WO2018141195A1 - 一种指示方法及装置 - Google Patents

一种指示方法及装置 Download PDF

Info

Publication number
WO2018141195A1
WO2018141195A1 PCT/CN2018/071602 CN2018071602W WO2018141195A1 WO 2018141195 A1 WO2018141195 A1 WO 2018141195A1 CN 2018071602 W CN2018071602 W CN 2018071602W WO 2018141195 A1 WO2018141195 A1 WO 2018141195A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency
division
reference signal
domain
Prior art date
Application number
PCT/CN2018/071602
Other languages
English (en)
French (fr)
Inventor
任翔
刘永
武露
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18748319.3A priority Critical patent/EP3567786B1/en
Publication of WO2018141195A1 publication Critical patent/WO2018141195A1/zh
Priority to US16/526,636 priority patent/US11005625B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an indication method and apparatus.
  • RS Reference Signal
  • OFDM Orthogonal Frequency-Division Multiplexing
  • RE resource Element
  • MIMO multiple-input multi-output
  • LTE-A Long Term Evolution-Advanced
  • a Long Term Evolution-Advanced (LTE-A) system defines a plurality of RS: cell common reference signals (Cell-specific reference). Signal, CRS), Demodulation Reference Signal (DMRS) and Channel State Information (Reference Signal, CSI-RS), where DMRS is used for Physical Downlink Share Channel (Physical Downlink Share Channel, Demodulation of PDSCH).
  • CRS cell common reference signals
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information
  • the CSI-RS is used for channel measurement corresponding to the antenna port, and the reference signal is introduced in R10 for measuring channel state information under the transmission mode (Transmission Mode, TM) 9/10, and is used for scheduling, link adaptation, and MIMO.
  • Transmission-related transmission configuration information generation, etc. specifically, the system completes a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indication (Rank Indication, RI) based on the CSI-RS measurement result. ) Reporting of information.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank Indication
  • the RS is usually generated in a fixed sequence, and is mapped in a physical resource block (PRB) according to the number of ports in a fixed density and a fixed manner.
  • PRB physical resource block
  • the RS function is single, and different types of RSs only perform their corresponding functions.
  • the mapping rules and functions of the RS ports are the same, and cannot be configured according to different scenarios.
  • the pilot map of the CSI-RS is determined by the CSI-RS configuration information. Each configuration indicates that the RS corresponding to the number of different ports maps the time-frequency resource location in the subframe, and the RS corresponding to the 31 configurations in the normal subframe can occupy a total of 40RE.
  • 5Gration New Radio for multi-scenario, multi-band, multi-transport mode requirements, how to make the system RS needs to be flexible configuration according to different scenarios or requirements, to ensure high-quality data transmission and high Resource efficiency has become an urgent problem in the 5G NR system.
  • the present application provides an indication method and apparatus for solving the problem that the current RS mapping and configuration schemes have a fixed mapping mode and a single function, and achieve more reliable data transmission.
  • the application provides an indication method, the method comprising:
  • the arrangement indication is used to indicate an arrangement manner of the reference signal, wherein the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, a time division manner, and a frequency division+ a code division mode or a time division + code division mode, in which each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain; in the time division mode, each group of time-frequency resources Having at least one consecutive symbol in the time domain and one subcarrier in the frequency domain; in the frequency division + code division mode, each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive subcarrier in the frequency domain, and
  • the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal; in the time division + code division mode, each group of time-frequency resources occupies at least one continuous symbol in the time domain and one sub-range in the frequency domain a carrier, and the reference signal is
  • the above-mentioned manner enables the base station to flexibly configure the reference signal arrangement manner according to the optional arrangement mode according to the transmission requirements in different scenarios according to different scenarios, and dynamically and flexibly configure the RS arrangement manner, thereby Achieve more reliable data transfer.
  • At least two groups of time-frequency resources of the at least one group of time-frequency resources occupy the same symbol in the time domain, And the subcarriers in the frequency domain occupied by the at least two groups of time-frequency resources do not overlap.
  • At least two groups of time-frequency resources of the at least one group of time-frequency resources occupy the same sub-carrier in a frequency domain, and The symbols in the time domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources is the same.
  • the number of symbols in the time domain occupied by different groups of time-frequency resources is the same.
  • the number of subcarriers in the frequency domain occupied by any one of the frequency division mode or the frequency division + code division mode is equal to the time division manner or the time division + code division The number of symbols in the time domain occupied by any group of time-frequency resources in the mode.
  • the application provides an indication method, the method comprising:
  • the arrangement indication is used to indicate a manner of arrangement of the reference signals
  • an arrangement manner of the reference signal where the reference signal occupies at least one set of time-frequency resources, where the arrangement manner is a frequency division manner, a time division manner, a frequency division+code division manner, or a time division + code division mode, if the reference signal is arranged in a frequency division manner, each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain; if the reference signal is arranged In the time division mode, each group of time-frequency resources occupies at least one consecutive symbol in the time domain and one sub-carrier in the frequency domain; if the reference signal is arranged in a frequency division + code division manner, each group of time-frequency resources Compensating for one symbol in the time domain and at least one consecutive subcarrier in the frequency domain, and the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal; if the reference signal is arranged In the time division + code division mode, each group of time-frequency resources
  • the reference signal is arranged in the frequency division manner or the frequency division + code division manner, at least two groups of the at least one time-frequency resource are time-frequency.
  • the resource occupies the same symbol in the time domain, and the subcarriers in the frequency domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the reference signal is arranged in the time division manner or the time division + code division manner, at least two groups of time-frequency resources occupying the at least one group of time-frequency resources The same subcarriers in the frequency domain, and the symbols in the time domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources is the same.
  • the number of symbols in the time domain occupied by different groups of time-frequency resources is the same.
  • the number of subcarriers in the frequency domain occupied by any one of the frequency division mode or the frequency division + code division mode is equal to the time division manner or the time division + code division The number of symbols in the time domain occupied by any group of time-frequency resources in the mode.
  • the application provides a pointing device, where the device is deployed in a base station, and the device includes:
  • a generating module configured to generate an arrangement indication, where the arrangement indication is used to indicate an arrangement manner of the reference signal, where the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, a time division Mode, frequency division + code division mode or time division + code division mode, in which the time-frequency resources occupy one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain; in the time division mode, Each group of time-frequency resources occupies at least one consecutive symbol in the time domain and one sub-carrier in the frequency domain; in the frequency division + code division mode, each group of time-frequency resources occupies at least one consecutive symbol in the time domain and in the frequency domain a subcarrier, and the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal; in the time division + code division mode, each group of time-frequency resources occupies at least one consecutive symbol in the time domain a subcarrier in the frequency domain, and the reference signal is multiplexed on
  • a sending module configured to send the arrangement indication.
  • At least two groups of time-frequency resources of the at least one group of time-frequency resources occupy the same symbol in the time domain, And the subcarriers in the frequency domain occupied by the at least two groups of time-frequency resources do not overlap.
  • At least two groups of time-frequency resources of the at least one group of time-frequency resources occupy the same sub-carrier in a frequency domain, and The symbols in the time domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources is the same.
  • the number of symbols in the time domain occupied by different groups of time-frequency resources is the same.
  • the number of subcarriers in the frequency domain occupied by any one of the frequency division mode or the frequency division + code division mode is equal to the time division manner or the time division + code division The number of symbols in the time domain occupied by any group of time-frequency resources in the mode.
  • the application provides a pointing device, the device is deployed in a terminal, and the device includes:
  • a receiving module configured to receive an arrangement indication, where the arrangement indication is used to indicate an arrangement manner of the reference signal
  • a determining module configured to determine, according to the arrangement indication, an arrangement manner of the reference signal, where the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, a time division manner, and a frequency division+ a code division mode or a time division + code division mode.
  • each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain;
  • the reference signal is arranged in a time division manner, and each group of time-frequency resources occupies at least one continuous symbol in the time domain and one sub-carrier in the frequency domain;
  • the reference signal is arranged in a frequency division + code division manner, Each set of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain, and the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal;
  • the signal is arranged in a time division + code division manner, and each group of time-frequency resources occupies at least one continuous symbol in the time domain and one sub-carrier in the frequency domain, and the reference signal passes the reference signal pair
  • the orthogonal code should be multiplexed on the set of time-frequency resources.
  • the reference signal when the reference signal is arranged in the frequency division mode or the frequency division + code division mode, at least two groups of time frequencies of the at least one group of time-frequency resources
  • the resource occupies the same symbol in the time domain, and the subcarriers in the frequency domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the reference signal when the reference signal is arranged in the time division manner or the time division + code division mode, at least two groups of time-frequency resources of the at least one group of time-frequency resources are occupied.
  • the same subcarriers in the frequency domain, and the symbols in the time domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources is the same.
  • the number of symbols in the time domain occupied by different groups of time-frequency resources is the same.
  • the number of subcarriers in the frequency domain occupied by any one of the frequency division mode or the frequency division + code division mode is equal to the time division manner or the time division + code division The number of symbols in the time domain occupied by any group of time-frequency resources in the mode.
  • the application provides a base station, where the base station includes: a processor and a transceiver;
  • the processor is configured to generate an arrangement indication;
  • the transceiver is configured to send the arrangement indication;
  • the arrangement indication is used to indicate an arrangement manner of the reference signal, where the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, a time division manner, a frequency division + a code division manner, or a time division.
  • each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain; in the time division mode, each group of time-frequency resources occupies at least in the time domain a continuous symbol and one subcarrier in the frequency domain; in the frequency division + code division mode, each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive subcarrier in the frequency domain, and the reference signal passes
  • the orthogonal code corresponding to the reference signal is multiplexed on the set of time-frequency resources; in the time division + code division mode, each set of time-frequency resources occupies at least one consecutive symbol in the time domain and one sub-carrier in the frequency domain, and the The reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal.
  • At least two groups of time-frequency resources of the at least one group of time-frequency resources occupy the same symbol in the time domain, And the subcarriers in the frequency domain occupied by the at least two groups of time-frequency resources do not overlap.
  • At least two groups of time-frequency resources of the at least one group of time-frequency resources occupy the same sub-carrier in a frequency domain, and The symbols in the time domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources is the same.
  • the number of symbols in the time domain occupied by different groups of time-frequency resources is the same.
  • the number of subcarriers in the frequency domain occupied by any one of the frequency division mode or the frequency division + code division mode is equal to the time division manner or the time division + code division The number of symbols in the time domain occupied by any group of time-frequency resources in the mode.
  • the present application further provides a readable storage medium, configured to store software instructions for performing the functions of any of the first aspect, the first aspect, and the first aspect The program designed by any of the methods of the first aspect.
  • the application provides a terminal, where the terminal includes: a processor and a transceiver;
  • the transceiver is configured to receive an arrangement indication, where the arrangement indication is used to indicate an arrangement manner of the reference signal;
  • the processor is configured to determine, according to the arrangement indication, an arrangement manner of a reference signal, where the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, a time division manner, and a frequency division+ a code division mode or a time division + code division mode.
  • each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain;
  • the reference signal is arranged in a time division manner, and each group of time-frequency resources occupies at least one continuous symbol in the time domain and one sub-carrier in the frequency domain;
  • the reference signal is arranged in a frequency division + code division manner, Each set of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain, and the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal;
  • the signal is arranged in a time division + code division manner, and each group of time-frequency resources occupies at least one continuous symbol in the time domain and one sub-carrier in the frequency domain, and the reference signal passes the reference signal pair
  • the orthogonal code should be multiplexed on the set of time-frequency resources.
  • the reference signal when the reference signal is arranged in the frequency division mode or the frequency division + code division mode, at least two groups of time frequencies of the at least one group of time-frequency resources
  • the resource occupies the same symbol in the time domain, and the subcarriers in the frequency domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the reference signal when the reference signal is arranged in the time division manner or the time division + code division mode, at least two groups of time-frequency resources of the at least one group of time-frequency resources are occupied.
  • the same subcarriers in the frequency domain, and the symbols in the time domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources is the same.
  • the number of symbols in the time domain occupied by different groups of time-frequency resources is the same.
  • the number of subcarriers in the frequency domain occupied by any one of the frequency division mode or the frequency division + code division mode is equal to the time division manner or the time division + code division The number of symbols in the time domain occupied by any group of time-frequency resources in the mode.
  • the present application further provides a readable storage medium, configured to store software instructions for performing the functions of any of the foregoing second aspect, the second aspect, and the second aspect The program designed by any of the methods of the second aspect.
  • FIG. 1 is a schematic diagram of a DMRS resource distribution manner in the current LTE standard
  • FIG. 2 is a block diagram showing the architecture of a wireless communication system in accordance with some embodiments of the present invention.
  • FIG. 3 is a schematic flow chart of a method for indicating according to some embodiments of the present invention.
  • FIG. 4 is a schematic structural diagram of a resource unit according to some embodiments of the present invention.
  • FIG. 5 is a schematic diagram showing the arrangement of DMRSs in a DMRS pattern used in some embodiments of the present invention.
  • FIG. 6 is a schematic diagram of rearrangement of DMRSs based on the same DMRS pattern in accordance with some embodiments of the present invention.
  • FIG. 7 is a schematic diagram showing characteristics of a channel in a high frequency selection scenario according to some embodiments of the present invention.
  • FIG. 8 is a schematic diagram showing the arrangement of reference signals in a high frequency selection scenario according to some embodiments of the present invention.
  • FIG. 9 is a schematic diagram of performance gains corresponding to a scheme provided by some embodiments of the present invention.
  • FIG. 10 is a schematic diagram showing characteristics of a channel in a high speed scene according to some embodiments of the present invention.
