WO2023185656A1 - 一种信息传输方法和装置 - Google Patents

一种信息传输方法和装置 Download PDF

Info

Publication number
WO2023185656A1
WO2023185656A1 PCT/CN2023/083513 CN2023083513W WO2023185656A1 WO 2023185656 A1 WO2023185656 A1 WO 2023185656A1 CN 2023083513 W CN2023083513 W CN 2023083513W WO 2023185656 A1 WO2023185656 A1 WO 2023185656A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
power
agc
sensing
ppdu
Prior art date
Application number
PCT/CN2023/083513
Other languages
English (en)
French (fr)
Inventor
杜瑞
阮卫
狐梦实
娜仁格日勒
韩霄
孙黎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185656A1 publication Critical patent/WO2023185656A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communication technology, and in particular, to an information transmission method and device.
  • Wi-Fi wireless fidelity
  • CSI channel state information
  • WLAN wireless local area network
  • the receiving end and the transmitting end can realize the sensing function by observing multiple physical layer protocol data units (PPDU).
  • PPDU physical layer protocol data units
  • the receiving end can receive multiple PPDUs from the sending end within a period of time, perform channel estimation on the multiple PPDUs, and obtain CSI respectively.
  • the receiving end can send the obtained CSI to the sending end.
  • the transmitting end can process the CSI within this period of time to obtain the channel changes during this period of time.
  • the receiving end can process the CSI within this period of time to obtain the channel changes within this period of time.
  • the sender or receiver can determine the environment of the channel and obtain sensing results.
  • This application provides an information transmission method and device to improve sensing performance.
  • the first aspect provides an information transmission method.
  • the method may be executed by the first device, or by a chip similar to the function of the first device.
  • the first device receives a physical layer protocol data unit (PPDU) from the second device.
  • PPDU is used for perception measurement.
  • the first device sends first information to the second device, and the first information indicates automatic gain control (automatic gain control, AGC) information.
  • AGC automatic gain control
  • AGC automatic gain control
  • the first device can feed back the AGC level when receiving PPDU to the second device. That is, the first device can feed back the adjustment of the sensing measurement link gain to the second device, so that the second device can sense when sensing. Being able to determine whether channel changes are caused by the adjustment of the sensing measurement link gain or caused by the channel environment can improve the accuracy of sensing results.
  • the first information includes one or more of the following: gear information of a low noise amplifier (LNA), gear level of a variable gain amplifier (bariable gain amplifier, VGA) information, AGC saturation information or AGC beating information.
  • LNA low noise amplifier
  • VGA variable gain amplifier
  • AGC saturation information or AGC beating information.
  • the AGC saturation information may include one of AGC saturation and AGC unsaturation.
  • the first information may not carry the AGC saturation information.
  • AGC saturation can be understood as excessive AGC adjustment.
  • the AGC bounce information may include one of AGC bounce and AGC non-bounce.
  • the first information does not need to carry the AGC beating information.
  • AGC jump can be understood as a change in the AGC gear.
  • the first device can feed back AGC to the second device, such as LNA gear information, VGA gear information, AGC saturation information or AGC beat information, so that the second device can determine whether the gain on the first device side is Some adjustments have been made.
  • the first information is carried in a perceptual measurement report frame or a channel state information (channel state information, CSI) frame.
  • the first information may be carried in a perceptual measurement report field in the perceptual measurement report frame.
  • the first information may be carried in a CSI report field or a CSI report control field in the CSI frame.
  • the first device can carry the AGC in the CSI frame and send it to the second device, so that the second device can determine the processing method of the CSI frame based on the AGC in the CSI frame. For example, if the second device determines that the first information includes AGC saturation, that is, AGC saturation occurs when the first device receives the PPDU, the second device may choose not to use the CSI included in the CSI frame for sensing.
  • AGC saturation that is, AGC saturation occurs when the first device receives the PPDU
  • the first information is carried in one of the following: a directional multi-gigabit (DMG) sensing report element, a DMG channel measurement feedback element, or an enhanced directional multi-gigabit (enhanced directional multi-gigabit, EDMG) channel measurement feedback element.
  • DMG directional multi-gigabit
  • EDMG enhanced directional multi-gigabit
  • the first device can also send AGC to the second device in high-frequency scenarios to enhance sensing performance.
  • the first information also includes one or more of an identifier of a DMG sensing instance, an identifier of a DMG sensing group, and an identifier of a DMG measurement program.
  • a DMG sensing group contains one or more DMG sensing instances
  • a DMG measurement program contains one or more DMG sensing groups
  • a DMG sensing instance represents one sensing.
  • the AGC In one possible situation, if the AGC is adjusted in each DMG sensing instance, the AGC corresponds to each DMG sensing instance. In another possible situation, if the AGC remains stable in the same sensing group but is adjusted in different DMG groups, the AGC needs to correspond to each DMG group. In another possible situation, if the AGC remains stable within the same DMG measurement program and is adjusted in different DMG measurement programs, the AGC needs to correspond to the DMG measurement program.
  • the AGC may correspond to a DMG sensing instance, a DMG sensing group or a DMG measurement program.
  • the first device can self-calibrate the gear position of the AGC, thereby obtaining the error information of the AGC.
  • the first device may send AGC error information to the second device.
  • the first device can send AGC error information to the second device, so that when the second device obtains the AGC when the first device receives the PPDU, it can compensate the AGC according to the AGC error information to improve sensing performance.
  • the second aspect provides an information transmission method.
  • the method may be executed by the second device, or by a chip similar to the function of the second device.
  • the second device sends a PPDU to the first device.
  • PPDU is used for perception measurement.
  • the second device receives first information from the first device, the first information indicating AGC.
  • AGC is used to indicate the AGC gear when receiving PPDU.
  • the second device can obtain the AGC level when the first device receives the PPDU, that is, the second device can obtain the adjustment of the sensing measurement link gain, so that the second device can determine whether the channel change is
  • the impact of the adjustment of the sensing measurement link gain is still due to the impact of the channel environment, which can improve the accuracy of the sensing results.
  • the first information includes one or more of the following: LNA gear information, VGA gear information, AGC saturation information, or AGC jitter information.
  • the AGC saturation information may include one of AGC saturation and AGC unsaturation.
  • the first information may not carry the AGC saturation information. It should be noted that AGC saturation can be understood as excessive AGC adjustment.
  • the AGC bounce information may include one of AGC bounce and AGC non-bounce.
  • the first information does not need to carry the AGC beating information. It should be noted that AGC jump can be understood as a change in the AGC gear.
  • the second device can obtain the AGC of the first device, such as LNA gear information, VGA gear information, AGC saturation information or AGC bounce information, thereby determining whether the gain on the first device side has been adjusted.
  • the AGC of the first device such as LNA gear information, VGA gear information, AGC saturation information or AGC bounce information
  • the first information is carried in a perceptual measurement report frame or a CSI frame.
  • the first information may be carried in a perceptual measurement report field in the perceptual measurement report frame.
  • the first information may be carried in a CSI report field or a CSI report control field in the CSI frame.
  • the first device can carry the AGC in the CSI frame and send it to the second device, so that the second device can determine the processing method of the CSI frame based on the AGC in the CSI frame. For example, if the second device determines that the first information includes AGC saturation, that is, AGC saturation occurs when the first device receives the PPDU, the second device may choose not to use the CSI included in the CSI frame for sensing.
  • AGC saturation that is, AGC saturation occurs when the first device receives the PPDU
  • the first information is carried in one of the following: a DMG sensing report element, a DMG channel measurement feedback element, or an EDMG channel measurement feedback element.
  • the second device can also obtain AGC in high-frequency scenarios to enhance sensing performance.
  • the first information also includes one or more of an identifier of a DMG sensing instance, an identifier of a DMG sensing group, and an identifier of a DMG measurement program.
  • a DMG sensing group contains one or more DMG sensing instances
  • a DMG measurement program contains one or more DMG sensing groups
  • a DMG sensing instance represents one sensing.
  • the AGC In one possible situation, if the AGC is adjusted in each DMG sensing instance, the AGC corresponds to each DMG sensing instance. In another possible situation, if the AGC remains stable in the same sensing group but is adjusted in different DMG groups, the AGC needs to correspond to each DMG group. In another possible situation, if the AGC remains stable within the same DMG measurement program and is adjusted in different DMG measurement programs, the AGC needs to correspond to the DMG measurement program.
  • the AGC of the first device can correspond to a DMG sensing instance, a DMG sensing group or a DG measurement program.
  • the second device may receive AGC error information from the first device.
  • the second device can obtain the AGC error information of the first device, so that when the second device obtains the AGC when the first device receives the PPDU, it can compensate the AGC according to the AGC error information to improve the perception performance. .
  • the third aspect provides an information transmission method.
  • the method may be executed by the first device, or by a chip similar to the function of the first device.
  • the first device sends first power indication information and second power indication information to the second device.
  • the first power indication information and the second power indication information are used to indicate the power of the same PPDU, and the PPDU is used for perception measurement.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • the first device can indicate the power of the same PPDU to the second device, which are the first power and the second power respectively, so that the second device can send the PPDU or generate CSI based on the first power and the second power, thereby reducing the Due to the impact of the fluctuation of the actual transmission power of PPDU on the sensing results, the sensing performance can be improved.
  • the first power is the power of the PPDU to be processed by the digital-to-analog converter
  • the second power is the actual transmission power of the PPDU.
  • the first device can send the power of the PPDU to be processed by the digital-to-analog converter to the second device, that is, the power of the PPDU in the digital domain, and the actual transmission power of the PPDU, so that the second device can determine the power adjustment of the PPDU.
  • the second device can compensate the CSI according to the power adjustment of the PPDU during sensing, which can improve sensing performance.
  • the first power indication information is carried in a null data packet announcement frame (null data packet auunouncement, NDPA) or in an EDMG transmission power element.
  • NDPA null data packet auunouncement
  • the first device can send the first power indication information to the second device in the NDPA or EDMG transmission power element, so that the second device can obtain the power of the PPDU to be processed by the digital-to-analog converter.
  • the first power is the power of the second information
  • the second power is the power of the third information.
  • the second information includes fields used for perceptual measurement in the PPDU
  • the third information includes other fields in the PPDU except the fields used for perceptual measurement.
  • the first device sends the first power of the second information and the second power of the third information to the second device respectively, so that when the second device sends the PPDU, the second information and the third information are transmitted in different ways. Power transmission to reduce the impact of fluctuations in the actual transmission power of PPDU on the sensing results and improve sensing performance.
  • the second power indication information is a target received signal strength indicator (received signal strength indicator, RSSI).
  • RSSI received signal strength indicator
  • the first device can indicate to the second device that the power of the second information is a fixed value, and indicate to the second device the expected reception power of the third information, so that the second device can use different powers when sending the PPDU. Send the second message and the third message.
  • the actual transmission power of the field used for perception measurement is a fixed value, that is, the actual transmission power of the field used for perception measurement will not fluctuate, so the perception performance can be improved.
  • the power of the non-perceptually measured field is determined according to the RSSI, the decoding rate of the non-perceptually measured field by the first device is improved.
  • the second information includes HE-STF.
  • the first device can adjust the AGC according to the HE-STF when receiving the PPDU, when the HE-STF is included in the field used for perception measurement, the adjustment of the AGC can be consistent with the field used for perception measurement to improve The reception success rate of fields used for perception measurements.
  • the first power indication information is carried in station (station, STA) information, trigger frame or beam refinement protocol (beam refinement protocol, BRP) frame.
  • station station, STA
  • BRP beam refinement protocol
  • the fourth aspect provides an information transmission method.
  • the method may be executed by the second device or a chip with functions similar to the second device.
  • the second device receives first power indication information and second power indication information from the first device.
  • the first power indication information and the second power indication information are used to indicate the power of the same PPDU, and the PPDU is used for perception measurement.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • the second device can obtain the power of the same PPDU, which are the first power and the second power respectively. In this way, the second device can send the PPDU or generate CSI based on the first power and the second power, thereby reducing the actual power of the PPDU.
  • the impact of transmission power jumps on the sensing results can improve sensing performance.
  • the first power is the power of the PPDU to be processed by the digital-to-analog converter
  • the second power is the actual transmission power of the PPDU.
  • the second device can obtain the power of the PPDU to be processed by the digital-to-analog converter, that is, the power of the PPDU in the digital domain, and the actual transmission power of the PPDU, so as to determine the power adjustment of the PPDU, so that the second device can During sensing, CSI can be compensated according to the power adjustment of PPDU, which can improve sensing performance.
  • the first power indication information is carried in an NDPA or EDMG transmission power element.
  • the second device sends the second information according to the first power.
  • the second information includes fields in the PPDU used for perception measurement.
  • the second device sends third information according to the second power.
  • the third information includes other fields in the PPDU except fields used for perception measurement.
  • the second device can obtain the first power of the second information and the second power of the third information, so that when sending the PPDU, the second device sends the second information and the third information with different powers. Reduce the impact of fluctuations in the actual transmit power of PPDU on sensing results and improve sensing performance.
  • the second power indication information is target RSSI.
  • the first power indicated by the first power indication information is a fixed value.
  • the first device can indicate to the second device that the power of the second information is a fixed value, and indicate to the second device the expected reception power of the third information, so that the second device can use different powers when sending the PPDU. Send the second message and the third message.
  • the actual transmission power of the field used for perception measurement is a fixed value, that is, the actual transmission power of the field used for perception measurement will not fluctuate, so the perception performance can be improved.
  • the power of the non-perceptually measured field is determined according to the RSSI, the decoding rate of the non-perceptually measured field by the first device is improved.
  • the second information includes HE-STF.
  • the first device can adjust the AGC according to the HE-STF when receiving the PPDU, when the HE-STF is included in the field used for perception measurement, the adjustment of the AGC can be consistent with the field used for perception measurement to improve The reception success rate of fields used for perception measurements.
  • the first power indication information is carried in STA information, a trigger frame or a beam refinement protocol BRP frame.
  • a communication device including: a transceiver unit and a processing unit.
  • the transceiver unit is used to receive the PPDU from the second device. Among them, PPDU is used for perception measurement.
  • a processing unit configured to generate first information, where the first information indicates AGC. Among them, AGC is used to indicate the AGC gear when receiving PPDU.
  • the transceiver unit is also used to send the first information to the second device.
  • the first information includes one or more of the following: LNA gear information, VGA gear information, AGC saturation information, or AGC jitter information.
  • the AGC saturation information may include one of AGC saturation and AGC unsaturation.
  • the first information may not carry the AGC saturation information.
  • AGC saturation can be understood as excessive AGC adjustment.
  • the AGC bounce information may include one of AGC bounce and AGC non-bounce.
  • the first information does not need to carry the AGC beating information. It should be noted that AGC jump can be understood as a change in the AGC gear.
  • the first information is carried in a perceptual measurement report field or a CSI frame.
  • the first information may be carried in a perceptual measurement report field in the perceptual measurement report frame.
  • the first information may be carried in a CSI report field or a CSI report control field in the CSI frame.
  • the first information is carried in one of the following: a DMG sensing report element, a DMG channel measurement feedback element, or an EDMG channel measurement feedback element.
  • the first information also includes one or more of an identifier of a DMG sensing instance, an identifier of a DMG sensing group, and an identifier of a DMG measurement program.
  • a DMG sensing group contains one or more DMG sensing instances
  • a DMG measurement program contains one or more DMG sensing groups
  • a DMG sensing instance represents one sensing.
  • the AGC In one possible situation, if the AGC is adjusted in each DMG sensing instance, the AGC corresponds to each DMG sensing instance. In another possible situation, if the AGC remains stable in the same sensing group but is adjusted in different DMG groups, the AGC needs to correspond to each DMG group. In another possible situation, if the AGC remains stable within the same DMG measurement program and is adjusted in different DMG measurement programs, the AGC needs to correspond to the DMG measurement program.
  • the processing unit is also used to self-calibrate the gear position of the AGC and obtain the error information of the AGC.
  • the transceiver unit is also used to send AGC error information to the second device.
  • a communication device including: a processing unit and a transceiver unit.
  • Processing unit used to generate PPDU.
  • PPDU is used for perception measurement.
  • the transceiver unit is used to send the PPDU to the first device.
  • the transceiver unit is also configured to receive first information from the first device, where the first information indicates AGC.
  • AGC is used to indicate the AGC gear when receiving PPDU.
  • the first information includes one or more of the following: LNA gear information, VGA gear information, AGC saturation information, or AGC jitter information.
  • the AGC saturation information may include one of AGC saturation and AGC unsaturation.
  • the first information may not carry the AGC saturation information. It should be noted that AGC saturation can be understood as excessive AGC adjustment.
  • the AGC bounce information may include one of AGC bounce and AGC non-bounce.
  • the first information does not need to carry the AGC beating information. It should be noted that AGC jump can be understood as a change in the AGC gear.
  • the first information is carried in a perceptual measurement report field or a CSI frame.
  • the An information may be carried in the perceptual measurement report field in the perceptual measurement report frame.
  • the first information may be carried in a CSI report field or a CSI report control field in the CSI frame.
  • the first information is carried in one of the following: a DMG sensing report element, a DMG channel measurement feedback element, or an EDMG channel measurement feedback element.
  • the first information also includes one or more of an identifier of a DMG sensing instance, an identifier of a DMG sensing group, and an identifier of a DMG measurement program.
  • a DMG sensing group contains one or more DMG sensing instances
  • a DMG measurement program contains one or more DMG sensing groups
  • a DMG sensing instance represents one sensing.
  • the AGC In one possible situation, if the AGC is adjusted in each DMG sensing instance, the AGC corresponds to each DMG sensing instance. In another possible situation, if the AGC remains stable in the same sensing group but is adjusted in different DMG groups, the AGC needs to correspond to each DMG group. In another possible situation, if the AGC remains stable within the same DMG measurement program and is adjusted in different DMG measurement programs, the AGC needs to correspond to the DMG measurement program.
  • the transceiver unit is also configured to receive AGC error information from the first device.
  • a communication device including: a processing unit and a transceiver unit.
  • a processing unit configured to generate first power indication information and second power indication information.
  • a transceiver unit configured to send first power indication information and second power indication information to the second device.
  • the first power indication information and the second power indication information are used to indicate the power of the same PPDU, and the PPDU is used for perception measurement.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • the first power is the power of the PPDU to be processed by the digital-to-analog converter
  • the second power is the actual transmission power of the PPDU.
  • the first power indication information is carried in NDPA or EDMG transmission power element.
  • the first power is the power of the second information
  • the second power is the power of the third information.
  • the second information includes fields used for perceptual measurement in the PPDU
  • the third information includes other fields in the PPDU except the fields used for perceptual measurement.
  • the second power indication information is target RSSI.
  • the first power indicated by the first power indication information is a fixed value.
  • the second information includes HE-STF.
  • the first power indication information is carried in STA information, a trigger frame or a BRP frame.
  • a communication device including: a processing unit and a transceiver unit.
  • a transceiver unit configured to receive first power indication information and second power indication information from the first device, where the first power indication information and the second power indication information are used to indicate the power of the same PPDU, and the PPDU is used for perception measurement.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • a processing unit configured to generate CSI or PPDU according to the first power and the second power.
  • the first power is the power of the PPDU to be processed by the digital-to-analog converter
  • the second power is the actual transmission power of the PPDU.
  • the first power indication information is carried in the NDPA or EDMG transmission power element middle.
  • the transceiver unit is also configured to send the second information according to the first power.
  • the second information includes fields in the PPDU used for perception measurement.
  • the transceiver unit is also configured to send the third information according to the second power.
  • the third information includes other fields in the PPDU except fields used for perception measurement.
  • the second power indication information is target RSSI.
  • the first power indicated by the first power indication information is a fixed value.
  • the second information includes HE-STF.
  • the first power indication information is carried in STA information, a trigger frame or a beam refinement protocol BRP frame.
  • the present application provides a communication device, including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to execute computer programs or instructions to perform the above first to fourth aspects.
  • a communication device including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to execute computer programs or instructions to perform the above first to fourth aspects.
  • the memory may be located within the device or external to the device.
  • the number of processors is one or more.
  • the present application provides a communication device, including: a processor and an interface circuit, the interface circuit is used to communicate with other devices, and the processor is used for each implementation method of the first to fourth aspects.
  • a communication device in an eleventh aspect, includes logic circuits and input and output interfaces.
  • the input and output interface is used to input PPDU from the second device.
  • PPDU is used for perception measurement.
  • AGC is used to indicate the AGC gear when receiving PPDU.
  • the input and output interface is also used to output the first information to the second device.
  • logic circuitry is used to generate the PPDU.
  • PPDU is used for perception measurement.
  • the input and output interface is used to output the PPDU to the first device.
  • the input and output interface is also used to input first information from the first device, where the first information indicates AGC.
  • AGC is used to indicate the AGC gear when receiving PPDU.
  • a logic circuit is used to generate first power indication information and second power indication information.
  • the input and output interface is used to output first power indication information and second power indication information to the second device.
  • the first power indication information and the second power indication information are used to indicate the power of the same PPDU, and the PPDU is used for perception measurement.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • the input and output interface is used to input first power indication information and second power indication information from the first device.
  • the first power indication information and the second power indication information are used to indicate the power of the same PPDU.
  • the PPDU for perceptual measurements.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • Logic circuit configured to generate CSI or PPDU according to the first power and the second power.
  • the present application provides a communication system, including: a communication device for executing the implementation methods of the first aspect and a communication device for executing the implementation methods of the second aspect.
  • the present application provides a communication system, including: a communication device for executing each implementation method of the above third aspect and a communication device for executing each implementation method of the above fourth aspect.
  • the present application also provides a chip system, including: a processor, configured to execute each implementation method of the above-mentioned first to fourth aspects.
  • the present application also provides a computing program product, which includes computer execution instructions.
  • a computing program product which includes computer execution instructions.
  • the computer execution instructions When the computer execution instructions are run on a computer, each implementation method of the above first to fourth aspects is executed.
  • this application also provides a computer-readable storage medium, in which the computer-readable storage medium stores A computer program or instruction, when the instruction is run on a computer, implements each implementation method of the above first to fourth aspects.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is one of the exemplary flow charts of a signal transmission method provided by the implementation of this application;
  • Figure 3A is one of the exemplary flow charts of a sensing process provided by an embodiment of the present application.
  • Figure 3B is one of the exemplary flow charts of a sensing process provided by the embodiment of the present application.
  • Figure 3C is one of the exemplary flow charts of a sensing process provided by the embodiment of the present application.
  • Figure 3D is one of the exemplary flow charts of a sensing process provided by the embodiment of the present application.
  • Figure 3E is one of the exemplary flow charts of a sensing process provided by the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of DMG perception report elements provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of STA information in NDPA provided by the embodiment of the present application.
  • Figure 6 is one of the exemplary flow charts of a signal transmission method provided by the implementation of this application.
  • Figure 7 is one of the exemplary flow charts of a signal transmission method provided by the implementation of this application.
  • FIG. 8 is a schematic structural diagram of an LMR provided by an embodiment of the present application.
  • Figure 9 is one of the exemplary flow charts of a signal transmission method provided by the implementation of this application.
  • Figure 10A is one of the structural schematic diagrams of a PPDU provided by an embodiment of the present application.
  • Figure 10B is one of the structural schematic diagrams of a PPDU provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of an NDPA provided by an embodiment of the present application.
  • Figure 12 is one of the structural schematic diagrams of a communication device provided by an embodiment of the present application.
