WO2023190633A1 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
WO2023190633A1
WO2023190633A1 PCT/JP2023/012719 JP2023012719W WO2023190633A1 WO 2023190633 A1 WO2023190633 A1 WO 2023190633A1 JP 2023012719 W JP2023012719 W JP 2023012719W WO 2023190633 A1 WO2023190633 A1 WO 2023190633A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion material
chip
type thermoelectric
insulating layer
Prior art date
Application number
PCT/JP2023/012719
Other languages
French (fr)
Japanese (ja)
Inventor
晴樹 末吉
佑太 関
邦久 加藤
睦 升本
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2023190633A1 publication Critical patent/WO2023190633A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present invention relates to a thermoelectric conversion module.
  • thermoelectric conversion module having a thermoelectric effect such as the Seebeck effect or the Peltier effect.
  • thermoelectric conversion module it is known to use a so-called ⁇ -type thermoelectric conversion element.
  • a ⁇ -type thermoelectric conversion element has a pair of electrodes spaced apart from each other on a substrate, for example, the lower surface of a P-type thermoelectric element is placed on one electrode, the lower surface of an N-type thermoelectric element is placed on the other electrode,
  • the basic unit is a configuration in which the top surfaces of both types of thermoelectric elements are connected to the same electrode on the opposing substrate, which are also spaced apart from each other, and usually a plurality of the basic units are connected electrically in series on both substrates. The connections are configured so that they are thermally connected in parallel.
  • thermoelectric conversion modules including such ⁇ -type thermoelectric conversion elements
  • various efforts have been made to make thermoelectric conversion modules thinner, reduce the amount of constituent materials, and improve reliability. I have a request.
  • Patent Documents 1 and 2 disclose thermoelectric conversion modules using the aforementioned ⁇ -type thermoelectric conversion elements.
  • thermoelectric conversion module of Patent Document 1 has a P-type element made of a P-type thermoelectric material, an N-type element made of an N-type thermoelectric material, and a metal that can form a PN junction pair by bonding these dissimilar elements one by one. It consists of two substrates with electrodes, etc., and at least a base material that supports metal electrodes and elements is used, so no consideration has been given to making the thermoelectric conversion module thinner or reducing the number of constituent materials. Not yet.
  • thermoelectric conversion module of Patent Document 2 does not include a base material that serves as a support in the final configuration, but a contact heat conduction layer is provided at a location where a substrate is normally placed, and the contact heat conduction layer is provided at a location where a substrate is normally placed.
  • the layer is made of the same materials as commonly used base materials, such as aluminum nitride, silicon nitride, alumina, etc., and also functions as a support, so it is important to consider ways to make the thermoelectric conversion module thinner and reduce the number of constituent materials. Not real.
  • the present invention has been made in view of these circumstances, and an object of the present invention is to provide a thin thermoelectric conversion module that does not have a support base material or a solder layer.
  • thermoelectric conversion module having a structure in which an insulating layer is interposed and straddled, and the present invention was completed. That is, the present invention provides the following [1] to [15].
  • thermoelectric conversion module comprising:
  • the first insulating layer includes a chip of the P-type thermoelectric conversion material on a first surface side of the chip of the P-type thermoelectric conversion material and a first surface side of the chip of the N-type thermoelectric conversion material adjacent to the first surface side of the chip of the P-type thermoelectric conversion material. provided so as to straddle the gap between the adjacent chips of the N-type thermoelectric conversion material,
  • the second insulating layer includes a chip of the P-type thermoelectric conversion material on a second surface side of the chip of the P-type thermoelectric conversion material and a second surface side of the chip of the N-type thermoelectric conversion material adjacent to the second surface side of the chip of the P-type thermoelectric conversion material.
  • the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are: The first surface side of the chip of the P-type thermoelectric conversion material and the first surface side of the chip of the N-type thermoelectric conversion material adjacent to the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material in the arrangement direction.
  • first electrode provided on the front surface side with the first insulating layer interposed therebetween and further spanning the first insulating layer;
  • a second electrode provided on the surface side with the second insulating layer interposed therebetween and further spanning the second insulating layer;
  • the chips of the P-type thermoelectric conversion material and the chips of the N-type thermoelectric conversion material are electrically connected in this order alternately in the arrangement direction, A gap formed between the first insulating layer, the second insulating layer, the P-type thermoelectric conversion material chip, and the N-type thermoelectric conversion material chip is maintained.
  • Thermoelectric conversion module [2]
  • a first protective layer is provided on the first electrode and the first insulating layer, and a second protective layer is provided on the second electrode and the second insulating layer.
  • thermoelectric conversion module according to [1] above, wherein the thermoelectric conversion module is provided with: [3] The thermoelectric conversion module according to [2] above, further comprising a heat dissipation layer provided on the first protective layer and the second protective layer. [4] The thermoelectric conversion module according to any one of [1] to [3] above, wherein a frame is provided around the thermoelectric conversion module. [5] The thermoelectric conversion module according to [4] above, wherein the frame is made of metal, ceramics, or resin. [6] The first insulating layer and the second insulating layer are each independently selected from polyimide resin, silicone resin, rubber resin, acrylic resin, olefin resin, maleimide resin, and epoxy resin, as described above.
  • thermoelectric conversion module according to any one of [1] to [5]. [7] The thermoelectric conversion module according to [2] or [3], wherein the first protective layer and the second protective layer are each independently selected from insulating resins and ceramics. [8] The heat dissipation layer is made of gold, silver, copper, nickel, tin, iron, chromium, platinum, palladium, rhodium, iridium, ruthenium, osmium, indium, zinc, molybdenum, manganese, titanium, aluminum, stainless steel, and brass. The thermoelectric conversion module according to [3] above, selected from.
  • thermoelectric conversion module according to any one of [1] to [8] above, wherein the first insulating layer and the second insulating layer each independently have a thickness of 5 to 200 ⁇ m.
  • thermoelectric device according to any one of [2], [3] and [7] above, wherein the first protective layer and the second protective layer each independently have a thickness of 5 to 300 ⁇ m.
  • Conversion module [11] The thermoelectric conversion module according to [3] or [8] above, wherein the heat dissipation layer has a thickness of 5 to 550 ⁇ m.
  • the first electrode and the second electrode are each independently made of gold, silver, copper, nickel, chromium, platinum, palladium, rhodium, molybdenum, aluminum, or an alloy containing any of these metals.
  • the thermoelectric conversion module according to any one of [1] to [11] above, selected from. [13]
  • the first electrode and the second electrode are each independently formed of at least one type of film selected from the group consisting of a sputtered film, a vapor deposited film, and a plated film, [1] to [ above]. 12].
  • the thermoelectric conversion module according to any one of [12].
  • thermoelectric conversion module according to any one of [1] to [13] above, wherein the P-type thermoelectric conversion material chip and the N-type thermoelectric conversion material chip are made of a thermoelectric semiconductor composition.
  • thermoelectric semiconductor composition contains a thermoelectric semiconductor material, a resin, and one or both of an ionic liquid and an inorganic ionic compound.
  • thermoelectric conversion module that does not have a support base material and a solder layer.
  • FIG. 1 is a cross-sectional configuration diagram showing a first embodiment of a thermoelectric conversion module of the present invention.
  • FIG. 2 is a cross-sectional configuration diagram showing a second embodiment of the thermoelectric conversion module of the present invention.
  • FIG. 3 is a cross-sectional configuration diagram showing a third embodiment of a thermoelectric conversion module of the present invention.
  • thermoelectric conversion module includes chips of P-type thermoelectric conversion material and chips of N-type thermoelectric conversion material arranged in a spaced manner alternately, a first insulating layer, a second insulating layer, a first electrode, and A thermoelectric conversion module including a second electrode,
  • the first insulating layer includes a chip of the P-type thermoelectric conversion material on a first surface side of the chip of the P-type thermoelectric conversion material and a first surface side of the chip of the N-type thermoelectric conversion material adjacent to the first surface side of the chip of the P-type thermoelectric conversion material.
  • the second insulating layer includes a chip of the P-type thermoelectric conversion material on a second surface side of the chip of the P-type thermoelectric conversion material and a second surface side of the chip of the N-type thermoelectric conversion material adjacent to the second surface side of the chip of the P-type thermoelectric conversion material.
  • the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are: The first surface side of the chip of the P-type thermoelectric conversion material and the first surface side of the chip of the N-type thermoelectric conversion material adjacent to the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material in the arrangement direction.
  • first electrode provided on the front surface side with the first insulating layer interposed therebetween and further spanning the first insulating layer;
  • thermoelectric conversion module of the present invention the P-type thermoelectric conversion material is connected so that the common electrode of the adjacent P-type thermoelectric conversion material chip and the N-type thermoelectric conversion material chip is straddled with an insulating layer disposed in the center of the electrode.
  • thermoelectric conversion module By placing (wiring) directly on the upper and lower surfaces of the chip of type thermoelectric conversion material and the chip of N type thermoelectric conversion material, it is no longer necessary to provide electrodes on the support base material, and the support base material and solder layer used in the past can be used. This can be omitted, and the thermoelectric conversion module can be made thinner.
  • support base material refers to a substrate material used as a support for thermoelectric conversion materials, electrodes, etc., including, but not limited to, glass, silicon, and ceramics commonly used in the thermoelectric field. , resin, etc.
  • thermoelectric conversion module of the present invention will be explained using the drawings.
  • FIG. 1 is a cross-sectional configuration diagram showing a first embodiment of a thermoelectric conversion module of the present invention, and the thermoelectric conversion module 1 includes: Chips 3p of P-type thermoelectric conversion material and chips 3n of N-type thermoelectric conversion material arranged in an alternately spaced manner, the first insulating layer L1, the second insulating layer L2, the first electrode M1, and the second A thermoelectric conversion module including an electrode M2,
  • the first insulating layer L1 has a P-type thermoelectric conversion material on the first surface 3p 1 side of the chip 3p made of P-type thermoelectric conversion material and the first surface 3n 1 side of the chip 3n made of N-type thermoelectric conversion material adjacent to the first surface 3p 1 side of the chip 3p made of P-type thermoelectric conversion material.
  • the second insulating layer L2 has a P-type thermoelectric conversion material on the second surface 3p2 side of the chip 3P made of P-type thermoelectric conversion material and the second surface 3n2 side of the chip 3n made of N-type thermoelectric conversion material adjacent to the second surface 3p2 side of the chip 3P made of P-type thermoelectric conversion material.
  • the chip 3p of P-type thermoelectric conversion material and the chip 3n of N-type thermoelectric conversion material are: A first insulating layer is provided on the first surface 3p 1 side of the chip 3p made of P-type thermoelectric conversion material and on the first surface 3n 1 side of the chip 3n made of N-type thermoelectric conversion material adjacent to the chip arrangement direction 4.
  • a first electrode M1 provided to interpose L1 and further straddle the first insulating layer L1;
  • a second insulating layer L2 is provided on the second surface 3n 2 side of the chip made of N-type thermoelectric conversion material and on the second surface 3p 2 side of the chip made of P-type thermoelectric conversion material adjacent to the chip arrangement direction 4.
  • a second electrode M2 interposed and further provided to straddle the second insulating layer L2, They are electrically connected in this order alternately in the chip arrangement direction 4, A gap formed between the first insulating layer L1, the second insulating layer L2, the chip 3p of the P-type thermoelectric conversion material, and the chip 3n of the N-type thermoelectric conversion material is maintained.
  • 2 indicates a frame that also has the function of sealing the outer periphery of the thermoelectric conversion module. This embodiment does not have a supporting base material or a solder layer used for bonding the electrodes.
  • FIG. 2 is a cross-sectional configuration diagram showing a second embodiment of the thermoelectric conversion module of the present invention, in which the thermoelectric conversion module 11 has the structure shown in FIG. , a first protective layer H1 is provided, and a second protective layer H2 is provided on the second electrode M2 and the second insulating layer L2. 12 indicates a contact hole for an extraction electrode.
  • this embodiment also does not have a supporting base material and a solder layer used for bonding the electrodes.
  • FIG. 3 is a cross-sectional configuration diagram showing a third embodiment of the thermoelectric conversion module of the present invention.
  • a second heat dissipation layer T2 is provided on the second protective layer H2. 13 indicates an extraction electrode.
  • this embodiment also does not have a supporting base material and a solder layer used for bonding the electrodes.
  • the thermoelectric conversion module of the present invention includes a first insulating layer and a second insulating layer.
  • the insulating layer has the function of maintaining insulation between adjacent chips of P-type thermoelectric conversion material and chips of N-type thermoelectric conversion material, and gaps between chips of P-type thermoelectric conversion material and chips of N-type thermoelectric conversion material.
  • the first insulating layer and the second insulating layer are each independently preferably selected from polyimide resin, silicone resin, rubber resin, acrylic resin, olefin resin, maleimide resin, and epoxy resin, although they are not particularly limited. .
  • the insulating layer it is preferable to form the insulating layer so that the gaps between and around the chips of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are not filled.
  • known methods such as lamination can be used.
  • a method for patterning the insulating layer a known method can be used and is not particularly limited, but for example, by exposure and development treatment or laser irradiation, each chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are patterned. It is preferable to provide the contact holes so that the upper and lower surfaces are exposed.
  • a photosensitive resin for example, when a photosensitive resin is used, a desired photomask for forming a contact hole is interposed, the resin is exposed to ultraviolet rays, etc., and then processed using a developer or the like.
  • examples include methods.
  • examples of laser irradiation include processing methods using carbon dioxide laser, ultraviolet laser, and the like.
  • each insulating layer is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and still more preferably 15 to 30 ⁇ m. When the thickness of the insulating layer is within this range, insulation between adjacent electrodes can be ensured, and the thickness of the thermoelectric conversion module will not increase.
  • the thermoelectric conversion module of the present invention includes a first electrode and a second electrode.
  • the electrode covers the insulating layer and the upper and lower surfaces of the P-type thermoelectric conversion material chip and the N-type conversion material chip, and is not directly formed using a support base material or the like.
  • the electrode materials are each independently preferably selected from gold, silver, copper, nickel, chromium, platinum, palladium, rhodium, molybdenum, aluminum, or an alloy containing any of these metals.
  • the electrode covers the insulating layer and the upper and lower surfaces of the P-type thermoelectric conversion material chip and the N-type conversion material chip, and is made of a sputtered film, a vapor deposited film, and a plated film from the viewpoint of maintaining high thermoelectric performance. It is preferable that the film is formed of at least one kind of film selected from the group.