  • FIG. 11 is a schematic diagram of a manner of arrangement of reference signals in a high speed scene according to some embodiments of the present invention.
  • FIG. 12 is a schematic flow chart of a method for indicating according to some embodiments of the present invention.
  • FIG. 13 is a schematic structural diagram of a pointing device according to some embodiments of the present invention.
  • FIG. 14 is a schematic structural diagram of a pointing device according to still another embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a base station according to some embodiments of the present invention.
  • FIG. 16 is a schematic structural diagram of a terminal according to some embodiments of the present invention.
  • the present application will first briefly introduce the manner in which the RS occupies time-frequency resources in the current Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • an RS is usually mapped according to a fixed pilot pattern (or may be referred to as an RS pattern) according to the number of antenna ports. For a given number of ports, each RS port is mapped in a resource block (Resource Block, RB) with a fixed rule, and the functions of the RS are the same.
  • RB Resource Block
  • FDM Frequency Division Multiplexing
  • TDM Time Division Multiplexing
  • CDM Code Division Multiplexing
  • the DMRS can perform the CDM in the time domain to improve the spectrum efficiency in each sub-frame.
  • single-user MIMO Single-User MIMO, SU-MIMO
  • 8-layer orthogonal DMRS multiplexing DMRS.
  • the pilot occupies 24 Resource Element (RE).
  • Multi-user MIMO Multi-User MIMO, MU-MIMO
  • FIG. 1 is a schematic diagram showing a resource allocation manner of a DMRS in the current LTE standard.
  • the resource allocation mode 100 supports up to eight symbol streams (also referred to as spatial streams or data streams) SU-MIMO transmissions, and these symbol streams correspond to DMRS ports 7 to 14, respectively.
  • symbol streams also referred to as spatial streams or data streams
  • DMRSs occupy a total of 24 REs, and these REs are distributed on 6 subcarriers in the frequency domain (0, 1 of each RB). , 5, 6, 10, and 11 subcarriers), and 4 symbols in the time domain (5, 6, 12, and 13 symbols per subframe).
  • the four DRMS-occupied REs distributed on the same subcarrier form a DMRS RE group, so the 24 REs occupied by the DMRS can be divided into 6 DMRS RE groups.
  • Each DMRS RE group in which the RE identified by the pattern 108 is located may be used to carry the DMRSs of the DMRS ports 7, 8, 11 and 13, and each DMRS RE group in which the ID identified by the pattern 110 is located may be used to carry the DMRS ports 9, 10, 12 and 14 DMRS.
  • the DMRS port has two modes of CDM in the time domain in each subframe:
  • Each DMRS RE group can carry two DMRS ports corresponding to DMRS in CDM mode by means of two sets of Orthogonal Cover Code (OCC) (also can be expressed as CDM with dimension 2 on the time domain, or CDM-2). );
  • OCC Orthogonal Cover Code
  • each DMRS RE group in which the RE identified by the pattern 108 is located carries DMRS ports 7 and 8
  • each DMRS RE group in which the ID identified by the pattern 110 is located carries DMRS ports 9 and 10
  • ports 7, 8, and 9 10 performs CDM with dimension 2 in the time domain, and FDM multiplexing mode between ports 7, 8, and 9, 10 respectively.
  • each DMRS RE group can carry 4 DMRS ports corresponding to DMRSs in CDM mode by means of 4 groups of OCCs (also can be expressed as CDMs of dimension 4 in the time domain, or CDM-4);
  • the DMRS RE group in which the RE identified by the pattern 108 is located is used to carry the DMRS ports 7, 8, 11, and 13. 10, 12, 14, ports 7, 8, 11, 13 and ports 9, 10, 12, 14 respectively perform CDM with dimension 4 in the time domain, ports 7, 8, 11, 13 and 9, 10, 12, 14
  • the mode is FDM multiplexing.
  • the orthogonal mask of the 4 REs in each DMRS RE group corresponding to each DMRS port may be as shown in Table 1 below.
  • each DMRS port occupies three DMRS RE groups, and the three DMRS RE groups are distributed on three subcarriers.
  • the 4 REs included in each DMRS RE group are distributed over 4 OFDM symbols.
  • Each DMRS RE group can carry two DMRS ports corresponding to DMRS in CDM mode by means of two groups of OCCs, or can carry four DMRS port corresponding DMRSs in CDM mode by means of four groups of OCCs.
  • the foregoing DMRS resource allocation mode is only an example of the current LTE DMRS resource allocation manner.
  • different DMRS resource allocation modes may be adopted in different scenarios.
  • the DMRS resource allocation mode in the MU-MIMO scenario may be different from the DMRS resource allocation mode in the SU-MIMO scenario.
  • the maximum number of simultaneously scheduled symbol streams is different, and the DMRS resource allocation manner may be different. Therefore, those skilled in the art should understand that the foregoing DMRS resource allocation manner is not used to limit the scope of the technical solution provided by the embodiment of the present invention. In the specific implementation process, other DMRS resource allocation manners may also be adopted.
  • the RS in the LTE standard is usually mapped in the PRB by a fixed pilot pattern according to the total number of antenna ports, and the functions of each RS port are the same.
  • 5G NR for multi-scene, multi-band and multi-transport mode
  • the current RS mapping and configuration scheme with fixed mapping mode and single function can not meet the complex and diverse communication scenarios in the future.
  • the time domain CDM mode used in the above DMRS resource arrangement example is not applicable. Because in a high-speed scenario, the fast time-varying channel makes the channel of different OFDM symbols in one subframe change rapidly, which makes the channel correlation in the DMRS RE group worse, resulting in degraded time domain CDM performance, channel estimation error and system performance degradation. ;
  • the time domain CDM mode used in the above DMRS resource arrangement example is also not applicable. Because in the high-frequency scene, different OFDM symbols in the time domain will be affected by phase noise, and the phase noise of the channels in different OFDM symbols is different, so that the performance of the time domain CDM is degraded, resulting in system performance degradation;
  • the embodiment of the present invention provides an indication scheme, which is mainly for implementing flexible configuration of a reference signal port multiplexing manner, and provides a plurality of optional reference signal arrangement manners and rows of reference signals.
  • the cloth mode indicates that the system can dynamically and flexibly indicate the arrangement of reference signals according to different scenarios and transmission requirements, thereby achieving more reliable data transmission.
  • the base station may generate and send an arrangement indication, where the arrangement indication indicates an arrangement manner of the reference signal, and the arrangement indication may specifically indicate the arrangement manner. It is a frequency division method, a time division method, a frequency division + code division method or a time division + code division method; the reference signal occupies at least one set of time-frequency resources, and the above four optional arrangement manners can be specifically described as follows:
  • each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain; if the reference signal is arranged in a time division manner, then each group of time The frequency resource occupies at least one consecutive symbol in the time domain and one subcarrier in the frequency domain; if the reference signal is arranged in a frequency division + code division manner, each group of time-frequency resources occupies at least one symbol in the time domain and at least in the frequency domain.
  • the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal
  • the reference signal is along with other reference signals by means of its own orthogonal code (such as but not limited to OCC) Multiplexed on each group of time-frequency resources; if the reference signal is arranged in a time division + code division mode, each group of time-frequency resources occupies at least one continuous symbol in the time domain and one sub-carrier in the frequency domain, and the reference signal passes The orthogonal code corresponding to the reference signal is multiplexed on the set of time-frequency resources.
  • the reference signal can be multiplexed with other reference signals by means of its own orthogonal code. Each group of time-frequency resources.
  • the base station can dynamically and flexibly arrange the RS according to the different four transmission modes in different scenarios according to different transmission requirements. Configure for more reliable data transfer.
  • the sending period of the foregoing reference signal may be configured, for example, when the detected channel transmits a drastic change in the time domain or the channel transmits a drastic change in the frequency domain, the base station may generate And sending an arrangement indication to indicate that the reference signal is arranged in a manner that enables better performance;
  • the arrangement indication of the reference signal may be specifically transmitted by using a Radio Resource Control (RRC), Downlink Control Information (DCI), or Media Access Control (MAC).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • MAC Media Access Control
  • the indication scheme provided by the foregoing embodiment of the present invention is equivalent to providing a technical solution for dynamically configuring the reference signal multiplexing manner, which is used by the base station by introducing relevant indication signaling on the base station side.
  • the signaling indication resource can realize the free configuration of the port multiplexing mode for different scenarios, and meets the need of supporting complex and variable scenarios in the next generation communication system, and flexible configuration in scenarios such as high speed, high frequency, and high frequency selection.
  • the arrangement of the reference signals achieves higher channel estimation accuracy, making data demodulation more accurate in a variety of scenarios.
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to some embodiments of the present invention.
  • the wireless communication network 200 includes base stations 201-203 and terminals 210-217, wherein the base stations 201-203 can pass backhaul links with each other (e.g., the straight lines between the base stations 201-203)
  • the communication is performed, and the backhaul link may be a wired backhaul link (such as fiber optic cable or copper cable) or a wireless backhaul link (such as microwave).
  • the terminals 210 to 217 can communicate with the corresponding base stations 201 to 203 via a radio link (as indicated by a broken line between the base stations 201 to 203 and the terminals 210 to 217).
  • the base stations 201 to 203 are configured to provide wireless access services for the terminals 210 to 217.
  • each base station corresponds to a service coverage area (also referred to as a cell, as shown by each ellipse area in FIG. 2), and the terminal entering the area can communicate with the base station through a wireless signal, thereby receiving the base station to provide Wireless access service.
  • multiple base stations may use Coordinated Multipoint (CoMP) technology to provide services for terminals in the overlapping area.
  • CoMP Coordinated Multipoint
  • the base station 201 overlaps with the service coverage area of the base station 202, and the terminal 213 is within the overlapping area. Therefore, the terminal 213 can receive the wireless signal from the base station 201 and the base station 202, and the base station 201 And the base station 202 can cooperate with each other to provide services for the terminal 213.
  • the service coverage area of the base station 201, the base station 202, and the base station 203 have a common overlapping area, and the terminal 214 is located in the overlapping area, so the terminal 214 can receive the base station 201,
  • the wireless signals 202 and 203, the base stations 201, 202, and 203, can cooperate with each other to provide services to the terminal 214.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station, etc.
  • future base stations may use other names.
  • the terminals 210-217 may be various wireless communication devices having wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablets, wireless data. Card, Modulator demodulator (Modem) or wearable devices such as smart watches.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the terminals 210-217 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 201 to 203 and the terminals 210 to 217 can be configured with a plurality of antennas to support the MIMO technology. Further, the base stations 201-203 and the terminals 210-217 can support both the SU-MIMO technology and the MU-MIMO technology, wherein the MU-MIMO can be implemented based on Space Division Multiple Access (SDMA) technology. .
  • SDMA Space Division Multiple Access
  • the base station 201-203 and the terminals 210-217 can also flexibly support single input single output (SISO) technology, single input multiple output (SIMO), and multiple input orders due to multiple antennas.
  • the multiplexing technology can be a spatial multiplexing (Spatial Multiplexing) technology.
  • the transmit diversity technology may include: Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (SFTD), and time switching. Time Switched Transmit Diversity (TSTD), Frequency Switching Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD), etc.
  • STTD Space-Time Transmit Diversity
  • SFTD Space-Frequency Transmit Diversity
  • TSTD Time Switched Transmit Diversity
  • FSTD Frequency Switching Transmit Diversity
  • OFD Orthogonal Transmit Diversity
  • CDD Cyclic Delay Diversity
  • the current LTE standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Cyclic Delay Diversity
  • Transmit diversity is generally described above by way of example. Those skilled in the art will appreciate that in addition to the above examples, transmit diversity also includes other various implementations. Therefore, the above description should not be construed as limiting the technical solution of the present invention, and the technical solution of the present invention should be understood to be applicable to various possible transmit diversity schemes.
  • the base stations 201-203 and the terminals 210-217 can communicate using various wireless communication technologies, such as, but not limited to, Time Division Multiple Access (TDMA) technology, Frequency Division Multiple Access (FDMA). ) Technology, Code Division Multiple Access (CDMA) technology, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Orthogonal Frequency Division Multiple Access (OFDMA) Technology, Single Carrier FDMA (SC-FDMA) technology, Space Division Multiple Access (SDMA) technology, and evolution and derivative technologies of these technologies.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • SDMA Space Division Multiple Access
  • the wireless communication network 200 shown in FIG. 2 is for example only and is not intended to limit the technical solution of the present invention. Those skilled in the art should understand that in a specific implementation process, the wireless communication network 200 may also include other devices, and the number of base stations and terminals may also be configured according to specific needs.
  • FIG. 3 is a schematic flow chart of a method for indicating according to some embodiments of the present invention.
  • the flow shown in Figure 3 can be implemented by a base station.
  • a physical or functional module that can be configured to perform the flow shown in FIG. 3 can be configured on the base station, and the functional modules for executing the flow can be implemented by hardware, software programming, or a combination of hardware and software.
  • the process includes the following steps:
  • Step 301 Generate an arrangement indication, where the arrangement indication is used to indicate the arrangement manner of the reference signal.
  • the reference signal generally occupies at least one set of time-frequency resources, and the arrangement manner of the reference signal can be understood as the reference signal in the time domain and The way of occupying time-frequency resources in the frequency domain;
  • Step 302 Send the generated arrangement indication.
  • the manner in which the reference signals are arranged may be, but is not limited to, any one of the following: a frequency division method, a time division method, a frequency division + code division method, or a time division + code division method;
  • the reference signal occupies at least one set of time-frequency resources, and the time-frequency resources occupied by the reference signal:
  • each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain;
  • each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain, and the reference signal passes the reference.
  • the orthogonal code corresponding to the signal is multiplexed on the set of time-frequency resources; for example, in the arrangement mode, the reference signal can be multiplexed with other reference signals in each group by means of its own orthogonal code (such as but not limited to OCC) Frequency resource
  • each group of time-frequency resources occupies at least one continuous symbol in the time domain and one sub-carrier in the frequency domain;
  • each group of time-frequency resources occupies at least one continuous symbol in the time domain and one sub-carrier in the frequency domain, and the reference signal corresponds to the reference signal.
  • Orthogonal code multiplexing is performed on the set of time-frequency resources.
  • the reference signal in the arrangement mode can also be multiplexed with other reference signals in each group by means of its own orthogonal code (such as but not limited to OCC). On the frequency resource.
  • the base station may determine the arrangement manner of the reference signal to indicate according to the characteristics of the channel changing in the time domain and the frequency domain.
  • the base station may instruct the reference signal to be arranged on the time-frequency resource according to the above-mentioned frequency division method or frequency division + code division manner, thereby using the channel frequency domain to be flat.
  • the characteristics are used to obtain performance gains, and the code division method is mainly used to help improve spectral efficiency;
  • the base station can arrange the reference signal on the time-frequency resource according to the time division manner or the time division + code division manner, thereby utilizing the channel time domain flatness.
  • the characteristics are used to obtain performance gains, and the code division method is also mainly used to help improve spectral efficiency.
  • the code division method may be, for example, CDM-2 or CDM-4.
  • CDM-2 is often able to achieve better performance gains than CDM-4
  • the code division mode may specifically be CDM-2.
  • the base station can perform flexible configuration of the reference signal arrangement manner according to the above-mentioned optional arrangement manner according to the transmission requirements of different scenarios according to the different scenarios, and thus can be configured in different scenarios.
