WO2023185588A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023185588A1
WO2023185588A1 PCT/CN2023/083109 CN2023083109W WO2023185588A1 WO 2023185588 A1 WO2023185588 A1 WO 2023185588A1 CN 2023083109 W CN2023083109 W CN 2023083109W WO 2023185588 A1 WO2023185588 A1 WO 2023185588A1
Authority
WO
WIPO (PCT)
Prior art keywords
ports
pattern
frequency domain
port set
port
Prior art date
Application number
PCT/CN2023/083109
Other languages
English (en)
French (fr)
Inventor
蔡世杰
刘显达
高翔
张哲宁
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185588A1 publication Critical patent/WO2023185588A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and communication device.
  • the channel sounding reference signal is an uplink reference signal sent by the terminal equipment to the access network equipment (such as a base station).
  • SRS is used by the access network device to obtain the uplink (UL) channel of the terminal device.
  • the SRS is used by the access network device to obtain the downlink (DL) channel of the terminal device based on channel reciprocity, so as to schedule data for the terminal device based on the channel information.
  • each SRS resource SRS ports each SRS port will correspond to a specific time-frequency code resource. In an ideal situation, each SRS port is orthogonal, and each SRS port corresponds to the physical antenna or virtual antenna of the terminal device.
  • the embodiments of the present application disclose a communication method and a communication device.
  • inventions of the present application provide a communication method.
  • the method includes: a terminal device transmits an uplink reference signal to an access network device according to a transmission pattern.
  • the uplink reference signal resource of the uplink reference signal includes N ports, so There are at least two groups of ports among the N ports in the transmission pattern. Each group of ports corresponds to the same time-frequency resources, and different groups of ports correspond to different time-frequency resources.
  • the N ports in the transmission pattern carry on 2 or more orthogonal frequency division multiplexing (OFDM) symbols, or the N ports in the transmission pattern are carried on 2 or more frequency domain combs and 1 OFDM symbols, the N is an integer greater than 4;
  • the terminal equipment receives precoding indication information from the access network equipment, and the precoding indication information is used to indicate the precoding used for uplink data transmission.
  • the rows of the matrix corresponding to the encoding correspond to the N ports one-to-one.
  • the precoding indication information is obtained by the access network device according to the uplink reference signal.
  • the transmitting antenna for uplink data transmission corresponds to each port of the plurality of uplink reference signals.
  • the terminal device sending the uplink reference signal to the access network device according to the transmission pattern can be replaced by: the terminal device sends the uplink reference signal according to the transmission pattern according to the configuration information; the configuration information instructs the terminal device to send the uplink reference signal according to the transmission pattern.
  • the configuration information may be configuration information of uplink reference signal resources, such as channel sounding reference signal (sounding reference signal, SRS) resources.
  • SRS sounding reference signal
  • the terminal device sends an uplink reference signal to the access network device according to the transmission pattern so that the N (more than 4) ports included in the uplink reference signal resource of the uplink reference signal are carried on 2 or more OFDM symbols;
  • the N more than 4 ports included in the uplink reference signal resource of the uplink reference signal are carried on 2 or more OFDM symbols;
  • the terminal equipment sends the uplink reference signal to the access network equipment according to the transmission pattern so that the N (more than 4) ports included in the uplink reference signal resource of the uplink reference signal are carried on 2 or more frequency domain combs and 1 OFDM symbol, the precoding indication information indicates that the rows of the matrix corresponding to the precoding used in the uplink data transmission of the terminal equipment correspond to the N ports included in the uplink reference signal resources; it is provided to use the uplink reference signal resources including N ports to carry the uplink Reference signal scheme.
  • the method further includes: the terminal device according to the CS reference value indication of the uplink reference signal included in the configuration information of the uplink reference signal resource.
  • the transmission pattern is determined from two or more patterns.
  • the terminal equipment indicates according to the CS reference value of the uplink reference signal Determine the transmission pattern from two or more patterns; the transmission pattern suitable for the terminal device to transmit the uplink reference signal can be quickly and accurately determined.
  • the method further includes: the terminal device determines the CS value of each SRS port according to the CS reference value indication and the index of each SRS port among the N ports; The CS values of each port are used to generate the transmit sequence for each port.
  • the CS value of each SRS port can be determined quickly and accurately.
  • the terminal device determines the CS value of each SRS port according to the CS reference value indication and the index of each SRS port among the N ports including: determining described p i represents the index of the i-th port among the N ports (for example, 1001), Indicates the maximum CS indication, Indicates CS reference value indication; as stated Determine the CS value ⁇ i of the i-th port among the N ports,
  • the terminal device determines the CS value of each SRS port according to the CS reference value indication and the index of each SRS port among the N ports: the terminal device determines the CS value according to the CS Reference value indication, index of each SRS port among the N ports,
  • each port located within the same time-frequency resource can be assigned equally spaced CS values with as large an interval as possible.
  • the method further includes: the terminal device, according to the CS reference value indication, the maximum CS indication and the number of symbols included in the configuration information of the uplink reference signal resource, from two or two
  • the above drawings are correct
  • the transmission pattern is determined; the two or more patterns include at least two of a first pattern, a second pattern, a third pattern and a fourth pattern, and the number of symbols indicates OFDM carrying the N ports
  • the number of symbols; the comb teeth corresponding to the first port set among the N ports in the first pattern are The comb teeth corresponding to the second port set among the N ports are
  • the index of the OFDM symbol corresponding to the two ports in the first port set is l, the OFDM index corresponding to the other two ports in the first port set is (l+n), and the index of the OFDM symbol corresponding to the two ports in the first port set is (l+n).
  • the OFDM index corresponding to the two ports is l, the index of the OFDM symbol corresponding to the other two ports in the second port set is (l+n), the n is an integer greater than or equal to 1, and the l is An integer greater than or equal to 0;
  • the comb teeth corresponding to the first port set and the second port set among the N ports in the second pattern are The index of the OFDM symbol corresponding to the first port set is l, the index of the OFDM symbol corresponding to the second port set is (l+n), and the l and n are integers greater than or equal to 1;
  • the comb teeth corresponding to the first port set among the N ports in the third pattern are And the comb teeth corresponding to the second port set among the N ports are And the index of the OFDM symbol corresponding to the first port set and the second port set is l, and l is an integer greater than or equal to 1; 4 ports among the N ports in the fourth pattern The comb teeth corresponding to the set are And the index of the OFDM symbol corresponding
  • the terminal device determines the CS reference value of the uplink reference signal.
  • maximum As well as the number of symbols, the transmission pattern is determined from two or more patterns; the transmission pattern suitable for the terminal device to transmit the uplink reference signal can be quickly and accurately determined.
  • the method further includes: the terminal device, according to the CS reference value indication and the maximum CS indication of the uplink reference signal included in the configuration information of the uplink reference signal resource, select from two Or determine the sending pattern from two or more patterns.
  • the terminal device determines the CS reference value of the uplink reference signal. and maximum Determine the transmission pattern from two or more patterns; the transmission pattern suitable for the terminal device to transmit the uplink reference signal can be quickly and accurately determined.
  • embodiments of the present application provide another communication method.
  • the method includes: the access network device receives an uplink reference signal sent by a terminal device, the uplink reference signal resource of the uplink reference signal includes N ports, and the N The ports are carried by 2 or more orthogonal frequency division multiplexing OFDM symbols, or the N ports are carried by 2 or more frequency domain comb teeth and 1 OFDM symbol, and the N is greater than 4 Integer; the access network device sends precoding indication information to the terminal device, the precoding indication information is used to indicate the precoding used for the uplink data transmission of the terminal device, and the precoding indication information is the The access network device obtains, based on the uplink reference signal, that the rows of the matrix corresponding to the precoding correspond to the N ports one-to-one.
  • the access network device receives the uplink reference signal sent by the terminal device.
  • the uplink reference signal resource includes N (more than 4) ports, and sends precoding indication information to the terminal device.
  • the precoding indication information instructs the terminal.
  • the rows of the matrix corresponding to the precoding used in the uplink data transmission of the device correspond one-to-one to the N ports included in the uplink reference signal resources; a solution is provided for using the uplink reference signal resources including N ports to carry the uplink reference signals.
  • embodiments of the present application provide another communication method, which method includes: a terminal device transmits multiple uplink reference signals according to configuration information of multiple uplink reference signal resources; the terminal device receives precoding and transmission layer number indications Information, the precoding and transmission layer number indication information is used to indicate the precoding and transmission layer number used for uplink data transmission of the terminal device, and the precoding and transmission layer number indication information is consistent with the multiple uplink references.
  • the signal corresponds; wherein the number of transmission layers is less than or equal to the sum of the number of ports included in the multiple uplink reference signals, and the number of rows of the matrix corresponding to the precoding is the sum of the number of ports included in the multiple uplink reference signals, And the rows of the matrix correspond one-to-one to each port included in the plurality of uplink reference signals.
  • the total number of ports included in the multiple uplink reference signals may be understood as the total number of ports included in the multiple uplink reference signal resources.
  • the precoding and transmission layer number indication information are obtained by the access network device according to the uplink reference signal.
  • the transmitting antenna for uplink data transmission corresponds to each port of the plurality of uplink reference signals.
  • the precoding and transmission layer number indication information includes a plurality of first indication information, and the plurality of first indication information corresponds to the plurality of uplink reference signal resources on a one-to-one basis.
  • the number of transmission layers of the uplink data is the sum of the number of transmission layers indicated in the plurality of first indication information.
  • the uplink reference signal corresponding to the codebook-based uplink data transmission is carried on multiple uplink reference signal resources.
  • flexible resource configuration of the uplink reference signal and corresponding precoding can be supported. Indication and transport layer indication.
  • embodiments of the present application provide another communication method.
  • the method includes: the access network device receives multiple uplink reference signals from the terminal device; the access network device generates Precoding and transmission layer number indication information; the access network device sends the precoding and transmission layer number indication information to the terminal device, and the precoding and transmission layer number indication information is used to indicate the terminal device
  • the number of precoding and transmission layers used for uplink data transmission, and the precoding and transmission layer number indication information corresponds to the multiple uplink reference signals; wherein the number of transmission layers is less than or equal to the multiple uplink reference signals
  • the total number of ports included, the number of rows of the matrix corresponding to the precoding is the sum of the number of ports included in the multiple uplink reference signals, and the rows of the matrix correspond to each port included in the multiple uplink reference signals one by one. correspond.
  • the access network device sends precoding and transmission layer number indication information to the terminal device.
  • the precoding and transmission layer number indication information corresponds to multiple uplink reference signals and does not need to be sent for each uplink reference signal.
  • a precoding and transmission layer number indication information can reduce signaling overhead.
  • embodiments of the present application provide a terminal device that has the function of implementing the operations in the method embodiment of the first aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the processing module is configured to control the transceiver module to send an uplink reference signal to the access network device according to the transmission pattern
  • the uplink reference signal is
  • the uplink reference signal resources include N ports, the N ports in the transmission pattern respectively correspond to different time-frequency resources, and the N ports in the transmission pattern are carried by 2 or more OFDM symbols, or , the N ports in the transmission pattern are carried by 2 or more frequency domain comb teeth and 1 OFDM symbol, and the N is an integer greater than 4
  • the transceiver module is also used to receive signals from all Precoding indication information of the access network device, the precoding indication information is used to indicate the precoding used for uplink data transmission, and the precoding indication information is obtained by the access network device according to the uplink reference signal, so The rows of the matrix corresponding to the precoding correspond to the N ports one-to-one.
  • the processing module which is used to control the transceiver module to send uplink reference signals to the access network device according to the transmission pattern, can be replaced by: the processing module, which is used to control the transceiver module to send the uplink reference signal according to the transmission pattern according to the configuration information.
  • Reference signal the configuration information instructs the terminal device to send an uplink reference signal according to the transmission pattern.
  • the uplink reference signal is an SRS
  • the uplink reference signal resource is an SRS resource
  • the uplink data is carried on a physical uplink shared channel. , PUSCH) or physical uplink control channel (PUCCH)
  • the N is 8
  • the terminal device maps the uplink data to the antenna port according to the precoding, so The number of antenna ports is the same as the number of ports of the SRS resource, and the antenna ports correspond to the ports of the SRS resource one-to-one.
  • a resource mapping scheme is provided in which SRS resources include 8 SRS ports, supporting the design of SRS resources in scenarios with a large number of SRS ports.
  • the N is 8, and the N ports in the transmission pattern (indicate) are carried on two frequency domain combs with a comb degree of 2.
  • the two ports on the same frequency domain comb and two OFDM symbols correspond to two different (cyclic shifts, CS); or, the (indicated) in the transmission pattern
  • the N ports are carried on a frequency domain comb with a frequency domain comb degree of 2 and 2 OFDM symbols, and the four ports located on the same frequency domain comb and OFDM symbol correspond to 4 different CS values.
  • the (instruction) said N ports in the transmission pattern are carried on 2 frequency domain combs with a frequency domain comb degree of 2 and 1 OFDM symbol, and are located in the same frequency domain comb and OFDM
  • the four ports on the symbol correspond to 4 different CS values.
  • the base station can flexibly configure the transmission pattern based on the channel status of the terminal device. Specifically, when the uplink transmission power of the terminal equipment is limited, a transmission pattern that occupies multiple OFDM symbols can be configured. When the base station has higher phase accuracy requirements for the terminal equipment, a transmission pattern that occupies one OFDM symbol can be configured.
  • the processing module is further configured to use the CS reference value indication of the uplink reference signal included in the configuration information of the uplink reference signal resource.
  • the transmission pattern is determined from two or more patterns.
  • the terminal equipment indicates according to the CS reference value of the uplink reference signal Determine the transmission pattern from two or more patterns; switch the transmission pattern through the redundant information in the CS reference value indication, which can simplify the configuration signaling design. .
  • the processing module is further configured to determine the CS value of each SRS port according to the CS reference value indication and the index of each SRS port among the N ports. ;
  • the CS value of each port is used to generate the transmission sequence of each port.
  • the processing module is specifically used to determine described p i represents the index of the i-th port among the N ports (for example, 1001), Indicates the maximum CS indication, Indicates CS reference value indication; as stated Determine the CS value ⁇ i of the i-th port among the N ports,
  • the processing module is specifically configured to use the CS reference value indication, the index of each SRS port among the N ports,
  • K ⁇ 1,2 ⁇ Indicates the maximum CS indication, represents the CS reference value indication, p i represents the index of the i-th port among the N ports (for example, 1001), is 8; as stated Determine the CS value ⁇ i of the i-th port among the N ports,
  • the configuration information further includes a comb tooth position indication of the uplink reference signal.
  • the two or more patterns include at least two of the first pattern, the second pattern and the third pattern; the N ports in the first pattern
  • the comb teeth corresponding to the first port set are The comb teeth corresponding to the second port set among the N ports are
  • the index of the OFDM symbol corresponding to the two ports in the first port set is l
  • the OFDM index corresponding to the other two ports in the first port set is (l+n)
  • the index of the OFDM symbol corresponding to the two ports in the first port set is (l+n).
  • the OFDM index corresponding to the two ports is l, the index of the OFDM symbol corresponding to the other two ports in the second port set is (l+n), the n is an integer greater than or equal to 1, and the l is An integer greater than or equal to 0;
  • the comb teeth corresponding to the first port set and the second port set among the N ports in the second pattern are The index of the OFDM symbol corresponding to the first port set is l, the index of the OFDM symbol corresponding to the second port set is (l+n), the n is an integer greater than or equal to 1, and the l is greater than or equal to an integer of 0;
  • the comb teeth corresponding to the first port set among the N ports in the third pattern are The comb teeth corresponding to the second port set among the N ports are And the index of the OFDM symbol corresponding to the first port set and the second port set is l, and l is an integer greater than or equal to 0; the ports included in the first port set and the second port set The ports included in are different
  • the N ports in the transmission pattern are carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong and one SRS resource occupying multiple OFDM symbols can improve the performance of each port.
  • the power spectral density of an SRS port is carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong and one SRS resource occupying multiple OFDM symbols can improve the performance of each port.
  • the N is 8, and the N ports in the transmission pattern are carried by two frequency domain combs with a frequency domain comb degree of 4. and 2 OFDM symbols, and the two ports located on the same frequency domain comb and OFDM symbol correspond to 2 different CS values; or, the N ports in the transmission pattern are carried in 1 frequency domain On a frequency domain comb with a comb tooth degree of 4 and 2 OFDM symbols, and the four ports located on the same frequency domain comb and OFDM symbol correspond to 4 different CS values; or, all the ports in the transmission pattern
  • the above N ports are carried on 2 frequency domain combs with a frequency domain comb degree of 4 and 1 OFDM symbol, and the four ports located on the same frequency domain comb and OFDM symbol correspond to 4 different CS values. ; Or, the N ports in the transmission pattern are carried on 4 frequency domain combs with a frequency domain comb degree of 4 and 1 OFDM symbol, and are located on the same frequency domain comb and OFDM symbol.
  • the two ports correspond to 2
  • the N ports in the transmission pattern are carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong.
  • the configuration information further includes a comb tooth position indication.
  • the two or more patterns include at least two of the first pattern, the second pattern, the third pattern and the fourth pattern; the N in the first pattern
  • the comb teeth corresponding to the first set of ports among the ports are
  • the comb teeth corresponding to the second port set among the N ports are
  • the index of the OFDM symbol corresponding to the two ports in the first port set is l
  • the OFDM index corresponding to the other two ports in the first port set is (l+n)
  • the index of the OFDM symbol corresponding to the two ports in the first port set is (l+n).
  • the OFDM index corresponding to the two ports is l, the index of the OFDM symbol corresponding to the other two ports in the second port set is (l+n), the n is an integer greater than or equal to 1, and the l is An integer greater than or equal to 0;
  • the comb teeth corresponding to the first port set and the second port set among the N ports in the second pattern are The index of the OFDM symbol corresponding to the first port set is l, the index of the OFDM symbol corresponding to the second port set is (l+n), and the l and n are integers greater than or equal to 1;
  • the comb teeth corresponding to the first port set among the N ports in the third pattern are And the comb teeth corresponding to the second port set among the N ports are And the index of the OFDM symbol corresponding to the first port set and the second port set is l, and l is an integer greater than or equal to 1; 4 ports among the N ports in the fourth pattern The comb teeth corresponding to the set are And the index of the OFDM symbol corresponding
  • the N ports in the transmission pattern are carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong and one SRS resource occupying multiple OFDM symbols can improve the performance of each port.
  • the power spectral density of an SRS port is carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong and one SRS resource occupying multiple OFDM symbols can improve the performance of each port.
  • the terminal device determines the CS reference value of the uplink reference signal.
  • maximum As well as the number of symbols, the transmission pattern is determined from two or more patterns; the transmission pattern suitable for the terminal device to transmit the uplink reference signal can be quickly and accurately determined.
  • the N is 8, and the N ports in the transmission pattern are carried by two frequency domain combs with a frequency domain comb degree of 8. and 2 OFDM symbols, and the two ports located on the same frequency domain comb and OFDM symbol correspond to 2 different CS values; or, the N ports in the transmission pattern are carried in 1 frequency domain On a frequency domain comb with a comb tooth degree of 8 and 2 OFDM symbols, and the four ports located on the same frequency domain comb and OFDM symbol correspond to 4 different CS values; or, all the ports in the transmission pattern
  • the above N ports are carried on 2 frequency domain combs with a frequency domain comb degree of 8 and 1 OFDM symbol, and the four ports located on the same frequency domain comb and OFDM symbol correspond to 4 different CS values.
  • the N port in the transmission pattern is carried on 4 frequency domain combs with a frequency domain comb degree of 8 and 1 OFDM symbol, and is located on two frequency domain combs and OFDM symbols on the same frequency domain comb.
  • Each port corresponds to 2 different CS values.
  • the N ports in the transmission pattern are carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong.
  • the transmission power of the uplink reference signal is determined based on the transmission pattern; when the transmission pattern indicates that the N ports are carried on OFDM symbols, the maximum transmit power of each port does not exceed Among them, P CMAX is the maximum transmit power configured by the terminal device, is an integer greater than 1, the equal to the N.
  • the actual SRS transmission power corresponding to the SRS resource can be equal to the total transmission power. times, which can improve the channel measurement accuracy.
  • embodiments of the present application provide an access network device that has the function of implementing the operations in the method embodiment of the second aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the transceiver module includes a transceiver module and a processing module, wherein: the transceiver module is used to receive an uplink reference signal sent by a terminal device, and the uplink reference signal resource of the uplink reference signal includes N ports, so The N ports are carried by 2 or more orthogonal frequency division multiplexing OFDM symbols, or the N ports are carried by 2 or more frequency domain comb teeth and 1 OFDM symbol, and the N is greater than an integer of 4; the processing module is configured to process to obtain precoding indication information according to the uplink reference signal; the transceiver module is also configured to send the precoding indication information to the terminal device.
  • the indication information is used to indicate the precoding used for the uplink data transmission of the terminal equipment.
  • the precoding indication information is obtained by the access network equipment according to the uplink reference signal.
  • the rows of the matrix corresponding to the precoding are the same as the The N ports are in one-to-one correspondence.
  • the uplink reference signal is an SRS
  • the uplink The row reference signal resource is an SRS resource
  • the uplink data is carried on the physical uplink shared channel PUSCH or the physical uplink control channel PUCCH, and the N is 8
  • the precoding is used by the terminal device to map the uplink data to the antenna
  • the number of the antenna ports is the same as the number of ports of the SRS resources, and the antenna ports correspond to the ports of the SRS resources one-to-one.
  • precoding is used by the terminal device to map uplink data to the antenna port.
  • the antenna port corresponds to the port of the SRS resource one-to-one, providing a resource mapping scheme in which the SRS resource includes 8 SRS ports.
  • the N is 8, and the N ports are carried on 2 frequency domain combs with a frequency domain comb degree of 2 and 2 OFDM symbols.
  • the two ports located on the same frequency domain comb and OFDM symbol correspond to two different (cyclic shifts, CS); or, the N ports are carried in a frequency domain with a frequency domain comb degree of 2
  • the four ports on the comb tooth and 2 OFDM symbols, and located on the same frequency domain comb tooth and OFDM symbol, correspond to 4 different CS values; or, the N ports are carried on 2 frequency domain comb teeth.
  • the degree is The four ports located on the same frequency domain comb and one OFDM symbol correspond to four different CS values.
  • N ports are carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong.
  • the N is 8, and the N ports are carried on 2 frequency domain combs with a frequency domain comb degree of 4 and 2 OFDM symbols. , and the two ports located on the same frequency domain comb and OFDM symbol correspond to 2 different CS values; or, the N ports are carried on 1 frequency domain comb with a frequency domain comb degree of 4 and 2 OFDM symbols, and the four ports located on the same frequency domain comb and OFDM symbol correspond to 4 different CS values; or, the N ports are carried on 2 frequency domain combs with a comb degree of 4.
  • the four ports on the comb tooth and one OFDM symbol, and located on the same frequency domain comb tooth and OFDM symbol, correspond to 4 different CS values; or, the N ports are carried on 4 frequency domain comb teeth.
  • the degree is 4 frequency domain combs and 1 OFDM symbol, and two ports located on the same frequency domain comb and OFDM symbol correspond to 2 different CS values.
  • N ports are carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong.
  • the N ports are carried on 2 frequency domain combs with a frequency domain comb degree of 8 and 2 OFDM symbols, and are located on the same frequency
  • the two ports on the domain comb and the OFDM symbol correspond to 2 different CS values; or, the N ports are carried on 1 frequency domain comb with a frequency domain comb degree of 8 and 2 OFDM symbols, and The four ports located on the same frequency domain comb and OFDM symbol correspond to 4 different CS values; alternatively, the N ports are carried on 2 frequency domain combs with a frequency domain comb degree of 8 and 1 OFDM symbols, and the four ports located on the same frequency domain comb and OFDM symbol correspond to 4 different CS values; or, the N port is carried on 4 frequency domain combs with a frequency domain comb degree of 8 and Two ports on one OFDM symbol and located on the same frequency domain comb and OFDM symbol correspond to two different CS values.
  • N ports are carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong.
  • the comb teeth corresponding to the first port set among the N ports are The comb teeth corresponding to the second port set among the N ports are The index of the OFDM symbol corresponding to the two ports in the first port set is l, the OFDM index corresponding to the other two ports in the first port set is (l+n), and the index of the OFDM symbol corresponding to the two ports in the first port set is (l+n).
  • the OFDM index corresponding to the two ports is l
  • the index of the OFDM symbol corresponding to the other two ports in the second port set is (l+n)
  • the n is an integer greater than or equal to 1
  • the l is An integer greater than or equal to 0
  • K TC is the frequency domain comb degree of the uplink reference signal
  • the index of the OFDM symbol corresponding to the first port set is l
  • the index of the OFDM symbol corresponding to the second port set is (l+n)
  • the comb teeth corresponding to the first port set and the second port set among the N ports are The index of the OFDM symbol corresponding to the first port set is l, the index of the OFDM symbol corresponding to the second port set is (l+n), the n is an integer greater than or equal to 1, and the l is greater than or equal to An integer of 0, K TC is the frequency domain comb degree of the uplink reference signal, For the comb tooth position indication of the uplink reference signal, the ports included in the first port set are different from the ports included in the second port set.
  • the index of the OFDM symbol corresponding to the first port set is l
  • the index of the OFDM symbol corresponding to the second port set is (l+n)
  • the comb teeth corresponding to the first port set among the N ports are The comb teeth corresponding to the second port set among the N ports are And the index of the OFDM symbol corresponding to the first port set and the second port set is l, where l is an integer greater than or equal to 0, K TC is the frequency domain comb degree of the uplink reference signal, For the comb tooth position indication of the uplink reference signal, the ports included in the first port set are different from the ports included in the second port set.
  • the index of OFDM symbols corresponding to the first port set and the second port set is l, which can reduce the overhead of OFDM symbols.
  • the comb teeth corresponding to the first port set are The comb teeth corresponding to the second port set are This can make the orthogonality between each port stronger.
  • the comb teeth corresponding to the 4 port sets among the N ports are And the index of the OFDM symbol corresponding to the 4-port set is l, and the l is an integer greater than or equal to 1.
  • Each port set in the 4-port set contains different ports, and K TC is the uplink reference signal. Frequency domain comb degree, It is the comb tooth position indication of the uplink reference signal.
  • the comb teeth corresponding to the four port sets are This can make the orthogonality between each port stronger.
  • the transmission power of the uplink reference signal is determined by the terminal device according to a transmission pattern; when the transmission pattern indicates that the N ports are carried on OFDM symbols, the maximum transmit power of each port does not exceed Among them, P CMAX is the maximum transmit power configured by the terminal device, is an integer greater than 1, the equal to the N.