  • Examples of methods for patterning the electrode material to form electrodes include methods of processing the material into a predetermined pattern shape by known physical or chemical treatments, mainly photolithography, or a combination thereof.
  • Specific methods for processing into a predetermined pattern include, for example, a method of directly forming by exposure and development, a method of forming by etching after exposure and development, a method of directly forming by laser processing, and the like.
  • a method of directly forming by exposure and development processing is particularly preferable.
  • the thickness of the electrode depends on the thickness of the insulating layer used, but is preferably 5 to 200 ⁇ m, more preferably 8 to 150 ⁇ m, and still more preferably 10 to 120 ⁇ m. If the thickness of the electrode is within the above range, the electrical conductivity will be high and the resistance will be low, and sufficient strength as an electrode will be obtained.
  • thermoelectric conversion material used in the present invention is not particularly limited, and may be made of a thermoelectric semiconductor material or a thin film made of a thermoelectric semiconductor composition. From the viewpoints of flexibility, thinness, and thermoelectric performance, it consists of a thermoelectric semiconductor composition containing one or both of a thermoelectric semiconductor material (hereinafter sometimes referred to as "thermoelectric semiconductor particles"), a resin, an ionic liquid, and an inorganic ionic compound. Preferably, it is made of a thin film.
  • thermoelectric semiconductor particles containing one or both of a thermoelectric semiconductor material (hereinafter sometimes referred to as "thermoelectric semiconductor particles"), a resin, an ionic liquid, and an inorganic ionic compound.
  • thermoelectric conversion material or “chip of thermoelectric conversion material” have the same meaning, and also have the same meaning as “thermoelectric conversion material layer.”
  • thermoelectric semiconductor material used for the thermoelectric conversion material chip is preferably ground to a predetermined size using a pulverizer or the like and used as thermoelectric semiconductor particles (hereinafter, the thermoelectric semiconductor material is referred to as "thermoelectric semiconductor particles"). ).
  • the particle size of the thermoelectric semiconductor particles is preferably 10 nm to 100 ⁇ m, more preferably 20 nm to 50 ⁇ m, even more preferably 30 nm to 30 ⁇ m.
  • the average particle size of the thermoelectric semiconductor particles was obtained by measuring with a laser diffraction particle size analyzer (Mastersizer 3000, manufactured by Malvern), and was taken as the median of the particle size distribution.
  • thermoelectric semiconductor material constituting the P-type thermoelectric conversion material chip and the N-type conversion material chip can generate thermoelectromotive force by applying a temperature difference.
  • bismuth-tellurium thermoelectric semiconductor materials such as P-type bismuth telluride and N-type bismuth telluride; telluride thermoelectric semiconductor materials such as GeTe and PbTe; antimony-tellurium thermoelectric semiconductor materials; Zinc-antimony thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2, Zn 4 Sb 3 ; silicon-germanium thermoelectric semiconductor materials such as SiGe; bismuth selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; ⁇ -FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si, and other silicide-based thermoelectric semiconductor materials; oxide-based thermoelectric semiconductor materials; Heusler materials such as FeVAl, FeVAlSi, and FeVTiAl, and
  • thermoelectric semiconductor material used in the present invention is preferably a bismuth-tellurium thermoelectric semiconductor material such as P-type bismuth telluride or N-type bismuth telluride.
  • the P-type bismuth telluride has holes as carriers and a positive Seebeck coefficient, and is preferably represented by, for example, Bi X Te 3 Sb 2-X .
  • X preferably satisfies 0 ⁇ X ⁇ 0.8, more preferably 0.4 ⁇ X ⁇ 0.6.
  • X is greater than 0 and less than or equal to 0.8, the Seebeck coefficient and electrical conductivity become large, and the properties as a P-type thermoelectric conversion material are maintained, which is preferable.
  • the N-type bismuth telluride has an electron as a carrier and a negative Seebeck coefficient, and for example, one represented by Bi 2 Te 3-Y Se Y is preferably used.
  • the content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, and even more preferably 70 to 95% by mass. If the content of thermoelectric semiconductor particles is within the above range, the Seebeck coefficient (absolute value of the Peltier coefficient) is large, and the decrease in electrical conductivity is suppressed, and only the thermal conductivity decreases, resulting in high thermoelectric performance. At the same time, a film having sufficient film strength and flexibility can be obtained, which is preferable.
  • thermoelectric semiconductor particles are those that have been subjected to an annealing treatment (hereinafter sometimes referred to as "annealing treatment A").
  • annealing treatment A By performing annealing treatment A, the crystallinity of the thermoelectric semiconductor particles is improved, and the surface oxide film of the thermoelectric semiconductor particles is removed, so the Seebeck coefficient (absolute value of the Peltier coefficient) of the thermoelectric conversion material increases. , the thermoelectric figure of merit can be further improved.
  • the resin used in the present invention has the effect of physically bonding between thermoelectric semiconductor materials (thermoelectric semiconductor particles), can increase the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating etc. .
  • a heat-resistant resin or a binder resin is preferable.
  • the heat-resistant resin maintains its physical properties such as mechanical strength and thermal conductivity as a resin when crystal-growing thermoelectric semiconductor particles by annealing a thin film made of a thermoelectric semiconductor composition or the like.
  • the heat-resistant resin is preferably a polyamide resin, a polyamide-imide resin, a polyimide resin, or an epoxy resin because it has higher heat resistance and does not adversely affect the crystal growth of the thermoelectric semiconductor particles in the thin film, and has excellent flexibility. From this point of view, polyamide resin, polyamideimide resin, and polyimide resin are more preferable.
  • the heat-resistant resin preferably has a decomposition temperature of 300°C or higher. If the decomposition temperature is within the above range, even when a thin film made of the thermoelectric semiconductor composition is annealed, it will not lose its function as a binder and will maintain its flexibility, as will be described later.
  • the heat-resistant resin preferably has a mass reduction rate at 300°C measured by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and even more preferably 1% or less. . If the mass reduction rate is within the above range, even when a thin film made of a thermoelectric semiconductor composition is annealed, the flexibility of the thermoelectric conversion material chip can be maintained without losing its function as a binder, as described later. I can do it.
  • TG thermogravimetry
  • the content of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, and even more preferably 2 to 15% by mass. Mass%.
  • the content of the heat-resistant resin is within the above range, it functions as a binder for the thermoelectric semiconductor material, facilitates the formation of a thin film, and provides a film that has both high thermoelectric performance and film strength, and is effective in thermoelectric conversion.
  • a resin portion is present on the outer surface of the material chip.
  • the binder resin can be easily peeled off from the base material such as glass, alumina, silicon, etc. used in the production of thermoelectric conversion material chips after firing (annealing) treatment (corresponds to "annealing treatment B" described later, the same applies hereinafter). Make it.
  • the binder resin refers to a resin that decomposes at least 90% by mass at a firing (annealing) temperature or higher, more preferably a resin that decomposes at least 95% by mass, and a resin that decomposes at least 99% by mass. is particularly preferred.
  • a coating film (thin film) made of a thermoelectric semiconductor composition is subjected to a baking (annealing) treatment or the like to cause crystal growth of thermoelectric semiconductor particles, a resin that maintains various physical properties such as mechanical strength and thermal conductivity without loss is required. More preferred.
  • the binder resin If a resin that decomposes at least 90% by mass at a temperature equal to or higher than the sintering (annealing) temperature is used as the binder resin, in other words, a resin that decomposes at a lower temperature than the aforementioned heat-resistant resin, the binder resin will decompose during sintering, so the sintered product will The content of the binder resin, which is an insulating component, is reduced, and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted, so the voids in the thermoelectric conversion material layer are reduced and the filling rate is increased. can be improved.
  • thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonate; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymer, and polyacetic acid.
  • Polyvinyl polymers such as vinyl, ethylene-vinyl acetate copolymer, vinyl chloride, polyvinylpyridine, polyvinyl alcohol, and polyvinylpyrrolidone; polyurethane; cellulose derivatives such as ethylcellulose; and the like.
  • thermosetting resins examples include epoxy resins and phenol resins.
  • thermosetting resins examples include epoxy resins and phenol resins.
  • photocurable resin examples include photocurable acrylic resin, photocurable urethane resin, and photocurable epoxy resin. These may be used alone or in combination of two or more. Among these, from the viewpoint of electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer, thermoplastic resins are preferred, cellulose derivatives such as polycarbonate and ethyl cellulose are more preferred, and polycarbonate is particularly preferred.
  • the binder resin is appropriately selected depending on the temperature of the firing (annealing) process for the thermoelectric semiconductor material in the firing (annealing) process. It is preferable to perform the firing (annealing) treatment at a temperature equal to or higher than the final decomposition temperature of the binder resin from the viewpoint of electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer.
  • the "final decomposition temperature” refers to the temperature at which the mass reduction rate at the calcination (annealing) temperature as measured by thermogravimetry (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition).
  • the final decomposition temperature of the binder resin is usually 150 to 600°C, preferably 200 to 560°C, more preferably 220 to 460°C, particularly preferably 240 to 360°C. If a binder resin with a final decomposition temperature within this range is used, it will function as a binder for the thermoelectric semiconductor material and will facilitate the formation of a thin film during printing.
  • the content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, particularly preferably 0.5 to 5% by mass. Mass%.
  • the content of the binder resin is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
  • the content of the binder resin in the thermoelectric conversion material is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, particularly preferably 0 to 1% by mass. If the content of the binder resin in the thermoelectric conversion material is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
  • the ionic liquid that can be contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist in a liquid state in a temperature range of -50°C or higher and lower than 400°C.
  • an ionic liquid is an ionic compound having a melting point in the range of -50°C or more and less than 400°C.
  • the melting point of the ionic liquid is preferably -25°C or more and 200°C or less, more preferably 0°C or more and 150°C or less.
  • Ionic liquids have characteristics such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductivity auxiliary agent, it is possible to effectively suppress reduction in electrical conductivity between thermoelectric semiconductor materials. Furthermore, the ionic liquid exhibits high polarity based on its aprotic ionic structure and has excellent compatibility with heat-resistant resins, so that the electrical conductivity of the thermoelectric conversion material can be made uniform.
  • ionic liquids can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, and imidazolium and their derivatives; tetraalkylammonium-based amine cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium, etc.
  • Phosphine cations and derivatives thereof Phosphine cations and derivatives thereof; cationic components such as lithium cations and derivatives thereof; Cl ⁇ , Br ⁇ , I ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , NO 3 ⁇ , CH 3 COO ⁇ , CF 3 COO ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , (FSO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 3 C ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , NbF 6 ⁇ , TaF 6 ⁇ , F(HF) n ⁇ , (CN) 2 N ⁇ , C 4 F 9 SO 3 ⁇ , (C 2 F 5 SO 2 ) 2 N - , C 3 F 7 COO - , (CF
  • the cation component of the ionic liquid is pyridinium cation and its derivatives. , imidazolium cations and derivatives thereof.
  • ionic liquid whose cation component includes a pyridinium cation and its derivatives
  • 1-butyl-4-methylpyridinium bromide, 1-butylpyridinium bromide, and 1-butyl-4-methylpyridinium hexafluorophosphate are preferred.
  • the above ionic liquid has a decomposition temperature of 300° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive aid can be maintained even when a thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
  • the content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and even more preferably 1.0 to 20% by mass.
  • the content of the ionic liquid is within the above range, a decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • the inorganic ionic compound that can be contained in the thermoelectric semiconductor composition is a compound that is composed of at least a cation and an anion.
  • Inorganic ionic compounds exist as solids in a wide temperature range of 400 to 900°C and have characteristics such as high ionic conductivity, so they can be used as conductive aids to reduce the electrical conductivity between thermoelectric semiconductor materials. can be suppressed.
  • the content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and even more preferably 1.0 to 10% by mass.
  • the content of the inorganic ionic compound is within the above range, a decrease in electrical conductivity can be effectively suppressed, and as a result, a membrane with improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably is 0.5 to 30% by weight, more preferably 1.0 to 10% by weight.
  • Methods for applying P-type and N-type thermoelectric semiconductor compositions include screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating, and doctor coating.
  • Known methods such as the blade method may be used, but are not particularly limited.
  • the obtained coating film is dried to form a thin film, and conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed.
  • the heating temperature is usually 80 to 150°C, and the heating time varies depending on the heating method, but is usually from several seconds to several tens of minutes. Furthermore, when a solvent is used in preparing the thermoelectric semiconductor composition, the heating temperature is not particularly limited as long as it is within a temperature range that can dry the used solvent.
  • the thickness of the thermoelectric conversion material chip is not particularly limited, and from the viewpoint of thermoelectric performance and film strength, it is preferably 100 nm to 1000 ⁇ m, more preferably 300 nm to 600 ⁇ m, and even more preferably 5 to 400 ⁇ m.
  • thermoelectric conversion material and the chips of the N-type thermoelectric conversion material made of the thermoelectric semiconductor composition are further subjected to an annealing treatment (hereinafter sometimes referred to as "annealing treatment B").
  • annealing treatment B By performing the annealing treatment B, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thermoelectric conversion material chip can be crystal-grown, so that the thermoelectric performance can be further improved.
  • annealing treatment B is usually performed under an inert gas atmosphere such as nitrogen or argon, under a reducing gas atmosphere, or under vacuum conditions with a controlled gas flow rate. Although it depends on the heat resistance temperature, it is carried out at 100 to 500°C for several minutes to several tens of hours.
  • thermoelectric conversion module of the present invention a first protective layer is provided on the first electrode and the first insulating layer, and a second protective layer is provided on the second electrode and the second insulating layer.
  • a layer is provided.
  • the materials used for the first protective layer and the second protective layer are not particularly limited, and known materials can be used.
  • the first protective layer and the second protective layer are each independently preferably selected from insulating resins and ceramics.
  • insulating resins examples include polyimide resins, polyamide resins, phenol resins, epoxy resins, maleimide resins, fluorine resins, polyester resins, polyurethane resins (especially polyacrylic polyols, polyester polyols, polyether polyols, etc., and isocyanate compounds).
  • Resins such as acrylic resin, polycarbonate resin, vinyl chloride/vinyl acetate copolymer, polyvinyl butyral resin, and nitrocellulose resin; alkyl titanate; ethyleneimine; and the like. These may be used alone or in combination of two or more.
  • Ceramics include materials whose main components (50% by mass or more in ceramics) include aluminum oxide (alumina), aluminum nitride, zirconium oxide (zirconia), silicon nitride, silicon carbide, and the like.
