WO2023182709A1 - 열가소성 수지 조성물 및 이로부터 제조된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 제조된 성형품 Download PDF

Info

Publication number
WO2023182709A1
WO2023182709A1 PCT/KR2023/003282 KR2023003282W WO2023182709A1 WO 2023182709 A1 WO2023182709 A1 WO 2023182709A1 KR 2023003282 W KR2023003282 W KR 2023003282W WO 2023182709 A1 WO2023182709 A1 WO 2023182709A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
thermoplastic resin
resin composition
glass
carbon atoms
Prior art date
Application number
PCT/KR2023/003282
Other languages
English (en)
French (fr)
Inventor
김태윤
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2023182709A1 publication Critical patent/WO2023182709A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to thermoplastic resin compositions and molded articles made therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent glass adhesion, impact resistance, rigidity, chemical resistance, and balance of physical properties, and molded articles manufactured therefrom.
  • Polycarbonate resin can be produced in a variety of colors, has excellent impact resistance properties, and when reinforced with glass fiber, etc., can secure high rigidity and impact resistance, so it is widely used as a housing material for IT products such as mobile phones.
  • thermoplastic resin composition with excellent glass adhesion, impact resistance, rigidity, chemical resistance, and balance of these properties.
  • the background technology of the present invention is disclosed in Korean Patent Publication No. 10-2015-0076650, etc.
  • the purpose of the present invention is to provide a thermoplastic resin composition with excellent glass adhesion, impact resistance, rigidity, chemical resistance, and balance of these properties.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition includes about 100 parts by weight of polycarbonate resin; About 10 to about 40 parts by weight of glass fiber; About 0.5 to about 10 parts by weight of ethylene-glycidyl methacrylate-methylacrylate copolymer; And about 1 to about 15 parts by weight of a glass transition temperature regulator.
  • the ethylene-glycidyl methacrylate-methylacrylate copolymer is about 50 to about 75% by weight of ethylene, about 1 to about 10% by weight of glycidyl methacrylate, and methyl acrylate. It may be about 15 to about 40 weight percent of the terpolymer.
  • the glass transition temperature regulator may be a compound represented by the following formula (1):
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • the weight ratio of the glass fiber and the ethylene-glycidyl methacrylate-methylacrylate copolymer may be about 1:0.01 to about 1:0.8.
  • the weight ratio of the glass fiber and the glass transition temperature regulator may be about 1:0.03 to about 1:0.9.
  • the weight ratio of the ethylene-glycidyl methacrylate-methylacrylate copolymer and the glass transition temperature regulator may be about 1:0.1 to about 1:10.
  • the thermoplastic resin composition is prepared by applying 0.018 g of a polyurethane-based adhesive (EH9777BS, HB Fuller) to a thickness of 1 mm at 110°C on a specimen measuring 50 mm ⁇ 50 mm ⁇ 3 mm. After attaching a glass measuring 12 mm After 72 cycle retention and thermal shock, The weight of the weight when the specimen is detached from the glass, measured by hitting the specimen with a dart from a height of 50 cm using a falling weight evaluation equipment of the Dupont drop test method, may be about 240 to about 400 g. there is.
  • a polyurethane-based adhesive EH9777BS, HB Fuller
  • thermoplastic resin composition may have a notched Izod impact strength of about 10 to about 25 kgf ⁇ cm/cm for a 1/8" thick specimen measured according to ASTM D256.
  • thermoplastic resin composition may have a flexural modulus of about 30,000 to about 90,000 MPa, as measured at a speed of 2.8 mm/min using a 1/4" thick specimen, according to ASTM D790. there is.
  • thermoplastic resin composition was prepared by immersing a 1 mm thick specimen in a thinner solution for 2 minutes and 30 seconds, drying it at 80°C for 20 minutes, leaving it at room temperature for 24 hours, and then weighing 2 kg.
  • the height at which the specimen is destroyed may be about 27 to about 70 cm, as measured by impact using a Dupont drop test type falling weight evaluation equipment.
  • the molded article is characterized in that it is formed from the thermoplastic resin composition according to any one of items 1 to 10 above.
  • the composite material includes a plastic member formed from the thermoplastic resin composition according to any one of 1 to 10 above; and a glass member in contact with the plastic member.
  • the plastic member and the glass member may be adhered with an adhesive.
  • the plastic member is Apply 0.018 g of polyurethane-based adhesive (HB Fuller, EH9777BS) to a thickness of 1 mm at 110°C on a specimen measuring 50 mm ⁇ 50 mm ⁇ 3 mm, and apply a specimen measuring 12 mm ⁇ 12 mm ⁇ 2.8 mm on top of the applied adhesive. After attaching the glass, it was cured for 72 hours at a temperature of 25°C and 50% humidity, and then subjected to thermal shock by staying for 72 cycles of 30 minutes each at -40°C and 85°C.
  • the weight of the weight when the specimen is detached from the glass measured by hitting the specimen with a dart from a height of 50 cm using a falling weight evaluation equipment of the Dupont drop test method, may be about 240 to about 400 g. there is.
  • the present invention has the effect of providing a thermoplastic resin composition with excellent glass adhesion, impact resistance, rigidity, chemical resistance, and balance of physical properties, and a molded article formed therefrom.
  • thermoplastic resin composition includes (A) polycarbonate resin; (B) glass fiber; (C) ethylene-glycidyl methacrylate-methylacrylate copolymer; and (D) a glass transition temperature regulator.
  • the polycarbonate resin according to one embodiment of the present invention can improve the impact resistance and appearance characteristics of a thermoplastic resin composition, and polycarbonate resins used in conventional thermoplastic resin compositions can be used.
  • polycarbonate resins used in conventional thermoplastic resin compositions can be used.
  • an aromatic polycarbonate resin produced by reacting diphenols (aromatic diol compounds) with precursors such as phosgene, halogen formate, and carbonic acid diester can be used.
  • the diphenols include 4,4'-biphenol, 2,2-bis(4-hydroxyphenyl)propane, 2,4-bis(4-hydroxyphenyl)-2-methylbutane, 1 ,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(3-chloro-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl) Examples include propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, and 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, but are not limited thereto. .
  • 2,2-bis(4-hydroxyphenyl)propane 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane, 2,2-bis(3-methyl-4- Hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, or 1,1-bis(4-hydroxyphenyl)cyclohexane
  • bisphenol- 2,2-bis(4-hydroxyphenyl)propane, called A can be used.
  • the polycarbonate resin may be one having a branched chain, and for example, 0.05 to 2 mol% of a trivalent or higher polyfunctional compound based on the total of diphenols used in polymerization, specifically, 3 Branched polycarbonate resin prepared by adding a compound having one or more phenol groups can also be used.
  • the polycarbonate resin may be used in the form of a homopolycarbonate resin, a copolycarbonate resin, or a blend thereof.
