WO2023188427A1 - 半導体レーザ評価方法、装置およびプログラム - Google Patents

半導体レーザ評価方法、装置およびプログラム Download PDF

Info

Publication number
WO2023188427A1
WO2023188427A1 PCT/JP2022/016991 JP2022016991W WO2023188427A1 WO 2023188427 A1 WO2023188427 A1 WO 2023188427A1 JP 2022016991 W JP2022016991 W JP 2022016991W WO 2023188427 A1 WO2023188427 A1 WO 2023188427A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
current
straight line
approximate straight
axis
Prior art date
Application number
PCT/JP2022/016991
Other languages
English (en)
French (fr)
Inventor
浩司 武田
圭穂 前田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/016991 priority Critical patent/WO2023188427A1/ja
Publication of WO2023188427A1 publication Critical patent/WO2023188427A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • the present invention relates to a semiconductor laser evaluation method, apparatus, and program for evaluating the threshold current of a semiconductor laser.
  • the threshold current is obtained from the optical output characteristics (IL characteristics) obtained when a current is experimentally injected into a semiconductor laser.
  • IL characteristics optical output characteristics
  • the threshold current is calculated from the intersection of the X-axis and the straight line passing through the two measurement points (IL characteristic data) corresponding to the different optical outputs P1 and P2 after laser oscillation. (hereinafter referred to as "conventional method 1").
  • Non-Patent Document 2 discloses a method of evaluating a threshold current based on a relaxation oscillation frequency.
  • the semiconductor laser evaluation method expresses the relationship between the injection current of the semiconductor laser and the optical output of the semiconductor laser, with the injection current expressed on the X axis and the Y axis expressed as the relationship between the injection current of the semiconductor laser and the optical output of the semiconductor laser.
  • the current-light output characteristic representing the optical output
  • the method is characterized in that the minimum value of is determined as the threshold current of the semiconductor laser.
  • the relationship between the injection current of the semiconductor laser and the optical output of the semiconductor laser is expressed by representing the injection current on the X axis and representing the optical output on the Y axis.
  • a step of obtaining an approximate straight line by linear approximation for a predetermined measurement point in the current-light output characteristic a step of obtaining an intersection of the approximate straight line and the X-axis;
  • the method includes the steps of: obtaining a local maximum value at the intersection point by shifting; and determining a minimum value of the maximum value as a threshold current of the semiconductor laser.
  • the relationship between the injection current of the semiconductor laser and the optical output of the semiconductor laser is expressed by representing the injection current on the X axis and representing the optical output on the Y axis.
  • the intersection point between the approximate straight line obtained by linear approximation and the X-axis for a predetermined measurement point is obtained, the measurement point is shifted to obtain the maximum value of the intersection point, and the origin of the X-axis and the Another approximate straight line is obtained by linear approximation for a predetermined other measurement point between the local maximum value and the minimum value, and the current value corresponding to the intersection of the approximate straight line and the other approximate straight line is calculated by calculating the current value of the semiconductor laser. It is characterized by determining the threshold current.
  • the relationship between the injection current of the semiconductor laser and the optical output of the semiconductor laser is expressed by representing the injection current on the X axis and representing the optical output on the Y axis.
  • a step of obtaining an approximate straight line by linear approximation for a predetermined measurement point in the current-light output characteristic a step of obtaining an intersection of the approximate straight line and the X-axis; and obtaining another approximate straight line by linear approximation for a predetermined other measurement point in the region between the origin of the X-axis and the minimum value of the maximum values. and determining a current value corresponding to an intersection of the approximate straight line and the other approximate straight line as a threshold current of the semiconductor laser.
  • the semiconductor laser evaluation device includes a drive unit that supplies an injection current to the semiconductor laser, a detection unit that detects the optical output of the semiconductor laser, and a detection unit that detects the injection current output from the drive unit and the detection unit.
  • the X-axis represents the injected current
  • the Y-axis represents the optical output
  • the relationship with the optical output output from the unit is expressed by an approximate straight line obtained by linear approximation for a predetermined measurement point.
  • an arithmetic unit that obtains the intersection point of the and the X-axis, and determines the minimum value of the maximum value of the intersection point obtained by shifting the measurement point as the threshold current of the semiconductor laser.
  • the semiconductor laser evaluation device includes a drive section that supplies an injection current to the semiconductor laser, a detection section that detects an optical output of the semiconductor laser, and a detection section that detects the injection current input from the drive section.
  • the relationship with the optical output input from the section is expressed by an approximate straight line obtained by linear approximation for a predetermined measurement point. and the X-axis, shift the measurement point to obtain a maximum value at the intersection, and select another predetermined measurement point between the origin of the X-axis and the minimum value of the maximum value.
  • an arithmetic unit that obtains another approximate straight line by linear approximation for , and determines a current value corresponding to an intersection of the approximate straight line and the other approximate straight line as a threshold current of the semiconductor laser.
  • the semiconductor laser evaluation program allows a computer to display the relationship between the injection current of the semiconductor laser and the optical output of the semiconductor laser on the X axis in order to evaluate the threshold current of the semiconductor laser.
  • the current-light output characteristic that represents the current
  • the Y-axis represents the optical output
  • a process is executed to determine the minimum value of the maximum values of the obtained intersection points as the threshold current of the semiconductor laser.
  • the semiconductor laser evaluation program allows a computer to display the relationship between the injection current of the semiconductor laser and the optical output of the semiconductor laser on the X axis in order to evaluate the threshold current of the semiconductor laser.
  • the current-light output characteristic that represents the current
  • the Y-axis represents the optical output
  • the current value corresponding to the intersection with the approximate straight line is determined as the threshold current of the semiconductor laser.
  • FIG. 1 is a block diagram showing the configuration of a semiconductor laser evaluation apparatus according to a first embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the concept of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 2B is a diagram for explaining the concept of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 2C is a diagram for explaining the concept of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 2D is a diagram for explaining the concept of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 2E is a diagram for explaining the concept of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the concept of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 2B is a diagram for explaining the concept of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 2C is a diagram for explaining the concept of
  • FIG. 2F is a diagram for explaining the concept of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart for explaining the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 5A is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 5B is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 5C is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 6A is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 6B is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 7A is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 7B is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 7C is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 8A is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 8B is a diagram for explaining the effect of the semiconductor laser evaluation method according to the first embodiment of the present invention.
  • FIG. 9A is a diagram for explaining the concept of a semiconductor laser evaluation method according to the second embodiment of the present invention.
  • FIG. 9B is a diagram for explaining the concept of a semiconductor laser evaluation method according to the second embodiment of the present invention.
  • FIG. 9C is a diagram for explaining the concept of a semiconductor laser evaluation method according to the second embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining a semiconductor laser evaluation method according to the second embodiment of the present invention.
  • FIG. 11A is a diagram for explaining the effect of the semiconductor laser evaluation method according to the second embodiment of the present invention.
  • FIG. 11B is a diagram for explaining the effect of the semiconductor laser evaluation method according to the second embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of the configuration of a computer according to an embodiment of the present invention.
  • the semiconductor laser evaluation device 10 includes a drive section 11, a detection section 12, a calculation section 13, a storage section 14, and an output section (display section) 15. .
  • the drive unit 11 injects current into the semiconductor laser 1 that is the object of measurement.
  • the detection unit 12 receives the laser light from the semiconductor laser 1 and measures the optical output.
  • the storage unit 14 stores the relationship between the current value injected by the drive unit 11 and the optical output value by the detection unit 12 as a current-light (IL) characteristic.
  • IL current-light
  • the calculation unit 13 reads the IL characteristic data from the storage unit 14 and evaluates the threshold current based on the IL characteristic data (described later).
  • the threshold current may be evaluated directly from the measured IL characteristic data without reading the IL characteristic data from the storage unit 14.
  • the output section (display section) 15 outputs (displays) IL characteristic data, threshold current, etc.
  • the threshold current is evaluated based on IL characteristics representing the injection current of the semiconductor laser and the optical output of the semiconductor laser on the X-axis and Y-axis, respectively.
  • the optical output increases as the injected current increases, and when the injected current exceeds the threshold current I th , the optical output suddenly increases. To increase. Furthermore, as the injection current increases, the optical output decreases.
  • FIGS. 2B to 2E show an example of how the threshold current I th is obtained based on the IL characteristic in this embodiment.