  • main components for example, a rare earth compound can also be added.
  • a protective layer forming solution prepared by dissolving or dispersing the above materials in an appropriate solvent is applied by a known method, the resulting coating is dried, and if desired, heated or It can be formed by irradiating light.
  • the protective layer may be formed by separately forming a film for forming a protective layer and laminating it with a roll laminator or a flat press machine. Lamination may be performed at room temperature or may be performed while heating.
  • the thickness of the first protective layer and the second protective layer is appropriately determined from the viewpoint of thermoelectric performance, but each independently preferably has a thickness of 5 to 300 ⁇ m, more preferably 25 to 200 ⁇ m, and even more preferably 50 to 300 ⁇ m. It is 100 ⁇ m.
  • the thickness of each protective layer is preferably 5 to 150 ⁇ m, more preferably 10 to 100 ⁇ m, and still more preferably 15 to 50 ⁇ m.
  • the thickness of the protective layer is preferably 20 to 300 ⁇ m, more preferably 40 to 200 ⁇ m, and even more preferably 50 to 100 ⁇ m. .
  • thermoelectric conversion module of the present invention from the viewpoint of thermoelectric performance, it is preferable to further provide a heat dissipation layer on the first protective layer and the second protective layer.
  • the materials used for the first heat dissipation layer and the second heat dissipation layer are not particularly limited, and known materials can be used.
  • the method of laminating the heat dissipation layer is not particularly limited, but may include PVD (physical vapor deposition) such as vacuum evaporation, sputtering, and ion plating, or CVD (such as thermal CVD and atomic layer deposition (ALD)).
  • PVD physical vapor deposition
  • CVD thermal CVD and atomic layer deposition
  • dry processes such as chemical vapor deposition (chemical vapor deposition); various coating methods such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade methods; wet processes such as electrodeposition; Examples include salt method, electrolytic plating method, electroless plating method, and the like.
  • patterning of the heat dissipation layer can be performed by known physical processing or chemical processing mainly based on photolithography, or a combination thereof.
  • the thermal conductivity of the heat dissipation layer is preferably 5 to 500 W/(m K), more preferably 8 to 500 W/(m K), even more preferably 10 to 450 W/(m K), each independently. Particularly preferably 12 to 420 W/(m ⁇ K), most preferably 15 to 400 W/(m ⁇ K).
  • the thickness of the heat dissipation layer is determined as appropriate from the viewpoint of thermoelectric performance, but is preferably 5 to 550 ⁇ m, more preferably 40 to 530 ⁇ m, and even more preferably 80 to 510 ⁇ m.
  • a frame may be provided around the thermoelectric conversion module of the present invention. Providing the frame eliminates the need to seal the outer periphery of the thermoelectric conversion module.
  • the frame is made of metal, ceramics, or resin. From the viewpoint of sealing performance, it is preferable to use metal or ceramics. Further, from the viewpoint of weight reduction, it is preferable to use resin. Examples of the metal include gold, silver, copper, nickel, chromium, platinum, palladium, rhodium, molybdenum, aluminum, iron, iron-nickel alloy, and phosphor bronze.
  • Ceramics include materials whose main components (50% by mass or more in ceramics) include aluminum oxide (alumina), aluminum nitride, zirconium oxide (zirconia), silicon nitride, silicon carbide, and the like.
  • main components for example, a rare earth compound can also be added.
  • the resin include polyimide resin, polyamide resin, phenol resin, epoxy resin, maleimide resin, fluorine resin, and the like. Note that when resin is used, a rigid material using a hard resin may be used, or a flexible material using a flexible resin may be used.
  • thermoelectric conversion module of the present invention does not use a base material as a support and a solder layer that have been conventionally used, the thermoelectric conversion module can be made thin.
  • thermoelectric conversion module of the present invention it is expected that the conventional thermoelectric conversion module can be made thinner, leading to lighter weight, smaller size, and higher integration.
  • Thermoelectric conversion module 2 Frame 3p: Chip 3n of P-type thermoelectric conversion material: Chip 3p of N-type thermoelectric conversion material 1 : First surface 3p of chip 3p of P-type thermoelectric conversion material 2 : P Second surface 3n 1 of chip 3n of N-type thermoelectric conversion material: First surface 3n 2 of chip 3n of N-type thermoelectric conversion material: Second surface 4 of chip 3n of N-type thermoelectric conversion material: Chip arrangement direction L1: First insulating layer L2: Second insulating layer M1: First electrode M2: Second electrode H1: First protective layer H2: Second protective layer T1: First heat dissipation layer T2: First 2 heat dissipation layer 12: contact hole for extraction electrode 13: extraction electrode

Abstract

Provided is a thin thermoelectric conversion module that does not have a support substrate and a solder layer, wherein electrodes M1 or M2 that are shared between adjacent p-type thermoelectric conversion material chips 3p and n-type thermoelectric conversion material chips 3n are arranged (wired) directly onto upper/lower surfaces of the p-type thermoelectric conversion material chips 3p and n-type thermoelectric conversion material chips 3n so as to straddle opposite insulation layers L1, L2 that span gaps between the p-type thermoelectric conversion material chips 3p and n-type thermoelectric conversion material chips 3n.

Description

熱電変換モジュールthermoelectric conversion module
 本発明は、熱電変換モジュールに関する。 The present invention relates to a thermoelectric conversion module.
 従来から、エネルギーの有効利用手段の一つとして、ゼーベック効果やペルチェ効果などの熱電効果を有する熱電変換モジュールにより、熱エネルギーと電気エネルギーとを直接相互変換するようにした装置がある。 Conventionally, as an effective means of utilizing energy, there has been a device that directly mutually converts thermal energy and electrical energy using a thermoelectric conversion module having a thermoelectric effect such as the Seebeck effect or the Peltier effect.
 前記熱電変換モジュールとして、いわゆるπ型の熱電変換素子の使用が知られている。π型の熱電変換素子は、互いに離間するー対の電極を基板上に設け、例えば、―方の電極上にP型熱電素子の下面を、他方の電極上にN型熱電素子の下面を、同じく互いに離間して設け、両型の熱電素子の上面同士を対向する基板上の同一の電極に接続する構成を基本単位とし、通常、当該基本単位を両基板内で複数、電気的には直列接続に、熱的には並列接続になるように構成されている。
 近年、このようなπ型の熱電変換素子等を含む熱電変換モジュールを用いた製品等の本格的な実用化にあたり、熱電変換モジュールの薄型化、構成材料の削減、信頼性の向上等の様々な要求がある。例えば、特許文献1、2には、前述したπ型の熱電変換素子を用いた熱電変換モジュールが開示されている。
As the thermoelectric conversion module, it is known to use a so-called π-type thermoelectric conversion element. A π-type thermoelectric conversion element has a pair of electrodes spaced apart from each other on a substrate, for example, the lower surface of a P-type thermoelectric element is placed on one electrode, the lower surface of an N-type thermoelectric element is placed on the other electrode, The basic unit is a configuration in which the top surfaces of both types of thermoelectric elements are connected to the same electrode on the opposing substrate, which are also spaced apart from each other, and usually a plurality of the basic units are connected electrically in series on both substrates. The connections are configured so that they are thermally connected in parallel.
In recent years, with the full-scale commercialization of products using thermoelectric conversion modules including such π-type thermoelectric conversion elements, various efforts have been made to make thermoelectric conversion modules thinner, reduce the amount of constituent materials, and improve reliability. I have a request. For example, Patent Documents 1 and 2 disclose thermoelectric conversion modules using the aforementioned π-type thermoelectric conversion elements.
特開2001-102643号公報Japanese Patent Application Publication No. 2001-102643 国際公開2017/074003号公報International Publication No. 2017/074003
 しかしながら、特許文献1の熱電変換モジュールは、P型熱電材料からなるP型エレメントと、N型熱電材料からなるN型エレメントと、これら異種エレメントを一対ずつ接合してPN接合対を形成可能な金属電極を有する2枚の基板等、から構成されており、少なくとも金属電極やエレメントを支持する基材が使用されていることから、熱電変換モジュールの薄型化、構成材料の削減等については何ら検討されていない。同様に、特許文献2の熱電変換モジュールでは、最終構成において支持体となる基材を含まないが、通常基板が配置される箇所に、接触熱伝導層が設けられており、しかも当該接触熱伝導層は、通常用いられる基材と同種の窒化アルミニウム、窒化シリコン、アルミナ等からなるものであり、支持体としても機能することから、熱電変換モジュールの薄型化、構成材料の削減等についての検討は実質されていない。 However, the thermoelectric conversion module of Patent Document 1 has a P-type element made of a P-type thermoelectric material, an N-type element made of an N-type thermoelectric material, and a metal that can form a PN junction pair by bonding these dissimilar elements one by one. It consists of two substrates with electrodes, etc., and at least a base material that supports metal electrodes and elements is used, so no consideration has been given to making the thermoelectric conversion module thinner or reducing the number of constituent materials. Not yet. Similarly, the thermoelectric conversion module of Patent Document 2 does not include a base material that serves as a support in the final configuration, but a contact heat conduction layer is provided at a location where a substrate is normally placed, and the contact heat conduction layer is provided at a location where a substrate is normally placed. The layer is made of the same materials as commonly used base materials, such as aluminum nitride, silicon nitride, alumina, etc., and also functions as a support, so it is important to consider ways to make the thermoelectric conversion module thinner and reduce the number of constituent materials. Not real.
 本発明は、このような実情に鑑みてなされたものであり、支持基材及びはんだ層を有さない薄型の熱電変換モジュールを提供することを課題とする。 The present invention has been made in view of these circumstances, and an object of the present invention is to provide a thin thermoelectric conversion module that does not have a support base material or a solder layer.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、隣接するP型熱電変換材料のチップとN型熱電変換材料のチップとの共通の電極を、当該電極の中央部に配置した絶縁層を介在し跨ぐように設けた構成の熱電変換モジュールを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[15]を提供するものである。
[1]交互に離間して配列されたP型熱電変換材料のチップ及びN型熱電変換材料のチップ、第1の絶縁層、第2の絶縁層、第1の電極、並びに第2の電極を含む熱電変換モジュールであって、
 前記第1の絶縁層は、前記P型熱電変換材料のチップの第1の表面側と隣接する前記N型熱電変換材料のチップの第1の表面側とに、前記P型熱電変換材料のチップと隣接する前記N型熱電変換材料のチップ間の空隙を跨ぐように設けられ、
 前記第2の絶縁層は、前記P型熱電変換材料のチップの第2の表面側と隣接する前記N型熱電変換材料のチップの第2の表面側とに、前記P型熱電変換材料のチップと隣接する前記N型熱電変換材料のチップ間の空隙を跨ぐように設けられ、
且つ前記第1の絶縁層と前記第2の絶縁層とは、前記空隙を介在して対向して設けられており、
 前記P型熱電変換材料のチップ及びN型熱電変換材料のチップは、
前記P型熱電変換材料のチップの第1の表面側と、前記P型熱電変換材料のチップ及びN型熱電変換材料のチップの配列方向に隣接する前記N型熱電変換材料のチップの第1の表面側とに、前記第1の絶縁層を介在しさらに該第1の絶縁層を跨ぐように設けられた第1の電極と、
前記N型熱電変換材料のチップの第2の表面側と、前記P型熱電変換材料のチップ及びN型熱電変換材料のチップの配列方向に隣接する前記P型熱電変換材料のチップの第2の表面側とに、前記第2の絶縁層を介在しさらに該第2の絶縁層を跨ぐように設けられた第2の電極とで、
この順に交互に前記P型熱電変換材料のチップ及びN型熱電変換材料のチップの配列方向に電気的に接続され、
 前記第1の絶縁層、前記第2の絶縁層、前記P型熱電変換材料のチップ及び前記N型熱電変換材料のチップ間で構成される空隙は維持される、
熱電変換モジュール。
[2]前記第1の電極上及び前記第1の絶縁層上に、第1の保護層が設けられ、且つ前記第2の電極上及び前記第2の絶縁層上に、第2の保護層が設けられる、上記[1]に記載の熱電変換モジュール。
[3]前記第1の保護層上及び前記第2の保護層上に、さらに放熱層が設けられる、上記[2]に記載の熱電変換モジュール。
[4]前記熱電変換モジュールの周囲に枠が設けられる、上記[1]~[3]のいずれかに記載の熱電変換モジュール。
[5]前記枠は、金属、セラミックス又は樹脂からなる、上記[4]に記載の熱電変換モジュール。
[6]前記第1の絶縁層及び前記第2の絶縁層は、それぞれ独立に、ポリイミド樹脂、シリコーン樹脂、ゴム系樹脂、アクリル樹脂、オレフィン系樹脂、マレイミド樹脂、及びエポキシ樹脂から選ばれる、上記[1]~[5]のいずれかに記載の熱電変換モジュール。
[7]前記第1の保護層及び前記第2の保護層は、それぞれ独立に、絶縁性樹脂及びセラミックスから選ばれる、上記[2]又は[3]に記載の熱電変換モジュール。
[8]前記放熱層は、金、銀、銅、ニッケル、スズ、鉄、クロム、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム、インジウム、亜鉛、モリブデン、マンガン、チタン、アルミニウム、ステンレス、及び真鍮から選ばれる、上記[3]に記載の熱電変換モジュール。
[9]前記第1の絶縁層及び前記第2の絶縁層の厚さは、それぞれ独立に、5~200μmである、上記[1]~[8]のいずれかに記載の熱電変換モジュール。
[10]前記第1の保護層及び前記第2の保護層の厚さは、それぞれ独立に、5~300μmである、上記[2]、[3]及び[7]のいずれかに記載の熱電変換モジュール。
[11]前記放熱層の厚さは、5~550μmである、上記[3]又は[8]に記載の熱電変換モジュール。
[12]前記第1の電極及び前記第2の電極は、それぞれ独立に、金、銀、銅、ニッケル、クロム、白金、パラジウム、ロジウム、モリブデン、アルミニウム、又はこれらのいずれかの金属を含む合金から選ばれる、上記[1]~[11]のいずれかに記載の熱電変換モジュール。
[13]前記第1の電極及び前記第2の電極は、それぞれ独立に、スパッタ膜、蒸着膜及びめっき膜からなる群より選ばれる少なくとも1種の膜で形成される、上記[1]~[12]のいずれかに記載の熱電変換モジュール。
[14]前記P型熱電変換材料のチップ及び前記N型熱電変換材料のチップは、熱電半導体組成物からなる、上記[1]~[13]のいずれかに記載の熱電変換モジュール。
[15]前記熱電半導体組成物が、熱電半導体材料、樹脂、並びに、イオン液体及び無機イオン性化合物の一方又は双方を含む、上記[14]に記載の熱電変換モジュール。
As a result of intensive studies to solve the above problems, the present inventors have discovered that a common electrode for adjacent chips of P-type thermoelectric conversion material and chips of N-type thermoelectric conversion material is arranged in the center of the electrodes. They discovered a thermoelectric conversion module having a structure in which an insulating layer is interposed and straddled, and the present invention was completed.
