WO2023189616A1 - 腐食性ガス混合物充填容器及び腐食性ガス組成物 - Google Patents

腐食性ガス混合物充填容器及び腐食性ガス組成物 Download PDF

Info

Publication number
WO2023189616A1
WO2023189616A1 PCT/JP2023/010153 JP2023010153W WO2023189616A1 WO 2023189616 A1 WO2023189616 A1 WO 2023189616A1 JP 2023010153 W JP2023010153 W JP 2023010153W WO 2023189616 A1 WO2023189616 A1 WO 2023189616A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosive gas
gas mixture
container
corrosive
less
Prior art date
Application number
PCT/JP2023/010153
Other languages
English (en)
French (fr)
Inventor
良一郎 酒井
宏貴 山内
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2023189616A1 publication Critical patent/WO2023189616A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/10Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for protection against corrosion, e.g. due to gaseous acid

Definitions

  • the present invention relates to a container filled with a corrosive gas mixture and a corrosive gas composition.
  • Containers used for storing and transporting liquefied and compressed gases are generally constructed of metals such as steel and alloys, and are used for gas storage and supply in various industries.
  • liquefied gases corrosive gases such as hydrogen sulfide and sulfur dioxide have been in increasing demand in semiconductor manufacturing processes in recent years. This may cause trace metal impurity problems in the gas, which is a concern in semiconductor manufacturing processes.
  • As a solution to this problem there is an example of imparting corrosion resistance to closed containers and piping by limiting the impurity concentration of the corrosive gas filled.
  • Patent Document 1 proposes making a closed container less likely to corrode by using a hydrogen sulfide mixture with a gas phase moisture concentration of 0.001 mol ppm or more and less than 75 mol ppm.
  • Patent Document 2 proposes suppressing metal corrosion by using a sulfur dioxide mixture having a moisture concentration in the gas phase of 0.005 mol ppm or more and less than 5000 mol ppm.
  • the hydrogen sulfide mixture described in Patent Document 1 and the sulfur dioxide mixture described in Patent Document 2 are stored in a closed container made of stainless steel, which is generally known to have corrosion resistance against hydrogen sulfide and sulfur dioxide.
  • a closed container made of stainless steel, which is generally known to have corrosion resistance against hydrogen sulfide and sulfur dioxide.
  • it is not limited to the metal material of the sealed container.
  • the closed container is made of a metal material other than stainless steel, there is a risk that the closed container will corrode.
  • the present invention has been made in view of the above problems, and provides a container filled with a corrosive gas mixture and a corrosive gas mixture that can suppress corrosion of the closed container caused by the corrosive gas mixture even when the metal material of the closed container is made of a material other than stainless steel.
  • the purpose is to provide gas compositions.
  • the present inventors found that while keeping the moisture concentration of the gas phase in the corrosive gas mixture within a specific range, the surface roughness of the inner surface of the cylindrical body of the closed container It has been found that the above problem can be solved by setting the height within a specific range.
  • one aspect of the present invention is a container filled with a corrosive gas mixture, comprising a metal closed container and a corrosive gas mixture filled in the closed container and containing a corrosive gas and moisture in a vapor phase.
  • concentration of water in the corrosive gas mixture is 400 mol ppm or less
  • the sealed container includes a cylindrical body, and the maximum height of surface roughness on the inner surface of the cylindrical body is 50 ⁇ m or less.
  • the cylindrical body portion in the present invention follows the definition described in JIS B 0190:2010. According to the corrosive gas mixture-filled container described above, even when the metal material of the closed container is other than stainless steel, corrosion of the closed container due to the corrosive gas mixture can be suppressed.
  • the present inventors believe that it is due to the following reasons. Infer. That is, when the concentration of water in the corrosive gas mixture is 400 mol ppm or less, by setting the maximum height of the surface roughness on the inner surface of the cylindrical body of the closed container to 50 ⁇ m or less, the concentration of water in the corrosive gas mixture is Moisture is less likely to be captured in the recesses on the inner surface of the cylindrical body, and even if it is captured, it is more likely to escape.
  • the present inventors conjecture that even when the metal material of the closed container is made of a material other than stainless steel, corrosion of the closed container may be suppressed.
  • Another aspect of the present invention provides a corrosive gas composition obtained by removing the corrosive gas mixture from the container filled with the above-mentioned corrosive gas mixture.
  • the corrosive gas mixture filled in the airtight container suppresses corrosion of a metal airtight container that includes a cylindrical body and has a maximum height of surface roughness of 50 ⁇ m or less on the inner surface of the cylindrical body. can. Therefore, even if the metal material of the sealed container is other than stainless steel, corrosion of the sealed container can be suppressed. Therefore, by suppressing the corrosion of the closed container, it is possible to suppress the metal component from being mixed into the corrosive gas mixture. Therefore, the corrosive gas composition obtained by taking out the corrosive gas mixture from the container filled with the corrosive gas mixture is useful in semiconductor manufacturing processes and the like where a small content of metal components is required.
  • the concentration of water in the corrosive gas mixture is 110 mol ppm or less, and the maximum height of surface roughness on the inner surface of the cylindrical body is 6 ⁇ m or less. is preferred.
  • the concentration of water in the corrosive gas mixture is 10 mol ppm or less.
  • the concentration of water in the corrosive gas mixture is 1 mol ppm or less.
  • the metal constituting the closed container may include alloy steel.
  • the alloy steel may be manganese steel or chromium molybdenum steel.
  • the corrosive gas may be a sulfur-based gas.
  • the sulfur-based gas may be hydrogen sulfide or sulfur dioxide.
  • a container filled with a corrosive gas mixture and a corrosive gas composition that can suppress corrosion of the closed container due to the corrosive gas mixture even when the metal material of the closed container is other than stainless steel.
  • FIG. 1 is a partial cross-sectional view schematically showing an embodiment of a container filled with a corrosive gas mixture of the present invention
  • FIG. FIG. 2 is a flow diagram showing an example of a corrosion resistance testing device used in experimental examples.
  • 2 is a graph showing the relationship between the moisture concentration in the gas phase of the hydrogen sulfide mixed gas and the S (sulfur) concentration in the test piece in Experimental Examples 1 to 13.
  • 3 is a graph showing the relationship between the moisture concentration in the gas phase of the sulfur dioxide mixed gas and the average S concentration at a depth of 10 to 40 nm from the test piece surface in Experimental Examples 14 to 19.
  • FIG. 1 is a partial sectional view schematically showing an embodiment of a container filled with a corrosive gas mixture according to the present invention.
  • the corrosive gas mixture filled container 100 includes a closed container 10 and a corrosive gas mixture 20 filled in the closed container 10 and containing a corrosive gas and moisture in a vapor phase.
