the measurement unit is much larger than the beam spot, Therefore, it is necessary to locate the specific position where the beam spot sweeps in the measurement unit. In the above manner, the position of each beam spot in the measurement unit can be accurately measured.
  • each measurement unit in the detector separately measures the target area swept by the corresponding beam spot, the relative position between each beam spot in the electron beam array can be obtained, thereby realizing the measurement of the beam spot matrix.
  • the first gap in the first gap sequence 801 is a rectangular strip gap.
  • the long side of the strip gap is perpendicular to the direction of beam spot scanning.
  • the purpose is that all first gaps
  • the sequences added together can cover all areas of a measurement unit, preventing the beam spot from scanning places without the first gap sequence, resulting in the inability to locate the beam spot through the first gap sequence. Therefore, this determines that the range covered by a first gap sequence cannot be too small, and a larger first gap sequence cannot accurately position the beam spot.
  • this application uses a shielding element
  • a second gap sequence 802 is set up to perform secondary positioning of the beam spot, thereby positioning the beam spot more accurately.
  • the second gap sequence can also fit the shape of the beam spot. For ease of understanding, this method will be further described below. illustrate.
  • the second waveform is a waveform generated by the beam spot scanning the target second gap sequence in the shielding element.
  • the target second gap sequence is the area scanned by the beam spot after scanning the target first gap sequence.
  • the shielding element Different second gap sequences are provided at different positions, and the gaps are arranged in different ways between different second gap sequences.
  • the target area corresponding to a first gap sequence (ie, one side of each first gap sequence) is provided with multiple second gap sequences, and each second gap sequence is respectively provided on the scanning path of the beam spot.
  • each second gap sequence is respectively provided on the scanning path of the beam spot.
  • step 603 specifically includes the following steps.
  • the difference between the second gap sequence and the first gap sequence is that the first gap sequence is distinguished by the ordering between the first gap and the spacing, while the second gap sequence is distinguished by the size of the second gap. to fulfill.
  • the arrangement and combination of multiple second gaps in different second gap sequences are different. Therefore, the longer the duration of the wave peak in the second waveform, the larger the area of the second gap. Therefore, the order of the second gap swept by the beam spot can be determined by the duration of each wave peak in the second waveform.
  • a blocking element is provided above the measurement unit, and a plurality of first gap sequences and second gap sequences are provided on the blocking element. Since the relative position between the measurement unit and the shielding element is fixed, the projection position of each second gap sequence on the shielding element on the measurement unit is also fixed, as long as the second gap swept by the beam spot is known sequence, you can know which area on the measurement unit the beam spot has swept. Therefore, when it is determined that the second waveform is the waveform generated by the beam spot scanning the target's second gap sequence, it can be known that the projection of the target's second gap sequence on the detector is the target sub-region swept by the beam spot.
  • FIG. 8 a schematic diagram of the shielding element above the measurement unit is shown in Figure 8.
  • first gap sequence 801 multiple sets of second gap sequences 802 are provided from top to bottom, so that when the electron beam
  • the beam spot scans the shielding element from left to right, it may first scan the first gap sequence 801 and then scan the second gap sequence 802.
  • the first waveform is obtained by scanning the first gap sequence. According to the combination of peaks and non-peaks in the first waveform, the arrangement and combination of the first gaps and the first intervals in the first gap sequence scanned by the beam spot can be known. Then, based on the duration of each wave peak in the second waveform, determine the arrangement and combination of second gaps of different shapes/sizes in the swept second gap sequence.
  • the second gap sequence includes three second gaps with the same shape and different sizes.
  • the second gap with the smallest area is marked as No. 1
  • the second gap with the medium area is marked as No. 1.
  • No. 2 the second gap with the largest area is recorded as No. 3.
  • the arrangement of each second gap sequence The combination methods are respectively 123, 321, 231... and so on, so that each second gap sequence in the target area is distinguished from other second gap sequences.
  • a second positioning and retrieval of the beam spot is achieved, so that on the basis of the first positioning, the positioning of the beam spot is further refined and the positioning of the beam spot is improved. Accuracy of beam spot position measurement.
  • the trajectory of the beam spot scanning can be further accurately obtained. For ease of understanding, this method will be described in further detail below.
  • the gap sequence swept by the beam spot can be determined based on the duration of each wave peak in the second waveform.
  • the gap sequence swept by the beam spot can be determined in further detail. Trajectory, for ease of understanding, the calculation method of trajectory is explained in detail below.
  • each second gap in the second gap sequence includes a triangle pair, and the triangle pair includes two triangle gaps with the same shape and symmetrical arrangement.
  • the second gaps can also have other shapes. For example, a symmetrical trapezoidal pair.
  • the embodiment of the present application only introduces the second gap as a triangular pair, but this does not constitute a limitation to this solution.
  • the above step 604 specifically includes the following steps.
  • the abscissa of the beam spot is the distance between the beam spot and the origin of the coordinate system.
  • the origin of the coordinate system can be the starting point of the beam spot's trajectory in the target area. Different time points can be obtained by multiplying the scanning speed by the time scale.
  • the abscissa of the upper beam spot is the distance between the beam spot and the origin of the coordinate system.
  • the scanning speed of the beam spot can be determined in the following ways.
  • the scanning speed of the beam spot is determined according to the spacing between the wave peaks in the first waveform and the spacing between the first gaps in the target first gap sequence.
  • the pitch size of each first gap in the first gap sequence is known. According to the interval time between wave peaks in the first waveform, the time it takes for the beam spot to scan through the pitch can be known. Divide by the pitch size The scanning speed of the beam spot can be obtained by taking the time it takes for the beam spot to scan through the gap.
  • the target triangle pair is a triangle pair in the target second gap sequence.
  • FIG. 10 is a schematic diagram of the second waveform obtained after the second gap sequence and the beam spot scan the second gap sequence in the embodiment of the present application.
  • the detector's signal will form two wave peaks.
  • the first peak in the target wave peak is the first triangle in the triangle pair swept by the beam spot.
  • the wave peak of the detector output during the process, and the second wave peak in the target wave peak is the wave peak of the detector output during the process when the beam spot sweeps the second triangle in the triangle.
  • the vertical coordinate of the beam spot is specifically determined in the following manner.
  • the beam spot sweeps across the target second gap sequence 1001 from left to right, and the first second gap of the target second gap sequence 1001 is the target triangle pair 10011.
  • the target triangle pair is two right-angled triangles set symmetrically.
  • the target triangle pair is in the center.
  • the triangle on the left is the first triangle 100111
  • the triangle on the right is the second triangle 100112.
  • the ordinate of the bottom point of the right-angled side in the vertical direction is y11
  • the ordinate of the vertex of the right-angled side in the vertical direction is y12.
  • the beam spot starts scanning from point A 1002 between y11 and y12.
  • the target wave peak 1003 obtained by the measurement unit includes a first wave peak 10031 and a second wave peak 10032, where the first wave peak 10031 is formed in the measurement unit after the beam spot scans the first triangle 100111.
  • the wave peak, the second wave peak 10032 is the wave peak formed in the measurement unit after the beam spot sweeps the second triangle 100112, as shown in Figure 10, the length of the first wave peak is x11, the length of the second wave peak is x12, the first wave peak There is a certain interval between the beam spot and the second wave peak.
  • the lengths of the first wave peak, the second wave peak and the interval constitute the total response length x1 of the beam spot passing through the target triangle pair.
  • the vertical coordinate y f of the beam spot is calculated through the following formula:
  • Figure 11 is a schematic diagram of the second triangle in the second gap sequence.
  • Triangle 1101 in Figure 11 is the second triangle 100112 in Figure 10.
  • the beam spot is drawn during the scanning process.
  • the trajectory through the second triangle is ab.
  • triangle abc and the second triangle dec form a similar triangle.
  • the length of the beam spot crossing the trajectory ab (that is, the horizontal side of the triangle abc) is the length of the second wave peak, which is x12.
  • the duration of the second wave peak at this time should be x11+x12, then That is the ratio of the horizontal sides of triangle abc to triangle dec.
  • y12-y11 is equal to the length of the vertical side of triangle dec, by the formula The length of the vertical side of the triangle abc can be obtained.
  • the ordinate of the trajectory ab can be obtained.
  • the ordinate of the beam spot can also be obtained in the same way, which will not be described again here.
  • the beam spot can be obtained by using the obtained ordinate and these abscissas. Trajectories swept through the target subregion.
  • the beam spot measurement method provided by the embodiment of the present application first locates the beam spot through the first waveform obtained by scanning the first gap sequence of the target, and determines the target area swept by the beam spot in the measurement unit. . Then, the beam spot is positioned twice through the second waveform obtained by scanning the second gap sequence of the target, thereby determining the target sub-area swept by the beam spot in the above-mentioned target area, achieving a more accurate positioning of the beam spot. positioning. Furthermore, in the embodiment of the present application, the gap between the blocking elements is in the form of a triangular pair. Through the structure of the triangular pair and the second waveform, the trajectory of the beam spot scanning can be accurately obtained, thereby achieving beam alignment in a single measurement unit. Accurate positioning of the spot. In a beam spot matrix with multiple beam spots, each measurement unit measures the position of a beam spot in the above manner. By summarizing these data, each beam spot in the beam spot matrix can be obtained. relative position.
  • the gap sequence can be arranged as shown in Figure 8.
  • the first gap sequence is set on the left side
  • the second gap sequence is set on the right side of the first gap sequence, that is, from the beam spot
  • the first gap sequence is set before the second gap sequence.
  • the arrangement of the gap sequence may also be as shown in Figure 12.
  • Figure 12 is a schematic diagram of another implementation manner of the shielding element provided by the embodiment of the present application.
  • a first gap sequence 1201 is alternately provided between each second gap 1202 of the second gap sequence. This arrangement has the following advantages.
  • the machine can drive the measurement unit to move relative to the beam spot in two ways.
  • the first is the method of constant speed movement.
  • the machine moves relative to the beam spot at the same speed to achieve uniform scanning of the beam spot.
  • the second method is the step movement method.
  • the machine moves one step interval in the same direction every preset time interval, thereby realizing the beam spot scanning of the occlusion element above the measurement unit.
  • the movement of the machine may experience some jitter, causing the scanning speed or step interval of the beam spot to be uneven, thus affecting the related calculations.