That is, the present invention provides the following [1] to [15].
[1] Chips of P-type thermoelectric conversion material and chips of N-type thermoelectric conversion material arranged in a spaced manner alternately, a first insulating layer, a second insulating layer, a first electrode, and a second electrode. A thermoelectric conversion module comprising:
The first insulating layer includes a chip of the P-type thermoelectric conversion material on a first surface side of the chip of the P-type thermoelectric conversion material and a first surface side of the chip of the N-type thermoelectric conversion material adjacent to the first surface side of the chip of the P-type thermoelectric conversion material. provided so as to straddle the gap between the adjacent chips of the N-type thermoelectric conversion material,
The second insulating layer includes a chip of the P-type thermoelectric conversion material on a second surface side of the chip of the P-type thermoelectric conversion material and a second surface side of the chip of the N-type thermoelectric conversion material adjacent to the second surface side of the chip of the P-type thermoelectric conversion material. provided so as to straddle the gap between the adjacent chips of the N-type thermoelectric conversion material,
and the first insulating layer and the second insulating layer are provided facing each other with the gap interposed therebetween,
The chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are:
The first surface side of the chip of the P-type thermoelectric conversion material and the first surface side of the chip of the N-type thermoelectric conversion material adjacent to the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material in the arrangement direction. a first electrode provided on the front surface side with the first insulating layer interposed therebetween and further spanning the first insulating layer;
The second surface side of the chip of the N-type thermoelectric conversion material and the second surface side of the chip of the P-type thermoelectric conversion material adjacent to the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material in the arrangement direction. a second electrode provided on the surface side with the second insulating layer interposed therebetween and further spanning the second insulating layer;
The chips of the P-type thermoelectric conversion material and the chips of the N-type thermoelectric conversion material are electrically connected in this order alternately in the arrangement direction,
A gap formed between the first insulating layer, the second insulating layer, the P-type thermoelectric conversion material chip, and the N-type thermoelectric conversion material chip is maintained.
Thermoelectric conversion module.
[2] A first protective layer is provided on the first electrode and the first insulating layer, and a second protective layer is provided on the second electrode and the second insulating layer. The thermoelectric conversion module according to [1] above, wherein the thermoelectric conversion module is provided with:
[3] The thermoelectric conversion module according to [2] above, further comprising a heat dissipation layer provided on the first protective layer and the second protective layer.
[4] The thermoelectric conversion module according to any one of [1] to [3] above, wherein a frame is provided around the thermoelectric conversion module.
[5] The thermoelectric conversion module according to [4] above, wherein the frame is made of metal, ceramics, or resin.
[6] The first insulating layer and the second insulating layer are each independently selected from polyimide resin, silicone resin, rubber resin, acrylic resin, olefin resin, maleimide resin, and epoxy resin, as described above. The thermoelectric conversion module according to any one of [1] to [5].
[7] The thermoelectric conversion module according to [2] or [3], wherein the first protective layer and the second protective layer are each independently selected from insulating resins and ceramics.
[8] The heat dissipation layer is made of gold, silver, copper, nickel, tin, iron, chromium, platinum, palladium, rhodium, iridium, ruthenium, osmium, indium, zinc, molybdenum, manganese, titanium, aluminum, stainless steel, and brass. The thermoelectric conversion module according to [3] above, selected from.
[9] The thermoelectric conversion module according to any one of [1] to [8] above, wherein the first insulating layer and the second insulating layer each independently have a thickness of 5 to 200 μm.
[10] The thermoelectric device according to any one of [2], [3] and [7] above, wherein the first protective layer and the second protective layer each independently have a thickness of 5 to 300 μm. Conversion module.
[11] The thermoelectric conversion module according to [3] or [8] above, wherein the heat dissipation layer has a thickness of 5 to 550 μm.
[12] The first electrode and the second electrode are each independently made of gold, silver, copper, nickel, chromium, platinum, palladium, rhodium, molybdenum, aluminum, or an alloy containing any of these metals. The thermoelectric conversion module according to any one of [1] to [11] above, selected from.
[13] The first electrode and the second electrode are each independently formed of at least one type of film selected from the group consisting of a sputtered film, a vapor deposited film, and a plated film, [1] to [ above]. 12]. The thermoelectric conversion module according to any one of [12].
[14] The thermoelectric conversion module according to any one of [1] to [13] above, wherein the P-type thermoelectric conversion material chip and the N-type thermoelectric conversion material chip are made of a thermoelectric semiconductor composition.
[15] The thermoelectric conversion module according to [14] above, wherein the thermoelectric semiconductor composition contains a thermoelectric semiconductor material, a resin, and one or both of an ionic liquid and an inorganic ionic compound.
 本発明によれば、支持基材及びはんだ層を有さない薄型の熱電変換モジュールを提供することができる。 According to the present invention, it is possible to provide a thin thermoelectric conversion module that does not have a support base material and a solder layer.
本発明の熱電変換モジュールの第1実施形態を示す断面構成図である。1 is a cross-sectional configuration diagram showing a first embodiment of a thermoelectric conversion module of the present invention. 本発明の熱電変換モジュールの第2実施形態を示す断面構成図である。FIG. 2 is a cross-sectional configuration diagram showing a second embodiment of the thermoelectric conversion module of the present invention. 本発明の熱電変換モジュールの第3実施形態を示す断面構成図である。FIG. 3 is a cross-sectional configuration diagram showing a third embodiment of a thermoelectric conversion module of the present invention.
[熱電変換モジュール]
 本発明の熱電変換モジュールは、交互に離間して配列されたP型熱電変換材料のチップ及びN型熱電変換材料のチップ、第1の絶縁層、第2の絶縁層、第1の電極、並びに第2の電極を含む熱電変換モジュールであって、
 前記第1の絶縁層は、前記P型熱電変換材料のチップの第1の表面側と隣接する前記N型熱電変換材料のチップの第1の表面側とに、前記P型熱電変換材料のチップと隣接する前記N型熱電変換材料のチップ間の空隙を跨ぐように設けられ、
 前記第2の絶縁層は、前記P型熱電変換材料のチップの第2の表面側と隣接する前記N型熱電変換材料のチップの第2の表面側とに、前記P型熱電変換材料のチップと隣接する前記N型熱電変換材料のチップ間の空隙を跨ぐように設けられ、
且つ前記第1の絶縁層と前記第2の絶縁層とは、前記空隙を介在して対向して設けられており、
 前記P型熱電変換材料のチップ及びN型熱電変換材料のチップは、
前記P型熱電変換材料のチップの第1の表面側と、前記P型熱電変換材料のチップ及びN型熱電変換材料のチップの配列方向に隣接する前記N型熱電変換材料のチップの第1の表面側とに、前記第1の絶縁層を介在しさらに該第1の絶縁層を跨ぐように設けられた第1の電極と、
前記N型熱電変換材料のチップの第2の表面側と、前記P型熱電変換材料のチップ及びN型熱電変換材料のチップの配列方向に隣接する前記P型熱電変換材料のチップの第2の表面側とに、前記第2の絶縁層を介在しさらに該第2の絶縁層を跨ぐように設けられた第2の電極とで、
この順に交互に前記P型熱電変換材料のチップ及びN型熱電変換材料のチップの配列方向に電気的に接続され、
 前記第1の絶縁層、前記第2の絶縁層、前記P型熱電変換材料のチップ及び前記N型熱電変換材料のチップ間で構成される空隙は維持されることを特徴としている。
 本発明の熱電変換モジュールでは、隣接するP型熱電変換材料のチップとN型熱電変換材料のチップとの共通の電極を、当該電極の中央部に配置した絶縁層を介在し跨ぐように、P型熱電変換材料のチップ及びN型熱電変換材料のチップの上下面に直接配置(配線)することで、電極を支持基材上に設ける必要がなくなり、従来用いていた支持基材及びはんだ層を不要とすることができ、熱電変換モジュールの薄型化が実現できる。
 なお、本明細書において、「支持基材」とは、熱電変換材料、電極等の支持体として用いられる基板材料を意味し、特に制限されないが、熱電分野において常用される、ガラス、シリコン、セラミックス、樹脂等が挙げられる。
[Thermoelectric conversion module]
The thermoelectric conversion module of the present invention includes chips of P-type thermoelectric conversion material and chips of N-type thermoelectric conversion material arranged in a spaced manner alternately, a first insulating layer, a second insulating layer, a first electrode, and A thermoelectric conversion module including a second electrode,
The first insulating layer includes a chip of the P-type thermoelectric conversion material on a first surface side of the chip of the P-type thermoelectric conversion material and a first surface side of the chip of the N-type thermoelectric conversion material adjacent to the first surface side of the chip of the P-type thermoelectric conversion material. provided so as to straddle the gap between the adjacent chips of the N-type thermoelectric conversion material,
The second insulating layer includes a chip of the P-type thermoelectric conversion material on a second surface side of the chip of the P-type thermoelectric conversion material and a second surface side of the chip of the N-type thermoelectric conversion material adjacent to the second surface side of the chip of the P-type thermoelectric conversion material. provided so as to straddle the gap between the adjacent chips of the N-type thermoelectric conversion material,
and the first insulating layer and the second insulating layer are provided facing each other with the gap interposed therebetween,
The chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are:
The first surface side of the chip of the P-type thermoelectric conversion material and the first surface side of the chip of the N-type thermoelectric conversion material adjacent to the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material in the arrangement direction. a first electrode provided on the front surface side with the first insulating layer interposed therebetween and further spanning the first insulating layer;
The second surface side of the chip of the N-type thermoelectric conversion material and the second surface side of the chip of the P-type thermoelectric conversion material adjacent to the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material in the arrangement direction. a second electrode provided on the surface side with the second insulating layer interposed therebetween and further spanning the second insulating layer;
The chips of the P-type thermoelectric conversion material and the chips of the N-type thermoelectric conversion material are electrically connected in this order alternately in the arrangement direction,
A gap formed between the first insulating layer, the second insulating layer, the chip of the P-type thermoelectric conversion material, and the chip of the N-type thermoelectric conversion material is maintained.
In the thermoelectric conversion module of the present invention, the P-type thermoelectric conversion material is connected so that the common electrode of the adjacent P-type thermoelectric conversion material chip and the N-type thermoelectric conversion material chip is straddled with an insulating layer disposed in the center of the electrode. By placing (wiring) directly on the upper and lower surfaces of the chip of type thermoelectric conversion material and the chip of N type thermoelectric conversion material, it is no longer necessary to provide electrodes on the support base material, and the support base material and solder layer used in the past can be used. This can be omitted, and the thermoelectric conversion module can be made thinner.
In this specification, the term "supporting base material" refers to a substrate material used as a support for thermoelectric conversion materials, electrodes, etc., including, but not limited to, glass, silicon, and ceramics commonly used in the thermoelectric field. , resin, etc.
 本明細書において、第1の絶縁層及び第2の絶縁層、第1の電極及び第2の電極、第1の保護層及び第2の保護層、第1の放熱層及び第2の放熱層を、この順に、単に「絶縁層」、「電極」、「保護層」、「放熱層」ともいうことがある。また、「P型熱電変換材料のチップ及びN型熱電変換材料のチップ」を、単に「熱電変換材料のチップ」又は「チップ」ともいうことがある。
 以下、本発明の熱電変換モジュールについて、図を用いて説明する。
In this specification, a first insulating layer and a second insulating layer, a first electrode and a second electrode, a first protective layer and a second protective layer, a first heat dissipating layer and a second heat dissipating layer may also be simply referred to as an "insulating layer", "electrode", "protective layer", and "heat dissipation layer" in this order. Moreover, "a chip of P-type thermoelectric conversion material and a chip of N-type thermoelectric conversion material" may be simply referred to as a "chip of thermoelectric conversion material" or a "chip."
Hereinafter, the thermoelectric conversion module of the present invention will be explained using the drawings.