  • the moisture concentration in the gas phase of the corrosive gas mixture 20 is less than 400 mol ppm
  • the closed container 10 has a cylindrical body 11 .
  • the maximum height Rz of surface roughness on the inner surface 10a of the cylindrical body portion 11 is 50 ⁇ m or less.
  • the closed container 10 includes a cylindrical body 11. Specifically, as shown in FIG. 1, the sealed container 10 has a bottom portion 12 provided at the lower end of the cylindrical body portion 11 and an upper end side of the cylindrical body portion 11, and is configured to fill or discharge a corrosive gas mixture 20. It further includes a gas discharge part 13 provided with a valve for discharging the gas, and a shoulder part 14 connecting the gas discharge part 13 and the cylindrical body part 11.
  • the closed container 10 may be made of metal, and may be composed of a single metal layer or a laminate of two or more metal layers.
  • the maximum height Rz of surface roughness on the inner surface 10a of the cylindrical body 11 may be 50 ⁇ m or less.
  • the maximum height Rz of surface roughness on the inner surface 10a of the cylindrical body 11 is preferably 6 ⁇ m or less, more preferably 3 ⁇ m or less, from the viewpoint of further suppressing corrosion of the closed container 10 by the corrosive gas mixture 20.
  • the thickness is particularly preferably 1 ⁇ m or less.
  • the maximum height Rz of surface roughness on the inner surface of parts other than the cylindrical body part 11 is not particularly limited, and may be 50 ⁇ m or less, It may be larger than 50 ⁇ m.
  • the maximum height Rz of surface roughness on the inner surface 10a of the cylindrical body 11 can be achieved, for example, by polishing the inner surface of an unpolished container.
  • polishing methods include physical polishing methods such as blast polishing, buff polishing, and centrifugal barrel polishing, chemical polishing methods that involve treatment with chemicals, and electrolytic polishing methods that involve polishing by contacting with an electrolytic polishing solution and applying electricity.
  • the polishing method is not particularly limited to the above polishing method.
  • the maximum height Rz of surface roughness on the inner surface 10a of the cylindrical body 11 in the present invention can be measured in accordance with JIS B 0633:2001 and JIS B 0651:2001.
  • a surface roughness measuring device sold by a measuring device manufacturer can be used. Examples of such a surface roughness measuring device include a surface roughness measuring device manufactured by Mitutoyo Co., Ltd., and the like.
  • the metal constituting the closed container 10 is not particularly limited, and examples thereof include manganese steel, stainless steel, alloy steel such as chromium-molybdenum steel, carbon steel, and aluminum alloy.
  • alloy steel is preferred. In this case, it is advantageous in terms of mechanical properties compared to the case where metals other than alloy steel are used.
  • alloy steels manganese steel or chromium molybdenum steel is preferred. In this case, it is advantageous in terms of cost compared to the case where alloy steel other than manganese steel or chromium-molybdenum steel is used.
  • Corrosive gas mixture 20 includes a corrosive gas and moisture in a gas phase.
  • Corrosive gases are not particularly limited as long as they have the property of corroding metals, and include sulfur-based gases such as hydrogen sulfide and sulfur dioxide, halogen-based gases such as hydrogen chloride and hydrogen bromide, and ammonia. Can be mentioned.
  • the moisture concentration in the gas phase in the corrosive gas mixture 20 may be 400 mol ppm or less.
  • the moisture concentration in the gas phase in the corrosive gas mixture 20 is a value measured by a phosphorus pentoxide dew point meter or cavity ring-down spectroscopy (CRDS).
  • CRDS cavity ring-down spectroscopy
  • the measurement is performed at a temperature of 20 to 25°C (40°C for piping that ventilates the corrosive gas mixture) and atmospheric pressure.
  • the moisture concentration in the gas phase in the corrosive gas mixture 20 is preferably 110 mol ppm or less, more preferably 10 mol ppm or less, and still more preferably 1 mol ppm or less.
  • the maximum height Rz of surface roughness is 6 ⁇ m or less, corrosion of the closed container 10 due to the corrosive gas mixture can be effectively suppressed.
  • the corrosive gas may be a liquefied gas or a non-liquefied gas, but is usually a liquefied gas.
  • the method of filling the corrosive gas mixture 20 is not particularly limited, if moisture remains in the closed container 10, the moisture concentration in the filled corrosive gas mixture 20 will increase. Therefore, even if the airtight container 10 is ventilated with a dry inert gas in advance or the airtight container 10 is subjected to heating and depressurization treatment, etc., so that the residual moisture content in the airtight container 10 is 1 mol ppm or less. good.
  • the corrosive gas composition is a composition obtained by taking out the corrosive gas mixture filling container 100.
  • a metal airtight container including the cylindrical body 11 and having a maximum height of surface roughness on the inner surface 10a of the cylindrical body 11 is 50 ⁇ m or less. 10 corrosion can be suppressed. Therefore, even when the metal material of the closed container 10 is made of a material other than stainless steel, corrosion of the closed container 10 can be suppressed. Therefore, by suppressing corrosion of the closed container 10, it is possible to suppress the metal component from being mixed into the corrosive gas mixture. Therefore, the corrosive gas composition obtained by taking it out from the corrosive gas mixture filling container 100 is useful in semiconductor manufacturing processes and the like that require a small content of metal components.
  • chromium-molybdenum steel (SAE4130-S) having a rectangular parallelepiped shape (20 mm x 50 mm x 6 mm) with a maximum surface roughness height Rz of 125 ⁇ m were prepared as test pieces.
  • the maximum height Rz of the surface roughness of the test piece was measured using a contact type surface roughness measuring device based on JIS B 0633:2001 and JIS B 0651:2001.
  • As a contact type surface roughness measuring device SJ-210 manufactured by Mitutoyo Co., Ltd. was used for test pieces with a maximum height Rz of 1 ⁇ m, 2 ⁇ m, 35 ⁇ m, and 40 ⁇ m.
  • test pieces with maximum heights Rz of 125 ⁇ m and 145 ⁇ m SJ-412 manufactured by Mitutoyo Co., Ltd. was used. Note that the test piece is used in place of a closed container in order to examine the effect of the maximum height value on the surface roughness of the inner surface of the cylindrical body of the closed container.
  • Example 1 A manganese steel test piece with a maximum height Rz of surface roughness of 1 ⁇ m was hung from a hook whose surface was covered with Teflon (registered trademark) and placed in the storage container 3 made of SUS304 in the corrosion resistance test apparatus A of FIG. 2. After installation, the storage container 3 was sealed. Subsequently, nitrogen gas was passed through the storage container 3 at 2 L/min for 12 hours or more to remove moisture inside the storage container 3. Next, the hydrogen sulfide mixed gas raw material 1 containing hydrogen sulfide and having a moisture concentration of 1 mol ppm in the gas phase was used as a hydrogen sulfide mixed gas, and the storage container 3 was vented at 2 L/min for 30 minutes or more.
  • the flow rate of the hydrogen sulfide mixed gas was adjusted by a flow rate regulator 2. Further, the moisture concentration in the gas phase of the hydrogen sulfide mixed gas discharged from the storage container 3 was measured using a moisture meter 4, and it was confirmed that the moisture concentration in the gas phase was 1 mol ppm. Subsequently, the storage container 3 was sealed so that the internal pressure was 0.02 MPaG, and the storage container 3 was filled with hydrogen sulfide mixed gas. After storing the hydrogen sulfide mixed gas at room temperature (25° C.) for about 30 days, the inside of the storage container 3 was sufficiently replaced with nitrogen gas.