  • Figure 13 is one of the structural schematic diagrams of a communication device provided by an embodiment of the present application.
  • Figure 14 is one of the structural schematic diagrams of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Perceptual measurement also known as wireless perception, refers to the purpose of discovering targets or determining target status by transmitting signals between the sender and the receiver.
  • Wireless local area network (WLAN) awareness means that a station (STA) with WLAN awareness capability uses received WLAN signals to detect the characteristics of expected targets in a given environment. For example, characteristics include one or more of range, speed, angle, motion, presence or proximity, gesture, etc.
  • Targets include one or more of objects, people, animals, etc.
  • An environment includes one or more of a room, house, vehicle, business, etc.
  • the transmitting end can send a signal for perception measurement to the receiving end, and the receiving end can measure the signal to obtain a channel estimation result, such as CSI.
  • the receiving end can sense based on CSI.
  • the receiving end can send the channel estimation result to the sending end, and the sending end performs target sensing or target state sensing based on the channel estimation result.
  • the receiving end or the transmitting end can process the CSI to determine whether there are moving targets in the environment. Illustrative, hypothetical environment There are moving targets in the network, and target movement will affect the amplitude and frequency of PPDU during this period, and these effects will be reflected in the CSI during this period. Therefore, the receiving end or the transmitting end can determine whether there is a moving target in the environment based on CSI.
  • the devices participating in sensing mainly have the following roles:
  • Sensing initiator the device that initiates the sensing process.
  • Sensing responder A device that responds to the sensing initiated by the sensing initiator and participates in sensing.
  • Sensing transmitter A device that sends sensing signals.
  • the sensing signal may refer to a signal used for sensing measurement, such as PPDU.
  • the sensing receiver can measure the sensing signal.
  • Sensing receiver A device that receives sensing signals.
  • Actual transmit power also known as transmit power, refers to the power of the antenna port when transmitting signals. Alternatively, it can be understood as the power used when actually transmitting the signal.
  • Digital domain power refers to the power of the signal to be processed by a digital to analog converter (DAC). It can be understood as the power of the signal before entering the DAC.
  • DAC digital to analog converter
  • Radio frequency (RF) power also known as analog domain power, refers to the power of the signal in the analog domain. It can be understood as the power to the antenna port after passing through the DAC.
  • the embodiments of the present application may be applicable to WLAN scenarios, for example, may be applicable to Institute of Electrical and Electronics Engineers (IEEE) 802.11 system standards, such as 802.11a/b/g, 802.11n, 802.11ac, 802.11 ax standard, or its next generation, such as 802.11be standard, Wi-Fi 7 or extremely high throughput (EHT), 802.11ad, 802.11ay, 802.11bf, and the next generation of 802.11be, such as Wi-Fi 8 or next generation standards.
  • IEEE Institute of Electrical and Electronics Engineers
  • 802.11 system standards such as 802.11a/b/g, 802.11n, 802.11ac, 802.11 ax standard
  • 802.11be standard such as 802.11be standard, Wi-Fi 7 or extremely high throughput (EHT)
  • 802.11ad 802.11ay
  • 802.11bf extremely high throughput
  • Wi-Fi 8 or next generation standards such as Wi-Fi 8 or next generation standards.
  • LTE systems LTE frequency division duplex (FDD) systems, LTE time division duplex (TDD), general mobile communications System (universal mobile telecommunication system, UMTS), global interoperability for microwave access (WiMAX) communication system, 5G communication system, and future 6G communication system, etc.
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general mobile communications System
  • WiMAX global interoperability for microwave access
  • WLAN starts with the 802.11a/g standard and proceeds through 802.11n, 802.11ac, 802.11ax and now the 802.11be being discussed.
  • 802.11n can also be called high throughput (HT); 802.11ac can also be called very high throughput (VHT); 802.11ax can also be called high efficiency (HE) or Wi -Fi 6; 802.11be can also be called EHT or Wi-Fi 7, and standards before HT, such as 802.11a/b/g, can be collectively called non-high throughput (Non-HT).
  • HT high throughput
  • VHT very high throughput
  • 802.11ax can also be called high efficiency (HE) or Wi -Fi 6
  • 802.11be can also be called EHT or Wi-Fi 7
  • standards before HT such as 802.11a/b/g, can be collectively called non-high throughput (Non-HT).
  • FIG. 1 a network architecture diagram of a WLAN applicable to the embodiment of the present application is shown.
  • Figure 1 takes the WLAN as an example including 1 wireless access point (AP) and 2 stations (STAs).
  • a STA associated with an AP can receive wireless frames sent by the AP and can also send wireless frames to the AP.
  • the embodiments of the present application are also applicable to the communication between APs.
  • each AP can communicate with each other through a distributed system (DS).
  • DS distributed system
  • the embodiments of the present application are also applicable to the communication between STAs. . It should be understood that the number of APs and STAs in Figure 1 is only an example, and may be more or less.
  • the access point can be an access point for terminal devices (such as mobile phones) to enter the wired (or wireless) network. It is mainly deployed inside homes, buildings and campuses. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also ready to deploy outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the access point can be a terminal device (such as a mobile phone) or a network device (such as a router) with a Wi-Fi chip.
  • the access point can be a device that supports the 802.11be standard.
  • the access point can also be a device that supports multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • WLAN wireless local area networks
  • the access point in this application can be a HE AP or an extremely high throughput (EHT) AP, or an access point suitable for a certain future generation of Wi-Fi standards.
  • the site can be a wireless communication chip, wireless sensor or wireless communication terminal, etc., and can also be called a user.
  • the site can be a mobile phone that supports Wi-Fi communication function, a tablet computer that supports Wi-Fi communication function, a set-top box that supports Wi-Fi communication function, a smart TV that supports Wi-Fi communication function, or a smart TV that supports Wi-Fi communication function.
  • the site can support the 802.11be standard.
  • the site can also support multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, 802.11be next generation.
  • WLAN wireless local area networks
  • the site in this application can be a HE STA or an extremely high throughput (EHT) STA, or a STA that applies to a certain future generation of Wi-Fi standards.
  • EHT extremely high throughput
  • access points and sites can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters and electricity meters in smart homes, and sensors in smart cities, etc.
  • IoT Internet of Things
  • smart cameras smart remote controls
  • smart water meters and electricity meters in smart homes and sensors in smart cities, etc.
  • the APs and STAs involved in the embodiments of this application may be APs and STAs applicable to the IEEE 802.11 system standard.
  • AP is a device deployed in a wireless communication network to provide wireless communication functions for its associated STAs.
  • the AP can be used as the hub of the communication system. It is usually a network-side product that supports the MAC and PHY of the 802.11 system standard. For example, it can be a base station. , routers, gateways, repeaters, communication servers, switches or bridges and other communication equipment, wherein the base stations may include various forms of macro base stations, micro base stations, relay stations, etc.
  • the above-mentioned devices are collectively referred to as APs.
  • STA is usually a terminal product that supports the media access control (MAC) and physical layer (physical, PHY) of the 802.11 system standard, such as mobile phones, laptops, etc.
  • MAC media access control
  • PHY physical layer
  • the receiving end and the sending end can realize the sensing function by observing multiple PPDUs. For example, the receiving end can receive multiple PPDUs from the sending end within a period of time, perform channel estimation on the multiple PPDUs, and obtain CSI respectively. The receiving end or the transmitting end can process the CSI within this period of time to obtain the channel changes during this period of time. Through channel changes, the receiving end or transmitting end can judge the environment of the channel and obtain the sensing results.
  • the sensing measurement link remains stable during the sensing period. For example, if the gain or power of the perception measurement link is adjusted, the transmitter cannot determine whether the channel change during this period is due to the influence of the environment or the impact of the gain or power adjustment of the perception measurement link. . Therefore, the perceived results are not accurate.
  • the perception measurement link can be understood as the communication link used by the sender and the receiver to transmit perception information. It should be noted that the perception measurement link can be the same link as the communication link between the sending end and the receiving end, that is, there is no distinction between the perception measurement link and the communication link in form. In the perception scenario, more emphasis is placed on the stability of the perception measurement link.
  • the perceptually measured link gain or power may include gain or power control on the transmitting end, and/or gain or power control on the receiving end.
  • gain or power control mainly involves two parts: digital domain power and analog domain power.
  • digital domain Power refers to the signal power of the PPDU to be sent by the sending end in the digital domain before the DAC.
  • PA power amplifier
  • the analog domain power refers to the power when the PPDU reaches the antenna port through the PA, and the adjustment range is large.
  • the analog domain power is easily affected by the nonlinearity of the device (PA) due to the influence of the PA operating point.
  • gain or power control mainly involves the adjustment of automatic gain control (AGC).
  • the AGC may include a low noise amplifier (LNA) and/or a variable gain amplifier (VGA).
  • LNA low noise amplifier
  • VGA variable gain amplifier
  • the LNA has a larger adjustment gear interval, with a potential difference of 6dB for each gear.
  • the VGA adjustment gear interval is small, with a potential difference of 0.25-0.5dB for each gear. Therefore, when adjusting the AGC, it can be achieved by adjusting the LNA and/or VGA.
  • the receiving end will adjust the AGC during the process of receiving PPDU, that is, the gain or power of the sensing measurement link will be adjusted. Therefore, the sensing results obtained by the sending end based on the CSI fed back by the receiving end are not accurate.
  • an exemplary flow chart of an information transmission method provided by an embodiment of the present application may include the following operations.
  • the first device may be an STA or an AP as shown in Figure 1
  • the second device may be an STA or an AP as shown in Figure 1.
  • the first device is an STA
  • the second device may be an STA or an AP.
  • the second device may be a STA.
  • S201 The second device sends a PPDU to the first device.
  • the first device receives the PPDU from the second device.
  • this PPDU is used for perception measurement.
  • the sensing initiating end may be the sensing transmitting end.
  • the second device determines to initiate the sensing process and sends the PPDU to the first device.
  • the second device determines the method of initiating the sensing process, which is not specifically limited in this application. For example, when certain conditions are met, the second device may determine to initiate the sensing process, thereby sending a PPDU to the first device. Alternatively, the second device may determine to initiate the sensing process through negotiation with the first device.
  • S202 The first device sends the first information to the second device.
  • the second device receives the first information from the first device.
  • the above-mentioned first information may indicate AGC.
  • the AGC here is used to indicate the AGC gear when receiving the PPDU in S201.
  • AGC corresponds to the PPDU in S201.
  • the first information in S202 may be the AGC gear level when receiving the PPDU.
  • the AGC gear can be understood as the gain of the receiving end.
  • the above-mentioned AGC gear level may include at least one of LNA gear level information in the AGC, VGA gear level information in the AGC, or AGC saturation information.
  • LNA gear level information in the AGC
  • VGA gear level information in the AGC VGA gear level information in the AGC
  • AGC saturation information For example, when the AGC gear includes the LNA gear information, the larger the value of the LNA gear information, the greater the gain. Assume that the LNA's gear information contains 1 and 2, then the gain when the LNA's gear information is 2 is greater than the gain when the LNA's gear information is 1. Or, the smaller the value of the LNA gear information, the greater the gain.
  • the greater the value of the VGA gear information the greater the gain. Assume that the VGA gear information includes 1 to 32, then the gain when the VGA gear information is 32 is greater than the gain when the VGA gear information is 31. Or, the smaller the value of the VGA gear information, the greater the gain.
  • the gain may be considered to be too large. If the AGC saturation information indicates that the AGC is not saturated, then the gain can be considered to be within a reasonable range.
  • the first information may include one or more of the following information: LNA gear information in AGC, VGA gear information in AGC, AGC saturation information, AGC bounce information, and AGC change information. or first instruction message.
  • the first information may include at least one of LNA gear information and VGA gear information.
  • the first device may indicate the gear information of the LNA through the first bit sequence in the first information. It should be noted that the length of the first bit sequence is related to the gear information of the LNA.
  • the first device may indicate the VGA gear information through the second bit sequence. It should be noted that the length of the second bit sequence is related to the VGA gear information.
  • the first device may carry the LNA gear information through the first bit sequence in the first information, and carry the VGA gear information through the second bit sequence in the first information.
  • the first device may combine the LNA gear information and the VGA gear information into an AGC and send it to the second device.
  • the AGC may indicate the LNA gear information and the VGA gear information through the third bit sequence in the first information.
  • AGC can indicate AGC through the third bit sequence in the first information.
  • the value of the third bit sequence is related to both the LNA gear information and the VGA gear information.
  • the LNA of the first device has two gears, which are 1 and 2 respectively
  • the VGA of the first device has 32 gears, which are 1 to 32 respectively.
  • the AGC can be divided into 1 to 64.
  • the AGC indicated by the third bit sequence can refer to Table 1.
  • AGC when AGC is 1 to 32, it means that the LNA gear is 1 and the VGA gear is 1 to 32 respectively.
  • AGC when AGC is 3, then the LNA gear is considered to be 1 and the VGA gear is 3.
  • the AGC gear is 32, then the LNA gear is 1 and the VGA gear is 32.
  • the AGC is 33 to 64, the LNA gear is considered to be 2, and the VGA gear is 1 to 32 respectively.
  • the AGC is 34, it is considered that the LNA gear is 2 and the VGA gear is 2.
  • the length of the third bit sequence may be related to both the LNA gear information and the VGA gear information.
  • the AGC saturation information may include AGC saturation or AGC unsaturation.
  • the first information may not carry the AGC saturation information.
  • the first information may carry indication information of the AGC saturation.
  • AGC saturation can be understood as the AGC adjustment is too large, so the gain of the sensing measurement link is too large. It is understandable that AGC can amplify the amplitude of the signal. If the AGC is adjusted too large, that is, the AGC amplifies the amplitude of the signal too much, so that the signal will have a clipping effect when it passes through the analog-to-digital converter (ADC). , that is, the amplitude of the signal will partially become a straight line.
  • ADC analog-to-digital converter
  • the amplitude of the signal can be regarded as a parabola. If the AGC is adjusted too large, the top of the parabola will become a straight line, and the ordinate value is lower than the ordinate value of the original parabola vertex, which has a greater impact on the judgment of channel changes. Influence. AGC is not saturated, which means that the AGC adjustment is within the normal range. Among them, the normal range can vary depending on the device.
  • AGC bounce information may include AGC bounce or AGC non-beat.
  • the first information does not need to carry the AGC beating information.
  • AGC jumping can be understood as the AGC gear change
  • AGC non-beating can be understood as the AGC gear not changing.
  • the first information may include indication information of the AGC jump.
  • the first information may not include AGC gear information, such as LNA gear information and VGA gear information.
  • the AGC change information may indicate that the AGC change exceeds the first threshold or that the AGC change does not exceed the first threshold.
  • the AGC changes may include LNA gear changes and/or VGA gear changes.
  • the LNA gear change can be understood as the difference, absolute value or ratio of the LNA gear when receiving the first PPDU and the LNA gear when receiving the second PPDU, etc. It should be noted that the reception time of the second PPDU is before the reception time of the first PPDU.
  • the VGA gear change can be understood as the difference, absolute value or ratio of the VGA gear when receiving the first PPDU and the VGA gear when receiving the second PPDU, etc.
  • the above-mentioned first threshold can be customized, for example, the first threshold is equal to 2, 3, etc.
  • the first threshold is equal to 2, 3, etc.
  • the first information may include AGC change information indicating that the AGC change exceeds the first threshold.
  • the first information may not include AGC change information, or the first information may include AGC change information indicating that the AGC change does not exceed the first threshold.
  • the first indication information may indicate that the AGC is too small or the AGC is not too small.
  • the AGC if the AGC is too small, it can be understood that after the PPDU passes through the AGC, it cannot be effectively sampled when it reaches the ADC. This is because the gain of the AGC on the PPDU is too small.
  • AGC that is too small can be caused by the signal after AGC (such as PPDU), that is, the amplitude or energy of the signal to be processed by the ADC is less than the threshold.
  • the threshold can be preset.
  • the first information may include first indication information indicating that the AGC is too small.
  • the first information may not include the first indication information, or the first information may include the first indication information to indicate that the AGC is not too small.
  • the first device can send AGC to the second device, so that the second device can learn about the adjustment of the gain or power of the perceptual measurement link. Therefore, when the second device processes the CSI, the perceptual measurement chain can be taken into consideration. Channel gain or power adjustment to improve perceived performance.
  • the first device can also perform channel estimation based on the received PPDU to obtain the CSI.
  • the first device may send the CSI to the second device.
  • the first device may send the first information and CSI to the second device in S202.
  • the second device may process the CSI. It can be understood that since the first device feeds back the first information, the second device can process the CSI according to the first information. For example, if the second device determines that the first information in S202 includes AGC saturation, that is, AGC saturation occurs when the first device receives the PPDU corresponding to the CSI, the second device may choose not to use the CSI for sensing. For another example, if the second device receives multiple CSI feedbacks, it may select the same CSI based on AGC for processing. For example, the CSI sent by the first device with the same AGC is selected for processing to eliminate the impact of AGC jitter. Alternatively, the second device can also compensate for the jump of the AGC gear by carrying the AGC contained in the first information in S202, such as LNA gear information and VGA gear information, to enhance the perception performance.
  • the second device can compensate for the jump of the AGC gear according to the error information of the AGC.
  • the AGC error information may be indicated by the first device.
  • the second device receives AGC error information from the first device.
  • the first device can perform self-calibration of the AGC.
  • the AGC self-calibration method may be predefined or may be determined based on different communication environments.
  • the first device can obtain the error information of the AGC through the self-calibration of the AGC.
  • the error information of the AGC may include error information corresponding to each AGC.
  • the error information of the AGC can include the gear information of each LNA.
  • the error information of AGC is introduced through Table 2.
  • the LNA gear when the LNA gear is n and the VGA gear is m, it can correspond to an error of x1dB.
  • the LNA gear When the LNA gear is n and the VGA gear is m+1, it can correspond to an error of y1dB; when the LNA gear is n+1 and When the VGA gear is m, it can correspond to an error of x2dB.
  • the LNA gear When the LNA gear is n+1 and the VGA gear is m+1, it can correspond to an error of y2dB.
  • x1, y1, x2 and y2 are real numbers.
  • the first device can send AGC error information to the second device, so that when the second device obtains the AGC when the first device receives the PPDU, it can compensate the AGC according to the AGC error information to improve sensing performance.
  • the first device and the second device may negotiate whether the first information needs to be fed back.
  • different sensing processes are introduced using Figures 3A to 3E as examples.
  • the initiator STA (initiator STA, ISTA) first sends a null data packet announcement frame (null data packet announcement, NDPA).
  • the NDPA can carry information of null data packet (NDP).
  • SIFS short inter frame space
  • the ISTA sends an I2R NDP to the responder STA (RSTA) for measurement.
  • RSTA sends R2I NDP to ISTA for measurement.
  • RSTA sends location measurement feedback (location measurement report, LMR) information to ISTA.
  • LMR location measurement feedback
  • ISTA can determine the motion status of RSTA based on LMR information.
  • the NDPA sent by ISTA may carry request information for the first information.
  • the request information for the first information may be used to request the first information from the RSTA.
  • the RSTA can send the first information when receiving the I2R NDP to the ISTA according to the request information of the first information.
  • the AGC indicated by the first information is used to indicate the AGC gear when receiving the I2R NDP.
  • ISTA sends sensing NDPA to RSTA. After the interval SIFS, ISTA can send I2R NDP to RSTA. After another SIFS interval, RSTA can send R2I NDP to ISTA.
  • the sensing NDPA sent by the ISTA may carry the request information for the above first information.
  • the sensing process shown in Figure 3B does not show which party performs sensing measurement and whether feedback of CSI is required.
  • which party performs sensing measurement and whether feedback of CSI is required.
  • the RSTA can perform perceptual measurement to obtain the CSI after receiving the R2I NDP, and send the CSI to the ISTA.
  • ISTA can trigger multiple RSTAs to perform the sensing process.
  • ISTA can send sensing poll trigger frames to RSTA1 to RSTA3 to trigger RSTA1 to RSTA3 to perform the sensing process.
  • RSTA1 to RSTA3 can send response frames (cts-to-self) to ISTA respectively.
  • the sensing polling trigger frame may carry the request information for the above first information.
  • ISTA can trigger RSTA1 and RSTA2 to send R2I NDP.
  • ISTA can send sensing measurement trigger (sensing sounding trigger) frames to RSTA1 and RSTA2 respectively.
  • RSTA1 and RSTA2 can send R2I NDP to ISTA respectively.
  • ISTA can perform sensing measurements based on these two NDPs, obtain CSI and obtain sensing results.
  • RSTA1 and RSTA2 can send R2I NDP to ISTA respectively.
  • ISTA can perform sensing measurements based on these two NDPs, obtain CSI and obtain sensing results.
  • ISTA can send sensing NDPA to RSTA3.
  • ISTA can send I2R NDP to RSTA3.
  • RSTA3 can perform perceptual measurements based on this NDP.
  • ISTA can trigger RSTA3 to send a sensing measurement report.
  • ISTA can send sensing report trigger frames to RSTA3.
  • RSTA3 can send sensing measurement report (sensing measurement report) to ISTA.
  • the sensing trigger report frame may carry request information for the first information.
  • ISTA can send an instance request frame (instance request frame) to RSTA.
  • the instance request frame can be used to request to establish or initiate a sensing measurement instance. It can be understood that the perceptual measurement instance can be used to identify a perceptual measurement.
  • RSTA can send instance response frames.
  • the instance response frame may be used to indicate agreement to establish a sensing measurement instance.
  • the instance request frame may include request information of the first information.
  • ISTA can send a beam refinement protocol (BRP) frame to RSTA, as shown in Figure 3D
  • BRP beam refinement protocol
  • the BRP (BRP with TRN) frame shown carries the training field (TRN).
  • RSTA can perform sensing measurements based on TRN.
  • RSTA can send BRP (BRP with report) frames carrying reports to ISTA.
  • the BRP frame carrying the training field may include request information for the first information.
  • ISTA can establish or initiate a sensing measurement instance with RSTA, so that ISTA can transmit NDP with RSTA for sensing measurement (not shown in the figure).
  • the sensing initiator which is ISTA
  • the sensing responder which is RSTA
  • ISTA can send I2R NDP to RSTA for sensing measurements.
  • a sensing by proxy (SBP) process is introduced.
  • mediated sensing can be understood as the sensing initiator requesting the sensing responder to act as an intermediary device to perform sensing measurements with a third-party device.
  • the third-party device may be a device different from the sensing initiator, and the sensing responder or intermediary device serves as the sensing sender.
  • the sensing initiator can also participate in the mediated sensing as a sensing receiver.
  • STA1 is the SBP sensing initiator
  • AP is the SBP sensing responder.
  • STA1 can request mediation sensing by the AP.
  • STA1 may send an SBP setup request (set up request) or an SBP request (SBP request) to the AP.
  • the AP can send an SBP setup response (set up response) or an SBP response (SBP response) to STA1 to agree to perform intermediary sensing or not to agree to perform sensing.
  • the AP can transmit NDP with STA2 to obtain the sensing result.
  • STA2 may be the sensing receiver.
  • the AP can also transmit NDP with STA1 to obtain sensing results.
  • the AP can combine the sensing results and the first information Sent to STA1.
  • the SBP request or the SBP establishment request may carry the request information of the above first information.
  • the number of sensing receivers may be one or more.
  • the first device and the second device can also initiate the sensing process through a measurement setup request frame.
  • the second device may send a measurement setup request frame to the first device.
  • the measurement establishment request information can be used to request the establishment of sensing measurements and exchange relevant parameters for subsequent sensing.