  • the reference signals By arranging the reference signals in an arrangement that can achieve better performance gains, higher channel estimation accuracy is achieved, enabling more reliable data transmission.
  • the transmission scenario is a high-speed scenario (eg, the terminal is in a high-speed motion state), and the channel changes at different times in the scenario are large, but the frequency domain does not change much, considering the above scenario of the scenario.
  • the base station can generate an arrangement indication for indicating that the reference signal is arranged in a frequency domain manner (such as the above-mentioned frequency division method or frequency division + code division manner) from the frequency domain angle, thereby effectively utilizing the channel frequency domain flatness characteristic.
  • the transmission scenario is a high frequency selection scenario
  • the channel changes at different times in the scenario are not large, but the frequency domain changes greatly.
  • the base station may The time domain angle is used to generate an arrangement indication for indicating that the reference signal is arranged in a time domain manner (such as the above-mentioned time division manner or time division + code division manner), thereby effectively utilizing the channel time domain flatness characteristic to obtain performance gain.
  • a resource unit is provided in some embodiments of the present invention.
  • the resource unit can be used as a basic unit for scheduling user allocation of resources, and can also be used to describe the arrangement of reference signals.
  • At least one group of time-frequency resources occupied by the reference signal in the foregoing embodiment of the present invention may be at least one group of time-frequency resources in the resource unit.
  • the uppermost one subcarrier (11th subcarrier) corresponding to the pattern 108 and the 4 OFDM symbols (5, 6, 12, and 13 symbols of each subframe) correspond to The four REs constitute a set of time-frequency resources.
  • resource unit 400 occupies a plurality of consecutive subcarriers in the frequency domain and a plurality of consecutive symbols (OFDM symbols) in the time domain.
  • the smallest resource unit in the resource unit is RE401, and each RE occupies one subcarrier in the frequency domain and one symbol in the time domain.
  • Resource unit 400 typically includes a plurality of REs. Similar to the RB and RB pair in the LTE standard, the resource unit shown in FIG. 4 can be used as a basic unit for scheduling user allocation of resources, and can also be used to describe the arrangement of reference signals.
  • each of the at least one set of time-frequency resources occupied by the reference signal may be specifically represented by a column RE of the resource unit 400 as shown in FIG. 4 (equivalent to Several of the symbols in the time domain are consecutive in the column direction (corresponding to continuous in the frequency domain) RE composition;
  • each of the at least one set of time-frequency resources occupied by the reference signal may be specifically represented by a certain row of REs of the resource unit 400 as shown in FIG.
  • Several of the subcarriers in the domain are composed of REs that are continuous in the row direction (equivalent to being continuous in the time domain);
  • each of the at least one set of time-frequency resources occupied by the reference signal may be in a certain column RE of the resource unit 400 as shown in FIG.
  • a plurality of REs that are consecutive in the column direction, and the plurality of REs that are consecutive in the column direction can carry the reference signal in a CDM manner by using an orthogonal code (such as an OCC) corresponding to the reference signal, that is, the reference signal is
  • the own orthogonal code is multiplexed with other reference signals on a set of time-frequency resources;
  • each of the at least one set of time-frequency resources occupied by the reference signal may be in a certain row of REs of the resource unit 400 as shown in FIG. And a plurality of REs that are consecutive in the row direction, and the plurality of REs that are consecutive in the row direction can carry the reference signal in a CDM manner by using an orthogonal code (such as an OCC) corresponding to the reference signal, that is, the reference signal by itself
  • an orthogonal code such as an OCC
  • the reference signal can occupy a plurality of sets of time-frequency resources, for example, the example of the DMRS occupying the time-frequency resource shown in FIG. 1 is used to ensure that the reference signal occupies multiple sets of time-frequency resources.
  • the flexible configuration achieves the effects described in the foregoing embodiments of the present invention.
  • each group of time-frequency resources occupied by the reference signal may occupy the same symbol in the time domain, and each group The subcarriers in the frequency domain occupied by the time-frequency resources do not overlap, that is, any subcarriers in the frequency domain occupied by any group of time-frequency resources are different from other groups;
  • each group of time-frequency resources of the plurality of sets of time-frequency resources occupied by the reference signal may be as shown in the figure.
  • a plurality of REs in a column RE of the resource unit 400 shown in FIG. 4 are composed of REs consecutive in the column direction, and a plurality of REs constituting each group of time-frequency resources in the column direction do not overlap;
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources may be the same. .
  • the plurality of sets of time-frequency resources occupied by the reference signal may occupy the same subcarrier in the frequency domain, and the symbols in the time domain occupied by each group of time-frequency resources are not Overlap, that is, any symbol in the time domain occupied by any group of time-frequency resources is different from other groups;
  • each group of time-frequency resources of the plurality of sets of time-frequency resources occupied by the reference signal may be as shown in FIG. 4 .
  • a plurality of REs in a row RE of the resource unit 400 are composed of REs that are consecutive in the row direction, and a plurality of REs that are consecutive in the row direction constituting each group of time-frequency resources do not overlap.
  • the number of symbols in the time domain occupied by different groups of time frequency resources may be the same.
  • the base station may use a fixed RS pattern to generate and transmit an arrangement indication based on a fixed RS pattern in different scenarios to achieve the same dynamics under the RS pattern.
  • the purpose of switching the arrangement of reference signals may be used.
  • any one of the frequency division mode or the frequency division + code division mode is occupied in the frequency domain.
  • the number of subcarriers may be equal to the number of symbols in the time domain occupied by any one of the time division mode or the time division + code division mode, in other words, the frequency division mode or the frequency division + code division mode.
  • the number of REs occupied by the frequency resource may be equal to the number of REs occupied by any one of the time-frequency or time-division + code-score modes.
  • FIG. 5 is an example of the arrangement of DMRS in the DMRS pattern used in some embodiments according to the present invention.
  • the DMRS in the DMRS pattern occupies 12 REs, and the REs are distributed on 6 subcarriers in the frequency domain (0th, 1, 5, 6, 10, and 11 subcarriers), and 2 in the time domain.
  • the DMRS arrangement in the DMRS pattern is initially composed of two consecutive REs occupied by DRMS distributed on the same subcarrier to form a DMRS RE group (corresponding to the above A set of time-frequency resources)
  • each of the three DMRS RE groups identified by the pattern 501 carries the DMRSs of the DMRS ports 7 and 8 through the two sets of OCCs
  • Each DMRS RE group carries DMRSs of DMRS ports 9 and 10 through two sets of OCCs; the above arrangement manner of DMRSs in the DMRS pattern can be regarded as a time division + code division mode; this method can obtain performance gain when the channel time domain is flat ;
  • the base station determines that the DMRS arrangement mode needs to be switched to a layout manner that can achieve better performance, based on the current location.
  • the base station can determine that the DMRS can be switched to the frequency division mode or the frequency division + code division mode to effectively utilize the flat frequency domain characteristics.
  • the base station may generate and send an arrangement indication, where the arrangement indication is used to indicate that the arrangement manner of the DMRS is switched to a frequency division or a frequency division + code division manner, for example, FIG. 6 is according to the present invention.
  • FIG. 6 is according to the present invention.
  • the DMRS is rearranged on the DMRS pattern as shown in FIG. 5, and the DMRS still occupies 12 REs, and these REs are distributed on 6 subcarriers in the frequency domain (0, 1, 5, 6, 10 and 11 subcarriers), and 2 symbols in the time domain (3rd and 4th symbols); wherein two consecutive REs occupied by DRMS distributed on the same symbol form a DMRS RE group (equivalent to the above) a set of time-frequency resource groups), each of the three DMRS RE groups identified by the pattern 601 carries the DMRSs of the DMRS ports 7 and 8 through the two sets of OCCs, and the three DMRS RE groups identified by the pattern 602 Each DMRS RE group carries the DMRSs of the DMRS ports 9 and 10 through the two groups of OCCs.
  • the foregoing DMRS arrangement manner can be regarded as a frequency division + code division mode, and further, when the terminal is currently in a high speed scene.
  • the performance gain can be obtained when the channel frequency domain is flat by the arrangement as shown in FIG. 6.
  • the system can dynamically switch the arrangement of reference signals under a fixed RS pattern, thereby reducing the system complexity to a certain extent, and also being able to adapt to the needs of the next generation communication system.
  • the demand for variable scenes makes the system obtain higher channel estimation accuracy in high-speed, high-frequency, high-frequency selection and other scenarios, and data demodulation is more accurate in various scenarios.
  • the foregoing arrangement indication may include a reference signal identifier.
  • the reference signal identification may specifically be, for example but not limited to, an antenna port number.
  • the sending period of the foregoing arrangement indication may be configurable, for example, may be a preset initial value, that is, the base station may indicate the arrangement manner of the reference signal according to the set period; or may be configured by the base station to the reference signal.
  • the arrangement mode performs real-time indication.
  • the base station may send the foregoing arrangement indication to the terminal when detecting that the channel changes drastically and needs to retransmit the reference signal for channel measurement.
  • the base station may indicate that the arrangement manner of the reference signal is switched to the current transmission of the terminal when detecting that the transmission environment of the terminal changes.
  • the arrangement manner of the switching reference signal is a frequency division method or a frequency division + code division method.
  • the frequency division method and the time division manner may be indicated by one bit in the arrangement indication, and the frequency division + code division manner and the time division + code division manner may also be correspondingly one of the arrangement indications.
  • the bit is instructed to switch the arrangement mode by changing the value of the bit. It can be seen that in the above manner, the base station can implement the indication of the reference signal arrangement manner by using less signaling resources.
  • the foregoing arrangement indication may be sent by, but not limited to, one of the following signaling: physical layer signaling, media access control layer signaling, and radio resource control signaling.
  • L1 signaling Physical layer signaling is also referred to as Layer 1 (L1) signaling, which can typically be carried by a control portion in a physical layer frame.
  • a typical example of L1 signaling is Downlink Control Information (DCI) carried in a physical downlink control channel (PDCCH) defined in the LTE standard.
  • DCI Downlink Control Information
  • PDCCH physical downlink control channel
  • L1 signaling may also be carried by the data portion of the physical layer frame. It is not difficult to see that the transmission period or signaling period of L1 signaling is usually the period of the physical layer frame. Therefore, such signaling is usually used to implement some dynamic control to transmit some frequently changing information, for example, through the physical layer. Signaling resource allocation information.
  • Media Access Control (MAC) layer signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the MAC Control Entity (MAC) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the foregoing resource indication information may also be sent through other Layer 2 signaling other than the medium access control layer signaling.
  • Radio Resource Control (RRC) signaling belongs to Layer 3 signaling, which is usually some control message, and L3 signaling can usually be carried in the frame body of the second layer frame.
  • the transmission period or control period of the L3 signaling is usually long, and is suitable for transmitting information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the foregoing resource indication information may also be sent through other layer 3 signaling other than RRC signaling.
  • the base station may generate a method for indicating the reference signal according to time division or time division + code division.
  • the arrangement of the arrangement is arranged, and the generated arrangement indication is sent to the terminal, thereby effectively utilizing the channel time domain flatness characteristic to obtain performance gain.
  • FIG. 8 is a schematic diagram of an arrangement manner of reference signals in a high frequency selection scenario according to some embodiments of the present invention.
  • the reference signal port 0, 1 and the reference signal port 2, 3 are respectively performed on the time-frequency resource according to the time division + code division mode (such as the CDM-2 in TD (Time Domain) identified in the figure).
  • the reference signals corresponding to the reference signal ports 0 and 1 occupy three sets of time-frequency resources (as shown in FIG. 801), and each group of time-frequency resources occupies two consecutive symbols (3rd and 4th symbols) in the time domain and the frequency domain.
  • One subcarrier which occupies the first subcarrier, the sixth subcarrier, and the eleventh subcarrier, respectively
  • the reference signals corresponding to the reference signal ports 0 and 1 are multiplexed in each group of time-frequency resources by corresponding orthogonal codes.
  • the reference signals corresponding to reference signal ports 2, 3 occupy three sets of time-frequency resources (as shown in Figure 802), and each set of time-frequency resources also occupies two consecutive symbols in the time domain (3rd and 4 symbols) and one subcarrier in the frequency domain (occupying the 0th subcarrier, the 5th subcarrier, and the 10th subcarrier, respectively), and the reference signals corresponding to the reference signal ports 2, 3 also pass the corresponding orthogonal codes It is multiplexed on each group of time-frequency resources (CDM-2in TD).
  • the base station may generate and send an arrangement instruction for indicating that the reference signal is arranged according to the arrangement manner as shown in FIG. 8.
  • the corresponding bit position in the DCI may be set to 0. It is determined that the arrangement mode is as shown in FIG. 8 , so that the reference signal can be arranged in the high frequency selection scene according to the arrangement manner as shown in FIG. 8 , and the time domain flatness characteristic of the channel can be effectively utilized to obtain the performance gain. Effect.
  • Figure 9 shows a schematic diagram of performance gains corresponding to the schemes provided in accordance with some embodiments of the present invention.
  • the reference signals corresponding to the reference signal ports 0, 1 and the reference signals corresponding to the reference signal ports 2, 3 are shown in the modulation state of 16QAM, respectively, using frequency division + code division mode F-
  • F-CDM2 frequency division + code division mode
  • T-CDM2 time division + code division method
  • SNR signal-to-noise ratio
  • BLER block error rate
  • Figure 10 is a diagram showing the characteristics of a channel in a high speed scene in accordance with some embodiments of the present invention.
  • the scene is characterized in that the channel changes drastically in the time domain and the frequency domain changes slowly; thus, in some embodiments of the present invention, the base station may generate a frequency reference or frequency division + code for indicating the reference signal.
  • the distribution mode is arranged in a split mode, and the generated arrangement indication is sent to the terminal, so that the channel frequency domain flatness characteristic is effectively utilized to obtain performance gain.
  • FIG. 11 is a schematic diagram of an arrangement manner of reference signals in a high speed scene according to some embodiments of the present invention.
  • the reference signal port 0, 1 and the reference signal port 2, 3 are respectively on the time-frequency resource according to the frequency division + code division mode (such as the CDM-2in FD (Frequency Domain) identified in the figure).
  • the reference signal corresponding to the reference signal port 0, 1 occupies three sets of time-frequency resources (such as 1101), and each group of time-frequency resources occupies two consecutive sub-carriers in the frequency domain (each occupying 0th and 1st sub-carrier, 5th and 6th subcarriers and 10th and 11th subcarriers) and one symbol (3rd symbol) in the time domain, and the reference signals corresponding to the reference signal ports 0, 1 are multiplexed by corresponding orthogonal codes Group time-frequency resources (CDM-2in FD); reference signals corresponding to reference signal ports 2, 3 occupy three sets of time-frequency resources (as shown in Figure 1102), each group of time-frequency resources occupying two consecutive sub-carriers in the frequency domain (occupying 0th and 1
  • the base station may generate and send an arrangement instruction for indicating that the reference signal is arranged according to the arrangement manner as shown in FIG. 11, for example, the corresponding bit position in the DCI may be set to 1 corresponding to the arrangement manner. It is determined as the arrangement manner as shown in FIG. 11, so that the reference signals can be arranged in the arrangement manner as shown in FIG. 11 in the high-speed scene, avoiding the current arrangement example scheme similar to that shown in FIG.
  • the performance degradation that may be caused achieves the effect of effectively utilizing the flat frequency domain of the channel to obtain performance gain.