  • the results are shown in Table 1.
  • the SEM-EDS analysis was performed using a SEM-EDS analyzer (manufactured by JEOL Ltd., JSM-IT200), and the target elements were C, O, Al, Si, S, Ca, Mn, and Fe. .
  • the degree of suppression of corrosion of the test piece by the corrosive gas mixture was evaluated based on the following evaluation criteria. The results are shown in Table 1.
  • ⁇ Evaluation criteria> The S concentration in the test piece is 15% by mass or less.
  • The S concentration in the test piece is greater than 15% by mass.
  • Example 2 to 13 As a test piece, a manganese steel test piece or a chromium molybdenum steel test piece whose maximum surface roughness height Rz is the value shown in Table 1 was used, and as hydrogen sulfide mixed gas raw material 1, the moisture concentration in the gas phase was was the value shown in Table 1, and the storage container 3 was filled with hydrogen sulfide mixed gas in the same manner as in Experimental Example 1 except that the hydrogen sulfide mixed gas raw material 1 containing hydrogen sulfide was used. After storing the hydrogen sulfide mixed gas in the same manner as in Experimental Example 1, the inside of the storage container 3 was sufficiently replaced with nitrogen gas. Thereafter, the storage container 3 was opened, the test piece was taken out, and the S (sulfur) concentration was measured by SEM-EDS analysis in the same manner as in Experimental Example 1. The results are shown in Table 1.
  • FIG. 3 shows the results of plotting the S concentration in the test piece by SEM-EDS analysis against the moisture concentration in the gas phase in the hydrogen sulfide mixed gas.
  • the horizontal axis represents the moisture concentration in the gas phase in the hydrogen sulfide mixed gas
  • the vertical axis represents the S concentration in the test piece.
  • Example 14 A manganese steel test piece with a maximum height Rz of surface roughness of 40 ⁇ m was hung from a hook whose surface was covered with Teflon (registered trademark) and placed in a storage container 3 made of SUS304 in corrosion resistance test apparatus A in FIG. 2. After installation, the storage container 3 was sealed. Subsequently, nitrogen gas was passed through the storage container 3 at 2 L/min for 12 hours or more to remove moisture inside the storage container 3. Next, the sulfur dioxide mixed gas raw material 1 containing sulfur dioxide and having a moisture concentration of 1 mol ppm in the gas phase was used as a sulfur dioxide mixed gas, and the storage container 3 was vented at 2 L/min for 30 minutes or more.
  • the flow rate of the sulfur dioxide mixed gas was adjusted by a flow rate regulator 2. Furthermore, the moisture concentration in the gas phase of the sulfur dioxide mixed gas discharged from the storage container 3 was measured using a moisture meter 4, and it was confirmed that the moisture concentration in the gas phase was 1 mol ppm. Subsequently, the storage container 3 was sealed so that the internal pressure was 0.02 MPaG, and the storage container 3 was filled with a sulfur dioxide mixed gas. After storing the sulfur dioxide mixed gas at room temperature (25° C.) for about 30 days, the inside of the storage container 3 was sufficiently replaced with nitrogen gas.
  • the storage container 3 was opened, the test piece was taken out, and the S (sulfur) concentration along the depth direction from the surface of the test piece was measured by XPS (X-ray photoelectron spectroscopy) analysis.
  • the target elements were C, O, S, Mn, and Fe.
  • the depth in terms of SiO 2 thermal oxide film specifically indicates the distance along the depth direction when the SiO 2 thermal oxide film is measured under the same conditions.
  • the average S concentration at a depth of 10 to 40 nm from the surface of the test piece was calculated. The results are shown in Table 2.
  • the average S concentration is an indicator of the amount of corrosive substances produced by the reaction between moisture and sulfur dioxide gas, and the lower the S concentration, the less the amount of corrosive substances produced, that is, the corrosion of the test piece is suppressed. means that it has been Furthermore, regarding the average S concentration calculated as described above, the degree of inhibition of corrosion of the test piece by the sulfur dioxide mixture was evaluated based on the following evaluation criteria. The results are shown in Table 2. ⁇ Evaluation criteria> ⁇ : The average S concentration at a depth of 10 to 40 nm from the surface of the test piece (SiO 2 thermal oxide film equivalent) is 1.40 atomic% or less. The average S concentration (in terms of bithermal oxide film) is greater than 1.40 atomic%.
  • Example 15 to 19 As a test piece, a manganese steel test piece or a chromium molybdenum steel test piece whose maximum surface roughness height Rz is the value shown in Table 2 was used, and as the sulfur dioxide mixed gas raw material 1, the moisture concentration in the gas phase was is the value shown in Table 2, and the storage container 3 was filled with the sulfur dioxide mixed gas in the same manner as in Experimental Example 14 except that the sulfur dioxide mixed gas raw material 1 containing sulfur dioxide was used. After storing the sulfur dioxide mixed gas in the same manner as in Experimental Example 14, the inside of the storage container 3 was sufficiently replaced with nitrogen gas.
  • the storage container 3 was opened, the test piece was taken out, and the S (sulfur) concentration along the depth direction from the test piece surface was measured by XPS analysis in the same manner as in Experimental Example 14.
  • the average S concentration at a depth of 10 to 40 nm from the surface of the test piece (in terms of SiO 2 thermal oxide film) was calculated based on the S concentration measurement results.
  • the results are shown in Table 2.
  • the degree of inhibition of corrosion of the test piece by the sulfur dioxide mixture was evaluated based on the evaluation criteria described above. The results are shown in Table 2.
  • FIG. 4 shows the results of plotting the average S concentration at a depth of 10 to 40 nm (SiO 2 thermal oxide film equivalent) in the test piece by XPS analysis.
  • the horizontal axis is the moisture concentration in the gas phase
  • the vertical axis is the average S concentration at a depth of 10 to 40 nm (in terms of SiO 2 thermal oxide film) in the test piece.
  • the test results of the test pieces shown in Table 2 and FIG. 4 can be similarly applied to metal sealed containers.
  • the outline of the present invention is as follows. [1] A metal sealed container, A corrosive gas mixture filling container filled in the sealed container and comprising a corrosive gas and a corrosive gas mixture containing vapor phase moisture, the concentration of the moisture in the corrosive gas mixture is 400 molar ppm or less; the closed container includes a cylindrical body; A container filled with a corrosive gas mixture, wherein the maximum height of surface roughness on the inner surface of the cylindrical body is 50 ⁇ m or less.
  • the concentration of the moisture in the corrosive gas mixture is 400 mol ppm or less
  • A...Corrosion resistance test device 1...Hydrogen sulfide mixed gas raw material or sulfur dioxide mixed gas raw material, 2...Flow rate regulator, 3...Storage container, 4...Moisture meter, 10...Airtight container, 10a...Inner surface, 11...Cylindrical body , 12...bottom, 13...gas discharge part, 14...shoulder, 20...corrosive gas mixture, 100...corrosive gas mixture filling container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