  • the measurement establishment request information may include a request message for the first information. It can be understood that the request message for the first information can be used to request the first device to send the first information to the second device. For example, the request message for the first information may be used to request the first device to send the first information when sending CSI to the second device.
  • the first device may send a measurement setup response frame to the second device.
  • the measurement establishment response information may be used to indicate consent to perform sensing measurement.
  • the method for the first device to send the first information in S202 may include any one or more of the following situation 1 or situation 2.
  • the first device may carry the first information in a CSI frame.
  • the first device can perform channel estimation based on the received PPDU in S201, obtain the CSI, and send it to the second device through a CSI frame.
  • the first device may carry the AGC when receiving the PPDU in the above-mentioned CSI frame.
  • the Action field structure in the CSI frame in HT is shown in Table 3.
  • Table 3 Field format in HT CSI frame (HT CSI frame Action Field format)
  • a new AGC field can be added to the CSI frame to carry the AGC, as shown in the fifth row of Table 3. It can be understood that the position of the AGC field in the CSI frame is not specifically limited in this application.
  • the location of the AGC field in Table 3 is shown as an example.
  • the AGC field may also precede the CSI report field, that is, the AGC field may be located in the fourth row, the third row, the second row or the first row of the CSI frame, etc. This application does not make specific limitations.
  • the first device may carry the AGC in the CSI report field (the fourth row of Table 3).
  • Table 3 shows the format of the CSI report field during CSI matrix feedback in the HT standard. It should be noted that when the first device or the second device does not support the CSI matrix as the feedback type, the information of the CSI matrix may be processed to obtain information in a non-CSI matrix form.
  • the specific format and quantization method of CSI in the CSI report field are not specifically limited, and the CSI report field can carry the first information.
  • Table 4 CSI report field (CSI report field)
  • the first information may be carried in the CSI report field. It can be understood that the first information shown in Table 4 is shown as an example and does not constitute a limitation on the first information.
  • the first information may include at least one of LNA gear information and VGA gear information.
  • the first information may not include the AGC saturation information.
  • the size of the first information shown in Table 4 is shown as an example, and the embodiment of the present application does not specifically limit the size of the first information.
  • the size of the LNA in Table 4 is 3-4 bits. This 3-4 bits is only an example of the size of the LNA and does not constitute a limitation on the size of the LNA.
  • the size of the LNA can also be more bits, such as 5 bits. Or 6bits, or the size of the LNA can be less bits, such as 1bit or 2bits.
  • the position of the first information in the CSI report field is not specifically limited in this application, and the position of the first information in Table 4 is only shown as an example.
  • the first device may carry the first information in the MIMO control field (the third row of Table 3).
  • the implementation may refer to the description of carrying the first information in the CSI report field, which will not be described again here.
  • the first device when the first device can carry the first information in a certain field in the CSI frame, such as the CSI report field or the MIMO control field, the first device can carry the first information in the new field in the certain field.
  • the first device may carry the first information in a reserved field (reserved) in the certain field.
  • the first device may carry the first information in a reserved field in the MIMO control field.
  • the first information can be carried in other frames and sent to the second device.
  • the first information may also carry the first information in a feedback frame, such as the perception measurement report frame shown in Table 5.
  • a new AGC field can be added to the perception measurement report frame to carry the AGC, as shown in the fifth row of Table 5. It can be understood that the position of the AGC field in the CSI frame is not specifically limited in this application. The location of the AGC field in Table 5 is shown as an example.
  • the perceptual measurement report field may contain one or more perceptual measurement report elements.
  • Table 5 shows an example in which the perceptual measurement report field contains one perceptual measurement report element.
  • the sensing measurement report field shown in Table 5, as shown in the fourth row of Table 5, will carry one or more sensing measurement report elements (sensing measurement report element).
  • the structure of the perceptual measurement report elements can be shown in Table 6.
  • Table 6 An example of the element structure of a perceptual measurement report
  • the first information may be carried in the perceptual measurement report element.
  • the first information may be carried in the perception measurement report control field, as shown in the fifth row of Table 6.
  • the perception measurement report control field may carry the first information and relevant information of the perception measurement report.
  • the first information may be carried in the perceptual measurement report field, as shown in the sixth row of Table 6.
  • the perception measurement report field may carry the first information and specific information of the perception measurement report.
  • the first device may carry the AGC in the CSI frame and send it to the second device.
  • the second device can process the CSI in the CSI frame according to the AGC to obtain a sensing result.
  • the CSI frame and feedback frame in the above situation 1 are shown as examples that can carry the first information.
  • AGC can also be carried in other sensory feedback types, that is, the first device can also send CSI feedback types.
  • AGC is carried on the device to facilitate the second device to perform sensing processing through AGC.
  • case 1 can be applied to low-frequency scenarios, such as 20MHz bandwidth scenarios.
  • case 2 is used to introduce the transmission method of the first information in a high-frequency scenario, such as a 60MHz bandwidth scenario.
  • the first device may carry the first information in a DMG sensing report element.
  • a DMG sensing report element the structure of the current DMG perception report elements is introduced through Figure 4.
  • the DMG sensing report element can contain one or more of the following fields: element ID, element length, element ID extension, directional multi-gigabit (DMG) measurement procedure ID or DMG measurement establishment ID (DMG measurement setup ID), DMG burst ID, DMG sensing instance ID or DMG sensing instance number, DMG sensing report type, Fields such as DMG sensing report control or DMG sensing report.
  • element ID element ID
  • element ID extension directional multi-gigabit (DMG) measurement procedure ID or DMG measurement establishment ID (DMG measurement setup ID)
  • DMG burst ID DMG sensing instance ID or DMG sensing instance number
  • DMG sensing report type DMG sensing report type
  • Fields such as DMG sensing report control or DMG sensing report.
  • the DMG measurement procedure ID or DMG measurement establishment ID is used to identify a DMG measurement procedure, and each DMG measurement procedure may contain one or more DMG groups.
  • the DMG group ID is used to identify a DMG group.
  • Each DMG group can contain one or more DMG awareness instances.
  • the DMG sensing instance ID is used to identify a DMG sensing instance, and each DMG sensing instance ID or the number of DMG sensing instances is used to represent a sensing measurement.
  • DMG measurement program ID 01 can contain 10 DMG groups, namely DMG group 1 to DMG group 10.
  • DMG group 1 may include 5 DMG awareness instances, namely DMG awareness instance 1 to DMG awareness instance 5.
  • DMG group 1 may include 5 DMG awareness instances, namely DMG awareness instance 1 to DMG awareness instance 5.
  • an AGC field can be added to the DMG perception report element to carry the first information. It can be understood that the position of the AGC field in the DMG perception report element is not specifically limited in this application.
  • the AGC field can be after the DMG sensing report (DMG sensing report) field; or it can be after the DMG sensing report control (DMG sensing report control) field and in front of the DMG sensing report field.
  • the first information may be carried in a certain field in the DMG sensing report element, such as in the DMG sensing report control (DMG sensing report control) field.
  • the DMG sensing report control (DMG sensing report control) field may carry first information and related information used to interpret the DMG sensing report (DMG sensing report) field.
  • the AGC corresponds to each DMG sensing instance.
  • the DMG sensing report element in Figure 4 only carries the sensing result of one DMG sensing instance
  • the AGC in the DMG sensing report control field is used to describe the sensing measurement corresponding to the DMG sensing instance.
  • AGC can also be carried in the DMG perception report.
  • the AGC needs to correspond to each DMG group.
  • the DMG perception report element in Figure 4 contains the perception result of a DMG group
  • the perception result of the DMG group corresponds to the perception results of one or more DMG perception examples included in the DMG group, and this DMG
  • the DMG sensing report control field AGC is used to describe the sensing measurement corresponding to the DMG group.
  • the DMG group contains multiple If the AGC changes during the measurement process of a DMG sensing instance, it may be necessary to use the above AGC to provide feedback corresponding to each DMG sensing instance.
  • multiple different AGCs in the DMG group can be used for joint feedback. For example, a new field is added to the DMG perception measurement report element to carry the AGC for joint feedback.
  • the AGC needs to correspond to the DMG measurement program.
  • the perception report element in Figure 4 contains the perception result of a DMG measurement program, and the AGCs issued by multiple DMG groups included in this DMG measurement program remain unchanged, then the AGC in the DMG perception report control field is used. To describe the perceptual measurement corresponding to this DMG measurement procedure.
  • the AGC in the same DMG measurement program is not stable, it will fall back to the situation where AGC needs to correspond to each DMG group or AGC needs to correspond to each DMG sensing instance based on whether it is stable within the DMG group.
  • multiple different AGCs in the DMG measurement program can perform joint feedback, and a new field is added to the DMG perception measurement report element to carry the AGC for joint feedback.
  • the first device may carry the AGC in the DMG sensing measurement report element and send it to the second device.
  • the second device can process the DMG perception measurement report contained in the DMG perception measurement report element according to the AGC to obtain a perception result.
  • the DMG perception measurement report element in the above scenario 2 is shown as an example that can carry the first information.
  • AGC can also be carried in other perception feedback types.
  • the first device may also carry the first information in a DMG channel measurement feedback element (DMG channel measurement feedback element) or an EDMG channel measurement feedback element (EDMG channel measurement feedback element).
  • DMG channel measurement feedback element DMG channel measurement feedback element
  • EDMG channel measurement feedback element EDMG channel measurement feedback element
  • the first information can also be carried in the LMR as shown in Figure 3A.
  • the first information may also be carried in the perception measurement report sent by RSTA3 to ISTA in the reporting phase as shown in Figure 3C.
  • the receiving end can use a fixed AGC when receiving PPDUs.
  • the receiving end does not adjust the AGC when receiving PPDUs, or the receiving end uses the same AGC to receive different PPDUs.
  • the receiving end can negotiate with the sending end to use a fixed AGC to receive PPDUs.
  • the fixed AGC can be customized or determined by the receiving end, or can also be instructed by the sending end.
  • the sending end can send second indication information to the receiving end, and the second indication information indicates an AGC, and then the receiving end can receive the PPDU according to the AGC.
  • the sending end can indicate a time period to the receiving end or the sending end can send a timer to the receiving end. Within this time period or before the timer expires, the receiving end can receive the PPDU using the AGC indicated by the sending end.
  • the sending end may carry the second indication information in the NDPA as shown in Figure 3A, or in the NDPA as shown in Figure 3B, or in the sensing polling trigger frame as shown in Figure 3C, Response frame or perception NDPA.
  • the sending end may also carry the AGC indication information in the sensing instance request, sensing instance response, BRP frame carrying TRN or BRP frame carrying report as shown in Figure 3D.
  • the receiving end may receive the PPDU according to the AGC indicated by the second indication information.
  • the receiving end may send the AGC saturation information or the first indication information to the sending end.
  • AGC saturation information and the first indication information reference may be made to the relevant description in the embodiment shown in FIG. 2 .
  • the sender can trigger the update of the receiver's AGC.
  • the sender can trigger the receiver to use the updated AGC to receive PPDUs.
  • the sending end can indicate the update of the AGC to the receiving end.
  • the sender can send The receiving end indicates a new AGC, or the sending end can instruct the receiving end to redetermine an AGC.
  • the first device can send AGC to the second device, so that the second device can learn about the gain adjustment of the receiving end in the perceptual measurement link gain, so it can perform the AGC on the second device.
  • the device processes CSI, it takes into account the adjustment of the sensing measurement link gain to improve sensing performance.
  • NDPA can include target RSSI (target RSSI).
  • target RSSI is used to indicate the received power expected by the receiving end when receiving NDP.
  • ISTA needs to adjust the actual transmit power of NDP.
  • Figure 5 is an example diagram of the structure of STA information in NDPA.
  • I2R NDP represents the NDP sent by ISTA to RSTA
  • R2I NDP represents the NDP sent by RSTA to ISTA.
  • the STA information includes the actual transmit power (tx power) of I2R NDP and the target RSSI (target RSSI) of R2I NDP.
  • the actual transmit power of I2R NDP is mainly used to describe the actual transmit power of NDP sent by ISTA.
  • the target RSSI of R2I NDP indicates the expected received power when ISTA receives R2I NDP.
  • RSTA can adjust the actual transmit power of NDP based on the measured path loss (pathloss) and the RSSI, so that ISTA can receive it with RSSI when receiving R2I NDP.
  • the expected received power of the signal is mainly specified through RSSI.
  • targets in the environment. Target movement will cause more drastic changes in the environment and more frequent changes in path attenuation.
  • the actual transmit power of NDP will change more frequently. Changes in actual transmit power will introduce certain errors into the sensing results.
  • an exemplary flow chart of a signal transmission method provided by an embodiment of the present application may include the following operations.
  • the sensing initiating end is the sensing receiving end.
  • the sensing initiating end is the sensing sending end. It can be understood that for some parameters and nouns in the embodiment shown in FIG. 6 , reference can be made to the relevant descriptions in the embodiment shown in FIG. 2 .
  • S601 The first device sends first power indication information and second power indication information to the second device.
  • the second device receives the first power indication information and the second power indication information from the first device.
  • first power indication information and the second power indication information are used to indicate the power of the same PPDU.
  • This PPDU can be used for sensing measurements.
  • the first power indicated by the first power indication information and the second power indicated by the second power indication information may be different.
  • the embodiment shown in Figure 6 may also include the following operations.
  • the second device obtains CSI or sends PPDU according to the first power indication information and the second power indication information.
  • the second device when the first device is a sensing receiver, the second device can be a sensing sender.
  • the second device may send the PPDU according to the first power indication information and the second power indication information. In this way, the first device can receive the PPDU from the second device.
  • the second device when the first device is a sensing sender, can be a sensing receiver.
  • the second device may obtain the CSI according to the first power indication information and the second power indication information.
  • the second device can send the CSI to the first device, so that the first device can process the CSI and obtain the sensing result.
  • the first device can indicate the power of the same PPDU to the second device, which are the first power and the second power respectively, so that the second device can send the PPDU or generate CSI based on the first power and the second power, so that the second device can
  • the sensing performance can be improved.
  • the sensing initiator may be the sensing receiving end.
  • the first device is the sensing sender and the first device is the sensing receiver are respectively introduced as examples.
  • the first device is the sensing transmitter.
  • the actual transmit power can be composed of two parts: digital domain power and RF power.
  • digital domain power RF power
  • a relative change in the digital domain power or RF power will have an impact on the perceived results.
  • the actual transmit power of the second PPDU has not changed relative to the actual transmit power of the first PPDU, but the digital domain power of the second PPDU has changed relative to the digital domain power of the first PPDU. It will also have an impact on the perceived results and affect the perceived performance.
  • the first device may send first power indication information and second power indication information to the second device.
  • the first power indicated by the first power indication information may be the digital domain power of the PPDU.
  • the second power indicated by the second power indication information may be the actual transmission power of the PPDU. In this way, the second device can perceive changes in the digital domain power, RF power and actual transmit power of the PPDU, thereby reducing the impact on perception performance.
  • Figure 7 is an exemplary flow chart of an information transmission method provided by an embodiment of the present application, which may include the following operations.
  • S701 The first device sends a PPDU to the second device.
  • the second device receives the PPDU from the first device.
  • the PPDU in S701 can be used for perception measurement.
  • the second device may request the first device to initiate a sensing process, for example, the second device may send sensing measurement request information to the first device.
  • the first device may send response information to the second device.
  • the first device may send sensing measurement response information to the second device to agree to perform sensing measurement, which will not be described again here.
  • the sensing measurement request information or instance request frame may carry a target RSSI.
  • S702 The first device sends the first power indication information and the second power indication information to the second device.
  • the second device receives the first power indication information and the second power indication information from the first device.
  • the first power indication information may be used to indicate the digital domain power of the PPDU in S701, that is, the power to be processed by the DAC.
  • the digital domain power can represent the power under the 20MHz bandwidth.
  • the adjustment of the digital domain power mainly comes from the digital domain, which means that the adjustment of the digital domain power of the PPDU occurs in the digital domain before the PPDU is processed by the DAC.
  • the second power indication information may be used to indicate the actual transmission power of the PPDU in S701.
  • the digital domain power can indicate the average power under the 20MHz bandwidth of all antennas used to send PPDU, which is based on the antenna interface power.
  • the sensing transmitter when the sensing transmitter adjusts the actual transmission power of the PPDU, it may first adjust the digital domain power and then adjust the analog domain power. For example, when the sensing transmitter, such as the first device, adjusts the actual transmit power to meet the RSSI, it can first adjust the digital domain power so that the PPDU can meet the RSSI.
  • S703 The second device obtains CSI according to the first power indication information and the second power indication information.
  • the second device when the PA is in a better linear operating area, the digital domain power and the actual transmit power are combined interaction, the second device can perform corresponding processing.
  • the second device finds that the actual transmission power of the PPDU in S701 has not changed compared with the actual transmission power of the PPDU transmitted before S701, and the digital domain power of the PPDU in S701 has not changed, then the second device may consider that The actual transmit power of the first device remains stable. Therefore, the second device can obtain the CSI according to the PPDU in S701.
  • the second device finds that the actual transmission power of the PPDU in S701 has changed compared with the actual transmission power of the PPDU transmitted before S701, and the digital domain power of the PPDU in S701 has also changed, then the second device The device can consider that the RF power of the PPDU has not changed, and the power adjustment mainly comes from the digital domain. In this way, the second device can obtain the CSI according to the PPDU in S701, and compensate the CSI according to the change in digital domain power. It can be understood that the compensation of the CSI by the second device according to the change of the digital domain power can be performed according to an approximate linear model. In this example, the CSI obtained by the second device in S703 can be considered as compensated CSI.
  • the second device finds that the actual transmit power of the PPDU in S701 has changed compared with the actual transmit power of the PPDU transmitted before S701, and the digital domain power of the PPDU in S701 has changed in the same way, but in S701
  • the change in actual transmit power of PPDU is greater than the change in digital domain power.
  • the second device can think that the RF power of the PPDU has also changed. In this way, the second device can obtain the CSI according to the PPDU in S701.
  • the second device compensates the CSI according to changes in digital domain power and compensates the CSI according to changes in RF power. It can be understood that the manner in which the second device compensates the CSI according to changes in RF power is not specifically limited in this application.
  • the CSI obtained by the second device in S703 can be considered as compensated CSI.
  • the second device may determine whether to compensate the CSI according to the first power indication information and the second power indication information.
  • the second device can process the CSI and obtain the sensing result.
  • the second device may send a sensing measurement report to the first device.
  • the embodiment shown in Figure 7 may also include the following operations.
  • S704 The second device sends the CSI to the first device.
  • the first device receives the CSI from the second device.
  • the first device can process the CSI to realize target perception.
  • the sensing transmitter can send digital domain power and actual transmit power to the sensing receiver.
  • the sensing receiver can perceive changes in digital domain power and actual transmit power. Therefore, the sensing receiver can monitor CSI as much as possible. Compensation can eliminate the impact caused by power jitter and improve perceived performance.
  • the first power indication information and the second power indication information may be carried in the LMR.
  • a new field can be added to the LMR to carry the first power indication information.
  • the position of the first power indication information in the LMR is shown as an example. The embodiment of the present application does not specifically limit the position of the first power indication information in the LMR.
  • the first power indication information and the second power indication information may be carried in the sensing trigger report frame sent by ISTA in the reporting phase as shown in FIG. 3C.
  • the first power indication information can be carried in a measurement setup request frame (measurement setup request frame).
  • the first power indication information may be carried in a new field in the above-mentioned LMR, sensing trigger report frame or measurement setup request frame, or in a reserved field (reserved). It is understandable that the new fields can be dedicated to carry the first power indication information.
  • the above situation a may be applicable to the scenario where the sensing sending end needs to send actual sending power. That is to say, when the sensing transmitting end needs to send actual transmitting power, the sensing transmitting end can also send digital domain power.
  • the ISTA can send the first power indication information and the second power indication information to the RSTA.
  • the ISTA in the NDPA measurement phase, after ISTA sends the NDP to RSTA3, ISTA can send first power indication information and second power indication information to RSTA3.
  • the AP as an intermediary, can send the obtained sensing results and the received first power indication information and second power indication information to STA1.
  • the sensing transmitter can send an EDMG transmit power subelement to the sensing receiver to indicate the actual transmit power and maximum transmit power to the sensing receiver.
  • the EDMG transmission power sub-element can be carried in the link measurement request frame.
  • a new field may be added to the link measurement request frame to carry the first power indication information, that is, to indicate digital domain power.
  • the first power indication information may be carried by a field that already exists in the link measurement request frame.
  • the first power indication information may be carried by a field that already exists in the link measurement request frame.
  • the elements and specific frames carrying the first power indication information and the second power indication information are not specifically limited, and the above-mentioned link measurement request frame and LMR are shown as examples.
  • scenario b can be implemented in combination with scenario a, or can be implemented independently, and is not specifically limited in this application.
  • HE-SIG-A, HE-STF, HE-LTF 1, HE-LTF 2, HE-LTF N, etc. belong to the fields used for perception measurement.
  • a similar NDP structure will be used in the 802.11bf standard, which mainly includes fields used for perception measurement and other fields.
  • other fields can be understood as non-perceptual measurement fields other than fields used for measurement.
  • different parts of the PPDU may have different actual transmit powers.
  • the first power indicated by the first power indication information may be used for the field used for perceptual measurement in the PPDU, and the non-perceptual measurement field in the PPDU may be determined based on the second power indicated by the second power indication.
  • the actual transmit power of the field used for measurement can be fixed, which reduces the impact of fluctuations in the actual transmit power on the sensing results and improves sensing performance.
  • Figure 9 is an exemplary flow chart of an information transmission method provided by an embodiment of the present application, which may include the following operations.
  • S901 The first device sends first power indication information and second power indication information to the second device.
  • the second device may receive the first power indication information and the second power indication information from the first device.
  • the first device since the first device is the sensing initiator, the first device can request the second device to perform sensing measurement. Refer to the processes of FIG. 3A to FIG. 3E , which will not be described again here.
  • S902 The second device sends the second information and the third information to the first device.
  • the first device receives the second information and the third information from the second device.
  • the second device may determine the actual transmission power of the second information based on the first power indicated by the first power indication information.
  • the actual transmission power of the second information may be the first power.
  • the second device may determine the actual transmission power of the third information based on the second power indicated by the second power indication information.
  • the actual transmission power of the third information may be determined based on the second power and path attenuation.
  • the actual transmission power of the third information may be the second power Add path attenuation.
  • the second information may refer to fields used for perceptual measurement in the PPDU
  • the third information may refer to fields other than the fields used for perceptual measurement in the PPDU, which may be called non-perceptual measurement fields.
  • the second device may use the first power to send the second information
  • the second device may determine the actual sending power of the third information based on the path attenuation and the second power, and send the third information based on the actual sending power.
  • the second power indication information may be RSSI
  • the first power may be understood as the average power under the 20MHz bandwidth of all antennas, based on the antenna interface power.
  • the second information may include the high-performance field training field 1HE-LTE-1 to the high-performance training field 2HE-LTE-n and the packet Extended PE.
  • the third information may include the short training field L-STF, the traditional long training field L-LTF, the traditional signaling field L-SIG, the repeated traditional signaling field RL-SIG, and the high-performance signaling field A HE-SIG-A.
  • the second information may also include the high-efficiency-short training field HE-STF, while the third information does not include the HE-STF.
  • the third information may also contain HE-STF, but the second information does not contain HE-STF.