  • the actual SRS transmission power corresponding to the SRS resource can be equal to the total transmission power. times, which can improve the channel measurement accuracy.
  • an embodiment of the present application provides another terminal device that has the function of implementing the operations in the method embodiment of the third aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • it includes a transceiver module and a processing module, wherein: the processing module is used to generate multiple uplink reference signals according to the configuration information of multiple uplink reference signal resources; the transceiver module is used to Send the plurality of uplink reference signals; the transceiver module is also used to receive precoding and transmission layer number indication information.
  • the precoding and transmission layer number indication information is used to indicate the uplink data transmission method used by the terminal device.
  • the number of precoding and transmission layers, and the precoding and transmission layer number indication information corresponds to the multiple uplink reference signals; wherein the number of transmission layers is less than or equal to the sum of the number of ports included in the multiple uplink reference signals.
  • the number of rows of the matrix corresponding to the precoding is the sum of the number of ports included in the multiple uplink reference signals, and the rows of the matrix correspond one-to-one to each port included in the multiple uplink reference signals.
  • the multiple uplink reference signals include The total number of ports can be understood as the total number of ports included in the multiple uplink reference signal resources.
  • the multiple uplink reference signals are multiple SRSs
  • the multiple uplink reference signal resources are multiple SRS resources
  • the multiple uplink reference signals are The resources include two first SRS resources, and the number of ports included in the first SRS resources is 4.
  • the multiple uplink reference signal resources include two first SRS resources, the number of ports included in the first SRS resource is 4, and the rows of the matrix corresponding to the precoding correspond to each of the multiple uplink reference signal resources.
  • the ports have a one-to-one correspondence; the time-frequency resource mapping method of each port (for example, 8) included in the multiple uplink reference signals can be obtained through precoding and transmission layer number indication information.
  • the two first SRS resources include SRS resource 1 and SRS resource 2, and the antenna port corresponding to the port of the SRS resource 1 is the first polarization. direction, the antenna port corresponding to the port of the SRS resource 2 is the second polarization direction; or, for the i-th stream of uplink data transmission, the precoding corresponding to the port of the SRS resource 1 is vi , and the SRS resource
  • the precoding corresponding to port 2 is n is an integer; wherein, the number of elements in vi is 4, and i is a positive integer.
  • the precoding and transmission layer number indication information includes two transmission indication fields, and the two transmission indication fields correspond to two uplink reference signal resources in a one-to-one manner.
  • the number of transmission layers is the sum of the number of transmission layers indicated by the two transmission indication fields; the precoding and transmission layer number indication information also includes phase indication information Used to indicate the phase rotation between the antennas corresponding to the two uplink reference signal resources.
  • the precoding and transmission layer number indication information includes a precoding beam indication field, a transmission layer number indication field and a phase indication information.
  • the one precoding beam indication field is used to indicate the transmission beam corresponding to each uplink reference signal resource
  • the transmission layer number indication field is used to indicate the number of transmission layers of uplink data
  • the phase indication information Used to indicate the phase rotation between the antennas corresponding to the two uplink reference signal resources.
  • the coherence capability of the terminal device is complete coherence.
  • the precoding is a fully coherent codeword.
  • the multiple uplink reference signals are multiple SRSs
  • the multiple uplink reference signal resources are multiple SRS resources
  • the multiple uplink reference signals are The resources include two second SRS resources and one first SRS resource, the number of ports included in the first SRS resource is 4, and the number of ports included in the second SRS resource is 2; or, the plurality of uplink The reference signal resources include four second SRS resources, and the number of ports included in the second SRS resources is 2.
  • the rows of the matrix corresponding to the precoding correspond to each port included in the multiple uplink reference signals; the terminal device can obtain each port included in the multiple uplink reference signals through the precoding and transmission layer number indication information.
  • the time-frequency resource mapping method of ports (for example, 8).
  • the uplink reference signal resource is an SRS resource
  • the k-th SRS resource among the plurality of SRS resources is the same as the k-th SRS resource of the uplink data.
  • the precoding The row where the non-zero element in the column is located corresponds to the port of the k-th SRS resource one-to-one, where m k is a positive integer less than or equal to the number of ports of the k-th SRS resource, and k is an integer greater than 0; so Any two SRS resources among the plurality of SRS resources correspond to different layers of the uplink data; the uplink data corresponds to one PUSCH or PUCCH.
  • the precoding is a partially coherent codeword.
  • the coherence capability of the terminal device is partial coherence.
  • antenna ports capable of coherent transmission are located in the same SRS resource, thereby ensuring simultaneous transmission of antenna ports capable of coherent transmission and improving base station channel measurement accuracy.
  • the precoding design only needs to correspond to one SRS Each port within the resource indicates the phase, simplifying precoding design.
  • the precoding and transmission layer number indication information includes multiple transmission indication fields, and the multiple transmission indication fields are related to the multiple uplink reference signal resources.
  • the rows of the precoded matrices in the multiple transmission indication fields correspond to the ports in the corresponding uplink reference signal resources; the number of transmission layers of the uplink data is indicated by the multiple transmission indication fields The total number of transmission layers.
  • the rows of the precoding matrices in the multiple transmission indication fields correspond to the ports in the corresponding uplink reference signal resources.
  • the terminal equipment can obtain transmission via PUSCH or PUCCH based on the precoding and transmission layer number indication information.
  • the plurality of uplink reference signal resources are multiple SRS resources
  • the precoding and transmission layer number indication information is precoding indication information
  • the precoding Coding and transmission layer indication information includes sounding reference signal resource indicator (SRS resource indicator, SRI), transmission rank indicator (transmissionrank indicator, TRI), and transmission precoding matrix indicator (transmission precoding matrix indicator, TPMI).
  • SRS resource indicator SRI
  • transmission rank indicator transmissionrank indicator
  • TPMI transmission precoding matrix indicator
  • the SRI is used to indicate For two or more of the plurality of SRS resources
  • the TPMI is used to indicate the precoding
  • the TRI indicates the transport layer.
  • SRI is used to indicate multiple SRS resources, and the sum of the number of ports included in multiple uplink reference signals in the rows of the precoding matrix; the terminal equipment can obtain uplink transmission through PUSCH or PUCCH based on the precoding and transmission layer number indication information.
  • the multiple SRS resources indicated by the SRI each independently correspond to a data layer sent through the PUSCH or PUCCH.
  • the multiple SRS resources indicated by the SRI correspond to independent layers and layer mappings.
  • multiple SRS resources indicated by SRI each independently correspond to the data stream sent through PUSCH or PUCCH.
  • the 8-port SRS resource i.e., 8 SRS ports
  • Support SRS transmit power is increased to improve channel measurement accuracy.
  • an embodiment of the present application provides another access network device that has the function of implementing the operations in the method embodiment of the fourth aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • it includes a transceiver module and a processing module, wherein: the transceiver module is used to receive multiple uplink reference signals from terminal equipment; the processing module is used to calculate the signal according to the multiple uplink reference signals.
  • the transceiver module is also used to send the precoding and transmission layer number indication information to the terminal device, and the precoding and transmission layer number indication information is used to indicate The number of precoding and transmission layers used for uplink data transmission of the terminal equipment, and the precoding and transmission layer number indication information corresponds to the multiple uplink reference signals; wherein the number of transmission layers is less than or equal to the The total number of ports included in multiple uplink reference signals, the number of rows of the matrix corresponding to the precoding is the sum of the number of ports included in the multiple uplink reference signals, and the rows of the matrix and the multiple uplink reference signals include Each port corresponds one to one.
  • the multiple uplink reference signals are multiple SRSs
  • the multiple uplink reference signal resources are multiple SRS resources
  • the multiple uplink reference signals are The resources include two first SRS resources, and the number of ports included in the first SRS resources is 4.
  • the multiple uplink reference signal resources include two first SRS resources, the number of ports included in the first SRS resource is 4, and the rows of the matrix corresponding to the precoding correspond to each of the multiple uplink reference signal resources. Ports correspond one to one; Supports 8-port SRS (i.e. 8 SRS ports) transmission by supporting multiple SRS resource aggregation.
  • the precoding is a fully coherent codeword
  • the two first SRS resources include SRS resource 1 and SRS resource 2, and the SRS resource 1
  • the antenna port corresponding to the port is the first polarization direction
  • the antenna port corresponding to the port of the SRS resource 2 is the second polarization direction; or, for the i-th stream, the precoding corresponding to the port of the SRS resource 1 is v i , the precoding corresponding to the port of the SRS resource 2 is n is an integer; where, the number of elements in vi is 4, and i is an integer.
  • the multiple uplink reference signals are multiple SRSs
  • the multiple uplink reference signal resources are multiple SRS resources
  • the multiple uplink reference signals are The resources include two second SRS resources and one first SRS resource, the number of ports included in the first SRS resource is 4, and the number of ports included in the second SRS resource is 2; or, the plurality of uplink The reference signal resources include four second SRS resources, and the number of ports included in the second SRS resources is 2.
  • the rows of the matrix corresponding to the precoding correspond to each port included in the multiple uplink reference signals; 8-port SRS (that is, 8 SRS ports) transmission is supported by supporting multiple SRS resource aggregation. . Since the time-frequency resource position of each SRS resource can be configured independently, the 8-port SRS can be split and sent on multiple OFDM symbols, which can support the increase in SRS transmission power and thus improve the channel measurement accuracy. In addition, this method can make use of the design of 2-port SRS and 4-port SRS resources supported by existing protocols, as well as the design of reusing existing TPMI codebooks to the greatest extent possible.
  • the precoding is a partially coherent codeword
  • the uplink reference signal resource is an SRS resource
  • the precoding The row where the non-zero element in the column is located corresponds one-to-one with the port of the k-th SRS resource, where m k is a positive integer less than or equal to the number of ports of the k-th SRS resource, and k is an integer greater than 0; so Any two SRS resources among the plurality of SRS resources correspond to different layers of the uplink data; the uplink data corresponds to one PUSCH or PUCCH.
  • the precoding and transmission layer number indication information includes multiple transmission indication fields, and the multiple transmission indication fields are related to the multiple uplink reference signal resources.
  • the rows of the precoded matrices in the multiple transmission indication fields correspond to the ports in the corresponding uplink reference signal resources; the number of transmission layers of the uplink data is indicated by the multiple transmission indication fields The total number of transmission layers.
  • the rows of the precoding matrices in the multiple transmission indication fields correspond to the ports in the corresponding uplink reference signal resources one-to-one, so that the terminal equipment can obtain the information through PUSCH or PUCCH based on the precoding and transmission layer number indication information.
  • the plurality of uplink reference signal resources are multiple SRS resources
  • the precoding and transmission layer number indication information is precoding indication information
  • the coding and transport layer indication information includes SRI, TRI, and TPMI.
  • the SRI is used to indicate two or more of the multiple SRS resources.
  • the TPMI is used to indicate the precoding.
  • the TRI indicates the Describe the transport layer.
  • SRI is used to indicate multiple SRS resources, and the total number of ports included in multiple uplink reference signals in the rows of the precoding matrix; so that the terminal equipment can obtain transmission through PUSCH or PUCCH based on the precoding and transmission layer number indication information.
  • the multiple SRS resources indicated by the SRI each independently correspond to a data stream sent through the PUSCH or PUCCH.
  • the multiple SRS resources indicated by the SRI correspond to independent flows and flow mappings.
  • multiple SRS resources indicated by SRI independently correspond to data streams sent through PUSCH or PUCCH.
  • the 8-port SRS can be split and sent on multiple OFDM symbols, and the SRS transmit power increase is supported to improve the signal. Measurement accuracy.
  • the F ports included in each SRS resource indicated by the SRI correspond to N consecutive rows in the matrix, and the SRS resources indicated by the SRI are in accordance with Indexes from smallest to largest correspond to rows of the matrix from smallest to largest.
  • the present application provides a communication device.
  • the communication device includes a processor.
  • the processor can be used to execute computer execution instructions stored in a memory, so as to implement the above first aspect or any possible implementation of the first aspect.
  • the method shown is executed, or the method shown in the second aspect or any possible implementation of the second aspect is executed, or the method shown in the third aspect or any possible implementation of the third aspect is executed.
  • the method is executed, or the method shown in the above fourth aspect or any possible implementation manner of the fourth aspect is executed.
  • the process of sending information in the above method can be understood as a process of outputting information based on instructions of the processor.
  • the processor In outputting information, the processor outputs the information to the transceiver for transmission by the transceiver. After the information is output by the processor, it may also need to undergo other processing before reaching the transceiver.
  • the processor receives incoming information
  • the transceiver receives the information and feeds it into the processor. Furthermore, after the transceiver receives the information, the information may need to undergo other processing before being input to the processor.
  • the above-mentioned processor may be a processor specifically designed to perform these methods, or may be a processor that executes computer instructions in a memory to perform these methods, such as a general-purpose processor.
  • the processor may also be configured to execute a program stored in the memory.
  • the communication device performs the method shown in the above-mentioned first aspect or any possible implementation of the first aspect.
  • the memory is located outside the communication device. In a possible implementation, the memory is located within the above communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, and the transceiver is used to receive messages or send messages, etc.
  • the present application provides another communication device.
  • the communication device includes a processing circuit and an interface circuit.
  • the interface circuit is used to obtain data or output data; the processing circuit is used to perform the above-mentioned first aspect or any of the first aspects.
  • the corresponding method shown in the possible implementation manner, or the processing circuit is used to perform the corresponding method shown in the above-mentioned second aspect or any possible implementation manner of the second aspect, or the processing circuit is used to perform the above-mentioned third aspect Or the corresponding method shown in any possible implementation manner of the third aspect, or the processing circuit is configured to perform the corresponding method shown in the above-mentioned fourth aspect or any possible implementation manner of the fourth aspect.
  • the present application provides a computer-readable storage medium, which is used to store a computer program that, when run on a computer, enables the above-mentioned first aspect or any possible implementation of the first aspect.
  • the method shown in the manner is executed, or the method shown in the above second aspect or any possible implementation manner of the second aspect is executed, or the method shown in the above third aspect or any possible implementation manner of the third aspect is caused to be executed.
  • the method is executed, or the method shown in the above fourth aspect or any possible implementation of the fourth aspect is executed.
  • the present application provides a computer program product.
  • the computer program product includes a computer program or computer code.
  • the computer program product When run on a computer, the computer program product enables the above-mentioned first aspect or any possible implementation of the first aspect.
  • the method shown is executed, or the method shown in the above second aspect or any possible implementation of the second aspect is executed, or the method shown in the above third aspect or any possible implementation of the third aspect is caused to be Execute, or cause the method shown in the above fourth aspect or any possible implementation of the fourth aspect to be executed.
  • the present application provides a communication system, including the terminal device of the fifth aspect or any possible implementation of the fifth aspect and the sixth aspect or any possible implementation of the sixth aspect. access network equipment.
  • the present application provides another communication system, including the terminal device of the above-mentioned seventh aspect or any possible implementation of the seventh aspect, and the above-mentioned eighth aspect or any possible implementation of the eighth aspect.
  • Figure 1 is an example of three comb teeth with different tooth degrees provided by this application
  • Figure 2 is an example of scanning bandwidth and frequency modulation bandwidth provided by this application.
  • Figure 3 is a comparison schematic diagram of transmission power provided by an embodiment of the present application.
  • Figure 4 is an example of a wireless communication system provided by an embodiment of the present application.
  • Figure 5 is an interaction flow chart of a communication method provided by an embodiment of the present application.
  • Figure 6 is an interaction flow chart of another communication method provided by an embodiment of the present application.
  • Figure 7 is an example of the first pattern, the second pattern and the third pattern provided by the embodiment of the present application.
  • Figure 8 is an interaction flow chart of another communication method provided by an embodiment of the present application.
  • Figure 9 is an example of the first pattern, the second pattern, the third pattern and the fourth pattern provided by the embodiment of the present application.
  • Figure 10 is an interaction flow chart of another communication method provided by an embodiment of the present application.
  • Figure 11 is an example of the first pattern, the second pattern, the third pattern and the fourth pattern provided by the embodiment of the present application;
  • Figure 12 is an interaction flow chart of another communication method provided by an embodiment of the present application.
  • Figure 13 is an interaction flow chart of another communication method provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of an antenna architecture provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of another antenna architecture provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another antenna architecture provided by an embodiment of the present application.
  • Figure 17 shows a schematic structural diagram of a communication device 1700
  • Figure 18 is a schematic structural diagram of another communication device 180 provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of another communication device 190 provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in In at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art will understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • SRS is an uplink reference signal sent by a terminal device to an access network device (such as a base station).
  • the access network device obtains the UL channel of the terminal device according to the SRS sent by the terminal device.
  • the access network device obtains the DL channel of the terminal device based on channel reciprocity, and performs data scheduling on the UE based on the channel information.
  • SRS resources are semi-statically configured by the base station through high-layer parameters, including:
  • each SRS port corresponds to specific time-frequency code resources. Ideally, the individual SRS ports are orthogonal. Each SRS port corresponds to the physical antenna or virtual antenna of the UE. For codebook-based uplink transmission, each port of the SRS resource corresponds to the physical antenna of the terminal device one-to-one;
  • SRS comb The frequency domain subcarriers on the comb of an SRS are equally spaced.
  • the comb degree K TC ⁇ ⁇ 2, 4, 8 ⁇ is semi-statically configured by the base station through high-level parameters, which determines The number of subcarriers spaced between any two adjacent subcarriers on the comb teeth.
  • Figure 1 is an example of three comb teeth with different comb teeth (or called frequency domain comb teeth) provided by this application.
  • each grid represents a resource element (RE) in the frequency domain.
  • the black grid is an example of the RE position occupied by one of the comb teeth under different comb tooth degrees.
  • the scanning bandwidth, frequency hopping bandwidth and frequency hopping period of SRS are determined based on high-level parameters and protocol predefined tables.
  • the SRS scanning bandwidth is the bandwidth range corresponding to the channel obtained by the base station based on SRS.
  • the SRS frequency hopping bandwidth is the bandwidth range corresponding to the channel obtained by the base station after a single SRS transmission.
  • the frequency hopping bandwidth is less than or equal to
  • the scanning bandwidth and frequency hopping period are the number of SRS transmissions required by the base station to obtain the channel corresponding to the scanning bandwidth; when the base station configures the frequency scaling factor P F through high-level parameters, the SRS scanning bandwidth, frequency hopping bandwidth and frequency hopping period remain unchanged.
  • the scanning bandwidth is P F times the bandwidth range corresponding to the channel obtained by the base station based on SRS
  • the SRS frequency hopping bandwidth is the base station after a single SRS transmission.
  • P F times the bandwidth range corresponding to the acquired channel.
  • Figure 2 is an example of scanning bandwidth and frequency hopping bandwidth provided by this application.
  • each grid represents a resource block (RB) in the frequency domain.
  • the scanning bandwidth of SRS is 16RB
  • the frequency hopping bandwidth is 4RB
  • the frequency hopping period is 4.
  • the P F 2.
  • SRS cyclic shift (CS) Sequence used by LTE and NR SRS is the base sequence Circular shift of:
  • the cyclic shift ⁇ i corresponding to SRS port p i is defined by the following formula:
  • each circular shift value corresponds to the starting point of each part. It is the cyclic shift reference value, semi-statically configured by the base station through the high-level parameter transmissionComb.
  • different SRS sequences can be obtained by using different cyclic shift values ⁇ .
  • ⁇ 1 and ⁇ 2 satisfy ⁇ 1 mod 2 ⁇ 2 mod 2 ⁇
  • the basis sequence and the sequence obtained by cyclic shift ⁇ 1 is the same as the base sequence
  • the sequences obtained by the cyclic shift ⁇ 2 are mutually orthogonal, that is, the mutual correlation coefficient is zero.
  • Comb teeth occupied by SRS port p i It is defined by the following formula: It is the comb offset, configured by the base station through the high-level parameter transmissionComb.
  • the precoding indication information for PUSCH scheduled by the access network equipment includes SRI, TRI, and TPMI.
  • SRI is used to indicate the SRS resource corresponding to PUSCH (used to determine the transmitting antenna for transmitting PUSCH)
  • TRI is used to indicate the transmission stream of PUSCH
  • TPMI is used to indicate the transmit phase of the transmitting antenna corresponding to PUSCH.
  • v is the number of PUSCH transmission streams
  • y is the i-th modulation symbol mapped to the k-th stream
  • k 0,...,v-1
  • y is mapped based on the precoding matrix W
  • the formula for mapping y to the transmit antenna of PUSCH based on the precoding matrix W is as follows:
  • SRI usually indicates an SRS resource
  • the number of rows in TPMI is the number of SRS ports in the SRS resource, which corresponds to each SRS port one-to-one.
  • the following introduces the current solution for allocating comb and CS to each port of an SRS resource.
  • the comb and CS allocated to SRS ports within an SRS resource are for a maximum of 4 ports.
  • a 4-port SRS resource that is, an SRS resource including 4 ports
  • the access network equipment can select the number of comb teeth occupied by an SRS resource according to the channel status of the terminal device. For example, when the terminal device is in a non line of sight (NLOS) scenario and the channel delay spread is relatively large, the ports with adjacent numbers (occupied CSs are also adjacent) can be allocated as much as possible.
  • NLOS non line of sight
  • the way to increase the CS interval is to use the allocation strategy of formula (7) to divide ports 1000 and 1002 into a comb.
  • the corresponding CS interval is 1001 and 1003 points are on another comb, and the corresponding CS intervals are also
  • the CS interval of two ports here refers to the number of integers included between the corresponding CS values of the two ports.
  • the SRS resource occupies a comb the CS interval between adjacent ports is In other words, there are two configurable CS intervals for 4-port SRS resources: 1 and 3.
  • both 2-port SRS resources and 4-port SRS resources support a maximum CS interval of 3, and it is not enough to only support a CS interval of 1.
  • DFT discrete Fourier transform
  • both 2-port SRS resources and 4-port SRS resources support a maximum CS interval of 5, and only supporting a CS interval of 2 is not enough.
  • a CS interval of 5 means that the DFT points in the delay domain are spaced 5*12/N
  • a CS interval of 2 means that the DFT points in the delay domain are spaced 2*12/N.
  • the CS interval between adjacent ports in the same comb is
  • both 2-port SRS resources and 4-port SRS resources support a maximum CS interval of 2.
  • N the number of DFT points in the delay domain
  • FIG. 3 is a schematic comparison diagram of transmission power provided by an embodiment of the present application.
  • Some communication methods provided by this application adopt a new time-frequency resource mapping scheme of SRS resources, which can make the orthogonality between the ports stronger and/or make the transmission power of each port larger.
  • the communication method provided by this application is applicable to both homogeneous and heterogeneous network scenarios. At the same time, there are no restrictions on transmission points. It can be multiple points between macro base stations, micro base stations and micro base stations, or macro base stations and micro base stations. Coordinated transmission is applicable to both FDD/TDD systems.
  • the communication method, communication method and communication method provided by this application are suitable for low-frequency scenarios (sub6G) and high-frequency scenarios (above 6G); suitable for single transmission reception point (transmission reception point, TRP) or multiple transmission reception points ( multi-TRP) scenarios, and any of their derivative scenarios.
  • the communication method provided by this application can be applied to 5G, satellite communication, short-distance and other wireless communication systems.
  • the wireless communication systems mentioned in the embodiments of this application include, but are not limited to: narrowband-internet of things (NB-IoT), long term evolution (LTE) and other fourth systems.
  • NTN non-terrestrial network
  • 4G 4th generation
  • 5G fifth generation
  • NR new radio
  • 6G 6th generation
  • WiFi wireless fidelity
  • Figure 4 is an example of a wireless communication system provided by an embodiment of the present application.
  • the communication system includes: one or more terminal devices.
  • only two terminal devices are taken as an example, and one or more access network devices that can provide communication services for the terminal devices (for example, base station), Figure 4 only takes one access network device as an example.
  • none A line communication system can be composed of cells. Each cell contains one or more access network devices.
  • the access network devices provide communication services to multiple terminals.
  • Wireless communication systems can also perform point-to-point communication, such as communication between multiple terminals.
  • a terminal is a device with wireless sending and receiving functions.
  • the terminal can communicate with one or more core network (CN) devices (or core devices) through access network equipment (or access equipment) in the radio access network (RAN).
  • CN core network
  • RAN radio access network
  • Terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal may also be called a terminal device or user equipment (UE), and may be a mobile phone (mobile phone), mobile station (MS), tablet computer (pad), or computer with wireless transceiver function.
  • Terminals may include various handheld devices with wireless communication capabilities, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • the terminal can be a handheld device (handset) with wireless communication function, a vehicle-mounted device, a wearable device or a terminal in the Internet of Things, the Internet of Vehicles, any form of terminal in 5G and communication systems evolved after 5G, etc. This application is not limited to this.
  • the access network device can be any device that has wireless transceiver functions and can communicate with the terminal, such as a radio access network (RAN) node that connects the terminal to the wireless network.
  • RAN nodes include: macro base stations, micro base stations (also called small stations), relay stations, access points, gNBs, transmission reception points (TRP), evolved Node B, eNB), wireless network controller (radio network controller, RNC), home base station (e.g., home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), WiFi access point (access point, AP), integrated access and backhaul (IAB), etc.
  • Figure 5 is an interaction flow chart of a communication method provided by an embodiment of the present application. As shown in Figure 5, the method includes:
  • the terminal device sends the uplink reference signal to the access network device according to the transmission pattern.
  • the access network device receives the uplink reference signal from the terminal device.
  • the uplink reference signal resource of the above-mentioned uplink reference signal includes N ports. There are at least two groups of ports among the above-mentioned N ports in the above-mentioned transmission pattern. Each group of ports corresponds to the same time-frequency resource, and different groups of ports correspond to different time-frequency resources.
  • the above-mentioned N ports in the above-mentioned transmission pattern are carried by 2 or more OFDM symbols. For example, N is 8, and 8 ports in the transmission pattern are carried in 2 OFDM symbols.
  • the N ports in the transmission pattern are carried by two or more frequency domain comb teeth and one OFDM symbol, and the N is an integer greater than 4, for example, N is 8.
  • step 501 is replaced with: the terminal device sends the uplink reference signal according to the transmission pattern according to the configuration information; the above configuration information instructs the above terminal device to send the uplink reference signal according to the above transmission pattern. That is to say, the time-frequency resource mapping method of the N ports included in the uplink signal resource is the same as the time-frequency resource mapping method of the N ports in the transmission pattern.
  • the above-mentioned N is 8, and the above-mentioned N ports in the above-mentioned transmission pattern are carried on 2 frequency domain combs with a frequency domain comb degree of 2 and 2 OFDM symbols, and Located in the same frequency domain comb and OFDM