腐食性ガス混合物充填容器は、密閉容器と、密閉容器内に充填され、腐食性ガスを含むガスとを備える。腐食性ガス混合物充填容器においては、ガス中の気相の水分濃度が400モルppm以下であり、密閉容器は、腐食性ガス混合物に接する内面を有する金属層を有する円筒胴部を含み、円筒胴部の金属層の内面における表面粗さの最大高さが50μm以下である。

Description

腐食性ガス混合物充填容器及び腐食性ガス組成物
 本発明は、腐食性ガス混合物充填容器及び腐食性ガス組成物に関する。
 液化ガス及び圧縮ガスの貯蔵及び輸送に用いる容器は、一般に鋼や合金などの金属によって構成され、様々な産業においてガスの貯蔵及び供給に使用されている。液化ガスの中でも硫化水素や二酸化硫黄などの腐食性ガスは近年半導体製造プロセスにて需要が高まっているが、腐食性ガスは金属への腐食性を持ち、密閉容器を腐食させるため、この性質はガス中の微量金属不純物問題を惹起する可能性があり、半導体製造プロセスにおいて問題となる懸念がある。この課題の解決策として、充填する腐食性ガスの不純物濃度を制限することによって密閉容器や配管に耐食性を付与する例が存在する。例えば下記特許文献1では、気相の水分濃度を0.001モルppm以上75モルppm未満とした硫化水素混合物により、密閉容器を腐食させにくくすることが提案されている。また、下記特許文献2では、気相の水分濃度を0.005モルppm以上5000モルppm未満とした二酸化硫黄混合物により、金属腐食を抑制することが提案されている。
国際公開第2017-221594号 国際公開第2021-182045号
 しかしながら、上記特許文献1に記載の硫化水素混合物および上記特許文献2に記載の二酸化硫黄混合物は、以下に示す課題を有していた。
 すなわち、上記特許文献1に記載の硫化水素混合物および上記特許文献2に記載の二酸化硫黄混合物は、硫化水素および二酸化硫黄に耐食性を持つことが一般的に知られているステンレス鋼からなる密閉容器での使用を前提としており、密閉容器の金属材質に制限されずに使用できるものではない。別言すると、上記硫化水素混合物或いは二酸化硫黄混合物を用いる場合、密閉容器がステンレス鋼以外の金属材質で構成される場合には、密閉容器が腐食するおそれがあった。
 本発明は、上記課題に鑑みてなされたものであり、密閉容器の金属材質をステンレス鋼以外にした場合でも、腐食性ガス混合物による密閉容器の腐食を抑制できる腐食性ガス混合物充填容器及び腐食性ガス組成物を提供することを目的とする。
 本発明者らは上記課題を解決するため鋭意研究を重ねた結果、腐食性ガス混合物中の気相の水分濃度を特定の範囲としつつ、密閉容器の円筒胴部の内面における表面粗さの最大高さを特定の範囲とすることにより、上記課題を解決し得ることを見出した。
 すなわち、本発明の一側面は、金属製の密閉容器と、上記密閉容器内に充填され、腐食性ガス及び気相の水分を含む腐食性ガス混合物とを備える、腐食性ガス混合物充填容器であって、上記腐食性ガス混合物中の上記水分の濃度が400モルppm以下であり、上記密閉容器が円筒胴部を含み、上記円筒胴部の内面における表面粗さの最大高さが50μm以下である、腐食性ガス混合物充填容器を提供する。尚、本発明における円筒胴部はJIS B 0190:2010記載の定義に従う。
 上記腐食性ガス混合物充填容器によれば、密閉容器の金属材質をステンレス鋼以外にした場合でも、腐食性ガス混合物による密閉容器の腐食を抑制できる。
 なお、本発明によって密閉容器の金属材質をステンレス鋼以外にした場合でも、腐食性ガス混合物による密閉容器の腐食が抑制できる理由については定かではないが、本発明者らは以下の理由によるものと推察する。
 すなわち、腐食性ガス混合物中の水分の濃度が400モルppm以下である場合に密閉容器の円筒胴部の内面における表面粗さの最大高さを50μm以下とすることで、腐食性ガス混合物中の水分が円筒胴部の内面の凹部に捕捉されにくくなり、捕捉されても脱離しやすくなる。そのため、水分に溶け込む腐食性ガスの量が低減され、水分と腐食性ガスとの反応による腐食性物質の生成が抑制される。こうして、密閉容器の金属材質をステンレス鋼以外にした場合でも、密閉容器の腐食が抑制されるのではないかと本発明者らは推察する。
 また、本発明の別の一側面は、上述した腐食性ガス混合物充填容器から取り出して得られる腐食性ガス組成物を提供する。
 上記密閉容器内に充填されている腐食性ガス混合物によれば、円筒胴部を含み、円筒胴部の内面における表面粗さの最大高さが50μm以下である金属製の密閉容器の腐食を抑制できる。このため、密閉容器の金属材質をステンレス鋼以外にした場合でも、密閉容器の腐食を抑制できる。したがって、、密閉容器の腐食抑制により、腐食性ガス混合物中に金属成分が混入することを抑制できる。よって、腐食性ガス混合物充填容器から取り出して得られる腐食性ガス組成物は、金属成分の含有量が少ないことが求められる半導体製造プロセスなどにおいて有用である。
 上記腐食性ガス混合物充填容器においては、上記腐食性ガス混合物中の上記水分の濃度が110モルppm以下であり、上記円筒胴部の上記内面における表面粗さの最大高さが6μm以下であることが好ましい。
 上記腐食性ガス混合物充填容器においては、上記腐食性ガス混合物中の上記水分の濃度が10モルppm以下であることがより好ましい。
 上記腐食性ガス混合物充填容器においては、上記腐食性ガス混合物中の上記水分の濃度が1モルppm以下であることがさらに好ましい。
 上記腐食性ガス混合物充填容器においては、上記密閉容器を構成する金属は合金鋼を含んでよい。
 上記合金鋼はマンガン鋼或いはクロムモリブデン鋼であってよい。
 上記腐食性ガス混合物充填容器においては、上記腐食性ガスは硫黄系ガスであってよい。