  • the polycarbonate resin can be partially or entirely replaced with an aromatic polyester-carbonate resin obtained by polymerization in the presence of an ester precursor, for example, a difunctional carboxylic acid.
  • the polycarbonate resin may have a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 10,000 to about 50,000 g/mol, for example, about 15,000 to about 40,000 g/mol.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the thermoplastic resin composition may have excellent impact resistance, fluidity (processability), etc.
  • Glass fiber according to one embodiment of the present invention is applied together with an ethylene-glycidyl methacrylate-methylacrylate copolymer and a glass transition temperature regulator to improve the glass adhesion and impact resistance of a thermoplastic resin composition containing polycarbonate resin. , rigidity, chemical resistance, balance of these properties, etc. can be improved, and glass fibers used in conventional thermoplastic resin compositions can be used.
  • the glass fiber may be in the form of a fiber and may have a cross-section of various shapes such as circular, oval, or rectangular.
  • a cross-section of various shapes such as circular, oval, or rectangular.
  • the glass fiber of the circular cross-section may have a cross-sectional diameter of about 5 to about 20 ⁇ m measured using a scanning electron microscope (SEM), a length before processing of about 2 to about 20 mm, and a rectangular cross-section of the glass fiber.
  • the glass fiber may have an aspect ratio of the cross-section (major axis of the cross-section/minor axis of the cross-section) measured using a SEM (Scanning Electron Microscope) of about 1.5 to about 10, a minor diameter of about 2 to about 10 ⁇ m, and a length before processing. It may be about 2 to about 20 mm. Within the above range, the rigidity, processability, etc. of the thermoplastic resin composition may be improved.
  • the glass fiber may be treated with a common surface treatment agent.
  • the surface treatment agent may include, but is not limited to, silane-based compounds, urethane-based compounds, and epoxy-based compounds.
  • the glass fiber may be included in an amount of about 10 to about 40 parts by weight, for example, about 15 to about 35 parts by weight, based on about 100 parts by weight of the polycarbonate resin. If the content of the glass fiber is less than about 10 parts by weight based on about 100 parts by weight of the polycarbonate resin, there is a risk that the rigidity, etc. of the thermoplastic resin composition (molded product) may decrease, and if it exceeds about 40 parts by weight, the thermoplastic resin There is a risk that the glass adhesion, impact resistance, chemical resistance, and appearance characteristics of the composition (molded product) may be reduced.
  • the ethylene-glycidyl methacrylate-methylacrylate copolymer according to one embodiment of the present invention is applied together with glass fiber and a glass transition temperature regulator to improve the glass adhesion and impact resistance of a thermoplastic resin composition containing polycarbonate resin. , rigidity, chemical resistance, and the balance of these properties can be improved.
  • the ethylene-glycidyl methacrylate-methylacrylate copolymer contains about 50 to about 75% by weight of ethylene, for example, about 60 to about 70% by weight, and about 1 to about 1% by weight of glycidyl methacrylate. It may be a terpolymer of 10% by weight, for example about 4 to about 8% by weight, and about 15 to about 40% by weight, for example, about 20 to about 30% by weight of methyl acrylate. Within the above range, the thermoplastic resin composition (molded product) may have excellent impact resistance, glass adhesion, chemical resistance, etc.
  • the ethylene-glycidyl methacrylate-methylacrylate copolymer has an MFI (Melt Flow Index, 290° C., 2.16 kg condition) value of about 1 to about 15 g/10 min, for example, about 4. It may be from about 9 g/10 min.
  • MFI Melt Flow Index, 290° C., 2.16 kg condition
  • the thermoplastic resin composition (molded product) may have excellent impact resistance, glass adhesion, chemical resistance, etc.
  • the ethylene-glycidyl methacrylate-methylacrylate copolymer may be included in an amount of about 0.5 to about 10 parts by weight, for example, about 1 to about 7 parts by weight, based on about 100 parts by weight of the polycarbonate resin. You can. If the content of the ethylene-glycidyl methacrylate-methyl acrylate copolymer is less than about 0.5 parts by weight based on about 100 parts by weight of the polycarbonate resin, there is a risk that the chemical resistance, etc. of the thermoplastic resin composition (molded article) may decrease. If it exceeds about 10 parts by weight, there is a risk that the glass adhesion and chemical resistance of the thermoplastic resin composition (molded product) may decrease.
  • the weight ratio (B:C) of the glass fiber and the ethylene-glycidylmethacrylate-methylacrylate copolymer is from about 1:0.01 to about 1:0.8, for example from about 1:0.03 to about It can be 1:0.5.
  • the thermoplastic resin composition (molded product) may have better rigidity, glass adhesion, chemical resistance, impact resistance, etc.
  • the glass transition temperature regulator according to one embodiment of the present invention is applied together with glass fiber and ethylene-glycidyl methacrylate-methyl acrylate copolymer to improve glass adhesion and impact resistance of a thermoplastic resin composition containing polycarbonate resin.
  • cyclic phosphazene can be used to improve rigidity, chemical resistance, and the balance of these properties.
  • the glass transition temperature regulator may be a compound (phosphazene) represented by Formula 1 below.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • substitution means that the hydrogen atom is an alkyl group having 1 to 10 carbon atoms, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, an aryl group having 6 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or a carbon number 3 to 10 group. It means being substituted with a substituent such as a heterocycloalkyl group, a heteroaryl group having 4 to 10 carbon atoms, or a combination thereof.
  • substituents including “alkyl,” “alkoxy,” and other “alkyl” moieties include both straight-chain or branched forms, and “alkenyl” has 2 to 8 carbon atoms and contains one or more double bonds. It includes both straight-chain or branched forms, and the term “cycloalkyl” includes all saturated monocyclic or saturated bicyclic ring structural forms having 3 to 20 carbon atoms.
  • the "aryl” is an organic radical derived from an aromatic hydrocarbon by removal of one hydrogen atom, and has a single or fused ring system containing 4 to 7 ring atoms, preferably 5 or 6 ring atoms in each ring. Includes. Specifically, phenyl, naphthyl, biphenyl, tolyl, etc. may be exemplified, but are not limited thereto.
  • heterocycloalkyl refers to a cycloalkyl group containing 1 to 3 heteroatoms selected from N, O, and S as a saturated cyclic hydrocarbon skeleton atom, and the remaining saturated monocyclic or bicyclic ring skeleton atom is carbon.
  • heteroaryl refers to an aryl group containing 1 to 3 heteroatoms selected from N, O, and S as an aromatic ring skeleton atom, and the remaining aromatic ring skeleton atom is carbon.
  • the heteroaryl group is a heteroaryl group in the ring. and divalent aryl groups whose atoms may be oxidized or quaternized to form, for example, N-oxides or quaternary salts.
  • examples include zolyl, tetrazolyl, furazinyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, but are not limited thereto.