  • the solution provided by the foregoing embodiment of the present invention enables the base station to implement the configuration of the reference signal by using less signaling resources, and the high-speed, high-frequency, high-frequency selection is adopted by configuring the reference signal arrangement manner.
  • the system can obtain higher channel estimation accuracy, data demodulation is more accurate, and the system can perform different arrangement of reference signals using a fixed DMRS pattern, thereby reducing system complexity. Therefore, the solution provided by the foregoing embodiment of the present invention is more suitable for the need of supporting complex and variable scenarios in a communication system (such as 5G NR) in the future, and can implement more reliable data. transmission.
  • a communication system such as 5G NR
  • the foregoing embodiment of the present invention is equivalent to providing a flexible configuration of a reference signal arrangement manner, and is specifically configured to implement flexible configuration of a reference signal port multiplexing manner, so that the base station can be configured according to transmission requirements. Dynamically configure the multiplexing of reference signal ports for more reliable data transmission.
  • the multiplexing mode and port mapping of the reference signal are redesigned, and related signaling changes are introduced, and the signaling configuration of the base station is adopted (equivalent In the above-mentioned arrangement indication, the port multiplexing mode for different scenarios is freely configured to implement more reliable data transmission; and the signaling configuration of the base station also supports switching between ports (for example, support time division + The code division mode and the frequency division + code division multiplexing mode are switched by 1 bit in the signaling, so that the same RS pattern can dynamically switch the port multiplexing mode between the target reference signal ports, and the indication signaling can pass RRC, DCI or MAC.
  • the transmission is performed, so that the flexible arrangement of the reference signal ports can be realized in one pilot map, thereby overcoming the defects that the current RS mapping and configuration schemes are fixed in mapping mode and single in function, and can realize more reliable data transmission.
  • FIG. 12 is a flow chart of an indication method provided in accordance with some embodiments of the present invention.
  • the flow shown in Figure 12 can be implemented by a terminal.
  • a physical or functional module that can be configured to perform the flow shown in FIG. 12 can be configured on the terminal, and the functional modules for executing the flow can be implemented by hardware, software programming, or a combination of hardware and software.
  • the process includes the following steps:
  • Step 1201 Receive an arrangement indication, where the arrangement indication is used to indicate an arrangement manner of the reference signal;
  • Step 1202 Determine, according to the arrangement indication, an arrangement manner of reference signals
  • the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, a time division manner, a frequency division+code division manner, or a time division+code division manner, if the reference signal is arranged in a manner of In the frequency division mode, each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain; if the reference signal is arranged in a time division manner, each group of time-frequency resources occupies the time domain At least one continuous symbol and one subcarrier in the frequency domain; if the reference signal is arranged in a frequency division + code division manner, each set of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-range in the frequency domain a carrier, and the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal; if the reference signal is arranged in a time division + code division mode, each group of time-frequency resources is occupied. At least one consecutive symbol
  • the reference signal is arranged in the frequency division manner or the frequency division + code division manner,
  • the at least two time-frequency resources of the at least one group of time-frequency resources occupy the same symbol in the time domain, and the sub-carriers in the frequency domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the reference signal is arranged in the time division manner or the time division + code division manner, at least two groups of time frequency resources of the at least one group of time frequency resources The same subcarriers in the frequency domain are occupied, and the symbols in the time domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources is the same. .
  • the number of symbols in the time domain occupied by different groups of time-frequency resources is the same.
  • the number of subcarriers in the frequency domain occupied by any one of the frequency division mode or the frequency division + code division mode is equal to the time division mode or the time division + code The number of symbols in the time domain occupied by any group of time-frequency resources in the split mode.
  • the specific implementation process of the indication method on the terminal side provided by the foregoing embodiment of the present invention may be adaptively adjusted according to the flow of the indication method described above on the base station side according to the present invention.
  • the specific implementation manner may be based on the same technical concept.
  • the method embodiments of the base station side described in the foregoing embodiments of the present invention are obtained, and the application will not be repeated herein.
  • the present application further provides a pointing device, and the functional modules in the device may be implemented by hardware, software or a combination of hardware and software, and the device may be deployed in a base station. For example, it can be deployed on a base station in the communication system shown in FIG. 2.
  • FIG. 13 is a schematic structural diagram of a pointing device according to some embodiments of the present invention.
  • the device includes:
  • the generating module 1301 is configured to generate an arrangement indication, where the arrangement indication is used to indicate an arrangement manner of the reference signal, where the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, Time division mode, frequency division + code division mode or time division + code division mode.
  • each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive subcarrier in the frequency domain; in the time division mode, each time division mode The group time-frequency resource occupies at least one consecutive symbol in the time domain and one sub-carrier in the frequency domain; in the frequency division + code division mode, each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain And the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal; in the time division + code division mode, each group of time-frequency resources occupies at least one consecutive symbol in the time domain and in the frequency domain a subcarrier, and the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal;
  • the sending module 1302 is configured to send the arrangement indication.
  • At least two groups of time-frequency resources of the at least one group of time-frequency resources occupy the same symbol in a time domain, and the at least two groups of time-frequency The subcarriers in the frequency domain occupied by the resources do not overlap.
  • At least two groups of time-frequency resources of the at least one group of time-frequency resources occupy the same sub-carrier in a frequency domain, and the at least two groups of time-frequency The symbols in the time domain occupied by the resources do not overlap.
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources is the same.
  • the number of symbols in the time domain occupied by different groups of time-frequency resources is the same.
  • the number of subcarriers in the frequency domain occupied by any one of the frequency division modes is equal to the number of symbols in the time domain occupied by any one of the time division modes.
  • the specific implementation of the indication device provided by the foregoing embodiment of the present invention can be compared with the present invention.
  • the specific implementation of the indication device provided by the foregoing embodiment of the present invention is similar to the principle of the present invention.
  • the implementation of the methods provided by the foregoing embodiments may be referred to each other, and the repeated description is not repeated.
  • the present application further provides a pointing device, and the functional modules in the device may be implemented by hardware, software or a combination of hardware and software, and the device may be deployed in the terminal. For example, it can be deployed on a terminal in the communication system shown in FIG. 2.
  • FIG. 14 is a schematic structural diagram of a pointing device according to some embodiments of the present invention. As shown in Figure 14, the device includes:
  • the receiving module 1401 is configured to receive an arrangement indication, where the arrangement indication is used to indicate an arrangement manner of the reference signal;
  • a determining module 1402 configured to determine, according to the arrangement indication, an arrangement manner of the reference signal
  • the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, a time division manner, a frequency division+code division manner, or a time division+code division manner, if the reference signal is arranged in a manner of In the frequency division mode, each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain; if the reference signal is arranged in a time division manner, each group of time-frequency resources occupies the time domain At least one continuous symbol and one subcarrier in the frequency domain; if the reference signal is arranged in a frequency division + code division manner, each set of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-range in the frequency domain a carrier, and the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal; if the reference signal is arranged in a time division + code division mode, each group of time-frequency resources is occupied. At least one consecutive symbol
  • the reference signal when the reference signal is arranged in the frequency division manner or the frequency division + code division manner, at least two of the at least one group of time-frequency resources
  • the frequency resource occupies the same symbol in the time domain, and the subcarriers in the frequency domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the reference signal when the reference signal is arranged in the time division manner or the time division + code division mode, at least two groups of time-frequency resources of the at least one group of time-frequency resources The same subcarriers in the frequency domain are occupied, and the symbols in the time domain occupied by the at least two groups of time-frequency resources do not overlap.
  • the number of subcarriers in the frequency domain occupied by different groups of time-frequency resources is the same. .
  • the number of symbols in the time domain occupied by different groups of time-frequency resources is the same.
  • the number of subcarriers in the frequency domain occupied by any one of the frequency division mode or the frequency division + code division mode is equal to the time division mode or the time division + code The number of symbols in the time domain occupied by any group of time-frequency resources in the split mode.
  • the device deployed on the terminal side provided by the foregoing embodiment of the present invention is similar to the method for solving the problem on the terminal side provided by the foregoing embodiment of the present invention, and thus the device provided by the foregoing embodiment of the present invention is The implementation of the method on the terminal side that can be provided by the foregoing embodiments of the present invention can be referred to each other, and the repeated description is not repeated.
  • each functional module in each embodiment of the present application may be integrated into one processing. In the device, it can also be physically existed alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • FIG. 15 is a schematic structural diagram of a base station according to some embodiments of the present invention.
  • the base station 1500 can include a processor 1501.
  • the processor 1501 may be a central processing unit (CPU), or a digital processing module or the like.
  • the base station 1500 can also include a transceiver 1502.
  • the processor 1501 is configured to generate an arrangement indication, and the transceiver 1502 is configured to send the arrangement indication.
  • the arrangement indication is used to indicate an arrangement manner of the reference signal, where the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, a time division manner, a frequency division + a code division manner, or a time division.
  • each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain; in the time division mode, each group of time-frequency resources occupies at least in the time domain a continuous symbol and one subcarrier in the frequency domain; in the frequency division + code division mode, each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive subcarrier in the frequency domain, and the reference signal passes
  • the orthogonal code corresponding to the reference signal is multiplexed on the set of time-frequency resources; in the time division + code division mode, each set of time-frequency resources occupies at least one consecutive symbol in the time domain and one sub-carrier in the frequency domain, and the The reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal.
  • processor 1501 and transceiver 1502 can be used to perform the methods provided by the aforementioned embodiments of the present invention.
  • the base station provided by the foregoing embodiment of the present invention is similar to the principle of the method provided by the foregoing embodiment of the present invention. Therefore, the specific implementation of the base station provided by the foregoing embodiment of the present invention may be provided by the foregoing embodiment of the present invention. The implementation of the method can be referred to each other, and the present application will not be repeated here.
  • the base station 1500 may further include a memory for storing a program executed by the processor 1501.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), or a volatile memory such as a random access memory (random- Access memory, RAM).
  • a memory is any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and can be accessed by a computer, but is not limited thereto.
  • the specific connection medium between the processor 1501 and the transceiver 1502 is not limited in the embodiment of the present application.
  • the embodiment of the present application is connected by a bus between the processor 1501 and the transceiver 1502 in FIG. 15, and FIG. 15 is represented by a hollow double arrow line, but does not mean that there is only one bus or one type of bus, and other components.
  • the connection between the two is only for illustrative purposes and is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the embodiment of the present invention further provides a readable storage medium for storing software instructions required to execute the above-mentioned processor, which includes a program for executing the above-mentioned processor.
  • FIG. 16 is a schematic structural diagram of a terminal according to some embodiments of the present invention.
  • the terminal 1600 can include a processor 1601.
  • the processor 1601 can be a central processing module, or a digital processing module or the like.
  • the terminal 1600 can also include a transceiver 1602.
  • the transceiver 1602 is configured to receive an arrangement indication, where the arrangement indication is used to indicate an arrangement manner of the reference signal;
  • the processor 1601 is configured to determine, according to the arrangement indication, an arrangement manner of the reference signals
  • the reference signal occupies at least one set of time-frequency resources, and the arrangement manner is a frequency division manner, a time division manner, a frequency division+code division manner, or a time division+code division manner, if the reference signal is arranged in a manner of In the frequency division mode, each group of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-carrier in the frequency domain; if the reference signal is arranged in a time division manner, each group of time-frequency resources occupies the time domain At least one continuous symbol and one subcarrier in the frequency domain; if the reference signal is arranged in a frequency division + code division manner, each set of time-frequency resources occupies one symbol in the time domain and at least one consecutive sub-range in the frequency domain a carrier, and the reference signal is multiplexed on the set of time-frequency resources by an orthogonal code corresponding to the reference signal; if the reference signal is arranged in a time division + code division mode, each group of time-frequency resources is occupied. At least one consecutive symbol
  • the processor 1601 and the transceiver 1602 can be used to perform the terminal side method provided by the foregoing embodiments of the present invention.
  • the terminal provided by the foregoing embodiment of the present invention is similar to the method for solving the problem in the foregoing embodiment of the present invention. Therefore, the specific implementation of the terminal provided by the foregoing embodiment of the present invention may be provided by the foregoing embodiment of the present invention. The implementation of the method can be referred to each other, and the present application will not be repeated here.
  • the terminal 1600 may further include a memory for storing a program executed by the processor 1601.
  • the memory may be a non-volatile memory such as a hard disk or a solid state hard disk or the like, or may be a volatile memory such as a random access memory.
  • a memory is any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and can be accessed by a computer, but is not limited thereto.
  • the specific connection medium between the processor 1601 and the transceiver 1602 is not limited in the embodiment of the present application.
  • the embodiment of the present application is connected by a bus between the processor 1601 and the transceiver 1602 in FIG. 16, and FIG. 16 is represented by a hollow double arrow line, but does not mean that there is only one bus or one type of bus, and other components.
  • the connection between the two is only for illustrative purposes and is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the embodiment of the present invention further provides a readable storage medium for storing software instructions required to execute the above-mentioned processor, which includes a program for executing the above-mentioned processor.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种指示方法及装置,用以支持复杂多变场景的需求。该方法包括:生成和发送用于指示参考信号的排布指示,该参考信号占用至少一组时频资源,该排布方式为频分、时分、频分+码分或时分+码分;每组时频资源在频分方式中,占用时域内一个符号和频域内至少一个连续的子载波;在时分方式中,占用时域内至少一个连续符号和频域内一个子载波;在频分+码分方式中,占用时域内一个符号和频域内至少一个连续的子载波,且该参考信号通过该参考信号对应的正交码复用在该组时频资源上;在时分+码分方式中,占用时域内至少一个连续符号和频域内一个子载波,且参考信号通过该参考信号对应的正交码复用在该组时频资源上。