 上記硫黄系ガスは硫化水素或いは二酸化硫黄であってよい。
 本発明によれば、密閉容器の金属材質をステンレス鋼以外にした場合でも、腐食性ガス混合物による密閉容器の腐食を抑制できる腐食性ガス混合物充填容器及び腐食性ガス組成物が提供される。
本発明の腐食性ガス混合物充填容器の一実施形態を概略的に示す部分断面図である。 実験例で用いられる耐食性試験装置の一例を示すフロー図である。 実験例1~13における硫化水素混合ガス中の気相の水分濃度とテストピースにおけるS(硫黄)濃度との関係を示すグラフである。 実験例14~19における二酸化硫黄混合ガス中の気相の水分濃度とテストピース表面からの深さ10~40nmでの平均S濃度との関係を示すグラフである。
 以下、図面を参照しながら、本発明の腐食性ガス混合物充填容器の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
 図1は、本発明の腐食性ガス混合物充填容器の一実施形態を概略的に示す部分断面図である。図1に示すように、腐食性ガス混合物充填容器100は、密閉容器10と、密閉容器10内に充填され、腐食性ガス及び気相の水分を含む腐食性ガス混合物20とを備える。
 腐食性ガス混合物20中の気相の水分濃度は400モルppm以下であり、密閉容器10は円筒胴部11を備えている。また、円筒胴部11の内面10aにおける表面粗さの最大高さRzは50μm以下となっている。
 腐食性ガス混合物充填容器100によれば、密閉容器10の金属材質をステンレス鋼以外にした場合でも、腐食性ガス混合物による密閉容器10の腐食を抑制できる。
 以下、密閉容器10及び腐食性ガス混合物20についてより詳細に説明する。
<密閉容器>
 密閉容器10は円筒胴部11を備える。具体的には、図1に示すように、密閉容器10は、円筒胴部11の下端に設けられる底部12と、円筒胴部11の上端側に設けられ、腐食性ガス混合物20を充填又は排出させるためのバルブが設けられるガス排出部13と、ガス排出部13と円筒胴部11とを連結する肩部14とをさらに備える。
 密閉容器10は、金属製であればよく、単一の金属層で構成されてもよく、2種以上の金属層の積層体で構成されていてもよい。
 円筒胴部11の内面10aにおける表面粗さの最大高さRzは50μm以下であればよい。円筒胴部11の内面10aにおける表面粗さの最大高さRzは、腐食性ガス混合物20による密閉容器10の腐食をより抑制する観点からは、好ましくは6μm以下であり、より好ましくは3μm以下であり、特に好ましくは1μm以下である。
 円筒胴部11以外の部分(例えば底部12、ガス排出部13及び肩部14)の内面における表面粗さの最大高さRzは、特に制限されるものではなく、50μm以下であってもよく、50μmより大きくてもよい。
 円筒胴部11の内面10aにおける表面粗さの最大高さRzは、例えば未研磨容器の内面を研磨することで実現することができる。研磨の方法としては、例えばブラスト研磨、バフ研磨、遠心バレル研磨などの物理研磨方法、薬品による処理を行う化学研磨方法、電解研磨溶液と接触させて通電し研磨する電解研磨方法が挙げられる。研磨の方法は特に上記研磨方法に限定されるものではない。
 本発明における円筒胴部11の内面10aにおける表面粗さの最大高さRzは、JIS B 0633:2001及びJIS B 0651:2001に準拠して測定することができる。
 具体的に、表面粗さの最大高さRzを測定する場合、測定器メーカーより販売されている表面粗さ測定器を用いることができる。このような表面粗さ測定器としては、例えば株式会社ミツトヨ製の表面粗さ測定器などが挙げられる。
 密閉容器10を構成する金属は、特に制限されるものではなく、マンガン鋼、ステンレス鋼、クロムモリブデン鋼などの合金鋼、炭素鋼、及び、アルミニウム合金などが挙げられる。
 中でも、合金鋼が好ましい。この場合、合金鋼以外の金属を用いる場合と比較して、機械的性質の面で有利となる。合金鋼の中でもマンガン鋼或いはクロムモリブデン鋼が好ましい。この場合、マンガン鋼或いはクロムモリブデン鋼以外の合金鋼を用いる場合と比較してコスト面で有利となる。
<腐食性ガス混合物>
 腐食性ガス混合物20は、腐食性ガス及び気相の水分を含む。
 腐食性ガスは、金属を腐食させる性質をもつガスであれば特に制限されるものではなく、硫化水素、二酸化硫黄などの硫黄系ガス、塩化水素や臭化水素などのハロゲン系ガス、アンモニアなどが挙げられる。
 腐食性ガス混合物20中の気相の水分濃度は400モルppm以下であればよい。ここで、腐食性ガス混合物20中の気相の水分濃度は、五酸化リン式露点計又はキャビティリングダウン分光法(CRDS:cavity ring-down spectroscopy)によって測定される値である。ここで、測定は20~25℃(腐食性ガス混合物を通気する配管は40℃)、大気圧の条件で行う。
 腐食性ガス混合物20中の気相の水分濃度は、好ましくは110モルppm以下であり、より好ましくは10モルppm以下で、更に好ましくは1モルppm以下である。
 ここで、特に表面粗さの最大高さRzが6μm以下である場合に、腐食性ガス混合物による密閉容器10の腐食を効果的に抑制できる。
 腐食性ガスは、液化ガスであっても非液化ガスであってもよいが、通常は液化ガスである。
 腐食性ガス混合物20の充填の方法は特に限定されないが、密閉容器10内に水分が残存していると、充填した腐食性ガス混合物20中の水分濃度が上昇してしまう。そのため、密閉容器10内の残存水分量が1モルppm以下となるように、あらかじめ密閉容器10に乾燥した不活性ガスを通気するか、密閉容器10に対して加熱減圧処理などを施していてもよい。
<腐食性ガス組成物>