  • the glass transition temperature regulator may be included in an amount of about 1 to about 15 parts by weight, for example, about 2 to about 10 parts by weight, based on about 100 parts by weight of the polycarbonate resin. If the content of the glass transition temperature regulator is less than about 1 part by weight based on about 100 parts by weight of the polycarbonate resin, there is a risk that the glass adhesion and appearance characteristics of the thermoplastic resin composition (molded product) may be reduced, and about 15 parts by weight If it is exceeded, there is a risk that the impact resistance and chemical resistance of the thermoplastic resin composition (molded product) may decrease.
  • the weight ratio (B:D) of the glass fiber and the glass transition temperature regulator may be about 1:0.03 to about 1:0.9, for example, about 1:0.05 to about 1:0.6.
  • the appearance characteristics, glass adhesion, chemical resistance, impact resistance, rigidity, etc. of the thermoplastic resin composition (molded article) may be superior.
  • the weight ratio (C:D) of the ethylene-glycidyl methacrylate-methylacrylate copolymer and the glass transition temperature regulator is about 1:0.1 to about 1:10, for example, about 1:0.3. It may be from about 1:7. Within the above range, the appearance characteristics, glass adhesion, chemical resistance, impact resistance, rigidity, etc. of the thermoplastic resin composition (molded article) may be superior.
  • thermoplastic resin composition according to one embodiment of the present invention may further include additives included in conventional thermoplastic resin compositions.
  • additives include, but are not limited to, flame retardants, antioxidants, anti-dripping agents, lubricants, release agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, and mixtures thereof.
  • its content may be about 0.001 to about 40 parts by weight, for example, about 0.1 to about 10 parts by weight, based on about 100 parts by weight of the polycarbonate resin.
  • thermoplastic resin composition according to one embodiment of the present invention is in the form of a pellet obtained by mixing the above components and melt-extruding the components at about 240 to about 300°C, for example, about 260 to about 290°C using a conventional twin-screw extruder. You can.
  • the thermoplastic resin composition is prepared by applying 0.018 g of a polyurethane-based adhesive (HB Fuller, EH9777BS) to a thickness of 1 mm at 110°C on a 50 mm ⁇ 50 mm ⁇ 3 mm specimen. After attaching glass with a size of 12 mm After adding, The weight of the weight when the specimen is detached from the glass, measured by hitting the specimen with a dart from a height of 50 cm using a falling weight evaluation equipment of the Dupont drop test method, is about 240 to about 400 g, e.g. For example, it may be about 250 to about 300 g.
  • HB Fuller HB Fuller
  • EH9777BS polyurethane-based adhesive
  • the thermoplastic resin composition has a notched Izod impact strength of a 1/8" thick specimen measured according to ASTM D256 of about 10 to about 25 kgf ⁇ cm/cm, for example, about 11 to about 20 kgf ⁇ cm. It may be /cm.
  • the thermoplastic resin composition has a flexural modulus of about 30,000 to about 90,000 MPa, for example, about 40,000 to about 40,000 MPa, as measured at a rate of 2.8 mm/min using a 1/4" thick specimen according to ASTM D790. It may be 75,000 MPa.
  • the thermoplastic resin composition is prepared by immersing a 1 mm thick specimen in a thinner solution for 2 minutes and 30 seconds, drying it at 80°C for 20 minutes, leaving it at room temperature for 24 hours, and then applying a Dupont drop using a 2 kg weight.
  • the height at which the specimen is destroyed, as measured by impact using a Dupont drop test type drop evaluation equipment, may be about 27 to about 70 cm, for example, about 28 to about 60 cm.
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • the thermoplastic resin composition can be manufactured in the form of pellets, and the manufactured pellets can be manufactured into various molded articles (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. This forming method is well known to those skilled in the art.
  • the molded product has excellent glass adhesion, impact resistance, rigidity, chemical resistance, and balance of physical properties, and is therefore useful as a housing material for mobile products.
  • the composite material according to the present invention includes a plastic member as the molded article; and a glass member in contact with the plastic member.
  • the plastic member and the glass member may be bonded with an adhesive.
  • the plastic member is Apply 0.018 g of polyurethane-based adhesive (HB Fuller, EH9777BS) to a thickness of 1 mm at 110°C on a specimen measuring 50 mm ⁇ 50 mm ⁇ 3 mm, and apply a specimen measuring 12 mm ⁇ 12 mm ⁇ 2.8 mm on top of the applied adhesive. After attaching the glass, it was cured for 72 hours at a temperature of 25°C and 50% humidity, and then subjected to thermal shock by staying for 72 cycles of 30 minutes each at -40°C and 85°C.
  • polyurethane-based adhesive HB Fuller, EH9777BS
  • the weight of the weight when the specimen is detached from the glass measured by hitting the specimen with a dart from a height of 50 cm using a falling weight evaluation equipment of the Dupont drop test method, is about 240 to about 400 g, e.g. For example, it may be 250 to 300 g.
  • Bisphenol-A polycarbonate resin (PC, manufacturer: Lotte Chemical, weight average molecular weight: 25,000 g/mol) was used.
  • Circular cross-section glass fiber manufactured by Owenscorning, product name: 183F, average diameter: 13 ⁇ m was used.
  • Ethylene-glycidyl methacrylate-methyl acrylate copolymer (manufacturer: SUMITOMO Chemical, product name: IGETABOND BF-7M) was used.
  • Ethylene-methylacrylate copolymer (manufacturer: ARKEMA, product name: LOTRYL®29MA03T) was used.
  • a phosphazene compound (manufacturer: Pharmicell, product name: Phoretar201) was used.
  • Example One 2 3 4 5 6 7 (A) (parts by weight) 100 100 100 100 100 100 100 100 100 100 (B) (part by weight) 15 23 35 23 23 23 23 23 (C1) (parts by weight) 3.7 3.7 3.7 One 7 3.7 3.7 (C2) (parts by weight) - - - - - - - (D) (parts by weight) 5 5 5 5 5 2 10 Glass bonding force (g) 275 270 260 280 265 260 280 Notched Izod impact strength (kgf ⁇ cm/cm) 19 18 15 12 19 19 19 19 19 Flexural modulus (MPa) 44,000 46,000 70,000 48,000 42,000 46,000 45,000 Chemical resistance (cm) 55 50 35 30 50 53 45
  • thermoplastic resin composition of the present invention is excellent in glass adhesion, impact resistance (notched Izod impact strength), rigidity (flexural modulus), chemical resistance, and balance of these properties.
  • Comparative Example 1 in which a small amount of glass fiber was applied, the stiffness, etc. were found to be reduced, and in the case of Comparative Example 2 in which an excessive amount of glass fiber was applied, the glass bonding strength, impact resistance, chemical resistance, etc. were found to be reduced.
  • Comparative Example 3 in which a small amount of ethylene-glycidyl methacrylate-methyl acrylate copolymer was applied, it can be seen that chemical resistance, etc. was reduced, and in the case of comparative example 3 in which a small amount of ethylene-glycidyl methacrylate-methyl acrylate copolymer was applied, In the case of Comparative Example 4, it can be seen that glass bonding strength, chemical resistance, etc.