  • each second gap is preceded by a set of In the first gap sequence, each time the beam spot scans the second gap, the scanning speed or step interval of the beam spot can be measured through the first gap sequence, thus solving the problem of uneven beam spot scanning speed or step interval. Effect on measurement accuracy.
  • the beam spot sequentially scans three second gaps in the second gap sequence; the second waveform obtained by scanning the three second gaps determines the target sub-region that the beam spot sweeps on the shielding element.
  • the smallest second gap is marked as No. 1
  • the medium second gap is marked as No. 2
  • the largest second gap is marked as No. 3.
  • the target area corresponding to a first gap sequence there are multiple different second gap sequences set from top to bottom.
  • the order of the second gaps in the A second gap sequence in the first row is 123
  • the order of the second gaps in the B second gap sequence in the second row is 123. to 321.
  • the beam spot starts from the A second gap sequence in the first row and takes the first trajectory 1203.
  • the system can recognize that the second gap sequence is 123, so The target sub-area scanned by the beam spot is located.
  • the beam spot may shake up and down in the y-axis direction.
  • the beam spot cuts from the A second gap sequence in the first row and sweeps the A second gap.
  • the second gap No. 1 in the sequence At this time, the scanning trajectory of the beam spot jitters, causing the beam spot to scan into the second gap sequence B. Then the two gaps scanned subsequently are the No. 2 gap and the No. 1 gap. Go to the No.
  • steps 601 to 604 above can calculate the specific position of the center of the beam spot.
  • the second waveform is obtained after the beam spot sweeps through at least three second gaps, it can be calculated through the third waveform.
  • the second waveform fits the shape of each beam spot, allowing for more specific and accurate measurement of the beam spot.
  • the shape of the beam spot can be determined by the response curve between the electron beam and the hypotenuse of the gap.
  • the beam spot is circular, at least one hypotenuse is required.
  • the beam spot is an elliptical shape
  • a response curve with at least three hypotenuses is required. Fit an elliptical shape.
  • the triangle pairs in the second gap provide three hypotenuses required to fit the beam spot shape.
  • the specific fitting method of the beam spot shape is an existing technology, and those skilled in the art can select a method of fitting the beam spot shape according to actual needs. Therefore, the embodiments of this application will not be described again.
  • the beam spot measurement method provided by the embodiment of the present application first locates the beam spot initially through the first waveform obtained by scanning the first gap sequence of the target. Then, the beam spot is positioned twice through the second waveform obtained by scanning the second gap sequence of the target, thereby determining the specific area swept by the beam spot in the measurement unit, and achieving accurate positioning of the beam spot. Furthermore, in the embodiment of the present application, the gap between the blocking elements is in the form of a triangular pair. Through the structure of the triangular pair and the second waveform, the trajectory of the beam spot scanning can be accurately obtained, thereby achieving beam alignment in a single measurement unit. Accurate positioning of the spot.
  • each measurement unit measures the position of a beam spot in the above manner.
  • each beam spot in the beam spot matrix can be obtained. relative position.
  • the shape of each beam spot in the beam spot matrix is fitted through the second waveform, thereby achieving accurate measurement of the beam spot.
  • the above device management method can be implemented by one physical device, or can be jointly implemented by multiple physical devices, or can be a logical function module in one physical device, which is not specifically limited in the embodiments of this application.
  • Figure 13 is a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application; the electronic device may be a playback terminal or a parsing terminal in the embodiment of the present invention.
  • the electronic device includes at least one processor 1301, a communication line 1302, and a memory. 1303 and at least one communication interface 1304.
  • the processor 1301 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (server IC), or one or more programs used to control the execution of the solution of this application. of integrated circuits.
  • CPU central processing unit
  • microprocessor microprocessor
  • server IC application-specific integrated circuit
  • Communication line 1302 may include a path for communicating information between the above-mentioned components.
  • Communication interface 1304 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, wireless access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN wireless access network
  • WLAN wireless local area networks
  • Memory 1303 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • the memory may exist independently and be connected to the processor through a communication line 1302. Memory can also be integrated with the processor.
  • the memory 1303 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 1301 for execution.
  • the processor 1301 is configured to execute computer execution instructions stored in the memory 1303, thereby implementing the billing management method provided in the following embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the processor 1301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 13 .
  • the electronic device may include multiple processors, such as processor 1301 and processor 1307 in FIG. 13 .
  • processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the electronic device may also include an output device 1305 and an input device 1306.
  • Output device 1305 communicates with processor 1301 and can display information in a variety of ways.
  • the output device 1305 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. wait.
  • Input device 1306 communicates with processor 1301 and may receive user input in a variety of ways.
  • the input device 1306 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
  • the above-mentioned electronic device may be a general device or a special device.
  • the electronic device may be a server, a wireless terminal device, an embedded device, or a device with a similar structure as shown in Figure 13.
  • the embodiments of this application do not limit the type of electronic equipment.
  • Embodiments of the present application can divide the electronic device into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing unit.
  • the above integrated units can be implemented in the form of hardware or software functional units. It should be noted that the division of units in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 14 shows a schematic structural diagram of a beam spot measurement device provided by an embodiment of the present application.
  • the beam spot measurement device provided by the embodiment of the present application includes:
  • the acquisition unit 1401 is used to acquire signal changes output by the detector.
  • a shielding element is provided between the detector and the electron beam generation system.
  • the shielding element is used to shield the electron beam emitted by the electron beam generation system.
  • the shielding element is provided with at least one first gap that allows the electron beam to pass through, and the signal change includes the waveform of the signal change detected by the detector when the electron beam sweeps through the shielding element;
  • Positioning unit 1402 configured to position the target area where the beam spot of the electron beam sweeps on the detector according to the first waveform of the signal change acquired by the acquisition unit 1401, where the first waveform is the The waveform generated by the beam spot scanning the target first gap sequence.
  • Different first gap sequences are provided at different positions of the shielding element.
  • the target first gap sequence is a first gap sequence in the shielding element, Each first gap sequence includes at least one first gap and a first spacing disposed between the first gaps, and the first gap and the first spacing between different first gap sequences The arrangement and combination are different.
  • the positioning unit 1402 is also used to:
  • the first waveform is determined according to the arrangement of the first gap and the first spacing, and is a waveform generated by the beam spot scanning the target first gap sequence;
  • the projection of the first gap sequence of the target on the detector is determined to be the target area.
  • a plurality of second gap sequences are provided on one side of each first gap sequence in the shielding element.
  • the second gap sequence is a sequence that the beam spot scans after scanning the first gap sequence.
  • Different The gaps between the second gap sequences are arranged in different ways; the positioning unit 1402 is also used to:
  • the target sub-area swept by the beam spot in the target area is located according to the second waveform of the signal change.
  • the second waveform is a waveform generated by the beam spot scanning the target second gap sequence.
  • the target second gap sequence is one of the at least one second gap sequence.
  • the target area includes a plurality of second gap sequences, and each second gap sequence is respectively provided with a plurality of second gaps with different sizes and/or shapes on the scanning path of the beam spot.
  • the plurality of second gaps in the two-gap sequence are arranged and combined in different ways; the positioning unit 1402 is also used to:
  • the projection of the second gap sequence of the target on the detector is determined to be the target sub-area swept by the beam spot.
  • the plurality of second gaps in each second gap sequence have the same shape and different sizes.
  • the positioning unit 1402 is also used to:
  • the size of the swept second gap is determined according to the duration of the wave peak in the second waveform, wherein the longer the duration, the larger the second gap;
  • the ordering of the plurality of second gaps is obtained according to the size of the second gap.
  • the positioning unit 1402 is also used to:
  • the trajectory of the beam spot swept in the target sub-area is determined based on the second waveform.
  • each second gap in the second gap sequence includes a triangle pair, which includes two triangle gaps with the same shape and symmetrical arrangement.
  • the positioning unit 1402 is also used to:
  • an adjacent pair of target wave peaks is the wave peak of the target triangle pair swept by the beam spot.
  • the target triangle pair is a triangle pair in the target second gap sequence.
  • the first wave peak in the target wave peak is the wave peak of the detector output when the beam spot sweeps through one triangle in the triangle, and the second wave peak in the target wave peak is the output of the detector in the process when the beam spot sweeps across the other triangle in the triangle. the crest of the wave;
  • the trajectory of the beam spot swept in the target sub-area is determined based on the abscissa and the ordinate.
  • the scanning speed of the beam spot and the time scale in the second waveform it also includes:
  • the scanning speed of the beam spot is determined according to the spacing between wave peaks in the first waveform and the spacing between the first gaps in the target first gap sequence.
  • the target first gap sequence is set before the target second gap sequence, or each second gap in the target second gap sequence is respectively set before the first gap sequence and is different from the second gap sequence.
  • the first gap sequence preceding the gap is not the same.
  • the device further includes a fitting unit 1403, configured to fit the shape of the beam spot according to the second waveform.
  • Embodiments of the present application also provide a computer-readable storage medium, which includes instructions that, when run on a computer, cause the computer to execute the method in the foregoing embodiments.
  • At least one item refers to one or more, and “multiple” refers to two or more. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be obtained according to actual needs to achieve the purpose of the solution of this embodiment.
  • each module unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software module unit.