  • the sensing receiver receives a PPDU
  • the ADC is adjusted based on the HE-STF in the PPDU. Therefore, as shown in Figure 10A, if the actual transmit power of the HE-STF is the first power, that is, when the second information contains the HE-STF, the adjustment of the AGC may not be suitable for the HE-LTF part. As shown in Figure 10B, if the actual transmit power of the HE-STF is determined based on the second power, that is, when the third information contains the HE-STF, then the adjustment of the AGC is more suitable for the HE-LTF part, thus improving the HE-STF -Possibility of receiving LTF.
  • the second information and the third information shown in FIG. 10A and FIG. 10B are only shown as examples and constitute a limitation of the second information and the third information.
  • the fields contained in the second information may be different.
  • the field used for perceptual measurement may be the TRN field
  • the field used for non-perceptual measurement may be other fields except the TRN field.
  • S903 The second device obtains CSI.
  • the second device can perform channel estimation based on the second information to obtain the CSI.
  • the second device when the second device does not receive the field used for perception measurement in the PPDU, for example, because the field used for perception measurement in the PPDU has low power, the second device cannot receive the field and only receives noise. The second device will use the received noise as a received signal to perform channel estimation during channel estimation. Therefore, the CSI received by the second device is not accurate. In order to reduce the above situation, the second device may perform channel estimation through the following method 1 or 2.
  • Method 1 The second device also performs channel estimation on the non-perceptually measured fields. If the second device accurately receives the field used for perceptual measurement and performs channel estimation on the field used for perceptual measurement, then there is a certain similarity in the channel estimates of the two parts. Therefore, the second device can determine the similarity between the channel estimation result of the field used for perceptual measurement and the channel estimation result of the non-perceptual measurement field, and determine whether the received signal is noise.
  • Method 2 When sending the PPDU, the first device can add a piece of verification information to the field used for perception measurement. For example, add a verification field to the PE. Then the second device can perform channel equalization on the fields used for perceptual measurement based on the channel estimation results of the non-perceptual measurement fields. After the channel is equalized, the second device verifies the verification information. If the check passes, the second device may consider the channel estimation result of the field used for perceptual measurement to be a valid result. If the check passes, the second device may consider the channel estimation result of the field used for perceptual measurement to be an invalid result. In other words, the second device did not receive the second information, but received noise.
  • the first device adds a check field in the PE, and the check field may be generated based on the field of the sensing measurement.
  • the check field may be obtained by encrypting, compressing, XORing or other operations on the perceptual measurement fields.
  • the second device verifies the verification field according to the fields used for perceptual measurement.
  • the second device can decrypt or decompress the check field.
  • the decrypted or decompressed check field is the same as the perceptually measured field, the second device can consider that the check has passed. Otherwise, the second device can consider that the check has passed. Did not pass.
  • the second device can encrypt or compress the perceptual measurement field.
  • the second device can consider that the verification has passed. Otherwise, the second device can consider that the verification has passed. Verification failed.
  • the second device may discard the CSI obtained by this channel estimation. In other words, the second device may not send the CSI obtained by this channel estimation to the first device.
  • the second device can process the CSI and obtain the sensing result.
  • the second device may send a sensing measurement report to the first device.
  • the embodiment shown in Figure 9 may also include the following operations.
  • S904 The second device sends CSI to the first device.
  • the first device receives the CSI from the second device.
  • the first device can process the CSI and obtain the sensing result.
  • the fields used for perceptual measurement and the fields used for non-aware measurement in the PPDU are sent with different actual transmit powers, and the actual transmit power of the fields used for perceptual measurement is constrained through the first power indication information.
  • the second power indication information constrains the fields for non-aware measurement, so that the actual transmit power of the field used for sensory measurement in the PPDU can be kept as stable as possible, so as to reduce the impact on the sensing results and improve the sensing performance.
  • power adjustment is performed through RSSI, which improves the possibility of decoding the PPDU. Therefore, when the field of the PPDU used for perceptual measurement may not be able to estimate the channel correctly due to too small power, the perceptual receiving end It is still possible to know the transmission of the PPDU.
  • the second power indication information may be target RSSI.
  • the first power indication information may be carried in a new field in an element carrying the target RSSI.
  • a new field can be added to the NDPA shown in Figure 5, such as the desired I2E NDP actual transmit power (desired I2R NDP tx power) field, which can be used to indicate the first power.
  • the first power indication information can be used to request the actual transmit power of the PPDU, such as the field used for sensing measurement in I2R NDP.
  • the NDPA may be the NDPA as shown in Figure 3A, or it may be the NDPA as shown in Figure 3B.
  • the first power indication information may be carried in STA information.
  • the second power indication information may be implemented with reference to the first power indication information.
  • the first power indication information may also be carried in a trigger frame.
  • the first power indication information may be carried in common information (common information) in the trigger frame.
  • the first power indication information may be carried in a user information list (user information list) in the trigger frame.
  • the first power indication information may also be carried in the sensing measurement trigger frame sent by ISTA in the TF measurement phase as shown in FIG. 3C.
  • the second power indication information may be implemented with reference to the first power indication information.
  • the first power indication information and the second power indication information may be carried in the BRP frame.
  • a new field may be added to the BRP frame to carry the first power indication information.
  • the first power indication information may be carried in a field that already exists in the BRP frame. In other words, the first power indication information may multiplex an existing field in the BRP frame.
  • the first power indication information may be carried in a relevant element of the BRP frame, such as a DMG sensing element.
  • the second power indication information may be implemented with reference to the foregoing first power indication information.
  • an embodiment of the present application provides a communication device 1200.
  • the device 1200 includes a processing unit 1201 and a transceiver unit 1202.
  • the device 1200 may be a first device, a device applied to the first device, or a device capable of supporting the first device to perform an information transmission method.
  • the device 1200 may be a second device, a device applied to the second device, or a device capable of supporting the second device to perform the information transmission method.
  • the transceiver unit may also be called a transceiver module, a transceiver, a transceiver, a transceiver device, etc.
  • the processing unit may also be called a processor, a processing board, a processing unit, a processing device, etc.
  • the device used to implement the receiving function in the transceiver unit can be regarded as a receiving unit. It should be understood that the transceiver unit is used to perform the sending operation and receiving operation on the first device side or the second device side in the above method embodiment,
  • the devices used to implement the sending function in the transceiver unit are regarded as the sending unit, that is, the transceiver unit includes a receiving unit and a sending unit.
  • the sending unit included in the transceiver unit 1202 is used to perform a sending operation on the first device side, such as sending a PPDU. Specifically, it may be sending a PPDU to a second device; the sending unit 1202 includes The receiving unit is configured to perform a receiving operation on the first device side, such as receiving the first information. Specifically, it may be receiving a PPDU from the second device.
  • the receiving unit included in the transceiver unit 1202 is used to perform a receiving operation on the second device side, such as receiving a PPDU.
  • the transceiver unit 1202 includes The sending unit is configured to perform a sending operation on the second device side, such as sending the first information. Specifically, it may be sending the first information to the first device.
  • the transceiver unit may be an input-output circuit and/or a communication interface, performing input operations (corresponding to the aforementioned receiving operations) and output operations (corresponding to the aforementioned sending operations); processing unit It is an integrated processor or microprocessor or integrated circuit.
  • the following is a detailed description of an implementation in which the device 1200 is applied to the first device or the second device.
  • the transceiver unit 1202 is configured to receive the PPDU from the second device. Among them, PPDU is used for perception measurement.
  • the processing unit 1201 is configured to generate first information, where the first information indicates AGC. Among them, AGC is used to indicate the AGC gear when receiving PPDU.
  • the transceiver unit 1202 is also used to send the first information to the second device.
  • the first information may include one or more of the following information: LNA gear information in AGC, VGA gear information in AGC, AGC saturation information, AGC bounce information, and AGC change information. or first instruction message.
  • Processing unit 1201 used to generate PPDU. Among them, PPDU is used for perception measurement.
  • the transceiver unit 1202 is configured to send the PPDU to the first device.
  • the transceiver unit 1202 is also configured to receive first information from the first device, where the first information indicates AGC. Among them, AGC is used to indicate the AGC gear when receiving PPDU.
  • the second device can use an AGC to receive the PPDU.
  • the fixed AGC may be determined by the second device or indicated by the first device.
  • the second device may send one or more of the AGC saturation information or the first indication information to the first device.
  • the first and second devices can also trigger the update of the AGC.
  • the transceiver unit 1202 is also configured to use a fixed AGC to receive the PPDU from the first device, and to The first device sends one or more of AGC saturation information and first indication information.
  • the processing unit 1201 is also used to determine the above-mentioned fixed AGC.
  • the transceiver unit 1202 is also configured to receive second indication information from the second device. Wherein, the second indication information indicates fixed AGC.
  • the transceiver unit 1202 is also configured to receive third indication information or timer from the second device. Wherein, the third indication information indicates a time period.
  • the transceiving unit 1202 is also configured to receive AGC update information from the second device.
  • the AGC update information is used to instruct the first device to update the fixed AGC.
  • the processing unit 1201 is also configured to determine a new AGC based on the AGC update information.
  • the transceiver unit 1202 is also configured to receive first indication information or AGC saturation information from the first device.
  • the transceiving unit 1202 is also configured to send the second indication information to the first device. Wherein, the second indication information indicates fixed AGC.
  • the transceiver unit 1202 is also configured to send third indication information or a timer to the first device. Wherein, the third indication information indicates a time period.
  • the transceiving unit 1202 is also configured to send AGC update information to the first device.
  • the AGC update information is used to instruct the first device to update the fixed AGC.
  • the processing unit 1201 is configured to generate first power indication information and second power indication information.
  • the transceiver unit 1202 is configured to send first power indication information and second power indication information to the second device.
  • the first power indication information and the second power indication information are used to indicate the power of the same PPDU, and the PPDU is used for perception measurement.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • the transceiver unit 1202 is configured to receive first power indication information and second power indication information from the first device.
  • the first power indication information and the second power indication information are used to indicate the power of the same PPDU, and the PPDU is used for perception measurement.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • the processing unit 1201 is configured to generate CSI or PPDU according to the first power and the second power.