  • (meth)acrylate modified polyolefin (C2) was used.
  • Comparative Example 5 it can be seen that the glass bonding strength and chemical resistance were reduced.
  • Comparative Example 6 where a small amount of the glass transition temperature regulator was applied, the glass bonding strength, etc., was found to be reduced, and in the case of Comparative Example 7, where an excessive amount of the glass transition temperature regulator was applied, the impact resistance, chemical resistance, etc. were found to be reduced. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 폴리카보네이트 수지 약 100 중량부; 유리 섬유 약 10 내지 약 40 중량부; 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체 약 0.5 내지 약 10 중량부; 및 유리전이온도 조절제 약 1 내지 약 15 중량부;를 포함하는 것을 특징으로 한다. 상기 열가소성 수지 조성물은 유리 접착력, 내충격성, 강성, 내화학성, 이들의 물성 발란스 등이 우수하다.

Description

열가소성 수지 조성물 및 이로부터 제조된 성형품
본 발명은 열가소성 수지 조성물 및 이로부터 제조된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 유리 접착력, 내충격성, 강성, 내화학성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물 및 이로부터 제조된 성형품에 관한 것이다.
폴리카보네이트 수지는 다양한 색상 구현이 가능하고, 내충격 특성 등이 우수하며, 유리 섬유 등으로 보강 시, 높은 강성, 내충격성 등의 확보가 가능하여, 휴대폰 등 IT 제품의 하우징 소재로 널리 사용되고 있다.
그러나, 최근 모바일용 제품의 베젤이 얇아짐에 따라, 플라스틱 부품과 디스플레이 유리 간에 접착 공간이 얇아지고 있으며, 이로 인해, 제품 조립 시 디스플레이가 기존 대비 쉽게 탈착되는 현상이 발생하고, 플라스틱 부품과 디스플레이 유리 간의 접착력 저하로 인해 방수 성능 저하 등의 문제가 발생하고 있다.
따라서, 유리 접착력, 내충격성, 강성, 내화학성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.
본 발명의 배경기술은 대한민국 공개특허 10-2015-0076650호 등에 개시되어 있다.
본 발명의 목적은 유리 접착력, 내충격성, 강성, 내화학성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 폴리카보네이트 수지 약 100 중량부; 유리 섬유 약 10 내지 약 40 중량부; 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체 약 0.5 내지 약 10 중량부; 및 유리전이온도 조절제 약 1 내지 약 15 중량부;를 포함하는 것을 특징으로 한다.
2. 상기 1 구체예에서, 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체는 에틸렌 약 50 내지 약 75 중량%, 글리시딜메타크릴레이트 약 1 내지 약 10 중량% 및 메틸아크릴레이트 약 15 내지 약 40 중량%의 3원 공중합체일 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 유리전이온도 조절제는 하기 화학식 1로 표시되는 화합물일 수 있다:
[화학식 1]
Figure PCTKR2023003282-appb-img-000001
상기 화학식 1에서, R1, R2, R3, R4, R5 및 R6는 각각 독립적으로, 수소 원자, 할로겐 원자, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 7의 알케닐기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 6 내지 20의 아릴옥시기, 탄소수 5 내지 20의 헤테로아릴기, 치환 또는 비치환된 탄소수 3 내지 20의 알콕시카보닐알킬기, 치환 또는 비치환된 탄소수 2 내지 10의 카보닐알킬기, 아미노기 또는 히드록시기이다.
4. 상기 1 내지 3 구체예에서, 상기 유리 섬유 및 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체의 중량비는 약 1 : 0.01 내지 약 1 : 0.8일 수 있다.
5. 상기 1 내지 4 구체예에서, 상기 유리 섬유 및 상기 유리전이온도 조절제의 중량비는 약 1 : 0.03 내지 약 1 : 0.9일 수 있다.
6. 상기 1 내지 5 구체예에서, 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체 및 상기 유리전이온도 조절제의 중량비는 약 1 : 0.1 내지 약 1 : 10일 수 있다.
7. 상기 1 내지 6 구체예에서, 상기 열가소성 수지 조성물은 50 mm × 50 mm × 3 mm 크기 시편 위에 0.018 g의 폴리우레탄 계열의 접착제(H.B. Fuller社, EH9777BS)를 110℃에서 1 mm 두께로 도포하고, 도포한 접착제 위에 12 mm × 12 mm × 2.8 mm 크기의 유리를 부착한 후, 25℃ 온도 조건 및 50% 습도 조건에서 72 시간 동안 경화시킨 후, -40℃ 및 85℃ 온도 조건에서 30분씩 72 cycle 체류시켜 열충격을 가한 다음, 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 50 cm 높이에서 추(dart)로 시편을 타격하여 측정한 상기 시편이 유리와 탈착될 때의 추의 무게가 약 240 내지 약 400 g일 수 있다.
8. 상기 1 내지 7 구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 두께 1/8" 시편의 노치 아이조드 충격강도가 약 10 내지 약 25 kgf·cm/cm일 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 열가소성 수지 조성물은 ASTM D790에 의거하여, 두께 1/4" 시편을 사용하여 2.8 mm/min의 속도로 측정한 굴곡탄성률이 약 30,000 내지 약 90,000 MPa일 수 있다.
10. 상기 1 내지 9 구체예에서, 상기 열가소성 수지 조성물은 1 mm 두께 시편을 신너 용액에 2분 30초 동안 침지한 뒤, 80℃에서 20분 건조하고, 상온에서 24시간 방치한 다음, 2 kg의 추를 이용한 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 충격하여 측정한 상기 시편이 파괴되는 높이가 약 27 내지 약 70 cm일 수 있다.
11. 본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 1 내지 10 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 한다.
12. 본 발명의 다른 관점은 복합재에 관한 것이다. 상기 복합재는 상기 1 내지 10 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성되는 플라스틱 부재; 및 상기 플라스틱 부재에 접하는 유리 부재;를 포함하는 것을 특징으로 한다.
13. 상기 12 구체예에서, 상기 플라스틱 부재와 상기 유리 부재는 접착제로 접착되는 것일 수 있다.
14. 상기 13 또는 14 구체예에서, 상기 플라스틱 부재는 50 mm × 50 mm × 3 mm 크기 시편 위에 0.018 g의 폴리우레탄 계열의 접착제(H.B. Fuller社, EH9777BS)를 110℃에서 1 mm 두께로 도포하고, 도포한 접착제 위에 12 mm × 12 mm × 2.8 mm 크기의 유리를 부착한 후, 25℃ 온도 조건 및 50% 습도 조건에서 72 시간 동안 경화시킨 후, -40℃ 및 85℃ 온도 조건에서 30분씩 72 cycle 체류시켜 열충격을 가한 다음, 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 50 cm 높이에서 추(dart)로 시편을 타격하여 측정한 상기 시편이 유리와 탈착될 때의 추의 무게가 약 240 내지 약 400 g일 수 있다.