  • the integrated unit is implemented in the form of a software module unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

一种束斑测量方法,包括:获取探测器输出的信号变化,探测器与电子束产生***之间设置有遮挡元件,遮挡元件用于遮挡电子束产生***发射的电子束,遮挡元件中设置有允许电子束穿过的至少一个第一间隙,信号变化包括电子束扫过遮挡元件的过程中探测器检测到信号变化的波形;根据信号变化的第一波形定位电子束的束斑在探测器上扫过的目标区域,第一波形为束斑扫过目标第一间隙序列所产生的波形,遮挡元件的不同位置设置有不同的第一间隙序列,目标第一间隙序列为遮挡元件中的一个第一间隙序列。还提供一种装置、设备及介质,能够通过间隙序列使得探测器对束斑的位置进行定位,从而高效精确地测量多电子束***中各个电子束的位置。

Description

一种束斑测量方法、装置、设备及介质 技术领域
本申请涉及电子领域,尤其涉及一种束斑测量方法、装置、设备及介质。
背景技术
在大型集成电路加工工艺中,光刻和检测是其中一项重要的关键技术。相比于目前最先进的极紫外光刻机(extreme ultra-violet,EUV),电子束光刻机因为电子的波长更短,所以刻蚀的精度更高,是一条重要的技术路线。同时,扫描电子显微镜也是在现代大型集成电路加工工艺中的一项重要手段。如图1所示,电子束的产生是电子由阴极101产生后,经过阳极102加速、准直器103准直、电子透镜104聚焦等模块后在焦平面105上汇聚成一个小的电子束斑。电子束束斑的位置是一个重要的指标,对于一个M×N的电子束阵列,需要精确地测量M×N的电子束所照射的束斑之间的相互位置。
现有技术中通过刀缘探测器(knife-edge sensor)来测量电子束形状和位置,然而在多个电子束的情况下,现有技术无法准确地测量多个电子束束斑之间的相对位置,同时,利用搭载刀缘探测器的机台运动,或者,利用电子束自身通过偏转器进行扫描使得探测器和电子束相对运动,在运动过程中存在不理想的抖动(位置抖动和速度抖动),会导致探测结构检测不到电子束或者电子束位置不准确的情况。
因此,现有技术中存在的上述问题还有待于改进。
发明内容
本申请实施例提供了一种束斑测量方法、装置、设备及介质,用于实现电子束束斑的测量定位。
本申请实施例第一方面提供了一种束斑测量方法,包括:
获取探测器输出的信号变化,该探测器与电子束产生***之间设置有遮挡元件,可选地,遮挡原件的材质为重金属(例如钨或者钛),该遮挡元件用于遮挡该电子束产生***发射的电子束,该遮挡元件中设置有允许该电子束穿过的至少一个第一间隙,该信号变化包括该电子束扫过该遮挡元件的过程中该探测器检测到信号变化的波形;可选地,探测器中包括至少一个模数转换器(analog to digit convertor,ADC),该信号变化为ADC将电子束的电压信号转变为数字信号后所输出的信号变化值。根据该信号变化的第一波形定位该电子束的束斑在该探测器上扫过的目标区域,该第一波形为该束斑扫过目标第一间隙序列所产生的波形,该遮挡元件的不同位置设置有不同的第一间隙序列,该目标第一间隙序列为该遮挡元件中的一个第一间隙序列,每一该第一间隙序列包括至少一个第一间隙和设置在该第一间隙之间的第一间距,不同的该第一间隙序列之间该第一间隙与该第一间距的排列组合方式不同。
本实施例中,探测器在束斑扫过后输出信号变化,通过该信号变化中的第一波形确定束斑所扫过遮挡元件的目标区域里第一间隙与该第一间距的排列组合方式,从而可以知晓束斑所扫过的第一间隙序列是哪一个。由于探测器与遮挡元件之间的相对位置是固定的,从而遮挡元件上每个第一间隙序列在探测器上的投影所在的位置也是固定的。由此可以确定束斑在探测器上所扫过的目标区域。从而通过第一波形确定了束斑所扫描的第一间隙序 列为哪一个,通过第一间隙序列确定了束斑在探测器上扫描的区域,提升了束斑检测的准确性。
可选地,该根据该信号变化的第一波形定位该电子束在该探测器上扫过的目标区域,包括:在该第一波形中确定波峰所在的位置为该第一间隙所在的位置;在该第一波形中确定没有波峰的位置为该第一间距;根据该第一间隙与该第一间距的排列确定该第一波形为该束斑扫过该目标第一间隙序列产生的波形;确定该目标第一间隙序列在该探测器上的投影为该目标区域。
本实施例中,目标第一间隙序列为多个第一间隙序列中的一个,在束斑从左到右扫过目标第一间隙序列的过程中,当束斑扫过第一间隙时,束斑穿过第一个第一间隙照射在探测器上,在探测器所测得的第一波形中形成一个波峰,束斑继续向右扫描,照射在第一个第一间隙与第二个第一间隙之间的第一间距时,该第一间距遮挡了束斑,从而探测器没有检测到信号,该位置对应的第一波形中没有信号波峰。当束斑从左到右完成了对目标第一间隙序列的扫描后,即可得到完整的第一波形。从而根据该第一波形,可以解析出束斑所扫描到第一间隙和第一间隔的排列组合情况,确定束斑所扫过的区域为目标第一间隙序列所在的区域。实现了束斑扫描区域的定位。
可选地,该遮挡元件中每个第一间隙序列的一侧设置有多个第二间隙序列,该第二间隙序列为该束斑在扫过该第一间隙序列之后扫描的序列,不同的该第二间隙序列之间的间隙排列方式不同;该根据该信号变化的第一波形定位该电子束的束斑在该探测器上扫过的目标区域之后,还包括:根据该信号变化的第二波形定位该束斑在该目标区域中扫过的目标子区域,该第二波形为该束斑扫过目标第二间隙序列所产生的波形,该目标第二间隙序列为该至少一个第二间隙序列中的一个。
本实施例中,探测器的上方设置有遮挡元件,遮挡元件上设置有多个第一间隙序列和第二间隙序列。由于探测器与遮挡元件之间的相对位置是固定的,因此,遮挡元件上每个第二间隙序列在探测器上的投影所在的位置也是固定的,在通过第一波形确定束斑扫过目标区域的基础上,只要知晓束斑所扫过的第二间隙序列,即可知道束斑扫过了探测器上目标区域中的哪个子区域。因此,当确定第二波形为束斑扫过目标第二间隙序列产生的波形时,即可知晓目标第二间隙序列在探测器上的投影即为束斑扫过的目标子区域。从而通过在遮挡元件上设置第二间隙序列,实现了对束斑的二次定位,从而在第一次定位的基础上,进一步细化了对束斑的定位,提升了对束斑位置测量的精度。
可选地,该目标区域内包括多个第二间隙序列,每个第二间隙序列在该束斑的扫描路径上分别设置有大小和/或形状不相同的多个第二间隙,且不同第二间隙序列中该多个第二间隙之间的排列组合方式不同;该根据该信号变化的第二波形定位该束斑在该目标区域中扫过的目标子区域,包括:根据该第二波形中波峰的持续时间确定该多个第二间隙的排序;根据该多个第二间隙的排序确定该束斑扫过的第二间隙序列为该目标第二间隙序列;确定该目标第二间隙序列在该探测器上的投影为该束斑扫过的目标子区域。
本实施例中,第二波形为束斑扫过遮挡元件中的目标第二间隙序列所产生的波形,目标第二间隙序列为束斑在扫过目标第一间隙序列之后扫描的区域,遮挡元件的不同位置设置有不同的第二间隙序列,不同第二间隙序列之间间隙的排列方式不同。从而能够通过第 二间隙序列实现束斑的二次定位。
可选地,该每个第二间隙序列中的多个第二间隙形状相同,大小不同,该根据该第二波形中波峰的持续时间确定该多个第二间隙的排序,包括:根据该第二波形中波峰的持续时间确定所扫过第二间隙的大小,其中,该持续时间越长,该第二间隙越大;根据该第二间隙的大小得到该多个第二间隙的排序。
本实施例中,第二间隙序列与第一间隙序列的区别在于,第一间隙序列时通过第一间隙与第一间距之间的排序来实现区分的,而第二间隙序列通过第二间隙的大小不同来区分。因此,第二波形中波峰的持续时间越长,说明第二间隙的面积越大,从而可以通过第二波峰中各个波峰的持续时间长短来确定束斑所扫过第二间隙的排序。从而定位束斑所扫过的第二间隙序列为哪一个。
可选地,该根据该信号变化的第二波形定位该束斑在该目标区域中扫过的目标子区域之后,还包括:根据该第二波形确定该束斑在该目标子区域中扫过的轨迹。
本实施例中,根据第二波形中各个波峰的持续时间,可以确定束斑所扫过的第二间隙序列为哪一个,从而确定束斑所扫过的目标子区域,进一步地,还可以根据第二波形进一步详细地确定束斑扫过的轨迹,从而实现对束斑更精细的测量。
可选地,该第二间隙序列的每个第二间隙中分别包括一个三角形对,该三角形对包括形状相同且对称设置的两个三角形间隙,该根据该第二波形确定该束斑在该目标子区域中扫过的轨迹,包括:根据该束斑的扫描速度和该第二波形中的时间刻度确定每个时间点中该束斑的横坐标;从该第二波形中确定相邻的一对目标波峰为束斑扫过目标三角形对的波峰,该目标三角对为该目标第二间隙序列中的一个三角形对,该目标波峰中的第一波峰为该束斑扫过该三角形对中一个三角形的过程中该探测器输出的波峰,该目标波峰中的第二波峰为该束斑扫过该三角形对中另一个三角形的过程中该探测器输出的波峰;根据该第二波峰或该第一波峰的持续时长与该第一波峰加该第二波峰总时长的比值确定该束斑的纵坐标;根据该横坐标和该纵坐标确定该束斑在该目标子区域中扫过的轨迹。
本实施例中,在束斑扫描第二间隙中的三角对后,探测器所得到的目标波峰包括第一波峰和第二波峰,其中第一波峰为束斑扫过第一个三角形间隙后在探测器中所形成的波峰,第二波峰为束斑扫过第二个三角间隙后在探测器中所形成的波峰。通过这两个波峰的数据,即可通过算法求得束斑扫描轨迹的横坐标和纵坐标,从而得到束斑的扫描轨迹,实现了对束斑更精细化的测量定位。
可选地,该根据该束斑的扫描速度和该第二波形中的时间刻度之前,还包括:根据该第一波形中波峰之间的间隔和该目标第一间隙序列中第一间隙之间的间距确定该束斑的扫描速度。
本实施例中,第一间隙序列中每个第一间距大小是已知的,根据第一波形中波峰之间的间隔时间可以知晓束斑扫描通过第一间距时所用的时间,用第一间距大小除以束斑扫描通过间距时所用的时间,即可得到束斑的扫描速度。
可选地,该目标第一间隙序列设置在该目标第二间隙序列之前,或者,该目标第二间隙序列中的每个第二间隙之前分别设置有该第一间隙序列,且不同该第二间隙之前的该第一间隙序列不相同。
本实施例中,第二间隙序列的每个第二间隙之间交替地设置有第一间隙序列,从而在每次扫描第二间隙之前都可以通过第一间隙序列进行一次速度的测量,还可以定位每个第二间隙所在的位置,从而防止束斑扫描速度不均匀和束斑在扫描过程中在Y轴方向上抖动影响测量精度。
可选地,该根据该信号变化的第二波形定位该束斑在该目标区域中扫过的目标子区域之后,还包括:根据该第二波形拟合该束斑的形状。
本实施例中,由于第二间隙序列中第二间隙的数量为多个,因此根据所得到的第二波形,可以通过拟合方法得到束斑的形状,实现了对束斑更完整的测量。