  • an embodiment of the present application provides a communication device 1300.
  • the communication device 1300 includes a processor 1310.
  • the communication device 1300 may also include a memory 1320 for storing instructions executed by the processor 1310 or input data required for the processor 1310 to run the instructions or data generated after the processor 1310 executes the instructions.
  • the processor 1310 can implement the method shown in the above method embodiment through instructions stored in the memory 1320.
  • the embodiment of the present application provides a communication device 1400.
  • the communication device 1400 may be a chip or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1400 may include at least one processor 1410 coupled with a memory.
  • the memory may be located within the device or outside the device.
  • the communication device 1400 may further include at least one memory 1420.
  • the memory 1420 stores the computer programs, configuration information, computer programs or instructions and/or data necessary to implement any of the above embodiments; the processor 1410 may execute the computer program stored in the memory 1420 to complete the method in any of the above embodiments.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, and may be electrical, Mechanical or other form for information interaction between devices, units or modules.
  • the processor 1410 may cooperate with the memory 1420.
  • the specific connection medium between the above-mentioned transceiver 1430, processor 1410 and memory 1420 is not limited in the embodiment of the present application.
  • the communication device 1400 may also include a transceiver 1430, and the communication device 1400 may interact with other devices through the transceiver 1430.
  • the transceiver 1430 can be a circuit, a bus, a transceiver, or any other device that can be used for information exchange, or is also called a signal transceiver unit. As shown in Figure 14, the transceiver 1430 includes a transmitter 1431, a receiver 1432 and an antenna 1433.
  • the transceiver in the communication device 1400 can also be an input-output circuit and/or a communication interface, which can input data (or receive data) and output data ( Or, sending data),
  • the processor is an integrated processor or microprocessor or integrated circuit, and the processor can determine the output data according to the input data.
  • the communication device 1400 can be applied to the first device.
  • the communication device 1400 can be the first device, or can be a first device that can support the first device to implement any of the above-mentioned embodiments. functional device.
  • the memory 1420 stores necessary computer programs, computer programs or instructions and/or data to implement the functions of the first device in any of the above embodiments.
  • the processor 1410 can execute the computer program stored in the memory 1420 to complete the method executed by the first device in any of the above embodiments.
  • the transmitter 1431 in the communication device 1400 may be used to transmit the PPDU through the antenna 1433.
  • the communication device 1400 can be applied to the second device.
  • the specific communication device 1400 can be the second device, or can support the second device to implement the second device in any of the above-mentioned embodiments.
  • the memory 1420 stores necessary computer programs, computer programs or instructions and/or data to implement the functions of the second device in any of the above embodiments.
  • the processor 1410 can execute the computer program stored in the memory 1420 to complete the method executed by the second device in any of the above embodiments.
  • the receiver 1432 in the communication device 1400 can be used to receive the PPDU through the antenna 1433.
  • the communication device 1400 provided in this embodiment can be applied to a first device to complete the method executed by the first device, or applied to a second device to complete the method executed by the second device. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, and will not be described again here.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute each method, step and logical block diagram disclosed in the embodiment of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • Memory may also be, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of performing a storage function, used to store computer programs, computer programs or instructions and/or data.
  • the embodiment of the present application also provides another communication device 1500, including: an input and output interface 1510 and a logic circuit 1520; the input and output interface 1510 is used to receive code instructions and transmit them to the logic circuit 1520; Logic circuit 1520, configured to run code instructions to execute the first device or the third device in any of the above embodiments. 2. The method of device execution.
  • the communication device 1500 can be applied to a first device to perform the method performed by the first device, specifically, for example, the method performed by the first device in the embodiment shown in FIG. 2 .
  • the input and output interface 1510 is used to input PPDU from the second device. Among them, PPDU is used for perception measurement.
  • Logic circuit 1520 is used to generate first information, and the first information indicates AGC. Among them, AGC is used to indicate the AGC gear when receiving PPDU.
  • the input and output interface 1510 is also used to output the first information to the second device.
  • the communication device 1500 can be applied to a second device to perform the method performed by the second device, specifically, for example, the method performed by the second device in the method embodiment shown in Figure 2.
  • Logic circuit 1520 for generating PPDU Among them, PPDU is used for perception measurement.
  • the input and output interface is used to output the PPDU to the first device.
  • the input and output interface 1510 is also used to input first information from the first device, where the first information indicates AGC.
  • AGC is used to indicate the AGC gear when receiving PPDU.
  • the communication device 1500 can be applied to a first device to perform the method performed by the first device, specifically, for example, the method performed by the first device in the embodiment shown in FIG. 6 . .
  • Logic circuit 1520 is used to generate first power indication information and second power indication information.
  • the input and output interface 1510 is used to output first power indication information and second power indication information to the second device.
  • the first power indication information and the second power indication information are used to indicate the power of the same PPDU, and the PPDU is used for perception measurement.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • the communication device 1500 can be applied to a second device to perform the method performed by the second device, specifically, for example, the method performed by the second device in the method embodiment shown in FIG. 6 method.
  • the input and output interface 1510 is used to input first power indication information and second power indication information from the first device.
  • the first power indication information and the second power indication information are used to indicate the power of the same PPDU, and the PPDU is used for perception measurement.
  • the first power indicated by the first power indication information is different from the second power indicated by the second power indication information.
  • Logic circuit 1520 configured to generate CSI or PPDU according to the first power and the second power.
  • the communication device 1500 provided in this embodiment can be applied to a first device to perform the method performed by the first device, or applied to a second device to complete the method performed by the second device. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, and will not be described again here.
  • embodiments of the present application further provide a communication system, which includes at least one communication device applied to a first device and at least one communication device applied to a second device.
  • a communication system which includes at least one communication device applied to a first device and at least one communication device applied to a second device.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer programs or instructions.
  • the instructions When the instructions are executed, the first device in any of the above embodiments is executed. The method is performed or the method performed by the second device is performed.
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • an embodiment of the present application also provides a chip, including a processor, to support the communication device to implement the functions involved in the first device or the second device in the above method embodiment.
  • the chip is connected to a memory or the chip includes a memory, which is used to store computer programs or instructions and data necessary for the communication device.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt an entirely hardware embodiment, an entirely software embodiment, or an implementation combining software and hardware aspects. Example form. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer programs or instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture that includes the instruction means,
  • the instruction means implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer programs or instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in a process or processes in the flow diagram and/or in a block or blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息传输方法和装置,用来提升感知性能,涉及通信技术领域。本申请应用于支持IEEE 802.11ax下一代Wi-Fi协议,如802.11be,Wi-Fi 7,EHT,802.11ad,802.11ay,802.11bf,再如802.11be下一代,例如Wi-Fi 8,或更下一代的802.11系列协议的无线局域网***。该方法中,第一设备接收来自第二设备的用于感知测量的PPDU。第一设备向第二设备发送指示AGC。基于上述方案,可以让第二设备在感知时确定信道变化是感知测量链路增益的调整带来的影响还是由于信道的环境带来的影响,可以提高感知结果的准确性。

Description

一种信息传输方法和装置
相关申请的交叉引用
本申请要求在2022年04月02日提交中国专利局、申请号为202210351937.8、申请名称为“一种信息传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息传输方法和装置。
背景技术
在日常生活中,无线保真(wireless fidelity,Wi-Fi)设备发出的信号通常会经由各种障碍物的反射、衍射和散射后才被接收,这种现象使得实际接收到的信号往往是多路信号叠加得到的,即信道环境有可能变得复杂,但从另一个角度而言,这也为通过无线信号感知其所经过的物理环境带来了便利。通过分析被各种障碍物影响后的无线信号,如信道状态信息(channel state information,CSI)等,即可推断与感知周围环境,由此衍生出无线局域网(wireless local area network,WLAN)感知技术。由于Wi-Fi设备的广播部署以及感知需求的增加,利用普遍易获得的Wi-Fi设备进行感知是目前研究的热点。
目前在WLAN感知技术中,接收端和发送端可以通过观测多个物理层协议数据单元(physical protocol data unit,PPDU)实现感知功能。例如,接收端在一段时间内可以接收多个来自发送端的PPDU,并对多个PPDU进行信道估计,分别得到CSI。接收端可以将得到的CSI发送给发送端。发送端可以对这一段时间内的CSI进行处理,得到这一段时间内的信道变化。或者,接收端可以对这一段时间内的CSI进行处理,得到这一段时间内的信道变化。通过信道变化,发送端或接收端可以判断信道所处的环境,得到感知结果。
然而,感知测量链路增益或功率的调整会对感知结果引入额外的影响,因此导致感知的结果并不准确。
发明内容
本申请提供一种信息传输方法和装置,用来提升感知性能。
第一方面,提供了一种信息传输方法。该方法可以由第一设备执行,或者类似第一设备功能的芯片执行。该方法中,第一设备接收来自第二设备的物理层协议数据单元(physical protocol data unit,PPDU)。其中,PPDU用于感知测量。第一设备向第二设备发送第一信息,第一信息指示自动增益控制(automatic gain control,AGC)的信息。其中,AGC用于指示接收PPDU时的AGC的档位。
基于上述方案,第一设备可以向第二设备反馈接收PPDU时的AGC的档位,也就是第一设备可以向第二设备反馈感知测量链路增益的调整,从而可以让第二设备在感知时能够确定信道变化是感知测量链路增益的调整带来的影响还是由于信道的环境带来的影响,可以提高感知结果的准确性。
在一种可能的实现方式中,第一信息包括以下中的一个或多个:低噪放大器(low noise amplifier,LNA)的档位信息、可变增益放大器(bariable gain amplifier,VGA)的档位信息、AGC饱和信息或AGC跳动信息。
在一个示例中,AGC饱和信息可以包含AGC饱和与AGC未饱和中的一个。可选的,在AGC未饱和时,第一信息中可以不携带AGC饱和信息。例如,AGC饱和可以理解为AGC调整过大。
另一个示例中,AGC跳动信息可以包含AGC跳动与AGC未跳动中的一个。可选的,在AGC未跳动时,第一信息中可以不携带AGC跳动信息。例如,AGC跳动可以理解为AGC的档位发生变化。
基于上述方案,第一设备可以向第二设备反馈AGC,如LNA的档位信息、VGA的档位信息、AGC饱和信息或AGC跳动信息,从而可以让第二设备确定第一设备侧的增益是否有所调整。
在一种可能的实现方式中,第一信息携带在感知测量报告帧或信道状态信息(channel state information,CSI)帧中。例如,第一信息可以携带在感知测量报告帧中的感知测量报告字段中。又例如,第一信息可以携带在CSI帧中的CSI报告字段或CSI报告控制字段中。
基于上述方案,第一设备可以将AGC携带在CSI帧中发送给第二设备,这样第二设备可以根据CSI帧中AGC,确定对CSI帧的处理方式。例如,如果第二设备确定第一信息包括AGC饱和,也就是第一设备接收PPDU时出现了AGC饱和的情况,则第二设备可以选择不使用该CSI帧中包含的CSI进行感知。
在一种可能的实现方式中,第一信息携带在以下中的一项中:定向多吉比特(directional multi-gigabit,DMG)感知报告元素、DMG信道测量反馈元素或增强型定向多吉比特(enhanced directional multi-gigabit,EDMG)信道测量反馈元素。
基于上述方案,在高频场景中第一设备也可以将AGC发送给第二设备,以增强感知性能。
在一种可能的实现方式中,第一信息还包括DMG感知实例的标识、DMG感知组发的标识和DMG测量程序的标识中的一个或多个。其中,一个DMG感知组发中包含一个或多个DMG感知实例,一个DMG测量程序中包含一个或多个DMG感知组发,一个DMG感知实例表征一次感知。
一种可能的情况中,如果AGC在每个DMG感知实例都发生了调整,AGC对应每个DMG感知实例。另一种可能的情况中,如果AGC在同一个感知组发保持稳定,在不同的DMG组发发生调整,则AGC需要对应每个DMG组发。再一种可能的情况中,如果AGC在同一个DMG测量程序内保持稳定,在不同的DMG测量程序发生调整,则AGC需要对应DMG测量程序。
基于上述方案,第一设备在发送AGC时,AGC可以对应一个DMG感知实例、一个DMG感知组发或者一个DMG测量程序。
在一种可能的实现方式中,第一设备可以对AGC的档位进行自校准,从而获取AGC的误差信息。第一设备可以向第二设备发送AGC的误差信息。
基于上述方案,第一设备可以向第二设备发送AGC的误差信息,从而在第二设备得到第一设备接收PPDU时的AGC时,根据AGC的误差信息对该AGC进行补偿,以提升感知性能。
第二方面,提供了一种信息传输方法。该方法可以由第二设备执行,或者类似第二设备功能的芯片执行。该方法中,第二设备向第一设备发送PPDU。PPDU用于感知测量。第二设备接收来自第一设备的第一信息,第一信息指示AGC。其中,AGC用于指示接收PPDU时的AGC的档位。
基于上述方案,第二设备可以获取到第一设备接收PPDU时的AGC的档位,也就是第二设备可以获取感知测量链路增益的调整,从而可以让第二设备在感知时确定信道变化是感知测量链路增益的调整带来的影响还是由于信道的环境带来的影响,可以提高感知结果的准确性。
在一种可能的实现方式中,第一信息包括以下中的一个或多个:LNA的档位信息、VGA的档位信息、AGC饱和信息或AGC跳动信息。
在一个示例中,AGC饱和信息可以包含AGC饱和与AGC未饱和中的一个。可选的,在AGC未饱和时,第一信息中可以不携带AGC饱和信息。需要说明的是,AGC饱和可以理解为AGC调整过大。
另一个示例中,AGC跳动信息可以包含AGC跳动与AGC未跳动中的一个。可选的,在AGC未跳动时,第一信息中可以不携带AGC跳动信息。需要说明的是,AGC跳动可以理解为AGC的档位发生变化。
基于上述方案,第二设备可以获取第一设备的AGC,如LNA的档位信息、VGA的档位信息、AGC饱和信息或AGC跳动信息,从而可以确定第一设备侧的增益是否有所调整。
在一种可能的实现方式中,第一信息携带在感知测量报告帧或CSI帧中。例如,第一信息可以携带在感知测量报告帧中的感知测量报告字段中。又例如,第一信息可以携带在CSI帧中的CSI报告字段或CSI报告控制字段中。
基于上述方案,第一设备可以将AGC携带在CSI帧中发送给第二设备,这样第二设备可以根据CSI帧中AGC,确定对CSI帧的处理方式。例如,如果第二设备确定第一信息包括AGC饱和,也就是第一设备接收PPDU时出现了AGC饱和的情况,则第二设备可以选择不使用该CSI帧中包含的CSI进行感知。
在一种可能的实现方式中,第一信息携带在以下中的一项中:DMG感知报告元素、DMG信道测量反馈元素或EDMG信道测量反馈元素。
基于上述方案,在高频场景中第二设备也可以获取AGC,以增强感知性能。
在一种可能的实现方式中,第一信息还包括DMG感知实例的标识、DMG感知组发的标识和DMG测量程序的标识中的一个或多个。其中,一个DMG感知组发中包含一个或多个DMG感知实例,一个DMG测量程序中包含一个或多个DMG感知组发,一个DMG感知实例表征一次感知。
一种可能的情况中,如果AGC在每个DMG感知实例都发生了调整,AGC对应每个DMG感知实例。另一种可能的情况中,如果AGC在同一个感知组发保持稳定,在不同的DMG组发发生调整,则AGC需要对应每个DMG组发。再一种可能的情况中,如果AGC在同一个DMG测量程序内保持稳定,在不同的DMG测量程序发生调整,则AGC需要对应DMG测量程序。
基于上述方案,第一设备的AGC可以对应一个DMG感知实例、一个DMG感知组发或者一个DG测量程序。
在一种可能的实现方式中,第二设备可以从第一设备接收AGC的误差信息。
基于上述方案,第二设备可以获取到第一设备的AGC的误差信息,从而在第二设备得到第一设备接收PPDU时的AGC时,根据AGC的误差信息对该AGC进行补偿,以提升感知性能。
第三方面,提供了一种信息传输方法。该方法可以由第一设备执行,或者类似第一设备功能的芯片执行。该方法中,第一设备向第二设备发送第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于指示同一PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。
基于上述方案,第一设备可以向第二设备指示同一PPDU的功率,分别为第一功率和第二功率,这样第二设备可以基于第一功率和第二功率发送PPDU或者生成CSI,从而可以减少由于PPDU的实际发送功率的跳动对感知结果造成的影响,可以提升感知性能。
在一种可能的实现方式中,第一功率为PPDU待数模转换器处理的功率,第二功率为PPDU的实际发送功率。