  • the threshold current I th is obtained by sequentially shifting (incrementing) the measurement points (data) in the direction of increasing injection current.
  • the black circle in the figure indicates the nth measurement point.
  • the arrow in the figure is an approximate straight line obtained by linear approximation of the nth measurement point using 2k+1 measurement data from n-kth to n+kth, and the tip thereof is the point of intersection with the X axis. (X-intercept) is shown.
  • the X-intercept of the approximate straight line indicates the threshold current I th (Fig. 2D).
  • the X-intercept of the approximate straight line similarly changes to the threshold current I th (Fig. 2E).
  • the intersection (X intercept) between the approximate straight line at the measurement point and the X axis is in the direction of the X axis (injection current).
  • the current increases, reaches the threshold current I th and shows a maximum value, and then decreases.
  • the threshold current I th can be obtained by sequentially shifting (incrementing) the measurement points in the direction of increase in the injection current in the IL characteristic and extracting the maximum value of the X-intercept.
  • the first maximum value of X-intercepts obtained is set as the threshold current I th .
  • FIG. 3 shows a flowchart of an example of the semiconductor laser evaluation method according to the present embodiment.
  • the drive section 11 supplies an injection current to the semiconductor laser 1, and the detection section 12 detects the optical output of the semiconductor laser 1.
  • the relationship between the injected current and optical output output from each of the driving section 11 and the detecting section 12 is measured as an IL characteristic.
  • This measured IL characteristic is stored in the storage unit 14.
  • the calculation unit 13 acquires the IL characteristics from the storage unit 14 (step S11).
  • the above-mentioned measured IL characteristics may be directly acquired by the calculation unit 13.
  • variable (index) n of the IL characteristic data is initialized with the index of the initial value of the array (step S12).
  • the variable (index) n of the IL characteristic data is the number (a numerical value indicating the order) of the IL characteristic data.
  • step S13 an approximate straight line is obtained for the nth measurement point by linear approximation of 2k+1 measurement data from n-kth to n+kth (step S13).
  • k will be referred to as an "averaging parameter.”
  • the least squares method or the like is used for linear approximation.
  • intersection (X-intercept) between the approximate straight line and the X-axis is found and set as the array element X(n) (step S14).
  • Step S15 compare the X-intercept (X(n)) at the nth measurement point with the X-intercept (X(n-1)) at the (n-1st) measurement point before this measurement point.
  • step S16 when X(n) is greater than or equal to X(n-1), the next data (n+1th data) is selected (step S16), and similar steps are performed (steps S13 to S15).
  • X(n) shows a value lower than X(n-1)
  • X(n-1) is determined to be the threshold current and the evaluation ends (step S17). In this way, the maximum value of the X-intercept is determined as the threshold current.
  • X(n-1) is determined as the threshold current when X(n) has a value lower than X(n-1), but the present invention is not limited to this.
  • X(n) shows a lower value than a plurality of data measured before X(n)
  • any of the plurality of data may be determined as the threshold current.
  • X(n) when X(n) is lower than X(n-1) and X(n-2), that is, X(n) ⁇ X(n-1) and X(n) ⁇ X(n-2), In case 2), if X(n-1) ⁇ X(n-2), then X(n-2), which is the maximum value, may be determined as the threshold current.
  • n is increased sequentially, but n may be decreased sequentially.
  • X(n) and X(n+1) are compared, and when X(n) ⁇ X(n+1), X(n+1) is determined to be the threshold current. In this way, the maximum value of X(n) can be obtained by changing (shifting) n.
  • the local maximum value of the first acquired X-intercept is set to the threshold value.
  • the current be I th .
  • the maximum value of the X-intercepts obtained last is set as the threshold current I th . That is, the minimum value among the maximum values of a plurality of X-intercepts is determined as the threshold current I th .
  • the minimum value of the local maximum value of the intersection of the approximate straight line obtained by linear approximation with the X axis for a predetermined measurement point is Determine the threshold current.
  • FIG. 4 shows the IL characteristic (dotted line in the figure) and the change in X(n), which is the X-intercept (solid line in the figure), in this embodiment.
  • X(n) is approximately zero in a region where the injection current I(n) is low, and when the injection current I(n) increases, it increases rapidly and then shows an approximately constant value. Furthermore, when the injection current I(n) increases, X(n) decreases and takes a negative value.
  • the maximum value of X(n) is determined as the threshold current I th .
  • a straight line connecting two points measured in the linear region after laser oscillation in the IL characteristic (dotted line in the figure) is extended (solid line arrow in the figure). Determine the threshold current I th .
  • X(n) (solid line in the figure) corresponds to each of a plurality of kinks in the IL characteristic (dotted line in the figure). shows multiple local maxima.
  • X(n) corresponding to the first obtained maximum value, that is, the minimum X(n) among the plurality of maximum values is defined as the threshold current I th .
  • the threshold current can be evaluated accurately.
  • measurement data at two points corresponding to the optical outputs P1 and P2 can be obtained for the IL characteristics (dotted lines in the figure) 162 and 163, so the straight line connecting these two points is extended. (solid line arrow in the figure), the threshold current can be evaluated accurately.
  • each of the local maximum values of X(n) can be obtained as the threshold currents I th1 , I th2 , and I th3 of each of the plurality of semiconductor lasers, so that the threshold currents can be evaluated accurately.
  • the threshold current I th is determined from the peak value of the second-order differential coefficient d 2 L/dI 2 (solid line in the diagram) in the IL characteristic (dotted line in the diagram). do. Therefore, when the IL characteristic changes sharply near the threshold current, a steep peak of d 2 L/dI 2 can be obtained, so that the threshold current I th can be easily determined.
  • Semiconductor lasers a and b which have different IL characteristics, were used as semiconductor lasers to be evaluated.
  • 8A and 8B show experimental results (IL characteristics) for semiconductor laser a and semiconductor laser b, respectively.
  • an experiment (evaluation) was conducted with the averaging parameter k set to 5.
  • FIGS. 9A to 11B A semiconductor laser evaluation apparatus, method, and program according to a second embodiment of the present invention will be described with reference to FIGS. 9A to 11B.
  • the configuration of the semiconductor laser evaluation apparatus according to this embodiment is the same as that of the first embodiment.
  • FIG. 10 shows a flowchart of an example of the semiconductor laser evaluation method according to the present embodiment.
  • the maximum value of X(n) is obtained from the intersection (X intercept) of the approximate straight line by linear approximation and the X axis in the IL characteristic (dotted line in the figure).
  • the maximum value of this X(n) is set as a provisional threshold current I th ' (FIG. 9B).
  • the approximate straight line at this time (hereinafter referred to as "approximate straight line A") is indicated by a solid line 211 in the figure.
  • the approximate straight line is obtained by linear approximation of 2k A +1 pieces of measurement data from n ⁇ k Ath to n+k Ath to the nth measurement point.
  • the maximum value of X(n) which is the intersection (X-intercept) of this approximate straight line and the X-axis, is set as a temporary threshold current I th '.
  • the approximate straight line at this time is defined as approximate straight line A (steps S21 to S27).
  • an approximate straight line (hereinafter referred to as "approximate straight line B ") is applied by linear approximation.
  • the solid line 212 is determined (FIG. 9C, step S28).
  • This approximate straight line B is obtained by linear approximation of 2k B +1 pieces of measurement data from n B ⁇ k B th to n B +k B th with respect to the n B th measurement point.
  • the intermediate point (n'/ 2nd measurement point) between the origin and the measurement point n' corresponding to I th ' is used as the predetermined measurement point (nBth measurement point).
  • the n'/2nd measurement point the n'/3rd or n'/4th measurement point may be used.
  • a measurement point several points before the measurement point corresponding to I th '(n'-k 0th measurement point) may be used.
  • the current value corresponding to the intersection of the approximate straight line A and the approximate straight line B is determined as the threshold current I th (FIG. 9C, step S29).
  • the semiconductor laser evaluation method when a plurality of maximum values of X-intercepts (X(n)) are obtained, the minimum value among the plurality of maximum values of Let the threshold current I th ' be.
  • the threshold current is The lower value is determined as the threshold current. As a result, the threshold current cannot be evaluated accurately.
  • the threshold current can be accurately evaluated in response to changes in the IL characteristics.
  • semiconductor laser a and semiconductor laser b having different IL characteristics were used, as in the first embodiment.
  • Experimental results for semiconductor laser a and semiconductor laser b are shown in FIGS. 11A and 11B, respectively.
  • FIG. 12 shows an example of the configuration of a computer for executing the semiconductor laser evaluation method according to the embodiment of the present invention.
  • This semiconductor laser evaluation method can be realized by a computer including a CPU (Central Processing Unit) in the calculation unit 13, a storage device (storage unit) 14, and an interface device 18, and a program that controls these hardware resources. .
  • the drive section 11 , the detection section 12 , and the output section 15 are connected to the interface device 18 .
  • the CPU executes the processing in the embodiment of the present invention according to the semiconductor laser evaluation program stored in the storage device 14. In this way, the semiconductor laser evaluation program executes the semiconductor laser evaluation method according to the embodiment of the present invention.
  • the semiconductor laser evaluation device 10 may include a computer inside the device, or may realize at least part of the computer's functions using an external computer. Further, the storage unit 14 may also use a storage medium 14_2 external to the apparatus, and may read and execute a semiconductor laser evaluation program stored in the storage medium 14_2.
  • the storage medium 14_2 includes various magnetic recording media, magneto-optical recording media, CD-ROMs, CD-Rs, and various memories. Furthermore, the semiconductor laser evaluation program may be supplied to the computer via a communication line such as the Internet.
  • the present invention relates to a semiconductor laser evaluation method, apparatus, and program for determining the threshold current of a semiconductor laser, and can be applied to improving the characteristics of a semiconductor laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本発明の半導体レーザ評価方法は、半導体レーザの注入電流と光出力との関係を、X軸に注入電流を表し、Y軸に光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線とX軸との交点を取得し、測定点をシフトさせて得られる交点の極大値の最小値を半導体レーザのしきい値電流に決定する。 これにより、本発明は、半導体レーザのしきい値電流を正確に評価できる半導体レーザ評価方法を提供することができる。