 腐食性ガス組成物は、腐食性ガス混合物充填容器100から取り出して得られる組成物である。
 上記密閉容器10内に充填されている腐食性ガス混合物によれば、円筒胴部11を含み、円筒胴部11の内面10aにおける表面粗さの最大高さが50μm以下である金属製の密閉容器10の腐食を抑制できる。このため、密閉容器10の金属材質をステンレス鋼以外にした場合でも、密閉容器10の腐食を抑制できる。したがって、密閉容器10の腐食抑制により、腐食性ガス混合物中に金属成分が混入することを抑制できる。よって、腐食性ガス混合物充填容器100から取り出して得られる腐食性ガス組成物は、金属成分の含有量が少ないことが求められる半導体製造プロセスなどにおいて有用である。
実験例
 以下、実験例について説明する。
[テストピース]
 表面粗さの最大高さRzが1μmである直方体形状(10mm×50mm×6mm)のマンガン鋼(150M36-S)、表面粗さの最大高さRzが40μmである直方体形状(10mm×50mm×6mm)のマンガン鋼(150M36-S)、表面粗さの最大高さRzが145μmである直方体形状(10mm×50mm×6mm)のマンガン鋼(150M36-S)、表面粗さの最大高さRzが2μmである直方体形状(20mm×50mm×6mm)のクロムモリブデン鋼(SAE4130-S)、表面粗さの最大高さRzが35μmである直方体形状(20mm×50mm×6mm)のクロムモリブデン鋼(SAE4130-S)、表面粗さの最大高さRzが125μmである直方体形状(20mm×50mm×6mm)のクロムモリブデン鋼(SAE4130-S)、をテストピースとしてそれぞれ用意した。テストピースの表面粗さの最大高さRzは、JIS B 0633:2001及びJIS B 0651:2001に準拠した接触式表面粗さ測定器を用いて測定した。接触式表面粗さ測定器としては、最大高さRzが1μm、2μm、35μm、40μmのテストピースについては株式会社ミツトヨ製、SJ-210を用いた。最大高さRzが125μm、145μmのテストピースについては株式会社ミツトヨ製、SJ-412を用いた。なお、テストピースは、密閉容器の円筒胴部の内面の表面粗さの最大高さの値による効果を調べるために、密閉容器の代わりに用いられるものである。
[実験例1]
 表面粗さの最大高さRzが1μmであるマンガン鋼製テストピースを、表面がテフロン(登録商標)で覆われたフックに吊るして図2の耐食性試験装置AにおけるSUS304製の保管容器3内に設置して保管容器3を密閉した。続いて、保管容器3に窒素ガスを2L/minで12時間以上通気させて保管容器3内部の水分を除去した。
 次に、気相の水分濃度が1モルppmであり、硫化水素を含有する硫化水素混合ガス原料1を硫化水素混合ガスとして、保管容器3に、2L/minで30分以上通気させた。このとき、硫化水素混合ガスの流量は流量調整器2で調整した。また、保管容器3から排出される硫化水素混合ガスについては水分計4で気相の水分濃度を測定し、気相の水分濃度が1モルppmであることを確認した。
 続いて、保管容器3を、内圧が0.02MPaGとなるように封止し、保管容器3内に硫化水素混合ガスを充填させた。
 そして、上記硫化水素混合ガスを約30日間室温(25℃)で保管した後、窒素ガスで保管容器3内を十分置換した。その後、保管容器3を開放してテストピースを取り出し、SEM-EDS分析によりS(硫黄)濃度を測定した。結果を表1に示す。なお、SEM-EDS分析は、SEM-EDS分析装置(日本電子株式会社製、JSM-IT200)を用いて行い、対象元素は、C、O、Al、Si、S、Ca、Mn、Feとした。また、表1においては、以下の評価基準に基づいて、腐食性ガス混合物によるテストピースの腐食の抑制の程度を評価した。結果を表1に示す。
<評価基準>
○:テストピースにおけるS濃度が15質量%以下であること
×:テストピースにおけるS濃度が15質量%より大きいこと
[実験例2~13]
 テストピースとして、表面粗さの最大高さRzが表1に示す値であるマンガン鋼製テストピース或いはクロムモリブデン鋼製テストピースを用い、かつ、硫化水素混合ガス原料1として、気相の水分濃度が表1に示す値であり、硫化水素を含む硫化水素混合ガス原料1を用いたこと以外は実験例1と同様にして保管容器3内に硫化水素混合ガスを充填させた。
 そして、実験例1と同様にして硫化水素混合ガスを保管した後、窒素ガスで保管容器3内を十分置換した。その後、保管容器3を開放してテストピースを取り出し、実験例1と同様にしてSEM-EDS分析によりS(硫黄)濃度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果に基づき、硫化水素混合ガス中の気相の水分濃度に対してSEM-EDS分析によるテストピースにおけるS濃度をプロットした結果を図3に示す。図3において、横軸が硫化水素混合ガス中の気相の水分濃度であり、縦軸がテストピースにおけるS濃度である。
 表1及び図3に示すテストピースの試験結果は、金属製の密閉容器に対しても同様に適用することができる。すなわち、密閉容器の金属材質をステンレス鋼以外にした場合でも、円筒胴部の内面における表面粗さの最大高さRzが50μm以下である場合は、気相の水分濃度が400モルppm以下の硫化水素混合ガスによる密閉容器の腐食が抑制されると考えられる。
[実験例14]
 表面粗さの最大高さRzが40μmであるマンガン鋼製テストピースを、表面がテフロン(登録商標)で覆われたフックに吊るして図2の耐食性試験装置AにおけるSUS304製の保管容器3内に設置して保管容器3を密閉した。続いて、保管容器3に窒素ガスを2L/minで12時間以上通気させて保管容器3内部の水分を除去した。