基于上述方案,第一设备可以向第二设备发送PPDU待数模转换器处理的功率,也就是PPDU在数字域内的功率,以及PPDU的实际发送功率,从而可以让第二设备判断PPDU的功率调整情况,这样第二设备在感知时可以根据PPDU的功率调整情况对CSI进行补偿,可以提升感知性能。
在一种可能的实现方式中,第一功率指示信息携带在空数据包声明帧(null data packet auunouncement,NDPA)中或EDMG传输功率元素中。
基于上述方案,第一设备可以在NDPA或EDMG传输功率元素中向第二设备发送第一功率指示信息,从而可以让第二设备获取到PPDU待数模转换器处理的功率。
在一种可能的实现方式中,第一功率为第二信息的功率,第二功率为第三信息的功率。其中,第二信息包括PPDU中用于感知测量的字段,第三信息包括PPDU中除用于感知测量的字段以外的其他字段。
基于上述方案,第一设备分别向第二设备发送第二信息的第一功率和第三信息的第二功率,从而让第二设备在发送PPDU时,将第二信息和第三信息以不同的功率发送,以减少PPDU的实际发送功率的跳动对感知结果造成的影响,提升感知性能。
可选的,第二功率指示信息为目标(target)接收信号强度指示器(received signal strength indicator,RSSI)。第一功率指示信息指示的第一功率为固定值。
基于上述方案,第一设备可以向第二设备指示第二信息的功率为固定值,并向第二设备指示第三信息的期望接收功率,从而让第二设备在发送PPDU时分别以不同的功率发送第二信息和第三信息。其中,由于用于感知测量的字段的实际发送功率为固定值,也就是用于感知测量的字段的实际发送功率不会发生跳动,因此可以提高感知性能。此外,由于非感知测量的字段的功率是根据RSSI确定的,因此提升了第一设备对非感知测量的字段的解码率。
在一种可能的实现方式中,第二信息包括HE-STF。
基于上述方案,由于第一设备在接收PPDU时,可以根据HE-STF调整AGC,因此在用于感知测量的字段中包含HE-STF时,AGC的调整可以符合用于感知测量的字段,以提高用于感知测量的字段的接收成功率。
在一种可能的实现方式中,第一功率指示信息携带在站点(station,STA)信息、触发帧或波束精炼协议(beam refinement protocol,BRP)帧中。
第四方面,提供了一种信息传输方法。该方法可以由第二设备或者类似第二设备功能的芯片执行。该方法中,第二设备接收来自第一设备的第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于同一指示PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。
基于上述方案,第二设备可以获取同一PPDU的功率,分别为第一功率和第二功率,这样第二设备可以基于第一功率和第二功率发送PPDU或者生成CSI,从而可以减少由于PPDU的实际发送功率的跳动对感知结果造成的影响,可以提升感知性能。
在一种可能的实现方式中,第一功率为PPDU待数模转换器处理的功率,第二功率为PPDU的实际发送功率。
基于上述方案,第二设备可以获取PPDU待数模转换器处理的功率,也就是PPDU在数字域内的功率,以及PPDU的实际发送功率,从而可以让判断PPDU的功率调整情况,这样第二设备在感知时可以根据PPDU的功率调整情况对CSI进行补偿,可以提升感知性能。
在一种可能的实现方式中,第一功率指示信息携带在NDPA或EDMG传输功率元素中。
在一种可能的实现方式中,第二设备根据第一功率发送第二信息。第二信息包括PPDU中用于感知测量的字段。第二设备根据第二功率发送第三信息。第三信息包括PPDU中除用于感知测量的字段以外的其他字段。
基于上述方案,第二设备可以获取第二信息的第一功率和第三信息的第二功率,从而让第二设备在发送PPDU时,将第二信息和第三信息以不同的功率发送,以减少PPDU的实际发送功率的跳动对感知结果造成的影响,提升感知性能。
可选的,第二功率指示信息为目标(target)RSSI。第一功率指示信息指示的第一功率为固定值。
基于上述方案,第一设备可以向第二设备指示第二信息的功率为固定值,并向第二设备指示第三信息的期望接收功率,从而让第二设备在发送PPDU时分别以不同的功率发送第二信息和第三信息。其中,由于用于感知测量的字段的实际发送功率为固定值,也就是用于感知测量的字段的实际发送功率不会发生跳动,因此可以提高感知性能。此外,由于非感知测量的字段的功率是根据RSSI确定的,因此提升了第一设备对非感知测量的字段的解码率。
在一种可能的实现方式中,第二信息包括HE-STF。
基于上述方案,由于第一设备在接收PPDU时,可以根据HE-STF调整AGC,因此在用于感知测量的字段中包含HE-STF时,AGC的调整可以符合用于感知测量的字段,以提高用于感知测量的字段的接收成功率。
在一种可能的实现方式中,第一功率指示信息携带在STA信息、触发帧或波束精炼协议BRP帧中。
第五方面,提供了一种通信装置,包括:收发单元和处理单元。
收发单元,用于接收来自第二设备的PPDU。其中,PPDU用于感知测量。处理单元,用于生成第一信息,第一信息指示AGC。其中,AGC用于指示接收PPDU时的AGC的档位。收发单元,还用于向第二设备发送第一信息。
在一种可能的实现方式中,第一信息包括以下中的一个或多个:LNA的档位信息、VGA的档位信息、AGC饱和信息或AGC跳动信息。
在一个示例中,AGC饱和信息可以包含AGC饱和与AGC未饱和中的一个。可选的,在AGC未饱和时,第一信息中可以不携带AGC饱和信息。需要说明的是,AGC饱和可以理解为AGC调整过大。另一个示例中,AGC跳动信息可以包含AGC跳动与AGC未跳动中的一个。可选的,在AGC未跳动时,第一信息中可以不携带AGC跳动信息。需要说明的是,AGC跳动可以理解为AGC的档位发生变化。
在一种可能的实现方式中,第一信息携带在感知测量报告字段或CSI帧中。例如,第一信息可以携带在感知测量报告帧中的感知测量报告字段中。又例如,第一信息可以携带在CSI帧中的CSI报告字段或CSI报告控制字段中。
在一种可能的实现方式中,第一信息携带在以下中的一项中:DMG感知报告元素、DMG信道测量反馈元素或EDMG信道测量反馈元素。
在一种可能的实现方式中,第一信息还包括DMG感知实例的标识、DMG感知组发的标识和DMG测量程序的标识中的一个或多个。其中,一个DMG感知组发中包含一个或多个DMG感知实例,一个DMG测量程序中包含一个或多个DMG感知组发,一个DMG感知实例表征一次感知。
一种可能的情况中,如果AGC在每个DMG感知实例都发生了调整,AGC对应每个DMG感知实例。另一种可能的情况中,如果AGC在同一个感知组发保持稳定,在不同的DMG组发发生调整,则AGC需要对应每个DMG组发。再一种可能的情况中,如果AGC在同一个DMG测量程序内保持稳定,在不同的DMG测量程序发生调整,则AGC需要对应DMG测量程序。
在一种可能的实现方式中,处理单元还用于对AGC的档位进行自校准,获取AGC的误差信息。收发单元,还用于向第二设备发送AGC的误差信息。
第六方面,提供了一种通信装置,包括:处理单元和收发单元。
处理单元,用于生成PPDU。其中,PPDU用于感知测量。收发单元,用于向第一设备发送PPDU。收发单元,还用于接收来自第一设备的第一信息,第一信息指示AGC。其中,AGC用于指示接收PPDU时的AGC的档位。
在一种可能的实现方式中,第一信息包括以下中的一个或多个:LNA的档位信息、VGA的档位信息、AGC饱和信息或AGC跳动信息。
在一个示例中,AGC饱和信息可以包含AGC饱和与AGC未饱和中的一个。可选的,在AGC未饱和时,第一信息中可以不携带AGC饱和信息。需要说明的是,AGC饱和可以理解为AGC调整过大。
另一个示例中,AGC跳动信息可以包含AGC跳动与AGC未跳动中的一个。可选的,在AGC未跳动时,第一信息中可以不携带AGC跳动信息。需要说明的是,AGC跳动可以理解为AGC的档位发生变化。
在一种可能的实现方式中,第一信息携带在感知测量报告字段或CSI帧中。例如,第 一信息可以携带在感知测量报告帧中的感知测量报告字段中。又例如,第一信息可以携带在CSI帧中的CSI报告字段或CSI报告控制字段中。
在一种可能的实现方式中,第一信息携带在以下中的一项中:DMG感知报告元素、DMG信道测量反馈元素或EDMG信道测量反馈元素。
在一种可能的实现方式中,第一信息还包括DMG感知实例的标识、DMG感知组发的标识和DMG测量程序的标识中的一个或多个。其中,一个DMG感知组发中包含一个或多个DMG感知实例,一个DMG测量程序中包含一个或多个DMG感知组发,一个DMG感知实例表征一次感知。
一种可能的情况中,如果AGC在每个DMG感知实例都发生了调整,AGC对应每个DMG感知实例。另一种可能的情况中,如果AGC在同一个感知组发保持稳定,在不同的DMG组发发生调整,则AGC需要对应每个DMG组发。再一种可能的情况中,如果AGC在同一个DMG测量程序内保持稳定,在不同的DMG测量程序发生调整,则AGC需要对应DMG测量程序。
在一种可能的实现方式中,收发单元,还用于从第一设备接收AGC的误差信息。
第七方面,提供了一种通信装置,包括:处理单元和收发单元。
处理单元,用于生成第一功率指示信息和第二功率指示信息。收发单元,用于向第二设备发送第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于指示同一PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。
在一种可能的实现方式中,第一功率为PPDU待数模转换器处理的功率,第二功率为PPDU的实际发送功率。
在一种可能的实现方式中,第一功率指示信息携带在NDPA中或EDMG传输功率元素中。
在一种可能的实现方式中,第一功率为第二信息的功率,第二功率为第三信息的功率。其中,第二信息包括PPDU中用于感知测量的字段,第三信息包括PPDU中除用于感知测量的字段以外的其他字段。
可选的,第二功率指示信息为目标(target)RSSI。第一功率指示信息指示的第一功率为固定值。
在一种可能的实现方式中,第二信息包括HE-STF。
在一种可能的实现方式中,第一功率指示信息携带在STA信息、触发帧或BRP帧中。
第八方面,提供了一种通信装置,包括:处理单元和收发单元。
收发单元,用于接收来自第一设备的第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于同一指示PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。处理单元,用于根据第一功率和第二功率生成CSI或者PPDU。
在一种可能的实现方式中,第一功率为PPDU待数模转换器处理的功率,第二功率为PPDU的实际发送功率。
在一种可能的实现方式中,第一功率指示信息携带在NDPA或EDMG传输功率元素 中。
在一种可能的实现方式中,收发单元,还用于根据第一功率发送第二信息。第二信息包括PPDU中用于感知测量的字段。收发单元,还用于根据第二功率发送第三信息。第三信息包括PPDU中除用于感知测量的字段以外的其他字段。
可选的,第二功率指示信息为目标(target)RSSI。第一功率指示信息指示的第一功率为固定值。
在一种可能的实现方式中,第二信息包括HE-STF。
在一种可能的实现方式中,第一功率指示信息携带在STA信息、触发帧或波束精炼协议BRP帧中。
第九方面,本申请提供一种通信装置,包括处理器,处理器和存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行计算机程序或指令,以执行上述第一方面至第四方面的各实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。该处理器的数量为一个或多个。
第十方面,本申请提供一种通信装置,包括:处理器和接口电路,接口电路用于与其它装置通信,处理器用于上述第一方面至第四方面的各实现方法。
第十一方面,提供了一种通信装置。该装置包括逻辑电路和输入输出接口。
在一种设计中,输入输出接口,用于输入来自第二设备的PPDU。其中,PPDU用于感知测量。逻辑电路,用于生成第一信息,第一信息指示AGC。其中,AGC用于指示接收PPDU时的AGC的档位。输入输出接口,还用于向第二设备输出第一信息。
在一种设计中,逻辑电路,用于生成PPDU。其中,PPDU用于感知测量。输入输出接口,用于向第一设备输出PPDU。输入输出接口,还用于输入来自第一设备的第一信息,第一信息指示AGC。其中,AGC用于指示接收PPDU时的AGC的档位。
在一种设计中,逻辑电路,用于生成第一功率指示信息和第二功率指示信息。输入输出接口,用于向第二设备输出第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于指示同一PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。
在一种设计中,输入输出接口,用于输入来自第一设备的第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于同一指示PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。逻辑电路,用于根据第一功率和第二功率生成CSI或者PPDU。
第十二方面,本申请提供一种通信***,包括:用于执行上述第一方面各实现方法的通信装置和用于执行上述第二方面各实现方法的通信装置。
第十三方面,本申请提供一种通信***,包括:用于执行上述第三方面各实现方法的通信装置和用于执行上述第四方面各实现方法的通信装置。
第十四方面,本申请还提供一种芯片***,包括:处理器,用于执行上述第一方面至第四方面的各实现方法。
第十五方面,本申请还提供一种计算程序产品,包括计算机执行指令,当计算机执行指令在计算机上运行时,使得上述第一方面至第四方面的各实现方法被执行。
第十六方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有 计算机程序或指令,当指令在计算机上运行时,实现上述第一方面至第四方面的各实现方法。
上述第五方面至第十六方面达到的技术效果可以参考第一方面至第四方面中的技术效果,此处不再重复赘述。
附图说明
图1为本申请实施例提供的通信***的示意图;
图2为本申请实施提供的一种信号传输方法的示例性流程图之一;
图3A为本申请实施例提供的一种感知流程的示例性流程图之一;
图3B为本申请实施例提供的一种感知流程的示例性流程图之一;
图3C为本申请实施例提供的一种感知流程的示例性流程图之一;
图3D为本申请实施例提供的一种感知流程的示例性流程图之一;
图3E为本申请实施例提供的一种感知流程的示例性流程图之一;
图4为本申请实施例提供的DMG感知报告元素的结构示意图;
图5为本申请实施例提供的NDPA中的STA信息的结构示意图;
图6为本申请实施提供的一种信号传输方法的示例性流程图之一;
图7为本申请实施提供的一种信号传输方法的示例性流程图之一;
图8为本申请实施例提供的LMR的结构示意图;
图9为本申请实施提供的一种信号传输方法的示例性流程图之一;
图10A为本申请实施例提供的一种PPDU的结构示意图之一;
图10B为本申请实施例提供的一种PPDU的结构示意图之一;
图11为本申请实施例提供的NDPA的结构示意图;
图12为本申请实施例提供的一种通信装置的结构示意图之一;
图13为本申请实施例提供的一种通信装置的结构示意图之一;
图14为本申请实施例提供的一种通信装置的结构示意图之一;
图15为本申请实施例提供的一种通信装置的结构示意图之一。
具体实施方式
以下,对本申请实施例涉及的技术术语进行解释和说明。
1)感知测量,又可以称为无线感知,指发送端和接收端通过传输信号,实现发现目标或确定目标状态的目的。无线局域网(wireless local area network,WLAN)感知是指具有WLAN感知能力的站点(station,STA)使用接收到的WLAN信号来检测给定环境中预期目标的特征。例如,特征包括范围、速度、角度、运动、存在或接近、手势等中的一项或多项。目标包括物体、人、动物等中的一项或多项。环境包括房间、房屋、车辆、企业等中的一项或多项。
例如,发送端可以向接收端发送用于感知测量的信号,接收端可以测量该信号得到信道估计结果,如CSI。接收端可以根据CSI进行感知。或者,接收端可以向发送端发送该信道估计结果,发送端基于信道估计结果进行目标感知或者目标状态感知。例如,接收端或发送端可以对CSI进行处理,从而判断环境中是否存在运动目标。示例性的,假设环境 中存在运动目标,而目标运动会对这一段时间内的PPDU的幅度和频率等造成影响,这些影响会体现在这一段时间内的CSI中。因此,接收端或发送端可以基于CSI判断环境中是否存在运动目标。在感知过程中,参与感知的设备主要由以下几种角色:
感知发起端(sensing initiator):发起感知流程的设备。
感知响应端(sensing responder):响应感知发起端发起的感知,参与感知的设备。
感知发送端(sensing transmitter):发送感知信号的设备。其中,感知信号可以是指用于感知测量的信号,如PPDU。感知接收端可以对感知信号进行测量。
感知接收端(sensing receiver):接收感知信号的设备。
2)实际发送功率,又可以称为发送功率,指发送信号时天线端口的功率。或者,可以理解为实际发送信号时所采用的功率。
3)数字域功率,指信号待数模转换器(digital to analog converter,DAC)处理的功率。可以理解为,信号在进入DAC之前的功率。
4)射频(radio frequency,RF)功率,又可以称为模拟域功率,指信号在模拟域的功率。可以理解为,在经过DAC之后至天线端口的功率。
以下,结合附图对本申请实施例提供的信息传输方法进行解释和说明。
本申请实施例可以适用于WLAN的场景,例如,可以适用于电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11***标准,例如802.11a/b/g、802.11n、802.11ac、802.11ax标准,或其下一代,例如802.11be标准,Wi-Fi 7或极高吞吐率(extremely high throughput,EHT),802.11ad,802.11ay,802.11bf,再如802.11be下一代,例如Wi-Fi 8或更下一代的标准中。或者本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网***中。当然,本申请实施例还可以适用于其他可能的通信***,例如,LTE***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、5G通信***、以及未来的6G通信***等。
下文以本申请实施例可以适用于WLAN的场景为例。应理解,WLAN从802.11a/g标准开始,历经802.11n、802.11ac、802.11ax和如今正在讨论的802.11be。其中802.11n也可称为高吞吐率(high throughput,HT);802.11ac也可称为非常高吞吐率(very high throughput,VHT);802.11ax也可称为高效(high efficiency,HE)或者Wi-Fi 6;802.11be也可称为EHT或者Wi-Fi 7,而对于HT之前的标准,如802.11a/b/g等可以统称为非高吞吐率(Non-HT)。
参阅图1,示出了本申请实施例适用的一种WLAN的网络架构图。图1以该WLAN包括1个无线接入点(access point,AP)和2个站点(station,STA)为例。与AP关联的STA,能够接收该AP发送的无线帧,也能够向该AP发送无线帧。另外,本申请实施例同样适用于AP与AP之间的通信,例如各个AP之间可通过分布式***(distributed system,DS)相互通信,本申请实施例也适用于STA与STA之间的通信。应理解,图1中的AP和STA的数量仅是举例,还可以更多或者更少。
其中,接入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署 于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有Wi-Fi芯片的终端设备(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a以及802.11be下一代等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式的设备。本申请中的接入点可以是HE AP或极高吞吐量(extremely high throughput,EHT)AP,还可以是适用未来某代Wi-Fi标准的接入点。
站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,站点可以为支持Wi-Fi通讯功能的移动电话、支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a、802.11be下一代等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式。
本申请中的站点可以是HE STA或极高吞吐量(extremely high throughput,EHT)STA,还可以是适用未来某代Wi-Fi标准的STA。
例如,接入点和站点可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
本申请实施例所涉及到的AP和STA可以为适用于IEEE 802.11***标准的AP和STA。AP是部署在无线通信网络中为其关联的STA提供无线通信功能的装置,该AP可用作该通信***的中枢,通常为支持802.11***标准的MAC和PHY的网络侧产品,例如可以为基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。在此,为了描述方便,上面提到的设备统称为AP。STA通常为支持802.11***标准的介质访问控制(media access control,MAC)和物理层(physical,PHY)的终端产品,例如手机、笔记本电脑等。
目前,接收端和发送端可以通过观测多个PPDU实现感知功能。例如,接收端在一段时间内可以接收多个来自发送端的PPDU,并对多个PPDU进行信道估计,分别得到CSI。接收端或发送端可以对这一段时间内的CSI进行处理,得到这一段时间内的信道变化。通过信道变化,接收端或发送端可以判断信道所处的环境,得到感知结果。
为了避免感知测量链路增益或功率的调整引入额外的影响,在感知的这段时间内,希望感知测量链路的保持稳定。举例来说,如果感知测量链路的增益或功率有所调整,则发送端无法确定这一段时间内信道变化是由于环境的影响还是由于感知测量链路的增益或功率有所调整带来的影响。因此,感知结果并不准确。
其中,感知测量链路可以理解为发送端和接收端用于传输感知信息的通信链路。需要说明的是,感知测量链路可以与发送端和接收端之间的通信链路是同一条链路,也就是在形态上并不区分感知测量链路和通信链路。而在感知场景中,更注重感知测量链路的稳定。
其中,感知测量链路增益或功率可以包括发送端上的增益或功率的控制,和/或,接收端上的增益或功率控制。
从发送端来看,增益或功率控制主要涉及数字域功率和模拟域功率两个部分。数字域 功率是指发送端所要发送的PPDU在DAC之前的数字域中的信号功率。当功率放大器(power amplifier,PA)位于较好的线性区域时,数字域功率的调整具有较好的线性特性。模拟域功率是指PPDU经过PA到达天线端口时的功率,调整范围较大。但是,模拟域功率由于PA工作点的影响,容易受到器件(PA)非线性的影响。
从接收端来看,增益或功率控制主要涉及自动增益控制(automatic gain control,AGC)的调整。其中,AGC可以包括低噪声放大器(low noise amplifier,LNA)和/或可变增益放大器(variable gain amplifier,VGA)。例如,LNA的调整档位间隔较大,每个档位潜在差别6dB。例如,VGA的调整档位间隔较小,每个档位潜在差0.25-0.5dB。所以,当对AGC进行调整时,可以通过调整LNA和/或VGA来实现。
目前,接收端在接收PPDU的过程中会进行AGC的调整,也就是感知测量链路的增益或功率会有所调整。因此,发送端根据接收端反馈的CSI得到的感知结果并不准确。
有鉴于此,本申请实施例提供一种信息传输方法。在该方法中,接收端在接收到来自发送端的PPDU之后,可以向发送端发送链路增益或功率的调整的信息,如AGC的相关信息。由此,发送端可以根据AGC的相关信息以及接收端反馈的信道质量来进行感知。参阅图2,为本申请实施例提供的信息传输方法的示例性流程图,可以包括以下操作。图2所示的实施例中,第一设备可以是如图1所示的STA或者AP,第二设备可以是如图1所示的STA或者AP。在一个示例中,第一设备是STA时,第二设备可以是STA或者AP。另一个示例中,第一设备是AP时,第二设备可以是STA。
S201:第二设备向第一设备发送PPDU。
相应的,第一设备接收来自第二设备的PPDU。其中,该PPDU用于感知测量。
一种可能的情况中,图2所示的实施例中,感知发起端可以是感知发送端。例如,由第二设备确定发起感知流程,并向第一设备发送PPDU。其中,第二设备确定发起感知流程的方式,本申请不做具体限定。例如,第二设备可以在满足一定条件时,确定发起感知流程,从而向第一设备发送PPDU。或者,第二设备可以与第一设备通过协商确定发起感知流程。
S202:第一设备向第二设备发送第一信息。
相应的,第二设备接收来自第一设备的第一信息。
上述第一信息可以指示AGC。其中,这里的AGC用于指示接收S201中的PPDU时的AGC的档位。换句话说,AGC与S201中的PPDU对应。可以理解的是,第一设备(也就是感知接收端)在接收S201中的PPDU时,会在接收PPDU的时候进行AGC的调整。S202中的第一信息可以是接收PPDU时AGC的档位。其中,AGC的档位可以理解为接收端的增益。
上述AGC的档位可以包括AGC中的LNA的档位信息、AGC中的VGA的档位信息或AGC饱和信息中的至少一个。例如,AGC的档位包括LNA的档位信息时,LNA的档位信息取值越大增益越大。假设LNA的档位信息包含1和2,那么LNA的档位信息取值为2时的增益大于LNA的档位信息取值为1时的增益。或者,LNA的档位信息取值越小增益越大。
又例如,AGC的档位包括VGA的档位信息时,VGA的档位信息取值越大增益越大。假设VGA的档位信息包含1至32,那么VGA的档位信息取值为32时的增益大于VGA的档位信息取值为31时的增益。或者,VGA的档位信息取值越小增益越大。
又例如,AGC的档位包括AGC饱和信息时,如果AGC饱和信息指示AGC饱和,那么可以认为增益过大。如果AGC饱和信息指示AGC未饱和,那么可以认为增益在合理范围内。
一种可能的情况中,第一信息可以包括以下信息中的一个或多个:AGC中的LNA的档位信息、AGC中的VGA的档位信息、AGC饱和信息、AGC跳动信息、AGC变化信息或第一指示信息。
在一个示例中,第一信息可以包含LNA的档位信息和VGA的档位信息中的至少一个。例如,第一设备可以通过第一信息中的第一比特序列指示LNA的档位信息。需要说明的是,第一比特序列的长度与LNA的档位信息相关。又例如,第一设备可以通过第二比特序列指示VGA的档位信息。需要说明的是,第二比特序列的长度与VGA的档位信息相关。又例如,第一设备可以通过第一信息中的第一比特序列携带LNA的档位信息,通过第一信息中的第二比特序列携带VGA的档位信息。
又一个示例中,第一设备可以将LNA的档位信息与VGA的档位信息组合成一个AGC发送给第二设备。换句话说,AGC可以通过第一信息中的第三比特序列来指示LNA的档位信息与VGA的档位信息。也可以理解为:AGC可以通过第一信息中的第三比特序列来指示AGC。例如,第三比特序列的取值与LNA的档位信息以及VGA的档位信息都相关。例如,假设第一设备的LNA有两个档位分别为1和2,第一设备的VGA有32的档位,分别为1至32。为了将LNA的档位信息与VGA的档位信息组合成一个AGC,可以将AGC分为1至64。这种情况下,第三比特序列指示的AGC可以参考表1。其中,AGC为1~32时,表示LNA的档位为1,VGA的档位分别为1至32。具体的,假设AGC为3,那么认为LNA的档位为1,VGA的档位为3。假设AGC的档位为32,那么认为LNA的档位为1,VGA的档位为32。以此类推,在AGC为33~64时,认为LNA的档位为2,VGA的档位分别为1至32。具体的,假设AGC为34,那么认为LNA的档位为2,VGA的档位为2。
可以理解的是,第三比特序列的长度可以与LNA的档位信息与VGA的档位信息都相关。
另一个示例中,AGC饱和信息可以包括AGC饱和或AGC未饱和。可选的,在AGC未饱和时,第一信息中可以不携带AGC饱和信息。在AGC饱和时,第一信息中可以携带AGC饱和的指示信息。其中,AGC饱和可以理解为AGC调整过大,因此感知测量链路增益过大。可以理解的是,AGC可以对信号的幅度进行放大,如果AGC调整过大,也就是AGC对信号的幅度放大得过大,这样信号在经过模数转换器(ADC)时会出现削头的效应,也就是信号的幅度会有一部分变成直线。例如,可以将信号的幅度看做一个抛物线,如果AGC调整过大,抛物线的顶部会变成直线,且纵坐标值低于原抛物线顶点的纵坐标值,这对信道变化的判断有较大的影响。AGC未饱和可以理解为,AGC的调整在正常范围内。其中,正常范围可以根据设备不同而不同。
AGC跳动信息可以包括AGC跳动或AGC未跳动。可选的,在AGC未跳动时,第一信息中可以不携带AGC跳动信息。需要说明的是,AGC跳动可以理解为AGC的档位发生变化,AGC未跳动可以理解为AGC的档位未发生变化。例如,在AGC跳动时,第一信息可以包含AGC跳动的指示信息。可选的,在AGC跳动时,第一信息中可以不包含AGC的档位信息,如LNA的档位信息和VGA的档位信息。
又一个示例中,AGC变化信息可以指示AGC变化超过第一门限或AGC变化未超过第一门限。在AGC变化超过第一门限时,接收端的增益调整过大。其中,AGC变化可以包含LNA的档位变化和/或VGA的档位变化。LNA的档位变化可以理解为接收第一PPDU时LNA的档位与接收第二PPDU时LNA的档位的差值、差值的绝对值或者比值等。需要说明的是,第二PPDU的接收时刻在第一PPDU的接收时刻之前。VGA的档位变化可以理解为接收第一PPDU时VGA的档位与接收第二PPDU时VGA的档位的差值、差值的绝对值或者比值等。
上述第一门限可以是自定义的,如第一门限等于2、3等。在LNA的档位变化超过第一门限或者VGA的档位变化超过第一门限或者LNA的档位变化与VGA的档位变化之和超过第一门限时,可以认为AGC变化超过第一门限。在AGC变化超过第一门限时,第一信息中可以包含AGC变化信息,指示AGC变化超过第一门限。在AGC变化未超过第一门限时,第一信息中可以不包含AGC变化信息,或者第一信息中可以包含AGC变化信息指示AGC变化未超过第一门限。
再一个示例中,第一指示信息可以指示AGC过小或AGC未过小。其中,AGC过小可以理解为PPDU经过AGC后,到达ADC时无法有效采样,这是因为AGC对PPDU的增益过小。AGC过小可以是经过AGC后的信号(如PPDU),也就是待ADC处理的信号的幅度或能量小于阈值。其中,阈值可以是预设的。在AGC过小时,第一信息中可以包含第一指示信息指示AGC过小。在AGC没有过小时,第一信息中可以不包含第一指示信息,或者第一信息中可以包含第一指示信息指示AGC未过小。
基于上述方案,第一设备可以向第二设备发送AGC,从而可以让第二设备了解到感知测量链路增益或功率的调整,因此可以在第二设备对CSI进行处理时,考虑到感知测量链路增益或功率的调整,以提升感知性能。
在一种可能的实现方式中,第一设备还可以根据接收到的PPDU进行信道估计,得到CSI。第一设备可以将该CSI发送给第二设备。可选的,第一设备可以在S202中将第一信息和CSI发送给第二设备。
一种可能的情况中,第二设备可以对CSI进行处理。可以理解的是,由于第一设备反馈了第一信息,因此第二设备可以根据第一信息对CSI进行处理。例如,如果第二设备确定S202中第一信息包括AGC饱和,也就是第一设备接收该CSI对应的PPDU时出现了AGC饱和的情况,则第二设备可以选择不使用该CSI进行感知。又例如,如果第二设备接收到多个CSI反馈之后,可以选择相同基于AGC对应的CSI进行处理。举例来说,选择AGC相同的第一设备发送的CSI进行处理,以排除AGC跳动引入的影响。或者,第二设备还可以通过携带的S202中第一信息包含的AGC,如LNA的档位信息,VGA的档位信息来对AGC的档位的跳动进行补偿,增强感知性能。
可以理解的是,第二设备可以根据AGC的误差信息对AGC的档位的跳动进行补偿。其中,AGC的误差信息可以是第一设备指示的。换句话说,可选的,第二设备从第一设备接收AGC的误差信息。举例来说,第一设备可以进行AGC的自校准。需要说明的是,本申请实施例对AGC的自校准的具体方式不做限制,AGC的自校准方式可以是预定义的或者可以使基于不同通信环境确定的。
第一设备通过AGC的自校准可以获取AGC的误差信息。该AGC的误差信息中可以包含每个AGC对应的误差信息。例如,AGC的误差信息可以包含每一个LNA的档位信 息对应的误差,和/或每个VGA的档位信息对应的误差。以下,通过表2对AGC的误差信息进行介绍。