本申请实施例第二方面提供一种束斑测量装置,包括:
获取单元,用于获取探测器输出的信号变化,所述探测器与电子束产生***之间设置有遮挡元件,所述遮挡元件用于遮挡所述电子束产生***发射的电子束,所述遮挡元件中设置有允许所述电子束穿过的至少一个第一间隙,所述信号变化包括所述电子束扫过所述遮挡元件的过程中所述探测器检测到信号变化的波形;
定位单元,用于根据所述获取单元获取的所述信号变化的第一波形定位所述电子束的束斑在所述探测器上扫过的目标区域,所述第一波形为所述束斑扫过目标第一间隙序列所产生的波形,所述遮挡元件的不同位置设置有不同的第一间隙序列,所述目标第一间隙序列为所述遮挡元件中的一个第一间隙序列,每一所述第一间隙序列包括至少一个第一间隙和设置在所述第一间隙之间的第一间距,不同的所述第一间隙序列之间所述第一间隙与所述第一间距的排列组合方式不同。
可选地,该定位单元,还用于:
在该第一波形中确定波峰所在的位置为该第一间隙所在的位置;
在该第一波形中确定没有波峰的位置为该第一间距;
根据该第一间隙与该第一间距的排列确定该第一波形为该束斑扫过该目标第一间隙序列产生的波形;
确定该目标第一间隙序列在该探测器上的投影为该目标区域。
可选地,该遮挡元件中每个第一间隙序列的一侧设置有多个第二间隙序列,该第二间隙序列为该束斑在扫过该第一间隙序列之后扫描的序列,不同的该第二间隙序列之间的间隙排列方式不同;该定位单元,还用于:
根据该信号变化的第二波形定位该束斑在该目标区域中扫过的目标子区域,该第二波形为该束斑扫过目标第二间隙序列所产生的波形,该目标第二间隙序列为该至少一个第二间隙序列中的一个。
可选地,该目标区域内包括多个第二间隙序列,每个第二间隙序列在该束斑的扫描路径上分别设置有大小和/或形状不相同的多个第二间隙,且不同第二间隙序列中所述多个第二间隙之间的排列组合方式不同;该定位单元,还用于:
根据该第二波形中波峰的持续时间确定该多个第二间隙的排序;
根据该多个第二间隙的排序确定该束斑扫过的第二间隙序列为该目标第二间隙序列;
确定该目标第二间隙序列在该探测器上的投影为该束斑扫过的目标子区域。
可选地,该每个第二间隙序列中的多个第二间隙形状相同,大小不同,该定位单元, 还用于:
根据该第二波形中波峰的持续时间确定所扫过第二间隙的大小,其中,该持续时间越长,该第二间隙越大;
根据该第二间隙的大小得到该多个第二间隙的排序。
可选地,该定位单元,还用于:
根据该第二波形确定该束斑在该目标子区域中扫过的轨迹。
可选地,该第二间隙序列的每个第二间隙中分别包括一个三角形对,该三角形对包括形状相同且对称设置的两个三角形间隙,该定位单元,还用于:
根据该束斑的扫描速度和该第二波形中的时间刻度确定每个时间点中该束斑的横坐标;
从该第二波形中确定相邻的一对目标波峰为束斑扫过目标三角形对的波峰,该目标三角对为该目标第二间隙序列中的一个三角形对,该目标波峰中的第一波峰为该束斑扫过该三角形对中一个三角形的过程中该探测器输出的波峰,该目标波峰中的第二波峰为该束斑扫过该三角形对中另一个三角形的过程中该探测器输出的波峰;
根据该第二波峰或该第一波峰的持续时长与该第一波峰加该第二波峰总时长的比值确定该束斑的纵坐标;
根据该横坐标和该纵坐标确定该束斑在该目标子区域中扫过的轨迹。
可选地,该根据该束斑的扫描速度和该第二波形中的时间刻度之前,还包括:
根据该第一波形中波峰之间的间隔和该目标第一间隙序列中第一间隙之间的间距确定该束斑的扫描速度。
可选地,该目标第一间隙序列设置在该目标第二间隙序列之前,或者,该目标第二间隙序列中的每个第二间隙之前分别设置有该第一间隙序列,且不同该第二间隙之前的该第一间隙序列不相同。
可选地,该装置还包括拟合单元,用于根据该第二波形拟合该束斑的形状。
本申请第二方面的有益效果可参阅上述第一方面的相关记载。
本申请实施例第三方面提供一种电子设备,该电子设备包括:处理器和存储器,该存储器中存储有程序指令;该处理器用于执行存储器中存储的程序指令,执行如上述第一方面任意一项所述的方法。
可选地,该电子设备还可以包括:交互装置和输入/输出(I/O)接口;该交互装置用于获取用户输入的操作指令,以使得处理器执行如上述第一方面任意一项所述的方法。
本申请实施例第四方面提供一种计算机可读存储介质,包括指令,当该指令在计算机设备上运行时,使得该计算机设备执行如上述第一方面任一项所述的方法。
附图说明
图1为本申请实施例中电子束光刻机产生电子束的示意图;
图2为现有技术中测量束斑位置的原理图;
图3为现有技术中计算束斑位置的计算原理图;
图4为现有技术中遮挡元件的示意图;
图5为本申请实施例所提供的束斑测量方法的***的示意图;
图6为本申请实施例所提供的束斑测量方法的一个实施例的示意图;
图7为本申请实施例所提供的束斑测量方法中探测器的平面示意图;
图8为本申请实施例所提供的束斑测量方法中遮挡元件的俯视图;
图9为本申请实施例所提供的束斑测量方法中第一间隙序列的示意图;
图10为本申请实施例所提供的束斑测量方法中第二间隙序列和束斑扫描第二间隙序列后所得到第二波形的示意图;
图11为本申请实施例所提供的束斑测量方法中第二间隙序列的第二三角的示意图;
图12为本申请实施例所提供的束斑测量方法中遮挡元件的另一种实现方式的示意图;
图13为本申请实施例所提供的电子设备的示意图;
图14为本申请实施例所提供的束斑测量装置的示意图。
具体实施方式
本发明实施例提供一种束斑测量方法、装置、设备及介质,能够通过间隙序列使得探测器对束斑的位置进行定位,从而高效精确的测量多电子束***中各个电子束的位置。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
电子束光刻机因为电子的波长更短,所以刻蚀的精度更高,是大型集成电路加工工艺中的一条重要的技术路线。如图1所示,图1为电子束光刻机产生电子束的示意图,电子束的产生是电子由阴极101产生后,经过阳极102加速、准直器103准直、电子透镜104聚焦等模块后可以在焦平面105上汇聚成一个小的电子束束斑。在实际工作过程中,阴极可能会发射多束电子束,依次经过阳极加速、准直器准直、电子透镜聚焦等模块后在焦平面上形成一个M×N的电子束束斑矩阵。此时,在该M×N的电子束束斑矩阵中,束斑之间的相互位置是一个重要的指标,会影响图像的拼接精度。决定了电子束刻蚀和检测***中的分辨率精度。同时,在电子显微镜成像***中,电子束束斑形状等价于光学成像***中的点扩散函数(point spread function,PSF),所以准确的束斑形状估计对后续的高清图像重建价值巨大。
当前,对于单个束斑的测量,通过刀缘探测器(knife-edge sensor)来进行,刀缘探测器是一种用来测量电子束形状和强度的设备,该设备利用一些带斜边的几何结构(三角形、六边形等)对电子束进行遮挡(几何结构之外的地方对电子束进行探测)或者探测。其中,对电子的探测可以使用间接方法(闪烁体探测器进行电光转换为光子)或者直接探测方法(半导体探测器,如让电子在Si等材料中激发电子空穴对)。如图2所示,图2为现有 技术中测量束斑位置的原理图。假设利用三角形结构201去探测电子束,当电子束与三角形结构201发生接触前(三角形结构201中的位置0),如图2中的202所示,探测器的电流响应恒定为I0;随着电子束从左往右切入探测结构(依次经过三角形结构201中的位置0-位置1-位置2-位置3),电流逐渐增大;当电子束完全进入探测结构时(三角形结构201中的位置3),探测器的电流响应开始恒定为I1;当电子束切出探测结构的过程中(依次经过三角形结构201中的位置4-位置5-位置6-位置7),探测器的电流响应逐渐减小;当电子束完全离开探测结构(三角形结构201中的位置6),探测器的电流响应恒定为I0。
在图2所示的电流波形图中,其横坐标为束斑在x方向的位置,x1为束斑刚刚进入三角形间隙的位置,x3为束斑完全进入三角形间隙的初始位置,通过x1位置和x3位置,即可求得x1位置与x3位置的中点x2位置为束斑照射到三角形间隙左侧斜边中点上的位置。同理,x4位置为束斑完全位于三角形间隙内的最后位置,x6位置为束斑离开三角形间隙前的最后位置,通过x4位置和x6位置,即可求得x4位置与x6位置的中点x5位置为束斑照射到三角形间隙右侧斜边中点上的位置。即可得到如图3所示的图形,图3为现有技术中计算束斑位置的计算原理图。
如图3所示的坐标系中,坐标系的原点301为三角形间隙顶点所在的位置,该坐标系中记录了束斑从左到右切入三角形间隙的过程中各个时刻所在的位置,其中,x2和x5为束斑的中心点与三角形两条斜边交点的x轴坐标,θ 1和θ 2分别为三角形间隙的两个底角的角度,通过θ 1和θ 2可以换算得到三角形间隙两条斜边的斜率K1和K2,从而在图3所示的坐标系中划出三角形间隙的斜边y=k1x和与=k2x。通过如图3所示的坐标系,可以计算得到束斑在y方向位置为y0,y0的绝对值通过以下公式求得:
Figure PCTCN2022085983-appb-000001
从而通过上述方式,求得了束斑中心点的横坐标和纵坐标,从而定位了束斑的位置。具体工作过程中,束斑的形状可以通过电子束与间隙斜边的响应曲线确定,束斑为圆形时需要至少一条斜边,束斑为任意形状椭圆是需要用至少三条斜边的响应曲线对椭圆形状进行拟合。束斑形状的具体拟合方式为现有技术,本领域技术人员可以根据实际需要选择对束斑形状进行拟合的方法,本申请实施例的发明点主要在于对束斑中心点位置的确定,因此对于束斑形状的拟合方法不再赘述。
基于如图2和图3所示的束斑测量方法,当电子束产生***同时发射多个束斑时,例如一个M×N的电子束束斑矩阵,需要在遮挡元件中设置多个间隙,如图4所示,图4为现有技术中遮挡元件的示意图,每个间隙401分别用于测量电子束束斑矩阵中的一个束斑。然而在实际工作过程中,一个电子束需要做多次测量以减小刀缘探测器的加工误差、搭载刀缘探测器的机台的运动误差、(电子透镜偏转器误差)等各种随机误差,因此对于多电子束***,需要提升探测效率。同时,机台的运动也存在不理想的抖动(位置抖动和速度抖动),会导致探测结构检测不到电子束或者电子束位置不准确的情况(如图4中不清楚跟哪个六边形间隙401结果作用)。
为了解决上述问题。本申请实施例提供一种束斑测量方法,通过间隙序列使得探测器能够对束斑的位置进行定位,使得机台存在不理想的抖动的情况下,仍然能够高效精确的 测量多电子束***中各个电子束的位置。为便于理解,以下结合附图对本申请实施例所提供的方法进行详细说明。
首先,对本申请实施例所提供方法运行的硬件环境进行说明。