 図1は、本発明の熱電変換モジュールの第1実施形態を示す断面構成図であり、熱電変換モジュール1は、
交互に離間して配列されたP型熱電変換材料のチップ3p及びN型熱電変換材料のチップ3n、第1の絶縁層L1、第2の絶縁層L2、第1の電極M1、並びに第2の電極M2を含む熱電変換モジュールであって、
 第1の絶縁層L1は、P型熱電変換材料のチップ3pの第1の表面3p側と隣接するN型熱電変換材料のチップ3nの第1の表面3n側とに、P型熱電変換材料のチップ3pと隣接するN型熱電変換材料のチップ3n間の空隙を跨ぐように設けられ、
 第2の絶縁層L2は、P型熱電変換材料のチップ3Pの第2の表面3p側と隣接するN型熱電変換材料のチップ3nの第2の表面3n側とに、P型熱電変換材料のチップ3pと隣接するN型熱電変換材料のチップ3n間の空隙を跨ぐように設けられ、
且つ第1の絶縁層L1と第2の絶縁層L2とは、空隙を介在して対向して設けられており、
 P型熱電変換材料のチップ3p及びN型熱電変換材料のチップ3nは、
P型熱電変換材料のチップ3pの第1の表面3p側と、チップの配列方向4に隣接するN型熱電変換材料のチップ3nの第1の表面3n側とに、第1の絶縁層L1を介在しさらに第1の絶縁層L1を跨ぐように設けられた第1の電極M1と、
N型熱電変換材料のチップの第2の表面3n側と、チップの配列方向4に隣接するP型熱電変換材料のチップの第2の表面3p側とに、第2の絶縁層L2を介在しさらに第2の絶縁層L2を跨ぐように設けられた第2の電極M2とで、
この順に交互にチップの配列方向4に電気的に接続され、
 第1の絶縁層L1、第2の絶縁層L2、P型熱電変換材料のチップ3p及びN型熱電変換材料のチップ3n間で構成される空隙は維持されている。ここで、2は、熱電変換モジュールの外周部の封止機能も備える枠を示す。
 本実施形態では、支持基材、及び電極の接合に用いるはんだ層を有していない。
FIG. 1 is a cross-sectional configuration diagram showing a first embodiment of a thermoelectric conversion module of the present invention, and the thermoelectric conversion module 1 includes:
Chips 3p of P-type thermoelectric conversion material and chips 3n of N-type thermoelectric conversion material arranged in an alternately spaced manner, the first insulating layer L1, the second insulating layer L2, the first electrode M1, and the second A thermoelectric conversion module including an electrode M2,
The first insulating layer L1 has a P-type thermoelectric conversion material on the first surface 3p 1 side of the chip 3p made of P-type thermoelectric conversion material and the first surface 3n 1 side of the chip 3n made of N-type thermoelectric conversion material adjacent to the first surface 3p 1 side of the chip 3p made of P-type thermoelectric conversion material. provided so as to straddle the gap between the chip 3p of the material and the adjacent chip 3n of the N-type thermoelectric conversion material,
The second insulating layer L2 has a P-type thermoelectric conversion material on the second surface 3p2 side of the chip 3P made of P-type thermoelectric conversion material and the second surface 3n2 side of the chip 3n made of N-type thermoelectric conversion material adjacent to the second surface 3p2 side of the chip 3P made of P-type thermoelectric conversion material. provided so as to straddle the gap between the chip 3p of the material and the adjacent chip 3n of the N-type thermoelectric conversion material,
In addition, the first insulating layer L1 and the second insulating layer L2 are provided facing each other with a gap interposed therebetween,
The chip 3p of P-type thermoelectric conversion material and the chip 3n of N-type thermoelectric conversion material are:
A first insulating layer is provided on the first surface 3p 1 side of the chip 3p made of P-type thermoelectric conversion material and on the first surface 3n 1 side of the chip 3n made of N-type thermoelectric conversion material adjacent to the chip arrangement direction 4. a first electrode M1 provided to interpose L1 and further straddle the first insulating layer L1;
A second insulating layer L2 is provided on the second surface 3n 2 side of the chip made of N-type thermoelectric conversion material and on the second surface 3p 2 side of the chip made of P-type thermoelectric conversion material adjacent to the chip arrangement direction 4. With a second electrode M2 interposed and further provided to straddle the second insulating layer L2,
They are electrically connected in this order alternately in the chip arrangement direction 4,
A gap formed between the first insulating layer L1, the second insulating layer L2, the chip 3p of the P-type thermoelectric conversion material, and the chip 3n of the N-type thermoelectric conversion material is maintained. Here, 2 indicates a frame that also has the function of sealing the outer periphery of the thermoelectric conversion module.
This embodiment does not have a supporting base material or a solder layer used for bonding the electrodes.
 図2は、本発明の熱電変換モジュールの第2実施形態を示す断面構成図であり、熱電変換モジュール11は、図1の構成において、第1の電極M1上及び第1の絶縁層L1上に、第1の保護層H1が設けられ、且つ第2の電極M2上及び第2の絶縁層L2上に、第2の保護層H2が設けられた構成としている。12は、取り出し電極用コンタクトホールを示す。本実施形態でも、当然のことながら、支持基材、及び電極の接合に用いるはんだ層を有していない。 FIG. 2 is a cross-sectional configuration diagram showing a second embodiment of the thermoelectric conversion module of the present invention, in which the thermoelectric conversion module 11 has the structure shown in FIG. , a first protective layer H1 is provided, and a second protective layer H2 is provided on the second electrode M2 and the second insulating layer L2. 12 indicates a contact hole for an extraction electrode. Naturally, this embodiment also does not have a supporting base material and a solder layer used for bonding the electrodes.
 図3は、本発明の熱電変換モジュールの第3実施形態を示す断面構成図であり、熱電変換モジュール21は、図2の構成において、第1の保護層H1上に、第1の放熱層T1が設けられ、且つ第2の保護層H2上に、第2の放熱層T2が設けられた構成としている。13は、取り出し電極を示す。本実施形態でも、当然のことながら、支持基材、及び電極の接合に用いるはんだ層を有していない。 FIG. 3 is a cross-sectional configuration diagram showing a third embodiment of the thermoelectric conversion module of the present invention. In the configuration of the thermoelectric conversion module 21 shown in FIG. is provided, and a second heat dissipation layer T2 is provided on the second protective layer H2. 13 indicates an extraction electrode. Naturally, this embodiment also does not have a supporting base material and a solder layer used for bonding the electrodes.
(絶縁層)
 本発明の熱電変換モジュールは、第1の絶縁層及び第2の絶縁層を含む。絶縁層は、隣接するP型熱電変換材料のチップ及びN型熱電変換材料のチップ間の絶縁、また、P型熱電変換材料のチップ及びN型熱電変換材料のチップ間の空隙を維持する機能を有する。
 第1の絶縁層及び第2の絶縁層は、特に制限されないが、それぞれ独立に、好ましくはポリイミド樹脂、シリコーン樹脂、ゴム系樹脂、アクリル樹脂、オレフィン系樹脂、マレイミド樹脂、及びエポキシ樹脂から選ばれる。
(insulating layer)
The thermoelectric conversion module of the present invention includes a first insulating layer and a second insulating layer. The insulating layer has the function of maintaining insulation between adjacent chips of P-type thermoelectric conversion material and chips of N-type thermoelectric conversion material, and gaps between chips of P-type thermoelectric conversion material and chips of N-type thermoelectric conversion material. have
The first insulating layer and the second insulating layer are each independently preferably selected from polyimide resin, silicone resin, rubber resin, acrylic resin, olefin resin, maleimide resin, and epoxy resin, although they are not particularly limited. .
 絶縁層を形成する方法としては、P型熱電変換材料のチップ及びN型熱電変換材料のチップ間、及びそれら周辺の隙間が埋まらないように形成する方法が好ましい。例えば、ラミネート等、公知の方法が使用できる。
 絶縁層をパターニングする方法としては、公知の方法を用いることができ、特に制限されないが、例えば、露光現像処理又はレーザー照射により、P型熱電変換材料のチップ及びN型熱電変換材料のチップそれぞれの上面及び下面が露出するようにコンタクトホールを設けることが好ましい。
 露光現像処理方法にあっては、例えば、感光性樹脂を用いた場合、コンタクトホール形成用の所望のフォトマスクを介在し、紫外線等を照射し露光し、次いで、現像液等を用い処理を行う方法等が挙げられる。
 また、レーザー照射にあっては、例えば、炭酸ガスレーザー、紫外線レーザー等による加工方法等が挙げられる。
As a method for forming the insulating layer, it is preferable to form the insulating layer so that the gaps between and around the chips of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are not filled. For example, known methods such as lamination can be used.
As a method for patterning the insulating layer, a known method can be used and is not particularly limited, but for example, by exposure and development treatment or laser irradiation, each chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are patterned. It is preferable to provide the contact holes so that the upper and lower surfaces are exposed.
In the exposure and development processing method, for example, when a photosensitive resin is used, a desired photomask for forming a contact hole is interposed, the resin is exposed to ultraviolet rays, etc., and then processed using a developer or the like. Examples include methods.
In addition, examples of laser irradiation include processing methods using carbon dioxide laser, ultraviolet laser, and the like.
 絶縁層の厚さは、それぞれ独立に、好ましくは5~200μmであり、より好ましくは10~100μmであり、さらに好ましくは15~30μmである。絶縁層の厚さがこの範囲にあると、隣接する電極間の絶縁性が担保でき、かつ熱電変換モジュールの厚さの増大要因にはならない。 The thickness of each insulating layer is preferably 5 to 200 μm, more preferably 10 to 100 μm, and still more preferably 15 to 30 μm. When the thickness of the insulating layer is within this range, insulation between adjacent electrodes can be ensured, and the thickness of the thermoelectric conversion module will not increase.
(電極)
 本発明の熱電変換モジュールは、第1の電極及び第2の電極を含む。電極は、絶縁層、及びP型熱電変換材料のチップ及びN型変換材料のチップの上下面を跨ぐように覆うものであり、支持基材等を用い直接形成することはない。
 電極材料としては、それぞれ独立に、好ましくは金、銀、銅、ニッケル、クロム、白金、パラジウム、ロジウム、モリブデン、アルミニウム、又はこれらのいずれかの金属を含む合金から選ばれる。
 電極は、絶縁層、及びP型熱電変換材料のチップ及びN型変換材料のチップの上下面を跨ぐように覆い、且つ熱電性能を高く維持する観点から、スパッタ膜、蒸着膜及びめっき膜からなる群より選ばれる少なくとも1種の膜で形成されることが好ましい。
(electrode)
The thermoelectric conversion module of the present invention includes a first electrode and a second electrode. The electrode covers the insulating layer and the upper and lower surfaces of the P-type thermoelectric conversion material chip and the N-type conversion material chip, and is not directly formed using a support base material or the like.
The electrode materials are each independently preferably selected from gold, silver, copper, nickel, chromium, platinum, palladium, rhodium, molybdenum, aluminum, or an alloy containing any of these metals.
The electrode covers the insulating layer and the upper and lower surfaces of the P-type thermoelectric conversion material chip and the N-type conversion material chip, and is made of a sputtered film, a vapor deposited film, and a plated film from the viewpoint of maintaining high thermoelectric performance. It is preferable that the film is formed of at least one kind of film selected from the group.
 電極材料をパターニングし電極とする方法としては、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法が挙げられる。所定のパターン形状に加工する具体的な方法としては、例えば、露光現像処理で直接形成する手法、露光現像処理後にエッチングで形成する手法、レーザー加工により直接形成する方法等が挙げられる。これらの中でも、パターン精度やタクトタイムの観点から、露光現像処理で直接形成する手法が特に好ましい。 Examples of methods for patterning the electrode material to form electrodes include methods of processing the material into a predetermined pattern shape by known physical or chemical treatments, mainly photolithography, or a combination thereof. Specific methods for processing into a predetermined pattern include, for example, a method of directly forming by exposure and development, a method of forming by etching after exposure and development, a method of directly forming by laser processing, and the like. Among these, from the viewpoint of pattern accuracy and takt time, a method of directly forming by exposure and development processing is particularly preferable.
 電極の厚さは、用いる絶縁層の厚さによるが、それぞれ独立に、好ましくは5~200μm、より好ましくは8~150μm、さらに好ましくは10~120μmである。電極の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり、電極として十分な強度が得られる。 The thickness of the electrode depends on the thickness of the insulating layer used, but is preferably 5 to 200 μm, more preferably 8 to 150 μm, and still more preferably 10 to 120 μm. If the thickness of the electrode is within the above range, the electrical conductivity will be high and the resistance will be low, and sufficient strength as an electrode will be obtained.
 本発明に用いる熱電変換材料のチップは、特に制限されず、熱電半導体材料からなるものであっても、熱電半導体組成物からなる薄膜であってもよい。
 屈曲性、薄型、熱電性能の観点から、熱電半導体材料(以下、「熱電半導体粒子」ということがある。)、樹脂、イオン液体及び無機イオン性化合物の一方又は双方を含む熱電半導体組成物からなる薄膜からなることが好ましい。
 なお、本明細書において、「熱電変換材料」又は「熱電変換材料のチップ」は同義であり、また、「熱電変換材料層」とも同義である。
The chip of the thermoelectric conversion material used in the present invention is not particularly limited, and may be made of a thermoelectric semiconductor material or a thin film made of a thermoelectric semiconductor composition.
From the viewpoints of flexibility, thinness, and thermoelectric performance, it consists of a thermoelectric semiconductor composition containing one or both of a thermoelectric semiconductor material (hereinafter sometimes referred to as "thermoelectric semiconductor particles"), a resin, an ionic liquid, and an inorganic ionic compound. Preferably, it is made of a thin film.
Note that in this specification, "thermoelectric conversion material" or "chip of thermoelectric conversion material" have the same meaning, and also have the same meaning as "thermoelectric conversion material layer."
(熱電半導体材料)
 熱電変換材料のチップに用いる熱電半導体材料は、例えば、微粉砕装置等により、所定のサイズまで粉砕し、熱電半導体粒子として使用することが好ましい(以下、熱電半導体材料を「熱電半導体粒子」ということがある。)。
 熱電半導体粒子の粒径は、好ましくは10nm~100μm、より好ましくは20nm~50μm、さらに好ましくは30nm~30μmである。
 前記熱電半導体粒子の平均粒径は、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)にて測定することにより得られ、粒径分布の中央値とした。
(thermoelectric semiconductor material)
The thermoelectric semiconductor material used for the thermoelectric conversion material chip is preferably ground to a predetermined size using a pulverizer or the like and used as thermoelectric semiconductor particles (hereinafter, the thermoelectric semiconductor material is referred to as "thermoelectric semiconductor particles"). ).
The particle size of the thermoelectric semiconductor particles is preferably 10 nm to 100 μm, more preferably 20 nm to 50 μm, even more preferably 30 nm to 30 μm.
The average particle size of the thermoelectric semiconductor particles was obtained by measuring with a laser diffraction particle size analyzer (Mastersizer 3000, manufactured by Malvern), and was taken as the median of the particle size distribution.
 本発明に用いる熱電変換材料のチップにおいて、P型熱電変換材料のチップ及びN型変換材料のチップを構成する熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば特に制限されず、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS等の硫化物系熱電半導体材料等が用いられる。 In the thermoelectric conversion material chip used in the present invention, the thermoelectric semiconductor material constituting the P-type thermoelectric conversion material chip and the N-type conversion material chip can generate thermoelectromotive force by applying a temperature difference. For example, bismuth-tellurium thermoelectric semiconductor materials such as P-type bismuth telluride and N-type bismuth telluride; telluride thermoelectric semiconductor materials such as GeTe and PbTe; antimony-tellurium thermoelectric semiconductor materials; Zinc-antimony thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2, Zn 4 Sb 3 ; silicon-germanium thermoelectric semiconductor materials such as SiGe; bismuth selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; β-FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si, and other silicide-based thermoelectric semiconductor materials; oxide-based thermoelectric semiconductor materials; Heusler materials such as FeVAl, FeVAlSi, and FeVTiAl, and sulfide-based thermoelectric semiconductor materials such as TiS 2 are used. It will be done.
