WO2023179444A9 - 显示设备 - Google Patents

显示设备 Download PDF

Info

Publication number
WO2023179444A9
WO2023179444A9 PCT/CN2023/081853 CN2023081853W WO2023179444A9 WO 2023179444 A9 WO2023179444 A9 WO 2023179444A9 CN 2023081853 W CN2023081853 W CN 2023081853W WO 2023179444 A9 WO2023179444 A9 WO 2023179444A9
Authority
WO
WIPO (PCT)
Prior art keywords
sound
display device
panel
liquid crystal
backlight module
Prior art date
Application number
PCT/CN2023/081853
Other languages
English (en)
French (fr)
Other versions
WO2023179444A1 (zh
Inventor
李奎宝
周辉
张登印
李金龙
徐志强
王超
王英瑞
王天华
姜元恩
程旭
高青梅
雷培丽
王海盈
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2023179444A1 publication Critical patent/WO2023179444A1/zh
Publication of WO2023179444A9 publication Critical patent/WO2023179444A9/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133314Back frames
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133317Intermediate frames, e.g. between backlight housing and front frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • H04R9/066Loudspeakers using the principle of inertia

Definitions

  • This application relates to the field of display technology. More specifically, it relates to a display device.
  • Speakers in display devices are generally small in size due to their ultra-thin appearance and limited installation location, and are forced to use bottom-emitting or rear-emitting sound methods.
  • the resulting sound and image positions are separated from the image positions, which creates a bad look and feel.
  • the experience is not good and it cannot provide an audio-visual experience that combines audio and video.
  • flat panel display devices can produce sound waves as long as they can directly vibrate the display panel through a sound exciter.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • the LCD panel serves as both a display and a speaker.
  • the sound-producing function of the diaphragm achieves an audio-visual effect that combines audio and video.
  • the display panel is an LCD (Liquid Crystal Display, Liquid Crystal Display Panel)
  • the LCD panel has many independent and stacked layers, and a uniformly illuminated backlight source needs to be installed at the rear of the display panel.
  • the backlight source illumination cannot be blocked, so it cannot
  • the sound exciter is installed on the panel, and there is a large distance between the backlight source and the display panel, and there is no path to effectively transmit the vibration to the LCD panel.
  • the present application provides a display device, including: a liquid crystal display panel and a backlight module.
  • a first sealed air cavity is formed inside the liquid crystal display panel.
  • the backlight module is located on one side of the liquid crystal display panel and connected with the liquid crystal display panel.
  • the liquid crystal display panel forms a second sealed air cavity; a sound-generating plate and a sound-generating exciter, the sound-generating plate is fixed to the surface of the backlight module away from the liquid crystal display panel, and the vibration output terminal of the sound-producing exciter is fixed to The sound-generating plate is away from the surface of the backlight module, and the sound-generating exciter is used to excite the sound-generating plate to vibrate through the vibration output terminal to drive the backlight module to vibrate.
  • Figure 1 is a schematic diagram of an operation scenario between a display device and a control device according to an embodiment of the present application
  • Figure 2 is a configuration block diagram of a control device according to an embodiment of the present application.
  • Figure 3 is a configuration block diagram of a display device according to an embodiment of the present application.
  • Figure 4 is a schematic interface diagram of a video on demand program according to an embodiment of the present application.
  • Figure 5 is a schematic three-dimensional structural diagram of a display device according to an embodiment of the present application.
  • Figure 6 is a schematic cross-sectional structural diagram along the direction AA' in Figure 5 according to an embodiment of the present application;
  • Figure 7 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 8 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 9 is a schematic three-dimensional structural diagram of a sound exciter according to an embodiment of the present application.
  • Figure 10 is a schematic cross-sectional structural diagram of a sound exciter according to an embodiment of the present application.
  • Figure 11 is a schematic top structural view of a backlight module according to an embodiment of the present application.
  • Figure 12 is a schematic cross-sectional structural diagram along the BB’ direction in Figure 11 according to an embodiment of the present application;
  • Figure 13 is a schematic diagram of an exploded structure of a display device according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of the three-dimensional structure of another display device according to an embodiment of the present application.