Description

半導体レーザ評価方法、装置およびプログラム
 本発明は、半導体レーザのしきい値電流を評価する、半導体レーザ評価方法、装置およびプログラムに関する。
 半導体レーザの研究開発において、多様な半導体レーザの特性を評価し設計にフィードバックする必要がある。半導体レーザ特性の重要なパラメータとして、レーザ発振が開始する注入電流すなわちしきい値電流がある。通常、しきい値電流は、実験的に半導体レーザに電流を注入したときに得られる光出力の特性(I-L特性)から取得される。従来、しきい値電流の評価には、以下の方法が用いられてきた(例えば、非特許文献1)。
(1)I-L特性において、レーザ発振後の異なる光出力P1、P2それぞれに対応する2つの測定点(I-L特性データ)を通る直線とX軸との交点より、しきい値電流を取得する(以下、「従来法1」という。)。
(2)従来法1で取得されたしきい値電流における光出力より低い光出力P3、P4それぞれに対応する2つの測定点(I-L特性データ)を通る直線と、従来法1における直線との交点より、しきい値電流を取得する(以下、「従来法2」という。)。
(3)I-L特性の各測定点において、微分係数dL/dIを求め、dL/dIのピーク値の半分の値に対応する電流より、しきい値電流を取得する(以下、「従来法3」という。)。
(4)I-L特性の各測定点において、2階微分係数dL/dIを求め、dL/dIのピーク値に対応する電流より、しきい値電流を取得する(以下、「従来法4」という。)。
 また、非特許文献2に、緩和振動周波数を基にしきい値電流を評価する方法が開示されている。
"The Differences Between Threshold Current Calculation Methods," Newport Application Notehttps://www.newport.com.cn/medias/sys_master/images/images/hc9/hd1/9680121757726/AN-12-REV03-Differences-Between-Threshold-Current-Calculations.pdf D. M. Kane and Joshua P. Toomey, "Precision Threshold Current Measurement for Semiconductor Lasers Based on Relaxation Oscillation Frequency," Journal of Lightwave Technology, Vol. 27, No. 15, pp. 2949-2953 (2009).
 しかしながら、上述の従来法では、光出力が大きく異なる複数の半導体レーザを評価する場合や、しきい値近傍でのI-L特性が通常の形態と異なる場合には、同一のアルゴリズムや同一のパラメータを用いてしきい値電流を正確に評価することは困難であった。
 そこで、多様な特性を有する半導体レーザを同一のアルゴリズムや同一のパラメータを用いて一括で評価する場合には、評価後に、しきい値電流が正確に評価されたかを、別途I-L特性のグラフ描画等から確認する必要が生じるという問題があった。
 上述したような課題を解決するために、本発明に係る半導体レーザ評価方法は、半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて得られる前記交点の極大値の最小値を前記半導体レーザのしきい値電流に決定することを特徴とする。
 また、本発明に係る半導体レーザ評価方法は、半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性を取得するステップと、前記電流-光出力特性における所定の測定点について線形近似により近似直線を取得するステップと、前記近似直線と前記X軸との交点を取得するステップと、前記測定点をシフトさせて、前記交点の極大値を取得するステップと、前記極大値の最小値を前記半導体レーザのしきい値電流に決定するステップとを備える。
 また、本発明に係る半導体レーザ評価方法は、半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて前記交点の極大値を取得し、前記X軸の原点と前記極大値の最小値との間での所定の他の測定点について線形近似により他の近似直線を取得し、前記近似直線と前記他の近似直線との交点に対応する電流値を前記半導体レーザのしきい値電流に決定することを特徴とする。
 また、本発明に係る半導体レーザ評価方法は、半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性を取得するステップと、前記電流-光出力特性における所定の測定点について線形近似により近似直線を取得するステップと、前記近似直線と前記X軸との交点を取得するステップと、前記測定点をシフトさせて、前記交点の極大値を取得するステップと、前記X軸の原点と前記極大値の最小値との間の領域における所定の他の測定点について線形近似により他の近似直線を取得するステップと、前記近似直線と前記他の近似直線との交点に対応する電流値を前記半導体レーザのしきい値電流に決定するステップとを備える。
 また、本発明に係る半導体レーザ評価装置は、半導体レーザに注入電流を供給する駆動部と、前記半導体レーザの光出力を検出する検出部と、前記駆動部から出力される前記注入電流と前記検出部から出力される前記光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて得られる前記交点の極大値の最小値を前記半導体レーザのしきい値電流に決定する演算部とを備える。
 また、本発明に係る半導体レーザ評価装置は、半導体レーザに注入電流を供給する駆動部と、前記半導体レーザの光出力を検出する検出部と、前記駆動部から入力される前記注入電流と前記検出部から入力される前記光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて前記交点の極大値を取得し、前記X軸の原点と前記極大値の最小値との間での所定の他の測定点について線形近似により他の近似直線を取得し、前記近似直線と前記他の近似直線との交点に対応する電流値を前記半導体レーザのしきい値電流に決定する演算部とを備える。
 また、本発明に係る半導体レーザ評価プログラムは、半導体レーザのしきい値電流を評価するためにコンピュータに、前記半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて得られる前記交点の極大値の最小値を前記半導体レーザのしきい値電流に決定する処理を実行させる。
 また、本発明に係る半導体レーザ評価プログラムは、半導体レーザのしきい値電流を評価するためにコンピュータに、前記半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて前記交点の極大値を取得し、前記X軸の原点と前記極大値の最小値との間での所定の他の測定点について線形近似により他の近似直線を取得し、前記近似直線と前記他の近似直線との交点に対応する電流値を前記半導体レーザのしきい値電流に決定する処理を実行させる。