본 발명은 유리 접착력, 내충격성, 강성, 내화학성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A) 폴리카보네이트 수지; (B) 유리 섬유; (C) 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체; 및 (D) 유리전이온도 조절제;를 포함한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 폴리카보네이트 수지
본 발명의 일 구체예에 따른 폴리카보네이트 수지는 열가소성 수지 조성물의 내충격성, 외관 특성 등을 향상시킬 수 있는 것으로서, 통상의 열가소성 수지 조성물에 사용되는 폴리카보네이트 수지를 사용할 수 있다. 예를 들면, 디페놀류(방향족 디올 화합물)를 포스겐, 할로겐 포르메이트, 탄산 디에스테르 등의 전구체와 반응시킴으로써 제조되는 방향족 폴리카보네이트 수지를 사용할 수 있다.
구체예에서, 상기 디페놀류로는 4,4'-비페놀, 2,2-비스(4-히드록시페닐)프로판, 2,4-비스(4-히드록시페닐)-2-메틸부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판 등을 예시할 수 있으나, 이에 제한되지 않는다. 예를 들면, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판 또는 1,1-비스(4-히드록시페닐)시클로헥산을 사용할 수 있고, 구체적으로, 비스페놀-A 라고 불리는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
구체예에서, 상기 폴리카보네이트 수지는 분지쇄가 있는 것이 사용될 수 있으며, 예를 들면 중합에 사용되는 디페놀류 전체에 대하여, 0.05 내지 2 몰%의 3가 또는 그 이상의 다관능 화합물, 구체적으로, 3가 또는 그 이상의 페놀기를 가진 화합물을 첨가하여 제조한 분지형 폴리카보네이트 수지를 사용할 수도 있다.
구체예에서, 상기 폴리카보네이트 수지는 호모 폴리카보네이트 수지, 코폴리카보네이트 수지 또는 이들의 블렌드 형태로 사용할 수 있다. 또한, 상기 폴리카보네이트 수지는 에스테르 전구체(precursor), 예컨대 2관능 카르복실산의 존재 하에서 중합 반응시켜 얻어진 방향족 폴리에스테르-카보네이트 수지로 일부 또는 전량 대체하는 것도 가능하다.
구체예에서, 상기 폴리카보네이트 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 50,000 g/mol, 예를 들면, 약 15,000 내지 약 40,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성(가공성) 등이 우수할 수 있다.
(B) 유리 섬유
본 발명의 일 구체예에 따른 유리 섬유는 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체 및 유리전이온도 조절제와 함께 적용되어, 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물의 유리 접착력, 내충격성, 강성, 내화학성, 이들의 물성 발란스 등을 향상시킬 수 있는 것으로서, 통상의 열가소성 수지 조성물에 사용되는 유리 섬유를 사용할 수 있다.
구체예에서, 상기 유리 섬유는 섬유 형태일 수 있고, 원형, 타원형, 직사각형 등의 다양한 형상의 단면을 가질 수 있다. 예를 들면, 원형 및/또는 직사각형 단면의 섬유형 유리 섬유를 사용하는 것이 기계적 물성 측면에서 바람직할 수 있다.
구체예에서, 상기 원형 단면의 유리 섬유는 SEM(Scanning Electron Microscope)을 이용하여 측정한 단면 직경이 약 5 내지 약 20 ㎛, 가공 전 길이가 약 2 내지 약 20 mm일 수 있고, 상기 직사각형 단면의 유리 섬유는 SEM(Scanning Electron Microscope)을 이용하여 측정한 단면의 종횡비(단면의 장경/단면의 단경)가 약 1.5 내지 약 10이고, 단경이 약 2 내지 약 10 ㎛일 수 있고, 가공 전 길이가 약 2 내지 약 20 mm일 수 있다. 상기 범위에서 열가소성 수지 조성물의 강성, 가공성 등이 향상될 수 있다.
구체예에서, 상기 유리 섬유는 통상의 표면 처리제로 처리된 것일 수 있다. 상기 표면 처리제로는 실란계 화합물, 우레탄계 화합물, 에폭시계 화합물 등을 사용할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 유리 섬유는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 10 내지 약 40 중량부, 예를 들면 약 15 내지 약 35 중량부로 포함될 수 있다. 상기 유리 섬유의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 10 중량부 미만일 경우, 열가소성 수지 조성물(성형품)의 강성 등이 저하될 우려가 있고, 약 40 중량부를 초과할 경우, 열가소성 수지 조성물(성형품)의 유리 접착력, 내충격성, 내화학성, 외관 특성 등이 저하될 우려가 있다.
(C) 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체
본 발명의 일 구체예에 따른 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체는 유리 섬유 및 유리전이온도 조절제와 함께 적용되어, 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물의 유리 접착력, 내충격성, 강성, 내화학성, 이들의 물성 발란스 등을 향상시킬 수 있는 것이다.
구체예에서, 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체는 에틸렌 약 50 내지 약 75 중량%, 예를 들면 약 60 내지 약 70 중량%, 글리시딜메타크릴레이트 약 1 내지 약 10 중량%, 예를 들면 약 4 내지 약 8 중량% 및 메틸아크릴레이트 약 15 내지 약 40 중량%, 예를 들면 약 20 내지 약 30 중량%의 3원 공중합체(terpolymer)일 수 있다. 상기 범위에서, 열가소성 수지 조성물(성형품)의 내충격성, 유리 접착력, 내화학성 등이 우수할 수 있다.
구체예에서, 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체는 MFI(Melt Flow Index, 290℃, 2.16 kg 조건) 수치가 약 1 내지 약 15 g/10min, 예를 들면, 약 4 내지 약 9 g/10min일 수 있다. 상기 범위에서, 열가소성 수지 조성물(성형품)의 내충격성, 유리 접착력, 내화학성 등이 우수할 수 있다.
구체예에서, 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.5 내지 약 10 중량부, 예를 들면 약 1 내지 약 7 중량부로 포함될 수 있다. 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.5 중량부 미만일 경우, 열가소성 수지 조성물(성형품)의 내화학성 등이 저하될 우려가 있고, 약 10 중량부를 초과할 경우, 열가소성 수지 조성물(성형품)의 유리 접착력, 내화학성 등이 저하될 우려가 있다.
구체예에서, 상기 유리 섬유 및 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체의 중량비(B:C)는 약 1 : 0.01 내지 약 1 : 0.8, 예를 들면 약 1 : 0.03 내지 약 1 : 0.5일 수 있다. 상기 범위에서, 열가소성 수지 조성물(성형품)의 강성, 유리 접착력, 내화학성, 내충격성 등이 더 우수할 수 있다.
(D) 유리전이온도 조절제
본 발명의 일 구체예에 따른 유리전이온도 조절제는 유리 섬유, 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체와 함께 적용되어, 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물의 유리 접착력, 내충격성, 강성, 내화학성, 이들의 물성 발란스 등을 향상시킬 수 있는 것으로서, 환형 포스파젠(phosphazene)을 사용할 수 있다.