  • Figure 15 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 16 is a schematic top structural view of a low-frequency airflow channel according to an embodiment of the present application.
  • Figure 17 is a schematic top structural view of another low-frequency airflow channel according to an embodiment of the present application.
  • Figure 18 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 19 is a schematic three-dimensional structural diagram of another display device according to an embodiment of the present application.
  • Figure 20 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 21 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 22 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 23 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 24 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 25 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 26 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 27 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 28 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 29 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 30 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 31 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 32 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 33 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 34 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 35 is a schematic cross-sectional structural diagram along the CC' direction in Figure 33 according to an embodiment of the present application.
  • Figure 36 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 37 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 38 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 39 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 40 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 41 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 42 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 43 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 44 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 45 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 46 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 47 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 48 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 49 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 50 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 51 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 52 is a schematic top structural view of another display device according to an embodiment of the present application.
  • Figure 53 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 54 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 55 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 56 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 57 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 58 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 59 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 60 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 61 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 62 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 63 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 64 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 65 is a schematic three-dimensional structural diagram of another display device according to an embodiment of the present application.
  • Figure 66 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 67 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 68 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 69 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 70 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 71 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 72 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 73 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 74 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 75 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 76 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 77 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 78 is a schematic top view of a vibration stabilizing structure according to an embodiment of the present application.
  • Figure 79 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 80 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 81 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 82 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 83 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 84 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 85 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • Figure 86 is a schematic front structural view of another display device according to an embodiment of the present application.
  • Figure 87 is a schematic rear view structural diagram of a display device according to an embodiment of the present application.
  • Figure 88 is a schematic structural diagram of a phase plug according to an embodiment of the present application.
  • Figure 89 is a schematic structural diagram of a driving circuit in a display device according to an embodiment of the present application.
  • Figure 90 is a schematic diagram of an application scenario of a display device according to an embodiment of the present application.
  • Figure 91 is a schematic diagram of the processing process of a frequency division delay algorithm according to an embodiment of the present application.
  • Figure 92 is a schematic three-dimensional structural diagram of a base according to an embodiment of the present application.
  • Figure 93 is a perspective structural schematic diagram of a display device according to an embodiment of the present application.
  • the display device provided by the embodiment of the present application can have a variety of implementation forms, for example, it can be a TV, a smart TV, a monitor, an electronic bulletin board, an electronic table, etc.
  • Figures 1 and 2 illustrate a specific implementation of the display device of the present application.
  • FIG. 1 is a schematic diagram of an operation scenario between a display device and a control device according to an embodiment of the present application. As shown in FIG. 1 , the user can operate the display device 200 through the smart device 300 or the control device 100 .
  • control device 100 may be a remote controller, and the communication between the remote controller and the display device 200 may include infrared protocol communication, Bluetooth protocol communication, and other short-distance communication methods to control the display device 200 through wireless or wired methods.
  • the user can control the display device 200 by inputting user instructions through buttons on the remote control, voice input, control panel input, etc.
  • a smart device 300 (such as a mobile terminal, a tablet, a computer, a laptop, etc.) can also be used to control the display device 200 .
  • the display device 200 is controlled using an application running on the smart device.
  • the display device 200 may not use the above-mentioned smart device or control device to receive instructions, but may receive user control through touch or gestures.
  • the display device 200 can also be controlled in a manner other than the control device 100 and the smart device 300 .
  • the display device 200 can directly receive the user's voice command control through a module configured inside the display device 200 to obtain voice commands.
  • the user's voice command control can also be received through a voice control device provided outside the display device 200 .
  • display device 200 also communicates data with server 400.
  • the display device 200 may be allowed to communicate via a local area network (LAN), a wireless local area network (WLAN), and other networks.
  • the server 400 can provide various content and interactions to the display device 200.
  • FIG. 2 is a configuration block diagram of a control device according to an embodiment of the present application.
  • the control device 100 includes a controller 110, a communicator 130, a user input/output interface 140, a memory, and a power supply.
  • the control device 100 can receive input operation instructions from the user, and the communicator 130 is communicatively connected with the display device.
  • the control device 100 converts the operation instructions into instructions that the display device 200 can recognize and respond to, thus serving as an interactive intermediary between the user and the display device 200 .