 本発明によれば、半導体レーザのしきい値電流を正確に評価できる半導体レーザ評価方法、装置およびプログラムを提供できる。
図1は、本発明の第1の実施の形態に係る半導体レーザ評価装置の構成を示すブロック図である。 図2Aは、本発明の第1の実施の形態に係る半導体レーザ評価方法の概念を説明するための図である。 図2Bは、本発明の第1の実施の形態に係る半導体レーザ評価方法の概念を説明するための図である。 図2Cは、本発明の第1の実施の形態に係る半導体レーザ評価方法の概念を説明するための図である。 図2Dは、本発明の第1の実施の形態に係る半導体レーザ評価方法の概念を説明するための図である。 図2Eは、本発明の第1の実施の形態に係る半導体レーザ評価方法の概念を説明するための図である。 図2Fは、本発明の第1の実施の形態に係る半導体レーザ評価方法の概念を説明するための図である。 図3は、本発明の第1の実施の形態に係る半導体レーザ評価方法を説明するためのフローチャート図である。 図4は、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図5Aは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図5Bは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図5Cは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図6Aは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図6Bは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図7Aは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図7Bは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図7Cは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図8Aは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図8Bは、本発明の第1の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図9Aは、本発明の第2の実施の形態に係る半導体レーザ評価方法の概念を説明するための図である。 図9Bは、本発明の第2の実施の形態に係る半導体レーザ評価方法の概念を説明するための図である。 図9Cは、本発明の第2の実施の形態に係る半導体レーザ評価方法の概念を説明するための図である。 図10は、本発明の第2の実施の形態に係る半導体レーザ評価方法を説明するためのフローチャート図である。 図11Aは、本発明の第2の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図11Bは、本発明の第2の実施の形態に係る半導体レーザ評価方法の効果を説明するため図である。 図12は、本発明の実施の形態におけるコンピュータの構成例を示す図である。
<第1の実施の形態>
 本発明の第1の実施の形態に係る半導体レーザ評価装置、方法およびプログラムについて、図1~図8Bを参照して説明する。
<半導体レーザ評価装置の構成>
 本実施の形態に係る半導体レーザ評価装置10は、図1に示すように、駆動部11と、検出部12と、演算部13と、記憶部14と、出力部(表示部)15とを備える。
 駆動部11は、測定対象である半導体レーザ1に電流を注入する。
 検出部12は、半導体レーザ1からのレーザ光を受光し、光出力を測定する。
 記憶部14は、駆動部11による注入電流値と検出部12による光出力値との関係を電流-光(I-L)特性として記憶する。
 演算部13は、記憶部14よりI-L特性データを読み出して、I-L特性データに基づき、しきい値電流を評価する(後述)。ここで、記憶部14よりI-L特性データを読み出すことなく、測定されたI-L特性データから直接しきい値電流を評価してもよい。
 出力部(表示部)15は、I-L特性データやしきい値電流等を出力(表示)する。
<半導体レーザ評価方法>
 初めに、本実施の形態に係る半導体レーザ評価方法の概念を説明する。
 本実施の形態に係る半導体レーザ評価方法では、X軸とY軸それぞれに半導体レーザの注入電流と半導体レーザの光出力を表すI-L特性を基に、しきい値電流を評価する。
 本実施の形態で想定されるI-L特性において、図2Aに示すように、注入電流の増加に伴い光出力が増加し、注入電流がしきい値電流Ith以上になると光出力が急激に増加する。さらに、注入電流が増加すると光出力は低下する。
 図2B~Eに、本実施の形態でI-L特性を基にしきい値電流Ithを取得する態様の一例を示す。本実施の形態では、I-L特性において、測定点(データ)を注入電流の増加方向に順次シフト(インクリメント)させることにより、しきい値電流Ithを取得する。
 ここで、図中黒丸はn番目の測定点を示す。また、図中矢印は、n番目の測定点について、n-k番目からn+k番目までの2k+1個の測定データを用いて線形近似することにより得られる近似直線であり、先端がX軸との交点(X切片)を示す。
 初めに、測定点がしきい値電流Ithよりも十分低い電流領域でシフトするとき、近似直線の傾きはほぼ零であり、X切片も原点近傍である(図2B)。
 次に、測定点がしきい値電流Ithより低い電流領域で注入電流の増加方向にシフトするとき、近似直線のX切片は正の値となり、原点としきい値電流Ithとの間に位置する(図2C)。
 次に、測定点がしきい値電流Ithより高い電流領域で、I-L特性が線形的に変化する領域でシフトするとき、近似直線のX切片はしきい値電流Ithを示す(図2D)。
 次に、測定点が、さらにしきい値電流Ithより高い電流領域で、I-L特性の線形性が維持される領域でシフトするとき、同様に近似直線のX切片がしきい値電流Ithを示す(図2E)。
 最後に、測定点が、さらに高い注入電流領域で、光出力の増加率すなわちI-L特性の傾きが減少する領域でシフトするとき、近似直線のX切片はしきい値電流Ithより低い値を示す(図2F)。
 このように、I-L特性において測定点を注入電流の増加方向に順次シフト(インクリメント)させるとき、測定点における近似直線とX軸との交点(X切片)はX軸(注入電流)方向に増加し、しきい値電流Ithに達して極大値を示した後、減少する。
 したがって、I-L特性において測定点を注入電流の増加方向に順次シフト(インクリメント)させて、X切片の極大値を抽出することにより、しきい値電流Ithを取得できる。
 ここで、複数のX切片の極大値が抽出される場合には、最初に取得されるX切片の極大値、すなわち複数のX切片の極大値のうち最小値をしきい値電流Ithとすればよい(後述)。
 図3に、本実施の形態に係る半導体レーザ評価方法の一例のフローチャート図を示す。
 I-L特性の測定において、駆動部11が半導体レーザ1に注入電流を供給し、検出部12が半導体レーザ1の光出力を検出する。この駆動部11と検出部12それぞれから出力される注入電流と光出力との関係が、I-L特性として測定される。