Description

一种指示方法及装置
本申请要求在2017年02月04日提交中国专利局、申请号为201710064273.6、发明名称为《一种指示方法及装置》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种指示方法及装置。
背景技术
目前的通信***中,无线信道的信息获取及补偿主要基于导频信号或者参考信号(Reference Signal,RS)。在正交频分复用(Orthogonal Frequency-Division Multiplexing,OFDM)***中,RS在OFDM符号内分布于时频二维空间中不同的资源单元(Resource Element,RE)上,并具有已知的幅度和相位。在多输入多输出(Multi-input Multi-output,MIMO)***中,各根发送天线(虚拟天线或物理天线)具有独立的数据信道,基于预知的RS信号,接收机针对每根发送天线进行信道估计,并基于此还原发送数据。
信道估计的主要目的是为了补偿信道衰落和噪声而重建接收信号的过程,其利用发送机与接收机预知的RS来追踪信道的时域和频域变化。例如,为了实现高阶多天线***的信道质量测量及数据解调,长期演进的升级(Long Term Evolution-Advanced,LTE-A)***分别定义了多种RS:小区公共参考信号(Cell-specific reference signals,CRS),解调参考信号(Demodulation Reference Signal,DMRS)和信道状态信息参考信号(Channel State Information—Reference Signal,CSI-RS),其中,DMRS用于物理下行共享信道(Physical Downlink Share Channel,PDSCH)的解调。CSI-RS用于天线端口对应的信道测量,该参考信号在R10中被引入用于传输模式(Transmission Mode,TM)9/10下测量信道状态信息,进而用于调度、链路自适应以及MIMO传输相关的发送配置信息生成等,具体地,***基于CSI-RS测量结果完成信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI),秩指示(Rank Indication,RI)等信息的上报。CRS用来测量下行信道质量以便进行资源调度和支持链路自适应技术,因而在所有可用频带以及所有子帧发送。
现行标准中,RS通常按照固定的序列进行生成,根据端口数以固定的密度和固定方式在物理资源块(Physical Resource Block,PRB)内进行映射。通常RS功能单一,不同种类的RS仅完成其对应的功能。在目前的每个导频图中,各个RS端口的映射规则和功能均相同,无法根据不同的场景进行配置。例如CSI-RS的导频图由CSI-RS配置信息决定,每种配置给出不同端口数对应的RS在子帧内映射时频资源位置,普通子帧内31种配置对应的RS共可占40RE。
伴随着通信技术的迅猛发展,高速、大容量和广覆盖已成为未来通信***的主要需求,解决由于通信范围的不断扩大以及通信环境的复杂多样而导致的严重的衰落和干扰等其非理想特性问题便显得尤为重要。5G新空口(5Generation New Radio,5G NR)对于多场景、多频段、多传输方式需求的提出,如何使得***的RS需要能够根据不同的场景或需求进行灵活配置,保证高质量的数据传输和高资源效率,已成为5G NR***中亟待解决的 问题。
发明内容
本申请提供一种指示方法及装置,用以解决目前RS映射和配置方案映射方式固定、功能单一的问题,实现更可靠的数据传输。
第一方面,本申请提供了一种指示方法,所述方法包括:
生成排布指示,所述排布指示用于指示参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,在所述频分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;在时分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;在所述频分+码分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;在时分+码分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;
发送所述排布指示。
由于通过上述方式使得基站能够针对不同场景,依据不同场景下的传输需求,基于上述可选的排布方式进行参考信号排布方式的灵活配置,动态灵活地对RS的排布方式进行配置,从而实现更可靠的数据传输。
在一种可能的实现中,在所述频分方式或者所述频分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
在一种可能的实现中,在所述时分方式或者所述时分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
在一种可能的实现中,在所述频分方式或者所述频分+码分方式中,不同组时频资源占用的频域内的子载波的数量相同。
在一种可能的实现中,在所述时分方式或者所述时分+码分方式中,不同组时频资源占用的时域内的符号的数量相同。
在一种可能的实现中,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
通过上述方式能够实现相同的RS pattern下动态切换参考信号的排布方式,从而降低***复杂度。
第二方面,本申请提供了一种指示方法,所述方法包括:
接收排布指示,所述排布指示用于指示参考信号的排布方式;
根据所述排布指示,确定参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,若所述参考信号的排布方式为频分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;若所述参考信号的排布方式为时分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;若所述参考信号的排布方式为频分+码分 方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;若所述参考信号的排布方式为时分+码分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
在一种可能的实现中,若所述参考信号的排布方式为所述频分方式或者所述频分+码分方式,则所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
在一种可能的实现中,若所述参考信号的排布方式为所述时分方式或者所述时分+码分方式,则所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
在一种可能的实现中,若所述参考信号的排布方式为所述频分方式或者所述频分+码分方式,则不同组时频资源占用的频域内的子载波的数量相同。
在一种可能的实现中,若所述参考信号的排布方式为所述时分方式或者所述时分+码分方式,则不同组时频资源占用的时域内的符号的数量相同。
在一种可能的实现中,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
第三方面,本申请提供了一种指示装置,所述装置部署于基站,所述装置包括:
生成模块,用于生成排布指示,所述排布指示用于指示参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,在所述频分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;在时分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;在所述频分+码分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;在时分+码分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;
发送模块,用于发送所述排布指示。
在一种可能的实现中,在所述频分方式或者所述频分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
在一种可能的实现中,在所述时分方式或者所述时分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
在一种可能的实现中,在所述频分方式或者所述频分+码分方式中,不同组时频资源占用的频域内的子载波的数量相同。
在一种可能的实现中,在所述时分方式或者所述时分+码分方式中,不同组时频资源占用的时域内的符号的数量相同。
在一种可能的实现中,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占 用的时域内的符号的数量。
本发明上述第三方面或第三方面的任一种实现所述装置的实施以及有益效果可与本发明上述第一方面或第一方面的任一种实现所述方法的实施以及有益效果可以相互参见,重复之处不再赘述。
第四方面,本申请提供了一种指示装置,所述装置部署于终端,所述装置包括:
接收模块,用于接收排布指示,所述排布指示用于指示参考信号的排布方式;
确定模块,用于根据所述排布指示,确定参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,若所述参考信号的排布方式为频分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;若所述参考信号的排布方式为时分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;若所述参考信号的排布方式为频分+码分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;若所述参考信号的排布方式为时分+码分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
在一种可能的实现中,在所述参考信号的排布方式为所述频分方式或者所述频分+码分方式时,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
在一种可能的实现中,在所述参考信号的排布方式为所述时分方式或者所述时分+码分方式时,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
在一种可能的实现中,在所述参考信号的排布方式为所述频分方式或者所述频分+码分方式时,不同组时频资源占用的频域内的子载波的数量相同。
在一种可能的实现中,在所述参考信号的排布方式为所述时分方式或者所述时分+码分方式时,不同组时频资源占用的时域内的符号的数量相同。
在一种可能的实现中,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
本发明上述第四方面或第四方面的任一种实现所述装置的实施以及有益效果可与本发明上述第二方面或第二方面的任一种实现所述方法的实施以及有益效果可以相互参见,重复之处不再赘述。
第五方面,本申请提供了一种基站,所述基站包括:处理器和收发器;其中,
所述处理器用于生成排布指示;所述收发器用于发送所述排布指示;
其中,所述排布指示用于指示参考信号的排布方式,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,在所述频分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;在时分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;在所述频分+码分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;在时分+码 分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
在一种可能的实现中,在所述频分方式或者所述频分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
在一种可能的实现中,在所述时分方式或者所述时分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
在一种可能的实现中,在所述频分方式或者所述频分+码分方式中,不同组时频资源占用的频域内的子载波的数量相同。
在一种可能的实现中,在所述时分方式或者所述时分+码分方式中,不同组时频资源占用的时域内的符号的数量相同。
在一种可能的实现中,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
本发明上述第五方面或第五方面的任一种实现所述基站的实施以及有益效果可与本发明上述第一方面或第一方面的任一种实现所述方法的实施以及有益效果可以相互参见,重复之处不再赘述。
第六方面,本申请还提供了一种可读存储介质,用于存储为执行上述第一方面、第一方面的任意一种设计的功能所用的软件指令,其包含用于执行上述第一方面、第一方面的任意一种设计的方法所设计的程序。
第七方面,本申请提供了一种终端,所述终端包括:处理器和收发器;其中,
所述收发器用于接收排布指示,所述排布指示用于指示参考信号的排布方式;
所述处理器用于根据所述排布指示,确定参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,若所述参考信号的排布方式为频分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;若所述参考信号的排布方式为时分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;若所述参考信号的排布方式为频分+码分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;若所述参考信号的排布方式为时分+码分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
在一种可能的实现中,在所述参考信号的排布方式为所述频分方式或者所述频分+码分方式时,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
在一种可能的实现中,在所述参考信号的排布方式为所述时分方式或者所述时分+码分方式时,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
在一种可能的实现中,在所述参考信号的排布方式为所述频分方式或者所述频分+码 分方式时,不同组时频资源占用的频域内的子载波的数量相同。
在一种可能的实现中,在所述参考信号的排布方式为所述时分方式或者所述时分+码分方式时,不同组时频资源占用的时域内的符号的数量相同。
在一种可能的实现中,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
本发明上述第七方面或第七方面的任一种实现所述终端的实施以及有益效果可与本发明上述第二方面或第二方面的任一种实现所述方法的实施以及有益效果可以相互参见,重复之处不再赘述。
第八方面,本申请还提供了一种可读存储介质,用于存储为执行上述第二方面、第二方面的任意一种设计的功能所用的软件指令,其包含用于执行上述第二方面、第二方面的任意一种设计的方法所设计的程序。
附图说明
图1为目前LTE标准中一种DMRS资源分布方式的示意图;
图2为依照本发明一些实施例的无线通信***的架构示意图;
图3为依照本发明一些实施例所提供的指示方法的流程示意图;
图4为依照本发明一些实施例的资源单元的结构示意图;
图5为依据本发明一些实施例中所使用的DMRS pattern中DMRS的排布示意图;
图6为依据本发明一些实施例中基于相同的DMRS pattern下DMRS重新排布的示意图;
图7为依据本发明一些实施例的高频选场景中信道的特性示意图;
图8为依据本发明一些实施例中高频选场景下参考信号的排布方式示意图;
图9为依据本发明一些实施例所提供的方案所对应的性能增益的示意图;
图10为依据本发明一些实施例的高速场景中信道的特性示意图;
图11为依据本发明的一些实施例中高速场景下参考信号的排布方式示意图;
图12为依照本发明又一些实施例所提供的指示方法的流程示意图;
图13为依据本发明一些实施例所提供的指示装置的结构示意图;
图14为依照本发明又一些实施例所提供的指示装置的结构示意图;
图15为依据本发明一些实施例所提供的基站的结构示意图;
图16为依照本发明一些实施例所提供的终端的结构示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。
为了更清楚地说明本发明的实施例所提供的技术方案,本申请将首先对目前长期演进(Long Term Evolution,LTE)标准中RS占用时频资源的方式进行简要介绍。
在目前LTE标准中,RS通常根据天线端口数的需求按照固定的导频图(或可称为RS pattern)进行映射。对于给定的端口数,每个RS端口在资源块(Resource Block,RB)内以固定规则进行映射,且RS的功能相同。
现有标准支持RS在每个子帧内进行时域和频域的复用以提升频谱效率。常见的复用方式诸如有:频分复用(Frequency Division Multiplexing,FDM)、时分复用(Time Division Multiplexing,TDM)、码分复用(Code Division Multiplexing,CDM)等。FDM按频段区分信号,TDM按例如但不限于OFDM符号或者时隙区分信号,CDM按相互正交的码字区分信号。
以RS具体为DMRS为例,DMRS可在每个子帧内进行时域内的CDM以提升频谱效率,目前单用户MIMO(Single-User MIMO,SU-MIMO)最大支持8层正交DMRS复用,DMRS导频占用24个资源粒(Resource Element,RE)。多用户MIMO(Multi-User MIMO,MU-MIMO)最大支持4层正交DMRS复用,DMRS导频占用12个RE。
图1示出了目前LTE标准中DMRS一种资源排布方式的示意图。该资源排布方式100最高支持8个符号流(又称空间流或者数据流)的SU-MIMO传输,这些符号流分别对应DMRS端口7~14。如图1所示,在一个由RB102和RB104组成的RB对(RB pair)106内,DMRS共占用24个RE,这些RE分布在频域内的6个子载波上(每个RB的第0、1、5、6、10及11个子载波),以及时域内的4个符号上(每个子帧的5、6、12和13个符号)。
分布在同一子载波上的4个被DRMS占用的RE组成一个DMRS RE组,因此DMRS所占用的24个RE可以划分为6个DMRS RE组。图样108所标识RE所在的每个DMRS RE组可用于承载DMRS端口7、8、11和13的DMRS,图样110所标识RE所在的每个DMRS RE组可用于承载DMRS端口9、10、12和14的DMRS。
DMRS端口在每个子帧内进行时域内的CDM有两种模式:
每个DMRS RE组可借助2组正交掩码(Orthogonal Cover Code,OCC)以CDM的方式承载2个DMRS端口对应的DMRS(也可表示为时域上维度为2的CDM、或CDM-2);
比如基于图1,图样108所标识RE所在的每个DMRS RE组承载DMRS端口7和8,图样110所标识RE所在的每个DMRS RE组承载DMRS端口9和10,端口7、8与端口9、10分别在时域进行维度为2的CDM,端口7、8与9、10间为FDM复用方式。
或者,每个DMRS RE组可借助4组OCC以CDM的方式承载4个DMRS端口对应的DMRS(也可表示为时域上维度为4的CDM、或CDM-4);
比如仍然基于图1,图样108所标识RE所在的每个DMRS RE组用于承载DMRS端口7、8、11、13,图样110所标识RE所在的每个DMRS RE组用于承载DMRS端口9、10、12、14,端口7、8、11、13与端口9、10、12、14分别在时域进行维度为4的CDM,端口7、8、11、13与9、10、12、14间为FDM复用方式。
作为一个示例,对于时域内维度为4的CDM复用方式,各个DMRS端口所对应的每个DMRS RE组中的4个RE的正交掩码可以如下表1所示。
表1、DMRS端口对应的DMRS RE组中的4个RE的正交掩码示例
DMRS端口 OCC码
7 [+1+1+1+1]
8 [+1-1+1-1]
9 [+1+1+1+1]
10 [+1-1+1-1]
11 [+1+1-1-1]
12 [-1-1+1+1]
13 [+1-1-1+1]
14 [-1+1+1-1]
由图1可知,每个DMRS端口的DMRS占用3个DMRS RE组,这3个DMRS RE组分布在3个子载波上。每个DMRS RE组包含的4个RE分布在4个OFDM符号上。每个DMRS RE组可借助2组OCC以CDM的方式承载2个DMRS端口对应的DMRS,或者可借助4组OCC以CDM的方式承载4个DMRS端口对应的DMRS.
上文以举例的方式对目前DMRS的资源分配及复用原则进行了大致的介绍。应注意,上述DMRS资源排布方式仅为目前LTE多种DMRS资源排布方式的示例,依照目前LTE标准,不同场景可能采用不同的DMRS资源排布方式。例如,MU-MIMO场景下的DMRS资源排布方式,可能与SU-MIMO场景下的DMRS资源排布方式不同。又例如,同时调度的符号流的最大数量不同,DMRS资源排布方式可能有所不同。因此,本领域的技术人员应当明白,上述的DMRS资源排布方式并非用于限制本发明实施例提供的技术方案的范围,在具体实现过程中,还可以采用其他的DMRS资源排布方式。
通过上述DMRS资源排布方式示例可以看到,目前LTE标准中RS通常根据总天线端口数以固定的导频图映射在PRB内,且每个RS端口的功能相同。而随着5G NR对于多场景、多频段、多传输方式需求的提出,目前映射方式固定、功能单一的RS映射和配置方案已经无法满足未来复杂多样的通信场景。
比如,对于下一代通信***需要考虑的一个典型场景-高速场景,上述DMRS资源排布示例中所使用的时域CDM模式并不适用。因为在高速场景中,信道的快速时变使得一个子帧内不同OFDM符号的信道快速变化,因而使得DMRS RE组内信道相关性变差,导致时域CDM性能下降,信道估计误差及***性能下降;
又比如,对于下一代通信***需要考虑的又一个典型场景-高频场景,上述DMRS资源排布示例中所使用的时域CDM模式也不适用。因为在高频场景中,时域上不同OFDM符号将会受到相位噪声影响,而且不同OFDM符号内信道受到的相位噪声不同,因而使得时域CDM性能下降,导致***性能下降;
此外,由于目前时域CDM模式固定,因而无法针对不同场景的特点进行设计。在某些低频选场景中,目前仅支持时域CDM的配置方案无法利用信道在频域平坦的特点,从而导致性能增益的流失。
为了解决目前映射方式固定、功能单一的RS映射和配置方案无法满足未来通信***需求、无法适用于***中存在多种波形和端口不同传输特性需要补偿的场景的缺陷。可考虑的解决方案比如包括有实现多种RS端口在导频图内的不规则映射、不同端口复用方式的配置、导频可能承载多种不同功能、不同端口密度可配置等等。
基于上述考虑,本发明实施例提供了一种指示方案,主要以实现参考信号端口复用方式的灵活配置为目的,通过提供多种可选的参考信号的排布方式,并对参考信号的排布方式进行指示,使得***能够根据不同的场景以及传输需求动态灵活地指示参考信号的排布,从而实现更可靠的数据传输。
具体地,在本发明一些实施例所提供的指示方案中,基站可生成并发送排布指示,该排布指示指示了参考信号的排布方式,该排布指示所指示的排布方式具体可以是频分方式、时分方式、频分+码分方式或者时分+码分方式;参考信号占用至少一组时频资源,上述四种可选的排布方式可具体描述如下:
若参考信号的排布方式为频分方式,那么每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;若参考信号的排布方式为时分方式,那么每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;若参考信号的排布方式为频分+码分方式,那么每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且参考信号通过该参考信号对应的正交码复用在该组时频资源上,例如该参考信号借助自身的正交码(例如但不限于OCC)与其他参考信号一同复用在每组时频资源上;若参考信号的排布方式为时分+码分方式,那么每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且参考信号通过该参考信号对应的正交码复用在该组时频资源上,类似地,该参考信号可借助自身的正交码与其他参考信号一同复用在每组时频资源上。
可以看到,通过本发明上述实施例所提供的指示方案,基站能够在不同的场景下,依据不同的传输需求,基于上述可选的四种排布方式,动态灵活地对RS的排布方式进行配置,从而实现更可靠的数据传输。
具体地,在本发明的一些实施例中,上述参考信号的排布指示的发送周期可配置,比如可在检测到信道在时域内发送剧烈变化或者信道在频域内发送剧烈变化时,基站可生成与发送排布指示,以指示参考信号按照能够获得更好性能的排布方式进行排布;
此外,上述参考信号的排布指示具体可以通过无线资源控制(Radio Resource Control,RRC)、下行控制信息(Downlink Control Information,DCI)或媒体访问控制(Media Access Control,MAC)等方式进行发送。
可以看到,本发明上述实施例所提供的指示方案,相当于提供了一种可动态配置参考信号复用方式的技术方案,通过在基站侧引入相关的指示信令,因而由基站使用较少信令指示资源便可以实现针对不同场景的端口复用方式的自由配置,满足下一代通信***中需要支持复杂多变场景的需求,在诸如高速、高频、高频选等场景下通过灵活配置参考信号的排布方式获得更高的信道估计精度,使得数据解调在多种场景内更加准确。
为了更清楚的描述本发明实施例所提供的技术方案,图2为依照本发明一些实施例的无线通信***的架构示意图。
如图2所示,无线通信网络200包括基站201~203和终端210~217,其中,基站201~203彼此之间可通过回程(backhaul)链路(如基站201~203彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端210~217可通过无线链路(如基站201~203与终端210~217之间的折线所示)与对应的基站201~203通信。
基站201~203用于为终端210~217提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图2中各椭圆区域所示),进入该区域的终端可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端可收到来自多个基站的无线信号,因此这些基站可以进行相互协同,以此来为该终端提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端提供服务。
例如,如图2所示,基站201与基站202的服务覆盖区域存在交叠,终端213便处于该交叠区域之内,因此终端213可以收到来自基站201和基站202的无线信号,基站201和基站202可以进行相互协同,来为终端213提供服务。又例如,如图2所示,基站201、基站202和基站203的服务覆盖区域存在一个共同的交叠区域,终端214便处于该交叠区 域之内,因此终端214可以收到来自基站201、202和203的无线信号,基站201、202和203可以进行相互协同,来为终端214提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
终端210~217可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端210~217还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站201~203,和终端210~217均可配置有多根天线,以支持MIMO技术。进一步的说,基站201~203和终端210~217既可以支持SU-MIMO技术,也可以支持MU-MIMO技术,其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站201~203和终端210~217还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency Block Coding,SFBC)和CDD等发射分集方式。
上文以举例的方式对发射分集进行了概括性的描述。本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式。因此,上述介绍不应理解为对本发明技术方案的限制,本发明技术方案应理解为适用于各种可能的发射分集方案。
此外,基站201~203和终端210~217可采用各种无线通信技术进行通信,例如但不限于,时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single  Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在目前广为人知的各种无线通信***(或者网络),包括但不限于全球移动通信***(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准中定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、LTE、LTE-A以及这些无线通信***的演进***等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信***。此外,术语“***”和“网络”可相互替换。
应注意,图2所示的无线通信网络200仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络200还可能包括其他设备,同时也可根据具体需要来配置基站和终端的数量。
图3为依照本发明一些实施例所提供的指示方法的流程示意图。如图3所示的流程可由基站实现。比如,如图2所示基站上可被配置有用以执行如图3所示流程的物理或者功能模块,用以执行该流程的功能模块可通过硬件、软件编程或者软硬件的结合实现。
为了方便描述,下面将以基站被配置为执行如图3所示流程为例进行详细描述。
如图3所示,该流程包括如下步骤:
步骤301:生成排布指示,该排布指示用于指示参考信号的排布方式;其中,参考信号通常占用至少一组时频资源,参考信号的排布方式可理解为参考信号在时域以及在频域上占用时频资源的方式;
步骤302:发送所生成的排布指示。
如图3所示,在本发明的一些实施例中,参考信号的排布方式可以但不限于以下任一种:频分方式、时分方式、频分+码分方式或者时分+码分方式;
具体地,参考信号占用至少一组时频资源,对于参考信号所占用的时频资源:
若排布指示所指示的参考信号的排布方式为频分方式,那么每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;
若排布指示所指示的参考信号的排布方式为频分+码分方式,那么每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且参考信号通过该参考信号对应的正交码复用在该组时频资源上;比如该排布方式下,参考信号可借助自身的正交码(例如但不限于OCC)与其他参考信号一同复用在每组时频资源上;
若排布指示所指示的参考信号的排布方式为时分方式,那么每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;
若排布指示所指示的参考信号的排布方式为时分+码分方式,那么每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且参考信号通过该参考信号对应的正交码复用在该组时频资源上,类似地,该排布方式下参考信号也可借助自身的正交码(例如但不限于OCC)与其他参考信号一同复用在每组时频资源上。
具体地,在本发明的一些实施例中,基站可以依据信道在时域以及频域上变化的特点,来确定参考信号的排布方式以进行指示。
比如,在信道处于时域内变化剧烈而频域内变化缓慢的情况下,基站可以指示参考信号按照上述频分方式或者频分+码分方式在时频资源上进行排布,从而利用信道频域平坦 的特性来获得性能增益,码分方式主要用以协助提升频谱效率;
又比如,在信道处于时域内变化缓慢而频域内变化剧烈的情况下,基站可以通过指示参考信号按照上述时分方式或者时分+码分方式在时频资源上进行排布,从而利用信道时域平坦的特性来获得性能增益,码分方式也主要用以协助提升频谱效率。
具体地,码分方式比如可以是CDM-2或者CDM-4。考虑到CDM-2往往能够取得比CDM-4更好的性能增益,在本发明的一些实施例中,码分方式具体可以是CDM-2。
由于通过如图3所示的流程使得基站能够针对不同场景,依据不同场景下的传输需求,基于上述可选的排布方式进行参考信号排布方式的灵活配置,因而能够在不同的场景下,通过指示参考信号按照能够获得更好的性能增益的排布方式进行排布,从而获得更高的信道估计精度,实现更可靠的数据传输。
比如,在本发明的一些实施例中,假设传输场景为高速场景(如终端处于高速运动状态),该场景下不同时刻的信道变化较大,但频域变化不大,考虑到该场景的上述特点,基站可以从频域角度,生成用于指示参考信号按照频域方式(比如上述频分方式或者频分+码分方式)进行排布的排布指示,从而有效利用信道频域平坦特性来获得性能增益;
又比如,在本发明的一些实施例中,假设传输场景为高频选场景,该场景下不同时刻的信道变化不大,但频域变化较大,考虑到该场景的上述特点,基站可以从时域角度,生成用于指示参考信号按照时域方式(比如上述时分方式或者时分+码分方式)进行排布的排布指示,从而有效利用信道时域平坦特性,获得性能增益。
为了更清楚地说明上述排布方式,类似于LTE标准中的RB、RB对(RB pair)、子帧或者其他资源结构,本发明一些实施例中提供了一种资源单元(Resource Unit),该资源单元可用作为调度用户进行资源分配的基本单位,也可以用于描述参考信号的排布方式。
具体地,本发明上述实施例中参考信号所占用的至少一组时频资源具体可以是资源单元内的至少一组时频资源。比如以图1所示的RS pattern为例,图样108所对应的最上面一个子载波(第11个子载波)以及4个OFDM符号(每个子帧的5、6、12和13个符号)所对应的4个RE构成一组时频资源。
图4为依照本发明一些实施例的资源单元的结构示意图。如图4所示,资源单元400占用频域内多个连续的子载波,和时域内多个连续的符号(OFDM符号)。资源单元内的最小资源单位为RE401,每个RE占用频域内的一个子载波和时域内的一个符号。资源单元400通常包括多个RE。类似于LTE标准中的RB和RB pair,如图4所示的资源单元可以用作为调度用户进行资源分配的基本单位,也可以用于描述参考信号的排布方式。
基于图4所示的资源单元示例,在本发明一些实施例中:
参考信号的排布方式为频分方式时,参考信号所占用的至少一组时频资源之中的每一组时频资源可具体由如图4所示资源单元400的某一列RE(相当于时域内的一个符号)中的若干个在列方向上连续(相当于在频域上连续)的RE组成;
参考信号的排布方式为时分方式时,参考信号所占用的至少一组时频资源之中的每一组时频资源可具体由如图4所示资源单元400的某一行RE(相当于频域内的一个子载波)中的若干个在行方向上连续(相当于在时域上连续)的RE组成;
参考信号的排布方式为频分方式+码分方式时,参考信号所占用的至少一组时频资源之中的每一组时频资源可由如图4所示资源单元400的某一列RE中的若干个在列方向上连续的RE组成,并且这若干个在列方向上连续的RE可借助该参考信号对应的正交码(比 如OCC)以CDM的方式承载该参考信号,即参考信号借助自身的正交码与其他参考信号一同复用在一组时频资源上;
参考信号的排布方式为频分方式+码分方式时,参考信号所占用的至少一组时频资源之中的每一组时频资源可由如图4所示资源单元400的某一行RE中的若干个在行方向上连续的RE组成,并且这若干个在行方向上连续的RE可借助该参考信号对应的正交码(比如OCC)以CDM的方式承载该参考信号,即参考信号借助自身的正交码与其他参考信号一同复用在一组时频资源上。
具体地,考虑到参考信号通常可占用多组时频资源,比如图1所示出的DMRS占用时频资源的示例,为了保证在参考信号占用多组时频资源时同样能够通过排布方式的灵活配置取得本发明上述实施例所描述的效果,在本发明的一些实施例中,若参考信号占用至少两组时频资源:
参考信号的排布方式为频分方式或者频分+码分方式时,参考信号所占用的多组时频资源可之中的每一组时频资源占用时域内的相同的符号,且每组时频资源所占用的频域内的子载波不重叠,即任一组时频资源所占用的频域内的任一子载波不同于其他组;
仍然基于图4所示的资源单元,参考信号的排布方式为频分方式或者频分+码分方式时,参考信号所占用的多组时频资源中的每组时频资源均可由如图4所示资源单元400的某一列RE中的若干个在列方向上连续的RE组成,并且组成每组时频资源的若干个在列方向上连续的RE不重叠;
具体地,在本发明的一些实施例中,参考信号在按照上述频分方式或者频分+码分方式进行排布时,不同组时频资源占用的频域内的子载波的数量可以是相同的。
参考信号的排布方式为时分方式或者时分+码分方式时,参考信号所占用的多组时频资源可占用频域内的相同的子载波,且每组时频资源占用的时域内的符号不重叠,即任一组时频资源所占用的时域内的任一符号不同于其他组;
仍然基于图4所示的资源单元,参考信号的排布方式为时分方式或者时分+码分方式时,参考信号所占用的多组时频资源中的每组时频资源均可由如图4所示资源单元400的某一行RE中的若干个在行方向上连续的RE组成,并且组成每组时频资源的若干个在行方向上连续的RE不重叠。
相应地,在本发明的一些实施例中,参考信号在按照上述时分方式或者时分+码分方式进行排布时,不同组时频资源占用的时域内的符号的数量可以是相同的。
基于降低***复杂度的考虑,在本发明的一些实施例中,基站可使用固定的RS pattern,通过在不同场景下基于固定的RS pattern生成和发送排布指示,以实现相同的RS pattern下动态切换参考信号的排布方式的目的。
具体地,在本发明的一些实施例中,为了实现相同的RS pattern下动态切换参考信号的排布方式,上述频分方式或者频分+码分方式中任一组时频资源占用的频域内的子载波的数量可以等于时分方式或者时分+码分方式中任一组时频资源占用的时域内的符号的数量,换句话说,频分方式或者频分+码分方式中任一组时频资源所占用的RE数量可以等于时分或者时分+码分方式中任一组时频资源所占用的RE数量。
比如仍以DMRS为例,基于图4所示出的资源单元示例,图5为依据本发明一些实施例中所使用的DMRS pattern中DMRS的排布示例。
如图5所示,该DMRS pattern中DMRS占用12个RE,这些RE分布在频域内的6 个子载波上(第0、1、5、6、10及11个子载波),和时域内的2个符号上(第3和4个符号);假设该DMRS pattern中DMRS的排布方式被初始为分布在同一个子载波上的2个被DRMS占用的连续的RE组成一个DMRS RE组(相当于上述的一组时频资源),由图样501所标识的三个DMRS RE组中的每个DMRS RE组通过2组OCC承载DMRS端口7和8的DMRS,由图样502所标识三个DMRS RE组中的每个DMRS RE组通过2组OCC承载DMRS端口9和10的DMRS;该DMRS pattern中DMRS的上述排布方式可以认为是时分+码分方式;该种方式可在信道时域平坦时获得性能增益;
如果基站检测到终端当前处于高速场景,信道在时域内变化剧烈,在频域内变化缓慢,那么基站确定需要将DMRS的排布方式切换到能够取得更好性能的排布方式上,基于当前所处场景,基站可以确定当前可以切换到频分方式或者频分+码分方式进行DMRS的排布,以有效利用信道频域平坦的特性。基于上述图5所示的DMRS pattern,基站可以生成并发送排布指示,该排布指示用于指示DMRS的排布方式切换为频分或者频分+码分方式,比如图6为依据本发明一些实施例中基于相同的DMRS pattern下DMRS重新排布的示例。
如图6所示,DMRS重新在如图5所示的DMRS pattern上进行排布,DMRS仍占用12个RE,这些RE分布在频域内的6个子载波上(第0、1、5、6、10及11个子载波),和时域内的2个符号上(第3和4个符号);其中,分布在同一个符号上的2个被DRMS占用的连续RE组成一个DMRS RE组(相当于上述的一组时频资源组),由图样601所标识的三个DMRS RE组中的每个DMRS RE组通过2组OCC承载DMRS端口7和8的DMRS,由图样602所标识三个DMRS RE组中的每个DMRS RE组通过2组OCC承载DMRS端口9和10的DMRS;可以看到,上述DMRS的排布方式可以认为是频分+码分方式,进而,在终端当前处于高速场景情况下,通过如图6所示的排布方式可在信道频域平坦时获得性能增益。
可以看到,通过上述方式,***能够在固定的RS pattern下动态的切换参考信号的排布方式,因而能够在一定程度上降低***复杂度,同时也能够适应于下一代通信***需要支持复杂多变场景的需求,使得高速、高频、高频选等场景下***获得更高的信道估计精度,数据解调在多种场景内更加准确。
具体地,在本方面的一些实施例中,上述排布指示中可以包括有参考信号标识。参考信号标识具体可以例如但不限于天线端口号。
具体地,上述排布指示的发送周期可以是可配置的,比如可以是预置的初始值,即基站可按照设定周期对参考信号的排布方式进行指示;或者也可以由基站对参考信号的排布方式进行实时的指示,比如基站可以在检测到信道发生剧烈变化、需要重新发送参考信号进行信道测量时,向终端发送上述排布指示等。
在本发明的一些实施例中,考虑到不同场景下动态调整参考信号的排布方式的需求,基站可以在检测到终端传输环境发生变化时指示参考信号的排布方式切换为终端当前所处传输环境中能够获得更好性能增益的排布方式。比如,可以在检测到终端处于高速运动的状态时,切换参考信号的排布方式为频分方式或者频分+码分方式。
具体地,上述频分方式和时分方式可由排布指示中的一个比特位(bit)来进行指示,上述频分+码分方式和时分+码分方式也可以相应地由排布指示中的一个比特位进行指示,通过比特位取值的变化来实现排布方式的切换。可以看到通过上述方式,基站使用较少信令指示资源便可以实现对于参考信号排布方式的指示。
具体的,上述排布指示可以通过但不限于如下信令之中的一种进行发送:物理层信令、媒体访问控制层信令、以及无线资源控制信令。
物理层信令也称为第一层(Layer 1,L1)信令,其通常可以由物理层帧中的控制部分来承载。L1信令的典型例子是LTE标准中定义的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载的下行控制信息(Downlink Control Information,DCI)。在一些情况下,L1信令也可以由物理层帧中的数据部分来承载。不难看出,L1信令的发送周期或者信令周期通常为物理层帧的周期,因此这种信令通常用于实现一些动态的控制,以传递一些变化频繁的信息,例如,可以通过物理层信令传送资源分配信息。
媒体访问控制(Media Access Control,MAC)层信令属于第二层(Layer 2)信令,其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC)。第二层帧通常可以携带在物理层帧的数据部分。上述资源指示信息也可以通过媒体访问控制层信令之外的其他第二层信令发送。
无线资源控制(Radio Resource Control,RRC)信令属于第三层(Layer 3)信令,其通常是一些控制消息,L3信令通常可以携带在第二层帧的帧体中。L3信令的发送周期或者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现有的一些通信标准中,L3信令通常用于承载一些配置信息。上述资源指示信息也可以通过RRC信令之外的其他第三层信令发送。
上文所述仅为物理层信令、MAC层信令、RRC信令、第一层信令、第二层信令和第三层信令的原理性描述,有关三种信令的具体细节可以参考现有技术,因此本文不再赘述。
为了更清楚地阐述本发明上述实施例所描述的技术方案,下面将基于两种具体示例场景,对本发明的一些实施例中所提供的参考信号的排布方式进行示例说明。
场景1、高频选场景:
图7示出了依据本发明一些实施例的高频选场景中信道的特性示意图。如图7所示,该场景的特征为信道在频域内变化剧烈,时域内变化缓慢;因而,在本发明的一些实施例中,基站可以生成用于指示参考信号按照时分或者时分+码分方式进行排布的排布指示,并将所生成的排布指示发送给终端,从而有效利用信道时域平坦特性,获得性能增益。
具体地,图8为依据本发明的一些实施例中高频选场景下参考信号的排布方式示意图。
如图8所示,参考信号端口0、1与参考信号端口2、3分别按照时分+码分方式(如图示中所标识出的CDM-2in TD(Time Domain))在时频资源上进行排布。其中,参考信号端口0、1对应的参考信号占用了三组时频资源(如图样801),每组时频资源占用时域内的两个连续的符号(第3和4个符号)以及频域上的一个子载波(分别占用第1个子载波、第6个子载波以及第11个子载波),且该参考信号端口0、1对应的参考信号通过对应的正交码复用在每组时频资源上(CDM-2in TD);参考信号端口2、3对应的参考信号占用了三组时频资源(如图样802),每组时频资源同样占用时域内的两个连续的符号(第3和4个符号)以及频域上的一个子载波(分别占用第0个子载波、第5个子载波以及第10个子载波),且该参考信号端口2、3对应的参考信号同样通过对应的正交码复用在每组时频资源上(CDM-2in TD)。
具体地,基站可以通过生成和发送用于指示参考信号按照如图8所示的排布方式进行排布的排布指示,比如可以将DCI中相应比特位取值为0所对应的排布方式确定为如图8所示的排布方式,从而能够在高频选场景中指示参考信号按照如图8所示的排布方式进行排布,达到有效利用信道时域平坦的特性,获得性能增益的效果。
比如,图9示出了依据本发明一些实施例所提供的方案所对应的性能增益的示意图。在图9所示的示意图中,示出了参考信号端口0、1对应的参考信号以及参考信号端口2、3对应的参考信号在16QAM的调制状态下,分别采用频分+码分方式F-CDM4、F-CDM2以及时分+码分方式T-CDM2进行排布时,信噪比(Signal-to-Noise Ratio,SNR)与误块率(Block Error Rate,BLER)取值的变化。可以看到,采用T-CDM2进行排布的方案较之其它方案误块率最低,因而性能最佳。
场景2、高速场景:
图10示出了依据本发明一些实施例的高速场景中信道的特性示意图。如图10所示,该场景的特征为信道在时域内变化剧烈,频域内变化缓慢;因而,在本发明的一些实施例中,基站可以生成用于指示参考信号按照频分或者频分+码分方式进行排布的排布指示,并将所生成的排布指示发送给终端,从而有效利用信道频域域平坦特性,获得性能增益。
具体地,图11为依据本发明的一些实施例中高速场景下参考信号的排布方式示意图。