  • FIG. 3 is a configuration block diagram of a display device according to an embodiment of the present application.
  • the display device 200 includes a tuner and demodulator 210, a communicator 220, a detector 230, an external device interface 240, a controller 250, a display 260, an audio output interface 270, a memory, a power supply, and a user interface. At least one.
  • the controller 250 includes a processor, a video processor, an audio processor, a graphics processor, RAM, ROM, and first to nth interfaces for input/output.
  • the display 260 is used for a display interface, including a display screen component for presenting pictures, and a driving component for driving image display, and a component for receiving image signals output from the controller, displaying video content, image content, and menu control interface components. and user control UI interface.
  • the communicator 220 is a component for communicating with external devices or servers according to various communication protocol types.
  • the communicator may include at least one of a Wifi module, a Bluetooth module, a wired Ethernet module, other network communication protocol chips or near field communication protocol chips, and an infrared receiver.
  • the display device 200 can be communicatively connected with the control device 100 or the server 400 through the communicator 220, that is, to establish the sending and receiving of control signals and data signals.
  • the user interface can be used to receive control signals from the control device 100 (such as an infrared remote control, etc.).
  • the detector 230 is used to collect signals from the external environment or interactions with the outside.
  • the detector 230 includes a light receiver, a sensor used to collect ambient light intensity; or the detector 230 includes an image collector, such as a camera, which can be used to collect external environment scenes, user attributes or user interaction gestures, or , the detector 230 includes a sound collector, such as a microphone, etc., for receiving external sounds.
  • the external device interface 240 may include, but is not limited to, any one of the following: high-definition multimedia interface (HDMI), analog or data high-definition component input interface (component), composite video input interface (CVBS), USB input interface (USB), RGB port, etc., or Multiple interfaces. It can also be a composite input/output interface formed by the above-mentioned multiple interfaces.
  • HDMI high-definition multimedia interface
  • component analog or data high-definition component input interface
  • CVBS composite video input interface
  • USB USB input interface
  • RGB port etc.
  • Multiple interfaces can also be a composite input/output interface formed by the above-mentioned multiple interfaces.
  • the tuner-demodulator 210 receives broadcast television signals through wired or wireless reception methods, and demodulates audio and video signals, such as EPG data signals, from multiple wireless or wired broadcast television signals.
  • the controller 250 and the tuner-demodulator 210 may be located in different separate devices, that is, the tuner-demodulator 210 may also be located in an external device of the main device where the controller 250 is located, such as an external set-top box. wait.
  • the controller 250 controls the operation of the display device and responds to user operations through various software control programs stored in the memory.
  • the controller 250 controls the overall operation of the display device 200. For example: in response to receiving a user command to select a UI object to be displayed on display 260, controller 250 You can perform operations related to objects selected by user commands.
  • the controller 250 includes a central processing unit (Central Processing Unit, CPU), a video processor, an audio processor, a graphics processor (Graphics Processing Unit, GPU), RAM Random Access Memory, RAM, ROM (Read -Only Memory, ROM), at least one of the first to nth interfaces for input/output, communication bus (Bus), etc.
  • CPU Central Processing Unit
  • video processor video processor
  • audio processor audio processor
  • graphics processor Graphics Processing Unit, GPU
  • RAM Random Access Memory RAM
  • ROM Read -Only Memory
  • ROM Read -Only Memory
  • the user may input a user command into a graphical user interface (GUI) displayed on the display 260, and the user input interface receives the user input command through the graphical user interface (GUI).
  • GUI graphical user interface
  • the user can input a user command by inputting a specific sound or gesture, and the user input interface recognizes the sound or gesture through the sensor to receive the user input command.
  • the interface of the preset video on demand program can be directly entered.
  • the interface of the video on demand program can be as shown in Figure 4, including at least a navigation bar 310 and a content display area located below the navigation bar 310. , the content displayed in the content display area will change as the selected control in the navigation bar changes.
  • Programs in the application layer can be integrated into the video on demand program and displayed through a control in the navigation bar, or can be further displayed after the application control in the navigation bar is selected.