 この測定されたI-L特性は、記憶部14に記憶される。
 初めに、演算部13が、記憶部14からI-L特性を取得する(ステップS11)。または、上記の測定されたI-L特性を直接、演算部13が取得してもよい。
 次に、I-L特性データの変数(インデックス)nを、配列初期値のインデックスで初期化する(ステップS12)。ここで、I-L特性データの変数(インデックス)nは、I-L特性データの番号(順番を示す数値)である。また、配列初期値のインデックスは、しきい値電流評価に用いるI-L特性データの最初のデータの番号である。例えば、配列初期値のインデックスが1の場合には、n=1として初期化する。
 次に、I-L特性において、n番目の測定点に対して、n-k番目からn+k番目までの2k+1個の測定データの線形近似により近似直線を取得する(ステップS13)。以下、kを「平均化パラメータ」という。ここで、線形近似には最小二乗法などを用いる。
 次に、近似直線とX軸の交点(X切片)を求め、配列要素X(n)とする(ステップS14)。
 次に、n番目の測定点でのX切片(X(n))と、この測定点の前(n-1番目)の測定点でのX切片(X(n-1))とを比較する(ステップS15)。
 ここで、X(n)がX(n-1)以上のときには、次のデータ(n+1番目のデータ)を選択して(ステップS16)、同様のステップを行う(ステップS13~S15)。
 一方、X(n)がX(n-1)より低い値を示すときに、X(n-1)をしきい値電流に決定して、評価を終了する(ステップS17)。このように、X切片の極大値をしきい値電流に決定する。
 ここで、X(n)がX(n-1)より低い値を示すときに、X(n-1)をしきい値電流に決定する例を示したが、これに限らない。X(n)が、X(n)の前に測定された複数のデータより低い値を示すときに、当該複数のデータのいずれかをしきい値電流に決定してもよい。
 例えば、X(n)がX(n-1)とX(n-2)より低い値を示すときに、すなわちX(n)<X(n-1)かつX(n)<X(n-2)のときに、X(n-1)<X(n-2)であれば極大値となるX(n-2)をしきい値電流に決定してもよい。
 これにより、雑音などの実験誤差の影響を抑制して、正確なしきい値電流を取得できる。
 本実施の形態では、nを順次増加させる例を示したが、nを順次減少させてもよい。この場合、例えば、X(n)とX(n+1)とを比較して、X(n)<X(n+1)のときに、X(n+1)をしきい値電流に決定する。このように、nを変化(シフト)させ、X(n)の極大値を取得すればよい。
 また、本実施の形態に係る半導体レーザ評価方法において、nを順次増加させるときに複数のX切片の極大値が取得される場合には、最初に取得されるX切片の極大値をしきい値電流Ithとする。また、nを順次減少させるときに複数のX切片の極大値が取得される場合には、最後に取得されるX切片の極大値をしきい値電流Ithとする。すなわち、複数のX切片の極大値のうち最小値をしきい値電流Ithに決定する。
 このように、本実施の形態に係る半導体レーザ評価方法では、I-L特性において、所定の測定点について線形近似により取得される近似直線とX軸との交点の極大値の最小値を半導体レーザのしきい値電流に決定する。
<効果>
 本実施の形態に係る半導体レーザ評価方法の効果を、図4~図8Bを参照して説明する。
 図4に、本実施の形態におけるI-L特性(図中点線)とX切片であるX(n)の変化(図中実線)を示す。
 X(n)は注入電流I(n)が低い領域でほぼ零であり、注入電流I(n)が増加すると急激に増加した後、ほぼ一定の値を示す。さらに、注入電流I(n)が増加するとX(n)は減少し負の値を示す。
 このX(n)の変化より、極大値となるX(n)がしきい値電流Ithとして決定される。
 次に、本実施の形態に係る半導体レーザ評価方法と従来法1とを比較する。
 従来法1では、図5Aに示すように、I-L特性(図中点線)においてレーザ発振後の線形領域で測定された2点間を結ぶ直線を延長して(図中実線矢印)、しきい値電流Ithを決定する。
 しかしながら、図5Bに示すように、I-L特性(図中点線)において複数の屈曲(キンク)が生じる場合には、測定された2点間を結ぶ直線を延長しても(図中実線矢印)、正確にしきい値電流を評価することができない。
 一方、本実施の形態に係る半導体レーザ評価方法によれば、図5Cに示すように、X(n)(図中実線)がI-L特性(図中点線)における複数のキンクそれぞれに対応して複数の極大値を示す。これらの極大値のうち、最初に取得される極大値に対応するX(n)、すなわち複数の極大値のうち最小のX(n)をしきい値電流Ithとする。これにより、正確にしきい値電流を評価できる。
 また、従来法1では、それぞれ異なるI-L特性を有する複数の半導体レーザ全てに対して、同一のパラメータでしきい値電流を評価できない場合がある。例えば、所定の2点間よりしきい値電流を評価するとき、複数の半導体レーザ全てのI-L特性について2点の測定データを取得できない場合がある。
 例えば、図6Aに示す場合では、I-L特性(図中点線)162,163では光出力P1、P2それぞれに対応する2点の測定データを取得できるので、この2点間を結ぶ直線を延長して(図中実線矢印)、正確にしきい値電流を評価できる。
 しかしながら、I-L特性(図中点線)161では光出力P2に対応する測定データを取得できず2点の測定データを取得できない。その結果、複数の半導体レーザ全てにおいて、正確にしきい値電流を評価できない。
 一方、本実施の形態に係る半導体レーザ評価方法によれば、図6Bに示すように、複数の半導体のレーザI-L特性(図中点線)161、162、163ごとにX(n)(図中実線)の極大値を取得できる。したがって、X(n)の極大値それぞれを、複数の半導体レーザそれぞれのしきい値電流Ith1、Ith2、Ith3として取得できるので、正確にしきい値電流を評価できる。
 次に、本実施の形態に係る半導体レーザ評価方法と従来法4とを比較する。
 従来法4では、図7Aに示すように、I-L特性(図中点線)において、2階微分係数dL/dI(図中実線)のピーク値よりしきい値電流Ithを決定する。そこで、I-L特性がしきい値電流近傍で急峻に変化する場合には、急峻なdL/dIのピークを得られるので、容易にしきい値電流Ithを決定できる。
 しかしながら、図7Bに示すように、I-L特性(図中点線)がしきい値電流近傍でなだらかに変化する場合には、dL/dI(図中実線)の急峻なピークを得られないので容易にしきい値電流Ithを決定できない。
 一方、本実施の形態に係る半導体レーザ評価方法によれば、図7Cに示すように、X(n)(図中実線)が明確に極大値を示すので、容易に正確なしきい値電流Ithを決定できる。
 次に、本実施の形態に係る半導体レーザ評価方法により得られた実験結果を、図8A、Bを参照して説明する。
 評価対象である半導体レーザには、異なるI-L特性を有する半導体レーザaと半導体レーザbとを用いた。図8A、Bそれぞれに、半導体レーザaと半導体レーザbについての実験結果(I-L特性)を示す。ここで、平均化パラメータkを5として実験(評価)を行った。