 次に、気相の水分濃度が1モルppmであり、二酸化硫黄を含有する二酸化硫黄混合ガス原料1を二酸化硫黄混合ガスとして、保管容器3に、2L/minで30分以上通気させた。このとき、二酸化硫黄混合ガスの流量は流量調整器2で調整した。また、保管容器3から排出される二酸化硫黄混合ガスについては水分計4で気相の水分濃度を測定し、気相の水分濃度が1モルppmであることを確認した。
 続いて、保管容器3を、内圧が0.02MPaGとなるように封止し、保管容器3内に二酸化硫黄混合ガスを充填させた。
 そして、上記二酸化硫黄混合ガスを約30日間室温(25℃)で保管した後、窒素ガスで保管容器3内を十分置換した。その後、保管容器3を開放してテストピースを取り出し、XPS(X線光電子分光)分析によりテストピース表面からの深さ方向に沿ったS(硫黄)濃度を測定した。対象元素は、C、O、S、Mn、Feとした。
 なお、深さのSiO熱酸化膜換算は、具体的には、同じ条件でSiOの熱酸化膜を測定した場合の深さ方向に沿った距離を示す。
 また、S濃度の測定結果に基づいて、テストピースにおける表面からの深さ10~40nm(SiO熱酸化膜換算)での平均S濃度を算出した。結果を表2に示す。ここで、平均S濃度は、水分と二酸化硫黄ガスとの反応による腐食性物質の生成量の指標となるものであり、低いほど腐食性物質の生成量が少ないこと、すなわちテストピースの腐食が抑制されていることを意味する。
 さらに、上記のようにして算出された平均S濃度については、以下の評価基準に基づいて、二酸化硫黄混合物によるテストピースの腐食の抑制の程度を評価した。結果を表2に示す。
<評価基準>
○:テストピースにおける表面からの深さ10~40nm(SiO熱酸化膜換算)での平均S濃度が1.40atomic%以下であること
×:テストピースにおける表面からの深さ10~40nm(SiO熱酸化膜換算)での平均S濃度が1.40atomic%より大きいこと
[実験例15~19]
 テストピースとして、表面粗さの最大高さRzが表2に示す値であるマンガン鋼製テストピース或いはクロムモリブデン鋼製テストピースを用い、かつ、二酸化硫黄混合ガス原料1として、気相の水分濃度が表2に示す値であり、二酸化硫黄を含む二酸化硫黄混合ガス原料1を用いたこと以外は実験例14と同様にして保管容器3内に二酸化硫黄混合ガスを充填させた。
 そして、実験例14と同様にして二酸化硫黄混合ガスを保管した後、窒素ガスで保管容器3内を十分置換した。その後、保管容器3を開放してテストピースを取り出し、実験例14と同様にしてXPS分析によりテストピース表面からの深さ方向に沿ったS(硫黄)濃度を測定した。また、実験例14と同様にして、S濃度の測定結果に基づいて、テストピースにおける表面からの深さ10~40nm(SiO熱酸化膜換算)での平均S濃度を算出した。結果を表2に示す。
 さらに、上記のようにして算出された平均S濃度については、前記の評価基準に基づいて、二酸化硫黄混合物によるテストピースの腐食の抑制の程度を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 XPS分析によるテストピースにおける深さ10~40nm(SiO熱酸化膜換算)での平均S濃度をプロットした結果を図4に示す。図4において、横軸が気相の水分濃度であり、縦軸がテストピースにおける深さ10~40nm(SiO熱酸化膜換算)での平均S濃度である。
 表2及び図4に示すテストピースの試験結果は、金属製の密閉容器に対しても同様に適用することができる。すなわち、密閉容器の金属材質をステンレス鋼以外にした場合でも、円筒胴部の内面における表面粗さの最大高さRzが50μm以下である場合は、気相の水分濃度が400モルppm以下の二酸化硫黄混合ガスによる密閉容器の腐食が抑制されると考えられる。
 なお、本発明の概要は以下のとおりである。
[1]金属製の密閉容器と、
 前記密閉容器内に充填され、腐食性ガス及び気相の水分を含む腐食性ガス混合物とを備える、腐食性ガス混合物充填容器であって、
 前記腐食性ガス混合物中の前記水分の濃度が400モルppm以下であり、
 前記密閉容器が円筒胴部を含み、
 前記円筒胴部の内面における表面粗さの最大高さが50μm以下である、腐食性ガス混合物充填容器。
[2]前記腐食性ガス混合物中の前記水分の濃度が400モルppm以下であり、
 前記円筒胴部の前記内面における表面粗さの最大高さが6μm以下である、[1]に記載の腐食性ガス混合物充填容器。
[3]前記腐食性ガス混合物中の前記水分の濃度が110モルppm以下である、[2]に記載の腐食性ガス混合物充填容器。
[4]前記腐食性ガス混合物中の前記水分の濃度が10モルppm以下である、[3]に記載の腐食性ガス混合物充填容器。
[5]前記腐食性ガス混合物中の前記水分の濃度が1モルppm以下である、[4]に記載の腐食性ガス混合物充填容器。
[6]前記密閉容器を構成する前記金属が、合金鋼を含む、[1]~[5]のいずれかに記載の腐食性ガス混合物充填容器。
[7]前記合金鋼が、マンガン鋼或いはクロムモリブデン鋼である、[6]に記載の腐食性ガス混合物充填容器。
[8]前記腐食性ガスが硫黄系ガスである[1]~[7]のいずれかに記載の腐食性ガス混合物充填容器。
[9]前記硫黄系ガスが硫化水素或いは二酸化硫黄である、[8]に記載の腐食性ガス混合物充填容器。
[10][1]~[9]のいずれかに記載の腐食性ガス混合物充填容器から取り出して得られる、腐食性ガス組成物。
 A…耐食性試験装置、1…硫化水素混合ガス原料或いは二酸化硫黄混合ガス原料、2…流量調整器、3…保管容器、4…水分計、10…密閉容器、10a…内面、11…円筒胴部、12…底部、13…ガス排出部、14…肩部、20…腐食性ガス混合物、100…腐食性ガス混合物充填容器。