如图11所示,参考信号端口0、1与参考信号端口2、3分别按照频分+码分方式(如图示中所标识出的CDM-2in FD(Frequency Domain))在时频资源上进行排布。其中,参考信号端口0、1对应的参考信号占用了三组时频资源(如图样1101),每组时频资源占用频域内不同的两个连续子载波(分别占用第0和1个子载波、第5和6个子载波以及第10和11个子载波)以及时域上的一个符号(第3个符号),且该参考信号端口0、1对应的参考信号通过对应的正交码复用在每组时频资源上(CDM-2in FD);参考信号端口2、3对应的参考信号占用了三组时频资源(如图样1102),每组时频资源占用频域内不同的两个连续子载波(分别占用第0和1个子载波、第5和6个子载波以及第10和11个子载波)以及时域上的一个符号(第4个符号),且该参考信号端口2、3对应的参考信号同样通过对应的正交码复用在每组时频资源上(CDM-2in FD)。
具体地,基站可以通过生成和发送用于指示参考信号按照如图11所示的排布方式进行排布的排布指示,比如可以将DCI中相应比特位取值为1所对应的排布方式确定为如图11所示的排布方式,从而能够在高速场景中指示参考信号按照如图11所示的排布方式进行排布,避免类似于如图1所示的目前的排布示例方案所可能导致的性能损坏,达到有效利用信道频域平坦的特性,获得性能增益的效果。
可以看到,本发明上述实施例所提供的方案使得基站使用较少信令指示资源便能够实现对于参考信号的配置,通过对参考信号排布方式的配置,使得高速、高频、高频选等多种场景下***能够获得更高的信道估计精度,数据解调更加准确,并且***可以在使用固定的DMRS pattern的情况下进行参考信号的不同排布,从而降低***复杂度。因而较之于目前参考信号的排布方案而言,本发明上述实施例所提供的方案更适应于未来通信***(如5G NR)中需要支持复杂多变场景的需求,能够实现更可靠的数据传输。
综上所述,本发明上述实施例相当于提供了一种参考信号排布方式可灵活配置的方案,并具体用以实现参考信号端口复用方式的灵活配置,从而使得基站可以依据传输需求,动态对参考信号端口的复用方式进行灵活配置,实现更可靠的数据传输。
本发明上述实施例所提供的技术方案中,重新设计参考信号的复用方式和端口映射(相当于上述的排布方式),并引入了相关的信令更改,通过基站的信令配置(相当于上述的排布指示),实现针对不同场景的端口复用方式的自由配置,实现更可靠的数据传输;并且,通过基站的信令配置还支持端口间复用方式的切换(比如支持时分+码分方式和频分+码分复用方式通过信令中的1bit切换),从而使得同的RS pattern可以动态切换目标参考信号端口间端口复用方式,指示信令可以通过RRC、DCI或MAC进行发送,因而能够在一个导频图中实现参考信号端口的灵活排布,因而克服了目前RS映射和配置方案映射方式固定、功能单一的缺陷,能够实现更可靠的数据传输。
基于相同的技术构思,图12为依照本发明一些实施例所提供的指示方法流程图。如图12所示的流程可由终端实现。比如,如图2所示终端上可被配置有用以执行如图12所示流程的物理或功能模块,用以执行该流程的功能模块可通过硬件、软件编程或者软硬件的结合实现。
如图12所示,该流程包括如下步骤:
步骤1201:接收排布指示,所述排布指示用于指示参考信号的排布方式;
步骤1202:根据所述排布指示,确定参考信号的排布方式;
其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,若所述参考信号的排布方式为频分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;若所述参考信号的排布方式为时分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;若所述参考信号的排布方式为频分+码分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;若所述参考信号的排布方式为时分+码分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
与本申请前文所描述的基站侧的方法实施例相对应,在本发明的一些实施例中,若所述参考信号的排布方式为所述频分方式或者所述频分+码分方式,则所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
在本发明的一些实施例中,若所述参考信号的排布方式为所述时分方式或者所述时分+码分方式,则所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
在本发明的一些实施例中,若所述参考信号的排布方式为所述频分方式或者所述频分+码分方式,则不同组时频资源占用的频域内的子载波的数量相同。
在本发明的一些实施例中,若所述参考信号的排布方式为所述时分方式或者所述时分+码分方式,则不同组时频资源占用的时域内的符号的数量相同。
在本发明的一些实施例中,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
由于基于相同的技术构思,本发明上述实施例所提供的在终端侧的指示方法的具体实现过程可依据本发明上述在基站侧描述的指示方法的流程来适应性的调整,具体实施方式 可根据本发明上述实施例所描述的基站侧的方法实施例来得到,本申请在此将不再赘述。
基于同样的发明构思,本申请还提供了一种指示装置,该装置中的功能模块具体可通过硬件、软件或软硬件的结合实现,该装置可部署于基站。比如可部署于图2所示出的通信***中的基站上。
图13为依据本发明一些实施例所提供的指示装置结构示意图。
如图13所示,该装置包括:
生成模块1301,用于生成排布指示,所述排布指示用于指示参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,在频分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;在时分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;在频分+码分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;在时分+码分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;
发送模块1302,用于发送所述排布指示。
在本发明的一些实施例中,在所述频分方式中,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
在本发明的一些实施例中,在所述时分方式中,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
在本发明的一些实施例中,在所述频分方式中,不同组时频资源占用的频域内的子载波的数量相同。
在本发明的一些实施例中,在所述时分方式中,不同组时频资源占用的时域内的符号的数量相同。
在本发明的一些实施例中,所述频分方式中任一组时频资源占用的频域内的子载波的数量等于时分方式中任一组时频资源占用的时域内的符号的数量。
具体地,由于本发明上述实施例所提供的指示装置与本发明前述实施例所提供的方法实施例解决问题的原理相似,因而本发明上述实施例所提供的指示装置的具体实施可与本发明前述实施例所提供的方法的实施可以相互参见,重复之处不再赘述。
基于同样的发明构思,本申请还提供了一种指示装置,该装置中的功能模块具体可通过硬件、软件或软硬件的结合实现,该装置可部署于终端。比如可部署于图2所示出的通信***中的终端上。
图14为依据本发明一些实施例所提供的指示装置结构示意图。如图14所示,该装置包括:
接收模块1401,用于接收排布指示,所述排布指示用于指示参考信号的排布方式;
确定模块1402,用于根据所述排布指示,确定参考信号的排布方式;
其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,若所述参考信号的排布方式为频分方式,则每组时频 资源占用时域内的一个符号和频域内的至少一个连续的子载波;若所述参考信号的排布方式为时分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;若所述参考信号的排布方式为频分+码分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;若所述参考信号的排布方式为时分+码分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
在本发明的一些实施例中,在所述参考信号的排布方式为所述频分方式或者所述频分+码分方式时,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
在本发明的一些实施例中,在所述参考信号的排布方式为所述时分方式或者所述时分+码分方式时,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
在本发明的一些实施例中,在所述参考信号的排布方式为所述频分方式或者所述频分+码分方式时,不同组时频资源占用的频域内的子载波的数量相同。
在本发明的一些实施例中,在所述参考信号的排布方式为所述时分方式或者所述时分+码分方式时,不同组时频资源占用的时域内的符号的数量相同。
在本发明的一些实施例中,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
具体地,由于本发明上述实施例所提供的部署在终端侧的装置与本发明前述实施例所提供的终端侧的方法实施例解决问题的原理相似,因而本发明上述实施例所提供的装置的具体实施可与本发明前述实施例所提供的终端侧的方法的实施可以相互参见,重复之处不再赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
基于同样的发明构思,本申请还提供了一种基站。图15为依据本发明的一些实施例所提供的基站的结构示意图。
如图15所示,该基站1500可以包括有处理器1501。处理器1501可以是一个中央处理模块(central processing unit,CPU),或者为数字处理模块等等。该基站1500还可以包括收发器1502。其中,处理器1501用于生成排布指示;收发器1502用于发送所述排布指示;
其中,所述排布指示用于指示参考信号的排布方式,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,在所述频分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;在时分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;在所述频分+码分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;在时分+码 分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
具体地,处理器1501和收发器1502可用于执行本发明前述实施例所提供的方法。由于本发明上述实施例所提供的基站与本发明前述实施例所提供的方法实施例解决问题的原理相似,因而本发明上述实施例所提供的基站的具体实施可与本发明前述实施例所提供的方法的实施可以相互参见,本申请在此不再赘述。
尽管未在图中示出,基站1500还可以包括有存储器,用于存储处理器1501执行的程序。存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请实施例中不限定上述处理器1501以及收发器1502之间的具体连接介质。本申请实施例在图15中以处理器1501以及收发器1502之间通过总线连接,图15使用一条空心双箭头线表示,但并不表示仅有一根总线或一种类型的总线,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。
本发明实施例还提供了一种可读存储介质,用于存储为执行上述处理器所需执行的软件指令,其包含用于执行上述处理器所需执行的程序。
基于同样的发明构思,本申请还提供了一种终端。图16为依据本发明的一些实施例所提供的终端的结构示意图。
如图16所示,该终端1600可以包括有处理器1601。处理器1601可以是一个中央处理模块,或者为数字处理模块等等。该终端1600还可以包括收发器1602。
其中,收发器1602用于接收排布指示,所述排布指示用于指示参考信号的排布方式;
处理器1601用于根据所述排布指示,确定参考信号的排布方式;
其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,若所述参考信号的排布方式为频分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;若所述参考信号的排布方式为时分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;若所述参考信号的排布方式为频分+码分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;若所述参考信号的排布方式为时分+码分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
具体地,处理器1601和收发器1602可用于执行本发明前述实施例所提供的终端侧的方法。由于本发明上述实施例所提供的终端与本发明前述实施例所提供的方法实施例解决问题的原理相似,因而本发明上述实施例所提供的终端的具体实施可与本发明前述实施例所提供的方法的实施可以相互参见,本申请在此不再赘述。
尽管未在图中示出,终端1600还可以包括有存储器,用于存储处理器1601执行的程序。存储器可以是非易失性存储器,比如硬盘或固态硬盘等,还可以是易失性存储器,例如随机存取存储器。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请实施例中不限定上述处理器1601以及收发器1602之间的具体连接介质。本申请实施例在图16中以处理器1601以及收发器1602之间通过总线连接,图16使用一条空心双箭头线表示,但并不表示仅有一根总线或一种类型的总线,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。
本发明实施例还提供了一种可读存储介质,用于存储为执行上述处理器所需执行的软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种指示方法,其特征在于,包括:
    生成排布指示,所述排布指示用于指示参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,在所述频分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;在时分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;在所述频分+码分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;在时分+码分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;
    发送所述排布指示。
  2. 如权利要求1所述的方法,其特征在于,在所述频分方式或者所述频分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
  3. 如权利要求1或2所述的方法,其特征在于,在所述时分方式或者所述时分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,在所述频分方式或者所述频分+码分方式中,不同组时频资源占用的频域内的子载波的数量相同。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,在所述时分方式或者所述时分+码分方式中,不同组时频资源占用的时域内的符号的数量相同。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
  7. 一种指示方法,其特征在于,包括:
    接收排布指示,所述排布指示用于指示参考信号的排布方式;
    根据所述排布指示,确定参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,若所述参考信号的排布方式为频分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;若所述参考信号的排布方式为时分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;若所述参考信号的排布方式为频分+码分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;若所述参考信号的排布方式为时分+码分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
  8. 如权利要求7所述的方法,其特征在于,若所述参考信号的排布方式为所述频分方式或者所述频分+码分方式,则所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
  9. 如权利要求7或8所述的方法,其特征在于,若所述参考信号的排布方式为所述 时分方式或者所述时分+码分方式,则所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
  10. 如权利要求7至9中任一项所述的方法,其特征在于,若所述参考信号的排布方式为所述频分方式或者所述频分+码分方式,则不同组时频资源占用的频域内的子载波的数量相同。
  11. 如权利要求7至10中任一项所述的方法,其特征在于,若所述参考信号的排布方式为所述时分方式或者所述时分+码分方式,则不同组时频资源占用的时域内的符号的数量相同。
  12. 如权利要求7至11中任一项所述的方法,其特征在于,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
  13. 一种指示装置,其特征在于,所述装置部署于基站,所述装置包括:
    生成模块,用于生成排布指示,所述排布指示用于指示参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,在所述频分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波;在时分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;在所述频分+码分方式中,每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;在时分+码分方式中,每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;
    发送模块,用于发送所述排布指示。
  14. 如权利要求13所述的装置,其特征在于,在所述频分方式或者所述频分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
  15. 如权利要求13或14所述的装置,其特征在于,在所述时分方式或者所述时分+码分方式中,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
  16. 如权利要求13至15中任一项所述的装置,其特征在于,在所述频分方式或者所述频分+码分方式中,不同组时频资源占用的频域内的子载波的数量相同。
  17. 如权利要求13至16中任一项所述的装置,其特征在于,在所述时分方式或者所述时分+码分方式中,不同组时频资源占用的时域内的符号的数量相同。
  18. 如权利要求13至17中任一项所述的装置,其特征在于,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
  19. 一种指示装置,其特征在于,所述装置部署于终端,包括:
    接收模块,用于接收排布指示,所述排布指示用于指示参考信号的排布方式;
    确定模块,用于根据所述排布指示,确定参考信号的排布方式,其中,所述参考信号占用至少一组时频资源,所述排布方式为频分方式、时分方式、频分+码分方式或者时分+码分方式,若所述参考信号的排布方式为频分方式,则每组时频资源占用时域内的一个符 号和频域内的至少一个连续的子载波;若所述参考信号的排布方式为时分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波;若所述参考信号的排布方式为频分+码分方式,则每组时频资源占用时域内的一个符号和频域内的至少一个连续的子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上;若所述参考信号的排布方式为时分+码分方式,则每组时频资源占用时域内的至少一个连续符号和频域内的一个子载波,且所述参考信号通过该参考信号对应的正交码复用在该组时频资源上。
  20. 如权利要求19所述的装置,其特征在于,在所述参考信号的排布方式为所述频分方式或者所述频分+码分方式时,所述至少一组时频资源之中的至少两组时频资源占用时域内的相同的符号,且所述至少两组时频资源所占用的频域内的子载波不重叠。
  21. 如权利要求19或20所述的装置,其特征在于,在所述参考信号的排布方式为所述时分方式或者所述时分+码分方式时,所述至少一组时频资源之中的至少两组时频资源占用频域内的相同的子载波,且所述至少两组时频资源占用的时域内的符号不重叠。
  22. 如权利要求19至21中任一项所述的装置,其特征在于,在所述参考信号的排布方式为所述频分方式或者所述频分+码分方式时,不同组时频资源占用的频域内的子载波的数量相同。
  23. 如权利要求19至22中任一项所述的装置,其特征在于,在所述参考信号的排布方式为所述时分方式或者所述时分+码分方式时,不同组时频资源占用的时域内的符号的数量相同。
  24. 如权利要求19至23中任一项所述的装置,其特征在于,所述频分方式或者所述频分+码分方式中任一组时频资源占用的频域内的子载波的数量等于所述时分方式或者所述时分+码分方式中任一组时频资源占用的时域内的符号的数量。
PCT/CN2018/071602 2017-02-04 2018-01-05 一种指示方法及装置 WO2018141195A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18748319.3A EP3567786B1 (en) 2017-02-04 2018-01-05 Indication method and device
US16/526,636 US11005625B2 (en) 2017-02-04 2019-07-30 Reference signal indication method and apparatus to improve spectrum efficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710064273.6 2017-02-04
CN201710064273.6A CN108400848B (zh) 2017-02-04 2017-02-04 一种指示方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/526,636 Continuation US11005625B2 (en) 2017-02-04 2019-07-30 Reference signal indication method and apparatus to improve spectrum efficiency