表2:AGC的误差信息的示例
表2中,假设LNA有N(n=1,2,…,N)个档位,VGA有M(m=1,2,…,M)个档位。其中,N和M分别为正整数。每个档位在校准后对应不同的误差。可以理解的是,表2作为AGC的误差信息的示例,本申请实施例对AGC的误差信息的形式不做具体限定。例如,LNA档位为n时,可以对应xdB的误差,LNA档位为n+1时可以对应ydB的误差。可以理解的是,x和y可以是实数。又例如,LNA档位为n且VGA档位为m时可以对应x1dB的误差,LNA档位为n且VGA档位为m+1时,可以对应y1dB的误差;LNA档位为n+1且VGA档位为m时可以对应x2dB的误差,LNA档位为n+1且VGA档位为m+1时可以对应y2dB的误差。可以理解的是,x1、y1、x2和y2是实数。
基于上述方案,第一设备可以向第二设备发送AGC的误差信息,从而在第二设备得到第一设备接收PPDU时的AGC时,根据AGC的误差信息对该AGC进行补偿,以提升感知性能。
在一种可能的实现方式中,第一设备与第二设备可以协商是否需要反馈第一信息。以下,分别以图3A至图3E为例,介绍不同的感知流程。
参阅图3A,在该流程中,由发起端STA(initiator STA,ISTA)先发送空数据包声明帧(null data packet announcement,NDPA)。该NDPA可以携带空数据包(null data packet,NDP)的信息。间隔短帧间距(short inter frame space,SIFS)之后,ISTA向响应端STA(responder STA,RSTA)发送I2R NDP用以进行测量。再间隔SIFS之后,RSTA向ISTA发送R2I NDP用以进行测量。间隔SIFS之后,RSTA向ISTA发送位置测量反馈(location measurement report,LMR)信息。ISTA可以根据LMR信息,确定RSTA的运动状态。
可选的,在ISTA发送的NDPA中可以携带第一信息的请求信息。该第一信息的请求信息可以用于向RSTA请求第一信息。换句话说,RSTA在接收到I2R NDP后,可以根据该第一信息的请求信息向ISTA发送接收该I2R NDP时的第一信息。这种情况下,第一信息所指示的AGC用于指示接收该I2R NDP时的AGC的档位。
参阅图3B,在该流程中,由ISTA向RSTA发送感知(sensing)NDPA。在间隔SIFS之后,ISTA可以向RSTA发送I2R NDP。再间隔SIFS之后,RSTA可以向ISTA发送R2I NDP。可选的,在ISTA发送的感知NDPA中可以携带上述第一信息的请求信息。
可以理解的是,图3B所示的感知流程中并未示出由哪一方进行感知测量,以及是否需要进行CSI的反馈,本申请实施例对哪一方进行感知测量,以及是否需要进行CSI的反馈不进行具体限定。可选的,在图3B所示的流程中,可以由RSTA在接收到R2I NDP后进行感知测量得到CSI,并将该CSI发送给ISTA。
参阅图3C,在该流程中,ISTA可以触发多个RSTA进行感知流程。如图3C所示,在轮询阶段(polling phase),ISTA可以向RSTA1至RSTA3发送感知轮询触发(sensing poll trigger)帧,以触发RSTA1至RSTA3进行感知流程。RSTA1至RSTA3可以分别向ISTA发送响应帧(cts-to-self)。可选的,在感知轮询触发帧中可以携带上述第一信息的请求信息。
在触发帧(trigger frame,TF)测量阶段(sounding phase),ISTA可以触发RSTA1和RSTA2发送R2I NDP。ISTA可以分别向RSTA1和RSTA2发送感知测量触发(sensing sounding trigger)帧。RSTA1和RSTA2可以分别向ISTA发送R2I NDP。ISTA可以根据这两个NDP进行感知测量,获取CSI并得到感知结果。向RSTA1和RSTA2发送感知测量触发(sensing report trigger)帧。RSTA1和RSTA2可以分别向ISTA发送R2I NDP。ISTA可以根据这两个NDP进行感知测量,获取CSI并得到感知结果。
在NDPA测量阶段(sounding phase),ISTA可以向RSTA3发送感知NDPA。ISTA可以向RSTA3发送I2R NDP。RSTA3可以根据该NDP进行感知测量。在报告阶段(reporting phase),ISTA可以触发RSTA3发送感知测量报告。ISTA可以向RSTA3发送感知报告触发(sensing report trigger)帧。RSTA3可以向ISTA发送感知测量报告(sensing measurement report)。可选的,感知触发报告帧中可以携带第一信息的请求信息。
参阅图3D,一种可能的情况中,ISTA可以向RSTA发送实例请求帧(instance request frame)。其中,实例请求帧可以用于请求建立或者发起感知测量实例。可以理解的是,感知测量实例可以用于标识一次感知测量。RSTA可以向发送实例响应帧(instance response frame)。其中,实例响应帧可以用于指示同意建立感知测量实例。可选的,该实例请求帧中可以包含第一信息的请求信息。
另一种可能的情况中,ISTA与RSTA通过上述实例请求帧与实例响应帧建立或发起感知测量实例后,ISTA可以向RSTA发送波束精炼协议(beam refinement protocol,BRP)帧中,如图3D所示的携带训练字段(tranining field,TRN)的BRP(BRP with TRN)帧。RSTA可以基于TRN进行感知测量。RSTA可以向ISTA发送携带报告的BRP(BRP with report)帧。可选的,该携带训练字段的BRP帧中可以包含第一信息的请求信息。
通过两种情况,ISTA可以与RSTA建立或者发起感知测量实例,这样ISTA可以与RSTA传输NDP用以进行感知测量(图中未示出)。例如,感知发起者也就是ISTA为感知发送端,感知响应者也就是RSTA为感知接收端。在该流程中,ISTA可以向RSTA发送I2R NDP以进行感知测量。
参阅图3E,介绍了一种中介感知(sensing by proxy,SBP)流程。其中,中介感知可以理解为感知发起者请求感知响应者作为中介设备,与第三方设备进行感知测量。其中,第三方设备可以是不同于感知发起者的设备,感知响应者或者说中介设备作为感知发送端。可选的,在中介感知的过程中,感知发起者也可以作为感知接收端参与到中介感知中。该流程中,STA1为SBP感知发起者,AP为SBP感知响应者。在该流程中,STA1可以请求由AP进行中介感知。例如,STA1可以向AP发送SBP建立请求(set up request)或SBP请求(SBP request)。AP可以向STA1发送SBP建立响应(set up response)或SBP响应(SBP response),以同意进行中介感知或不同意进行感知。在图3E所示的实施例中,如果AP同意进行中介感知,AP可以与STA2传输NDP以获得感知结果。STA2可以是感知接收端。可选的,AP也可以与STA1传输NDP以获得感知结果。AP可以将感知结果以及第一信息 发送给STA1。可选的,SBP请求或SBP建立请求中可以携带上述第一信息的请求信息。
可以理解的是,上述图3A至图3E所示的实施中,感知接收端的数量可以有一个或多个。
除上述图3A至图3E以外,第一设备与第二设备还可以通过测量建立请求帧(measurement setup request frame)发起感知流程。在一个示例中,第二设备可以向第一设备发送测量建立请求帧(measurement setup request frame)。其中,测量建立请求信息可以用于请求进行感知测量的建立,交互后续进行感知的相关参数。可选的,该测量建立请求信息中可以包含第一信息的请求消息。可以理解的是,第一信息的请求消息可以用于请求第一设备向第二设备发送第一信息。例如,第一信息的请求消息可以用于请求第一设备在向第二设备发送CSI时,发送第一信息。第一设备可以向第二设备发送测量建立响应帧(measurement setup response frame)。其中,测量建立响应信息可以用于指示同意进行感知测量。
例如,S202中第一设备发送第一信息的方法,可以包括以下情况1或情况2中的任一种或者多种。
情况1:
在情况1中,第一设备可以将第一信息携带在CSI帧(frame)中。例如,第一设备可以根据接收到的S201中的PPDU进行信道估计,得到CSI,并通过CSI帧发送给第二设备。第一设备可以将接收该PPDU时的AGC携带在上述CSI帧中。
以HT为例,HT中的CSI帧中的Action field结构如表3所示。
表3:HT CSI帧中的字段格式(HT CSI frame Action Field format)
如表3所示,可以在CSI帧中新增一个AGC字段携带AGC,如表3中的第五行所示。可以理解的是,AGC字段在CSI帧中的位置,本申请不做具体限定。表3中AGC字段的位置作为示例示出。例如,AGC字段还可以在CSI报告字段之前,也就是AGC字段可以位于CSI帧的第四行、第三行、第二行或第一行等,本申请不做具体限定。
一种可能的情况中,第一设备可以将AGC携带在CSI报告字段(表3的第四行)中。以下,通过表4对将AGC携带在CSI报告字段的方式进行介绍。其中,表3为HT标准中,CSI矩阵反馈时候的CSI报告字段的格式。需要说明的是,在第一设备或第二设备不支持CSI矩阵作为反馈类型时,可以将CSI矩阵的信息进行处理从而得到非CSI矩阵形式的信息。换句话说,本申请实施例中并不对CSI报告字段中的CSI具体格式及量化方式进行具体限定,CSI报告字段中可以携带第一信息即可。
表4:CSI报告字段(CSI report field)
如表4所示,第一信息可以携带在CSI报告字段中。可以理解的是,表4中示出的第一信息作为示例性示出,并不构成对第一信息的限定。例如,第一信息可以包含LNA的档位信息和VGA的档位信息中的至少一个。又例如,在AGC未饱和时第一信息中可以不包含AGC饱和信息。另外,表4中示出的第一信息的大小作为示例性示出,本申请实施例对第一信息的大小并不做具体限定。举例来说,表4中LNA的大小为3-4bits,该3-4bits仅作为LNA的大小的示例,并不构成对LNA的大小的限定,LNA的大小还可以是更多的比特,如5bits或6bits,或者LNA的大小还可以是更少的比特,如1bit或2bits。
可以理解的是,第一信息在CSI报告字段中的位置本申请不做具体限定,表4中第一信息的位置仅作为示例示出。
可选的,第一设备可以将第一信息携带在MIMO控制字段(表3的第三行)中,实施方式可以参照第一信息携带在CSI报告字段中的描述,此处不再赘述。
可以理解的是,第一设备可以将第一信息携带在CSI帧中某一个字段中,如CSI报告字段或MIMO控制字段时,第一设备可以将第一信息携带在该某一个字段中的新增字段。可选的,第一设备可以将第一信息携带在该某一个字段中的预留字段(reserved)。举例来说,第一设备可以将第一信息携带在MIMO控制字段中的预留字段。
可以理解的是,第一信息可以携带在其他的帧中发送给第二设备。例如,第一信息还可以将第一信息携带在反馈帧中,如,表5中所示的感知测量报告帧中。
表5:受保护的感知测量报告帧结构

如表5所示,可以在感知测量报告帧中新增一个AGC字段来携带AGC,如表5中的第五行所示。可以理解的是,AGC字段在CSI帧中的位置,本申请不做具体限定。表5中AGC字段的位置作为示例示出。
可选的,感知测量报告字段中可以包含一个或者多个感知测量报告元素,表5中以感知测量报告字段包含一个感知测量报告元素为例示出。一种可能的情况中,表5中所示的感知测量报告字段,如表5的第四行所示,会携带一个或者多个感知测量报告元素(sensing measurement report element)。感知测量报告元素的结构可以如表6所示。
表6:感知测量报告元素结构的一种示例
如表6所示,第一信息可以携带在感知测量报告元素中。例如,第一信息可以携带在感知测量报告控制字段中,如表6所示的第五行。换句话说,感知测量报告控制字段可以携带第一信息以及感知测量报告的相关信息。或者,第一信息可以携带在感知测量报告字段中,如表6所示的第六行。换句话说,感知测量报告字段可以携带第一信息以及感知测量报告的具体信息。
基于上述情况1,第一设备可以将AGC携带在CSI帧中发送给第二设备。第二设备在接收到CSI帧时,可以根据AGC对该CSI帧中的CSI进行处理,得到感知结果。
上述情况1中的CSI帧和反馈帧作为可以携带第一信息的示例示出,本申请实施例中还可以在其他感知反馈类型中携带AGC,也就是第一设备还可以在发送CSI的反馈类型上携带AGC,以方便第二设备通过AGC进行感知处理。
可以理解的是,上述情况1所示的方式可以应用于低频场景,如20MHz带宽的场景。以下,通过情况2介绍高频场景,如60MHz带宽的场景中,第一信息的传输方式。
情况2:
在情况2中,第一设备可以将第一信息携带在DMG感知报告元素(sensing report element)中。以下,通过图4介绍目前DMG感知报告元素的结构。
如图4所示,DMG感知报告元素中可以包含以下一种或多种字段:元素ID、元素长度、元素ID扩展、定向多吉比特(directional multi-gigabit,DMG)测量程序ID或DMG测量建立ID(DMG measurement setup ID)、DMG组发ID(DMG burst ID)、DMG感知实例ID(DMG sensing instance ID)或DMG感知实例数(DMG sensing instance number)、DMG感知报告类型(DMG sensing report type)、DMG感知报告控制(DMG sensing report control)或DMG感知报告(DMG sensing report)等字段。
例如,DMG测量程序ID或DMG测量建立ID用于标识一个DMG测量程序,每个DMG测量程序可以包含一个或多个DMG组发。DMG组发ID用于标识一个DMG组发,每个DMG组发中可以包含一个或多个DMG感知实例。DMG感知实例ID用于标识一个DMG感知实例,每个DMG感知实例ID或DMG感知实例数用于表征一次感知测量。
举例来说,DMG测量程序ID 01可以包含10个DMG组发,分别为DMG组发1至DMG组发10。DMG组发1可以包含5个DMG感知实例,分别为DMG感知实例1至DMG感知实例5。在第一设备和第二设备完成DMG感知实例1至5的情况下,可以认为第一设备和第二设备完成了DMG组发1。接下来,第一设备和第二设备可以完成DMG组发2,以此类推,在第一设备和第二设备完成DMG组发10的情况下,可以认为第一设备和第二设备完成DMG测量程序01。
在一个示例中,可以在DMG感知报告元素中新增一个AGC字段,用来承载第一信息。可以理解的是,AGC字段在DMG感知报告元素中的位置本申请不做具体限定。例如,AGC字段可以在DMG感知报告(DMG sensing report)字段的后面;或者也可以在DMG感知报告控制(DMG sensing report control)字段的后面,且在DMG感知报告字段的前面。
另一个示例中,可以在DMG感知报告元素中的某一个字段中携带第一信息,如可以在DMG感知报告控制(DMG sensing report control)字段中。换句话说,DMG感知报告控制(DMG sensing report control)字段可以携带第一信息以及携带用以解读DMG感知报告(DMG sensing report)字段的相关信息。
一种可能的情况中,如果AGC在每个DMG感知实例都发生了调整,AGC对应每个DMG感知实例。例如,如果图4中的DMG感知报告元素只携带一个DMG感知实例的感知结果,那么此时DMG感知报告控制字段中AGC则是用来描述该DMG感知实例对应感知测量的。又例如,AGC也可以携带在DMG感知报告中。
另一种可能的情况中,如果AGC在同一个感知组发保持稳定,也就是在同一个感知组发内AGC未发生变化,在不同的DMG组发发生调整,则AGC需要对应每个DMG组发。例如,如果图4中的DMG感知报告元素中包含一个DMG组发的感知结果,该一个DMG组发的感知结果对应该DMG组发包含的一个或多个DMG感知示例的感知结果,且这DMG组发包含的多个DMG感知实例中AGC不变,那么此时DMG感知报告控制字段AGC则是用来描述该DMG组发对应的感知测量。但是,若果该DMG组发包含的多个 DMG感知实例的测量过程中AGC发生了变化,则可能需要使用上述AGC对应每个DMG感知实例的情况进行反馈。或者,可以将该DMG组发中多个不同的AGC进行联合反馈,如在DMG感知测量报告元素中新增一个字段用于承载联合反馈的AGC。
再一种可能的情况中,如果AGC在同一个DMG测量程序内保持稳定,在不同的DMG测量程序发生调整,则AGC需要对应DMG测量程序。例如,如果图4中的感知报告元素中包含一个DMG测量程序的感知结果,且这个DMG测量程序包含的多个DMG组发的AGC不变,那么此时DMG感知报告控制字段中AGC则是用来描述该DMG测量程序对应的感知测量。
类似的,如果同一个DMG测量程序中AGC并不稳定,则会按照DMG组发内是否稳定回退到上面AGC需要对应每个DMG组发或AGC需要对应每个DMG感知实例的情况。或者,可以将该DMG测量程序中多个不同的AGC进行联合反馈,DMG感知测量报告元素中新增一个字段用于承载联合反馈的AGC。
基于上述情况2,第一设备可以将AGC携带在DMG感知测量报告元素中发送给第二设备。第二设备在接收到DMG感知测量报告元素时,可以根据AGC对该DMG感知测量报告元素中包含的DMG感知测量报告进行处理,得到感知结果。
可以理解的是,上述情况2中的DMG感知测量报告元素作为可以携带第一信息的实例示出,本申请实施例中还可以在其他感知反馈类型中携带AGC。例如,第一设备还可以在DMG信道测量反馈元素(DMG channel measurement feedback element)、EDMG信道测量反馈元素(EDMG channel measurement feedback element)中携带第一信息。
可选的,第一信息还可以携带在如图3A所示的LMR中。或者,第一信息还可以携带在如图3C所示的报告阶段中RSTA3向ISTA发送的感知测量报告中。
可选的,接收端在接收PPDU时可以固定用一个AGC接收,换句话说接收端在接收PPDU时不调整AGC,或者说接收端采用相同的AGC接收不同的PPDU。例如,接收端可以与发送端协商采用固定的AGC接收PPDU。可以理解的是,固定的AGC可以是接收端自定义或者确定的,或者也可以是发送端指示的。例如,发送端可以向接收端发送第二指示信息,该第二指示信息指示一个AGC,那么接收端可以根据该AGC接收PPDU。可选的,发送端可以向接收端指示一个时间段或者发送端可以向接收端发送一个定时器。在该时间段内或者在定时器的定时结束之前,接收端可以采用发送端指示的AGC接收PPDU。
在一个示例中,发送端可以将第二指示信息携带如图3A所示的NDPA中、或者携带在如图3B所示的NDPA中,或者携带在如图3C所示的感知轮询触发帧、响应帧或感知NDPA中。可选的,发送端也可以将AGC的指示信息携带在如图3D所示的感知实例请求、感知实例响应、携带TRN的BRP帧或携带报告的BRP帧中。
另一个示例中,接收端在接收到第二指示信息后,可以根据第二指示信息指示的AGC接收PPDU。但是,固定的AGC可能会对接收PPDU造成一定的影响。因此,可选的,接收端可以向发送端发送该AGC饱和信息或者第一指示信息。AGC饱和信息与第一指示信息可以参照图2所示的实施例中的相关描述。
可选的,发送端可以触发接收端AGC的更新,换句话说发送端可以触发接收端采用更新后的AGC接收PPDU。举例来说,发送端在一段时间内多次接收到AGC饱和的指示信息或者第一指示信息,那么发送端可以认为这一固定的AGC不利于接收PPDU,对于感知性能影响较大。因此,发送端可以向接收端指示AGC的更新。例如,发送端可以向接 收端指示一个新的AGC,或者发送端可以向接收端指示重新确定一个AGC。
需要说明的是,基于上述图2所示的实施例,第一设备可以向第二设备发送AGC,从而可以让第二设备了解到感知测量链路增益中接收端的增益调整,因此可以在第二设备对CSI进行处理时,考虑到感知测量链路增益的调整,以提升感知性能。
然而,不仅接收端的增益调整会感知性能,发送端的增益或功率调整同样会影响感知性能。对于发送端来说,实际发送功率的调整也会对感知结果造成影响。如图3A和图3B所示的流程中,NDPA可以包含目标RSSI(target RSSI)。该目标RSSI用于指示接收端在接收NDP时期望的接收功率。为了满足目标RSSI的要求ISTA需要调整NDP的实际发送功率。
以下,图5为NDPA中STA信息的结构示例图。图5中,I2R NDP表示ISTA发送给RSTA的NDP,R2I NDP表示RSTA发送给ISTA的NDP。
从图5中可以看出,STA信息包含I2R NDP的实际发送功率(tx power)和R2I NDP的目标RSSI(target RSSI)。其中I2R NDP的实际发送功率,主要用来描述ISTA发送的NDP的实际发送功率。R2I NDP的目标RSSI表示ISTA接收到R2I NDP时的期望的接收功率。RSTA可以根据测量得到的路径衰减(pathloss)以及该RSSI,调整NDP的实际发送功率,以让ISTA在接收R2I NDP时以RSSI接收。
在上述方案中,主要是通过RSSI来规定信号的期望接受功率。但是,感知的过程中,环境中一般存在运动目标,目标运动会引起环境的变化更为剧烈,路径衰减的变化更为频繁。为了让NDP以RSSI被接收,NDP的实际发送功率的变化将更加频繁。而实际发送功率的变化,将会对感知结果引入一定的误差。
有鉴于此,本申请实施例提供另一种信号传输方法。参阅图6,为本申请实施例提供的一种信号传输方法的示例性流程图,可以包括以下操作。在图6所示的实施例中,感知发起端为感知接收端,在前述图2所示的实施例中感知发起端为感知发送端。可以理解的是,图6所示的实施例中的一些参数和名词可以参考前述图2所示的实施例中的相关描述。
S601:第一设备向第二设备发送第一功率指示信息和第二功率指示信息。
相应的,第二设备接收来自第一设备的第一功率指示信息和第二功率指示信息。
可以理解的是,第一功率指示信息和第二功率指示信息用于指示同一PPDU的功率。该PPDU可以用于感知测量。其中,第一功率指示信息指示的第一功率与第二功率指示信息指示的第二功率可以不同。
可选的,图6所示的实施例中还可以包含以下操作。
S602:第二设备根据第一功率指示信息和第二功率指示信息得到CSI或者发送PPDU。
例如,在第一设备为感知接收端时,第二设备可以作为感知发送端。第二设备可以根据第一功率指示信息和第二功率指示信息发送PPDU。这样,第一设备可以接收到来自第二设备的PPDU。
又例如,在第一设备为感知发送端时,第二设备可以作为感知接收端。第二设备可以根据第一功率指示信息和第二功率指示信息,得到CSI。可选的,第二设备可以将CSI发送给第一设备,这样第一设备可以对CSI进行处理,得到感知结果。
基于上述方案,第一设备可以向第二设备指示同一PPDU的功率,分别为第一功率和第二功率,这样第二设备可以基于第一功率和第二功率发送PPDU或者生成CSI,从而可 以减少由于PPDU的实际发送功率的跳动对感知结果造成的影响,可以提升感知性能。
在图6所示的实施例中,感知发起端可以是感知接收端。
以下,分别以第一设备为感知发送端和第一设备为感知接收端这两种情况为例进行介绍。
情况a、第一设备为感知发送端。
如前文所述,实际发送功率的变化可以影响感知性能。实际发送功率可以有数字域功率和RF功率两部分构成。一种可能的情况中,即使实际发送功率未发生变化,但数字域功率或RF功率发生了相对变化,也会对感知的结果产生影响。举例来说,第二次PPDU的实际发送功率相对于第一次PPDU的实际发送功率并未发生变化,但第二次PPDU的数字域功率相对于第一次PPDU的数字域功率发生了变化,也会对感知的结果产生影响,影响感知性能。可以理解的是,由于第二次PPDU的实际发送功率未发生变化,但第二次PPDU的数字域功率发生了变化,因此可以看出第二次PPDU的模拟域功率发生了相应变化,从而使得第二次PPDU的实际发送功率不变。
在情况a中,第一设备可以向第二设备发送第一功率指示信息和第二功率指示信息。其中,第一功率指示信息指示的第一功率可以是PPDU的数字域功率。第二功率指示信息指示的第二功率可以是PPDU的实际发送功率。这样,第二设备可以感知到PPDU的数字域功率、RF功率和实际发送功率的变化,从而可以减少对感知性能的影响。
以下,通过图7对情况a的流程进行介绍。图7为本申请实施例提供的一种信息传输方法的示例性流程图,可以包括以下操作。
S701:第一设备向第二设备发送PPDU。
相应的,第二设备接收来自第一设备的PPDU。
S701中的PPDU可以用于感知测量。可选的,在S701之前,第二设备可以向第一设备请求发起感知流程,如第二设备可以向第一设备发送感知测量请求信息。第一设备可以向第二设备发送响应信息,如第一设备可以向第二设备发送感知测量响应信息,以同意进行感知测量,此处不再赘述。可选的,感知测量请求信息或实例请求帧中可以携带目标(target)RSSI。
S702:第一设备向第二设备发送第一功率指示信息和第二功率指示信息。
相应的,第二设备接收来自第一设备的第一功率指示信息和第二功率指示信息。
S702中,第一功率指示信息可以用于指示S701中PPDU的数字域功率,也就是待DAC处理的功率。可选的,数字域功率可以表示20MHz带宽下的功率。数字域功率的调整主要来自数字域,也就是说PPDU的数字域功率的调整发生在PPDU待DAC处理前的数字域内。
S702中,第二功率指示信息可以用于指示S701中PPDU的实际发送功率。可选的,数字域功率可以指示用来发送PPDU的所有天线的20MHz带宽下的平均功率,指以天线接口功率为准。
在一个示例中,感知发送端在调整PPDU的实际发送功率时,可以优先进行数字域功率的调整,再进行模拟域功率的调整。举例来说,感知发送端如第一设备在调整实际发送功率,以满足RSSI时,可以优先调整数字域功率,以让PPDU可以满足RSSI。
S703:第二设备根据第一功率指示信息和第二功率指示信息得到CSI。
在S703中,当PA位于一个较好的线性工作区域时,结合数字域功率和实际发射功率 的交互,则第二设备可以进行相应的处理。
示例性的,第二设备发现S701中PPDU的实际发送功率相较于S701之前传输的PPDU的实际发送功率相比没有变化,且S701中PPDU的数字域功率也没有变化,则第二设备可以认为第一设备的实际发送功率保持了稳定。因此,第二设备可以根据S701中的PPDU得到CSI。
示例性的,第二设备发现S701中PPDU的实际发送功率相较于S701之前传输的PPDU的实际发送功率相比发生了变化,且S701中PPDU的数字域功率发生了同样的变化,则第二设备可以认为PPDU的RF功率没有变化,功率的调整主要来自数字域。这样,第二设备可以根据S701中的PPDU得到CSI,并根据数字域功率的变化对CSI进行补偿。可以理解的是,第二设备根据数字域功率的变化对CSI的补偿可以按照近似线性模型进行补偿。在该示例中,S703中第二设备得到的CSI可以认为是已经经过补偿的CSI。
示例性的,第二设备发现S701中PPDU的实际发送功率相较于S701之前传输的PPDU的实际发送功率相比发生了变化,且S701中PPDU的数字域功率发生了同样的变化,但是S701中PPDU的实际发送功率的变化要大于数字域功率的变化。说明此时,PPDU的实际发送功率变化较大,仅数字域功率的调整已经无法满足RSSI,因此第二设备可以认为PPDU的RF功率也发生了变化。这样,第二设备可以根据S701中的PPDU得到CSI。第二设备并根据数字域功率的变化对CSI进行补偿,并根据RF功率的变化对CSI进行补偿。可以理解的是,第二设备根据RF功率的变化对CSI进行补偿的方式本申请不做具体限定。在该示例中,S703中第二设备得到的CSI可以认为是已经经过补偿的CSI。
基于上述S703,第二设备可以根据第一功率指示信息和第二功率指示信息确定是否对CSI进行补偿。第二设备可以对CSI进行处理,得到感知结果。可选的,第二设备可以向第一设备发送感知测量报告。
可选的,图7所示的实施例中还可以包括以下操作。
S704:第二设备将CSI发送给第一设备。
相应的,第一设备接收来自第二设备的CSI。
第一设备可以对CSI进行处理,实现对目标的感知。
基于上述方案,感知发送端可以向感知接收端发送数字域功率和实际发送功率,这样感知接收端可以感知到数字域功率的变化以及实际发送功率的变化,因此感知接收端可以尽可能的对CSI进行补偿,可以排除功率跳动引入的影响,提升感知性能。
以下,介绍第一功率指示信息和第二功率指示信息的传输方式。
在一个示例中,第一功率指示信息和第二功率指示信息可以携带在LMR中。如图8所示,可以在LMR中新增一个字段,用来携带第一功率指示信息。图8中,第一功率指示信息在LMR中的位置作为示例示出,本申请实施例不对第一功率指示信息在LMR中的位置进行具体限定。
另一个示例中,第一功率指示信息和第二功率指示信息可以携带在如图3C所示的报告阶段中ISTA发送的感知触发报告帧中。
可选的,第一功率指示信息可以携带在测量建立请求帧(measurement setup request frame)中。
需要说明的是,第一功率指示信息可以携带在上述LMR、感知触发报告帧或测量建立请求帧中的新增字段中,或者预留字段(reserved)中。可以理解的是,新增字段可以专用 于携带第一功率指示信息。
可以理解的是,上述情况a可以适用于感知发送端需要发送实际发送功率的场景。也就是说,在感知发送端需要发送实际发送功率时,感知发送端还可以发送数字域功率。
举例来说,如图3A或图3B所示,在ISTA向RSTA发送I2R NDP后,ISTA可以向RSTA发送第一功率指示信息和第二功率指示信息。又例如,如图3C所示,NDPA测量阶段,ISTA在向RSTA3发送NDP之后,ISTA可以向RSTA3发送第一功率指示信息和第二功率指示信息。又例如,如图3E所示,AP作为中介,可以将获取到的感知结果以及接收到的第一功率指示信息和第二功率指示信息发送给STA1。
例如,在高频的场景下,感知发送端可以向感知接收端发送EDMG传输功率子元素(EDMG transmit Power subelement)来向感知接收端指示实际发送功率和最大发送功率。EDMG传输功率子元素可以携带在出现在链路测量请求帧(link measurement request frame)之中。可选的,可以在链路测量请求帧中新增一个字段用来携带第一功率指示信息,也就是用来指示数字域功率。或者,第一功率指示信息可以通过链路测量请求帧中已存在的一个字段携带,换句话说第一功率指示信息可以服用链路测量请求帧中已存在的一个字段。
需要说明的是,本申请实施例中对携带第一功率指示信息和第二功率指示信息的元素和具体帧不做具体限定,上述链路测量请求帧和LMR作为示例示出。
情况b:
可以理解的是,情况b可以与情况a结合实施,也可以单独实施,本申请不做具体限定。
以802.11az标准为例,用于测距的HE测距(ranging)NDP的结构如图8所示。
其中,HE-SIG-A,HE-STF,HE-LTF 1,HE-LTF 2,HE-LTF N等属于用于感知测量的字段。类似的,802.11bf标准中也会采用类似的NDP结构,主要包含用于感知测量的字段和其他字段。其中,其他字段可以理解为除了用于测量的字段以外的非感知测量字段。
在情况b中,PPDU的不同部分可以采用不同的实际发送功率。举例来说,对于PPDU中用于感知测量的字段可以采用第一功率指示信息指示的第一功率,对于PPDU中非感知测量字段可以根据第二功率指示的第二功率确定。这样,用于测量的字段的实际发送功率可以固定,减少了由于实际发送功率的跳动对感知结果影响,提升感知性能。
以下,通过图9对情况b的流程进行介绍。图9为本申请实施例提供的一种信息传输方法的示例性流程图,可以包括以下操作。
S901:第一设备向第二设备发送第一功率指示信息和第二功率指示信息。
相应的,第二设备可以接收来自第一设备的第一功率指示信息和第二功率指示信息。
可选的,由于第一设备是感知发起端,那么第一设备可以向第二设备请求进行感知测量,可以参照图3A至图3E的流程,此处不再赘述。
S902:第二设备向第一设备发送第二信息和第三信息。
相应的,第一设备接收来自第二设备的第二信息和第三信息。
例如,第二设备可以根据第一功率指示信息指示的第一功率确定第二信息的实际发送功率。可选的,第二信息的实际发送功率可以是第一功率。第二设备可以根据第二功率指示信息指示的第二功率确定第三信息的实际发送功率。可选的,第三信息的实际发送功率可以是基于第二功率和路径衰减确定的。例如,第三信息的实际发送功率可以是第二功率 加路径衰减。
其中,第二信息可以是指PPDU中用于感知测量的字段,第三信息可以是指PPDU中用于感知测量的字段以外的其他字段,可以称为非感知测量的字段。例如,第二设备可以采用第一功率发送第二信息,第二设备可以根据路径衰减和第二功率确定第三信息的实际发送功率,并根据该实际发送功率发送第三信息。可选的,第二功率指示信息可以是RSSI,第一功率可以理解为所有天线的20MHz带宽下的平均功率,以天线接口功率为准。
在一个示例中,以用于测距的HE测距(ranging)NDP的结构为例,第二信息中可以包含高性能场训练字段1HE-LTE-1至高性能训练字段2HE-LTE-n和包扩展PE。第三信息可以包含短训练字段L-STF、传统长训练字段L-LTF、传统信令字段L-SIG、重复传统信令字段RL-SIG、高性能信令字段A HE-SIG-A。