 これらの中でも、本発明に用いる前記熱電半導体材料は、P型ビスマステルライド又はN型ビスマステルライド等のビスマス-テルル系熱電半導体材料であることが好ましい。
 前記P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、P型熱電変換材料としての特性が維持されるので好ましい。
 また、前記N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0.1<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、N型熱電変換材料としての特性が維持されるので好ましい。
Among these, the thermoelectric semiconductor material used in the present invention is preferably a bismuth-tellurium thermoelectric semiconductor material such as P-type bismuth telluride or N-type bismuth telluride.
The P-type bismuth telluride has holes as carriers and a positive Seebeck coefficient, and is preferably represented by, for example, Bi X Te 3 Sb 2-X . In this case, X preferably satisfies 0<X≦0.8, more preferably 0.4≦X≦0.6. When X is greater than 0 and less than or equal to 0.8, the Seebeck coefficient and electrical conductivity become large, and the properties as a P-type thermoelectric conversion material are maintained, which is preferable.
Further, the N-type bismuth telluride has an electron as a carrier and a negative Seebeck coefficient, and for example, one represented by Bi 2 Te 3-Y Se Y is preferably used. In this case, Y preferably satisfies 0≦Y≦3 (when Y=0: Bi 2 Te 3 ), more preferably 0.1<Y≦2.7. It is preferable that Y is 0 or more and 3 or less because the Seebeck coefficient and electrical conductivity increase and the properties as an N-type thermoelectric conversion material are maintained.
 熱電半導体粒子の前記熱電半導体組成物中の含有量は、好ましくは、30~99質量%である。より好ましくは、50~96質量%であり、さらに好ましくは、70~95質量%である。熱電半導体粒子の含有量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。 The content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, and even more preferably 70 to 95% by mass. If the content of thermoelectric semiconductor particles is within the above range, the Seebeck coefficient (absolute value of the Peltier coefficient) is large, and the decrease in electrical conductivity is suppressed, and only the thermal conductivity decreases, resulting in high thermoelectric performance. At the same time, a film having sufficient film strength and flexibility can be obtained, which is preferable.
 また、熱電半導体粒子は、アニール処理(以下、「アニール処理A」ということがある。)されたものであることが好ましい。アニール処理Aを行うことにより、熱電半導体粒子は、結晶性が向上し、さらに、熱電半導体粒子の表面酸化膜が除去されるため、熱電変換材料のゼーベック係数(ペルチェ係数の絶対値)が増大し、熱電性能指数をさらに向上させることができる。 Further, it is preferable that the thermoelectric semiconductor particles are those that have been subjected to an annealing treatment (hereinafter sometimes referred to as "annealing treatment A"). By performing annealing treatment A, the crystallinity of the thermoelectric semiconductor particles is improved, and the surface oxide film of the thermoelectric semiconductor particles is removed, so the Seebeck coefficient (absolute value of the Peltier coefficient) of the thermoelectric conversion material increases. , the thermoelectric figure of merit can be further improved.
(樹脂)
 本発明に用いる樹脂は、熱電半導体材料(熱電半導体粒子)間を物理的に結合する作用を有し、熱電変換モジュールの屈曲性を高めることができるとともに、塗布等による薄膜の形成を容易にする。
 樹脂としては、耐熱性樹脂、又はバインダー樹脂が好ましい。
(resin)
The resin used in the present invention has the effect of physically bonding between thermoelectric semiconductor materials (thermoelectric semiconductor particles), can increase the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating etc. .
As the resin, a heat-resistant resin or a binder resin is preferable.
 耐熱性樹脂は、熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される。
 前記耐熱性樹脂は、耐熱性がより高く、且つ薄膜中の熱電半導体粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。
The heat-resistant resin maintains its physical properties such as mechanical strength and thermal conductivity as a resin when crystal-growing thermoelectric semiconductor particles by annealing a thin film made of a thermoelectric semiconductor composition or the like.
The heat-resistant resin is preferably a polyamide resin, a polyamide-imide resin, a polyimide resin, or an epoxy resin because it has higher heat resistance and does not adversely affect the crystal growth of the thermoelectric semiconductor particles in the thin film, and has excellent flexibility. From this point of view, polyamide resin, polyamideimide resin, and polyimide resin are more preferable.
 前記耐熱性樹脂は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、屈曲性を維持することができる。 The heat-resistant resin preferably has a decomposition temperature of 300°C or higher. If the decomposition temperature is within the above range, even when a thin film made of the thermoelectric semiconductor composition is annealed, it will not lose its function as a binder and will maintain its flexibility, as will be described later.
 また、前記耐熱性樹脂は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電変換材料のチップの屈曲性を維持することができる。 Further, the heat-resistant resin preferably has a mass reduction rate at 300°C measured by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and even more preferably 1% or less. . If the mass reduction rate is within the above range, even when a thin film made of a thermoelectric semiconductor composition is annealed, the flexibility of the thermoelectric conversion material chip can be maintained without losing its function as a binder, as described later. I can do it.
 前記耐熱性樹脂の前記熱電半導体組成物中の含有量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは、1~20質量%、さらに好ましくは2~15質量%である。前記耐熱性樹脂の含有量が、上記範囲内であると、熱電半導体材料のバインダーとして機能し、薄膜の形成がしやすくなり、しかも高い熱電性能と皮膜強度が両立した膜が得られ、熱電変換材料のチップの外表面には樹脂部が存在する。 The content of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, and even more preferably 2 to 15% by mass. Mass%. When the content of the heat-resistant resin is within the above range, it functions as a binder for the thermoelectric semiconductor material, facilitates the formation of a thin film, and provides a film that has both high thermoelectric performance and film strength, and is effective in thermoelectric conversion. A resin portion is present on the outer surface of the material chip.
 バインダー樹脂は、焼成(アニール)処理(後述する「アニール処理B」に対応、以下同様。)後の、熱電変換材料のチップの作製時に用いるガラス、アルミナ、シリコン等の基材からの剥離も容易にする。 The binder resin can be easily peeled off from the base material such as glass, alumina, silicon, etc. used in the production of thermoelectric conversion material chips after firing (annealing) treatment (corresponds to "annealing treatment B" described later, the same applies hereinafter). Make it.
 バインダー樹脂としては、焼成(アニール)温度以上で、90質量%以上が分解する樹脂を指し、95質量%以上が分解する樹脂であることがより好ましく、99質量%以上が分解する樹脂であることが特に好ましい。また、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理等により熱電半導体粒子を結晶成長させる際に、機械的強度及び熱伝導率等の諸物性が損なわれず維持される樹脂がより好ましい。
 バインダー樹脂として、焼成(アニール)温度以上で90質量%以上が分解する樹脂、即ち、前述した耐熱性樹脂よりも低温で分解する樹脂、を用いると、焼成によりバインダー樹脂が分解するため、焼成体中に含まれる絶縁性の成分となるバインダー樹脂の含有量が減少し、熱電半導体組成物における熱電半導体粒子の結晶成長が促進されるので、熱電変換材料層における空隙を少なくして、充填率を向上させることができる。
 なお、焼成(アニール)温度以上で所定値(例えば、90質量%)以上が分解する樹脂であるか否かは、熱重量測定(TG)による焼成(アニール)温度における質量減少率(分解前の質量で分解後の質量を除した値)を測定することにより判断する。
The binder resin refers to a resin that decomposes at least 90% by mass at a firing (annealing) temperature or higher, more preferably a resin that decomposes at least 95% by mass, and a resin that decomposes at least 99% by mass. is particularly preferred. In addition, when a coating film (thin film) made of a thermoelectric semiconductor composition is subjected to a baking (annealing) treatment or the like to cause crystal growth of thermoelectric semiconductor particles, a resin that maintains various physical properties such as mechanical strength and thermal conductivity without loss is required. More preferred.
If a resin that decomposes at least 90% by mass at a temperature equal to or higher than the sintering (annealing) temperature is used as the binder resin, in other words, a resin that decomposes at a lower temperature than the aforementioned heat-resistant resin, the binder resin will decompose during sintering, so the sintered product will The content of the binder resin, which is an insulating component, is reduced, and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted, so the voids in the thermoelectric conversion material layer are reduced and the filling rate is increased. can be improved.
In addition, whether or not the resin decomposes at a predetermined value (for example, 90% by mass) or more above the firing (annealing) temperature is determined by the mass reduction rate (before decomposition) at the firing (annealing) temperature measured by thermogravimetry (TG). Judgment is made by measuring the value obtained by dividing the mass after decomposition by the mass.
 このようなバインダー樹脂として、熱可塑性樹脂や硬化性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリメチルペンテン等のポリオレフィン系樹脂;ポリカーボネート;ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂;ポリスチレン、アクリロニトリル-スチレン共重合体、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、塩化ビニル、ポリビニルピリジン、ポリビニルアルコール、ポリビニルピロリドン等のポリビニル重合体;ポリウレタン;エチルセルロース等のセルロース誘導体;などが挙げられる。硬化性樹脂としては、熱硬化性樹脂や光硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。光硬化性樹脂としては、例えば、光硬化性アクリル樹脂、光硬化性ウレタン樹脂、光硬化性エポキシ樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、熱電変換材料層における熱電変換材料の電気抵抗率の観点から、熱可塑性樹脂が好ましく、ポリカーボネート、エチルセルロース等のセルロース誘導体がより好ましく、ポリカーボネートが特に好ましい。
As such a binder resin, a thermoplastic resin or a curable resin can be used. Examples of thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonate; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymer, and polyacetic acid. Polyvinyl polymers such as vinyl, ethylene-vinyl acetate copolymer, vinyl chloride, polyvinylpyridine, polyvinyl alcohol, and polyvinylpyrrolidone; polyurethane; cellulose derivatives such as ethylcellulose; and the like. Examples of the curable resin include thermosetting resins and photocurable resins. Examples of thermosetting resins include epoxy resins and phenol resins. Examples of the photocurable resin include photocurable acrylic resin, photocurable urethane resin, and photocurable epoxy resin. These may be used alone or in combination of two or more.
Among these, from the viewpoint of electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer, thermoplastic resins are preferred, cellulose derivatives such as polycarbonate and ethyl cellulose are more preferred, and polycarbonate is particularly preferred.
 バインダー樹脂は、焼成(アニール)処理工程における熱電半導体材料に対する焼成(アニール)処理の温度に応じて適宜選択される。バインダー樹脂が有する最終分解温度以上で焼成(アニール)処理することが、熱電変換材料層における熱電変換材料の電気抵抗率の観点から好ましい。
 本明細書において、「最終分解温度」とは、熱重量測定(TG)による焼成(アニール)温度における質量減少率が100%(分解後の質量が分解前の質量の0%)となる温度をいう。
The binder resin is appropriately selected depending on the temperature of the firing (annealing) process for the thermoelectric semiconductor material in the firing (annealing) process. It is preferable to perform the firing (annealing) treatment at a temperature equal to or higher than the final decomposition temperature of the binder resin from the viewpoint of electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer.
In this specification, the "final decomposition temperature" refers to the temperature at which the mass reduction rate at the calcination (annealing) temperature as measured by thermogravimetry (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition). say.
 バインダー樹脂の最終分解温度は、通常150~600℃、好ましくは200~560℃、より好ましくは220~460℃、特に好ましくは240~360℃である。最終分解温度がこの範囲にあるバインダー樹脂を用いれば、熱電半導体材料のバインダーとして機能し、印刷時に薄膜の形成がしやすくなる。 The final decomposition temperature of the binder resin is usually 150 to 600°C, preferably 200 to 560°C, more preferably 220 to 460°C, particularly preferably 240 to 360°C. If a binder resin with a final decomposition temperature within this range is used, it will function as a binder for the thermoelectric semiconductor material and will facilitate the formation of a thin film during printing.
 バインダー樹脂の熱電半導体組成物中の含有量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは0.5~10質量%、特に好ましくは0.5~5質量%である。バインダー樹脂の含有量が、上記範囲内であると、熱電変換材料層における熱電変換材料の電気抵抗率を減少させることができる。 The content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, particularly preferably 0.5 to 5% by mass. Mass%. When the content of the binder resin is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
 熱電変換材料中におけるバインダー樹脂の含有量は、好ましくは0~10質量%、より好ましくは0~5質量%、特に好ましくは0~1質量%である。熱電変換材料中におけるバインダー樹脂の含有量が、上記範囲内であれば、熱電変換材料層における熱電変換材料の電気抵抗率を減少させることができる。 The content of the binder resin in the thermoelectric conversion material is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, particularly preferably 0 to 1% by mass. If the content of the binder resin in the thermoelectric conversion material is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
(イオン液体)
 熱電半導体組成物に含まれ得るイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50℃以上400℃未満のいずれかの温度領域において液体で存在し得る塩をいう。換言すれば、イオン液体は、融点が-50℃以上400℃未満の範囲にあるイオン性化合物である。イオン液体の融点は、好ましくは-25℃以上200℃以下、より好ましくは0℃以上150℃以下である。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体材料間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電変換材料の電気伝導率を均一にすることができる。
(ionic liquid)
The ionic liquid that can be contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist in a liquid state in a temperature range of -50°C or higher and lower than 400°C. In other words, an ionic liquid is an ionic compound having a melting point in the range of -50°C or more and less than 400°C. The melting point of the ionic liquid is preferably -25°C or more and 200°C or less, more preferably 0°C or more and 150°C or less. Ionic liquids have characteristics such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductivity auxiliary agent, it is possible to effectively suppress reduction in electrical conductivity between thermoelectric semiconductor materials. Furthermore, the ionic liquid exhibits high polarity based on its aprotic ionic structure and has excellent compatibility with heat-resistant resins, so that the electrical conductivity of the thermoelectric conversion material can be made uniform.
 イオン液体は、公知または市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウム系のアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、Br、I、AlCl 、AlCl 、BF 、PF 、ClO 、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF) 、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。 Known or commercially available ionic liquids can be used. For example, nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, and imidazolium and their derivatives; tetraalkylammonium-based amine cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium, etc. Phosphine cations and derivatives thereof; cationic components such as lithium cations and derivatives thereof; Cl , Br , I , AlCl 4 , Al 2 Cl 7 , BF 4 , PF 6 , ClO 4 , NO 3 , CH 3 COO , CF 3 COO , CH 3 SO 3 , CF 3 SO 3 , (FSO 2 ) 2 N , (CF 3 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , AsF 6 , SbF 6 , NbF 6 , TaF 6 , F(HF) n , (CN) 2 N , C 4 F 9 SO 3 , (C 2 F 5 SO 2 ) 2 N - , C 3 F 7 COO - , (CF 3 SO 2 ) (CF 3 CO) N -, and other anion components.