 半導体レーザaのI-L特性(図中点線)について評価を行った結果、図8Aに示すように、n=17(注入電流:1.7mAに相当)でX(n)が極大値を示し、しきい値電流Ithが0.88mAで得られた。このときの近似直線を図中実線171で示す。
 また、半導体レーザbのI-L特性(図中点線)について評価を行った結果、図8Bに示すように、n=26(注入電流:2.6mAに相当)でX(n)が極大値を示し、しきい値電流Ithが1.60mAで得られた。このときの近似直線を図中実線172で示す。
<第2の実施の形態>
 本発明の第2の実施の形態に係る半導体レーザ評価装置、方法およびプログラムについて、図9A~図11Bを参照して説明する。本実施の形態に係る半導体レーザ評価装置の構成は、第1の実施の形態と同様である。
<半導体レーザ評価方法>
 図9A~Cに、本実施の形態に係る半導体レーザ評価方法の概念を示す。また、図10に、本実施の形態に係る半導体レーザ評価方法の一例のフローチャート図を示す。
 本実施の形態では、図9Aに示すように、I-L特性においてしきい値近傍での光出力の変化がなだらかである場合を想定する。
 初めに、第1の実施の形態と同様に、I-L特性(図中点線)において線形近似による近似直線とX軸の交点(X切片)よりX(n)の極大値を取得する。このX(n)の極大値を、仮のしきい値電流Ith’とする(図9B)。このときの近似直線(以下、「近似直線A」という。)を、図中実線211で示す。
 詳細には、I-L特性において、近似直線は、n番目の測定点に対して、n-k番目からn+k番目までの2k+1個の測定データの線形近似により得られる。この近似直線とX軸の交点(X切片)であるX(n)の極大値を、仮のしきい値電流Ith’とする。このときの近似直線を、近似直線Aとする(ステップS21~S27)。
 次に、I-L特性の原点からIth’までの領域における所定の測定点(n番目の測定点)について、線形近似により近似直線(以下、「近似直線B」という。図中実線212)を決定する(図9C、ステップS28)。この近似直線Bは、n番目の測定点に対して、n-k番目からn+k番目までの2k+1個の測定データの線形近似により得られる。
 ここで、所定の測定点(n番目の測定点)に、原点とIth’に対応する測定点n’との中間点(n’/2番目の測定点)を用いる。また、n’/2番目の測定点以外でも、n’/3番目やn’/4番目の測定点を用いてもよい。また、Ith’に対応する測定点の数個前の測定点(n’-k番目の測定点)を用いてもよい。
 最後に、近似直線Aと近似直線Bの交点(図中黒丸)に対応する電流値を、しきい値電流Ithに決定する(図9C、ステップS29)。
 また、本実施の形態に係る半導体レーザ評価方法において、複数のX切片(X(n))の極大値が取得される場合には、複数のX(n)の極大値のうち最小値を仮のしきい値電流Ith’とする。
<効果>
 半導体レーザのI-L特性において、半導体レーザからの自然放出光が非常に強いため、しきい値近傍での光出力の変化がなだらかである場合がある。また、測定系の受光器におけるノイズや暗電流等によって、しきい値以下の電流領域においても光が検出される場合がある。
 このようなI-L特性について、従来法および第1の実施の形態に係る半導体レーザ評価方法によりしきい値電流を評価する場合、I-L特性の変化に対応する実際のしきい値電流よりも低い値がしきい値電流として決定される。その結果、正確にしきい値電流を評価できない。
 本実施の形態に係る半導体レーザ評価方法によれば、上述の通り、I-L特性の変化に対応させて正確にしきい値電流を評価できる。
 次に、本実施の形態に係る半導体レーザ評価方法により得られた実験結果を、図11A、Bを参照して説明する。
 評価対象である半導体レーザには、第1の実施の形態と同様に、異なるI-L特性を有する半導体レーザaと半導体レーザbとを用いた。図11A、Bそれぞれに、半導体レーザaと半導体レーザbについての実験結果を示す。
 半導体レーザaのI-L特性(図中点線)について平均化パラメータkを5として評価を行った結果、図11Aに示すように、n=17(注入電流:1.7mAに相当)でX(n)が極大値を示し、仮のしきい値電流Ith’が0.88mAで得られた。このときの近似直線Aを図中実線221で示す。
 また、原点と仮のしきい値電流Ith’に対応する測定点との中間の測定点(n番目の測定点、n=5)について、k=5として線形近似して近似直線B(図中実線222)が得られた。
 上述の近似直線Aと近似直線Bの交点より、半導体レーザaについて、しきい値電流Ithが0.98mAで得られた。
 次に、半導体レーザbのI-L特性(図中点線)について平均化パラメータkを5として評価を行った結果、図11Bに示すように、n=26(注入電流:2.6mAに相当)でX(n)が極大値を示し、仮のしきい値電流Ith’が1.60mAで得られた。このときの近似直線Aを図中実線223で示す。
 また、原点と仮のしきい値電流Ith’に対応する測定点との中間の測定点(n番目の測定点、n=9)について、k=5として線形近似して近似直線B(図中実線224)が得られた。
 上述の近似直線Aと近似直線Bの交点より、半導体レーザbについて、しきい値電流Ithが1.74mAで得られた。
 図12に、本発明の実施の形態に係る半導体レーザ評価方法を実行するためのコンピュータの構成例を示す。この半導体レーザ評価方法は、演算部13におけるCPU(Central Processing Unit)、記憶装置(記憶部)14およびインタフェース装置18を備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。ここで、インタフェース装置18に、駆動部11と、検出部12と、出力部15が接続される。CPUは、記憶装置14に格納された半導体レーザ評価プログラムに従って本発明の実施の形態における処理を実行する。このように、半導体レーザ評価プログラムは、本発明の実施の形態に係る半導体レーザ評価方法を実行させる。
 本発明の実施の形態に係る半導体レーザ評価装置10では、コンピュータを装置内部に備えてもよいし、コンピュータの機能の少なくとも1部を、外部コンピュータを用いて実現してもよい。また、記憶部14も装置外部の記憶媒体14_2を用いてもよく、記憶媒体14_2に格納された半導体レーザ評価プログラムを読み出して実行してもよい。記憶媒体14_2には、各種磁気記録媒体、光磁気記録媒体、CD-ROM、CD-R、各種メモリを含む。また、半導体レーザ評価プログラムはインターネットなどの通信回線を介してコンピュータに供給されてもよい。
 本発明の実施の形態では、半導体レーザ評価方法、装置およびプログラムにおいて、アルゴリズム、パラメータ、各構成部の構造等の一例を示したが、これに限らない。半導体レーザ評価方法、装置およびプログラムの機能を発揮し効果を奏するものであればよい。
 本発明は、半導体レーザのしきい値電流を半導体レーザ評価方法、装置およびプログラムに関するものであり、半導体レーザの特性の向上に適用することができる。
1 半導体レーザ
10 半導体レーザ評価装置
11 駆動部
12 検出部
13 演算部