  • the display device after the display device is started, it can directly enter the display interface of the last selected signal source, or the signal source selection interface, where the signal source can be a preset video on demand program, an HDMI interface, or a live TV interface. At least one of the following: after the user selects different signal sources, the display can display content obtained from different signal sources.
  • FIG. 5 is a schematic three-dimensional structural diagram of a display device according to an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional structural diagram along the direction AA’ in FIG. 5 according to an embodiment of the present application.
  • the display device includes a liquid crystal display panel 1 and a backlight module 2.
  • a first sealed air cavity 3 is formed inside the liquid crystal display panel 1.
  • the backlight module 2 is located on one side of the liquid crystal display panel 1 and connected with the liquid crystal display panel.
  • the panel 1 forms a second sealed air cavity 4; the display device also includes a sound-generating plate 5 and a sound-generating exciter 6.
  • the sound-generating plate 5 is fixed to the surface of the backlight module 2 away from the liquid crystal display panel 1, and the vibration output terminal of the sound-generating exciter 6 is fixed.
  • the sounding exciter 6 is used to excite the sounding plate 5 to vibrate through the vibration output terminal to drive the backlight module 2 to vibrate.
  • some embodiments of the present application provide a liquid crystal display device with a self-sounding screen, which belongs to the field of multimedia technology that combines display devices and electroacoustics.
  • a first sealed air cavity 3 is formed inside the liquid crystal display panel 1.
  • the backlight module 2 is located on one side of the liquid crystal display panel 1 and forms a second sealed air cavity 4 with the liquid crystal display panel 1.
  • the first The air in the air gap formed by the sealed air cavity 3 and the second sealed air cavity 4 has viscosity, and its kinematic viscosity is many times higher than water, for example 15 times.
  • the sealed air gap is between the liquid crystal display panel 1 and the backlight module. 2 and inside the LCD panel 1 are equivalent to damping springs.
  • the sound exciter 6 is used to excite the sound plate 5 to vibrate through the vibration output terminal to drive the backlight module 2 to vibrate.
  • the sealed air gap is then used to form a damping spring.
  • the vibration force of the backlight plate 30 in the backlight module 2 vibrated by the sound exciter 6 is transmitted to the front panel of the liquid crystal display panel 1 through an equivalent damping spring, so that the liquid crystal display panel 1 vibrates and makes sound, and because the sound exciter 6 is located at the sound
  • the plate 5 is away from the surface of the backlight module 2, and the arrangement of the sound exciter 6 does not affect the display of the display device.
  • the backlight module 2 includes a backlight plate 30 and a light-emitting structure 18 on the backlight plate 30.
  • the air gap between the liquid crystal display panel 1 and the backlight plate 30 in the backlight module 2 may be the same as the height of the light-emitting structure 18 or slightly higher than the height of the light-emitting structure 18 .
  • the sound-generating board 5 may be a honeycomb board or a carbon fiber board.
  • the thickness of the sounding board 5 may be, for example, 1 mm to 4 mm.
  • the core material of the sound board 5 includes but is not limited to paper, aramid, metal or other rigid foam materials, and the skin material of the sound board 5 includes but is not limited to glass fiber, carbon fiber, glass-carbon hybrid fiber, plastic or lightweight aluminum. and other materials.
  • the sound-generating plate 5 can also be used as a heat conduction and heat dissipation plate for the backlight plate 30 in the backlight module 2 .
  • FIG. 7 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the sound exciter 6 can be, for example, an electromagnetic vibration exciter.
  • the sound exciter 6 includes coil tubes 805 and 806, magnetic field circuits 801 and 802 and 804, elastic waves 807, and buffer pads.
  • the sound exciter 6 vibrates the sound plate 5 in an inertial driving manner.
  • the inertial drive includes the sound exciter 6 and its own supporting stable structure. The inertial drive does not require additional support and fixation on the rear part of the sound exciter 6.
  • the whole sound exciter 6 follows Display devices vibrate together.
  • the vibration output terminal 7 of the sound exciter 6 is directly connected to one side of the sound plate 5, the central axis of the sound exciter 6 is perpendicular to the plane of the sound plate 5, and the vibration output direction is along the central axis of the sound exciter 6 and perpendicular to the plane of the sound plate 5.