 上記のイオン液体の中で、高温安定性、熱電半導体材料及び樹脂との相溶性、熱電半導体材料間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。 Among the above-mentioned ionic liquids, from the viewpoint of high temperature stability, compatibility with thermoelectric semiconductor materials and resins, and suppression of decrease in electrical conductivity in gaps between thermoelectric semiconductor materials, the cation component of the ionic liquid is pyridinium cation and its derivatives. , imidazolium cations and derivatives thereof.
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体として、1-ブチル-4-メチルピリジニウムブロミド、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファートが好ましい。 As the ionic liquid whose cation component includes a pyridinium cation and its derivatives, 1-butyl-4-methylpyridinium bromide, 1-butylpyridinium bromide, and 1-butyl-4-methylpyridinium hexafluorophosphate are preferred.
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。 In addition, as an ionic liquid whose cation component includes imidazolium cation and its derivatives, [1-butyl-3-(2-hydroxyethyl)imidazolium bromide], [1-butyl-3-(2-hydroxyethyl)imidazo lium tetrafluoroborate] is preferred.
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 Further, it is preferable that the above ionic liquid has a decomposition temperature of 300° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive aid can be maintained even when a thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
 イオン液体の熱電半導体組成物中の含有量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~20質量%である。イオン液体の含有量が、上記範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 The content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and even more preferably 1.0 to 20% by mass. When the content of the ionic liquid is within the above range, a decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
(無機イオン性化合物)
 熱電半導体組成物に含まれ得る無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は400~900℃の幅広い温度領域において固体で存在し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体材料間の電気伝導率の低減を抑制することができる。
(Inorganic ionic compound)
The inorganic ionic compound that can be contained in the thermoelectric semiconductor composition is a compound that is composed of at least a cation and an anion. Inorganic ionic compounds exist as solids in a wide temperature range of 400 to 900°C and have characteristics such as high ionic conductivity, so they can be used as conductive aids to reduce the electrical conductivity between thermoelectric semiconductor materials. can be suppressed.
 無機イオン性化合物の熱電半導体組成物中の含有量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。無機イオン性化合物の含有量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。
The content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and even more preferably 1.0 to 10% by mass. When the content of the inorganic ionic compound is within the above range, a decrease in electrical conductivity can be effectively suppressed, and as a result, a membrane with improved thermoelectric performance can be obtained.
In addition, when an inorganic ionic compound and an ionic liquid are used together, the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably is 0.5 to 30% by weight, more preferably 1.0 to 10% by weight.
 P型及びN型の熱電半導体組成物を、塗布する方法としては、スクリーン印刷法、フレキソ印刷法、グラビア印刷法、スピンコート法、ディップコート法、ダイコート法、スプレーコート法、バーコート法、ドクターブレード法等の公知の方法が挙げられ、特に制限されない。塗膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷、ステンシル印刷、スロットダイコート等が好ましく用いられる。
 次いで、得られた塗膜を乾燥することにより、薄膜が形成されるが、乾燥方法としては、熱風乾燥法、熱ロール乾燥法、赤外線照射法等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、加熱方法により異なるが、通常、数秒~数十分である。
 また、熱電半導体組成物の調製において溶媒を使用した場合、加熱温度は、使用した溶媒を乾燥できる温度範囲であれば、特に制限はない。
Methods for applying P-type and N-type thermoelectric semiconductor compositions include screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating, and doctor coating. Known methods such as the blade method may be used, but are not particularly limited. When forming a coating film in a pattern, screen printing, stencil printing, slot die coating, etc., which can easily form a pattern using a screen plate having a desired pattern, are preferably used.
Next, the obtained coating film is dried to form a thin film, and conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed. The heating temperature is usually 80 to 150°C, and the heating time varies depending on the heating method, but is usually from several seconds to several tens of minutes.
Furthermore, when a solvent is used in preparing the thermoelectric semiconductor composition, the heating temperature is not particularly limited as long as it is within a temperature range that can dry the used solvent.
 熱電変換材料のチップの厚さは、特に限定されるものではなく、熱電性能と皮膜強度の点から、好ましくは100nm~1000μm、より好ましくは300nm~600μm、さらに好ましくは5~400μmである。 The thickness of the thermoelectric conversion material chip is not particularly limited, and from the viewpoint of thermoelectric performance and film strength, it is preferably 100 nm to 1000 μm, more preferably 300 nm to 600 μm, and even more preferably 5 to 400 μm.
 熱電半導体組成物からなるP型熱電変換材料のチップ及びN型熱電変換材料のチップは、さらにアニール処理(以下、「アニール処理B」ということがある。)を行うことが好ましい。該アニール処理Bを行うことで、熱電性能を安定化させるとともに、熱電変換材料チップ中の熱電半導体粒子を結晶成長させることができ、熱電性能をさらに向上させることができる。アニール処理Bは、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われ、用いる熱電半導体組成物等の耐熱温度に依存するが、100~500℃で、数分~数十時間行われる。 It is preferable that the chips of the P-type thermoelectric conversion material and the chips of the N-type thermoelectric conversion material made of the thermoelectric semiconductor composition are further subjected to an annealing treatment (hereinafter sometimes referred to as "annealing treatment B"). By performing the annealing treatment B, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thermoelectric conversion material chip can be crystal-grown, so that the thermoelectric performance can be further improved. Although not particularly limited, annealing treatment B is usually performed under an inert gas atmosphere such as nitrogen or argon, under a reducing gas atmosphere, or under vacuum conditions with a controlled gas flow rate. Although it depends on the heat resistance temperature, it is carried out at 100 to 500°C for several minutes to several tens of hours.
(保護層)
 本発明の熱電変換モジュールにおいて、第1の電極上及び第1の絶縁層上に、第1の保護層が設けられ、且つ第2の電極上及び第2の絶縁層上に、第2の保護層を設けられることが好ましい。
 第1の保護層及び第2の保護層に用いる材料は、特に制限されず、公知のものが使用できる。
 第1の保護層及び第2の保護層は、それぞれ独立に、好ましくは絶縁性樹脂及びセラミックスから選ばれる。
 絶縁性樹脂としては、例えば、ポリイミド樹脂、ポリアミド樹脂、フェノール樹脂、エポキシ樹脂、マレイミド樹脂、フッ素系樹脂、ポリエステル樹脂、ポリウレタン樹脂(特にポリアクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール等とイソシアネート化合物との2液硬化型樹脂)、アクリル樹脂、ポリカーボネート樹脂、塩化ビニル/酢酸ビニル共重合体、ポリビニルブチラール樹脂、ニトロセルロース樹脂等の樹脂類;アルキルチタネート;エチレンイミン;等が挙げられる。これらは、一種単独で、あるいは二種以上を組み合わせて用いてもよい。
 セラミックスとしては、酸化アルミニウム(アルミナ)、窒化アルミニウム、酸化ジルコニウム(ジルコニア)、窒化ケイ素、炭化ケイ素等を主成分(セラミックス中で50質量%以上)とする材料が挙げられる。なお、前記主成分以外に、例えば、希土類化合物を添加することもできる。
(protective layer)
In the thermoelectric conversion module of the present invention, a first protective layer is provided on the first electrode and the first insulating layer, and a second protective layer is provided on the second electrode and the second insulating layer. Preferably, a layer is provided.
The materials used for the first protective layer and the second protective layer are not particularly limited, and known materials can be used.
The first protective layer and the second protective layer are each independently preferably selected from insulating resins and ceramics.
Examples of insulating resins include polyimide resins, polyamide resins, phenol resins, epoxy resins, maleimide resins, fluorine resins, polyester resins, polyurethane resins (especially polyacrylic polyols, polyester polyols, polyether polyols, etc., and isocyanate compounds). Resins such as acrylic resin, polycarbonate resin, vinyl chloride/vinyl acetate copolymer, polyvinyl butyral resin, and nitrocellulose resin; alkyl titanate; ethyleneimine; and the like. These may be used alone or in combination of two or more.
Examples of ceramics include materials whose main components (50% by mass or more in ceramics) include aluminum oxide (alumina), aluminum nitride, zirconium oxide (zirconia), silicon nitride, silicon carbide, and the like. In addition to the above-mentioned main components, for example, a rare earth compound can also be added.
 保護層を積層する方法としては、前記材料を適当な溶剤に溶解又は分散させてなる保護層形成用溶液を、公知の方法により塗布し、得られた塗膜を乾燥させ、所望により、加熱又は光照射することにより形成することができる。また、別途保護層形成用フィルムを形成し、ロールラミネーターや平坦プレス加工機でラミネートさせて保護層を形成してもよい。ラミネートは常温で行ってもよく、加熱しながら行ってもよい。 As a method for laminating the protective layer, a protective layer forming solution prepared by dissolving or dispersing the above materials in an appropriate solvent is applied by a known method, the resulting coating is dried, and if desired, heated or It can be formed by irradiating light. Alternatively, the protective layer may be formed by separately forming a film for forming a protective layer and laminating it with a roll laminator or a flat press machine. Lamination may be performed at room temperature or may be performed while heating.
 第1の保護層及び第2の保護層の厚さは、熱電性能の観点から、適宜決定されるが、それぞれ独立に、好ましくは5~300μm、より好ましくは25~200μm、さらに好ましくは50~100μmである。
 第1の保護層及び第2の保護層を塗布によって形成する場合、保護層の厚さは、それぞれ独立に、好ましくは5~150μm、より好ましくは10~100μm、さらに好ましくは15~50μmである。
 第1の保護層及び第2の保護層をラミネートによって形成する場合、保護層の厚さは、それぞれ独立に、好ましくは20~300μm、より好ましくは40~200μm、さらに好ましくは50~100μmである。
The thickness of the first protective layer and the second protective layer is appropriately determined from the viewpoint of thermoelectric performance, but each independently preferably has a thickness of 5 to 300 μm, more preferably 25 to 200 μm, and even more preferably 50 to 300 μm. It is 100 μm.
When the first protective layer and the second protective layer are formed by coating, the thickness of each protective layer is preferably 5 to 150 μm, more preferably 10 to 100 μm, and still more preferably 15 to 50 μm. .
When the first protective layer and the second protective layer are formed by lamination, the thickness of the protective layer is preferably 20 to 300 μm, more preferably 40 to 200 μm, and even more preferably 50 to 100 μm. .
(放熱層)
 本発明の熱電変換モジュールにおいて、熱電性能の観点から、第1の保護層上及び第2の保護層上に、さらに放熱層を設けることが好ましい。
 第1の放熱層及び第2の放熱層に用いる材料は、特に制限されず、公知のものが使用できる。好ましくは、それぞれ独立に、金、銀、銅、ニッケル、スズ、鉄、クロム、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム、インジウム、亜鉛、モリブデン、マンガン、チタン、アルミニウム、ステンレス、及び真鍮から選ばれる。
(heat dissipation layer)
In the thermoelectric conversion module of the present invention, from the viewpoint of thermoelectric performance, it is preferable to further provide a heat dissipation layer on the first protective layer and the second protective layer.
The materials used for the first heat dissipation layer and the second heat dissipation layer are not particularly limited, and known materials can be used. Preferably, each independently from gold, silver, copper, nickel, tin, iron, chromium, platinum, palladium, rhodium, iridium, ruthenium, osmium, indium, zinc, molybdenum, manganese, titanium, aluminum, stainless steel, and brass. To be elected.
 放熱層を積層する方法としては、特に制限されないが、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等のドライプロセス、又はディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティング法や電着法等のウェットプロセス、銀塩法、電解めっき法、無電解めっき法等が挙げられる。
 また、放熱層のパターニングは、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により行うことができる。
 放熱層の熱伝導率は、それぞれ独立に、好ましくは5~500W/(m・K)、より好ましくは8~500W/(m・K)、さらに好ましくは10~450W/(m・K)、特に好ましくは12~420W/(m・K)、最も好ましくは15~400W/(m・K)である。
The method of laminating the heat dissipation layer is not particularly limited, but may include PVD (physical vapor deposition) such as vacuum evaporation, sputtering, and ion plating, or CVD (such as thermal CVD and atomic layer deposition (ALD)). dry processes such as chemical vapor deposition (chemical vapor deposition); various coating methods such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade methods; wet processes such as electrodeposition; Examples include salt method, electrolytic plating method, electroless plating method, and the like.
Further, patterning of the heat dissipation layer can be performed by known physical processing or chemical processing mainly based on photolithography, or a combination thereof.
The thermal conductivity of the heat dissipation layer is preferably 5 to 500 W/(m K), more preferably 8 to 500 W/(m K), even more preferably 10 to 450 W/(m K), each independently. Particularly preferably 12 to 420 W/(m·K), most preferably 15 to 400 W/(m·K).
 放熱層の厚さは、熱電性能の観点から、適宜決定されるが、好ましくは5~550μm、より好ましくは40~530μm、さらに好ましくは80~510μmである。 The thickness of the heat dissipation layer is determined as appropriate from the viewpoint of thermoelectric performance, but is preferably 5 to 550 μm, more preferably 40 to 530 μm, and even more preferably 80 to 510 μm.
(枠)
 本発明の熱電変換モジュールの周囲に枠を設けていてもよい。
 枠を設けることにより、熱電変換モジュールの外周部の封止が不要となる。
 前記枠は、金属、セラミックス又は樹脂からなる。封止性能の観点からは金属、セラミックスを用いることが好ましい。また、軽量化の観点からは樹脂を用いることが好ましい。
 金属としては、金、銀、銅、ニッケル、クロム、白金、パラジウム、ロジウム、モリブデン、アルミニウム、鉄、鉄-ニッケル合金、又はりん青銅等が挙げられる。
 セラミックスとしては、酸化アルミニウム(アルミナ)、窒化アルミニウム、酸化ジルコニウム(ジルコニア)、窒化ケイ素、炭化ケイ素等を主成分(セラミックス中で50質量%以上)とする材料が挙げられる。なお、前記主成分以外に、例えば、希土類化合物を添加することもできる。
 樹脂としては、ポリイミド樹脂、ポリアミド樹脂、フェノール樹脂、エポキシ樹脂、マレイミド樹脂、フッ素系樹脂等が挙げられる。なお樹脂を用いる場合は、硬質性樹脂を用いたリジッド材であってもよく、柔軟性樹脂を用いたフレキシブル材であってもよい。
(frame)
A frame may be provided around the thermoelectric conversion module of the present invention.