구체예에서, 상기 유리전이온도 조절제는 하기 화학식 1로 표시되는 화합물(포스파젠)일 수 있다.
[화학식 1]
Figure PCTKR2023003282-appb-img-000002
상기 화학식 1에서, R1, R2, R3, R4, R5 및 R6는 각각 독립적으로, 수소 원자, 할로겐 원자, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 7의 알케닐기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 6 내지 20의 아릴옥시기, 탄소수 5 내지 20의 헤테로아릴기, 치환 또는 비치환된 탄소수 3 내지 20의 알콕시카보닐알킬기, 치환 또는 비치환된 탄소수 2 내지 10의 카보닐알킬기, 아미노기 또는 히드록시기이다.
여기서, 상기 "치환"은 수소 원자가 탄소수 1 내지 10의 알킬기, 할로겐 원자, 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 10의 아릴기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 3 내지 10의 헤테로시클로알킬기, 탄소수 4 내지 10의 헤테로아릴기, 이들의 조합 등의 치환기로 치환되는 것을 의미한다.
또한, 상기 "알킬", "알콕시" 및 그 외 "알킬" 부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함하고, "알케닐"은 2 내지 8개의 탄소 원자를 갖고 하나 이상의 이중결합을 함유하는 직쇄 또는 분쇄 형태를 모두 포함하며, 상기 "시클로알킬"은 탄소 원자수가 3 내지 20개인 포화모노시클릭 또는 포화바이시클릭 고리 구조형태를 모두 포함한다. 상기 "아릴"은 하나의 수소 원자 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함한다. 구체적으로, 페닐, 나프틸, 비페닐, 톨릴 등을 예시할 수 있으나, 이에 한정되지 않는다.
상기 "헤테로시클로알킬"은 포화시클릭 탄화수소 골격 원자로서 N, O, S로부터 선택되는 1 내지 3개의 헤테로원자를 포함하고, 나머지 포화모노시클와릭 또는 바이시클릭 고리 골격 원자가 탄소인 시클로알킬 그룹을 의미하는 것으로, 피롤리디닐, 아제티디닐, 피라졸리디닐, 옥사졸리디닐, 피페리디닐, 피페라지닐, 모르폴리닐, 티오모르폴리닐, 티아졸리디닐, 히단토이닐, 발레로락타밀, 옥시라닐, 옥세타닐, 디옥솔라닐, 디옥사닐, 옥사티올라닐, 옥사티아닐, 디티아닐, 디히드로푸라닐, 테트라히드로푸라닐, 디히드로피라닐, 테트라히드로피라닐, 테트라히드로피리디닐, 테트라히드로피리미디닐, 테트라히드로티오페닐, 테트라히드로티오피라닐, 디아제파닐, 아제파닐 등을 예시할 수 있다.
상기 "헤테로아릴"은 방향족 고리 골격 원자로서 N, O, S로부터 선택되는 1 내지 3개의 헤테로원자를 포함하고, 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미하는 것으로, 상기 헤테로아릴기는 고리 내 헤테로원자가 산화되거나 사원화되어, 예를 들어 N-옥사이드 또는 4차 염을 형성하는 2가 아릴 그룹을 포함한다. 구체적으로, 퓨릴, 티오페닐, 피롤릴, 피란일, 이미다졸릴, 피라졸릴, 티아졸릴, 티아디아졸릴, 이소티아졸릴, 이속사졸릴, 옥사졸릴, 옥사디아졸릴, 트리아지닐, 테트라지닐, 트리아졸릴, 테트라졸릴, 퓨라자닐, 피리딜, 피라지닐, 피리미딘일, 피리다지닐 등을 예시할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 유리전이온도 조절제는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 1 내지 약 15 중량부, 예를 들면 약 2 내지 약 10 중량부로 포함될 수 있다. 상기 유리전이온도 조절제의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 1 중량부 미만일 경우, 열가소성 수지 조성물(성형품)의 유리 접착력, 외관 특성 등이 저하될 우려가 있고, 약 15 중량부를 초과할 경우, 열가소성 수지 조성물(성형품)의 내충격성, 내화학성 등이 저하될 우려가 있다
구체예에서, 상기 유리 섬유 및 상기 유리전이온도 조절제의 중량비(B:D)는 약 1 : 0.03 내지 약 1 : 0.9, 예를 들면 약 1 : 0.05 내지 약 1 : 0.6일 수 있다. 상기 범위에서, 열가소성 수지 조성물(성형품)의 외관 특성, 유리 접착력, 내화학성, 내충격성, 강성 등이 더 우수할 수 있다.
구체예에서, 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체 및 상기 유리전이온도 조절제의 중량비(C:D)는 약 1 : 0.1 내지 약 1 : 10, 예를 들면 약 1 : 0.3 내지 약 1 : 7일 수 있다. 상기 범위에서, 열가소성 수지 조성물(성형품)의 외관 특성, 유리 접착력, 내화학성, 내충격성, 강성 등이 더 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 통상의 열가소성 수지 조성물에 포함되는 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 난연제, 산화방지제, 적하방지제, 활제, 이형제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.001 내지 약 40 중량부, 예를 들면 약 0.1 내지 약 10 중량부일 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 240 내지 약 300℃, 예를 들면 약 260 내지 약 290℃에서 용융 압출한 펠렛 형태일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 50 mm × 50 mm × 3 mm 크기 시편 위에 0.018 g의 폴리우레탄 계열의 접착제(H.B. Fuller社, EH9777BS)를 110℃에서 1 mm 두께로 도포하고, 도포한 접착제 위에 12 mm × 12 mm × 2.8 mm 크기의 유리를 부착한 후, 25℃ 온도 조건 및 50% 습도 조건에서 72 시간 동안 경화시킨 후, -40℃ 및 85℃ 온도 조건에서 30분씩 72 cycle 체류시켜 열충격을 가한 다음, 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 50 cm 높이에서 추(dart)로 시편을 타격하여 측정한 상기 시편이 유리와 탈착될 때의 추의 무게가 약 240 내지 약 400 g, 예를 들면 약 250 내지 약 300 g일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 두께 1/8" 시편의 노치 아이조드 충격강도가 약 10 내지 약 25 kgf·cm/cm, 예를 들면 약 11 내지 약 20 kgf·cm/cm일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D790에 의거하여, 두께 1/4" 시편을 사용하여 2.8 mm/min의 속도로 측정한 굴곡탄성률이 약 30,000 내지 약 90,000 MPa, 예를 들면 약 40,000 내지 약 75,000 MPa일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 1 mm 두께 시편을 신너 용액에 2분 30초 동안 침지한 뒤, 80℃에서 20분 건조하고, 상온에서 24시간 방치한 다음, 2 kg의 추를 이용한 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 충격하여 측정한 상기 시편이 파괴되는 높이가 약 27 내지 약 70 cm, 예를 들면 약 28 내지 약 60 cm일 수 있다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 유리 접착력, 내충격성, 강성, 내화학성, 이들의 물성 발란스 등이 우수하므로, 모바일용 제품의 하우징 소재 등으로 유용하다.