  • the electromagnetic force causes the lighter mass coil tube to produce a higher frequency resonance, which directly vibrates the sound-generating panel 5 and the backlight module 2.
  • the reaction force of the electromagnetic force causes the larger-mass sound exciter 6 body to generate The lower frequency resonance vibrates the sound-generating panel 5 and the backlight module 2 through the cushion pad of the fulcrum.
  • the body of the sound exciter 6 has no fixed support, but vibrates with the vibration of the driven sound panel 5 and the backlight module 2. This is also the biggest difference in the excitation method in which the body of the OLED screen sound exciter 6 is fixed to the bracket.
  • a fixing pin 63 is provided on the middle frame back plate 37.
  • the sound exciter 6 is connected to the fixing pin 63 through an I-shaped silicone isolation pad, so that the sound exciter 6 can move forward and backward through the silicone isolation pad. Suspended support and fixation with degrees of freedom.
  • the sound exciter 6 may be directly fixed to the sound plate 5 .
  • Figure 9 is a schematic three-dimensional structural diagram of a sound exciter according to an embodiment of the present application. Combining Figures 8 and 9, the sound exciter 6 has three or four sheet-like elastic legs 64 with low elastic coefficients extending away from the center. The sheet-shaped elastic legs 64 extend convolutionally or radially away from the center.
  • FIG. 10 is a schematic cross-sectional structural diagram of a sound exciter according to an embodiment of the present application.
  • the sound exciter 6 has a guide rod 807 and a diaphragm 808.
  • the higher frequency resonance generated on the coil tubes 805 and 806 is transmitted to the back diaphragm 808 through the guide rod 807, which can increase the high-frequency sound wave radiation. Enhance high frequency response.
  • the sound exciter 6 can also use piezoelectric driving to achieve excitation vibration. Some embodiments of this application do not make any specific implementation type and specific structure of the sound exciter 6. The specific working principle of the sound exciter 6 is well known to those skilled in the art and will not be described again here.
  • FIG. 5 only illustrates the distribution position of the sound exciter 6 in the display device. Some embodiments of the present application do not specifically limit the distribution position of the sound exciter 6 in the display device. The distribution position of the sound exciter 6 is specifically set according to the sound generation requirements of the display device.
  • some embodiments of the present application utilize the sound-generating panel 5 and two sealed air cavities whose internal air has viscosity, so that the sound-generating exciter 6 can pass through the sound-generating panel 5, the backlight module 2, and the second sealed air cavity in sequence. 4 and the first sealed air cavity 3 transmit the vibration to the front panel of the liquid crystal display panel 1, causing the liquid crystal display panel 1 to vibrate and sound, and because the vibration output terminal 7 of the sound exciter 6 is fixed to the sound plate 5 away from the backlight module 2, the setting of the sound exciter 6 does not affect the display of the display device, making it possible for the traditional LCD device screen to sound, giving the user an audio-visual experience where the sound comes from the image, and overcoming the problem of the sound coming from the LCD panel. Industry bottleneck problems that are difficult to achieve.
  • FIG. 11 is a schematic top structural view of a backlight module according to an embodiment of the present application
  • FIG. 12 is a schematic cross-sectional structural view along the BB’ direction in FIG. 11 according to an embodiment of the present application.
  • the sound panel 5 is fixed to the backlight module 2 through a first viscous buffer structure (not shown in Figure 12).
  • the backlight module 2 in the display device may include multiple backlight panels 30 , and the multiple backlight panels 30 may be evenly arranged and spliced to form the backlight module 2 .
  • the sound-generating panel 5 and the backlight panel 30 are both rectangular flat plates.
  • the first sticky buffer structure can be double-sided tape.
  • the backlight panel 30 is evenly distributed and attached to the sound-generating panel 5 through the first sticky buffer structure.
  • the sound-generating panel 5 makes the sound panel 5 Adjacent backlight panels 30 are connected to each other, so that all backlight panels 30 are connected into one entire panel, and there are tight seams between the backlight panels 30 .
  • the first viscous buffering structure also plays a buffering role between the sound board 5 and the backlight module 2 to prevent the hard collision between the two during vibration to produce noise and affect the display effect of the display device.