  • the two ports on the symbol correspond to 2 different CSs; or, the above-mentioned N ports in the above-mentioned transmission pattern are carried on 1 frequency-domain comb with a frequency-domain comb degree of 2 and 2 OFDM symbols, And the four ports located on the same frequency domain comb and OFDM symbol correspond to 4 different CS values; or, the above-mentioned N ports in the above transmission pattern (indicated) are carried on 2 frequency domain combs with a degree of 2.
  • the four ports on the frequency domain comb and one OFDM symbol, and located on the same frequency domain comb and OFDM symbol correspond to four different CS values.
  • the N ports in the transmission pattern are carried on frequency domain combs and OFDM symbols, which can make the orthogonality between the ports strong.
  • the terminal device receives the precoding indication information from the access network device.
  • the access network device sends precoding indication information to the terminal device.
  • the precoding indication information is obtained by the access network device according to the uplink reference signal.
  • the transmitting antenna for uplink data transmission corresponds to each port of the plurality of uplink reference signals.
  • the above-mentioned precoding indication information is used to indicate the precoding used for uplink data transmission.
  • the above-mentioned precoding indication information is obtained by the above-mentioned access network device based on the above-mentioned uplink reference signal.
  • the rows of the matrix corresponding to the above-mentioned precoding correspond to the above-mentioned N ports one by one. .
  • the precoding corresponds to an 8-row matrix, and the rows of the matrix correspond to N ports included in the uplink reference signal resource one-to-one.
  • the precoding corresponds to two 4-row matrices, and the rows of the two matrices correspond to the 8 ports included in the uplink reference signal resource.
  • the precoding corresponds to four 2-row matrices, and the rows of the four matrices correspond to the 8 ports included in the uplink reference signal resource.
  • the terminal device maps the uplink data to the antenna port according to the precoding.
  • the access network device receives uplink data from the terminal device.
  • the above-mentioned uplink reference signal is an SRS
  • the above-mentioned uplink reference signal resource is an SRS resource
  • the above-mentioned uplink data is carried on PUSCH or PUCCH
  • the above-mentioned N is 8
  • the number of the above-mentioned antenna ports is equal to the number of the above-mentioned SRS resource ports.
  • the numbers are the same, and the above-mentioned antenna ports correspond one-to-one with the ports of the above-mentioned SRS resources.
  • the terminal device maps the uplink data to the antenna port according to the precoding.
  • the terminal device uses formula (8) to map the uplink data to the antenna port according to the precoding; where, W in formula (8) represents the precoding corresponding Matrix, z represents the data sent on each antenna port, and y is the uplink data.
  • the transmission power of the above-mentioned uplink reference signal is determined based on the above-mentioned transmission pattern; when the above-mentioned transmission pattern indicates that the above-mentioned N ports are carried on (For example, 2) OFDM symbols, the maximum transmit power of each port does not exceed Among them, P CMAX is the maximum transmit power configured by the above terminal equipment, is an integer greater than 1, the above Equal to the above N.
  • the corresponding SRS ports on each OFDM symbol equally share the total transmit power of the SRS determined by the power control policy. This can make the actual transmit power of the SRS corresponding to the 8-port SRS resource equal to the total transmit power. times.
  • N ports are carried over On OFDM symbols, the actual SRS transmission power corresponding to the SRS resource can be equal to the total transmission power. times, which can improve the channel measurement accuracy.
  • the 8-port SRS is configured in the SRS resource set used for uplink codebook transmission.
  • the terminal device sends an 8-port SRS, and the access network device determines the channel information of each transmit antenna of the terminal device based on the 8-port SRS, and then indicates the TPMI based on the 8-port SRS.
  • the TPMI is in matrix form, and the number of matrix rows is 8 (according to The port number of the corresponding SRS is determined) corresponding to each SRS port.
  • the transmitting antenna of the terminal device corresponding to the SRS port is used to transmit PUSCH.
  • the transmitting phase of the transmitting antenna corresponding to each SRS port is determined according to each row of TPMI. In this implementation, the transmit phase of the transmit antenna corresponding to each SRS port of the 8-port SRS can be accurately determined.
  • the terminal device sends an uplink reference signal to the access network device according to the transmission pattern so that the N (more than 4) ports included in the uplink reference signal resource of the uplink reference signal are carried on 2 or more OFDM symbols; By carrying N ports included in the same uplink reference signal resource on 2 or more OFDM symbols, the Orthogonality between each of the N ports.
  • the terminal equipment sends the uplink reference signal to the access network equipment according to the transmission pattern so that the N (more than 4) ports included in the uplink reference signal resource of the uplink reference signal are carried on 2 or more frequency domain combs and 1 OFDM symbol, the precoding indication information indicates that the rows of the matrix corresponding to the precoding used in the uplink data transmission of the terminal equipment correspond to the N ports included in the uplink reference signal resources; it is provided to use the uplink reference signal resources including N ports to carry the uplink
  • the reference signal solution supports the design of SRS resources in scenarios with a large number of SRS ports.
  • the N ports included in the uplink reference signal resource can be carried on frequency domain comb teeth with different comb teeth.
  • the terminal equipment uses N ports included in the frequency domain comb teeth of different comb teeth to carry uplink reference signal resources, and sends uplink reference signals to the access network equipment according to different transmission patterns.
  • frequency domain comb degree and comb degree can be interchanged. The following describes the signal transmission scheme when the terminal equipment uses frequency domain combs with comb degrees of 2, 4, and 8 to carry the SRS port.
  • Figure 6 is an interaction flow chart of another communication method provided by an embodiment of the present application.
  • Figure 6 shows the signal transmission scheme when the terminal equipment uses a frequency domain comb with a comb degree of 2 to carry the SRS port.
  • the method flow in Figure 6 is a possible implementation of the method described in Figure 5 .
  • the terminal device can select a transmission pattern from two or more patterns to obtain a transmission pattern suitable for transmitting the uplink reference signal.
  • the method includes:
  • the terminal device determines the transmission pattern from two or more patterns according to the CS reference value indication of the uplink reference signal included in the configuration information of the uplink reference signal resource.
  • the comb teeth corresponding to the two or more patterns are is 2.
  • the uplink reference signal resource is the SRS resource
  • the uplink reference signal is the SRS.
  • the above-mentioned N ports in the above-mentioned transmission pattern respectively correspond to different time-frequency resources.
  • the N ports in the above transmission pattern are carried by 2 or more OFDM symbols.
  • the N ports in the above transmission pattern are carried by 2 or more frequency domain comb teeth and 1 OFDM symbol, and the above N is an integer greater than 4, for example, N is 8.
  • Example 1 N ports in the transmission pattern are carried on 2 frequency domain combs with a frequency domain comb degree of 2 and 2 OFDM symbols, and the two ports located on the same frequency domain comb and OFDM symbol correspond to 2 different cyclic shift CS values.
  • Example 2 the above N ports in the above transmission pattern are carried on 1 frequency domain comb with a frequency domain comb degree of 2 and 2 OFDM symbols, and are located on the same frequency domain comb and four OFDM symbols. The port corresponds to 4 different CS values.
  • Example 3 the above N ports in the above transmission pattern are carried on 2 frequency domain combs with a frequency domain comb degree of 2 and 1 OFDM symbol, and are located on the same frequency domain comb and four OFDM symbols. The port corresponds to 4 different CS values.
  • the time-frequency resource mapping method corresponding to the transmission pattern can be any of the following: Frequency division mapping mode (corresponding to Example 3): 2 Comb+4 CSs are allocated to 8 ports; frequency division+time division mapping mode 1 (corresponding to example 1): 2 comb+2 OFDM+2 CSs are allocated to 8 ports; frequency division+time division mapping mode 2 ( Corresponding to example 2): 1 comb+2 OFDM+4 CS are allocated to 8 ports.
  • the configuration information also includes a comb tooth position indication of the uplink reference signal. and frequency domain comb degree K TC (2), the above two or more patterns include at least two of the first pattern, the second pattern and the third pattern;
  • the comb teeth corresponding to the first port set among the above N ports in the first pattern are The comb teeth corresponding to the second port set among the above N ports are The OFDM symbol index corresponding to the two ports in the above-mentioned first port set is l, the OFDM index corresponding to the other two ports in the above-mentioned first port set is (l+n), and the two ports in the above-mentioned second port set have an index of The OFDM index corresponding to the port is l, the index of the OFDM symbol corresponding to the other two ports in the second port set is (l+n), the above n is an integer greater than or equal to 1, and the above l is an integer greater than or equal to 0;
  • the comb teeth corresponding to the first port set and the second port set among the N ports in the above second pattern are:
  • the index of the OFDM symbol corresponding to the above-mentioned first port set is l
  • the index of the OFDM symbol corresponding to the above-mentioned second port set is (l+n)
  • the above-mentioned n is an integer greater than or equal to 1
  • the above-mentioned l is an integer greater than or equal to 0;
  • the comb teeth corresponding to the first port set among the N ports in the above third pattern are The comb teeth corresponding to the second port set among the above N ports are And the above first end
  • the index of the OFDM symbol corresponding to the port set and the above-mentioned second port set is l, and the above l is an integer greater than or equal to 0;
  • the ports included in the first port set are different from the ports included in the second port set.
  • the first pattern, the second pattern, and the third pattern each include 8 ports
  • the first port set is ⁇ 1, 3, 5, 7 ⁇
  • the second port set is ⁇ 0, 2 , 4, 6 ⁇
  • port 0 to port 7 represent port 1000 to port 1007, that is, port 0 represents port 1000
  • port 1 represents port 1001, and so on.
  • Figure 7 is an example of the first pattern, the second pattern and the third pattern provided by the embodiment of the present application.
  • 701 represents the first pattern
  • 702 represents the second pattern
  • 703 represents the third pattern.
  • the rectangular frames with different shades belong to different comb teeth; the comb teeth corresponding to the first port set in the first pattern are 1(i.e.
  • the index of the OFDM symbol corresponding to port 1 and port 3 is l
  • the index of the OFDM symbol corresponding to port 5 and port 7 is (l+n)
  • the comb tooth corresponding to the second port set in the first pattern is 0 ( Right now )
  • the index of the OFDM symbol corresponding to port 0 and port 2 is l
  • the index of the OFDM symbol corresponding to port 4 and port 6 is (l+n);
  • the first port set and the second port set in the second pattern correspond to Comb teeth 0 (i.e.
  • the index of the OFDM symbol corresponding to the first port set is l
  • the index of the OFDM symbol corresponding to the second port set is (l+n)
  • the comb tooth corresponding to the first port set in the third pattern is 1 (i.e. )
  • the comb teeth corresponding to the second port set in the third pattern are 0 (i.e. ).
  • port numbers included in each port set mentioned above are just an example, and other port number combinations may also be included in different port sets.
  • step 601 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the second pattern and the third pattern among the third patterns as the transmission pattern; when the CS reference value indicates that it is included in the second set, determine the second pattern and the second pattern among the third patterns.
  • the first set is The second set is The comb teeth corresponding to the first port set and the second port set among the N ports in the second pattern are The index of the OFDM symbol corresponding to the above-mentioned first port set is l, and the index of the OFDM symbol corresponding to the above-mentioned second port set is (l+n).
  • the comb teeth corresponding to the first port set among the N ports in the third pattern are The comb teeth corresponding to the second port set among the above N ports are And the index of the OFDM symbol corresponding to the above-mentioned first port set and the above-mentioned second port set is l.
  • Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 601 The formula corresponding to a possible implementation of step 601 above is as follows:
  • p i represents the index of port i
  • l 0 and (l 0 +1) represent the index of two different OFDM symbols.
  • Formula (9) represents the above-mentioned third pattern
  • formula (10) and formula (11) represent the above-mentioned second pattern.
  • the corresponding relationship between the value range and the pattern is not limited to the above example.
  • step 601 Another possible implementation of step 601 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, determine the third pattern among the first pattern and the third pattern as the transmission pattern; when the CS reference value indicates that it is included in the second set, determine the first pattern among the first pattern and the third pattern.
  • the CS reference value i.e.
  • the first set is The second set is The comb teeth corresponding to the first port set among the N ports in the first pattern are The comb teeth corresponding to the second port set among the above N ports are The index of the OFDM symbol corresponding to the two ports in the above-mentioned first port set is l, the OFDM index corresponding to the other two ports in the above-mentioned first port set is (l+n), the two ports in the above-mentioned second port set
  • the OFDM index corresponding to the port is l, the index of the OFDM symbol corresponding to the other two ports in the second port set is (l+n), the above n is an integer greater than or equal to 1, and the above l is an integer greater than or equal to 0.
  • the formula corresponding to this implementation is as follows:
  • p i represents the index of port i, Indicates the index of the OFDM symbol.
  • Formula (12) represents the above-mentioned third pattern; formula (13) and formula (14) represent the above-mentioned first pattern.
  • the corresponding relationship between the value range and the pattern is not limited to the above example.
  • Step 601 may be replaced by: the terminal equipment indicates the CS reference value of the uplink reference signal included in the configuration information of the uplink reference signal resource.
  • the sending pattern is determined from three or more patterns, and the comb degree corresponding to the two or more patterns is 2.
  • the third pattern among the first pattern, the second pattern and the third pattern is used as the sending pattern; is included in the first set and When it is greater than 1, the second pattern among the first pattern, the second pattern and the third pattern is used as the sending pattern; is included in the second set and When it is greater than 1, the first pattern among the first pattern, the second pattern and the third pattern is used as the sending pattern.
  • the terminal device sends the uplink reference signal to the access network device according to the transmission pattern.
  • step 602 please refer to step 501.
  • the terminal device receives the precoding indication information from the access network device.
  • step 603 please refer to step 502.
  • the terminal device maps the uplink data to the antenna port according to the precoding.
  • step 604 please refer to step 503.
  • the access network device can flexibly configure the transmission pattern based on the channel status of the terminal device. Specifically, when the uplink transmission power of the terminal equipment is limited, a transmission pattern that occupies multiple OFDM symbols can be configured. When the base station has higher phase accuracy requirements for the terminal equipment, a transmission pattern that occupies one OFDM symbol can be configured.
  • the configuration signaling design can be simplified by switching the transmission pattern through redundant information in the CS reference value indication.
  • Figure 8 is an interaction flow chart of another communication method provided by an embodiment of the present application.
  • Figure 8 shows the signal transmission scheme when the terminal equipment uses a frequency domain comb with a comb degree of 4 (that is, K TC is 4) to carry the SRS port.
  • the method flow in Figure 8 is a possible implementation of the method described in Figure 5 .
  • the terminal device can select a transmission pattern from two or more patterns to obtain a transmission pattern suitable for transmitting the uplink reference signal.
  • the method includes:
  • the terminal device determines the transmission pattern from two or more patterns according to the CS reference value indication of the uplink reference signal included in the configuration information of the uplink reference signal resource.
  • the comb teeth corresponding to the two or more patterns are is 4.
  • step 801 please refer to step 501.
  • the N ports in the transmission pattern are carried on 2 frequency domain combs with a frequency domain comb degree of 4 and 2 OFDM symbols, and are located on the same frequency domain comb and two OFDM symbols.
  • the port corresponds to 2 different CS values.
  • the above-mentioned N ports in the transmission pattern in possible method 2 are carried on a frequency domain comb with a frequency domain comb degree of 4 and two OFDM symbols, and are located on the same frequency domain comb and four OFDM symbols. Each port corresponds to 4 different CS values.
  • the above-mentioned N ports in the transmission pattern in possible method 3 are carried on two frequency domain combs with a frequency domain comb degree of 4 and one OFDM symbol, and are located on the same frequency domain comb and four OFDM symbols. Each port corresponds to 4 different CS values.
  • the above-mentioned N ports in the transmission pattern in possible mode 4 are carried on 4 frequency domain combs with a frequency domain comb degree of 4 and 1 OFDM symbol, and are located on two frequency domain combs and OFDM symbols. Each port corresponds to 2 different CS values.
  • the time-frequency resource mapping method corresponding to the transmission pattern can be any of the following: frequency division mapping mode 1: 2 comb+4CS (mode 3); frequency division mapping mode 2: 4 comb+2CS (mode 4); frequency division mapping mode 2: 4 comb+2CS (mode 4); +time frequency mapping Transmission mode 1: 2 comb + 2 OFDM symbols + 2 CS (mode 1); frequency division + time-frequency mapping mode 2: 2 OFDM symbols + 4 CS (mode 2).
  • the above configuration information also includes comb tooth position indication and frequency domain comb degree K TC , the above two or more patterns include at least two of the first pattern, the second pattern, the third pattern and the fourth pattern;
  • the comb teeth corresponding to the first port set among the above N ports in the first pattern are The comb teeth corresponding to the second port set among the above N ports are The OFDM symbol index corresponding to the two ports in the above-mentioned first port set is l, the OFDM index corresponding to the other two ports in the above-mentioned first port set is (l+n), and the two ports in the above-mentioned second port set have an index of The OFDM index corresponding to the port is l, the index of the OFDM symbol corresponding to the other two ports in the second port set is (l+n), the above n is an integer greater than or equal to 1, and the above l is an integer greater than or equal to 0;
  • the comb teeth corresponding to the first port set and the second port set among the N ports in the above second pattern are:
  • the index of the OFDM symbol corresponding to the above-mentioned first port set is l
  • the index of the OFDM symbol corresponding to the above-mentioned second port set is (l+n)
  • the above-mentioned l and the above-mentioned n are integers greater than or equal to 1;
  • the comb teeth corresponding to the first port set among the N ports in the above third pattern are: And the comb teeth corresponding to the second port set among the above N ports are And the index of the OFDM symbol corresponding to the above-mentioned first port set and the above-mentioned second port set is l, and the above l is an integer greater than or equal to 1;
  • the comb teeth corresponding to the 4 port sets among the N ports in the above fourth pattern (corresponding to mode 4) are: And the index of the OFDM symbol corresponding to the above four port sets is l, and the above l is an integer greater than or equal to 1;
  • the ports included in the first port set are different from the ports included in the second port set.
  • the first pattern, the second pattern, the third pattern and the fourth pattern each include 8 ports
  • the first port set is ⁇ 1, 3, 5, 7 ⁇
  • the second port set is ⁇ 0, 2, 4, 6 ⁇
  • the four port sets included in the fourth pattern are ⁇ 0, 4 ⁇ , ⁇ 2, 6 ⁇ , ⁇ 1, 5 ⁇ , ⁇ 3, 7 ⁇
  • port 0 to port 7 Represents ports 1000 to 1007, that is, port 0 represents port 1000, port 1 represents port 1001, and so on.
  • Figure 9 is an example of the first pattern, the second pattern, the third pattern and the fourth pattern provided by the embodiment of the present application. As shown in Figure 9, 901 represents the first pattern, 902 represents the second pattern, 903 represents the third pattern, and 904 represents the fourth pattern.
  • the comb teeth corresponding to the set are 2 (i.e. ), the index of the OFDM symbol corresponding to port 1 and port 3 is l, the index of the OFDM symbol corresponding to port 5 and port 7 is (l+n), and the comb tooth corresponding to the second port set in the first pattern is 0 ( Right now ), the index of the OFDM symbol corresponding to port 0 and port 2 is l, and the index of the OFDM symbol corresponding to port 4 and port 6 is (l+n); the first port set and the second port set in the second pattern correspond to Comb teeth 0 (i.e.
  • the index of the OFDM symbol corresponding to the first port set is l
  • the index of the OFDM symbol corresponding to the second port set is (l+n)
  • the comb tooth corresponding to the first port set in the third pattern is 2 (i.e. )
  • the comb teeth corresponding to the second port set in the third pattern are 0 (i.e. )
  • the index of the OFDM symbol corresponding to the first port set and the second port set is l
  • the comb teeth corresponding to the four port sets in the first pattern are 0 (i.e. ), 1 (i.e. ), 2 (i.e. ), 3 (i.e.
  • the index of the OFDM symbol corresponding to the four port sets is l. It should be understood that the port numbers included in each port set mentioned above are just an example, and other port number combinations may also be included in different port sets.
  • step 801 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the second pattern and the third pattern among the third patterns as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the second pattern and the second pattern among the third patterns as the sending pattern As a sending pattern; the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 801 Another possible implementation of step 801 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the first pattern and the third pattern among the third patterns as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the first pattern among the first pattern and the third pattern As a sending pattern; the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the first pattern and the third pattern among the third patterns as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the first pattern among the first pattern and the third pattern As a sending pattern; the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 801 Another possible implementation of step 801 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the first pattern among the first pattern and the second pattern as the sending pattern; when the CS reference value indicates that it is included in the second set, use the second pattern among the first pattern and the second pattern As a sending pattern; the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 801 Another possible implementation of step 801 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the third pattern among the third pattern and the fourth pattern as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the third pattern among the third pattern and the fourth pattern among the fourth patterns.
  • the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 801 Another possible implementation of step 801 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the first pattern among the first pattern and the fourth pattern as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the fourth pattern among the first pattern and the fourth pattern.
  • the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 801 Another possible implementation of step 801 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the second pattern among the second pattern and the fourth pattern as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the second pattern among the second pattern and the fourth pattern among the fourth patterns.
  • the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 801 is as follows: the terminal device determines the CS reference value indication and the maximum CS indication included in the configuration information of the uplink reference signal resource. and the number of symbols
  • the above-mentioned transmission pattern is determined from two or more patterns; the above-mentioned two or more patterns include at least two of the first pattern, the second pattern, the third pattern and the fourth pattern, and the above-mentioned number of symbols indicates that the above-mentioned The number of OFDM symbols for N ports.
  • the terminal device determines the transmission pattern from the first pattern, the second pattern, the third pattern and the fourth pattern according to the CS reference value indication, the maximum CS indication and the number of symbols included in the configuration information of the uplink reference signal resource.
  • the formula corresponding to this implementation is as follows:
  • p i represents the index of port i, Indicates the index of the OFDM symbol.
  • Formula (15) represents the above third pattern;
  • Formula (16) represents the above-mentioned fourth pattern;
  • Formula (17) and Formula (18) represent the above-mentioned first pattern;
  • Formula (19) and Formula (20) represent the above-mentioned second pattern.
  • Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication. In one implementation, The corresponding relationship between the value range and the pattern is not limited to the above example.
  • the terminal device sends the uplink reference signal to the access network device according to the transmission pattern.
  • step 802 please refer to step 501.
  • the terminal device receives the precoding indication information from the access network device.
  • step 803 please refer to step 502.
  • the terminal device maps the uplink data to the antenna port according to the precoding.
  • step 804 please refer to step 503.
  • the access network device can flexibly configure the transmission pattern based on the channel status of the terminal device. Specifically, when the uplink transmission power of the terminal equipment is limited, a transmission pattern that occupies multiple OFDM symbols can be configured. When the base station has higher phase accuracy requirements for the terminal equipment, a transmission pattern that occupies one OFDM symbol can be configured.
  • Figure 10 is an interaction flow chart of another communication method provided by an embodiment of the present application.
  • Figure 10 shows the signal transmission scheme when the terminal equipment uses a frequency domain comb with a comb degree of 8 (that is, K TC is 8) to carry the SRS port.
  • the method flow in Figure 10 is a possible implementation of the method described in Figure 5 .
  • the terminal device can select a transmission pattern from two or more patterns to obtain a transmission pattern suitable for transmitting the uplink reference signal.
  • the method includes:
  • the terminal device determines the transmission pattern from two or more patterns according to the CS reference value indication of the uplink reference signal included in the configuration information of the uplink reference signal resource.
  • the comb teeth corresponding to the two or more patterns are is 8.
  • step 1001 please refer to step 501.
  • the above N ports in the transmission pattern are carried on 2 frequency domain combs with a frequency domain comb degree of 8 and 2 OFDM symbols, and are located in the same frequency domain comb and OFDM symbol.
  • the two ports on correspond to 2 different CS values.
  • the above N ports in the transmission pattern are carried on a frequency domain comb with a frequency domain comb degree of 8 and 2 OFDM symbols, and are located in the same frequency domain comb and OFDM symbol.
  • the four ports on the port correspond to 4 different CS values.
  • the above N ports in the transmission pattern are carried on 2 frequency domain combs with a frequency domain comb degree of 8 and 1 OFDM symbol, and are located in the same frequency domain comb and OFDM symbol.
  • the four ports on the port correspond to 4 different CS values.
  • the above-mentioned N port in the transmission pattern is carried on 4 frequency domain combs with a frequency domain comb degree of 8 and 1 OFDM symbol, and is located on the same frequency domain comb and OFDM symbol.
  • the two ports correspond to 2 different CS values.
  • the time-frequency resource mapping method corresponding to the transmission pattern can be any of the following: frequency division mapping mode 1: 2 comb+4CS (mode 7); frequency division mapping mode 2: 4 comb+2CS (mode 8); frequency division mapping mode 2: 4 comb+2CS (mode 8); + Time-frequency mapping mode 1: 2 comb + 2 OFDM symbols + 2 CS (mode 5); Frequency division + time-frequency mapping mode 2: 2 OFDM symbols + 4 CS (mode 6).
  • the above configuration information also includes comb tooth position indication and frequency domain comb degree K TC , the above two or more patterns include at least two of the first pattern, the second pattern, the third pattern and the fourth pattern;
  • the comb teeth corresponding to the first port set among the above N ports in the first pattern are The comb teeth corresponding to the second port set among the above N ports are The index of the OFDM symbol corresponding to the two ports in the above-mentioned first port set is l, the OFDM index corresponding to the other two ports in the above-mentioned first port set is (l+n), the two ports in the above-mentioned second port set The OFDM index corresponding to the port is l, the index of the OFDM symbol corresponding to the other two ports in the second port set is (l+n), the above n is an integer greater than or equal to 1, and the above l is an integer greater than or equal to 0;
  • the comb teeth corresponding to the first port set and the second port set among the N ports in the above second pattern are:
  • the index of the OFDM symbol corresponding to the above-mentioned first port set is l
  • the index of the OFDM symbol corresponding to the above-mentioned second port set is (l+n)
  • the above-mentioned l and the above-mentioned n are integers greater than or equal to 1;
  • the comb teeth corresponding to the first port set among the N ports in the above third pattern are: And the comb teeth corresponding to the second port set among the above N ports are And the index of the OFDM symbol corresponding to the above-mentioned first port set and the above-mentioned second port set is l, and the above l is an integer greater than or equal to 1;
  • the comb teeth corresponding to the 4 port sets among the N ports in the above fourth pattern are: And the index of the OFDM symbol corresponding to the above four port sets is l, and the above l is an integer greater than or equal to 1;
  • the ports included in the first port set are different from the ports included in the second port set.
  • the first pattern, the second pattern, the third pattern and the fourth pattern each include 8 ports
  • the first port set is ⁇ 1, 3, 5, 7 ⁇
  • the second port set is ⁇ 0, 2, 4, 6 ⁇
  • the third port set is ⁇ 0, 1, 3, 4 ⁇
  • the second port set is ⁇ 2, 3, 5, 6 ⁇
  • the four port sets included in the fourth pattern are respectively are ⁇ 0, 4 ⁇ , ⁇ 2, 6 ⁇ , ⁇ 1, 5 ⁇ , ⁇ 3, 7 ⁇
  • port 0 to port 7 represent port 1000 to port 1007, that is, port 0 represents port 1000
  • port 1 represents port 1001, And so on.
  • Figure 11 is an example of the first pattern, the second pattern, the third pattern and the fourth pattern provided by the embodiment of the present application.
  • 1101 represents the first pattern
  • 1102 represents the second pattern
  • 1103 represents the third pattern
  • 1104 represents the fourth pattern. Rectangular frames with different shades belong to different comb teeth; the first port in the first pattern
  • the comb teeth corresponding to the set are 4 (i.e.
  • the index of the OFDM symbol corresponding to port 1 and port 3 is l
  • the index of the OFDM symbol corresponding to port 5 and port 7 is (l+n)
  • the comb tooth corresponding to the second port set in the first pattern is 0 ( Right now )
  • the index of the OFDM symbol corresponding to port 0 and port 2 is l
  • the index of the OFDM symbol corresponding to port 4 and port 6 is (l+n);
  • the first port set and the second port set in the second pattern correspond to Comb teeth 0 (i.e.
  • the index of the OFDM symbol corresponding to the first port set is l
  • the index of the OFDM symbol corresponding to the second port set is (l+n)
  • the comb tooth corresponding to the fourth port set in the third pattern is 2 (i.e. )