如图5所示,图5为本申请实施例所提供的方法的所提供的***的示意图,电子束产生***51和设置在电子束产生***下方的机台52,机台52的上方设置有刀缘探测器53,具体工作过程中,电子束产生***51的阴极501发射多束电子束,依次经过阳极502加速、准直器503准直及电子透镜504聚焦等模块后在焦平面505上形成一个M×N的电子束束斑矩阵,该束斑矩阵照射在机台上,刀缘探测器53安装在机台上,刀缘探测器53与束斑阵列会通过机台运动或者电子束偏转器产生横向运动,使得束斑矩阵扫过刀缘探测器53,该刀缘探测器53包括探测器和设置在探测器与电子束产生***之间的遮挡元件,该遮挡元件中设置有间隙。在束斑矩阵扫过遮挡元件的过程中,束斑穿过间隙照射在探测器上,使得探测器感应束斑的照射产生了信号变化,从而***根据探测器的信号变化执行本申请实施例所提供的束斑测量方法。
基于上述架构,请参阅图6,如图6所示,本申请实施例所提供的束斑测量方法包括以下步骤。
601、获取探测器输出的信号变化。
本实施例中,探测器与电子束产生***之间设置有遮挡元件,可选地,该遮挡原件的材质为重金属(例如钨或者钛),从而能够遮挡电子束,防止束斑穿过遮挡元件,该遮挡元件中设置有间隙,信号变化包括电子束扫过遮挡元件的过程中探测器检测到信号变化的波形。
可选地,该电子束***所产生的电子束为M×N的电子束阵列,对应地,请参阅图7,图7为本申请实施例所提供的探测器的平面示意图,如图7所示,探测器上包括一个M×N的测量单元阵列,其中,每个测量单元701用于检测电子束阵列中一个电子束702的束斑,该测量单元可以为半导体探测器和/或模数转换器(analog to digit convertor,ADC)的组合,从而将电子束702束斑的电流强度信号转变为输出的数字信号。M×N测量单元阵列中每个测量单元负责一个束斑的测量,每个测量单元的工作方式均相同,为便于理解,以下实施例中仅以一个测量单元为例进行说明。
602、根据信号变化的第一波形定位电子束的束斑在探测器上扫过的目标区域。
本实施例中,第一波形为束斑扫过遮挡元件中的目标第一间隙序列所产生的波形,遮挡元件的不同位置设置有不同的第一间隙序列,不同的第一间隙序列之间第一间隙与第一间距的排列组合方式不同。
具体地,图7中所示一个测量单元上方所对应的遮挡元件如图8所示,图8为本申请实施例所提供的遮挡元件的俯视图,在该遮挡元件中的不同位置设置有不同的第一间隙序列801,不同第一间隙序列中分别包括多个第一间隙和多个第一间隙之间的第一间距,可选地,第一间隙序列中的第一间隙为矩形的长条状间隙,该条状间隙的长边垂直于束斑扫描的方向。可选地,该第一间隙也可以是其他形状,对此本申请实施例并不进行限定。不同的第一间隙序列之间第一间隙与第一间距的排列组合方式不同。该排列组合方式是指第一间隙与第一间距的数量和次序,例如,第一间隙与第一间距交替排列是一种排列组合方式(即 每个第一间隙之间间隔一个第一间距);或者,第一个第一间隙与第二个第一间隙之间间隔N个第一间距,第二个第一间隙与第三个第一间隙之间间隔N+1个第一间距,N可以为大于或等于零的正整数,这也是一种可选的排列组合方式。从而使得不同第一间隙序列之间根据第一间隙与第一间距排列组合方式的不同彼此区分。以使得束斑在不同的第一间隙序列中扫过时,会在测量单元上产生不同的信号变化,从而能够根据信号变化中的第一波形确定束斑所扫过的第一间隙序列具体是哪一个。具体包括以下步骤。
6021、在第一波形中确定信号的波峰所在的位置为第一间隙所在的位置。
6022、在第一波形中确定没有信号的位置为第一间隙之间的间距。
本实施例中,如图9所示,图9为本申请实施例所提供的第一间隙序列的示意图,目标第一间隙序列901为多个第一间隙序列中的一个,在束斑从左到右扫过目标第一间隙序列901的过程中,当束斑扫过第一间隙9011时,束斑穿过第一个第一间隙9011照射在测量单元上,在测量单元所测得的第一波形902中形成一个波峰,束斑继续向右扫描,照射在第一个第一间隙与第二个第一间隙之间的间距9012时,该间距9012遮挡了束斑,从而测量单元没有检测到束斑,该位置上第一波形902中没有信号波峰。当束斑从左到右完成了对目标第一间隙序列901的扫描后,即可得到完整的第一波形902。
例如,当束斑穿过间隙时,测量单元测量到信号,输入信号1,当束斑扫过间隙之间的间隔时,测量单元检测不到信号,输入信号0,从而在完成对第一间隙序列的扫描后得到一组由0和1组成的数字序列903,扫描不同第一间隙序列所得到的数字序列903不同。如图9所示,有ABC三个不同的第一间隙序列,根据所得到数字序列903的不同,实现了区分。
6023、根据第一间隙与间距的排列确定第一波形为束斑扫过目标第一间隙序列产生的波形。
本实施例中,不同第一间隙序列中第一间隙与间距的排列方式不同,从而使得每个第一间隙序列能够唯一地去其他第一间隙序列相区分。当测量单元得到第一波形后,根据所测得第一间隙和间距之间的排列关系,即可获知第一波形为束斑扫过目标第一间隙序列产生的波形。
6024、确定目标第一间隙序列在探测器上的投影为束斑扫过的目标区域。
本实施例中,测量单元的上方设置有遮挡元件,遮挡元件上设置有多个第一间隙序列。由于测量单元与遮挡元件之间的相对位置是固定的,因此,遮挡元件上每个第一间隙序列在测量单元上的投影所在的位置也是固定的,只要知晓束斑所扫过的第一间隙序列,即可知道束斑扫过了测量单元上的哪个区域。因此,当确定第一波形为束斑扫过目标第一间隙序列产生的波形时,即可知晓目标第一间隙序列在探测器上的投影即为束斑扫过的目标区域。
可选地,在具体工作过程中,当获取到信号变化时,需要首先从信号变化中截取上述第一波形和下述第二波形。具体通过以下步骤实现。
1、根据第一间隙序列和第二间隙序列确定第一特征和第二特征。
本实施例中,通过如图9所示的第一间隙序列可见,第一间隙序列为若干个长条形的第一间隙组成的序列,类似于条形码的结构。而通过如图10所示的第二间隙序列可见,第二间隙序列为若干个第二间隙组成的序列,每个第二间隙分别为带有斜边的几何图形。基 于该结构的不同,束斑扫过第一间隙序列和第二间隙序列的过程中,所形成波峰的持续时间长度、波峰与非波峰之间的比例会有所不同,从而可以根据波峰持续时间,波峰的占空比确定束斑扫过第一间隙序列和第二间隙序列所产生波形的第一特征和第二特征。
2、根据第一特征和第二特征从信号变化中分别确定第一波形和第二波形。
本实施例中,根据前述步骤所确定的第一特征和第二特征,可以确定,信号变化中满足第一特征的波形为第一波形,信号变化中满足第二特征的波形为第二波形,从而实现了信号变化中对第一波形和第二波形的提取,以便于后续步骤对第一波形和第二波形进行后续的解析。
本实施例中,对于多个电子束的矩阵,由探测器中的测量单元阵列来检测,其中,每个测量单元用于测量一个电子束的束斑,由于测量单元的面积要远远大于束斑,因此,需要定位束斑在测量单元中扫过的具***置,通过上述方式,能够精确地测量每个束斑在测量单元中的位置。当探测器中每个测量单元均分别测量出对应束斑所扫过的目标区域后,即可获得电子束阵列中每个束斑之间的相对位置,从而实现了对束斑矩阵的测量。
需要说明的是,如图8所示,第一间隙序列801中的第一间隙为矩形的条状间隙,该条状间隙的长边垂直于束斑扫描的方向,目的在于所有的第一间隙序列加在一起,能够覆盖到一个测量单元的所有区域,避免束斑扫过没有第一间隙序列的地方,导致无法通过第一间隙序列对束斑进行定位。因此,这就决定了一个第一间隙序列所覆盖的范围不能太小,而较大的第一间隙序列又不能对束斑的位置进行精确的定位,为了解决这一问题,本申请在遮挡元件上设置了第二间隙序列802,对束斑进行二次定位,从而更精确的定位束斑,同时,第二间隙序列还能拟合束斑的形状,为便于理解,以下对此方法进行进一步说明。
603、根据信号变化的第二波形定位束斑在目标区域中扫过的目标子区域。
本实施例中,第二波形为束斑扫过遮挡元件中的目标第二间隙序列所产生的波形,目标第二间隙序列为束斑在扫过目标第一间隙序列之后扫描的区域,遮挡元件的不同位置设置有不同的第二间隙序列,不同第二间隙序列之间间隙的排列方式不同。
可选地,一个第一间隙序列所对应的目标区域(即每个第一间隙序列的一侧)设置有多个第二间隙序列,每个第二间隙序列在束斑的扫描路径上分别设置有不相同的多个第二间隙,且不同第二间隙序列中多个第二间隙的排序不同;根据信号变化的第二波形定位束斑在目标区域中扫过的目标子区域。则步骤603具体包括以下步骤。
6031、根据第二波形中波峰的持续时间确定多个第二间隙的排序。
本实施例中,第二间隙序列与第一间隙序列的区别在于,第一间隙序列时通过第一间隙与间距之间的排序来实现区分的,而第二间隙序列通过第二间隙的大小不同来实现。且不同第二间隙序列中多个第二间隙之间的排列组合方式不同。因此,第二波形中波峰的持续时间越长,说明第二间隙的面积越大,从而可以通过第二波峰中各个波峰的持续时间长短来确定束斑所扫过第二间隙的排序。
6032、根据多个第二间隙的排序确定束斑扫过的第二间隙序列为目标第二间隙序列。
本实施例中,根据束斑所扫过第二间隙的排序,可以确定束斑所扫过的第二间隙序列时哪一个。
6033、确定目标第二间隙序列在探测器上的投影为束斑扫过的目标子区域。
本实施例中,测量单元的上方设置有遮挡元件,遮挡元件上设置有多个第一间隙序列和第二间隙序列。由于测量单元与遮挡元件之间的相对位置是固定的,因此,遮挡元件上每个第二间隙序列在测量单元上的投影所在的位置也是固定的,只要知晓束斑所扫过的第二间隙序列,即可知道束斑扫过了测量单元上的哪个区域。因此,当确定第二波形为束斑扫过目标第二间隙序列产生的波形时,即可知晓目标第二间隙序列在探测器上的投影即为束斑扫过的目标子区域。
作为一种优选的实施方式,一个测量单元上方遮挡元件的示意图如图8所示,一个第一间隙序列801的右侧,从上之下设置有多组第二间隙序列802,从而当电子束的束斑从左往右扫描遮挡元件时,可以先扫过第一间隙序列801,之后扫过第二间隙序列802。通过扫过第一间隙序列得到第一波形,根据第一波形中波峰与非波峰的组合,即可知晓束斑所扫描第一间隙序列中第一间隙与第一间距的排列组合方式。之后根据第二波形中每个波峰的持续时间,判断不同形状/大小的第二间隙在所扫过第二间隙序列中的排列组合方式,关于第二间隙序列中第二间隙的排列组合方式,作为一种举例,可以如图8中所示,第二间隙序列中包括三个形状相同,大小不同的第二间隙,面积最小的第二间隙记为1号,面积中等的第二间隙记为2号,面积最大的第二间隙记为3号,在一个第一间隙序列所对应的目标区域内,从上到下设置有多个不同的第二间隙序列,每个第二间隙序列的排列组合方式分别为123、321、231……等等排列组合,以使得该目标区域中每个第二间隙序列与其他第二间隙序列相区分。