본 발명에 따른 복합재는 상기 성형품으로 플라스틱 부재; 및 상기 플라스틱 부재에 접하는 유리 부재;를 포함할 수 있다.
구체예에서, 상기 플라스틱 부재와 상기 유리 부재는 접착제로 접착되는 것일 수 있다.
구체예에서, 상기 플라스틱 부재는 50 mm × 50 mm × 3 mm 크기 시편 위에 0.018 g의 폴리우레탄 계열의 접착제(H.B. Fuller社, EH9777BS)를 110℃에서 1 mm 두께로 도포하고, 도포한 접착제 위에 12 mm × 12 mm × 2.8 mm 크기의 유리를 부착한 후, 25℃ 온도 조건 및 50% 습도 조건에서 72 시간 동안 경화시킨 후, -40℃ 및 85℃ 온도 조건에서 30분씩 72 cycle 체류시켜 열충격을 가한 다음, 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 50 cm 높이에서 추(dart)로 시편을 타격하여 측정한 상기 시편이 유리와 탈착될 때의 추의 무게가 약 240 내지 약 400 g, 예를 들면 250 내지 300 g일 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
이하, 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 폴리카보네이트 수지
비스페놀-A계 폴리카보네이트 수지(PC, 제조사: 롯데케미칼, 중량평균분자량: 25,000 g/mol)를 사용하였다.
(B) 유리 섬유
원형 단면 유리 섬유(제조사: Owenscorning社, 제품명: 183F, 평균 직경: 13 ㎛)를 사용하였다.
(C1) 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체
에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체(제조사: SUMITOMO Chemical, 제품명: IGETABOND BF-7M)를 사용하였다.
(C2) (메타)아크릴레이트 변성 폴리올레핀
에틸렌-메틸아크릴레이트 공중합체(제조사: ARKEMA, 제품명: LOTRYL®29MA03T)를 사용하였다.
(D) 유리전이온도 조절제
포스파젠 화합물(제조사: Pharmicell, 제품명: Phoretar201)을 사용하였다.
실시예 1 내지 7 및 비교예 1 내지 7
상기 각 구성 성분을 하기 표 1 및 2에 기재된 바와 같은 함량으로 첨가한 후, 270℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=44, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 100℃에서 4시간 이상 건조 후, 10 oz 사출기(성형 온도: 320℃, 금형 온도: 80℃)에서 사출성형하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1 및 2에 나타내었다.
물성 측정 방법
(1) 유리 접찹력 평가: 50 mm × 50 mm × 3 mm 크기 시편 위에 0.018 g의 폴리우레탄 계열의 접착제(H.B. Fuller社, EH9777BS)를 110℃에서 1 mm 두께로 도포하고, 도포한 접착제 위에 12 mm × 12 mm × 2.8 mm 크기의 유리를 부착한 후, 25℃ 온도 조건 및 50% 습도 조건에서 72 시간 동안 경화시킨 후, -40℃ 및 85℃ 온도 조건에서 30분씩 72 cycle 체류시켜 열충격을 가한 다음, 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 50 cm 높이에서 10 내지 500 g의 추(dart)로 시편을 타격하여, 상기 시편이 유리와 탈착될 때의 추의 무게(단위: g)를 측정하였다.
(2) 내충격성 평가: ASTM D256에 의거하여, 두께 1/8" 시편의 노치 아이조드 충격강도(단위: kgf·cm/cm)를 측정하였다.
(3) 강성 평가: ASTM D790에 의거하여, 2.8 mm/min의 속도로 1/4" 두께 시편의 굴곡탄성률(단위: MPa)을 측정하였다.
(4) 내화학성(도장 후 내충격성) 평가: 1 mm 두께 시편을 신너 용액에 2분 30초 동안 침지한 뒤, 80℃에서 20분 건조하고, 상온에서 24시간 방치한 다음, 2 kg의 추를 이용한 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 충격하여 상기 시편이 파괴되는 높이(단위: cm)를 측정하였다.
실시예
1 2 3 4 5 6 7
(A) (중량부) 100 100 100 100 100 100 100
(B) (중량부) 15 23 35 23 23 23 23
(C1) (중량부) 3.7 3.7 3.7 1 7 3.7 3.7
(C2) (중량부) - - - - - - -
(D) (중량부) 5 5 5 5 5 2 10
유리 접합력 (g) 275 270 260 280 265 260 280
노치 아이조드 충격강도 (kgf·cm/cm) 19 18 15 12 19 19 19
굴곡탄성률 (MPa) 44,000 46,000 70,000 48,000 42,000 46,000 45,000
내화학성 (cm) 55 50 35 30 50 53 45
비교예
1 2 3 4 5 6 7
(A) (중량부) 100 100 100 100 100 100 100
(B) (중량부) 5 45 23 23 23 23 23
(C1) (중량부) 3.7 3.7 0.1 15 - 3.7 3.7
(C2) (중량부) - - - - 3.7 - -
(D) (중량부) 5 5 5 5 5 0.5 20
유리 접합력 (g) 290 230 290 200 230 230 270
노치 아이조드 충격강도 (kgf·cm/cm) 21 9 11 13 19 19 8
굴곡탄성률 (MPa) 26,000 90,000 49,000 38,000 45,000 46,000 42,000
내화학성 (cm) 70 10↓ 10↓ 20 25 55 20
상기 결과로부터, 본 발명의 열가소성 수지 조성물은 유리 접착력, 내충격성(노치 아이조드 충격강도), 강성(굴곡탄성률), 내화학성, 이들의 물성 발란스 등이 우수함을 알 수 있다.