  • the vibration output terminal 7 is fixed to the sounding board 5 through a second viscous buffer structure (not shown in FIGS. 7 and 8 ).
  • the vibration output terminal 7 can also be in direct contact with the sounding board 5, which can also drive the sounding board 5 to vibrate, but will cause the vibration output terminal 7 of the sounding exciter 6 to vibrate downwards to separate from the sounding board 5, and the liquid crystal display cannot be excited.
  • the vibration output terminal 7 is fixed to the sound-generating plate 5 through a second viscous buffer structure.
  • the second viscous buffer structure can be, for example, double-sided tape, which solves the problem of the vibration output terminal 7 of the sound-generating exciter 6 vibrating downward. It is detached from the sound-generating plate 5 and cannot excite the liquid crystal display panel 1 to produce sound. Furthermore, when the sound-generating exciter 6 vibrates upward, it will have a hard collision with the sound-generating plate 5 and generate noise.
  • FIG. 13 is a schematic exploded structural diagram of a display device according to an embodiment of the present application.
  • the liquid crystal display panel 1 includes a liquid crystal film layer 10 and an optical diffusion film layer 11.
  • a first film is provided between the liquid crystal film layer 10 and the optical diffusion film layer 11 corresponding to the frame position of the liquid crystal display panel 1.
  • the first annular sealing structure 12 , the liquid crystal film layer 10 and the optical diffusion film layer 11 form the first sealed air cavity 3 through the first annular sealing structure 12 .
  • the first annular sealing structure 12 can be optical glue, for example.
  • the first annular sealing structure 12 makes the air in the air gap of the first sealed air cavity 3 have viscosity, and the sound exciter 6 is used to pass vibration
  • the output terminal 7 excites the sound plate 5 to vibrate to drive the backlight module 2 to vibrate, and then uses the damping spring equivalent to the sealed air gap to vibrate the vibration force of the backlight plate 30 in the backlight module 2 of the sound exciter 6 through equivalent damping
  • the spring is transmitted to the front panel of the LCD panel 1, causing the LCD Display panel 1 vibrates and makes a sound. Therefore, some embodiments of the present application use optical glue to achieve a fully bonded structure of the liquid crystal display panel 1.
  • the optical diffusion film layer 11 may include an optical film and a diffusion plate.
  • the display structure and corresponding working principle of the liquid crystal display panel 1 are as follows Those skilled in the art are familiar with the contents and will not repeat them here.
  • Optical glue is used to bond the liquid crystal film layer 10, the optical diaphragm and the diffusion plate, so that the multi-layer diaphragm structure becomes a component, which is equivalent to a single-layer screen, so that the vibration generated by the sound exciter 6 can pass through the full lamination
  • the structure of the liquid crystal display panel 1 is passed to the front of the liquid crystal display panel 1 .
  • the materials constituting the diffusion plate include, but are not limited to, glass, acrylic, polycarbonate and other lightweight transparent organic plates.
  • the optical diffusion film layer 11 may include an optical film and a diffusion plate.
  • the optical film is located on the side of the diffusion plate adjacent to the liquid crystal film layer 10.
  • FIG. 6 exemplarily disposes between the optical film and the liquid crystal film layer 10.
  • An air cavity can be formed.
  • An air cavity can also be formed between the optical film and the diffusion plate.
  • Air can also be formed between the optical film and the liquid crystal film layer 10 and between the optical film and the diffusion plate. cavity.
  • part of the frame position corresponding to the display device can be set, and the optical film and the diffusion plate are both in contact with the middle frame backplate 37.
  • the optical film and the diffusion plate are both in contact with the middle frame backplate 37.
  • the optical film and the diffusion plate are both in contact with the middle frame backplate 37.
  • the optical film and diffusion plate are suspended relative to the middle frame back plate 37 .
  • the optical film and diffusion plate are suspended relative to the middle frame back plate 37 .
  • the aforementioned air cavity communicates with the air cavity between the backlight plate 30 and the diffusion plate through a suspended position, such as the left side frame position in FIG. 6 , to form a second gap between the backlight module 2 and the liquid crystal display panel 1 .