本实施例中,通过在遮挡元件上设置第二间隙序列,实现了对束斑的二次定位检索,从而在第一次定位的基础上,进一步细化了对束斑的定位,提升了对束斑位置测量的精度。
进一步地,基于第二波形,还可以进一步精确地求得束斑扫描的轨迹,为便于理解,以下对此方法进行进一步详细说明。
604、根据第二波形确定束斑在目标子区域中扫过的轨迹。
本实施例中,一方面,根据第二波形中各个波峰的持续时间,可以确定束斑所扫过的间隙序列,另一方面,根据第二波形,还可以进一步详细地确定束斑扫过的轨迹,为便于理解,以下对轨迹的计算方法进行详细说明。
具体工作过程中,第二间隙序列的每个第二间隙中分别包括一个三角形对,三角形对包括形状相同且对称设置的两个三角形间隙,可选地,第二间隙中也可以其他形状的,例如对称的梯形对,为便于理解,本申请实施例仅以第二间隙为三角形对进行介绍,但是并不构成对本方案的限定。基于第二间隙为三角形对的方案,上述步骤604具体包括以下步骤。
6041、根据束斑的扫描速度和第二波形中的时间刻度确定每个时间点中束斑的横坐标。
本实施例中,束斑的横坐标是束斑距离坐标系原点的距离,该坐标系原点可以为束斑在目标区域中轨迹的起点,通过扫描速度乘以时间刻度,即可得到不同时间点上束斑的横坐标。
可选的,在具体工作过程中,可以通过以下方式来确定束斑的扫描速度。
根据第一波形中波峰之间的间隔和目标第一间隙序列中第一间隙之间的间距确定束斑的扫描速度。
本实施例中,第一间隙序列中每个第一间隙的间距大小是已知的,根据第一波形中波 峰之间的间隔时间可以知晓束斑扫描通过间距时所用的时间,用间距大小除以束斑扫描通过间距时所用的时间,即可得到束斑的扫描速度。
6042、从第二波形中确定相邻的一对目标波峰为扫过目标三角形对的波峰。
本实施例中,目标三角对为目标第二间隙序列中的一个三角形对。请参阅图10,图10为本申请实施例中第二间隙序列和束斑扫描第二间隙序列后所得到第二波形的示意图。如图10所示,束斑每扫过一个三角对,探测器的信号会形成两个波峰,对于目标波峰而言,目标波峰中的第一波峰为束斑扫过三角形对中第一个三角形的过程中探测器输出的波峰,目标波峰中的第二波峰为束斑扫过三角形对中第二个三角形的过程中探测器输出的波峰。由图10可知,束斑扫过一个三角形对所形成的信号波峰之间距离间隔较小,而束斑扫过不同三角形对之间的信号波峰间隔较大,因此可以由此确定束斑扫过一个三角形对所形成的波峰。
6043、根据第二波峰或第一波峰的持续时长与第一波峰加第二波峰总时长的比值确定束斑的纵坐标。
本实施例中,具体通过以下方式确定束斑的纵坐标,如图10所示,束斑从左往右扫过目标第二间隙序列1001,目标第二间隙序列1001的第一个第二间隙为目标三角对10011,该目标三角对为对称设置的两个直角三角形,目标三角对中,左侧的三角为第一三角100111,右侧的三角为第二三角100112,第一三角100111中,竖直方向直角边的底点纵坐标为y11,竖直方向直角边的顶点纵坐标为y12,束斑从y11和y12之间的A点1002切入扫描。
在束斑扫描目标三角对后,测量单元所得到的目标波峰1003包括第一波峰10031和第二波峰10032,其中第一波峰10031为束斑扫过第一三角100111后在测量单元中所形成的波峰,第二波峰10032为束斑扫过第二三角100112后在测量单元中所形成的波峰,如图10所示,第一波峰的长度为x11,第二波峰的长度为x12,第一波峰与第二波峰之间存在一定的间隔,第一波峰、第二波峰及间隔的长度组成了束斑通过目标三角对的总响应长度x1。
具体工作过程中,通过以下公式计算束斑的纵坐标y f
Figure PCTCN2022085983-appb-000002
上述公式的计算原理如图11所示,图11为第二间隙序列中的第二三角的示意图,图11中的三角形1101即为图10中的第二三角100112,束斑在扫描过程中划过第二三角的轨迹为ab。如图11可知,三角形abc与第二三角dec构成相似三角形。此时,束斑划过轨迹ab(即三角形abc的水平边)的长度即为第二波峰的长度为x12,如图10所示,若束斑不是从A点,而是从y12点切入扫描,则此时第二波峰的持续长度应当为x11+x12,则
Figure PCTCN2022085983-appb-000003
即为三角形abc与三角形dec的水平边的比例。
进一步地,y12-y11等于三角形dec的竖直边的边长,通过公式
Figure PCTCN2022085983-appb-000004
即可求得三角形abc的竖直边的边长,在将该三角形abc的竖直边的边长加上该边底点的纵坐标y11,即可得到轨迹ab的纵坐标。
同理,如图10所示,在束斑后续通过的两个三角形对中,也可以通过同样的方式求得 束斑的纵坐标,此处不再赘述。
6044、根据横坐标和纵坐标确定束斑在目标子区域中扫过的轨迹。
本实施例中,通过上述步骤6041至6043,分别求得了束斑的纵坐标和不同时间点下束斑的横坐标,因此通过所求得的纵坐标和这些横坐标,即可求得束斑在目标子区域中扫过的轨迹。
本申请实施例所提供的束斑测量方法,首先通过束斑扫过目标第一间隙序列所得到的第一波形,对束斑进行初次定位,确定束斑在测量单元中所扫过的目标区域。之后通过束斑扫过目标第二间隙序列所得到的第二波形,对束斑进行二次定位,从而确定束斑在上述目标区域中所扫过的目标子区域,实现了对束斑更精确的定位。进一步地,本申请实施例中遮挡元件的间隙采用了三角对的形式,通过三角对的结构和第二波形,可以精确地求得束斑扫描的轨迹,从而在单个测量单元中实现了对束斑的精确定位,在具有多个束斑的束斑矩阵中,每个测量单元分别通过上述方式测量一个束斑的位置,从而将这些数据汇总在一起,可以得到束斑矩阵中每个束斑的相对位置。
需要说明的是,一个测量单元上方遮挡元件中,间隙序列的布置方式可以如图8所示,左侧设置第一间隙序列,第一间隙序列的右侧设置第二间隙序列,即从束斑的扫描顺序而言,第一间隙序列设置在第二间隙序列之前。作为一种优选的实现方式,间隙序列的布置方式还可以如图12所示,图12为本申请实施例所提供的遮挡元件的另一种实现方式的示意图。第二间隙序列的每个第二间隙1202之间交替地设置有第一间隙序列1201,这种设置方式有以下几个好处。
1、解决束斑扫描速度或步进间隔不均匀的问题。具体工作过程中,机台可以通过两种方式带动测量单元相对束斑运动。第一种是匀速运动的方式,机台以同一速度匀速相对束斑运动,以实现束斑的匀速扫描。第二种是步进运动的方式,机台每间隔预设时间向同一方向运动一个步进间隔,从而实现了束斑对测量单元上方遮挡元件的扫描。然而在实际工作过程中,机台的运动可能会发生一些抖动,导致束斑的扫描速度或步进间隔并不均匀,从而影响了相关的计算,因此,每个第二间隙之前都设置有一组第一间隙序列,束斑每次扫描第二间隙之前,都可以通过第一间隙序列测量一次束斑的扫描速度或步进间隔,从而解决了束斑扫描速度或步进间隔不均匀的问题对测量准确性的影响。
2、解决束斑在扫描过程中在Y轴方向上抖动的问题。具体工作过程中,束斑依次扫过第二间隙序列的三个第二间隙;通过扫过三个第二间隙所得到的第二波形确定束斑在遮挡元件上扫过的目标子区域。例如,在第二间隙序列中,最小的第二间隙记为1号,中等的第二间隙记为2号,最大的第二间隙记为3号,在一个第一间隙序列所对应的目标区域内,从上到下设置有多个不同的第二间隙序列,第一行的A第二间隙序列中第二间隙的排序为123,第二行的B第二间隙序列中第二间隙的排序为321。如图12所示,若采用图8所示的间隙排列方式,束斑从第一行的A第二间隙序列切入,走第一轨迹1203,***可以识别到第二间隙的排序为123,从而定位了束斑所扫描的目标子区域。然而在实际工作过程中,由于机台工作的不稳定性,束斑可能会在y轴方向上下抖动,例如,束斑从第一行的A第二间隙序列切入,扫过了A第二间隙序列中的1号第二间隙,此时束斑的扫描轨迹发生抖动,导致束斑扫描到B第二间隙序列中,则后续扫描到的两个间隙为2号间隙和1号间隙,走第二轨迹1204,最终 所扫描得到的间隙排序为121。此种情况下***无法识别轨迹所在的区域。而通过图12所示的布局,束斑每进入一个第二间隙序列之前,都要通过一个第一间隙序列对束斑进行定位,从而解决了上述束斑在扫描过程中在Y轴方向上抖动的问题。
由此可知,通过如图12所示的间隙设置方式,可以解决束斑在x方向上的抖动导致的扫描速度不均匀的问题,也可以解决束斑在y方向上的抖动导致的轨迹异常问题,提升了检测的精确度和容错率。
上述步骤601至604所公开的步骤能够计算束斑的中心的所在的具***置,在实际工作过程中,由于第二波形是束斑扫过至少三个第二间隙之后得到的,因此可以通过第二波形拟合出每个束斑的形状,从而对束斑进行更具体精确的测量。具体工作过程中,束斑的形状可以通过电子束与间隙斜边的响应曲线确定,束斑为圆形时需要至少一条斜边,束斑为任意形状椭圆是需要用至少三条斜边的响应曲线对椭圆形状进行拟合。本申请实施例中,第二间隙中的三角对提供拟合束斑形状所需的三条斜边。可选地,束斑形状的具体拟合方式为现有技术,本领域技术人员可以根据实际需要选择对束斑形状进行拟合的方法。因此本申请实施例不再赘述。
本申请实施例所提供的束斑测量方法,首先通过束斑扫过目标第一间隙序列所得到的第一波形对束斑进行初次定位。之后通过束斑扫过目标第二间隙序列所得到的第二波形对束斑进行二次定位,从而确定束斑在测量单元所扫过的具体区域,实现了对束斑精确的定位。进一步地,本申请实施例中遮挡元件的间隙采用了三角对的形式,通过三角对的结构和第二波形,可以精确地求得束斑扫描的轨迹,从而在单个测量单元中实现了对束斑的精确定位,在具有多个束斑的束斑矩阵中,每个测量单元分别通过上述方式测量一个束斑的位置,从而将这些数据汇总在一起,可以得到束斑矩阵中每个束斑的相对位置。进一步地,通过第二波形拟合出束斑矩阵中每个束斑的形状,从而实现了对束斑的精确测量。
从硬件结构上来描述,上述设备管理方法可以由一个实体设备实现,也可以由多个实体设备共同实现,还可以是一个实体设备内的一个逻辑功能模块,本申请实施例对此不作具体限定。
例如,上述方法可以通过图13中的电子设备来实现。图13为本申请实施例提供的一种电子设备的硬件结构示意图;该电子设备可以是本发明实施例中的播放终端或解析终端,该电子设备包括至少一个处理器1301,通信线路1302,存储器1303以及至少一个通信接口1304。
处理器1301可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,服务器IC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路1302可包括一通路,在上述组件之间传送信息。