Claims (8)

  1.  半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて得られる前記交点の極大値の最小値を前記半導体レーザのしきい値電流に決定する半導体レーザ評価方法。
  2.  半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性を取得するステップと、
     前記電流-光出力特性における所定の測定点について線形近似により近似直線を取得するステップと、
     前記近似直線と前記X軸との交点を取得するステップと、
     前記測定点をシフトさせて、前記交点の極大値を取得するステップと、
     前記極大値の最小値を前記半導体レーザのしきい値電流に決定するステップと
     を備える半導体レーザ評価方法。
  3.  半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて前記交点の極大値を取得し、前記X軸の原点と前記極大値の最小値との間での所定の他の測定点について線形近似により他の近似直線を取得し、前記近似直線と前記他の近似直線との交点に対応する電流値を前記半導体レーザのしきい値電流に決定する半導体レーザ評価方法。
  4.  半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性を取得するステップと、
     前記電流-光出力特性における所定の測定点について線形近似により近似直線を取得するステップと、
     前記近似直線と前記X軸との交点を取得するステップと、
     前記測定点をシフトさせて、前記交点の極大値を取得するステップと、
     前記X軸の原点と前記極大値の最小値との間の領域における所定の他の測定点について線形近似により他の近似直線を取得するステップと、
     前記近似直線と前記他の近似直線との交点に対応する電流値を前記半導体レーザのしきい値電流に決定するステップと
     を備える半導体レーザ評価方法。
  5.  半導体レーザに注入電流を供給する駆動部と、
     前記半導体レーザの光出力を検出する検出部と、
     前記駆動部から出力される前記注入電流と前記検出部から出力される前記光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて得られる前記交点の極大値の最小値を前記半導体レーザのしきい値電流に決定する演算部と
     を備える半導体レーザ評価装置。
  6.  半導体レーザに注入電流を供給する駆動部と、
     前記半導体レーザの光出力を検出する検出部と、
     前記駆動部から入力される前記注入電流と前記検出部から入力される前記光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて前記交点の極大値を取得し、前記X軸の原点と前記極大値の最小値との間での所定の他の測定点について線形近似により他の近似直線を取得し、前記近似直線と前記他の近似直線との交点に対応する電流値を前記半導体レーザのしきい値電流に決定する演算部と
     を備える半導体レーザ評価装置。
  7.  半導体レーザのしきい値電流を評価するためにコンピュータに、
     前記半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて得られる前記交点の極大値の最小値を前記半導体レーザのしきい値電流に決定する処理を実行させるための半導体レーザ評価プログラム。
  8.  半導体レーザのしきい値電流を評価するためにコンピュータに、
     前記半導体レーザの注入電流と前記半導体レーザの光出力との関係を、X軸に前記注入電流を表し、Y軸に前記光出力を表す電流-光出力特性において、所定の測定点について線形近似により取得される近似直線と前記X軸との交点を取得し、前記測定点をシフトさせて前記交点の極大値を取得し、前記X軸の原点と前記極大値の最小値との間での所定の他の測定点について線形近似により他の近似直線を取得し、前記近似直線と前記他の近似直線との交点に対応する電流値を前記半導体レーザのしきい値電流に決定する処理を実行させるための半導体レーザ評価プログラム。
PCT/JP2022/016991 2022-04-01 2022-04-01 半導体レーザ評価方法、装置およびプログラム WO2023188427A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016991 WO2023188427A1 (ja) 2022-04-01 2022-04-01 半導体レーザ評価方法、装置およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016991 WO2023188427A1 (ja) 2022-04-01 2022-04-01 半導体レーザ評価方法、装置およびプログラム