  • the air cavity 4 is sealed to realize the conduction of sound from the sound-generating panel to the front side of the display panel, thereby achieving sound generation on the screen. That is, at this time, the second sealed air cavity 4 includes the air cavity between the backlight plate 30 and the diffusion plate, and also includes the air cavity between the optical film and the liquid crystal film layer 10 , or also includes the optical film and the diffusion plate. air cavity between.
  • the second sealed air cavity 4 at this time includes the air cavity between the backlight plate 30 and the diffusion plate, and also includes a suspended position, such as the air gap at the left frame position in Figure 6, and the two are connected. Seal the air cavity.
  • FIG. 14 is a schematic three-dimensional structural diagram of another display device according to an embodiment of the present application.
  • a second annular sealing structure 13 is provided between the backlight module 2 and the LCD panel 1 corresponding to the frame position of the LCD panel 1.
  • the backlight module 2 and the LCD panel 1 The second sealed air chamber 4 is formed by the second annular sealing structure 13 .
  • the second annular sealing structure 13 may be, for example, optical glue.
  • the second annular sealing structure 13 is arranged around the frame of the liquid crystal display panel 1 so that the air in the air gap of the second sealed air cavity 4 has viscosity. property, the sound exciter 6 is used to excite the sound plate 5 to vibrate through the vibration output terminal 7 to drive the backlight module 2 to vibrate, and then uses a damping spring equivalent to the sealed air gap to vibrate the backlight in the backlight module 2 The vibration force of the panel 30 is transmitted to the front panel of the liquid crystal display panel 1 through an equivalent damping spring, causing the liquid crystal display panel 1 to vibrate and produce sound.
  • the maximum height of the air gap formed by the second sealed air cavity 4 may be 10 mm, for example, it may also be 1 mm.
  • the first annular sealing structure 12 can also surround the liquid crystal display panel 1 like the second annular sealing structure 13 The border position setting.
  • FIG. 15 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application
  • FIG. 16 is a schematic structural view from above of a low-frequency airflow channel according to an embodiment of the present application.
  • the first annular sealing structure 12 includes a plurality of low-frequency airflow channels.
  • the arrows in Figure 16 represent the airflow direction in the low-frequency airflow channels.
  • the low-frequency airflow channels are used to communicate with the first Seal the air cavity 3 and the external environment where the display device is located.
  • the air gap between the liquid crystal film layer 10 and the optical diffusion film layer 11 inside the liquid crystal display panel 1 uses the first annular sealing structure 12 to form a first sealed air cavity 3, and the vibration of the optical diffusion film layer 11 passes through the first annular sealing structure 12.
  • a sealed air cavity 3 is transmitted to the liquid crystal film layer 10 and the glass cover and other structures in front of the liquid crystal display panel 1, and the liquid crystal display panel 1 vibrates and generates sound.
  • the first sealed air cavity 3 is under great pressure and squeezes the liquid crystal film layer 10, causing the liquid crystal film layer 10 to be compressed and deformed, thereby causing display problems. If the vibration energy is reduced or the thickness of the first sealed air cavity 3 is increased, the vibration energy transmission efficiency will be reduced, which is not conducive to improving the sound frequency.
  • the first annular sealing structure 12 includes multiple low-frequency airflow channels.
  • the low-frequency airflow channels are used to connect the first sealed air cavity 3 with the external environment where the display device is located.
  • the first annular sealing structure 12 at the edge of the liquid crystal display panel 1 is used to connect
  • the sealing structure 12 is provided with a plurality of low-frequency airflow channels, that is, a filtering structure is provided. During low-frequency vibration, air pressure leaks outward from the low-frequency airflow channels, and low-frequency sound waves are radiated outward through the low-frequency airflow channels to avoid the liquid crystal film layer when the optical diffusion film layer 11 has a large amplitude. 10.
  • the problem of serious pressure affecting the display, and low-frequency sound waves are directly output from the low-frequency airflow channel, which improves the low-frequency transmission radiation efficiency.
  • the low-frequency airflow channel structure is configured to render the low-frequency airflow channels ineffective.
  • the amplitude of the optical diffusion film layer 11 is smaller, and the liquid crystal film layer 10 will not cause display problems due to pressure.