通信接口1304,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器1303可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储 信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1302与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1303用于存储执行本申请方案的计算机执行指令,并由处理器1301来控制执行。处理器1301用于执行存储器1303中存储的计算机执行指令,从而实现本申请下述实施例提供的计费管理的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器1301可以包括一个或多个CPU,例如图13中的CPU0和CPU1。
在具体实现中,作为一种实施例,电子设备可以包括多个处理器,例如图13中的处理器1301和处理器1307。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,电子设备还可以包括输出设备1305和输入设备1306。输出设备1305和处理器1301通信,可以以多种方式来显示信息。例如,输出设备1305可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备1306和处理器1301通信,可以以多种方式接收用户的输入。例如,输入设备1306可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的电子设备可以是一个通用设备或者是一个专用设备。在具体实现中,电子设备可以服务器、无线终端设备、嵌入式设备或有图13中类似结构的设备。本申请实施例不限定电子设备的类型。
本申请实施例可以根据上述方法示例对电子设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能单元的情况下,图14示出了本申请实施例所提供的一种束斑测量装置的结构示意图。
如图14所示,本申请实施例所提供的束斑测量装置包括:
获取单元1401,用于获取探测器输出的信号变化,所述探测器与电子束产生***之间设置有遮挡元件,所述遮挡元件用于遮挡所述电子束产生***发射的电子束,所述遮挡元件中设置有允许所述电子束穿过的至少一个第一间隙,所述信号变化包括所述电子束扫过 所述遮挡元件的过程中所述探测器检测到信号变化的波形;
定位单元1402,用于根据所述获取单元1401获取的所述信号变化的第一波形定位所述电子束的束斑在所述探测器上扫过的目标区域,所述第一波形为所述束斑扫过目标第一间隙序列所产生的波形,所述遮挡元件的不同位置设置有不同的第一间隙序列,所述目标第一间隙序列为所述遮挡元件中的一个第一间隙序列,每一所述第一间隙序列包括至少一个第一间隙和设置在所述第一间隙之间的第一间距,不同的所述第一间隙序列之间所述第一间隙与所述第一间距的排列组合方式不同。
可选地,该定位单元1402,还用于:
在该第一波形中确定波峰所在的位置为该第一间隙所在的位置;
在该第一波形中确定没有波峰的位置为该第一间距;
根据该第一间隙与该第一间距的排列确定该第一波形为该束斑扫过该目标第一间隙序列产生的波形;
确定该目标第一间隙序列在该探测器上的投影为该目标区域。
可选地,该遮挡元件中每个第一间隙序列的一侧设置有多个第二间隙序列,该第二间隙序列为该束斑在扫过该第一间隙序列之后扫描的序列,不同的该第二间隙序列之间的间隙排列方式不同;该定位单元1402,还用于:
根据该信号变化的第二波形定位该束斑在该目标区域中扫过的目标子区域,该第二波形为该束斑扫过目标第二间隙序列所产生的波形,该目标第二间隙序列为该至少一个第二间隙序列中的一个。
可选地,该目标区域内包括多个第二间隙序列,每个第二间隙序列在该束斑的扫描路径上分别设置有大小和/或形状不相同的多个第二间隙,且不同第二间隙序列中所述多个第二间隙之间的排列组合方式不同;该定位单元1402,还用于:
根据该第二波形中波峰的持续时间确定该多个第二间隙的排序;
根据该多个第二间隙的排序确定该束斑扫过的第二间隙序列为该目标第二间隙序列;
确定该目标第二间隙序列在该探测器上的投影为该束斑扫过的目标子区域。
可选地,该每个第二间隙序列中的多个第二间隙形状相同,大小不同,该定位单元1402,还用于:
根据该第二波形中波峰的持续时间确定所扫过第二间隙的大小,其中,该持续时间越长,该第二间隙越大;
根据该第二间隙的大小得到该多个第二间隙的排序。
可选地,该定位单元1402,还用于:
根据该第二波形确定该束斑在该目标子区域中扫过的轨迹。
可选地,该第二间隙序列的每个第二间隙中分别包括一个三角形对,该三角形对包括形状相同且对称设置的两个三角形间隙,该定位单元1402,还用于:
根据该束斑的扫描速度和该第二波形中的时间刻度确定每个时间点中该束斑的横坐标;
从该第二波形中确定相邻的一对目标波峰为束斑扫过目标三角形对的波峰,该目标三角对为该目标第二间隙序列中的一个三角形对,该目标波峰中的第一波峰为该束斑扫过该 三角形对中一个三角形的过程中该探测器输出的波峰,该目标波峰中的第二波峰为该束斑扫过该三角形对中另一个三角形的过程中该探测器输出的波峰;
根据该第二波峰或该第一波峰的持续时长与该第一波峰加该第二波峰总时长的比值确定该束斑的纵坐标;
根据该横坐标和该纵坐标确定该束斑在该目标子区域中扫过的轨迹。
可选地,该根据该束斑的扫描速度和该第二波形中的时间刻度之前,还包括:
根据该第一波形中波峰之间的间隔和该目标第一间隙序列中第一间隙之间的间距确定该束斑的扫描速度。
可选地,该目标第一间隙序列设置在该目标第二间隙序列之前,或者,该目标第二间隙序列中的每个第二间隙之前分别设置有该第一间隙序列,且不同该第二间隙之前的该第一间隙序列不相同。
可选地,该装置还包括拟合单元1403,用于根据该第二波形拟合该束斑的形状。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行前述实施例中的方法。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包括,例如,包括了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请中“至少一项(个)”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要获取其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各模块单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件模块单元的形式实现。
所述集成的单元如果以软件模块单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码 的介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种束斑测量方法,其特征在于,包括:
    获取探测器输出的信号变化,所述探测器与电子束产生***之间设置有遮挡元件,所述遮挡元件用于遮挡所述电子束产生***发射的电子束,所述遮挡元件中设置有允许所述电子束穿过的至少一个第一间隙,所述信号变化包括所述电子束扫过所述遮挡元件的过程中所述探测器检测到信号变化的波形;
    根据所述信号变化的第一波形定位所述电子束的束斑在所述探测器上扫过的目标区域,所述第一波形为所述束斑扫过目标第一间隙序列所产生的波形,所述遮挡元件的不同位置设置有不同的第一间隙序列,所述目标第一间隙序列为所述遮挡元件中的一个第一间隙序列,每一所述第一间隙序列包括至少一个第一间隙和设置在所述第一间隙之间的第一间距,不同的所述第一间隙序列之间所述第一间隙与所述第一间距的排列组合方式不同。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述信号变化的第一波形定位所述电子束在所述探测器上扫过的目标区域,包括:
    在所述第一波形中确定波峰所在的位置为所述第一间隙所在的位置;
    在所述第一波形中确定没有波峰的位置为所述第一间距;
    根据所述第一间隙与所述第一间距的排列确定所述第一波形为所述束斑扫过所述目标第一间隙序列产生的波形;
    确定所述目标第一间隙序列在所述探测器上的投影为所述目标区域。
  3. 根据权利要求1或2所述的方法,其特征在于,所述遮挡元件中每个第一间隙序列的一侧设置有多个第二间隙序列,所述第二间隙序列为所述束斑在扫过所述第一间隙序列之后扫描的序列,不同的所述第二间隙序列之间的间隙排列方式不同;所述根据所述信号变化的第一波形定位所述电子束的束斑在所述探测器上扫过的目标区域之后,还包括:
    根据所述信号变化的第二波形定位所述束斑在所述目标区域中扫过的目标子区域,所述第二波形为所述束斑扫过目标第二间隙序列所产生的波形,所述目标第二间隙序列为所述至少一个第二间隙序列中的一个。
  4. 根据权利要求3所述的方法,其特征在于,所述目标区域内包括多个第二间隙序列,每个第二间隙序列在所述束斑的扫描路径上分别设置有大小和/或形状不相同的多个第二间隙,且不同第二间隙序列中所述多个第二间隙之间的排列组合方式不同;所述根据所述信号变化的第二波形定位所述束斑在所述目标区域中扫过的目标子区域,包括:
    根据所述第二波形中波峰的持续时间确定所述多个第二间隙的排序;
    根据所述多个第二间隙的排序确定所述束斑扫过的第二间隙序列为所述目标第二间隙序列;
    确定所述目标第二间隙序列在所述探测器上的投影为所述束斑扫过的目标子区域。
  5. 根据权利要求4所述的方法,其特征在于,所述每个第二间隙序列中的多个第二间 隙形状相同,大小不同,所述根据所述第二波形中波峰的持续时间确定所述多个第二间隙的排序,包括:
    根据所述第二波形中波峰的持续时间确定所扫过第二间隙的大小,其中,所述持续时间越长,所述第二间隙越大;
    根据所述第二间隙的大小得到所述多个第二间隙的排序。
  6. 根据权利要求3至5任一所述的方法,其特征在于,所述根据所述信号变化的第二波形定位所述束斑在所述目标区域中扫过的目标子区域之后,还包括:
    根据所述第二波形确定所述束斑在所述目标子区域中扫过的轨迹。