반면, 유리 섬유를 소량 적용한 비교예 1의 경우, 강성 등이 저하되었음을 알 수 있고, 유리 섬유를 과량 적용한 비교예 2의 경우, 유리 접합력, 내충격성, 내화학성 등이 저하되었음을 알 수 있다. 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체를 소량 적용한 비교예 3의 경우, 내화학성 등이 저하되었음을 알 수 있고, 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체를 과량 적용한 비교예 4의 경우, 유리 접합력, 내화학성 등이 저하되었음을 알 수 있으며, 본 발명의 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체 대신에, (메타)아크릴레이트 변성 폴리올레핀 (C2)를 적용한 비교예 5의 경우 유리 접합력, 내화학성 등이 저하되었음을 알 수 있다. 또한, 유리전이온도 조절제를 소량 적용한 비교예 6의 경우, 유리 접합력 등이 저하되었음을 알 수 있고, 유리전이온도 조절제를 과량 적용한 비교예 7의 경우, 내충격성, 내화학성 등이 저하되었음을 알 수 있다.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (14)

  1. 폴리카보네이트 수지 약 100 중량부;
    유리 섬유 약 10 내지 약 40 중량부;
    에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체 약 0.5 내지 약 10 중량부; 및
    유리전이온도 조절제 약 1 내지 약 15 중량부;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체는 에틸렌 약 50 내지 약 75 중량%, 글리시딜메타크릴레이트 약 1 내지 약 10 중량% 및 메틸아크릴레이트 약 15 내지 약 40 중량%의 3원 공중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 유리전이온도 조절제는 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는 열가소성 수지 조성물:
    [화학식 1]
    Figure PCTKR2023003282-appb-img-000003
    상기 화학식 1에서, R1, R2, R3, R4, R5 및 R6는 각각 독립적으로, 수소 원자, 할로겐 원자, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 2 내지 7의 알케닐기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 6 내지 20의 아릴옥시기, 탄소수 5 내지 20의 헤테로아릴기, 치환 또는 비치환된 탄소수 3 내지 20의 알콕시카보닐알킬기, 치환 또는 비치환된 탄소수 2 내지 10의 카보닐알킬기, 아미노기 또는 히드록시기이다.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 유리 섬유 및 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체의 중량비는 약 1 : 0.01 내지 약 1 : 0.8인 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 유리 섬유 및 상기 유리전이온도 조절제의 중량비는 약 1 : 0.03 내지 약 1 : 0.9인 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체 및 상기 유리전이온도 조절제의 중량비는 약 1 : 0.1 내지 약 1 : 10인 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 50 mm × 50 mm × 3 mm 크기 시편 위에 0.018 g의 폴리우레탄 계열의 접착제(H.B. Fuller社, EH9777BS)를 110℃에서 1 mm 두께로 도포하고, 도포한 접착제 위에 12 mm × 12 mm × 2.8 mm 크기의 유리를 부착한 후, 25℃ 온도 조건 및 50% 습도 조건에서 72 시간 동안 경화시킨 후, -40℃ 및 85℃ 온도 조건에서 30분씩 72 cycle 체류시켜 열충격을 가한 다음, 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 50 cm 높이에서 추(dart)로 시편을 타격하여 측정한 상기 시편이 유리와 탈착될 때의 추의 무게가 약 240 내지 약 400 g인 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 두께 1/8" 시편의 노치 아이조드 충격강도가 약 10 내지 약 25 kgf·cm/cm인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D790에 의거하여, 두께 1/4" 시편을 사용하여 2.8 mm/min의 속도로 측정한 굴곡탄성률이 약 30,000 내지 약 90,000 MPa인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 1 mm 두께 시편을 신너 용액에 2분 30초 동안 침지한 뒤, 80℃에서 20분 건조하고, 상온에서 24시간 방치한 다음, 2 kg의 추를 이용한 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 충격하여 측정한 상기 시편이 파괴되는 높이가 약 27 내지 약 70 cm인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.
  12. 제1항 내지 제10항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 플라스틱 부재; 및
    상기 플라스틱 부재에 접하는 유리 부재;를 포함하는 것을 특징으로 하는 복합재.
  13. 제12항에 있어서, 상기 플라스틱 부재와 상기 유리 부재는 접착제로 접착되는 것을 특징으로 하는 복합재.
  14. 제12항 또는 제13항에 있어서, 상기 플라스틱 부재는 50 mm × 50 mm × 3 mm 크기 시편 위에 0.018 g의 폴리우레탄 계열의 접착제(H.B. Fuller社, EH9777BS)를 110℃에서 1 mm 두께로 도포하고, 도포한 접착제 위에 12 mm × 12 mm × 2.8 mm 크기의 유리를 부착한 후, 25℃ 온도 조건 및 50% 습도 조건에서 72 시간 동안 경화시킨 후, -40℃ 및 85℃ 온도 조건에서 30분씩 72 cycle 체류시켜 열충격을 가한 다음, 듀폰 드롭 테스트(Dupont drop test) 방식의 낙추 평가 장비로 50 cm 높이에서 추(dart)로 시편을 타격하여 측정한 상기 시편이 유리와 탈착될 때의 추의 무게가 약 240 내지 약 400 g인 것을 특징으로 하는 복합재.
PCT/KR2023/003282 2022-03-21 2023-03-10 열가소성 수지 조성물 및 이로부터 제조된 성형품 WO2023182709A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220034534A KR20230136986A (ko) 2022-03-21 2022-03-21 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR10-2022-0034534 2022-03-21

Publications (1)

Publication Number Publication Date
WO2023182709A1 true WO2023182709A1 (ko) 2023-09-28

Family

ID=88101433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003282 WO2023182709A1 (ko) 2022-03-21 2023-03-10 열가소성 수지 조성물 및 이로부터 제조된 성형품

Country Status (2)

Country Link
KR (1) KR20230136986A (ko)
WO (1) WO2023182709A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980033011A (ko) * 1996-10-23 1998-07-25 마이클에이.캐푸토 폴리에스테르 수지 강화를 위한 조성물 및 방법
KR100241491B1 (ko) * 1996-12-20 2000-03-02 유현식 열수안정성이 우수한 열가소성 수지 조성물
WO2006001570A1 (en) * 2004-03-15 2006-01-05 Cheil Industries Inc. Improved impact resistance thermoplastic resin composition having high flowability
KR20190081869A (ko) * 2017-12-29 2019-07-09 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR20200025733A (ko) * 2018-08-31 2020-03-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980033011A (ko) * 1996-10-23 1998-07-25 마이클에이.캐푸토 폴리에스테르 수지 강화를 위한 조성물 및 방법
KR100241491B1 (ko) * 1996-12-20 2000-03-02 유현식 열수안정성이 우수한 열가소성 수지 조성물
WO2006001570A1 (en) * 2004-03-15 2006-01-05 Cheil Industries Inc. Improved impact resistance thermoplastic resin composition having high flowability
KR20190081869A (ko) * 2017-12-29 2019-07-09 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR20200025733A (ko) * 2018-08-31 2020-03-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Also Published As

Publication number Publication date
KR20230136986A (ko) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2011013882A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2010143796A1 (ko) 폴리에스테르/폴리카보네이트 얼로이 수지 조성물 및 이를 이용한 성형품
WO2012091307A2 (ko) 난연성 열가소성 수지 조성물
WO2016076503A1 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 이를 이용한 제품
WO2012060515A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2020263015A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2014119827A9 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 성형품
WO2019132584A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2018124790A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2011052849A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2020067695A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2017116043A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2017057903A1 (ko) 유리섬유 보강 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2016108539A1 (ko) 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2013100303A1 (ko) 고광택 폴리카보네이트계 수지 조성물 및 그 성형품
WO2023182709A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2014181921A1 (ko) 투명 폴리카보네이트 조성물 및 이를 포함한 성형품
WO2017111337A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2021085867A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021060665A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022145732A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018117438A1 (ko) 수지 조성물 및 이로부터 제조된 성형품
WO2020138772A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775207

Country of ref document: EP

Kind code of ref document: A1