一种可能的情况中,如图10A所示,第二信息中还可以包含高效率-短训练字段HE-STF,而第三信息中不包含HE-STF。另一种可能的情况中,如图10B所示,第三信息还可以包含HE-STF,而第二信息中不包含HE-STF。
需要说明的是,感知接收端在接收PPDU时,ADC是基于PPDU中HE-STF进行调整的。因此,如图10A所示,如果HE-STF的实际发送功率为第一功率,也就是第二信息中包含HE-STF时,那么AGC的调整可能会出现不适合HE-LTF部分的可能。如图10B所示,如果HE-STF的实际发送功率是根据第二功率确定的,也就是第三信息中包含HE-STF时,那么AGC的调整更适合HE-LTF的部分,因此提升了HE-LTF的接收可能性。
可以理解的是,图10A和图10B示出的第二信息和第三信息仅作为示例性示出,并构成对第二信息和第三信息的限定。在不同的场景下,第二信息包含的字段可能有所不同。举例来说,在高频场景下,用于感知测量的字段可以是TRN字段,非感知测量的字段可以是除了TRN字段以外的其他字段。
S903:第二设备获取CSI。
例如,第二设备可以基于第二信息进行信道估计,得到CSI。
可选的,在第二设备没有接收到PPDU中用于感知测量的字段,如由于PPDU中用于感知测量的字段由于功率较小,第二设备无法接收该字段只接收到了噪声的情况下,第二设备会在信道估计时,将接收到的噪声作为接收信号进行信道估计。因此,第二设备接收到的CSI并不准确。为了减少上述情况,第二设备可以通过以下方式一或方式二进行信道估计。
方式1:第二设备对非感知测量的字段也进行信道估计。如果第二设备准确接收到用于感知测量的字段,且对该用于感知测量的字段进行了信道估计,那么这两部分的信道估计是存在一定相似性的。因此,第二设备可以对用于感知测量的字段的信道估计的结果与非感知测量的字段的信道估计的结果的相似性进行判断,判断接收到的信号是否是一个噪声。
方式2:第一设备在发送PPDU时,可以对用于感知测量的字段部分增加一个校验信息。例如,在PE中增加一个校验字段。那么第二设备可以基于非感知测量的字段的信道估计的结果,对用于感知测量的字段进行信道均衡。第二设备在信道均衡后,对校验信息进行校验。如果校验通过,那么第二设备可以认为用于感知测量的字段的信道估计的结果是一个有效的结果,如果校验通过则认为用于感知测量的字段的信道估计的结果为无效的结果。换句话说,第二设备未接收到第二信息,接收到的是一个噪声。
举例来说,第一设备在PE中增加一个校验字段,该校验字段可以是基于感知测量的字段生成的。例如,该校验字段可以是对感知测量的字段进行加密或压缩或异或等操作后得到的。那么第二设备在对用于感知测量的字段进行信道均衡后,根据感知测量的字段对校验字段进行校验。例如,第二设备可以对校验字段解密或者解压缩,在解密或解压缩后的校验字段与感知测量的字段相同时,第二设备可以认为校验通过,否则第二设备可以认为校验未通过。又例如,第二设备可以对感知测量的字段进行加密或压缩,在加密或压缩后的非感知测量的字段与校验字段相同时,第二设备可以认为校验通过,否则第二设备可以认为校验未通过。
可选的,如果接收到的第二信息是一个噪声,那么第二设备可以放弃本次信道估计所得到的CSI。换句话说,第二设备可以不向第一设备发送本次信道估计所得到的CSI。
基于上述S903,第二设备可以对CSI进行处理,得到感知结果。可选的,第二设备可以向第一设备发送感知测量报告。
可选的,图9所示的实施例中,还可以包括以下操作。
S904:第二设备向第一设备发送CSI。
相应的,第一设备接收来自第二设备的CSI。
第一设备可以对CSI进行处理,得到感知结果。
基于上述方案,对于PPDU中的用于感知测量的字段和非感知测量的字段采用不同的实际发送功率进行发送,并通过第一功率指示信息约束用于感知测量的字段的实际发送功率,通过第二功率指示信息约束非感知测量的字段,这样可以尽量保持PPDU中用于感知测量的字段的实际发送功率的稳定,以减少对感知结果的影响,提升感知性能。另外,对于非感知测量的字段,通过RSSI进行功率调整,提升了对该PPDU解码的可能性,从而在PPDU的用于感知测量的字段可能由于功率过小无法正确进行估计信道时,感知接收端还是可以知晓该PPDU的传输。
以下,介绍第一功率指示信息和第二功率指示信息的传输方式。
在一个示例中,第二功率指示信息可以是目标RSSI。第一功率指示信息可以携带在承载目标RSSI的元素中的新增字段中。举例来说,参阅图11,可以在如图5所示的NDPA中新增一个字段,如期望I2E NDP实际发送功率(desired I2R NDP tx power)字段,该字段可以用于指示第一功率。可选的,第一功率指示信息可以用于请求PPDU,如I2R NDP中的用于感知测量的字段的实际发送功率。该NDPA可以是如图3A所示的NDPA,或者也可以是如图3B所示的NDPA。
另一个示例中,第一功率指示信息可以携带在STA信息中。可选的,第一设备可以通过标识信息约束能够接收到该STA信息的第二设备。举例来说,在站点标识(station identity,AID)=2045时,则该STA信息类似一个公共信息,所有第二设备都可以接收并解析该STA信息。同样的,第二功率指示信息可以参照第一功率指示信息实施。
又一个示例中,第一功率指示信息还可以携带在触发(trigger)帧中。例如,第一功率指示信息可以携带在触发帧中的公共信息(common information)中。又例如,第一功率指示信息可以携带在触发帧中的用户信息表(user information list)中。又例如,第一功率指示信息还可以携带在如图3C中所示的在TF测量阶段中,ISTA发送的感知测量触发帧中。同样的,第二功率指示信息可以参照第一功率指示信息实施。
在高频场景中,第一功率指示信息和第二功率指示信息可以携带在BRP帧中。例如,可以在BRP帧中新增一个字段用来携带第一功率指示信息。又例如,可以在BRP帧中已存在的字段中携带第一功率指示信息,换句话说第一功率指示信息可以复用BRP帧中已存在的字段。又例如,第一功率指示信息可以携带在BRP帧的相关element中如DMG sensing element中。第二功率指示信息可以参照前述第一功率指示信息实施。
基于上述实施例的构思,参见图12,本申请实施例提供了一种通信装置1200,该装置1200包括处理单元1201和收发单元1202。该装置1200可以是第一设备,也可以是应用于第一设备的设备,或者是能够支持第一设备执行信息传输方法的装置。或者,该装置1200可以是第二设备,也可以是应用于第二设备的设备,或者是能够支持第二设备执行信息传输方法的装置。
其中,收发单元也可以称为收发模块、收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理单元、处理装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,应理解,收发单元用于执行上述方法实施例中第一设备侧或第二设备侧的发送操作和接收操作,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。该装置1200应用于第一设备时,其收发单元1202包括的发送单元用于执行第一设备侧的发送操作,例如发送PPDU,具体的可以是向第二设备发送PPDU;其收发单元1202包括的接收单元用于执行第一设备侧的接收操作,例如接收第一信息,具体的可以是从第二设备接收PPDU。该装置1200应用于第二设备时,其收发单元1202包括的接收单元用于执行第二设备侧的接收操作,例如接收PPDU,具体的可以是从第一设备接收PPDU;其收发单元1202包括的发送单元用于执行第二设备侧的发送操作,例如发送第一信息,具体的可以是向第一设备发送第一信息。
此外需要说明的是,若该装置采用芯片/芯片电路实现,收发单元可以是输入输出电路和/或通信接口,执行输入操作(对应前述接收操作)、输出操作(对应前述发送操作);处理单元为集成的处理器或者微处理器或者集成电路。
以下对于将该装置1200应用于第一设备或第二设备的实施方式进行详细说明。
示例性的,对该装置1200应用于第一设备时,其各单元执行的操作进行详细说明。
收发单元1202,用于接收来自第二设备的PPDU。其中,PPDU用于感知测量。处理单元1201,用于生成第一信息,第一信息指示AGC。其中,AGC用于指示接收PPDU时的AGC的档位。收发单元1202,还用于向第二设备发送第一信息。一种可能的情况中,第一信息可以包括以下信息中的一个或多个:AGC中的LNA的档位信息、AGC中的VGA的档位信息、AGC饱和信息、AGC跳动信息、AGC变化信息或第一指示信息。
示例性的,对装置1200应用于第二设备时,其各单元执行的操作进行详细说明。
处理单元1201,用于生成PPDU。其中,PPDU用于感知测量。收发单元1202,用于向第一设备发送PPDU。收发单元1202,还用于接收来自第一设备的第一信息,第一信息指示AGC。其中,AGC用于指示接收PPDU时的AGC的档位。
可选的,第二设备在接收PPDU时可以固定用一个AGC接收。该固定的AGC可以是第二设备确定的,或者第一设备指示的。第二设备可以向第一设备发送AGC饱和信息或第一指示信息中的一个或多个。第一第二设备还可以触发AGC的更新。装置1200应用于第一设备时,收发单元1202还用于采用固定的AGC接收来自第一设备的PPDU,以及向 第一设备发送AGC饱和信息和第一指示信息中的一个或多个。
在一种可能的实现方式中,处理单元1201,还用于确定上述固定的AGC。
在一种可能的实现方式中,收发单元1202,还用于接收来自第二设备的第二指示信息。其中,第二指示信息指示固定的AGC。可选的,收发单元1202,还用于接收来自第二设备的第三指示信息或定时器。其中,第三指示信息指示一个时间段。
在一种可能的实现方式中,收发单元1202还用于接收来自第二设备的AGC更新信息。其中,AGC更新信息用于指示第一设备更新固定的AGC。可选的,处理单元1201还用于根据AGC更新信息,确定新的AGC。
装置1200应用于第二设备时,收发单元1202还用于接收来自第一设备的第一指示信息或AGC饱和信息。
在一种可能的实现方式中,收发单元1202还用于向第一设备发送第二指示信息。其中,第二指示信息指示固定的AGC。可选的,收发单元1202,还用于向第一设备发送第三指示信息或定时器。其中,第三指示信息指示一个时间段。
在一种可能的实现方式中,收发单元1202还用于向第一设备发送AGC更新信息。其中,AGC更新信息用于指示第一设备更新固定的AGC。
示例性的,对该装置1200应用于第一设备时,其各单元执行的操作进行详细说明。
处理单元1201,用于生成第一功率指示信息和第二功率指示信息。收发单元1202,用于向第二设备发送第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于指示同一PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。
示例性的,对装置1200应用于第二设备时,其各单元执行的操作进行详细说明。
收发单元1202,用于接收来自第一设备的第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于同一指示PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。处理单元1201,用于根据第一功率和第二功率生成CSI或者PPDU。
基于实施例的构思,如图13所示,本申请实施例提供一种通信装置1300。该通信装置1300包括处理器1310。可选的,通信装置1300还可以包括存储器1320,用于存储处理器1310执行的指令或存储处理器1310运行指令所需要的输入数据或存储处理器1310运行指令后产生的数据。处理器1310可以通过存储器1320存储的指令实现上述方法实施例所示的方法。
基于实施例的构思,如图14所示,本申请实施例提供一种通信装置1400,该通信装置1400可以是芯片或者芯片***。可选的,在本申请实施例中芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1400可以包括至少一个处理器1410,该处理器1410与存储器耦合,可选的,存储器可以位于该装置之内,也可以位于该装置之外。例如,通信装置1400还可以包括至少一个存储器1420。存储器1420保存实施上述任一实施例中必要计算机程序、配置信息、计算机程序或指令和/或数据;处理器1410可能执行存储器1420中存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性, 机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1410可能和存储器1420协同操作。本申请实施例中不限定上述收发器1430、处理器1410以及存储器1420之间的具体连接介质。
通信装置1400中还可以包括收发器1430,通信装置1400可以通过收发器1430和其它设备进行信息交互。收发器1430可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置,或称为信号收发单元。如图14所示,该收发器1430包括发射机1431、接收机1432和天线1433。此外,当该通信装置1400为芯片类的装置或者电路时,该通信装置1400中的收发器也可以是输入输出电路和/或通信接口,可以输入数据(或称,接收数据)和输出数据(或称,发送数据),处理器为集成的处理器或者微处理器或者集成电路,处理器可以根据输入数据确定输出数据。
在一种可能的实施方式中,该通信装置1400可以应用于第一设备,具体通信装置1400可以是第一设备,也可以是能够支持第一设备实现上述涉及的任一实施例中第一设备的功能的装置。存储器1420保存实现上述任一实施例中的第一设备的功能的必要计算机程序、计算机程序或指令和/或数据。处理器1410可执行存储器1420存储的计算机程序,完成上述任一实施例中第一设备执行的方法。应用于第一设备,该通信装置1400中的发射机1431可以用于通过天线1433发射PPDU。
在另一种可能的实施方式中,该通信装置1400可以应用于第二设备,具体通信装置1400可以是第二设备,也可以是能够支持第二设备实现上述涉及的任一实施例中第二设备的功能的装置。存储器1420保存实现上述任一实施例中的第二设备的功能的必要计算机程序、计算机程序或指令和/或数据。处理器1410可执行存储器1420存储的计算机程序,完成上述任一实施例中第二设备执行的方法。应用于第二设备,该通信装置1400中的接收机1432可以用于通过天线1433接收PPDU。
由于本实施例提供的通信装置1400可应用于第一设备,完成上述第一设备执行的方法,或者应用于第二设备,完成第二设备执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、计算机程序或指令和/或数据。
基于以上实施例,参见图15,本申请实施例还提供另一种通信装置1500,包括:输入输出接口1510和逻辑电路1520;输入输出接口1510,用于接收代码指令并传输至逻辑电路1520;逻辑电路1520,用于运行代码指令以执行上述任一实施例中第一设备或者第 二设备执行的方法。
以下,对该通信装置应用于第一设备或者第二设备所执行的操作进行详细说明。
一种可选的实施方式中,该通信装置1500可应用于第一设备,执行上述第一设备所执行的方法,具体的例如前述图2所示的实施例中第一设备所执行的方法。输入输出接口1510,用于输入来自第二设备的PPDU。其中,PPDU用于感知测量。逻辑电路1520,用于生成第一信息,第一信息指示AGC。其中,AGC用于指示接收PPDU时的AGC的档位。输入输出接口1510,还用于向第二设备输出第一信息。
另一种可选的实施方式中,该通信装置1500可应用于第二设备,执行上述第二设备所执行的方法,具体的例如前述图2所示的方法实施例中第二设备所执行的方法。逻辑电路1520,用于生成PPDU。其中,PPDU用于感知测量。输入输出接口,用于向第一设备输出PPDU。输入输出接口1510,还用于输入来自第一设备的第一信息,第一信息指示AGC。其中,AGC用于指示接收PPDU时的AGC的档位。
再一种可选的实施方式中,该通信装置1500可应用于第一设备,执行上述第一设备所执行的方法,具体的例如前述图6所示的实施例中第一设备所执行的方法。逻辑电路1520,用于生成第一功率指示信息和第二功率指示信息。输入输出接口1510,用于向第二设备输出第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于指示同一PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。
另一种可选的实施方式中,该通信装置1500可应用于第二设备,执行上述第二设备所执行的方法,具体的例如前述图6所示的方法实施例中第二设备所执行的方法。输入输出接口1510,用于输入来自第一设备的第一功率指示信息和第二功率指示信息,第一功率指示信息和第二功率指示信息用于同一指示PPDU的功率,PPDU用于感知测量。其中,第一功率指示信息指示的第一功率,与第二功率指示信息指示的第二功率不同。逻辑电路1520,用于根据第一功率和第二功率生成CSI或者PPDU。
由于本实施例提供的通信装置1500可应用于第一设备,执行上述第一设备所执行的方法,或者应用于第二设备,完成第二设备执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种通信***,该***包括至少一个应用于第一设备的通信装置和至少一个应用于第二设备的通信装置。所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当指令被执行时,使上述任一实施例中第一设备执行的方法被实施或者第二设备执行的方法被实施。该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
为了实现上述图12~图15的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中第一设备或者第二设备所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的计算机程序或指令和数据。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实 施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序或指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序或指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序或指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序或指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种信息传输方法,其特征在于,包括:
    第一设备接收来自第二设备的物理层协议数据单元PPDU,所述PPDU用于感知测量;
    所述第一设备向所述第二设备发送第一信息,所述第一信息指示自动增益控制AGC,所述AGC用于指示接收所述PPDU时的AGC的档位。
  2. 根据权利要求1所述的方法,其特征在于,所述AGC的档位越大,所述第一设备的增益越大。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括以下中的一个或多个:
    AGC中的低噪放大器的档位信息、AGC中的可变增益放大器的档位信息、AGC饱和信息或AGC跳动信息。
  4. 根据权利要求1~3任一所述的方法,其特征在于,所述第一信息携带在感知测量报告帧或信道状态信息CSI帧中。
  5. 根据权利要求1~3任一所述的方法,其特征在于,所述第一信息携带在以下中的一项中:
    定向多吉比特DMG感知报告元素、DMG信道测量反馈元素或增强型定向多吉比特EDMG信道测量反馈元素。
  6. 根据权利要求5所述的方法,其特征在于,所述第一信息还包括DMG感知实例的标识、DMG感知组发的标识和DMG测量程序的标识中的一个或多个;其中,一个所述DMG感知组发中包含一个或多个DMG感知实例,一个所述DMG测量程序中包含一个或多个DMG感知组发,一个所述DMG感知实例表征一次感知。
  7. 一种信息传输方法,其特征在于,包括:
    第二设备向第一设备发送物理层协议数据单元PPDU,所述PPDU用于感知测量;
    所述第二设备接收来自所述第一设备的第一信息,所述第一信息指示自动增益控制AGC,所述AGC用于指示接收所述PPDU时的AGC的档位。
  8. 根据权利要求7所述的方法,其特征在于,所述AGC的档位越大,所述第一设备的增益越大。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一信息包括以下中的一个或多个:
    AGC中的低噪放大器的档位信息、AGC中的可变增益放大器的档位信息、AGC饱和信息或AGC跳动信息。
  10. 根据权利要求7~9任一所述的方法,其特征在于,所述第一信息携带在感知测量报告帧或信道状态信息CSI帧中。
  11. 根据权利要求7~9任一所述的方法,其特征在于,所述第一信息携带在以下中的一项中:
    定向多吉比特DMG感知报告元素、DMG信道测量反馈元素或增强型定向多吉比特EDMG信道测量反馈元素。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信息还包括DMG感知实例的标识、DMG感知组发的标识和DMG测量程序的标识中的一个或多个;其中,一个所述 DMG感知组发中包含一个或多个DMG感知实例,一个所述DMG测量程序中包含一个或多个DMG感知组发,一个所述DMG感知实例表征一次感知。
  13. 一种信息传输方法,其特征在于,包括:
    第一设备向第二设备发送第一功率指示信息和第二功率指示信息,所述第一功率指示信息和第二功率指示信息用于指示同一物理协议数据单元PPDU的功率,所述PPDU用于感知测量;
    其中,所述第一功率指示信息指示的第一功率,与所述第二功率指示信息指示的第二功率不同。
  14. 根据权利要求13所述的方法,其特征在于,所述第一功率为所述PPDU待数模转换器处理的功率,所述第二功率为所述PPDU的实际发送功率。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一功率指示信息携带在空数据包声明帧NDPA中或增强型定向多吉比特EDMG传输功率元素中。
  16. 根据权利要求13所述的方法,其特征在于,所述第一功率为第二信息的功率,所述第二功率为第三信息的功率;
    其中,所述第二信息包括所述PPDU中用于感知测量的字段,所述第三信息包括所述PPDU中除所述用于感知测量的字段以外的其他字段。
  17. 根据权利要求16所述的方法,其特征在于,所述第二信息包括高效率-短训练字段HE-STF。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一功率指示信息携带在站点STA信息、触发帧或波束精炼协议BRP帧中。
  19. 一种信息传输方法,其特征在于,包括:
    第二设备接收来自第一设备的第一功率指示信息和第二功率指示信息,所述第一功率指示信息和第二功率指示信息用于同一指示物理协议数据单元PPDU的功率,所述PPDU用于感知测量;
    其中,所述第一功率指示信息指示的第一功率,与所述第二功率指示信息指示的第二功率不同。
  20. 根据权利要求19所述的方法,其特征在于,所述第一功率为所述PPDU待数模转换器处理的功率,所述第二功率为所述PPDU的实际发送功率。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一功率指示信息携带在空数据包声明帧NDPA或增强型定向多吉比特EDMG传输功率元素中。
  22. 根据权利要求19所述的方法,其特征在于,还包括:
    所述第二设备根据所述第一功率发送第二信息;所述第二信息包括所述PPDU中用于感知测量的字段;
    所述第二设备根据所述第二功率发送第三信息;所述第三信息包括所述PPDU中除所述用于感知测量的字段以外的其他字段。
  23. 根据权利要求22所述的方法,其特征在于,所述第二信息包括HE-STF。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一功率指示信息携带在站点STA信息、触发帧或波束精炼协议BRP帧中。
  25. 一种通信装置,其特征在于,包括:至少一个处理器,所述处理器和存储器耦合;
    所述存储器用于存储计算机程序或指令;
    所述处理器用于执行所述计算机程序或指令,以实现权利要求1~6任一项所述的方法或者实现权利要求7~12任一项所述的方法或者实现权利要求13~18任一项所述的方法或者实现权利要求19~24任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述指令在计算机上运行时,实现权利要求1~6任一项所述的方法或者实现权利要求7~12任一项所述的方法或者实现权利要求13~18任一项所述的方法或者实现权利要求19~24任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行如权利要求1~6任一项所述的方法或者如权利要求7~12任一项所述的方法或者如权利要求13~18任一项所述的方法或者如权利要求19~24任一项所述的方法。
  28. 一种芯片,其特征在于,包括:至少一个处理器,所述至少一个处理器和存储器耦合;
    所述存储器用于存储计算机程序或指令;
    所述至少一个处理器用于执行所述计算机程序或指令,以使得包括所述芯片的通信装置执行如权利要求1~6,7~12,13~18,或者,19~24中任一项所述的方法。
PCT/CN2023/083513 2022-04-02 2023-03-23 一种信息传输方法和装置 WO2023185656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210351937.8A CN116939651A (zh) 2022-04-02 2022-04-02 一种信息传输方法和装置
CN202210351937.8 2022-04-02

Publications (1)

Publication Number Publication Date
WO2023185656A1 true WO2023185656A1 (zh) 2023-10-05

Family

ID=88199311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083513 WO2023185656A1 (zh) 2022-04-02 2023-03-23 一种信息传输方法和装置

Country Status (3)

Country Link
CN (1) CN116939651A (zh)
TW (1) TW202408270A (zh)
WO (1) WO2023185656A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343211A1 (en) * 2012-05-03 2013-12-26 MEDIATEK Singapore Ple. Ltd. Beam-Change Indication for Channel Estimation Improvement in Wireless Networks
CN111542087A (zh) * 2015-06-25 2020-08-14 华为技术有限公司 一种wlan的链路自适应方法及网络设备
CN112350809A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 感知方法和通信装置
CN112491498A (zh) * 2019-09-12 2021-03-12 中兴通讯股份有限公司 一种传输方法、装置及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343211A1 (en) * 2012-05-03 2013-12-26 MEDIATEK Singapore Ple. Ltd. Beam-Change Indication for Channel Estimation Improvement in Wireless Networks
CN111542087A (zh) * 2015-06-25 2020-08-14 华为技术有限公司 一种wlan的链路自适应方法及网络设备
CN112350809A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 感知方法和通信装置
CN112491498A (zh) * 2019-09-12 2021-03-12 中兴通讯股份有限公司 一种传输方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN116939651A (zh) 2023-10-24
TW202408270A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
EP3245824B1 (en) Location reporting for extremely high frequency (ehf) devices
US10181887B2 (en) Method and apparatus for reporting channel state information of multi-channel in wireless local area network system
US9455808B2 (en) Wireless communication system with coordinated multipoint operation and methods for use therewith
US9615309B2 (en) System and method for Wi-Fi downlink-uplink protocol design for uplink interference alignment
US10368325B2 (en) System and method for beam adaptation in a beam-based communications system
JP2016537913A (ja) マルチユーザ多入力多出力(mu−mimo)フィードバックプロトコル
US11102783B2 (en) System and method for supporting beamformed sounding reference signals
JP2016534597A (ja) ワイヤレスネットワークにおいて応答インジケーション延期を動的に設定するためのシステム、方法、及びデバイス
US11516748B2 (en) Transmit power control
WO2021052473A1 (zh) 通信方法和通信装置
KR20140057908A (ko) 무선 통신 시스템에서 섹터 스위핑을 수행하는 방법 및 장치
US20190341973A1 (en) Link margin procedure for enhanced directional multigigabit (edmg)
WO2018228179A1 (en) System and method for indicating scheduling grants
JP2023532416A (ja) Ppdu伝送方法及び関連装置
WO2023185656A1 (zh) 一种信息传输方法和装置
JP5660967B2 (ja) 順次レスポンスプロトコルを用いたデータ通信方法とその方法を適用した基準端末及び端末、並びにコンピュータ読み取り可能な記録媒体
US20220201620A1 (en) System and Method for Uplink Power Control in Multi-AP Coordination
WO2020063602A1 (zh) 多通道波束赋形方法、装置及存储介质
WO2020107039A2 (en) Methods and apparatus for communications with finite blocklength coded modulation
CN113812093A (zh) 装置,方法和计算机程序
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023088114A1 (zh) 波束恢复方法、波束失败检测方法以及相关装置
WO2024131655A1 (zh) 一种信息指示的方法和通信装置
WO2023273969A1 (zh) 资源测量方法和通信装置
CN118102334A (zh) 一种通信方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778025

Country of ref document: EP

Kind code of ref document: A1