  7. 根据权利要求6所述的方法,其特征在于,所述第二间隙序列的每个第二间隙中分别包括一个三角形对,所述三角形对包括形状相同且对称设置的两个三角形间隙,所述根据所述第二波形确定所述束斑在所述目标子区域中扫过的轨迹,包括:
    根据所述束斑的扫描速度和所述第二波形中的时间刻度确定每个时间点中所述束斑的横坐标;
    从所述第二波形中确定相邻的一对目标波峰为束斑扫过目标三角形对的波峰,所述目标三角对为所述目标第二间隙序列中的一个三角形对,所述目标波峰中的第一波峰为所述束斑扫过所述三角形对中一个三角形的过程中所述探测器输出的波峰,所述目标波峰中的第二波峰为所述束斑扫过所述三角形对中另一个三角形的过程中所述探测器输出的波峰;
    根据所述第二波峰或所述第一波峰的持续时长与所述第一波峰加所述第二波峰总时长的比值确定所述束斑的纵坐标;
    根据所述横坐标和所述纵坐标确定所述束斑在所述目标子区域中扫过的轨迹。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述束斑的扫描速度和所述第二波形中的时间刻度之前,还包括:
    根据所述第一波形中波峰之间的间隔和所述目标第一间隙序列中第一间隙之间的间距确定所述束斑的扫描速度。
  9. 根据权利要求3至8任一所述的方法,其特征在于,所述目标第一间隙序列设置在所述目标第二间隙序列之前,或者,所述目标第二间隙序列中的每个第二间隙之前分别设置有所述第一间隙序列,且不同所述第二间隙之前的所述第一间隙序列不相同。
  10. 根据权利要求3至9任一所述的方法,其特征在于,所述根据所述信号变化的第二波形定位所述束斑在所述目标区域中扫过的目标子区域之后,还包括:
    根据所述第二波形拟合所述束斑的形状。
  11. 一种束斑测量装置,其特征在于,包括:
    获取单元,用于获取探测器输出的信号变化,所述探测器与电子束产生***之间设置 有遮挡元件,所述遮挡元件用于遮挡所述电子束产生***发射的电子束,所述遮挡元件中设置有允许所述电子束穿过的至少一个第一间隙,所述信号变化包括所述电子束扫过所述遮挡元件的过程中所述探测器检测到信号变化的波形;
    定位单元,用于根据所述获取单元获取的所述信号变化的第一波形定位所述电子束的束斑在所述探测器上扫过的目标区域,所述第一波形为所述束斑扫过目标第一间隙序列所产生的波形,所述遮挡元件的不同位置设置有不同的第一间隙序列,所述目标第一间隙序列为所述遮挡元件中的一个第一间隙序列,每一所述第一间隙序列包括至少一个第一间隙和设置在所述第一间隙之间的第一间距,不同的所述第一间隙序列之间所述第一间隙与所述第一间距的排列组合方式不同。
  12. 一种电子设备,其特征在于,所述电子设备包括处理器和存储器,所述存储器中存储有程序指令;
    所述处理器用于执行存储器中存储的程序指令,执行如权利要求1至10任一所述的方法。
  13. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在计算机设备上运行时,使得所述计算机设备执行如权利要求1-10中任一项所述的方法。
PCT/CN2022/085983 2022-04-09 2022-04-09 一种束斑测量方法、装置、设备及介质 WO2023193282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085983 WO2023193282A1 (zh) 2022-04-09 2022-04-09 一种束斑测量方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085983 WO2023193282A1 (zh) 2022-04-09 2022-04-09 一种束斑测量方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2023193282A1 true WO2023193282A1 (zh) 2023-10-12

Family

ID=88243941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085983 WO2023193282A1 (zh) 2022-04-09 2022-04-09 一种束斑测量方法、装置、设备及介质

Country Status (1)

Country Link
WO (1) WO2023193282A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117291138A (zh) * 2023-11-22 2023-12-26 全芯智造技术有限公司 用于生成版图元素的方法、设备和介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276639A (ja) * 2004-03-25 2005-10-06 Jeol Ltd 走査型電子ビーム装置における対物レンズ絞りの位置調整方法
CN102435128A (zh) * 2011-09-01 2012-05-02 上海显恒光电科技股份有限公司 设有双法拉第筒的电子束束斑尺寸测量装置及其测量方法
CN114252903A (zh) * 2020-09-25 2022-03-29 桂林电子科技大学 一种电子束斑检测方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276639A (ja) * 2004-03-25 2005-10-06 Jeol Ltd 走査型電子ビーム装置における対物レンズ絞りの位置調整方法
CN102435128A (zh) * 2011-09-01 2012-05-02 上海显恒光电科技股份有限公司 设有双法拉第筒的电子束束斑尺寸测量装置及其测量方法
CN114252903A (zh) * 2020-09-25 2022-03-29 桂林电子科技大学 一种电子束斑检测方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN ZHENCHENG, HU YONGMEI, ZHANG YULIN: "Study on the Best Match of the Beam Spot and the Beam Current of Electron-Beam Exposure MachineC", ELECTRONIC MEASUREMENT TECHNOLOGY, vol. 4, 31 December 1998 (1998-12-31), pages 40 - 43, XP093097986, ISSN: 1002-7300, DOI: 10.19651/j.cnki.emt.1998.04.012 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117291138A (zh) * 2023-11-22 2023-12-26 全芯智造技术有限公司 用于生成版图元素的方法、设备和介质
CN117291138B (zh) * 2023-11-22 2024-02-13 全芯智造技术有限公司 用于生成版图元素的方法、设备和介质

Similar Documents

Publication Publication Date Title
JP5378519B2 (ja) 光学タッチセンサー式デバイスにおけるマルチタッチ事象を検出する方法および装置
US9488815B2 (en) Pattern evaluation method and pattern evaluation device
KR101808470B1 (ko) 패턴 측정 장치 및 컴퓨터 프로그램
TWI576581B (zh) Measuring system and measuring method
WO2023193282A1 (zh) 一种束斑测量方法、装置、设备及介质
US10417756B2 (en) Pattern measurement apparatus and defect inspection apparatus
CN111801626A (zh) 将带电粒子束计量***的充电效果和辐射损害最小化的扫描策略
US9292134B2 (en) Method and device for touch identification, and touch screen
US9367177B2 (en) Method and system for determining true touch points on input touch panel using sensing modules
JP2012026921A (ja) 光学式測距装置およびそれを搭載した機器
Kodama et al. Hybrid emulsion spectrometer for the detection of hadronically produced heavy flavor states
JP3265724B2 (ja) 荷電粒子線装置
JP6054578B2 (ja) 差動位相コントラストイメージング装置のx線管のためのアノード
TW202139237A (zh) 帶電粒子束檢查裝置以及帶電粒子束檢查方法
CN111176068B (zh) 掩模检查装置和方法、以及包括该方法的制造掩模的方法
KR101487113B1 (ko) 패턴의 판정 장치 및 기록 매체
JP5308321B2 (ja) ディスクの表面欠陥検査方法および検査装置
JP2000088519A (ja) 光式センサ
JPH07294223A (ja) 形状測定装置
JP2023050960A (ja) 荷電粒子線画像処理装置とそれを備える荷電粒子線装置
JP3705179B2 (ja) ホールパターン形状評価装置
KR20230004602A (ko) 패턴 매칭 방법
CN116952997A (zh) 电子束探测装置、探测组件和校准方法
Strand Optical-image recognition for experiments in the track chambers of high-energy physics
CN118169662A (zh) 基于激光雷达的光斑检测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936219

Country of ref document: EP

Kind code of ref document: A1