 

Claims (10)

  1.  金属製の密閉容器と、
     前記密閉容器内に充填され、腐食性ガス及び気相の水分を含む腐食性ガス混合物とを備える、腐食性ガス混合物充填容器であって、
     前記腐食性ガス混合物中の前記水分の濃度が400モルppm以下であり、
     前記密閉容器が円筒胴部を含み、
     前記円筒胴部の内面における表面粗さの最大高さが50μm以下である、腐食性ガス混合物充填容器。
  2.  前記腐食性ガス混合物中の前記水分の濃度が400モルppm以下であり、
     前記円筒胴部の前記内面における表面粗さの最大高さが6μm以下である、請求項1に記載の腐食性ガス混合物充填容器。
  3.  前記腐食性ガス混合物中の前記水分の濃度が110モルppm以下である、請求項2に記載の腐食性ガス混合物充填容器。
  4.  前記腐食性ガス混合物中の前記水分の濃度が10モルppm以下である、請求項3に記載の腐食性ガス混合物充填容器。
  5.  前記腐食性ガス混合物中の前記水分の濃度が1モルppm以下である、請求項4に記載の腐食性ガス混合物充填容器。
  6.  前記密閉容器を構成する前記金属が、合金鋼を含む、請求項1に記載の腐食性ガス混合物充填容器。
  7.  前記合金鋼が、マンガン鋼或いはクロムモリブデン鋼である、請求項6に記載の腐食性ガス混合物充填容器。
  8.  前記腐食性ガスが硫黄系ガスである請求項1~7のいずれか一項に記載の腐食性ガス混合物充填容器。
  9.  前記硫黄系ガスが硫化水素或いは二酸化硫黄である、請求項8に記載の腐食性ガス混合物充填容器。
  10.  請求項1に記載の腐食性ガス混合物充填容器から取り出して得られる、腐食性ガス組成物。

     
PCT/JP2023/010153 2022-03-31 2023-03-15 腐食性ガス混合物充填容器及び腐食性ガス組成物 WO2023189616A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-058734 2022-03-31
JP2022058734 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189616A1 true WO2023189616A1 (ja) 2023-10-05

Family

ID=88201641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010153 WO2023189616A1 (ja) 2022-03-31 2023-03-15 腐食性ガス混合物充填容器及び腐食性ガス組成物

Country Status (2)

Country Link
TW (1) TW202342809A (ja)
WO (1) WO2023189616A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279388A (ja) * 1996-04-12 1997-10-28 Japan Energy Corp オ−ステナイト系ステンレス鋼の腐食防止方法
JP2000097398A (ja) * 1998-09-24 2000-04-04 Nippon Sanso Corp ガス容器の内面処理方法
JP2001193898A (ja) * 2000-01-07 2001-07-17 Nishiyama:Kk 圧力容器および圧力容器内面の防食施工法
JP2003500551A (ja) * 1999-05-28 2003-01-07 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 耐蝕性容器およびガス供給システム
JP2016084831A (ja) * 2014-10-23 2016-05-19 昭和電工株式会社 高圧ガス容器及びその製造方法
JP2017179516A (ja) * 2016-03-31 2017-10-05 日本高純度化学株式会社 外観保護剤及び該外観保護剤を用いて処理された金属体
WO2017221594A1 (ja) * 2016-06-22 2017-12-28 昭和電工株式会社 硫化水素混合物及びその製造方法並びに充填容器
WO2021182045A1 (ja) * 2020-03-09 2021-09-16 昭和電工株式会社 二酸化硫黄混合物及びその製造方法並びに充填容器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279388A (ja) * 1996-04-12 1997-10-28 Japan Energy Corp オ−ステナイト系ステンレス鋼の腐食防止方法
JP2000097398A (ja) * 1998-09-24 2000-04-04 Nippon Sanso Corp ガス容器の内面処理方法
JP2003500551A (ja) * 1999-05-28 2003-01-07 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 耐蝕性容器およびガス供給システム
JP2001193898A (ja) * 2000-01-07 2001-07-17 Nishiyama:Kk 圧力容器および圧力容器内面の防食施工法
JP2016084831A (ja) * 2014-10-23 2016-05-19 昭和電工株式会社 高圧ガス容器及びその製造方法
JP2017179516A (ja) * 2016-03-31 2017-10-05 日本高純度化学株式会社 外観保護剤及び該外観保護剤を用いて処理された金属体
WO2017221594A1 (ja) * 2016-06-22 2017-12-28 昭和電工株式会社 硫化水素混合物及びその製造方法並びに充填容器
WO2021182045A1 (ja) * 2020-03-09 2021-09-16 昭和電工株式会社 二酸化硫黄混合物及びその製造方法並びに充填容器

Also Published As

Publication number Publication date
TW202342809A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
JP6914918B2 (ja) 材料、この材料を用いた保存容器、この保存容器に取り付けられるバルブ、並びに、ClFの保存方法、ClFの保存容器の使用方法
JP4393291B2 (ja) 耐食性に優れた船舶用鋼材
CN104846280B (zh) 耐腐蚀性优异的涂装钢材
TWI637904B (zh) Hydrogen sulfide mixture and its manufacturing method and filling container
WO2023189616A1 (ja) 腐食性ガス混合物充填容器及び腐食性ガス組成物
CN102899566B (zh) 散装货船用耐腐蚀钢材和散装货船的船舱
WO2024053341A1 (ja) 二酸化硫黄混合物充填容器及び二酸化硫黄組成物
JP2021059556A (ja) Z−1−クロロ−3,3,3−トリフルオロプロペンの保存容器及び保存方法
Dalibón et al. Plasma nitriding and DLC coatings for corrosion protection of precipitation hardening stainless steel
Kvarekval et al. Corrosion product films on carbon steel in semi-sour CO2/H2S environments
TWI756068B (zh) 二氧化硫混合物及其製造方法以及填充容器
TW202413837A (zh) 二氧化硫混合物填充容器及二氧化硫組成物
Genchev et al. Role of molybdenum in corrosion of iron‐based alloys in contact with hydrogen sulfide containing solution
US20180057924A1 (en) Coating compositions, methods and articles produced thereby
EP1361290B1 (en) Use of a steel for chemical tank, excellent in sulfuric acid corrosion resistance and pitting corrosion resistance
CN108700356A (zh) 用于储存包含四氟丙烯的组合物的容器以及储存其的方法
JP2008007860A (ja) 湿潤の大気雰囲気での耐すきま腐食性に優れた船舶用鋼材
RU2457271C2 (ru) Применение конструкционного материала и электролизера, изготовленного из такого материала
WO2024106318A1 (ja) 金属容器、ヨウ化炭化水素充填容器及びヨウ化炭化水素
WO2024127901A1 (ja) 液化ガス入り容器および液化ガス入り容器の製造方法
JP4561134B2 (ja) 蒸留塔
Schoen et al. Compressed gas cylinders
JPS6213558A (ja) 耐h↓2s性の優れた合金
JP2023048998A (ja) 1-クロロ-2,3,3-トリフルオロ-1-プロペンの保存容器、保存方法、および1-クロロ-2,3,3-トリフルオロ-1-プロペン製品
JP2002060921A (ja) 石油タンク用耐食鋼および石油タンク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024511764

Country of ref document: JP