Publications (1)

Publication Number Publication Date
WO2018141195A1 true WO2018141195A1 (zh) 2018-08-09

Family

ID=63039251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071602 WO2018141195A1 (zh) 2017-02-04 2018-01-05 一种指示方法及装置

Country Status (4)

Country Link
US (1) US11005625B2 (zh)
EP (1) EP3567786B1 (zh)
CN (1) CN108400848B (zh)
WO (1) WO2018141195A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435892A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 接收数据的方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326576B2 (en) * 2017-04-28 2019-06-18 Qualcomm Incorporated Reusing long-term evolution (LTE) reference signals for nested system operations
CN110890947B (zh) * 2018-09-07 2021-10-01 华为技术有限公司 通信方法及装置
US11658780B2 (en) * 2019-01-09 2023-05-23 Qualcomm Incorporated Demodulation reference signal multiplexing scheme selection for uplink transmission
CN113472491B (zh) * 2020-03-30 2023-05-02 中国电信股份有限公司 数据传输方法、信息交互设备、基站及存储介质
WO2022052073A1 (zh) * 2020-09-11 2022-03-17 北京小米移动软件有限公司 信道估计的方法、装置、通信设备及存储介质
CN117811710A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种参考信号端口指示方法及装置
CN118101140A (zh) * 2022-11-28 2024-05-28 华为技术有限公司 参考信号的传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873204A (zh) * 2010-06-12 2010-10-27 电子科技大学 Ofdm***的csi-rs导频模式设计
WO2010148402A2 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Reference signal design for wireless communication system
CN101964706A (zh) * 2009-07-24 2011-02-02 中兴通讯股份有限公司 基于混合复用的导频复用方式确定方法与装置
CN102843324A (zh) * 2011-06-21 2012-12-26 中兴通讯股份有限公司 Mbms业务非专用载波下的增强导频传输方法和***

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101789621B1 (ko) * 2010-01-19 2017-10-25 엘지전자 주식회사 하향링크 데이터 전송방법 및 기지국과, 하향링크 데이터 수신방법 및 사용자기기
CN102271109B (zh) * 2010-06-07 2015-08-12 中兴通讯股份有限公司 一种解调参考符号的映射方法及***
CN102469589B (zh) * 2010-11-08 2015-06-03 中兴通讯股份有限公司 用于确定中继链路资源单元组的方法及装置
JP5990815B2 (ja) * 2011-11-07 2016-09-14 シャープ株式会社 基地局、端末、通信システムおよび通信方法
CN102546134B (zh) * 2011-12-29 2015-07-22 电信科学技术研究院 基于增强phich传输反馈信息的方法及装置
KR101959398B1 (ko) * 2012-01-25 2019-03-18 삼성전자주식회사 직교 주파수 분할 다중 통신 시스템에서 제어 채널 신호 전송 방법 및 장치
JP5906532B2 (ja) * 2012-03-15 2016-04-20 シャープ株式会社 基地局装置、端末装置、通信方法および集積回路
WO2016127309A1 (en) * 2015-02-10 2016-08-18 Qualcomm Incorporated Dmrs enhancement for higher order mu-mimo
CN106534001B (zh) * 2015-09-10 2019-07-05 上海朗帛通信技术有限公司 一种低延迟的无线通信方法和装置
US10447447B2 (en) * 2016-04-05 2019-10-15 Qualcomm Incorporated Methods and apparatus for multiplexing reference signals for multiple input multiple output (MIMO) layers
CN108024342B (zh) * 2016-11-04 2023-04-18 中兴通讯股份有限公司 一种配置解调参考信号的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148402A2 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Reference signal design for wireless communication system
CN101964706A (zh) * 2009-07-24 2011-02-02 中兴通讯股份有限公司 基于混合复用的导频复用方式确定方法与装置
CN101873204A (zh) * 2010-06-12 2010-10-27 电子科技大学 Ofdm***的csi-rs导频模式设计
CN102843324A (zh) * 2011-06-21 2012-12-26 中兴通讯股份有限公司 Mbms业务非专用载波下的增强导频传输方法和***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Evaluation results of DMRS design for DL data channel, R1-1700068", 3GPP TSG RAN WG1 NR AD HOC MEETING, 20 January 2017 (2017-01-20), XP051202494 *
MITSUBISHI ELECTRIC: "DMRS designs for NR MIMO, R1-1700874", 3GPP TSG-RAN WG1 NR AH, 20 January 2017 (2017-01-20), XP051203175 *
See also references of EP3567786A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435892A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 接收数据的方法和装置
CN111435892B (zh) * 2019-01-11 2021-11-19 华为技术有限公司 接收数据的方法和装置

Also Published As

Publication number Publication date
EP3567786B1 (en) 2023-03-01
CN108400848A (zh) 2018-08-14
US11005625B2 (en) 2021-05-11
EP3567786A4 (en) 2020-01-15
US20190356442A1 (en) 2019-11-21
EP3567786A1 (en) 2019-11-13
CN108400848B (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
CN107666341B (zh) 用大规模阵列天线的移动通信***中csi-rs端口共享的参考信号配置的方法和装置
CN109565311B (zh) 在无线通信***中的上行链路发送/接收的方法及其装置
JP6977920B2 (ja) チャネル状態情報報告バンドの設定方法及び通信装置
WO2018141195A1 (zh) 一种指示方法及装置
KR102064939B1 (ko) 다수의 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 피드백 송수신 방법 및 장치
JP2022043084A (ja) 低減密度csi-rsのための機構
RU2549351C2 (ru) Способ и система для разрешения объединения блоков ресурсов в системах lte-a
EP3174220B1 (en) A method and transmitter node for transmitting dm-rs pattern
WO2010146775A1 (ja) 送信装置、受信装置、通信システムおよび通信方法
WO2014021008A1 (ja) 基地局装置、ユーザ端末、通信システム及び通信制御方法
KR20220072877A (ko) 대규모 안테나 시스템에서 자원 할당 장치 및 방법
CN109983730B (zh) 无线通信***中的信道估计和数据解码的方法和装置
US11405138B2 (en) Mixed space time and space frequency block coding
JP2016509785A (ja) チャネル状態情報参照信号の伝送方法、基地局、端末、システム、マシン可読プログラム及びマシン可読プログラムを記憶した記憶媒体
KR20180021201A (ko) 이동 통신 시스템에서 채널을 측정하는 방법 및 장치
CA2768349A1 (en) Method and apparatus for transmitting reference signal in wireless communication system including relay station
US11101957B2 (en) Reference signal sending method and apparatus
JP2015527836A (ja) 制御情報処理方法及び装置
CN112311513B (zh) 一种dmrs端口指示方法及装置
WO2018082394A1 (zh) 一种发送和获取参考信号的方法和装置
CN105337718A (zh) 用于mimo***中信道估计和检测的方法和设备
Gorokhov et al. Multiple Antenna Techniques for LTE‐Advanced

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018748319

Country of ref document: EP

Effective date: 20190807