Publications (1)

Publication Number Publication Date
WO2023188427A1 true WO2023188427A1 (ja) 2023-10-05

Family

ID=88200561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016991 WO2023188427A1 (ja) 2022-04-01 2022-04-01 半導体レーザ評価方法、装置およびプログラム

Country Status (1)

Country Link
WO (1) WO2023188427A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070030176A1 (en) * 1999-12-24 2007-02-08 Ceyx Technologies, Inc. Digital control system for an electro-optical device
JP2012114193A (ja) * 2010-11-24 2012-06-14 Asahi Kasei Electronics Co Ltd 発光素子駆動方法
CN111970052A (zh) * 2020-08-07 2020-11-20 无锡市德科立光电子技术有限公司 基于计算的光模块光功率调试方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070030176A1 (en) * 1999-12-24 2007-02-08 Ceyx Technologies, Inc. Digital control system for an electro-optical device
JP2012114193A (ja) * 2010-11-24 2012-06-14 Asahi Kasei Electronics Co Ltd 発光素子駆動方法
CN111970052A (zh) * 2020-08-07 2020-11-20 无锡市德科立光电子技术有限公司 基于计算的光模块光功率调试方法

Similar Documents

Publication Publication Date Title
Shang et al. Post-training quantization on diffusion models
CN113537501B (zh) 电磁串扰的标定和缓释方法、装置及电子设备
Kaleta et al. Small-time sharp bounds for kernels of convolution semigroups
Verschaffelt et al. Random number generator based on an integrated laser with on-chip optical feedback
WO2023188427A1 (ja) 半導体レーザ評価方法、装置およびプログラム
CN114777656B (zh) 基于神经网络的光纤陀螺的筛环***、方法及存储介质
CN110705137B (zh) 一种应力幅值和均值的确定方法以及装置
CN114579348A (zh) 一种用于光学相干计算装置的纠错方法
Dionne et al. Hidden Markov regimes in operational loss data: Application to the recent financial crisis
Amat et al. A variational approach to implicit ODEs and differential inclusions
US8195433B2 (en) Optimum value search apparatus and method, recording medium, and computer program product
Osnes et al. A study of some finite difference schemes for a unidirectional stochastic transport equation
CN114462307B (zh) 一种结构可靠性分析方法、装置、电子设备以及存储介质
Song et al. Extraction of double-peak Brillouin frequency shift based on ANN for nonuniform strain within BOTDR spatial resolution
KR102512544B1 (ko) 배터리 등가회로 생성방법 및 그 장치
Stark et al. Positional dependence of FDTD mode detection in photonic crystal systems
Aceves et al. Spatio-temporal dynamics in the mixed fractional nonlinear Schrödinger equation
CN117009740A (zh) 一种布里渊传感高精度数据解调方法
WO2023119806A1 (ja) 判定装置、判定方法、およびプログラム
CN117010520A (zh) 读取腔参数的测试方法、装置以及量子计算机
Borchardt et al. Tracking phase singularities in optical fields
JP6985816B2 (ja) 磁化曲線補間方法および磁界解析システム
CN116957085A (zh) 两比特量子逻辑门的误差测量方法、装置及量子计算机
JP5768450B2 (ja) 騒音推定装置及び騒音推定プログラム
Blanchard et al. Kernel regression, minimax rates and effective dimensionality: Beyond the regular case

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935562

Country of ref document: EP

Kind code of ref document: A1