  • the comb teeth corresponding to the third port set in the third pattern are 0 (i.e. )
  • the index of the OFDM symbol corresponding to the third port set and the fourth port set is l
  • the comb teeth corresponding to the four port sets in the fourth pattern are 0 (i.e. ), 2 (i.e. 4(i.e. ), 6 (i.e. ), the index of the OFDM symbol corresponding to the four port sets is l.
  • the port numbers included in each port set mentioned above are just an example, and other port number combinations may also be included in different port sets.
  • step 1001 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the first pattern and the fourth pattern among the fourth patterns as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the first pattern among the first pattern and the fourth pattern As a sending pattern; the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 1001 Another possible implementation of step 1001 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the second pattern and the third pattern among the third patterns as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the second pattern and the second pattern among the third patterns as the sending pattern As a sending pattern; the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 1001 Another possible implementation of step 1001 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the first pattern among the first pattern and the second pattern as the sending pattern; when the CS reference value indicates that it is included in the second set, use the second pattern among the first pattern and the second pattern As a sending pattern; the first set is The second set is The formula corresponding to this possible implementation is as follows:
  • p i represents the index of port i, Indicates the index of the OFDM symbol.
  • Formula (21) represents the above-mentioned fourth pattern;
  • formula (22) and formula (23) represent the above-mentioned first pattern.
  • the corresponding relationship between the value range and the pattern is not limited to the above example.
  • step 1001 Another possible implementation of step 1001 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the third pattern among the third pattern and the fourth pattern as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the third pattern among the third pattern and the fourth pattern among the fourth patterns.
  • the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 1001 Another possible implementation of step 1001 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the first pattern among the first pattern and the third pattern as the sending pattern; when the CS reference value indicates that it is included in the second set, use the third pattern among the first pattern and the third pattern.
  • the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 1001 Another possible implementation of step 1001 is as follows: the terminal device indicates the CS reference value (i.e. ) is included in the first set, use the second pattern among the second pattern and the fourth pattern as the transmission pattern; when the CS reference value indicates that it is included in the second set, use the second pattern among the second pattern and the fourth pattern among the fourth patterns.
  • the first set is The second set is Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • step 1001 A possible implementation of step 1001 is as follows: the terminal device determines the CS reference value indication and the maximum CS indication included in the configuration information of the uplink reference signal resource. and the number of symbols
  • the above-mentioned transmission pattern is determined from two or more patterns; the above-mentioned two or more patterns include at least two of the first pattern, the second pattern, the third pattern and the fourth pattern, and the above-mentioned symbol number indicates that the above-mentioned The number of OFDM symbols for N ports.
  • the terminal device determines the transmission pattern from the first pattern, the second pattern, the third pattern and the fourth pattern according to the CS reference value indication, the maximum CS indication and the number of symbols included in the configuration information of the uplink reference signal resource.
  • the formula corresponding to this implementation is as follows:
  • p i represents the index of port i, Indicates the index of the OFDM symbol.
  • Formula (24) represents the above-mentioned fourth pattern;
  • Formula (25) represents the above-mentioned third pattern;
  • Formula (26) and Formula (27) represent the above-mentioned first pattern;
  • Formula (28) and Equation (29) represents the above-mentioned second pattern.
  • Configuration signaling design can be simplified by switching the transmission pattern with redundant information in the CS reference value indication.
  • the corresponding relationship between the value range and the pattern is not limited to the above example.
  • several first patterns, second patterns, third patterns and fourth patterns corresponding to different comb tooth degrees are provided.
  • the comb degree corresponding to the first pattern, the second pattern and the third pattern involved in the method flow of Figure 6 is 2; the first pattern, the second pattern, the third pattern and the fourth pattern involved in the method flow of Figure 8 correspond to The comb tooth degree is 4; the comb tooth degree corresponding to the first pattern, the second pattern, the third pattern and the fourth pattern involved in the method flow of Figure 10 is 8.
  • the terminal device sends the uplink reference signal to the access network device according to the transmission pattern.
  • step 1002 please refer to step 501.
  • the terminal device receives the precoding instruction information from the access network device.
  • step 1003 please refer to step 502.
  • the terminal device maps the uplink data to the antenna port according to the precoding.
  • step 100 please refer to step 503.
  • the access network device can flexibly configure the transmission pattern based on the channel status of the terminal device. Specifically, when the uplink transmission power of the terminal equipment is limited, a transmission pattern that occupies multiple OFDM symbols can be configured. When the base station has higher phase accuracy requirements for the terminal equipment, a transmission pattern that occupies one OFDM symbol can be configured.
  • Figure 12 is an interaction flow chart of another communication method provided by an embodiment of the present application.
  • the method flow in Figure 12 is a possible implementation of the method described in Figure 5 .
  • the access network device determines the channel information of each transmit antenna of the terminal device based on the 8-port SRS, and then indicates the TPMI based on the 8-port SRS.
  • the method includes:
  • the terminal device sends the uplink reference signal to the access network device according to the transmission pattern.
  • the access network device receives the uplink reference signal from the terminal device.
  • the uplink reference signal is 8-portSRS.
  • 8-portSRS is configured in the SRS resource set used for uplink codebook transmission.
  • the uplink reference signal resource of the uplink reference signal includes 8 ports.
  • the access network device determines the channel information of each transmit antenna of the terminal device based on the uplink reference signal.
  • Each transmitting antenna of the terminal equipment corresponds to the 8 ports included in the uplink reference signal resource.
  • the access network device sends precoding instruction information to the terminal device based on the determined channel information of each transmitting antenna of the terminal device.
  • the precoding indication information indicates the precoding used for uplink data transmission, and each row of the matrix corresponding to the precoding (which may be called a precoding matrix) corresponds one-to-one to each SRS port of the uplink reference signal.
  • the transmitting antenna of the terminal device corresponding to the SRS port is used to transmit PUSCH, and the transmitting phase of the transmitting antenna corresponding to each SRS port is determined according to each row of the matrix.
  • the precoding indication information includes TPMI.
  • TPMI is in the form of a matrix. The number of matrix rows is 8 (determined according to the number of corresponding SRS ports). Each row of TPMI corresponds to each SRS port one by one.
  • the transmitting antenna of the terminal device corresponding to the SRS port is For transmitting PUSCH, the transmit phase of the transmit antenna corresponding to each SRS port is determined according to each row of TPMI.
  • the terminal device determines the transmission phase of the transmission antenna corresponding to each SRS port according to the precoding instruction information.
  • the terminal device maps the uplink data to the antenna port according to the precoding.
  • the access network device receives uplink data from the terminal device.
  • the transmitting antenna and the antenna port can be replaced with each other.
  • the access network device determines the channel information of each transmitting antenna of the terminal device according to the uplink reference signal; it can determine the channel information of the transmitting antenna corresponding to the 8 SRS ports, and send the corresponding precoding indication information. Reduce overhead.
  • the communication scheme provided by this application that can make the orthogonality between the ports stronger and/or make the transmission power of each port larger is introduced above.
  • the following introduces the communication solution provided by this application that supports the time-frequency mapping solution of 8-port SRS resources. This solution can make the orthogonality between ports reach the orthogonal level of existing 2-port SRS resources and 4-port SRS resources.
  • Figure 13 is an interaction flow chart of another communication method provided by an embodiment of the present application. As shown in Figure 13, the method includes:
  • the terminal device sends multiple uplink reference signals according to the configuration information of multiple uplink reference signal resources.
  • the access network device receives multiple uplink reference signals from the terminal device.
  • the access network device generates precoding and transmission layer indication information based on multiple uplink reference signals.
  • the above-mentioned precoding and transmission layer number indication information is used to indicate the precoding and transmission layer number used for uplink data transmission, and the above-mentioned precoding and transmission layer number indication information corresponds to the above-mentioned multiple uplink reference signals; wherein, the above-mentioned transmission layer number is less than or equal to the total number of ports included in the multiple uplink reference signals, the number of rows of the matrix corresponding to the above precoding is the sum of the number of ports included in the multiple uplink reference signals, and the rows of the above matrix are equal to the number of ports included in the multiple uplink reference signals. Each port corresponds one to one.
  • the precoding and transmission layer number indication information may be called precoding indication information.
  • the above-mentioned precoding and transmission layer number indication information may include TPMI, which is used to indicate the transmission phase of the transmission antenna corresponding to the PUSCH.
  • the usage of multiple uplink reference signals is configured for codebook-based uplink transmission.
  • the precoding and transmission layer number indication information are obtained by the access network device according to the uplink reference signal.
  • the transmitting antenna for uplink data transmission corresponds to each port of the plurality of uplink reference signals.
  • the precoding and transmission layer number indication information includes a plurality of first indication information, and the plurality of first indication information corresponds to the plurality of uplink reference signal resources on a one-to-one basis.
  • the number of transmission layers of the uplink data is the sum of the number of transmission layers indicated in the plurality of first indication information.
  • the uplink reference signal corresponding to the codebook-based uplink data transmission is carried on multiple uplink reference signal resources.
  • flexible resource configuration of the uplink reference signal and corresponding precoding can be supported. Indication and transport layer indication.
  • the time-frequency mapping solution for 8-port SRS resources supports 8-port SRS transmission by supporting the aggregation of multiple SRS resources. Since the time-frequency resource position of each SRS resource can be configured independently, the 8-port SRS can be split and sent on multiple OFDM symbols, supporting the increase in SRS transmission power and thus improving channel measurement accuracy.
  • this method can make use of the design of 2-port SRS and 4-port SRS resources supported by existing protocols, as well as the design of reusing existing TPMI codebooks to the greatest extent possible.
  • a simplified 8-port SRS design is that SRI can indicate multiple SRS resources, the number of rows of TPMI is the sum of the number of all ports included in the multiple SRS resources indicated, and the F included in each SRS resource Each port corresponds to F consecutive rows in TPMI, and corresponds to rows in TPMI from small to large according to the SRS resource index from small to large. In this way, the design of existing 2-port and 4-port SRS resources can be reused.
  • Configuration method 1 Configure four 2-port SRS resources.
  • Figure 14 is a schematic diagram of an antenna architecture provided by an embodiment of the present application.
  • SRS resource 1, SRS resource 2, SRS resource 3, and SRS resource 4 are all 2-port SRS resources.
  • each set of dual-polarized antennas of the terminal device corresponds to a 2-port SRS resource.
  • the four sets of dual-polarized antennas of the terminal device can perform coherent transmission respectively, but coherent transmission cannot be performed between the four sets of antennas.
  • the terminal device can determine the port mapping between the flow and the SRS resource based on formula (8), and each SRS resource corresponds to an independent layer mapping.
  • the terminal device receives the SRI sent by the base station.
  • the SRI is used to instruct to select some or all SRS resources from multiple SRS resources configured by the base station.
  • the above four SRS resources are indicated by the SRI.
  • each 2-port SRS resource corresponds to a precoding indication.
  • the DCI for scheduling uplink data transmission includes 4 precoding and transmission layer number indication information fields.
  • the precoding in each field Refer to Table 2 and Table 3 for corresponding precoding instructions.
  • Table 2 shows the precoding matrix corresponding to 2-port SRS and layer 1 PUSCH transmission.
  • Table 2 shows the precoding matrix corresponding to 2-port SRS and 2-layer PUSCH transmission.
  • the number of transport layers for uplink data transmission is 4 fields The total number of transport layers indicated.
  • Configuration method 2 Configure one 4-port SRS resource and two 2-port SRS resources.
  • Figure 15 is a schematic diagram of an antenna architecture provided by an embodiment of the present application.
  • SRS resource 1 is a 4-port SRS resource
  • SRS resource 2 and SRS resource 3 are both 2-port SRS resources.
  • the two sets of dual-polarized antennas corresponding to the 2-port SRS resources of the terminal device can perform coherent transmission respectively, and the two sets of dual-polarized antennas corresponding to the 4-port SRS resources can perform coherent transmission.
  • the terminal device can determine the layer to port mapping to each SRS resource based on formula (8), and each SRS resource corresponds to an independent layer mapping.
  • the terminal device receives the SRI sent by the base station.
  • the SRI is used to instruct to select some or all SRS resources from multiple SRS resources configured by the base station.
  • the above three SRS resources are indicated by the SRI.
  • each SRS resource corresponds to a precoding indication.
  • the DCI for scheduling uplink data transmission includes 3 precoding and transmission layer number indication information fields.
  • each field The precoding corresponding to the precoding indication in refers to Table 2 and Table 3.
  • the precoding corresponding to the precoding indication in each field refers to Table 4 to Table 8.
  • the number of transmission layers for uplink data transmission is the sum of the number of transmission layers indicated by the three fields.
  • Table 4 shows the precoding matrix corresponding to 4-port SRS and layer 1 PUSCH transmission.
  • Table 5 shows the precoding matrix corresponding to 4-port SRS and layer 1 PUSCH transmission.
  • Table 6 shows the precoding matrix corresponding to 4-port SRS and 2-layer PUSCH transmission.
  • Table 7 shows the precoding matrix corresponding to 4-port SRS and 3-layer PUSCH transmission.
  • Table 8 shows the precoding matrix corresponding to 4-port SRS and 4-layer PUSCH transmission.
  • the transmitting antenna of the above terminal device may also have single polarization characteristics.
  • Configuration method 3 Configure two 4-port SRS resources.
  • Figure 16 is a schematic diagram of another antenna architecture provided by an embodiment of the present application.
  • SRS resource 1 and SRS resource 2 are both 4-port SRS resources.
  • each two sets of dual-polarized antennas of the terminal device correspond to a 4-port SRS resource. Coherent transmission cannot be performed between the two sets of dual-polarized antennas of the terminal device and the other two sets of dual-polarized antennas. .
  • the terminal device can determine the port mapping between the flow and the SRS resource based on formula (8), and each SRS resource corresponds to an independent flow and flow mapping.
  • the terminal device receives the SRI sent by the base station.
  • the SRI is used to instruct to select some or all SRS resources from multiple SRS resources configured by the base station.
  • the above two SRS resources are indicated by the SRI.
  • each SRS resource corresponds to a precoding indication.
  • the DCI for scheduling uplink data transmission includes two precoding and transmission layer number indication information fields.
  • the precoding indication in each field corresponds to For precoding, refer to Table 3-6.
  • the number of transmission layers for uplink data transmission is the sum of the number of transmission layers indicated by the two fields.
  • each set of polarized antennas of the terminal equipment corresponds to a 4-port SRS resource, that is, different SRS resources correspond to different polarization directions.
  • the eight transmitting antennas of the terminal equipment have coherent transmission capabilities. In other words, the terminal equipment has fully coherent transmission capabilities.
  • the precoding is a fully coherent codeword.
  • Completely coherent codewords mean that for each layer (each column of the precoding matrix), the matrix elements corresponding to the 8 ports are all non-zero.
  • the plurality of uplink reference signals are multiple SRSs
  • the plurality of uplink reference signal resources are multiple SRS resources
  • the plurality of uplink reference signal resources include two first SRS resources.
  • the number of ports included in one SRS resource is 4.
  • the above two first SRS resources include SRS resource 1 and SRS resource 2.
  • the antenna port corresponding to the port of the above SRS resource 1 is the first polarization direction
  • the antenna port corresponding to the port of the above SRS resource 2 is the second polarization direction.
  • the precoding corresponding to the port of the above SRS resource 1 is vi
  • the precoding corresponding to the port of the above SRS resource 2 is n is an integer; among them, the number of elements in the above v i is 4, and i is an integer.
  • vi can take one column of the precoding matrix in Table 4 to Table 8.
  • vi is a DFT vector with 4 elements.
  • an antenna with one polarization direction is mapped on the same SRS resource, which can ensure that the transmission beams between the two polarization directions remain consistent, and only needs to indicate the phase rotation between the polarization directions, thereby reducing the indication delay. Coding overhead.
  • the multiple uplink reference signals are multiple SRSs
  • the multiple uplink reference signal resources are multiple SRS resources
  • the multiple uplink reference signal resources include two second SRS resources and a third An SRS resource
  • the number of ports included in the first SRS resource is 4, and the number of ports included in the second SRS resource is 2; or, the plurality of uplink reference signal resources include four second SRS resources, and the number of ports included in the second SRS resource is 2.
  • the number of ports included in the SRS resource is 2.
  • the precoding is a partially coherent codeword
  • the above-mentioned uplink reference signal resource is an SRS resource
  • the k-th SRS resource among the above-mentioned multiple SRS resources is the same as the k-th SRS resource of the above-mentioned uplink data.
  • the above-mentioned precoding The row where the non-zero element in the column is located corresponds to the port of the kth SRS resource mentioned above, where m k is less than or equal to the kth above.
  • a positive integer of the port number of SRS resources, k is an integer greater than 0; any two SRS resources among the above multiple SRS resources correspond to different layers of the above uplink data; the above uplink data corresponds to a PUSCH or PUCCH.
  • Partial coherence means that for each layer (each column of the precoding matrix), only some of the matrix elements corresponding to the 8 ports are non-zero. That is to say, each layer of uplink data corresponds to only one SRS resource among multiple SRS resources.
  • antennas capable of coherent transmission are mapped on the same SRS resource, which can ensure the accuracy of the base station in measuring the channel of the coherent antenna.
  • the above-mentioned precoding and transmission layer number indication information includes multiple transmission indication fields, and the above-mentioned multiple transmission indication fields correspond to the above-mentioned multiple uplink reference signal resources one-to-one.
  • the rows of the precoding matrix correspond one-to-one to the ports in the corresponding uplink reference signal resources; the number of transmission layers of the above-mentioned uplink data is the sum of the number of transmission layers indicated by the above-mentioned multiple transmission indication fields.
  • the rows of the precoding matrices in the multiple transmission indication fields correspond to the ports in the corresponding uplink reference signal resources.
  • the terminal equipment can obtain transmission via PUSCH or PUCCH based on the precoding and transmission layer number indication information. Information related to multiple SRS resources used by uplink data, with low signaling overhead.
  • the access network device sends precoding and transmission layer number indication information to the terminal device.
  • the terminal device receives the precoding and transmission layer number indication information.
  • the terminal equipment determines the phase and number of transmission streams of each transmitting antenna for transmitting uplink data through PUSCH based on the precoding and transmission layer number indication information.
  • the terminal device maps the uplink data to the antenna port according to the precoding.
  • the access network device receives uplink data from the terminal device.
  • the access network device sends precoding and transmission layer number indication information to the terminal device.
  • the precoding and transmission layer number indication information corresponds to multiple uplink reference signals and does not need to be sent for each uplink reference signal.
  • a precoding and transmission layer number indication information can reduce signaling overhead.
  • it supports 8-port SRS transmission by supporting the aggregation of multiple SRS resources.
  • the 8-port SRS can be split into multiple OFDM symbols for transmission, supporting SRS transmission power improvement, thereby improving channel measurement accuracy.
  • FIG. 17 shows a schematic structural diagram of a communication device 1700.
  • the communication device 1700 can correspondingly implement the functions or steps implemented by the terminal device (in each of the above method embodiments), and can also implement the functions or steps implemented by the access network device in each of the above method embodiments.
  • the communication device can include a processing module 1710 and transceiver module 1720.
  • a storage unit may also be included, which may be used to store instructions (code or programs) and/or data.
  • the processing module 1710 and the transceiver module 1720 may be coupled with the storage unit, for example,
  • the processing module 1710 can read the instructions (code or program) and/or data in the storage unit to implement the corresponding method.
  • Each of the above units can be set up independently, or can be partially or fully integrated.
  • the transceiver module 1720 can include a sending module and receiving module.
  • the communication device 1700 can correspondingly implement the operations and functions of the terminal device in the above method embodiments.
  • the communication device 1700 may be a terminal device, or may be a component (such as a chip or circuit) used in the terminal device.
  • the transceiver module 1720 may, for example, be used to perform all receiving or sending operations performed by the terminal device in the embodiments of FIG. 5, FIG. 6, FIG. 8, FIG. 10, and FIG. 12, such as step 501 in the embodiment shown in FIG. 5.
  • the processing module 1710 is configured to perform all operations performed by the terminal device in the embodiments of FIG. 5, FIG. 6, FIG. 8, FIG. 10, and FIG. 12 except for the sending and receiving operations.
  • step 503 the actual process shown in Figure 6 Step 601 in the embodiment, step 801 in the embodiment shown in FIG. 8 , step 1001 in the embodiment shown in FIG. 10 , and step 1204 in the embodiment shown in FIG. 12 .
  • the communication device 1700 can correspondingly implement the operations and functions of the access network equipment in the above method embodiments.
  • the communication device 1700 may be an access network device, or may be a component (such as a chip or circuit) used in the access network device.
  • the transceiver module 1720 may, for example, be used to perform all receiving or sending operations performed by the terminal device in the embodiments of FIG. 5, FIG. 6, FIG. 8, FIG. 10, and FIG. 12, such as step 501 in the embodiment shown in FIG. 5.
  • the processing module 1710 is configured to perform all operations performed by the terminal device in the embodiments of FIG. 5, FIG. 6, FIG. 8, FIG. 10, and FIG. 12, except for the sending and receiving operations, such as the steps in the embodiment shown in FIG. 12. 1202.
  • the processing module 1710 may be used to generate precoding indication information.
  • the communication device 1700 can correspondingly implement the operations and functions of the terminal device in the above method embodiments.
  • the communication device 1700 may be a terminal device, or may be a component (such as a chip or circuit) used in the terminal device.
  • the transceiver module 1720 may, for example, be used to perform all receiving or sending operations performed by the terminal device in the embodiment of FIG. 13, such as steps 1301, 1303, and 1305 in the embodiment shown in FIG. 13, and/or for Other processes that support the technology described in this article.
  • the processing module 1710 is configured to perform all operations performed by the terminal device in the embodiment of FIG. 13 except for the sending and receiving operations, such as step 1304 in the embodiment shown in FIG. 13 .
  • the communication device 1700 can correspondingly implement the operations and functions of the access network equipment in the above method embodiments.
  • the communication device 1700 may be an access network device, or may be a component (such as a chip or circuit) used in the access network device.
  • the transceiver module 1720 may, for example, be used to perform all receiving or sending operations performed by the terminal device in the embodiment of FIG. 13, such as steps 1301, 1303, and 1305 in the embodiment shown in FIG. 13, and/or for Other processes that support the technology described in this article.
  • the processing module 1710 is configured to perform all operations performed by the terminal device in the embodiment of FIG. 13 except for the sending and receiving operations, such as step 1302 in the embodiment shown in FIG. 13 .
  • Figure 18 is a schematic structural diagram of another communication device 180 provided by an embodiment of the present application.
  • the communication device in Figure 18 may be the above-mentioned terminal device.
  • the communication device in Figure 18 may be the above-mentioned access network equipment.
  • the communication device 180 includes at least one processor 1820 and a transceiver 1810 .
  • the processor 1820 and the transceiver 1810 may be used to perform the functions or operations performed by the above terminal device, etc.
  • the processor 1820 may, for example, perform one of the following multiple operations: steps 501 and 503 in the embodiment shown in FIG. 5 , step 601 in the embodiment shown in FIG. 6 , and steps in the embodiment shown in FIG. 8 801, step 1001 in the embodiment shown in Figure 10, step 1204 in the embodiment shown in Figure 12.
  • the transceiver 1810 may, for example, perform one or more of the following operations: step 501, step 502, and step 503 in the embodiment shown in FIG. 5, step 602, step 603, and step 604 in the embodiment shown in FIG. 6, FIG. Step 802, step 803, and step 804 in the embodiment shown in Figure 8, steps 1002, step 1003, and step 1004 in the embodiment shown in Figure 10, and steps 1201, step 1203, and step 1205 in the embodiment shown in Figure 12.
  • the processor 1820 and the transceiver 1810 may be used to perform the functions or operations performed by the access network device described above, etc.
  • the processor 1820 may, for example, perform one of the following operations: step 1202 in the embodiment shown in FIG. 12 .
  • the transceiver 1810 may, for example, perform one or more of the following operations: step 501, step 502, and step 503 in the embodiment shown in FIG. 5, step 602, step 603, and step 604 in the embodiment shown in FIG. 6, FIG. Step 802, step 803, and step 804 in the embodiment shown in Figure 8, steps 1002, step 1003, and step 1004 in the embodiment shown in Figure 10, and steps 1201, step 1203, and step 1205 in the embodiment shown in Figure 12.
  • the processor 1820 and the transceiver 1810 may be used to perform the functions or operations performed by the above terminal device, etc.
  • the processor 1820 may, for example, perform one or more of the following operations: step 1304 in the embodiment shown in FIG. 13 .
  • the transceiver 1810 may perform one or more of the following operations: step 1301, step 1303, and step 1305 in the embodiment shown in FIG. 13 .
  • the processor 1820 and the transceiver 1810 may be used to perform the functions or operations performed by the access network device described above, etc.
  • the processor 1820 may, for example, perform one or more of the following operations: step 1302 in the embodiment shown in FIG. 13 .
  • the transceiver 1810 may perform one or more of the following operations: step 1301, step 1303, and step 1305 in the embodiment shown in FIG. 13 .
  • Transceiver 1810 is used to communicate with other devices/devices over transmission media.
  • the processor 1820 uses the transceiver 1810 to send and receive data and/or signaling, and is used to implement the method in the above method embodiment.
  • the processor 1820 can implement the functions of the processing module 1710, and the transceiver 1810 can implement the functions of the transceiver module 1720.
  • the communication device 180 may also include at least one memory 1830 for storing program instructions and/or data.
  • Memory 1830 and processor 1820 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1820 may cooperate with the memory 1830.
  • Processor 1820 may execute program instructions stored in memory 1830. At least one of the at least one memory may be included in the processor.
  • connection medium between the above-mentioned transceiver 1810, processor 1820 and memory 1830 is not limited in the embodiment of the present application.
  • the memory 1830, the processor 1820 and the transceiver 1810 are connected through a bus 1840 in Figure 18.
  • the bus is represented by a thick line in Figure 18.
  • the connection between other components is only a schematic explanation. , is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 18, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Execute each method, step and logical block diagram disclosed in the embodiment of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • Figure 19 is a schematic structural diagram of another communication device 190 provided by an embodiment of the present application.
  • the communication device shown in FIG. 19 includes a logic circuit 1901 and an interface 1902 .
  • the processing module 1910 in Figure 19 can be implemented by the logic circuit 1901, and the transceiver module 1920 in Figure 19 can be implemented by the interface 1902.
  • the logic circuit 1901 can be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 1902 can be a communication interface, an input-output interface, etc.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiments of this application do not limit the specific connection methods of the logic circuits and interfaces.
  • the logic circuit and interface may be used to perform functions or operations performed by the access network device, etc. mentioned above.
  • the logic circuit and interface may be used to perform functions or operations performed by the above-mentioned terminal device.
  • This application also provides a computer-readable storage medium, which stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to execute the method of the above embodiment.
  • This application also provides a computer program product, which includes computer code or computer program.
  • the method of advance synchronization in the above embodiment is executed.
  • This application also provides a communication system, including the above terminal device and the above access network device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法和通信装置,该方法包括:终端设备根据发送图样,向接入网设备发送上行参考信号,该上行参考信号的上行参考信号资源包括N个端口,该发送图样中的N个端口承载于2个或2以上OFDM符号,或者,该发送图样中的N个端口承载于2个或2个以上频域梳齿和1个OFDM符号,该N为大于4的整数;终端设备接收来自接入网设备的预编码指示信息,预编码指示信息用于指示上行数据传输采用的预编码,预编码指示信息为接入网设备根据该上行参考信号得到,该预编码对应的矩阵的行与N个端口一一对应;通过将同一上行参考信号资源包括的N个端口承载于2个或2以上OFDM符号,可以提高该N个端口中各端口之间的正交性。