Providing the frame eliminates the need to seal the outer periphery of the thermoelectric conversion module.
The frame is made of metal, ceramics, or resin. From the viewpoint of sealing performance, it is preferable to use metal or ceramics. Further, from the viewpoint of weight reduction, it is preferable to use resin.
Examples of the metal include gold, silver, copper, nickel, chromium, platinum, palladium, rhodium, molybdenum, aluminum, iron, iron-nickel alloy, and phosphor bronze.
Examples of ceramics include materials whose main components (50% by mass or more in ceramics) include aluminum oxide (alumina), aluminum nitride, zirconium oxide (zirconia), silicon nitride, silicon carbide, and the like. In addition to the above-mentioned main components, for example, a rare earth compound can also be added.
Examples of the resin include polyimide resin, polyamide resin, phenol resin, epoxy resin, maleimide resin, fluorine resin, and the like. Note that when resin is used, a rigid material using a hard resin may be used, or a flexible material using a flexible resin may be used.
 本発明の熱電変換モジュールは、従来使用していた支持体としての基材及びはんだ層を用いない構成としていることから、熱電変換モジュールを薄型にできる。 Since the thermoelectric conversion module of the present invention does not use a base material as a support and a solder layer that have been conventionally used, the thermoelectric conversion module can be made thin.
 本発明の熱電変換モジュールによれば、従来の熱電変換モジュールをより薄型にでき、軽量、小型化、高集積化につなげることが期待される。 According to the thermoelectric conversion module of the present invention, it is expected that the conventional thermoelectric conversion module can be made thinner, leading to lighter weight, smaller size, and higher integration.
1,11,21:熱電変換モジュール
2:枠
3p:P型熱電変換材料のチップ
3n:N型熱電変換材料のチップ
3p:P型熱電変換材料のチップ3pの第1の表面
3p:P型熱電変換材料のチップ3pの第2の表面
3n:N型熱電変換材料のチップ3nの第1の表面
3n:N型熱電変換材料のチップ3nの第2の表面
4:チップの配列方向
L1:第1の絶縁層
L2:第2の絶縁層
M1:第1の電極
M2:第2の電極
H1:第1の保護層
H2:第2の保護層
T1:第1の放熱層
T2:第2の放熱層
12:取り出し電極用コンタクトホール
13:取り出し電極
1, 11, 21: Thermoelectric conversion module 2: Frame 3p: Chip 3n of P-type thermoelectric conversion material: Chip 3p of N-type thermoelectric conversion material 1 : First surface 3p of chip 3p of P-type thermoelectric conversion material 2 : P Second surface 3n 1 of chip 3n of N-type thermoelectric conversion material: First surface 3n 2 of chip 3n of N-type thermoelectric conversion material: Second surface 4 of chip 3n of N-type thermoelectric conversion material: Chip arrangement direction L1: First insulating layer L2: Second insulating layer M1: First electrode M2: Second electrode H1: First protective layer H2: Second protective layer T1: First heat dissipation layer T2: First 2 heat dissipation layer 12: contact hole for extraction electrode 13: extraction electrode

Claims (15)

  1.  交互に離間して配列されたP型熱電変換材料のチップ及びN型熱電変換材料のチップ、第1の絶縁層、第2の絶縁層、第1の電極、並びに第2の電極を含む熱電変換モジュールであって、
     前記第1の絶縁層は、前記P型熱電変換材料のチップの第1の表面側と隣接する前記N型熱電変換材料のチップの第1の表面側とに、前記P型熱電変換材料のチップと隣接する前記N型熱電変換材料のチップ間の空隙を跨ぐように設けられ、
     前記第2の絶縁層は、前記P型熱電変換材料のチップの第2の表面側と隣接する前記N型熱電変換材料のチップの第2の表面側とに、前記P型熱電変換材料のチップと隣接する前記N型熱電変換材料のチップ間の空隙を跨ぐように設けられ、
    且つ前記第1の絶縁層と前記第2の絶縁層とは、前記空隙を介在して対向して設けられており、
     前記P型熱電変換材料のチップ及びN型熱電変換材料のチップは、
    前記P型熱電変換材料のチップの第1の表面側と、前記P型熱電変換材料のチップ及びN型熱電変換材料のチップの配列方向に隣接する前記N型熱電変換材料のチップの第1の表面側とに、前記第1の絶縁層を介在しさらに該第1の絶縁層を跨ぐように設けられた第1の電極と、
    前記N型熱電変換材料のチップの第2の表面側と、前記P型熱電変換材料のチップ及びN型熱電変換材料のチップの配列方向に隣接する前記P型熱電変換材料のチップの第2の表面側とに、前記第2の絶縁層を介在しさらに該第2の絶縁層を跨ぐように設けられた第2の電極とで、
    この順に交互に前記P型熱電変換材料のチップ及びN型熱電変換材料のチップの配列方向に電気的に接続され、
     前記第1の絶縁層、前記第2の絶縁層、前記P型熱電変換材料のチップ及び前記N型熱電変換材料のチップ間で構成される空隙は維持される、
    熱電変換モジュール。
    A thermoelectric conversion device including chips of P-type thermoelectric conversion material and chips of N-type thermoelectric conversion material arranged in an alternately spaced manner, a first insulating layer, a second insulating layer, a first electrode, and a second electrode. A module,
    The first insulating layer includes a chip of the P-type thermoelectric conversion material on a first surface side of the chip of the P-type thermoelectric conversion material and a first surface side of the chip of the N-type thermoelectric conversion material adjacent to the first surface side of the chip of the P-type thermoelectric conversion material. provided so as to straddle the gap between the adjacent chips of the N-type thermoelectric conversion material,
    The second insulating layer includes a chip of the P-type thermoelectric conversion material on a second surface side of the chip of the P-type thermoelectric conversion material and a second surface side of the chip of the N-type thermoelectric conversion material adjacent to the second surface side of the chip of the P-type thermoelectric conversion material. provided so as to straddle the gap between the adjacent chips of the N-type thermoelectric conversion material,
    and the first insulating layer and the second insulating layer are provided facing each other with the gap interposed therebetween,
    The chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are:
    The first surface side of the chip of the P-type thermoelectric conversion material and the first surface side of the chip of the N-type thermoelectric conversion material adjacent to the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material in the arrangement direction. a first electrode provided on the front surface side with the first insulating layer interposed therebetween and further spanning the first insulating layer;
    The second surface side of the chip of the N-type thermoelectric conversion material and the second surface side of the chip of the P-type thermoelectric conversion material adjacent to the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material in the arrangement direction. a second electrode provided on the surface side with the second insulating layer interposed therebetween and further spanning the second insulating layer;
    The chips of the P-type thermoelectric conversion material and the chips of the N-type thermoelectric conversion material are electrically connected in this order alternately in the arrangement direction,
    A gap formed between the first insulating layer, the second insulating layer, the P-type thermoelectric conversion material chip, and the N-type thermoelectric conversion material chip is maintained.
    Thermoelectric conversion module.
  2.  前記第1の電極上及び前記第1の絶縁層上に、第1の保護層が設けられ、且つ前記第2の電極上及び前記第2の絶縁層上に、第2の保護層が設けられる、請求項1に記載の熱電変換モジュール。 A first protective layer is provided on the first electrode and the first insulating layer, and a second protective layer is provided on the second electrode and the second insulating layer. , The thermoelectric conversion module according to claim 1.
  3.  前記第1の保護層上及び前記第2の保護層上に、さらに放熱層が設けられる、請求項2に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 2, further comprising a heat dissipation layer provided on the first protective layer and the second protective layer.
  4.  前記熱電変換モジュールの周囲に枠が設けられる、請求項1~3のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 3, wherein a frame is provided around the thermoelectric conversion module.
  5.  前記枠は、金属、セラミックス又は樹脂からなる、請求項4に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 4, wherein the frame is made of metal, ceramics, or resin.
  6.  前記第1の絶縁層及び前記第2の絶縁層は、それぞれ独立に、ポリイミド樹脂、シリコーン樹脂、ゴム系樹脂、アクリル樹脂、オレフィン系樹脂、マレイミド樹脂、及びエポキシ樹脂から選ばれる、請求項1~5のいずれか1項に記載の熱電変換モジュール。 The first insulating layer and the second insulating layer are each independently selected from polyimide resin, silicone resin, rubber resin, acrylic resin, olefin resin, maleimide resin, and epoxy resin. 5. The thermoelectric conversion module according to any one of 5.
  7.  前記第1の保護層及び前記第2の保護層は、それぞれ独立に、絶縁性樹脂及びセラミックスから選ばれる、請求項2又は3に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 2 or 3, wherein the first protective layer and the second protective layer are each independently selected from insulating resin and ceramics.
  8.  前記放熱層は、金、銀、銅、ニッケル、スズ、鉄、クロム、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム、インジウム、亜鉛、モリブデン、マンガン、チタン、アルミニウム、ステンレス、及び真鍮から選ばれる、請求項3に記載の熱電変換モジュール。 The heat dissipation layer is selected from gold, silver, copper, nickel, tin, iron, chromium, platinum, palladium, rhodium, iridium, ruthenium, osmium, indium, zinc, molybdenum, manganese, titanium, aluminum, stainless steel, and brass. , The thermoelectric conversion module according to claim 3.
  9.  前記第1の絶縁層及び前記第2の絶縁層の厚さは、それぞれ独立に、5~200μmである、請求項1~8のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 8, wherein the first insulating layer and the second insulating layer each independently have a thickness of 5 to 200 μm.
  10.  前記第1の保護層及び前記第2の保護層の厚さは、それぞれ独立に、5~300μmである、請求項2、3及び7のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 2, 3 and 7, wherein the first protective layer and the second protective layer each independently have a thickness of 5 to 300 μm.
  11.  前記放熱層の厚さは、5~550μmである、請求項3又は8に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 3 or 8, wherein the heat dissipation layer has a thickness of 5 to 550 μm.
  12.  前記第1の電極及び前記第2の電極は、それぞれ独立に、金、銀、銅、ニッケル、クロム、白金、パラジウム、ロジウム、モリブデン、アルミニウム、又はこれらのいずれかの金属を含む合金から選ばれる、請求項1~11に記載の熱電変換モジュール。 The first electrode and the second electrode are each independently selected from gold, silver, copper, nickel, chromium, platinum, palladium, rhodium, molybdenum, aluminum, or an alloy containing any of these metals. , the thermoelectric conversion module according to claims 1 to 11.
  13.  前記第1の電極及び前記第2の電極は、それぞれ独立に、スパッタ膜、蒸着膜及びめっき膜からなる群より選ばれる少なくとも1種の膜で形成される、請求項1~12のいずれか1項に記載の熱電変換モジュール。 Any one of claims 1 to 12, wherein the first electrode and the second electrode are each independently formed of at least one type of film selected from the group consisting of a sputtered film, a vapor deposited film, and a plated film. The thermoelectric conversion module described in section.
  14.  前記P型熱電変換材料のチップ及び前記N型熱電変換材料のチップは、熱電半導体組成物からなる、請求項1~13のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 13, wherein the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are made of a thermoelectric semiconductor composition.
  15.  前記熱電半導体組成物が、熱電半導体材料、樹脂、並びに、イオン液体及び無機イオン性化合物の一方又は双方を含む、請求項14に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 14, wherein the thermoelectric semiconductor composition contains a thermoelectric semiconductor material, a resin, and one or both of an ionic liquid and an inorganic ionic compound.
PCT/JP2023/012719 2022-03-31 2023-03-29 Thermoelectric conversion module WO2023190633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022061236 2022-03-31
JP2022-061236 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190633A1 true WO2023190633A1 (en) 2023-10-05

Family

ID=88201968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012719 WO2023190633A1 (en) 2022-03-31 2023-03-29 Thermoelectric conversion module

Country Status (2)

Country Link
TW (1) TW202347836A (en)
WO (1) WO2023190633A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019525456A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Flexible thermoelectric module
WO2020166647A1 (en) * 2019-02-15 2020-08-20 パナソニックIpマネジメント株式会社 Thermoelectric conversion substrate and thermoelectric conversion module
WO2020196001A1 (en) * 2019-03-25 2020-10-01 リンテック株式会社 Thermoelectric conversion module and method for producing thermoelectric conversion module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019525456A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Flexible thermoelectric module
WO2020166647A1 (en) * 2019-02-15 2020-08-20 パナソニックIpマネジメント株式会社 Thermoelectric conversion substrate and thermoelectric conversion module
WO2020196001A1 (en) * 2019-03-25 2020-10-01 リンテック株式会社 Thermoelectric conversion module and method for producing thermoelectric conversion module

Also Published As

Publication number Publication date
TW202347836A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
US11424397B2 (en) Electrode material for thermoelectric conversion modules and thermoelectric conversion module using same
JP7149476B2 (en) Thermoelectric conversion module
WO2023190633A1 (en) Thermoelectric conversion module
WO2022092177A1 (en) Thermoelectric conversion module
JP7346427B2 (en) Method for manufacturing chips of thermoelectric conversion material and method for manufacturing thermoelectric conversion modules using chips obtained by the manufacturing method
JP7207858B2 (en) Thermoelectric conversion module
US20230200240A1 (en) Thermoelectric conversion module and manufacturing method therefor
JP2023151556A (en) Manufacturing method of thermoelectric conversion module
TW201941462A (en) Thermoelectric conversion module
JP7348192B2 (en) semiconductor element
WO2022092178A1 (en) Method for manufacturing thermoelectric conversion module
WO2023013590A1 (en) Thermoelectric conversion material layer and thermoelectric conversion module
US20230133754A1 (en) Thermoelectric conversion module
JPWO2021124860A1 (en) A thermoelectric converter, a thermoelectric converter module, and a method for manufacturing a thermoelectric converter.
US11882766B2 (en) Thermoelectric conversion module
WO2021200265A1 (en) Thermoelectric conversion module
JP7401361B2 (en) thermoelectric conversion module
WO2021200264A1 (en) Thermoelectric conversion module
JP2022157777A (en) Thermoelectric conversion module
WO2023181194A1 (en) Thermoelectric conversion module and production method for same
JP2022157779A (en) Thermoelectric conversion module
JP2021158237A (en) Thermoelectric conversion module
JP2022057937A (en) Electrode for thermoelectric conversion modules
WO2023276559A1 (en) Semiconductor sealing body
JP2021192409A (en) Electrode for thermoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780642

Country of ref document: EP

Kind code of ref document: A1