Description

通信方法和通信装置
本申请要求于2022年3月31日提交中国专利局、申请号为202210336427.3、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和通信装置。
背景技术
信道探测参考信号(sounding reference signal,SRS)是一种终端设备向接入网设备(例如基站)发送的上行参考信号。SRS用于接入网设备获取该终端设备的上行(uplink,UL)信道。或者,SRS用于接入网设备根据信道互易性获取该终端设备的下行(downlink,DL)信道,从而根据信道信息对该终端设备做数据调度。每个SRS资源中包括个SRS端口,每个SRS端口会对应特定的时频码资源。在理想情况下,各个SRS端口是正交的,每个SRS端口会对应终端设备的物理天线或者虚拟天线。当一个SRS资源中的各SRS端口之间的正交性较弱时,终端设备发送占用该SRS资源的SRS时,不同天线之间会发生相干传输,造成发送的SRS的质量较差。因此,为保证终端设备发送的SRS的信号质量,需要研究使得各SRS端口之间的正交性较强的SRS资源的时频映射方案。
发明内容
本申请实施例公开了一种通信方法和通信装置。
第一方面,本申请实施例提供一种通信方法,该方法包括:终端设备根据发送图样,向接入网设备发送上行参考信号,所述上行参考信号的上行参考信号资源包括N个端口,所述发送图样中的所述N个端口中至少存在两组端口,每组端口对应相同的时频资源,不同组端口分别对应不同的时频资源,所述发送图样中的所述N个端口承载于2个或2以上正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,或者,所述发送图样中的所述N个端口承载于2个或2个以上频域梳齿和1个OFDM符号,所述N为大于4的整数;所述终端设备接收来自所述接入网设备的预编码指示信息,所述预编码指示信息用于指示上行数据传输采用的预编码,所述预编码对应的矩阵的行与所述N个端口一一对应。
可选的,所述预编码指示信息为所述接入网设备根据所述上行参考信号得到。
可选的,所述上行数据传输的发送天线与所述多个上行参考信号中的各个端口对应。终端设备根据发送图样,向接入网设备发送上行参考信号可替换为:终端设备根据配置信息,按照发送图样发送上行参考信号;所述配置信息指示所述终端设备按照所述发送图样发送上行参考信号。所述配置信息可以是上行参考信号资源,例如信道探测参考信号(sounding reference signal,SRS)资源,的配置信息。所述发送图样中的所述N个端口承载于2个或2以上OFDM符号可替换为:所述发送图样指示所述N个端口承载于2个或2以上OFDM符号。所述发送图样中的所述N个端口承载于2个或2个以上频域梳齿和1个OFDM符号可替换为:所述发送图样指示所述N个端口承载于2个或2个以上频域梳齿和1个OFDM符号。
本申请实施例中,终端设备根据发送图样,向接入网设备发送上行参考信号使得该上行参考信号的上行参考信号资源包括的N(大于4)个端口承载于2个或2以上OFDM符号;通过将同一上行参考信号资源包括的N个端口承载于2个或2以上OFDM符号,可以提高该N个端口中各端口之间的正交性。终端设备根据发送图样,向接入网设备发送上行参考信号使得该上行参考信号的上行参考信号资源包括的N(大于4)个端口承载于2个或2个以上频域梳齿和1个OFDM符号,预编码指示信息指示终端设备的上行数据传输采用的预编码对应的矩阵的行与上行参考信号资源包括的N个端口一一对应;提供了使用包括N个端口的上行参考信号资源承载上行参考信号的方案。
在一种可能的实现方式中,所述方法还包括:所述终端设备根据所述上行参考信号资源的配置信息中包括的所述上行参考信号的CS参考值指示从两个或两个以上图样中确定所述发送图样。
在该实现方式中,终端设备根据上行参考信号的CS参考值指示从两个或两个以上图样中确定发送图样;可以快速、准确地确定该终端设备发送上行参考信号所适合采用的发送图样。
在一种可能的实现方式中,所述方法还包括:所述终端设备根据所述CS参考值指示和所述N个端口中每个SRS端口的索引,确定每个SRS端口的CS值;每个端口的CS值用于生成每个端口的发送序列。
在该实现方式中,可快速、准确地确定每个SRS端口的CS值。
在一种可能的实现方式中,所述终端设备根据所述CS参考值指示和所述N个端口中每个SRS端口的索引,确定每个SRS端口的CS值包括:确定所述 pi表示所述N个端口中的第i个端口的索引(例如1001),表示最大CS指示,表示CS参考值指示;根据所述确定所述N个端口中的第i个端口的CS值αi
在该实现方式中,当pi∈{1000,1001,1003,1004},当pi∈{1002,1003,1005,1006},
使得位于同一个频域梳齿的端口占用的CS不均匀,剩下的CS保证大间隔,留给其他终端设备占用。
在一种可能的实现方式中,所述终端设备根据所述CS参考值指示和所述N个端口中每个SRS端口的索引,确定每个SRS端口的CS值包括:终端设备根据所述CS参考值指示、所述N个端口中每个SRS端口的索引、
确定其中,表示最大CS指示,表示CS参考值指示,pi表示所述N个端口中的第i个端口的索引(例如1001),为8;根据所述确定所述N个端口中的第i个端口的CS值αi
通过这种方式,位于相同时频资源内的各个端口的可以分配等间隔且间隔尽可能大的CS值。
在一种可能的实现方式中,所述方法还包括:所述终端设备根据所述上行参考信号资源的配置信息中包括的CS参考值指示、最大CS指示以及符号数,从两个或两个以上图样中确 定所述发送图样;所述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个,所述符号数指示承载所述N个端口的OFDM符号的个数;所述第一图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;所述第二图样中的所述N个端口中的第一端口集合和第二端口集合对应的梳齿为所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述l和所述n为大于等于1的整数;所述第三图样中的所述N个端口中的第一端口集合对应的梳齿为以及所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数;所述第四图样中的所述N个端口中的4个端口集合分别对应的梳齿为 且所述4个端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数,所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
在该实现方式中,终端设备根据上行参考信号的CS参考值最大以及符号数,从两个或两个以上图样中确定所述发送图样;可以快速、准确地确定该终端设备发送上行参考信号所适合采用的发送图样。
在一种可能的实现方式中,所述方法还包括:所述终端设备根据所述上行参考信号资源的配置信息中包括的所述上行参考信号的CS参考值指示和最大CS指示,从两个或两个以上图样中确定所述发送图样。
在该实现方式中,终端设备根据上行参考信号的CS参考值和最大从两个或两个以上图样中确定发送图样;可以快速、准确地确定该终端设备发送上行参考信号所适合采用的发送图样。
第二方面,本申请实施例提供另一种通信方法,该方法包括:接入网设备接收终端设备发送的上行参考信号,所述上行参考信号的上行参考信号资源包括N个端口,所述N个端口承载于2个或2以上正交频分复用OFDM符号,或者,所述N个端口承载于2个或2个以上频域梳齿和1个OFDM符号,所述N为大于4的整数;所述接入网设备向所述终端设备发送预编码指示信息,所述预编码指示信息用于指示所述终端设备的上行数据传输采用的预编码,所述预编码指示信息为所述接入网设备根据所述上行参考信号得到,所述预编码对应的矩阵的行与所述N个端口一一对应。
本申请实施例中,接入网设备接收终端设备发送的上行参考信号,该上行参考信号资源包括N(大于4)个端口,向该终端设备发送预编码指示信息,该预编码指示信息指示终端设备的上行数据传输采用的预编码对应的矩阵的行与上行参考信号资源包括的N个端口一一对应;提供了使用包括N个端口的上行参考信号资源承载上行参考信号的方案。
第三方面,本申请实施例提供另一种通信方法,该方法包括:终端设备根据多个上行参考信号资源的配置信息发送多个上行参考信号;所述终端设备接收预编码和传输层数指示信息,所述预编码和传输层数指示信息用于指示所述终端设备的上行数据传输采用的预编码和传输层数,且所述预编码和传输层数指示信息与所述多个上行参考信号相对应;其中,所述传输层数小于等于所述多个上行参考信号包括的端口数总和,所述预编码对应的矩阵的行数为所述多个上行参考信号包括的端口数总和,且所述矩阵的行与所述多个上行参考信号包括的各个端口一一对应。所述多个上行参考信号包括的端口数总和可理解为所述多个上行参考信号资源包括的端口数总和。
可选的,所述预编码和传输层数指示信息为所述接入网设备根据所述上行参考信号得到。
可选的,所述上行数据传输的发送天线与所述多个上行参考信号中的各个端口对应。
可选的,所述预编码和传输层数指示信息中包括多个第一指示信息,所述多个第一指示信息与所述多个上行参考信号资源一一对应。
可选的,所述上行数据的传输层数为所述多个第一指示信息中指示的传输层数的总和。
本申请实施例中,用于基于码本的上行数据传输对应的上行参考信号承载于多个上行参考信号资源上,通过这种方法,可以支持灵活的上行参考信号的资源配置,以及相应预编码指示和传输层数指示。
第四方面,本申请实施例提供另一种通信方法,该方法包括:接入网设备接收来自终端设备的多个上行参考信号;所述接入网设备根据所述多个上行参考信息,生成预编码和传输层数指示信息;所述接入网设备向所述终端设备发送所述预编码和传输层数指示信息,所述预编码和传输层数指示信息用于指示所述终端设备的上行数据传输采用的预编码和传输层数,且所述预编码和传输层数指示信息与所述多个上行参考信号相对应;其中,所述传输层数小于等于所述多个上行参考信号包括的端口数总和,所述预编码对应的矩阵的行数为所述多个上行参考信号包括的端口数总和,且所述矩阵的行与所述多个上行参考信号包括的各个端口一一对应。
本申请实施例中,接入网设备向终端设备发送预编码和传输层数指示信息,该预编码和传输层数指示信息与多个上行参考信号相对应,不需要针对每个上行参考信号发送一个预编码和传输层数指示信息,可以减少信令开销。
第五方面,本申请实施例提供一种终端设备,该终端设备具有实现上述第一方面方法实施例中的操作的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,包括收发模块和处理模块,其中:所述处理模块,用于根据发送图样,控制所述收发模块向接入网设备发送上行参考信号,所述上行参考信号的上行参考信号资源包括N个端口,所述发送图样中的所述N个端口分别对应不同的时频资源,所述发送图样中的所述N个端口承载于2个或2以上OFDM符号,或者,所述发送图样中的所述N个端口承载于2个或2个以上频域梳齿和1个OFDM符号,所述N为大于4的整数;所述收发模块,还用于接收来自所述接入网设备的预编码指示信息,所述预编码指示信息用于指示上行数据传输采用的预编码,所述预编码指示信息为所述接入网设备根据所述上行参考信号得到,所述预编码对应的矩阵的行与所述N个端口一一对应。所述处理模块,用于根据发送图样,控制所述收发模块向接入网设备发送上行参考信号可替换为:所述处理模块,用于根据配置信息,控制所述收发模块按照发送图样发送上行参考信号;所述配置信息指示所述终端设备按照所述发送图样发送上行参考信号。
在第一方面或者第五方面的一种可能的实现方式中,所述上行参考信号为SRS,所述上行参考信号资源为SRS资源,所述上行数据承载于物理上行共享信道(physical uplink shared channel,PUSCH)或者物理上行控制信道(physical uplink control channel,PUCCH),所述N为8;所述方法还包括:所述终端设备根据所述预编码将所述上行数据映射到天线端口上,所述天线端口的数量与所述SRS资源的端口数量相同,所述天线端口与所述SRS资源的端口一一对应。
在该实现方式中,提供了SRS资源中包括8个SRS端口的资源映射方案,支持SRS端口数较多的场景中SRS资源的设计。
在第一方面或者第五方面的一种可能的实现方式中,所述N为8,所述发送图样中的(指示)所述N个端口承载于2个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的(cyclic shift,CS);或者,所述发送图样中的(指示)所述N个端口承载于1个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的(指示)所述N个端口承载于2个频域梳齿度为2的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。
在该实现方式中,基站可以基于终端设备的信道状态灵活配置发送图样。具体的,当终端设备上行发送功率受限时,可以配置占用多个OFDM符号的发送图样,而当基站对终端设备的相位精度要求较高时,可以配置占用一个OFDM符号的发送图样。
在第五方面的一种可能的实现方式中,所述处理模块,还用于根据所述上行参考信号资源的配置信息中包括的所述上行参考信号的CS参考值指示从两个或两个以上图样中确定所述发送图样。在该实现方式中,终端设备根据上行参考信号的CS参考值指示从两个或两个以上图样中确定发送图样;通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。。
在第五方面的一种可能的实现方式中,所述处理模块,还用于根据所述CS参考值指示和所述N个端口中每个SRS端口的索引,确定每个SRS端口的CS值;每个端口的CS值用于生成每个端口的发送序列。
在第五方面的一种可能的实现方式中,所述处理模块,具体用于确定所述pi表示所述N个端口中的第i个端口的索引(例如1001),表示最大CS指示,表示CS参考值指示;根据所述确定所述N个端口中的第i个端口的CS值αi
在该实现方式中,使得位于同一个频域梳齿的端口占用的CS不均匀,剩下的CS保证大间隔,留给其他终端设备占用。
在第五方面的一种可能的实现方式中,所述处理模块,具体用于根据所述CS参考值指示、所述N个端口中每个SRS端口的索引、
确定其中,K∈{1,2},表示最大CS指示,表示CS参考值指示,pi表示所述N个端口中的第i个端口的索引(例如1001),为8;根据所述确定所述N个端口中的第i个端口的CS值αi
在第一方面或者第五方面的一种可能的实现方式中,所述配置信息中还包括所述上行参考信号的梳齿位置指示和频域梳齿度KTC,所述两个或两个以上图样包括第一图样、第二图样以及第三图样中的至少两个;所述第一图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;所述第二图样中的所述N个端口中的第一端口集合和第二端口集合对应的梳齿为所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;所述第三图样中的所述N个端口中的第一端口集合对应的梳齿为 所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于0的整数;所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
在该实现方式中,发送图样中的N个端口承载于频域梳齿和OFDM符号上的方式,可使得各端口之间的正交性较强且一个SRS资源占用多个OFDM符号可以提升每个SRS端口的功率谱密度。
在第一方面或者第五方面的一种可能的实现方式中,所述N为8,所述发送图样中的所述N个端口承载于2个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值;或者,所述发送图样中的所述N个端口承载于1个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N个端口承载于2个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N个端口承载于4个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。
在该实现方式中,发送图样中的N个端口承载于频域梳齿和OFDM符号上的方式,可使得各端口之间的正交性较强。
在第一方面或者第五方面的一种可能的实现方式中,所述配置信息中还包括梳齿位置指示和频域梳齿度KTC,所述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个;所述第一图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;所述第二图样中的所述N个端口中的第一端口集合和第二端口集合对应的梳齿为所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述l和所述n为大于等于1的整数;所述第三图样中的所述N个端口中的第一端口集合对应的梳齿为以及所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数;所述第四图样中的所述N个端口中的4个端口集合分别对应的梳齿为 且所述4个端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数,所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
在该实现方式中,发送图样中的N个端口承载于频域梳齿和OFDM符号上的方式,可使得各端口之间的正交性较强且一个SRS资源占用多个OFDM符号可以提升每个SRS端口的功率谱密度。
在第五方面的一种可能的实现方式中,所述处理模块,还用于根据所述上行参考信号资源的配置信息中包括的CS参考值指示、最大CS指示以及符号数,从两个或两个以上图样中确定所述发送图样;所述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个,所述符号数指示承载所述N个端口的OFDM符号的个数;所述第一图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集 合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;所述第二图样中的所述N个端口中的第一端口集合和第二端口集合对应的梳齿为所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述l和所述n为大于等于1的整数;所述第三图样中的所述N个端口中的第一端口集合对应的梳齿为以及所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数;所述第四图样中的所述N个端口中的4个端口集合分别对应的梳齿为 且所述4个端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数,所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
在该实现方式中,终端设备根据上行参考信号的CS参考值最大以及符号数,从两个或两个以上图样中确定所述发送图样;可以快速、准确地确定该终端设备发送上行参考信号所适合采用的发送图样。
在第一方面或者第五方面的一种可能的实现方式中,所述N为8,所述发送图样中的所述N个端口承载于2个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值;或者,所述发送图样中的所述N个端口承载于1个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N个端口承载于2个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N端口承载于4个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。
在该实现方式中,发送图样中的N个端口承载于频域梳齿和OFDM符号上的方式,可使得各端口之间的正交性较强。
在第一方面或者第五方面的一种可能的实现方式中,所述上行参考信号的发送功率是根据所述发送图样确定的;当所述发送图样指示所述N个端口承载于个OFDM符号上,每个端口的最大发送功率不超过其中,PCMAX为所述终端设备配置的最大发送功率,为大于1的整数,所述等于所述N。
在该实现方式中,N个端口承载于个OFDM符号上,可以使得SRS资源对应的SRS实际发送功率为总发送功率的倍,能够提升信道测量精度。
关于第五方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第六方面,本申请实施例提供一种接入网设备,该接入网设备具有实现上述第二方面方法实施例中的操作的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,包括收发模块和处理模块,其中:所述收发模块,用于接收终端设备发送的上行参考信号,所述上行参考信号的上行参考信号资源包括N个端口,所述N个端口承载于2个或2以上正交频分复用OFDM符号,或者,所述N个端口承载于2个或2个以上频域梳齿和1个OFDM符号,所述N为大于4的整数;所述处理模块,用于根据所述上行参考信号,处理得到预编码指示信息;所述收发模块,还用于向所述终端设备发送所述预编码指示信息,所述预编码指示信息用于指示所述终端设备的上行数据传输采用的预编码,所述预编码指示信息为所述接入网设备根据所述上行参考信号得到,所述预编码对应的矩阵的行与所述N个端口一一对应。
在第二方面或者第六方面的一种可能的实现方式中,所述上行参考信号为SRS,所述上 行参考信号资源为SRS资源,所述上行数据承载于物理上行共享信道PUSCH或者物理上行控制信道PUCCH,所述N为8;所述预编码用于所述终端设备将所述上行数据映射到天线端口上,所述天线端口的数量与所述SRS资源的端口数量相同,所述天线端口与所述SRS资源的端口一一对应。
在该实现方式中,预编码用于终端设备将上行数据映射到天线端口上,该天线端口与SRS资源的端口一一对应,提供了SRS资源中包括8个SRS端口的资源映射方案。
在第二方面或者第六方面的一种可能的实现方式中,所述N为8,所述N个端口承载于2个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的(cyclic shift,CS);或者,所述N个端口承载于1个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述N个端口承载于2个频域梳齿度为2的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。
在该实现方式中,N个端口承载于频域梳齿和OFDM符号上的方式,可使得各端口之间的正交性较强。
在第二方面或者第六方面的一种可能的实现方式中,所述N为8,所述N个端口承载于2个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值;或者,所述N个端口承载于1个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述N个端口承载于2个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述N个端口承载于4个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。
在该实现方式中,N个端口承载于频域梳齿和OFDM符号上的方式,可使得各端口之间的正交性较强。
在第二方面或者第六方面的一种可能的实现方式中,所述N个端口承载于2个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值;或者,所述N个端口承载于1个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述N个端口承载于2个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述N端口承载于4个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。
在该实现方式中,N个端口承载于频域梳齿和OFDM符号上的方式,可使得各端口之间的正交性较强。
在第二方面或者第六方面的一种可能的实现方式中,所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数,KTC为所述上行参考信号的频域梳齿度,为所述上行参考信号的梳齿位置指示,所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
在该实现方式中,第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),可以提高各端口间的正交性且一个SRS资源占用多个OFDM符号可以提升每个SRS端口的功率谱密度。
在第二方面或者第六方面的一种可能的实现方式中,所述N个端口中的第一端口集合和第二端口集合对应的梳齿为所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数,KTC为所述上行参考信号的频域梳齿度,为所述上行参考信号的梳齿位置指示,所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
在该实现方式中,第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),可以提高各端口间的正交性且一个SRS资源占用多个OFDM符号可以提升每个SRS端口的功率谱密度。
在第二方面或者第六方面的一种可能的实现方式中,所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于0的整数,KTC为所述上行参考信号的频域梳齿度,为所述上行参考信号的梳齿位置指示,所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
在该实现方式中,第一端口集合和第二端口集合对应的OFDM符号的索引为l,可以减少OFDM符号的开销。第一端口集合对应的梳齿为第二端口集合对应的梳齿为可以使得各端口间中的正交性较强。
在第二方面或者第六方面的一种可能的实现方式中,所述N个端口中的4个端口集合分别对应的梳齿为 且所述4个端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数,所述4端口集合中的各端口集合包含的端口不同,KTC为所述上行参考信号的频域梳齿度,为所述上行参考信号的梳齿位置指示。
在该实现方式中,4个端口集合分别对应的梳齿为 可以使得各端口间中的正交性较强。
在第二方面或者第六方面的一种可能的实现方式中,所述上行参考信号的发送功率是所述终端设备根据发送图样确定的;当所述发送图样指示所述N个端口承载于个OFDM符号上,每个端口的最大发送功率不超过其中,PCMAX为所述终端设备配置的最大发送功率,为大于1的整数,所述等于所述N。
在该实现方式中,N个端口承载于个OFDM符号上,可以使得SRS资源对应的SRS实际发送功率为总发送功率的倍,能够提升信道测量精度。
关于第六方面的各种可能的实施方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第七方面,本申请实施例提供另一种终端设备,该终端设备具有实现上述第三方面方法实施例中的操作的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,包括收发模块和处理模块,其中:所述处理模块,用于根据多个上行参考信号资源的配置信息,生成多个上行参考信号;所述收发模块,用于发送所述多个上行参考信号;所述收发模块,还用于接收预编码和传输层数指示信息,所述预编码和传输层数指示信息用于指示所述终端设备的上行数据传输采用的预编码和传输层数,且所述预编码和传输层数指示信息与所述多个上行参考信号相对应;其中,所述传输层数小于等于所述多个上行参考信号包括的端口数总和,所述预编码对应的矩阵的行数为所述多个上行参考信号包括的端口数总和,且所述矩阵的行与所述多个上行参考信号包括的各个端口一一对应。所述多个上行参考信号包括 的端口数总和可理解为所述多个上行参考信号资源包括的端口数总和。
在第三方面或者第七方面的一种可能的实现方式中,所述多个上行参考信号为多个SRS,所述多个上行参考信号资源为多个SRS资源,所述多个上行参考信号资源包括两个第一SRS资源,所述第一SRS资源中包括的端口数为4。
在该实现方式中,多个上行参考信号资源包括两个第一SRS资源,该第一SRS资源中包括的端口数为4,预编码对应的矩阵的行与该多个上行参考信号包括的各个端口一一对应;通过预编码和传输层数指示信息可获得该多个上行参考信号包括的各个端口(例如8个)的时频资源映射方式。
在第三方面或者第七方面的一种可能的实现方式中,所述两个第一SRS资源包括SRS资源1和SRS资源2,所述SRS资源1的端口对应的天线端口为第一极化方向,所述SRS资源2的端口对应的天线端口为第二极化方向;或者,对于上行数据传输的第i流,所述SRS资源1的端口对应的预编码为vi,所述SRS资源2的端口对应的预编码为n为整数;其中,所述vi中的元素数量为4,i为正整数。
在另一种可能的实现方式中,所述预编码和传输层数指示信息包括两个传输指示字段,所述两个传输指示字段与两个上行参考信号资源一一对应,所述上行数据的传输层数为两个传输指示字段指示的传输层数的总和;所述预编码和传输层数指示信息中还包括相位指示信息用于指示两个上行参考信号资源对应的天线间的相位旋转。
在另一种可能的实现方式中,所述预编码和传输层数指示信息包括一个预编码波束指示字段,一个传输层数指示字段和一个相位指示信息所述一个预编码波束指示字段用于指示每个上行参考信号资源对应的发送波束,所述传输层数指示字段用于指示上行数据的传输层数,所述相位指示信息用于指示两个上行参考信号资源对应的天线间的相位旋转。
在该实现方式中,可保证同一极化方向的天线端口位于同一个SRS资源内同时传输,从而两个极化方向的波束可以统一指示,对于每一流数据仅需要额外指示极化间相位偏差即可,降低DCI指示预编码的开销。
可选的,上述实现方式中,终端设备的相干能力为完全相干。
可选的,上述实现方式中,预编码为全相干码字。
在第三方面或者第七方面的一种可能的实现方式中,所述多个上行参考信号为多个SRS,所述多个上行参考信号资源为多个SRS资源,所述多个上行参考信号资源包括两个第二SRS资源和一个第一SRS资源,所述第一SRS资源中包括的端口数为4,所述第二SRS资源中包括的端口数为2;或者,所述多个上行参考信号资源包括四个第二SRS资源,所述第二SRS资源中包括的端口数为2。
在该实现方式中,预编码对应的矩阵的行与该多个上行参考信号包括的各个端口一一对应;终端设备通过预编码和传输层数指示信息可获得该多个上行参考信号包括的各个端口(例如8个)的时频资源映射方式。
在第三方面或者第七方面的一种可能的实现方式中,所述上行参考信号资源为SRS资源,所述多个SRS资源中的第k个SRS资源与所述上行数据的第层相对应,所述预编码的第列中非零元素所在的行与所述第k个SRS资源的端口一一对应,其中mk为小于等于所述第k个SRS资源的端口数的正整数,k为大于0的整数;所述多个SRS资源中的任意两个SRS资源对应的所述上行数据的层不同;所述上行数据对应一个PUSCH或者PUCCH。
可选的,上述实现方式中,预编码为部分相干码字。
可选的,上述实现方式中,终端设备的相干能力为部分相干。
在该实现方式中,属于可相干传输的天线端口位于同一个SRS资源内,从而可以保证相干传输的天线端口同时传输,提升基站信道测量精度。同时,预编码设计时仅需对应一个SRS 资源内的各个端口指示相位,简化预编码设计。
在第三方面或者第七方面的一种可能的实现方式中,所述预编码和传输层数指示信息包括多个传输指示字段,所述多个传输指示字段与所述多个上行参考信号资源一一对应,所述多个传输指示字段中的预编码的矩阵的行与相应上行参考信号资源中的端口一一对应;所述上行数据的传输层数为所述多个传输指示字段所指示的传输层数的总和。
在该实现方式中,多个传输指示字段中的预编码的矩阵的行与相应上行参考信号资源中的端口一一对应,终端设备根据预编码和传输层数指示信息可得到通过PUSCH或PUCCH传输上行数据采用的多个SRS资源的相关信息,信令开销少。
在第三方面或者第七方面的一种可能的实现方式中,所述多个上行参考信号资源为多个SRS资源,所述预编码和传输层数指示信息为预编码指示信息,所述预编码和传输层指示信息包括探测参考信号资源指示(SRS resource indicator,SRI)、传输秩指示(transmissionrank indicator,TRI)、传输预编码矩阵指示(transmission precoding matrix indicator,TPMI),所述SRI用于指示所述多个SRS资源中的两个或两个以上,所述TPMI用于指示所述预编码,所述TRI指示所述传输层。
在该实现方式中,SRI用于指示多个SRS资源,预编码矩阵的行多个上行参考信号包括的端口数总和;终端设备根据预编码和传输层数指示信息可得到通过PUSCH或PUCCH传输上行数据采用的多个SRS资源的相关信息,信令开销少。
在第三方面或者第七方面的一种可能的实现方式中,所述SRI指示的多个SRS资源各自独立对应通过PUSCH或PUCCH发送的数据层。或者说,所述SRI指示的多个SRS资源对应独立的层和层映射。
在该实现方式中,SRI指示的多个SRS资源各自独立对应通过PUSCH或PUCCH发送的数据流,可以将8端口的SRS资源(即8个SRS端口)拆分在多个OFDM符号上发送,支持SRS发送功率抬升以提升信道测量精度。
关于第七方面的各种可能的实施方式所带来的技术效果,可参考对于第三方面或第三方面的各种可能的实施方式的技术效果的介绍。
第八方面,本申请实施例提供另一种接入网设备,该接入网设备具有实现上述第四方面方法实施例中的操作的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,包括收发模块和处理模块,其中:所述收发模块,用于接收来自终端设备的多个上行参考信号;所述处理模块,用于根据所述多个上行参考信息,生成预编码和传输层数指示信息;所述收发模块,还用于向所述终端设备发送所述预编码和传输层数指示信息,所述预编码和传输层数指示信息用于指示所述终端设备的上行数据传输采用的预编码和传输层数,且所述预编码和传输层数指示信息与所述多个上行参考信号相对应;其中,所述传输层数小于等于所述多个上行参考信号包括的端口数总和,所述预编码对应的矩阵的行数为所述多个上行参考信号包括的端口数总和,且所述矩阵的行与所述多个上行参考信号包括的各个端口一一对应。
在第四方面或者第八方面的一种可能的实现方式中,所述多个上行参考信号为多个SRS,所述多个上行参考信号资源为多个SRS资源,所述多个上行参考信号资源包括两个第一SRS资源,所述第一SRS资源中包括的端口数为4。
在该实现方式中,多个上行参考信号资源包括两个第一SRS资源,该第一SRS资源中包括的端口数为4,预编码对应的矩阵的行与该多个上行参考信号包括的各个端口一一对应; 通过支持多个SRS资源聚合的方式支持8-port SRS(即8个SRS端口)发送。
在第四方面或者第八方面的一种可能的实现方式中,所述预编码为全相干码字,所述两个第一SRS资源包括SRS资源1和SRS资源2,所述SRS资源1的端口对应的天线端口为第一极化方向,所述SRS资源2的端口对应的天线端口为第二极化方向;或者,对于第i流,所述SRS资源1的端口对应的预编码为vi,所述SRS资源2的端口对应的预编码为 n为整数;其中,所述vi中的元素数量为4,i为整数。
在该实现方式中,可保证天线端口之间无法做相关传输。
在第四方面或者第八方面的一种可能的实现方式中,所述多个上行参考信号为多个SRS,所述多个上行参考信号资源为多个SRS资源,所述多个上行参考信号资源包括两个第二SRS资源和一个第一SRS资源,所述第一SRS资源中包括的端口数为4,所述第二SRS资源中包括的端口数为2;或者,所述多个上行参考信号资源包括四个第二SRS资源,所述第二SRS资源中包括的端口数为2。
在该实现方式中,预编码对应的矩阵的行与该多个上行参考信号包括的各个端口一一对应;通过支持多个SRS资源聚合的方式支持8-port SRS(即8个SRS端口)发送。由于每个SRS资源的时频资源位置可以独立配置,从而可以将8-port SRS拆分在多个OFDM符号上发送,能够支持SRS发送功率提升,进而提升信道测量精度。另外,这种方式可以利用现有协议支持的2-port SRS、4-port SRS资源的设计,以及最大程度复用现有TPMI码本的设计。
在第四方面或者第八方面的一种可能的实现方式中,所述预编码为部分相干码字,所述上行参考信号资源为SRS资源,所述多个SRS资源中的第k个SRS资源与所述上行数据的第层相对应,所述预编码的第列中非零元素所在的行与所述第k个SRS资源的端口一一对应,其中mk为小于等于所述第k个SRS资源的端口数的正整数,k为大于0的整数;所述多个SRS资源中的任意两个SRS资源对应的所述上行数据的层不同;所述上行数据对应一个PUSCH或者PUCCH。
在第四方面或者第八方面的一种可能的实现方式中,所述预编码和传输层数指示信息包括多个传输指示字段,所述多个传输指示字段与所述多个上行参考信号资源一一对应,所述多个传输指示字段中的预编码的矩阵的行与相应上行参考信号资源中的端口一一对应;所述上行数据的传输层数为所述多个传输指示字段所指示的传输层数的总和。
在该实现方式中,多个传输指示字段中的预编码的矩阵的行与相应上行参考信号资源中的端口一一对应,以便终端设备根据预编码和传输层数指示信息可得到通过PUSCH或PUCCH传输上行数据采用的多个SRS资源的相关信息,信令开销少。
在第四方面或者第八方面的一种可能的实现方式中,所述多个上行参考信号资源为多个SRS资源,所述预编码和传输层数指示信息为预编码指示信息,所述预编码和传输层指示信息包括SRI、TRI、TPMI,所述SRI用于指示所述多个SRS资源中的两个或两个以上,所述TPMI用于指示所述预编码,所述TRI指示所述传输层。
在该实现方式中,SRI用于指示多个SRS资源,预编码矩阵的行多个上行参考信号包括的端口数总和;以便终端设备根据预编码和传输层数指示信息可得到通过PUSCH或PUCCH传输上行数据采用的多个SRS资源的相关信息,信令开销少。
在第四方面或者第八方面的一种可能的实现方式中,所述SRI指示的多个SRS资源各自独立对应通过PUSCH或PUCCH发送的数据流。或者说,所述SRI指示的多个SRS资源对应独立的流和流映射。
在该实现方式中,SRI指示的多个SRS资源各自独立对应通过PUSCH或PUCCH发送的数据流,可以将8-port SRS拆分在多个OFDM符号上发送,支持SRS发送功率抬升以提升信 道测量精度。
在第四方面或者第八方面的一种可能的实现方式中,所述SRI指示的每个SRS资源中包括的F个端口对应于所述矩阵中连续N行,所述SRI指示的SRS资源按照索引从小到大对应所述矩阵从小到大的行。
在该实现方式中,可以复用现有2-port,4-port SRS资源的设计。
关于第八方面的各种可能的实施方式所带来的技术效果,可参考对于第四方面或第四方面的各种可能的实施方式的技术效果的介绍。
第九方面,本申请提供一种通信装置,该通信装置包括处理器,该处理器可以用于执行存储器所存储的计算机执行指令,以使上述第一方面或第一方面的任意可能的实现方式所示的方法被执行,或者以使上述第二方面或第二方面的任意可能的实现方式所示的方法被执行,或者以使上述第三方面或第三方面的任意可能的实现方式所示的方法被执行,或者以使上述第四方面或第四方面的任意可能的实现方式所示的方法被执行。
本申请实施例中,在执行上述方法的过程中,上述方法中有关发送信息的过程,可以理解为基于处理器的指令进行输出信息的过程。在输出信息时,处理器将信息输出给收发器,以便由收发器进行发射。该信息在由处理器输出之后,还可能需要进行其他的处理,然后到达收发器。类似的,处理器接收输入的信息时,收发器接收该信息,并将其输入处理器。更进一步的,在收发器收到该信息之后,该信息可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发送和/或接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以一般性的理解为基于处理器的指令输出。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器等。例如,处理器还可以用于执行存储器中存储的程序,当该程序被执行时,使得该通信装置执行如上述第一方面或第一方面的任意可能的实现方式所示的方法。在一种可能的实现方式中,存储器位于上述通信装置之外。在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可能被集成于一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收报文或发送报文等。
第十方面,本申请提供另一种通信装置,该通信装置包括处理电路和接口电路,该接口电路用于获取数据或输出数据;处理电路用于执行如上述第一方面或第一方面的任意可能的实现方式所示的相应的方法,或者处理电路用于执行如上述第二方面或第二方面的任意可能的实现方式所示的相应的方法,或者处理电路用于执行如上述第三方面或第三方面的任意可能的实现方式所示的相应的方法,或者处理电路用于执行如上述第四方面或第四方面的任意可能的实现方式所示的相应的方法。
第十一方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行,或者使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行,或者使得上述第三方面或第三方面的任意可能的实现方式所示的方法被执行,或者使得上述第四方面或第四方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所 示的方法被执行,或者使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行,或者使得上述第三方面或第三方面的任意可能的实现方式所示的方法被执行,或者使得上述第四方面或第四方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请提供一种通信***,包括上述第五方面或第五方面的任意可能的实现方式的所述终端设备以及上述第六方面或第六方面的任意可能的实现方式所述的接入网设备。
第十四方面,本申请提供另一种通信***,包括上述第七方面或第七方面的任意可能的实现方式的所述终端设备以及上述第八方面或第八方面的任意可能的实现方式所述的接入网设备。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请提供的三种不同梳齿度的梳齿的示例;
图2为本申请提供的一种扫描带宽和调频带宽的示例;
图3为本申请实施例提供的一种发送功率的对比示意图;
图4为本申请实施例提供的一种无线通信***的示例;
图5为本申请实施例提供的一种通信方法交互流程图;
图6为本申请实施例提供的另一种通信方法交互流程图;
图7为本申请实施例提供的第一图样、第二图样以及第三图样的示例;
图8为本申请实施例提供的另一种通信方法交互流程图;
图9为本申请实施例提供的第一图样、第二图样、第三图样以及第四图样的示例;
图10为本申请实施例提供的另一种通信方法交互流程图;
图11为本申请实施例提供的第一图样、第二图样、第三图样以及第四图样的示例;
图12为本申请实施例提供的另一种通信方法交互流程图;
图13为本申请实施例提供的另一种通信方法交互流程图;
图14为本申请实施例提供的一种天线架构的示意图;
图15为本申请实施例提供的另一种天线架构的示意图;
图16为本申请实施例提供的另一种天线架构的示意图;
图17示出了一种通信装置1700的结构示意图;
图18为本申请实施例提供的另一种通信装置180的结构示意图;
图19为本申请实施例提供的另一种通信装置190的结构示意图。
具体实施方式
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在 本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。本申请中使用的术语“多个”是指两个或两个以上。
首先,对本申请实施例涉及的一些概念进行阐述。
1、SRS、SRS端口、SRS的梳齿(comb)
SRS是一种终端设备向接入网设备(例如基站)发送的上行参考信号。接入网设备根据终端设备发送的SRS获取该终端设备的UL信道。或者,接入网设备根据信道互易性获取该终端设备的DL信道,从而根据信道信息对该UE做数据调度。
SRS资源由基站通过高层参数半静态配置,包括:
个SRS端口(antenna port)pi=1000+i,现有设计仅支持到每个SRS资源中包括最大4个SRS端口。每个SRS端口会对应特定的时频码资源。在理想情况下,各个SRS端口是正交的。每个SRS端口会对应UE的物理天线或者虚拟天线。对基于码本的上行传输而言,其SRS资源的各个端口与终端设备的物理天线一一对应;
个连续的OFDM符号;
时隙内符号级时域起始位置l0∈{0,1,…,13};
频域起始位置k0
SRS的梳齿(comb):一把SRS的梳齿上的频域子载波呈等间隔分布,梳齿度KTC∈{2,4,8}由基站通过高层参数半静态配置,其决定了梳齿上任意两个相邻子载波之间间隔的子载波数量。图1为本申请提供的三种不同梳齿度的梳齿(或者称为频域梳齿)的示例。图1中,每个格子频域上表示一个资源元素(resource element,RE),黑色格子是不同梳齿度下其中一把梳齿占用的RE位置的示例。
2、SRS的扫描带宽和跳频带宽
SRS的扫描带宽、跳频带宽及跳频周期是根据高层参数及协议预定义表格确定的。当基站没有配置频率缩放因子PF时,SRS扫描带宽为基站根据SRS获取的信道对应的带宽范围,SRS跳频带宽为单次SRS发送后基站获取的信道对应的带宽范围,跳频带宽小于等于扫描带宽,跳频周期为基站获取扫描带宽对应的信道所需要的SRS发送次数;当基站通过高层参数配置了频率缩放因子PF时,SRS的扫描带宽、跳频带宽及跳频周期不变,但由于单次SRS发送的带宽变为原先的1/PF,这种情况下扫描带宽为基站根据SRS获取的信道对应的带宽范围的PF倍,SRS跳频带宽为单次SRS发送后基站获取的信道对应的带宽范围的PF倍。图2为本申请提供的一种扫描带宽和跳频带宽的示例。图2中,每个格子频域上表示一个资源块(resource block,RB),SRS的扫描带宽为16RB,跳频带宽为4RB,跳频周期为4,左图没有配置PF,右图配置了PF=2。
3、SRS的循环移位(cyclic shift,CS)LTE和NR的SRS采用的序列是基序列(base sequence)的循环移位:
其中,α为循环移位值,为实数;δ=log2(KTC),为整数;u,v为SRS基序列组中某个基序列的索引,为整数;j为虚数单位;MZC为SRS序列的长度,为正整数;n为SRS序列中元素 的索引,为整数,序列元素按照索引由小到大的顺序依次映射在SRS资源对应的子载波索引由小到大的各个子载波上。
SRS端口pi对应的循环移位αi由下式定义:

其中,为最大循环移位值,根据KTC取值分别定义,参阅表1:
表1
的含义可以理解为将时延域等分成份,也可以理解为将相位值2π等分成份,每个循环移位值对应每份的起始点。为循环移位参考值,由基站通过通过高层参数transmissionComb半静态配置。
对于同一个基序列来说,采用不同的循环移位值α,可以得到不同的SRS序列。当α1和α2满足α1mod 2π≠α2mod 2π时,由基序列和循环移位α1得到的序列与由基序列和循环移位α2得到的序列是相互正交的,即互相关系数为零。其中,长度为M的序列s1(m)和s2(m),m=0,1,…,M-1,的互相关系数定义为:由于相互正交,基站可以将基于同一个基序列和不同循环移位值得到的SRS序列分配给不同的用户,这些用户可以在相同的时频资源上发送这些SRS序列。当用户与基站之间的信道在SRS序列长度内平坦时,这些SRS序列不会造成用户间干扰。
由公式(1)和公式(2)可知,当SRS端口数=2,时,两个端口对应的CS相差4,具体占用的CS值还由配置确定。当SRS端口数=2,时,两个端口对应的CS相差3。除了的情况,这种分配方式使得一个SRS资源中的两个端口对应的CS值之间的间隔尽可能大。
4、SRS端口的comb分配
SRS端口pi的频域起始位置由下式定义:
其中,


跳频偏移量和部分探测偏移量的计算公式、nshift与本申请关联较弱,这里不进行详细描述。
SRS端口pi占用的梳齿由下式定义:
为梳齿偏移量,由基站通过高层参数transmissionComb配置。
由上式(7)可以看出,对于的情况,可以通过配置来指示一个SRS资源的各个端口占用两个comb还是一个comb。例如,当 时,端口1001和1003占用的comb与1000和1002占用的comb不同。又例如,当端口1001和1003占用的comb与1000和1002占用的comb相同。
5、基于码本的PUSCH传输
对基于码本的PUSCH传输,需要指示终端设备传输PUSCH的各个发送天线的相位(TPMI)和传输流数,终端设备发送PUSCH的各个发送天线与PUSCH对应的SRS资源的各个端口一一对应。接入网设备调度PUSCH的预编码指示信息包括SRI、TRI、TPMI。SRI用于指示与PUSCH对应的SRS资源(用来确定发送PUSCH的发送天线),TRI用于指示PUSCH的传输流,TPMI用于指示PUSCH对应的发送天线的发送相位。现有协议中定义PUSCH的发送方式如下:表示一个传输层中的调制符号数量,v是PUSCH的传输流数,y是映射到第k流的第i个调制符号,k=0,…,v-1,基于预编码矩阵W将y映射到PUSCH的发送天线上({p0,p1,…,pρ-1},物理含义为:与PUSCH对应的SRS资源中各个SRS端口),各个发送天线上发送的数据为z。基于预编码矩阵W将y映射到PUSCH的发送天线上的公式如下:
表示发送天线p0上发送的数据。
在基于码本的PUSCH传输中,SRI通常指示一个SRS资源,TPMI的行数为该SRS资源中的SRS端口数,与各个SRS端口一一对应。
下面介绍当前对于一个SRS资源的各端口分配comb和CS的方案。
目前,对于一个SRS资源内的SRS端口分配的comb和CS都针对最大4个端口的情况。例如,4-port SRS资源(即一个包括4个端口的SRS资源)在KTC=2的情况下,支持通过指示一个SRS资源包括的4个端口位于一把梳齿还是两把梳齿。接入网设备通过灵活分配一个SRS资源占用的梳齿数,可以针对终端设备的信道状态选择一个SRS资源占用的梳齿数。比如,当终端设备处于非视距(non line of sight,NLOS)场景时,信道延迟传播(delay spread)比较大的时候,可以尽可能将编号相邻的端口(占用的CS也相邻)的CS间隔增加,方式就是采用公式(7)的分配策略,将端口1000和1002分在一个comb上,对应的CS间隔为1001和1003分在另一个comb上,对应的CS间隔也为 这里两个端口的CS间隔是指,两个端口各自对应的CS值之间包括的整数数量。当SRS资源占用一个comb时,相邻端口之间的CS间隔为也就是说,对于4-port SRS资源有两种CS间隔可配置:1和3。
2-port SRS资源(即一个包括2个端口的SRS资源)在KTC=2的情况下,占用一个comb,相邻端口之间的CS间隔为
可以看出在KTC=2的情况下,2-port SRS资源和4-port SRS资源均支持CS间隔最大为3,仅支持CS间隔为1是不够的。假设时延域离散傅里叶变换(discrete fourier transform,DFT)点数为N,则CS间隔为3表示时延域DFT点数间隔3*8/N,CS间隔为1表示时延域DFT点数间隔8/N。
4-port SRS资源在KTC=4的情况下,占用一个comb时相邻端口之间的CS间隔为占用两个comb时同一个comb内相邻端口之间的CS间隔为
2-port SRS资源在KTC=4的情况下,占用一个comb,相邻端口之间的CS间隔为
可以看出在KTC=4的情况下,2-port SRS资源和4-port SRS资源均支持CS间隔最大为5,仅支持CS间隔为2是不够的。假设时延域DFT点数为N,则CS间隔为5表示时延域DFT点数间隔5*12/N,CS间隔为2表示时延域DFT点数间隔2*12/N。
4-port SRS资源在KTC=8下,只能占用2个comb,同一个comb内相邻端口之间的CS间隔为
2-port SRS资源在KTC=8的情况下,仅占用1个comb,相邻端口之间的CS间隔为
可以看出在KTC=8的情况下,2-port SRS资源和4-port SRS资源均支持CS间隔最大为2。假设时延域DFT点数为N,则CS间隔为2表示时延域DFT点数间隔2*6/N。
对于8-port SRS资源,KTC=2下,按照目前采用的SRS comb的结构,若将8个端口均放在一个comb内,则仅能支持相邻端口无CS间隔的映射。这种情况下,各个端口间的正交性能低于现有2-port SRS资源和4-port SRS资源。若将8个端口均匀放在两个comb内,则一个comb内相邻端口的CS间隔为也无法达到现有2-port SRS资源和4-port SRS资源的正交水平。为保证终端设备发送的SRS的信号质量,需要研究使得各SRS端口之间的正交性较强的SRS资源的时频映射方案。本申请提供了8-port SRS资源的时频映射方案,可使得各端口之间的正交性达到现有2-port SRS资源和4-port SRS资源的正交水平。
目前,一个SRS资源内的所有端口均会映射在相同的OFDM符号上。在功率受限的场景下,由于SRS在一个OFDM上的总发送功率受限,各个SRS端口的发送功率可能无法满足解调性能需求。图3为本申请实施例提供的一种发送功率的对比示意图。如图3所示,假设Pcmax=23dBm(即总发送功率为23dBm),对于4-port SRS资源(端口0至端口4),每个SRS端口(端口0,1,2,3)对应的最大发送功率为17dBm,但对于8-port SRS资源(端口0至端口8),每个SRS端口对应的最大发送功率仅为14dBm,各个SRS端口存在3dB的功率损失。因此,需要研究一个SRS资源包括较多的端口(例如8个端口)时使得各端口的发送功率较大的时频映射方案。
本申请提供的一些通信方法采用了新的SRS资源的时频资源映射方案;可使得各端口之间的正交性较强和/或使得各端口的发送功率较大。
本申请提供的通信方法对于同构网络与异构网络的场景均适用,同时对于传输点也无限制,可以是宏基站与宏基站、微基站与微基站、宏基站与微基站间的多点协同传输,对FDD/TDD***均适用。本申请提供的通信方法、通信方法以及通信方法适用于低频场景(sub6G),也适用于高频场景(6G以上);适用于单传输接收点(transmission reception point,TRP)或多传输接收点(multi-TRP)场景,以及它们任何一种衍生的场景。本申请提供的通信方法可应用于5G、卫星通信、短距等无线通信***中。
需要说明的是,本申请实施例提及的无线通信***包括但不限于:窄带物联网***(narrow band-internet of things,NB-IoT)、长期演进***(long term evolution,LTE)等***(4th generation,4G)通信***、卫星通信***等非陆地通信网络(non-terrestrial network,NTN)***、第五代(5th generation,5G)通信***或新无线(new radio,NR)以及6G等5G之后演进的通信***,无线保真(wireless fidelity,WiFi)***支持多种无线技术融合的通信***。
下面先介绍本申请提供的通信方案适用的几种通信***的示例。
图4为本申请实施例提供的一种无线通信***的示例。如图4所示,该通信***包括:一个或多个终端设备,图4中仅以2个终端设备为例,以及可为终端设备提供的通信服务的一个或多个接入网设备(例如基站),图4中仅以一个接入网设备为例。在一些实施例中,无 线通信***可以由小区组成,每个小区包含一个或多个接入网设备,接入网设备向多个终端提供通信服务。无线通信***也可以进行点对点通信,如多个终端之间互相通信。
终端是一种具有无线收发功能的设备。终端可经无线接入网(radioaccess network,RAN)中的接入网设备(或者称为接入设备)与一个或多个核心网(core network,CN)设备(或者称为核心设备)进行通信。终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。本申请实施例中,终端也可以称为终端设备或者用户设备(user equipment,UE),可以是手机(mobile phone)、移动台(mobile station,MS)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端、用户单元(subscriber unit)、蜂窝电话(cellular phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。终端可包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。可选的,终端可以是具有无线通信功能的手持设备(handset)、车载设备、可穿戴设备或物联网、车联网中的终端、5G以及5G之后演进的通信***中的任意形态的终端等,本申请对此并不限定。
接入网设备可以是任意一种具有无线收发功能且能和终端通信的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例包括:宏基站、微基站(也称为小站)、中继站、接入点、gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、WiFi接入点(access point,AP)、接入回传一体化(integrated access and backhaul,IAB)等。
下面先结合附图介绍本申请实施例提供的通信方法。
图5为本申请实施例提供的一种通信方法交互流程图。如图5所示,该方法包括:
501、终端设备根据发送图样,向接入网设备发送上行参考信号。
相应的,接入网设备接收来自终端设备的上行参考信号。
上述上行参考信号的上行参考信号资源包括N个端口,上述发送图样中的上述N个端口中至少存在两组端口,每组端口对应相同的时频资源,不同组端口分别对应不同的时频资源,上述发送图样中的上述N个端口承载于2个或2以上OFDM符号。例如,N为8,发送图样中的8个端口承载于2个OFDM符号。或者,上述发送图样中的上述N个端口承载于2个或2个以上频域梳齿和1个OFDM符号,上述N为大于4的整数,例如N为8。
在一种可能的实现方式中,步骤501替换为:终端设备根据配置信息,按照发送图样发送上行参考信号;上述配置信息指示上述终端设备按照上述发送图样发送上行参考信号。也就是说,上行信号资源包括的N个端口的时频资源映射方式与发送图样中的N个端口的时频资源映射方式相同。
在一种可能的实现方式中,上述N为8,上述发送图样中的(指示)上述N个端口承载于2个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM 符号上的两个端口对应2个不同的CS;或者,上述发送图样中的(指示)上述N个端口承载于1个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,上述发送图样中的(指示)上述N个端口承载于2个频域梳齿度为2的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。
在该实现方式中,发送图样中的N个端口承载于频域梳齿和OFDM符号上的方式,可使得各端口之间的正交性较强。
502、终端设备接收来自接入网设备的预编码指示信息。
相应的,接入网设备向终端设备发送预编码指示信息。可选的,所述预编码指示信息为所述接入网设备根据所述上行参考信号得到。可选的,所述上行数据传输的发送天线与所述多个上行参考信号中的各个端口对应。
上述预编码指示信息用于指示上行数据传输采用的预编码,上述预编码指示信息为上述接入网设备根据上述上行参考信号得到,上述预编码对应的矩阵的行与上述N个端口一一对应。示例性的,预编码对应一个8行的矩阵,该矩阵的行与上行参考信号资源包括的N个端口一一对应。示例性的,预编码对应两个4行的矩阵,该两个矩阵的行与上行参考信号资源包括的8个端口一一对应。示例性的,预编码对应4个2行的矩阵,该4个矩阵的行与上行参考信号资源包括的8个端口一一对应。
503、终端设备根据预编码将上行数据映射到天线端口上。
相应的,接入网设备接收来自终端设备的上行数据。
在一种可能的实现方式中,上述上行参考信号为SRS,上述上行参考信号资源为SRS资源,上述上行数据承载于PUSCH或者PUCCH,上述N为8,上述天线端口的数量与上述SRS资源的端口数量相同,上述天线端口与上述SRS资源的端口一一对应。终端设备根据预编码将上行数据映射到天线端口上可以是:终端设备采用公式(8)根据预编码将上行数据映射到天线端口上;其中,公式(8)中的W表示该预编码对应的矩阵,z表示各个天线端口上发送的数据,y是上行数据。
一种可能的实现方式中,上述上行参考信号的发送功率是根据上述发送图样确定的;当上述发送图样指示上述N个端口承载于(例如2)个OFDM符号上,每个端口的最大发送功率不超过其中,PCMAX为上述终端设备配置的最大发送功率,为大于1的整数,上述等于上述N。可选的,每个OFDM符号上对应的SRS端口均分已有功控策略确定的SRS的总发送功率,这样可以使得8-port SRS资源对应的SRS实际发送功率为总发送功率的倍。在该实现方式中,N个端口承载于个OFDM符号上,可以使得SRS资源对应的SRS实际发送功率为总发送功率的倍,能够提升信道测量精度。
在一种可能的实现方式中,8-portSRS配置于用于上行码本传输的SRS资源集合中。终端设备发送8-port SRS,接入网设备基于8-port SRS确定终端设备的各个发送天线的信道信息,然后基于该8-port SRS指示TPMI,TPMI以矩阵形式,矩阵行数是8(根据相应SRS的端口数确定)与各个SRS端口相对应,SRS端口对应的终端设备的发送天线用于发送PUSCH,各个SRS端口对应的发送天线的发送相位根据TPMI各行确定。在该实现方式中,可以准确地确定8-port SRS的各个SRS端口对应的发送天线的发送相位。
本申请实施例中,终端设备根据发送图样,向接入网设备发送上行参考信号使得该上行参考信号的上行参考信号资源包括的N(大于4)个端口承载于2个或2以上OFDM符号;通过将同一上行参考信号资源包括的N个端口承载于2个或2以上OFDM符号,可以提高该 N个端口中各端口之间的正交性。终端设备根据发送图样,向接入网设备发送上行参考信号使得该上行参考信号的上行参考信号资源包括的N(大于4)个端口承载于2个或2个以上频域梳齿和1个OFDM符号,预编码指示信息指示终端设备的上行数据传输采用的预编码对应的矩阵的行与上行参考信号资源包括的N个端口一一对应;提供了使用包括N个端口的上行参考信号资源承载上行参考信号的方案,支持SRS端口数较多的场景中SRS资源的设计。
上行参考信号资源包括的N个端口可承载于梳齿度不同的频域梳齿。终端设备在采用不同梳齿度的频域梳齿承载上行参考信号资源包括的N个端口,根据不同的发送图样,向接入网设备发送上行参考信号。本申请中,频域梳齿度和梳齿度可相互替换。下面分别描述终端设备采用梳齿度为2、4、8的频域梳齿承载SRS端口时的信号发送方案。
图6为本申请实施例提供的另一种通信方法交互流程图。图6为终端设备采用梳齿度为2的频域梳齿承载SRS端口时的信号发送方案。图6中的方法流程是图5描述的方法的一种可能的实现方式。在该实现方式中,终端设备可根据从两个或两个以上图样中选择发送图样,以便获取发送上行参考信号所适合采用的发送图样。如图6所示,该方法包括:
601、终端设备根据上行参考信号资源的配置信息中包括的上行参考信号的CS参考值指示,从两个或两个以上图样中确定发送图样,该两个或两个以上图样对应的梳齿度为2。
上行参考信号资源为SRS资源,上行参考信号为SRS。上述发送图样中的上述N个端口分别对应不同的时频资源。上述发送图样中的N个端口承载于2个或2以上OFDM符号。或者,上述发送图样中的N个端口承载于2个或2个以上频域梳齿和1个OFDM符号,上述N为大于4的整数,例如N为8。示例1,发送图样中的N个端口承载于2个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的循环移位CS值。示例2,上述发送图样中的上述N个端口承载于1个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。示例3,上述发送图样中的上述N个端口承载于2个频域梳齿度为2的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。应理解,终端设备采用梳齿度为2的频域梳齿承载SRS端口时,发送图样对应的时频资源映射方式可以是以下任一种:频分映射模式(对应于示例3):2个comb+4个CS分配给8个端口;频分+时分映射模式1(对应于示例1):2个comb+2个OFDM+2个CS分配给8个端口;频分+时分映射模式2(对应于示例2):1个comb+2个OFDM+4个CS分配给8个端口。
在一种可能的实现方式中,上述配置信息中还包括上述上行参考信号的梳齿位置指示和频域梳齿度KTC(2),上述两个或两个以上图样包括第一图样、第二图样以及第三图样中的至少两个;
第一图样(对应于示例1)中的上述N个端口中的第一端口集合对应的梳齿为上述N个端口中的第二端口集合对应的梳齿为上述第一端口集合中的两个端口对应的OFDM符号的索引为l,上述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),上述第二端口集合中的两个端口对应的OFDM索引为l,上述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),上述n为大于等于1的整数,上述l为大于等于0的整数;
上述第二图样(对应于示例2)中的N个端口中的第一端口集合和第二端口集合对应的梳齿为上述第一端口集合对应的OFDM符号的索引为l,上述第二端口集合对应的OFDM符号的索引为(l+n),上述n为大于等于1的整数,上述l为大于等于0的整数;
上述第三图样(对应于示例3)中的N个端口中的第一端口集合对应的梳齿为上述N个端口中的第二端口集合对应的梳齿为且上述第一端 口集合和上述第二端口集合对应的OFDM符号的索引为l,上述l为大于等于0的整数;
上述第一端口集合中包含的端口和上述第二端口集合中包含的端口不同。
在一种可能的实现方式中,第一图样、第二图样以及第三图样均包括8个端口,第一端口集合为{1,3,5,7},第二端口集合为{0,2,4,6},端口0至端口7表示端口1000至端口1007,即端口0表示端口1000,端口1表示端口1001,以此类推。图7为本申请实施例提供的第一图样、第二图样以及第三图样的示例。如图7所示,701表示第一图样,702表示第二图样,703表示第三图样,底纹不同的矩形框属于不同的梳齿;第一图样中的第一端口集合对应的梳齿为1(即),端口1和端口3对应的OFDM符号的索引为l,端口5和端口7对应的OFDM符号的索引为(l+n),第一图样中的第二端口集合对应的梳齿为0(即),端口0和端口2对应的OFDM符号的索引为l,端口4和端口6对应的OFDM符号的索引为(l+n);第二图样中的第一端口集合和第二端口集合对应的梳齿0(即),第一端口集合对应的OFDM符号的索引为l,第二端口集合对应的OFDM符号的索引为(l+n);第三图样中的第一端口集合对应的梳齿为1(即),第三图样中的第二端口集合对应的梳齿为0(即)。
应理解,上述每个端口集合中包括的端口编号只是一种示例,不同端口集合中还可以包括其他端口编号的组合。
步骤601一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第二图样和第三图样中的第三图样作为发送图样;在CS参考值指示包含于第二集合时,确定第二图样和第三图样中的第二图样作为发送图样;第一集合为 第二集合为第二图样中的N个端口中的第一端口集合和第二端口集合对应的梳齿为上述第一端口集合对应的OFDM符号的索引为l,上述第二端口集合对应的OFDM符号的索引为(l+n)。第三图样中的N个端口中的第一端口集合对应的梳齿为上述N个端口中的第二端口集合对应的梳齿为且上述第一端口集合和上述第二端口集合对应的OFDM符号的索引为l。通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
上述步骤601一种可能的实现方式对应的公式如下:


其中,pi表示端口i的索引,表示OFDM符号的索引,l0和(l0+1)表示两个不同OFDM符号的索引。公式(9)表示上述第三图样;公式(10)和公式(11)表示上述第二图样。
在一种实现方式中,取值范围和图样的对应关系可以不局限与上述示例。
步骤601另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,确定第一图样和第三图样中的第三图样作为发送图样;在CS参考值指示包含于第二集合时,将第一图样和第三图样中的第一图样作为发送图样;第一集合为第二集合为第一图样中的上述N个端口中的第一端口集合对应的梳齿为上述N个端口中的第二端口集合对应的梳齿为上述第一端口集合中的两个端口对应的OFDM符号的索引为l,上述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),上述第二端口集合中的两个端口对应的OFDM索引为l,上述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),上述n为大于等于1的整数,上述l为大于等于0的整数。该实现方式对应的公式如下:



其中,pi表示端口i的索引,表示OFDM符号的索引。公式(12)表示上述第三图样;公式(13)和公式(14)表示上述第一图样。在一种实现方式中,取值范围和图样的对应关系可以不局限与上述示例。
步骤601可替换为:终端设备根据上行参考信号资源的配置信息中包括的上行参考信号的CS参考值指示和符号数从三个或三个以上图样中确定发送图样,该两个或两个以上图样对应的梳齿度为2。示例性的,在包含于第一集合且等于1时,将第一图样、第二图样以及第三图样中的第三图样作为发送图样;在包含于第一集合且大于1时,将第一图样、第二图样以及第三图样中的第二图样作为发送图样;在包含于第二集合且大于1时,将第一图样、第二图样以及第三图样中的第一图样作为发送图样。
602、终端设备根据发送图样,向接入网设备发送上行参考信号。
步骤602可参阅步骤501。
603、终端设备接收来自接入网设备的预编码指示信息。
步骤603可参阅步骤502。
604、终端设备根据预编码将上行数据映射到天线端口上。
步骤604可参阅步骤503。
本申请实施例,接入网设备可以基于终端设备的信道状态灵活配置发送图样。具体的,当终端设备上行发送功率受限时,可以配置占用多个OFDM符号的发送图样,而当基站对终端设备的相位精度要求较高时,可以配置占用一个OFDM符号的发送图样。另外,通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
图8为本申请实施例提供的另一种通信方法交互流程图。图8为终端设备采用梳齿度为4(即KTC为4)的频域梳齿承载SRS端口时的信号发送方案。图8中的方法流程是图5描述的方法的一种可能的实现方式。在该实现方式中,终端设备可根据从两个或两个以上图样中选择发送图样,以便获取发送上行参考信号所适合采用的发送图样。如图8所示,该方法包括:
801、终端设备根据上行参考信号资源的配置信息中包括的上行参考信号的CS参考值指示,从两个或两个以上图样中确定发送图样,该两个或两个以上图样对应的梳齿度为4。
步骤801可参阅步骤501。可能的方式1中发送图样中的N个端口承载于2个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。可能的方式2中发送图样中的上述N个端口承载于1个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。可能的方式3中发送图样中的上述N个端口承载于2个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。可能的方式4中发送图样中的上述N个端口承载于4个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。发送图样对应的时频资源映射方式可以是以下任一种:频分映射模式1:2个comb+4CS(方式3);频分映射模式2:4个comb+2CS(方式4);频分+时频映 射模式1:2个comb+2个OFDM符号+2个CS(方式1);频分+时频映射模式2:2个OFDM符号+4个CS(方式2)。
在一种可能的实现方式中,上述配置信息中还包括梳齿位置指示和频域梳齿度KTC,上述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个;
第一图样(对应于方式1)中的上述N个端口中的第一端口集合对应的梳齿为上述N个端口中的第二端口集合对应的梳齿为上述第一端口集合中的两个端口对应的OFDM符号的索引为l,上述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),上述第二端口集合中的两个端口对应的OFDM索引为l,上述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),上述n为大于等于1的整数,上述l为大于等于0的整数;
上述第二图样(对应于方式2)中的上述N个端口中的第一端口集合和第二端口集合对应的梳齿为上述第一端口集合对应的OFDM符号的索引为l,上述第二端口集合对应的OFDM符号的索引为(l+n),上述l和上述n为大于等于1的整数;
上述第三图样(对应于方式3)中的上述N个端口中的第一端口集合对应的梳齿为以及上述N个端口中的第二端口集合对应的梳齿为且上述第一端口集合和上述第二端口集合对应的OFDM符号的索引为l,上述l为大于等于1的整数;
上述第四图样(对应于方式4)中的上述N个端口中的4个端口集合分别对应的梳齿为且上述4个端口集合对应的OFDM符号的索引为l,上述l为大于等于1的整数;
上述第一端口集合中包含的端口和上述第二端口集合中包含的端口不同。
在一种可能的实现方式中,第一图样、第二图样、第三图样以及第四图样均包括8个端口,第一端口集合为{1,3,5,7},第二端口集合为{0,2,4,6},第四图样包括的4个端口集合分别为{0,4}、{2,6}、{1,5}、{3,7},端口0至端口7表示端口1000至端口1007,即端口0表示端口1000,端口1表示端口1001,以此类推。图9为本申请实施例提供的第一图样、第二图样、第三图样以及第四图样的示例。如图9所示,901表示第一图样,902表示第二图样,903表示第三图样,904表示第四图样,底纹不同的矩形框属于不同的梳齿;第一图样中的第一端口集合对应的梳齿为2(即),端口1和端口3对应的OFDM符号的索引为l,端口5和端口7对应的OFDM符号的索引为(l+n),第一图样中的第二端口集合对应的梳齿为0(即),端口0和端口2对应的OFDM符号的索引为l,端口4和端口6对应的OFDM符号的索引为(l+n);第二图样中的第一端口集合和第二端口集合对应的梳齿0(即),第一端口集合对应的OFDM符号的索引为l,第二端口集合对应的OFDM符号的索引为(l+n);第三图样中的第一端口集合对应的梳齿为2(即 ),第三图样中的第二端口集合对应的梳齿为0(即),第一端口集合和第二端口集合对应的OFDM符号的索引为l;第一图样中的4个端口集合对应的梳齿分别为0(即)、1(即)、2(即)、3(即该4个端口集合对应的OFDM符号的索引为l。应理解,上述每个端口集合中包括的端口编号只是一种示例,不同端口集合中还可以包括其他端口编号的组合。
步骤801一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第二图样和第三图样中的第三图样作为发送图样;在CS参考值指示包含于第二集合时,将第二图样和第三图样中的第二图样作为发送图样;第一集合为第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤801另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第一图样和第三图样中的第三图样作为发送图样;在CS参考值指示包含于第二集合时,将第一图样和第三图样中的第一图样作为发送图样;第一集合为 第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤801另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第一图样和第二图样中的第一图样作为发送图样;在CS参考值指示包含于第二集合时,将第一图样和第二图样中的第二图样作为发送图样;第一集合为 第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤801另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第三图样和第四图样中的第三图样作为发送图样;在CS参考值指示包含于第二集合时,将第三图样和第四图样中的第四图样作为发送图样;第一集合为 第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤801另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第一图样和第四图样中的第一图样作为发送图样;在CS参考值指示包含于第二集合时,将第一图样和第四图样中的第四图样作为发送图样;第一集合为 第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤801另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第二图样和第四图样中的第二图样作为发送图样;在CS参考值指示包含于第二集合时,将第二图样和第四图样中的第四图样作为发送图样;第一集合为 第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤801一种可能的实现方式如下为:终端设备根据上行参考信号资源的配置信息中包括的CS参考值指示、最大CS指示以及符号数从两个或两个以上图样中确定上述发送图样;上述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个,上述符号数指示承载上述N个端口的OFDM符号的个数。示例性的,终端设备根据上行参考信号资源的配置信息中包括的CS参考值指示、最大CS指示以及符号数,从第一图样、第二图样、第三图样以及第四图样中确定发送图样。该实现方式对应的公式如下:





其中,pi表示端口i的索引,表示OFDM符号的索引。公式(15)表示上述第三图样; 公式(16)表示上述第四图样;公式(17)和公式(18)表示上述第一图样;公式(19)和公式(20)表示上述第二图样。通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。在一种实现方式中,取值范围和图样的对应关系可以不局限与上述示例。
802、终端设备根据发送图样,向接入网设备发送上行参考信号。
步骤802可参阅步骤501。
803、终端设备接收来自接入网设备的预编码指示信息。
步骤803可参阅步骤502。
804、终端设备根据预编码将上行数据映射到天线端口上。
步骤804可参阅步骤503。
本申请实施例,接入网设备可以基于终端设备的信道状态灵活配置发送图样。具体的,当终端设备上行发送功率受限时,可以配置占用多个OFDM符号的发送图样,而当基站对终端设备的相位精度要求较高时,可以配置占用一个OFDM符号的发送图样。
图10为本申请实施例提供的另一种通信方法交互流程图。图10为终端设备采用梳齿度为8(即KTC为8)的频域梳齿承载SRS端口时的信号发送方案。图10中的方法流程是图5描述的方法的一种可能的实现方式。在该实现方式中,终端设备可根据从两个或两个以上图样中选择发送图样,以便获取发送上行参考信号所适合采用的发送图样。如图10所示,该方法包括:
1001、终端设备根据上行参考信号资源的配置信息中包括的上行参考信号的CS参考值指示,从两个或两个以上图样中确定发送图样,该两个或两个以上图样对应的梳齿度为8。
步骤1001可参阅步骤501。一种可能的方式5中,发送图样中的上述N个端口承载于2个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。一种可能的方式6中,发送图样中的上述N个端口承载于1个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。一种可能的方式7中,发送图样中的上述N个端口承载于2个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。一种可能的方式8中,发送图样中的上述N端口承载于4个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。发送图样对应的时频资源映射方式可以是以下任一种:频分映射模式1:2个comb+4CS(方式7);频分映射模式2:4个comb+2CS(方式8);频分+时频映射模式1:2个comb+2个OFDM符号+2个CS(方式5);频分+时频映射模式2:2个OFDM符号+4个CS(方式6)。
在一种可能的实现方式中,上述配置信息中还包括梳齿位置指示和频域梳齿度KTC,上述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个;
第一图样(对应于方式5)中的上述N个端口中的第一端口集合对应的梳齿为上述N个端口中的第二端口集合对应的梳齿为上述第一端口集合中的两个端口对应的OFDM符号的索引为l,上述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),上述第二端口集合中的两个端口对应的OFDM索引为l,上述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),上述n为大于等于1的整数,上述l为大于等于0的整数;
上述第二图样(对应于方式6)中的上述N个端口中的第一端口集合和第二端口集合对应的梳齿为上述第一端口集合对应的OFDM符号的索引为l,上述第二端口集合对应的OFDM符号的索引为(l+n),上述l和上述n为大于等于1的整数;
上述第三图样(对应于方式7)中的上述N个端口中的第一端口集合对应的梳齿为以及上述N个端口中的第二端口集合对应的梳齿为且上述第一端口集合和上述第二端口集合对应的OFDM符号的索引为l,上述l为大于等于1的整数;
上述第四图样(对应于方式8)中的上述N个端口中的4个端口集合分别对应的梳齿为且上述4个端口集合对应的OFDM符号的索引为l,上述l为大于等于1的整数;
上述第一端口集合中包含的端口和上述第二端口集合中包含的端口不同。
在一种可能的实现方式中,第一图样、第二图样、第三图样以及第四图样均包括8个端口,第一端口集合为{1,3,5,7},第二端口集合为{0,2,4,6},第三端口集合为{0,1,3,4},第二端口集合为{2,3,5,6},第四图样包括的4个端口集合分别为{0,4}、{2,6}、{1,5}、{3,7},端口0至端口7表示端口1000至端口1007,即端口0表示端口1000,端口1表示端口1001,以此类推。图11为本申请实施例提供的第一图样、第二图样、第三图样以及第四图样的示例。如图11所示,1101表示第一图样,1102表示第二图样,1103表示第三图样,1104表示第四图样,底纹不同的矩形框属于不同的梳齿;第一图样中的第一端口集合对应的梳齿为4(即),端口1和端口3对应的OFDM符号的索引为l,端口5和端口7对应的OFDM符号的索引为(l+n),第一图样中的第二端口集合对应的梳齿为0(即),端口0和端口2对应的OFDM符号的索引为l,端口4和端口6对应的OFDM符号的索引为(l+n);第二图样中的第一端口集合和第二端口集合对应的梳齿0(即),第一端口集合对应的OFDM符号的索引为l,第二端口集合对应的OFDM符号的索引为(l+n);第三图样中的第四端口集合对应的梳齿为2(即),第三图样中的第三端口集合对应的梳齿为0(即),第三端口集合和第四端口集合对应的OFDM符号的索引为l;第四图样中的4个端口集合对应的梳齿分别为0(即)、2(即4(即)、6(即),该4个端口集合对应的OFDM符号的索引为l。应理解,上述每个端口集合中包括的端口编号只是一种示例,不同端口集合中还可以包括其他端口编号的组合。
步骤1001一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第一图样和第四图样中的第四图样作为发送图样;在CS参考值指示包含于第二集合时,将第一图样和第四图样中的第一图样作为发送图样;第一集合为第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤1001另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第二图样和第三图样中的第三图样作为发送图样;在CS参考值指示包含于第二集合时,将第二图样和第三图样中的第二图样作为发送图样;第一集合为 第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤1001另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第一图样和第二图样中的第一图样作为发送图样;在CS参考值指示包含于第二集合时,将第一图样和第二图样中的第二图样作为发送图样;第一集合为 第二集合为该可能的实现方式对应的公式如下:


其中,pi表示端口i的索引,表示OFDM符号的索引。公式(21)表示上述第四图样;公式(22)和公式(23)表示上述第一图样。在一种实现方式中,取值范围和图样的对应关系可以不局限与上述示例。
步骤1001另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第三图样和第四图样中的第三图样作为发送图样;在CS参考值指示包含于第二集合时,将第三图样和第四图样中的第四图样作为发送图样;第一集合为 第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤1001另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第一图样和第三图样中的第一图样作为发送图样;在CS参考值指示包含于第二集合时,将第一图样和第三图样中的第三图样作为发送图样;第一集合为 第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤1001另一种可能的实现方式如下:终端设备在CS参考值指示(即)包含于第一集合时,将第二图样和第四图样中的第二图样作为发送图样;在CS参考值指示包含于第二集合时,将第二图样和第四图样中的第四图样作为发送图样;第一集合为 第二集合为通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。
步骤1001一种可能的实现方式如下为:终端设备根据上行参考信号资源的配置信息中包括的CS参考值指示、最大CS指示以及符号数从两个或两个以上图样中确定上述发送图样;上述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个,上述符号数指示承载上述N个端口的OFDM符号的个数。示例性的,终端设备根据上行参考信号资源的配置信息中包括的CS参考值指示、最大CS指示以及符号数,从第一图样、第二图样、第三图样以及第四图样中确定发送图样。该实现方式对应的公式如下:






其中,pi表示端口i的索引,表示OFDM符号的索引。公式(24)表示上述第四图样;公式(25)表示上述第三图样;公式(26)和公式(27)表示上述第一图样;公式(28)和 公式(29)表示上述第二图样。通过CS参考值指示中的冗余信息切换发送图样,可以简化配置信令设计。在一种实现方式中,取值范围和图样的对应关系可以不局限与上述示例。本申请中,提供了几种对应不同梳齿度的第一图样、第二图样、第三图样以及第四图样。图6的方法流程涉及的第一图样、第二图样以及第三图样对应的梳齿度为2;图8的方法流程涉及的第一图样、第二图样、第三图样以及第四图样对应的梳齿度为4;图10的方法流程涉及的第一图样、第二图样、第三图样以及第四图样对应的梳齿度为8。
1002、终端设备根据发送图样,向接入网设备发送上行参考信号。
步骤1002可参阅步骤501。
1003、终端设备接收来自接入网设备的预编码指示信息。
步骤1003可参阅步骤502。
1004、终端设备根据预编码将上行数据映射到天线端口上。
步骤1004可参阅步骤503。
本申请实施例,接入网设备可以基于终端设备的信道状态灵活配置发送图样。具体的,当终端设备上行发送功率受限时,可以配置占用多个OFDM符号的发送图样,而当基站对终端设备的相位精度要求较高时,可以配置占用一个OFDM符号的发送图样。
图12为本申请实施例提供的另一种通信方法交互流程图。图12中的方法流程是图5描述的方法的一种可能的实现方式。在该实现方式中,接入网设备基于8-port SRS确定终端设备的各个发送天线的信道信息,然后基于该8-port SRS指示TPMI。如图12所示,该方法包括:
1201、终端设备根据发送图样,向接入网设备发送上行参考信号。
相应的,接入网设备接收来自终端设备的上行参考信号。步骤1201可参阅步骤501。上行参考信号为8-portSRS。8-portSRS配置于用于上行码本传输的SRS资源集合中。上行参考信号的上行参考信号资源包括8个端口。
1202、接入网设备根据上行参考信号,确定终端设备的各个发送天线的信道信息。
终端设备的各个发送天线与上行参考信号资源包括的8个端口相对应。
1203、接入网设备根据确定的终端设备的各个发送天线的信道信息,向终端设备发送预编码指示信息。
预编码指示信息指示上行数据传输采用的预编码,该预编码对应的矩阵(可称为预编码矩阵)的各行与上行参考信号的各SRS端口一一对应。SRS端口对应的终端设备的发送天线用于发送PUSCH,各个SRS端口对应的发送天线的发送相位根据矩阵的各行确定。或者,预编码指示信息包括TPMI,TPMI以矩阵形式,矩阵行数是8(根据相应SRS的端口数确定),TPMI的各行与各个SRS端口一一对应,SRS端口对应的终端设备的发送天线用于发送PUSCH,各个SRS端口对应的发送天线的发送相位根据TPMI各行确定。
1204、终端设备根据预编码指示信息,确定各个SRS端口对应的发送天线的发送相位。
1205、终端设备根据预编码将上行数据映射到天线端口上。
相应的,接入网设备接收来自终端设备的上行数据。本申请中,发送天线和天线端口可相互替换。
本申请实施例中,接入网设备根据上行参考信号,确定终端设备的各个发送天线的信道信息;可以确定8个SRS端口对应的发送天线的信道信息,并发送相应的预编码指示信息,信令开销少。
前面介绍了本申请提供的可使得各端口之间的正交性较强和/或使得各端口的发送功率较大的通信方案。下面介绍本申请提供的支持8-port SRS资源的时频映射方案的通信方案, 该方案可使得各端口之间的正交性达到现有2-port SRS资源和4-port SRS资源的正交水平。
图13为本申请实施例提供的另一种通信方法交互流程图。如图13所示,该方法包括:
1301、终端设备根据多个上行参考信号资源的配置信息发送多个上行参考信号。
相应的,接入网设备接收来自终端设备的多个上行参考信号。
1302、接入网设备根据多个上行参考信号,生成预编码和传输层数指示信息。
上述预编码和传输层数指示信息用于指示上行数据传输采用的预编码和传输层数,且上述预编码和传输层数指示信息与上述多个上行参考信号相对应;其中,上述传输层数小于等于上述多个上行参考信号包括的端口数总和,上述预编码对应的矩阵的行数为上述多个上行参考信号包括的端口数总和,且上述矩阵的行与上述多个上行参考信号包括的各个端口一一对应。预编码和传输层数指示信息可称为预编码指示信息。上述预编码和传输层数指示信息可包括TPMI,该TPMI用于指示PUSCH对应的发送天线的发送相位。
可选的,多个上行参考信号的用途配置为用于基于码本的上行传输。
可选的,所述预编码和传输层数指示信息为所述接入网设备根据所述上行参考信号得到。
可选的,所述上行数据传输的发送天线与所述多个上行参考信号中的各个端口对应。
可选的,所述预编码和传输层数指示信息中包括多个第一指示信息,所述多个第一指示信息与所述多个上行参考信号资源一一对应。
可选的,所述上行数据的传输层数为所述多个第一指示信息中指示的传输层数的总和。
本申请实施例中,用于基于码本的上行数据传输对应的上行参考信号承载于多个上行参考信号资源上,通过这种方法,可以支持灵活的上行参考信号的资源配置,以及相应预编码指示和传输层数指示。
本申请提供的8-port SRS资源的时频映射方案是通过支持多个SRS资源聚合的方式支持8-port SRS发送。由于每个SRS资源的时频资源位置可以独立配置,从而可以将8-port SRS拆分在多个OFDM符号上发送,支持SRS的发送功率提升,进而提升信道测量精度。另外,这种方式可以利用现有协议支持的2-port SRS、4-port SRS资源的设计,以及最大程度复用现有TPMI码本的设计。本申请中,一种简化的8-port SRS设计是SRI可以指示多个SRS资源,TPMI的行数为指示的多个SRS资源包括的所有端口数的和,且每个SRS资源中包括的F个端口对应TPMI中连续F行,按照SRS资源索引从小到大对应TPMI从小到大的行。通过这种方式,可以复用现有2-port,4-port SRS资源的设计。
下面介绍8-port SRS资源两种可能的配置方式。
配置方式1:配置4个2-port SRS资源。图14为本申请实施例提供的一种天线架构的示意图。图14中,SRS资源1、SRS资源2、SRS资源3、SRS资源4均为2-port SRS资源。
一种可能的实现方式中,终端设备的每组双极化天线对应一个2-port SRS资源。
一种可能的实现方式中,终端设备的4组双极化天线可以分别做相干传输,而4组天线之间无法做相干传输。终端设备可均基于公式(8)确定流到与该SRS资源的端口映射,各个SRS资源对应独立的层映射。
一种可能的实现方式中,终端设备接收基站发送的SRI,SRI用于指示从基站配置的多个SRS资源中选择部分或者全部SRS资源,上述4个SRS资源为SRI指示的。
在一种可能的实现方式中,每个2-port SRS资源均对应一个预编码指示,调度上行数据传输的DCI中包括4个预编码和传输层数指示信息字段,每个字段中的预编码指示对应的预编码参考表2和表3。表2示出了2-port SRS,1层PUSCH传输对应的预编码矩阵。表2示出了2-port SRS,2层PUSCH传输对应的预编码矩阵。上行数据传输的传输层数为4个字段 所指示的传输层数的总和。
表2
表3
配置方式2:配置1个4-port SRS资源和2个2-port SRS资源。图15为本申请实施例提供的一种天线架构的示意图。图15中,SRS资源1为4-port SRS资源、SRS资源2和SRS资源3均为2-port SRS资源。
一种可能的实现方式中,终端设备对应2-port SRS资源的两组双极化天线可以分别做相干传输,对应4-port SRS资源两组双极化天线可以做相干传输。终端设备可均基于公式(8)确定层到与各个SRS资源的端口映射,各个SRS资源对应独立的层映射。
一种可能的实现方式中,终端设备接收基站发送的SRI,SRI用于指示从基站配置的多个SRS资源中选择部分或者全部SRS资源,上述3个SRS资源为SRI指示的。
在一种可能的实现方式中,每个SRS资源均对应一个预编码指示,调度上行数据传输的DCI中包括3个预编码和传输层数指示信息字段,对于2-port SRS资源,每个字段中的预编码指示对应的预编码参考表2和表3,对于4-port SRS资源,每个字段中的预编码指示对应的预编码参考表4至表8。上行数据传输的传输层数为3个字段所指示的传输层数的总和。表4示出了4-port SRS,1层PUSCH传输对应的预编码矩阵。表5示出了4-port SRS,1层PUSCH传输对应的预编码矩阵。表6示出了4-port SRS,2层PUSCH传输对应的预编码矩阵。表7示出了4-port SRS,3层PUSCH传输对应的预编码矩阵。表8示出了4-port SRS,4层PUSCH传输对应的预编码矩阵。
表4
表5
表6
表7
表8
上述终端设备的发送天线也可以是单极化特性的。
配置方式3:配置2个4-port SRS资源。图16为本申请实施例提供的另一种天线架构的示意图。图16中,SRS资源1和SRS资源2均为4-port SRS资源。
在一种可能的实现方式中,终端设备的每两组双极化天线对应一个4-port SRS资源,终端设备的两组双极化天线和另外两组双极化天线之间无法做相干传输。终端设备可基于公式(8)确定流到与该SRS资源的端口映射,各个SRS资源对应独立的流和流映射。
一种可能的实现方式中,终端设备接收基站发送的SRI,SRI用于指示从基站配置的多个SRS资源中选择部分或者全部SRS资源,上述2个SRS资源为SRI指示的。
在一种可能的实现方式中,每个SRS资源均对应一个预编码指示,调度上行数据传输的DCI中包括2个预编码和传输层数指示信息字段,每个字段中的预编码指示对应的预编码参考表3-6。上行数据传输的传输层数为2个字段所指示的传输层数的总和。
在另一种可能的实现方式中,终端设备的每组极化天线对应一个4-port SRS资源,即不同的SRS资源对应不同的极化方向。终端设备的8个发送天线之间具备相干传输能力,也就是说,终端设备具备完全相干发送能力。
在一种可能的实现方式中,预编码为完全相干码字。完全相干码字是指:对于每一层(预编码矩阵每一列),8个端口对应的矩阵元素全是非零的。在一种可能的实现方式中,上述多个上行参考信号为多个SRS,上述多个上行参考信号资源为多个SRS资源,上述多个上行参考信号资源包括两个第一SRS资源,上述第一SRS资源中包括的端口数为4。示例性的,上述两个第一SRS资源包括SRS资源1和SRS资源2,上述SRS资源1的端口对应的天线端口为第一极化方向,上述SRS资源2的端口对应的天线端口为第二极化方向;或者,对于上行数据传输的第i流,上述SRS资源1的端口对应的预编码为vi,上述SRS资源2的端口对应的预编码为n为整数;其中,上述vi中的元素数量为4,i为整数。
在一种可能的设计中,vi可以取表4至表8中预编码矩阵的一列。
在一种可能的设计中,vi为元素数量为4的DFT向量。
本发明中,将一个极化方向的天线映射在同一个SRS资源上,可以保证两个极化方向之间的发送波束保持一致,仅需指示极化方向间的相位旋转,从而可以降低指示预编码的开销。
在一种可能的实现方式中,上述多个上行参考信号为多个SRS,上述多个上行参考信号资源为多个SRS资源,上述多个上行参考信号资源包括两个第二SRS资源和一个第一SRS资源,上述第一SRS资源中包括的端口数为4,上述第二SRS资源中包括的端口数为2;或者,上述多个上行参考信号资源包括四个第二SRS资源,上述第二SRS资源中包括的端口数为2。示例性的,预编码为部分相干码字,上述上行参考信号资源为SRS资源,上述多个SRS资源中的第k个SRS资源与上述上行数据的第层相对应,上述预编码的第列中非零元素所在的行与上述第k个SRS资源的端口一一对应,其中mk为小于等于上述第k 个SRS资源的端口数的正整数,k为大于0的整数;上述多个SRS资源中的任意两个SRS资源对应的上述上行数据的层不同;上述上行数据对应一个PUSCH或者PUCCH。部分相干是指:对于每一层(预编码矩阵每一列),8个端口对应的矩阵元素中仅有部分元素是非零的。也就是说,上行数据的每一层都仅与多个SRS资源中的一个SRS资源相对应。
本发明中,将可以相干传输的天线映射在同一个SRS资源上,可以保证基站测量相干天线的信道的准确性。
在一种可能的实现方式中,上述预编码和传输层数指示信息包括多个传输指示字段,上述多个传输指示字段与上述多个上行参考信号资源一一对应,上述多个传输指示字段中的预编码的矩阵的行与相应上行参考信号资源中的端口一一对应;上述上行数据的传输层数为上述多个传输指示字段所指示的传输层数的总和。在该实现方式中,多个传输指示字段中的预编码的矩阵的行与相应上行参考信号资源中的端口一一对应,终端设备根据预编码和传输层数指示信息可得到通过PUSCH或PUCCH传输上行数据采用的多个SRS资源的相关信息,信令开销少。
1303、接入网设备向终端设备发送预编码和传输层数指示信息。
相应的,终端设备接收预编码和传输层数指示信息。
1304、终端设备根据预编码和传输层数指示信息,确定通过PUSCH传输上行数据的各个发送天线的相位和传输流数。
1305、终端设备根据预编码将上行数据映射到天线端口上。
相应的,接入网设备接收来自终端设备的上行数据。
本申请实施例中,接入网设备向终端设备发送预编码和传输层数指示信息,该预编码和传输层数指示信息与多个上行参考信号相对应,不需要针对每个上行参考信号发送一个预编码和传输层数指示信息,可以减少信令开销。另外,通过支持多个SRS资源聚合的方式支持8-port SRS发送,可以将8-port SRS拆分在多个OFDM符号上发送,支持SRS发送功率提升,进而提升信道测量精度。
图17示出了一种通信装置1700的结构示意图。该通信装置1700可以对应实现上述各个方法实施例中由终端设备(实现的功能或者步骤,也可实现上述各个方法实施例中由接入网设备实现的功能或者步骤。该通信装置可以包括处理模块1710和收发模块1720。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1710和收发模块1720可以与该存储单元耦合,例如,处理模块1710可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。例如收发模块1720可包括发送模块和接收模块。
在一些可能的实施方式中,通信装置1700能够对应实现上述方法实施例中终端设备的操作和功能。例如通信装置1700可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路)。收发模块1720例如可以用于执行图5、图6、图8、图10、图12的实施例中由终端设备所执行的全部接收或发送操作,例如图5所示的实施例中的步骤501、步骤502、步骤503,图6所示实施例中的步骤602、步骤603、步骤604,图8所示实施例中的步骤802、步骤803、步骤804,图10所示实施例中的步骤1002、步骤1003、步骤1004,图12所示实施例中的步骤1201、步骤1203、步骤1205,和/或用于支持本文所描述的技术的其它过程。处理模块1710用于执行图5、图6、图8、图10、图12的实施例中中由终端设备所执行的除了收发操作之外的全部操作,例如图5所示的实施例中的步骤501、步骤503,图6所示的实 施例中的步骤601,图8所示的实施例中的步骤801,图10所示的实施例中的步骤1001,图12所示的实施例中的步骤1204。
在一些可能的实施方式中,通信装置1700能够对应实现上述方法实施例中接入网设备的操作和功能。例如通信装置1700可以为接入网设备,也可以为应用于接入网设备中的部件(例如芯片或者电路)。收发模块1720例如可以用于执行图5、图6、图8、图10、图12的实施例中由终端设备所执行的全部接收或发送操作,例如图5所示的实施例中的步骤501、步骤502、步骤503,图6所示实施例中的步骤602、步骤603、步骤604,图8所示实施例中的步骤802、步骤803、步骤804,图10所示实施例中的步骤1002、步骤1003、步骤1004,图12所示实施例中的步骤1201、步骤1203、步骤1205,和/或用于支持本文所描述的技术的其它过程。处理模块1710用于执行图5、图6、图8、图10、图12的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如图12所示的实施例中的步骤1202。处理模块1710可用于生成预编码指示信息。
在一些可能的实施方式中,通信装置1700能够对应实现上述方法实施例中终端设备的操作和功能。例如通信装置1700可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路)。收发模块1720例如可以用于执行图13的实施例中由终端设备所执行的全部接收或发送操作,例如图13所示的实施例中的步骤1301、步骤1303、步骤1305,和/或用于支持本文所描述的技术的其它过程。处理模块1710用于执行图13的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如图13所示的实施例中的步骤1304。
在一些可能的实施方式中,通信装置1700能够对应实现上述方法实施例中接入网设备的操作和功能。例如通信装置1700可以为接入网设备,也可以为应用于接入网设备中的部件(例如芯片或者电路)。收发模块1720例如可以用于执行图13的实施例中由终端设备所执行的全部接收或发送操作,例如图13所示的实施例中的步骤1301、步骤1303、步骤1305,和/或用于支持本文所描述的技术的其它过程。处理模块1710用于执行图13的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如图13所示的实施例中的步骤1302。
图18为本申请实施例提供的另一种通信装置180的结构示意图。图18中的通信装置可以是上述终端设备。图18中的通信装置可以是上述接入网设备。
如图18所示,该通信装置180包括至少一个处理器1820和收发器1810。
在本申请的另一些实施例中,处理器1820和收发器1810可以用于执行上述终端设备执行的功能或操作等。处理器1820例如可执行如下一项多项操作:图5所示的实施例中的步骤501、步骤503,图6所示的实施例中的步骤601,图8所示的实施例中的步骤801,图10所示的实施例中的步骤1001,图12所示的实施例中的步骤1204。收发器1810例如可执行如下一项或多项操作:图5所示的实施例中的步骤501、步骤502、步骤503,图6所示实施例中的步骤602、步骤603、步骤604,图8所示实施例中的步骤802、步骤803、步骤804,图10所示实施例中的步骤1002、步骤1003、步骤1004,图12所示实施例中的步骤1201、步骤1203、步骤1205。
在本申请的一些实施例中,处理器1820和收发器1810可以用于执行上述接入网设备执行的功能或操作等。处理器1820例如可执行如下一项多项操作:图12所示的实施例中的步骤1202。收发器1810例如可执行如下一项或多项操作:图5所示的实施例中的步骤501、步骤502、步骤503,图6所示实施例中的步骤602、步骤603、步骤604,图8所示实施例中的步骤802、步骤803、步骤804,图10所示实施例中的步骤1002、步骤1003、步骤1004,图12所示实施例中的步骤1201、步骤1203、步骤1205。
在本申请的一些实施例中,处理器1820和收发器1810可以用于执行上述终端设备执行的功能或操作等。处理器1820例如可执行如下一项或多项操作:图13所示的实施例中的步骤1304。收发器1810可执行如下一项或多项操作:图13所示的实施例中的步骤1301、步骤1303、步骤1305。
在本申请的一些实施例中,处理器1820和收发器1810可以用于执行上述接入网设备执行的功能或操作等。处理器1820例如可执行如下一项或多项操作:图13所示的实施例中的步骤1302。收发器1810可执行如下一项或多项操作:图13所示的实施例中的步骤1301、步骤1303、步骤1305。
收发器1810用于通过传输介质和其他设备/装置进行通信。处理器1820利用收发器1810收发数据和/或信令,并用于实现上述方法实施例中的方法。处理器1820可实现处理模块1710的功能,收发器1810可实现收发模块1720的功能。
可选的,通信装置180还可以包括至少一个存储器1830,用于存储程序指令和/或数据。存储器1830和处理器1820耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1820可能和存储器1830协同操作。处理器1820可能执行存储器1830中存储的程序指令。该至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1810、处理器1820以及存储器1830之间的具体连接介质。本申请实施例在图18中以存储器1830、处理器1820以及收发器1810之间通过总线1840连接,总线在图18中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
图19为本申请实施例提供的另一种通信装置190的结构示意图。如图19所示,图19所示的通信装置包括逻辑电路1901和接口1902。图19中的处理模块1910可以用逻辑电路1901实现,图19中的收发模块1920可以用接口1902实现。其中,该逻辑电路1901可以为芯片、处理电路、集成电路或片上***(system on chip,SoC)芯片等,接口1902可以为通信接口、输入输出接口等。本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
在本申请的一些实施例中,该逻辑电路和接口可用于执行上述接入网设备执行的功能或操作等。
在本申请的另一些实施例中,该逻辑电路和接口可用于执行上述终端设备执行的功能或操作等。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行上述实施例的方法。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得上述实施例中的提前同步的方法被执行。
本申请还提供一种通信***,包括上述终端设备和上述接入网设备。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以上述权利要求的保护范围为准。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    终端设备根据发送图样,向接入网设备发送上行参考信号,所述上行参考信号的上行参考信号资源包括N个端口,所述发送图样中的所述N个端口中至少存在两组端口,每组端口对应相同的时频资源,不同组端口分别对应不同的时频资源,所述发送图样中的所述N个端口承载于2个或2以上正交频分复用OFDM符号,或者,所述发送图样中的所述N个端口承载于2个或2个以上频域梳齿和1个OFDM符号,所述N为大于4的整数;
    所述终端设备接收来自所述接入网设备的预编码指示信息,所述预编码指示信息用于指示上行数据传输采用的预编码,所述预编码指示信息为所述接入网设备根据所述上行参考信号得到,所述预编码对应的矩阵的行与所述N个端口一一对应。
  2. 根据权利要求1所述的方法,其特征在于,所述上行参考信号为信道探测参考信号SRS,所述上行参考信号资源为SRS资源,所述上行数据承载于物理上行共享信道PUSCH或者物理上行控制信道PUCCH,所述N为8;
    所述终端设备根据所述预编码将所述上行数据映射到天线端口上,所述天线端口的数量与所述SRS资源的端口数量相同,所述天线端口与所述SRS资源的端口一一对应。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N为8,所述发送图样中的所述N个端口承载于2个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的循环移位CS值;或者,所述发送图样中的所述N个端口承载于1个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N个端口承载于2个频域梳齿度为2的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述上行参考信号资源的配置信息中包括的所述上行参考信号的CS参考值指示,从两个或两个以上图样中确定所述发送图样。
  5. 根据权利要求4所述的方法,其特征在于,所述配置信息中还包括所述上行参考信号的梳齿位置指示和频域梳齿度KTC,所述两个或两个以上图样包括第一图样、第二图样以及第三图样中的至少两个;
    所述第一图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;
    所述第二图样中的所述N个端口中的第一端口集合和第二端口集合对应的梳齿为所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;
    所述第三图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于0的整数;
    所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
  6. 根据权利要求1或2所述的方法,其特征在于,所述N为8,所述发送图样中的所述N个端口承载于2个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值;或者,所述发送图样中的所述N个端口承载于1个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N个端口承载于2个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N个端口承载于4个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据配置信息中的CS参考值指示,从两个或两个以上图样中确定所述发送图样。
  8. 根据权利要求7所述的方法,其特征在于,所述配置信息中还包括梳齿位置指示和频域梳齿度KTC,所述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个;
    所述第一图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;
    所述第二图样中的所述N个端口中的第一端口集合和第二端口集合对应的梳齿为所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述l和所述n为大于等于1的整数;
    所述第三图样中的所述N个端口中的第一端口集合对应的梳齿为以及所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数;
    所述第四图样中的所述N个端口中的4个端口集合分别对应的梳齿为
    且所述4个端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数,
    所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述上行参考信号资源的配置信息中包括的CS参考值指示、最大CS指示以及符号数,从两个或两个以上图样中确定所述发送图样;所述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个,所述符号数指示承载所述N个端口的OFDM符号的个数;
    所述第一图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;
    所述第二图样中的所述N个端口中的第一端口集合和第二端口集合对应的梳齿为 所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述l和所述n为大于等于1的整数;
    所述第三图样中的所述N个端口中的第一端口集合对应的梳齿为以及所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数;
    所述第四图样中的所述N个端口中的4个端口集合分别对应的梳齿为
    且所述4个端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数,
    所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
  10. 根据权利要求1或2所述的方法,其特征在于,所述N为8,所述发送图样中的所述N个端口承载于2个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值;或者,所述发送图样中的所述N个端口承载于1个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N个端口承载于2个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N端口承载于4个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述上行参考信号资源的配置信息中包括的所述上行参考信号的CS参考值指示和最大CS指示,从两个或两个以上图样中确定所述发送图样。
  12. 根据权利要求11所述的方法,其特征在于,所述配置信息中还包括梳齿位置指示和频域梳齿度KTC,所述两个或两个以上图样包括第一图样、第二图样、第三图样以及第四图样中的至少两个;
    所述第一图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;
    所述第二图样中的所述N个端口中的第一端口集合和第二端口集合对应的梳齿为所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述l和所述n为大于等于1的整数;
    所述第三图样中的所述N个端口中的第一端口集合对应的梳齿为以及所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数;
    所述第四图样中的所述N个端口中的4个端口集合分别对应的梳齿为
    且所述4个端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数;
    所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
  13. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述上行参考信号资源的配置信息中包括的CS参考值指示、最大CS指示以及符号数,从两个或两个以上图样中确定所述发送图样;所述两个或两个以上图样包 括第一图样、第二图样、第三图样以及第四图样中的至少两个,所述符号数指示承载所述N个端口的OFDM符号的个数;
    所述第一图样中的所述N个端口中的第一端口集合对应的梳齿为所述N个端口中的第二端口集合对应的梳齿为所述第一端口集合中的两个端口对应的OFDM符号的索引为l,所述第一端口集合中的另外两个端口对应的OFDM索引为(l+n),所述第二端口集合中的两个端口对应的OFDM索引为l,所述第二端口集合中的另外两个端口对应的OFDM符号的索引为(l+n),所述n为大于等于1的整数,所述l为大于等于0的整数;
    所述第二图样中的所述N个端口中的第一端口集合和第二端口集合对应的梳齿为所述第一端口集合对应的OFDM符号的索引为l,所述第二端口集合对应的OFDM符号的索引为(l+n),所述l和所述n为大于等于1的整数;
    所述第三图样中的所述N个端口中的第一端口集合对应的梳齿为以及所述N个端口中的第二端口集合对应的梳齿为且所述第一端口集合和所述第二端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数;
    所述第四图样中的所述N个端口中的4个端口集合分别对应的梳齿为
    且所述4个端口集合对应的OFDM符号的索引为l,所述l为大于等于1的整数;
    所述第一端口集合中包含的端口和所述第二端口集合中包含的端口不同。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,
    所述上行参考信号的发送功率是根据所述发送图样确定的;当所述发送图样指示所述N个端口承载于个OFDM符号上,每个端口的最大发送功率不超过其中,PCMAX为所述终端设备配置的最大发送功率,为大于1的整数,所述等于所述N。
  15. 一种通信方法,其特征在于,包括:
    接入网设备接收终端设备发送的上行参考信号,所述上行参考信号的上行参考信号资源包括N个端口,所述N个端口承载于2个或2以上正交频分复用OFDM符号,或者,所述N个端口承载于2个或2个以上频域梳齿和1个OFDM符号,所述N为大于4的整数;
    所述接入网设备向所述终端设备发送预编码指示信息,所述预编码指示信息用于指示所述终端设备的上行数据传输采用的预编码,所述预编码指示信息为所述接入网设备根据所述上行参考信号得到,所述预编码对应的矩阵的行与所述N个端口一一对应。
  16. 根据权利要求15所述的方法,其特征在于,所述上行参考信号为SRS,所述上行参考信号资源为SRS资源,所述上行数据承载于物理上行共享信道PUSCH或者物理上行控制信道PUCCH,所述N为8;所述预编码用于所述终端设备将所述上行数据映射到天线端口上,所述天线端口的数量与所述SRS资源的端口数量相同,所述天线端口与所述SRS资源的端口一一对应。
  17. 根据权利要求15或16所述的方法,其特征在于,所述N为8,所述N个端口承载于2个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值;或者,所述N个端口承载于1个频域梳齿度为2的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述N个端口承载于2个频域梳齿度为2的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值。
  18. 根据权利要求15或16所述的方法,其特征在于,所述N为8,所述N个端口承载于 2个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值;或者,所述N个端口承载于1个频域梳齿度为4的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述N个端口承载于2个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述N个端口承载于4个频域梳齿度为4的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。
  19. 根据权利要求15或16所述的方法,其特征在于,所述N为8,所述发送图样中的所述N个端口承载于2个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值;或者,所述发送图样中的所述N个端口承载于1个频域梳齿度为8的频域梳齿和2个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N个端口承载于2个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的四个端口对应4个不同的CS值;或者,所述发送图样中的所述N端口承载于4个频域梳齿度为8的频域梳齿和1个OFDM符号上,且位于同一个频域梳齿和OFDM符号上的两个端口对应2个不同的CS值。
  20. 根据权利要求15至19任一项所述的方法,其特征在于,所述上行参考信号的发送功率是所述终端设备根据发送图样确定的;当所述发送图样指示所述N个端口承载于个OFDM符号上,每个端口的最大发送功率不超过其中,PCMAX为所述终端设备配置的最大发送功率,为大于1的整数,所述等于所述N。
  21. 一种通信装置,其特征在于,包括用于实现权利要求1至14任一项所述的方法的模块或单元。
  22. 一种通信装置,其特征在于,包括用于实现权利要求15至20任一项所述的方法的模块或单元。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时,使权利要求1至14任意一项所述的方法被执行,或者权利要求15至20任意一项所述的方法被执行。
  24. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器存储指令,所述处理器用于执行所述指令,使得所述通信装置执行如权利要求1至14任一项所述的方法,或者,使得所述通信装置执行如权利要求15至20任一项所述的方法。
PCT/CN2023/083109 2022-03-31 2023-03-22 通信方法和通信装置 WO2023185588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210336427.3 2022-03-31
CN202210336427.3A CN116938403A (zh) 2022-03-31 2022-03-31 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023185588A1 true WO2023185588A1 (zh) 2023-10-05

Family

ID=88199200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083109 WO2023185588A1 (zh) 2022-03-31 2023-03-22 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN116938403A (zh)
WO (1) WO2023185588A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294686A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 探测参考信号发送、接收方法、装置、ue及基站
CN109327290A (zh) * 2017-07-31 2019-02-12 ***通信有限公司研究院 探测参考信号的发送方法、装置、终端、基站及通信设备
CN109391395A (zh) * 2017-08-09 2019-02-26 索尼公司 无线通信***中的装置和方法、计算机可读存储介质
US20200178281A1 (en) * 2017-08-11 2020-06-04 Panasonic Intellectual Property Corporation Of America New radio (nr) demodulation reference signal (dmrs) ports mapping and related signaling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294686A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 探测参考信号发送、接收方法、装置、ue及基站
CN109327290A (zh) * 2017-07-31 2019-02-12 ***通信有限公司研究院 探测参考信号的发送方法、装置、终端、基站及通信设备
CN109391395A (zh) * 2017-08-09 2019-02-26 索尼公司 无线通信***中的装置和方法、计算机可读存储介质
US20200178281A1 (en) * 2017-08-11 2020-06-04 Panasonic Intellectual Property Corporation Of America New radio (nr) demodulation reference signal (dmrs) ports mapping and related signaling

Also Published As

Publication number Publication date
CN116938403A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US11424898B2 (en) Demodulation reference signal indicating and receiving methods, transmit end, and receive end
CN110430615B (zh) 信道状态信息上报频带的配置方法及通信装置
CN113630230B (zh) 一种通信方法及装置
CN111385042B (zh) 干扰测量的方法和通信装置
CN110880958B (zh) 一种射频参数的上报方法及装置
WO2019141285A1 (zh) 一种天线选择指示方法、装置和***
US11038559B2 (en) Method and apparatus for transmitting and receiving signal based on beamforming in communication system
EP4017175A1 (en) Frequency domain resource allocation method and apparatus
WO2018141195A1 (zh) 一种指示方法及装置
US20210250206A1 (en) Information Receiving Method and Apparatus and Information Sending Method and Apparatus
WO2020151531A1 (zh) 参考信号的传输方法及装置
WO2021179311A1 (zh) 一种信道状态信息csi测量的指示方法和通信装置
WO2018137464A1 (zh) 一种发送参考信号的方法及装置
CN108781440B (zh) 用于上行链路子带波束形成的***和方法
WO2023185588A1 (zh) 通信方法和通信装置
KR20240026440A (ko) 업링크 주파수 선택적 프리코딩을 위한 시스템 및 방법
CN117121414A (zh) 用于传输参考信号的方法和装置
CN115085876A (zh) 确定信道质量指示的方法及装置
WO2023159575A1 (zh) 通信方法、终端设备及网络设备
WO2023160357A1 (zh) 上行传输方法与装置、终端设备和网络设备
CN112398511B (zh) 一种数据发送方法、数据接收方法及装置
WO2024061236A1 (zh) 发送和接收参考信号的方法、通信装置
WO2023160692A1 (zh) 一种通信方法及通信装置
WO2024000607A1 (en) Method and apparatus for reference signal port resource configuration
WO2024067305A1 (zh) 单载波通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777959

Country of ref document: EP

Kind code of ref document: A1