  • the first annular sealing structure 12 includes multiple rows of channel-forming structures 15 arranged along the first direction XX', one row of channel-forming structures 15 includes a plurality of barrier structures 16 arranged at a set distance apart, and the barrier structures 16 in different rows of channel forming structures 15 are staggered; wherein the first direction XX' is perpendicular to the extension direction of the frame of the liquid crystal display panel 1 .
  • the equivalent diameter three times of the cross-sectional area of the low-frequency airflow channel can be set to be less than or equal to the channel length.
  • the low-frequency airflow channel can be equivalent to an acoustic device tube.
  • the air in the tube vibrates, it forms a resonance of a certain frequency, which can be equivalent to the resonance of a compliant device and a mass device, that is, it is equivalent to the air elasticity and sealing
  • the resonance of the air quality causes multiple low-frequency airflow channels to have a high-frequency filtering effect, that is, high-frequency vibrations cannot be transmitted outward through the pipelines.
  • it is equivalent to channel sealing to ensure that the liquid crystal film layer 10 and the optical diffusion film layer 11 enough support.
  • the low-frequency airflow channel has no filtering effect, and when vibrating at low frequencies, it is equivalent to an open channel.
  • 15 and 16 exemplarily provide that the first annular sealing structure 12 includes two rows of channel forming structures 15 arranged along the first direction XX', of course, also Channels may be arranged in other rows. Some embodiments of the present application do not specifically limit the number of rows of channel forming structures 15 arranged along the first direction XX' included in the first annular sealing structure 12 .
  • FIG. 17 is a schematic top structural view of another low-frequency airflow channel according to an embodiment of the present application. 16 and 17 , in order to prevent external dust from entering the interior of the display device through the low-frequency airflow channel, a porous damping material 66 is added inside the low-frequency airflow channel to further optimize the filtering performance of the low-frequency airflow channel and prevent foreign matter from entering.
  • the double-layer tape that forms the low-frequency airflow channel such as shown in Figures 15 to 17, can be directly replaced with a microporous breathable tape to achieve a low-cost filtering solution and dust-proof effect.
  • the backlight module 2 is a MiniLED backlight module.
  • the MiniLED backlight module is small in size. Setting the backlight module 2 as a MiniLED backlight module can effectively reduce the air gap between the LCD panel 1 and the backlight module 2, and utilize the LCD panel 1 and the backlight module to The sealing around group 2 makes the air in the air gap viscous.
  • the sealed air gap is equivalent to a damping spring between the liquid crystal display panel 1 and the backlight module 2, which vibrates the sound exciter 6 with the vibration force of the backlight module 2. The sound is transmitted to the LCD panel 1 through the damping spring.
  • the backlight module 2 may include multiple backlight panels 30 , that is, light panels, or may include multiple light bars, which are not specifically limited in some embodiments of the present application.
  • the backlight module 2 is not limited to including a MiniLED backlight module, and other self-luminous structures can also be used as the backlight module 2 .
  • the backlight module 2 may include multiple backlight panels 30 , that is, light panels, or may include multiple light bars, which are not specifically limited in some embodiments of the present application.
  • FIG. 18 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application
  • FIG. 19 is a schematic three-dimensional structural diagram of another display device according to an embodiment of the present application.
  • the display device also includes a plurality of elastic supports 17.
  • the elastic supports 17 are interferingly provided between the backlight module 2 and the liquid crystal display panel 1.
  • the backlight module 2 The side adjacent to the liquid crystal display panel 1 includes a plurality of light-emitting structures 18, and the elastic support member 17 is located between the light-emitting structures 18.
  • an elastic support member 17 is added between the liquid crystal display panel 1 and the backlight module 2.
  • the elastic support member 17 has the following characteristics: one side is in contact with the liquid crystal display panel 1, and the other side is in contact with the backlight module.
  • the elastic support member 17 can be made of a high resilience material or a combination of materials with a resilience function, such as silicone.
  • the elastic support 17 can ensure the stable size of the air gap between the LCD panel 1 and the backlight module 2 and avoid abnormal collision noise between the LCD panel 1 and the backlight module 2, and the solid elastic support 17 improves the vibration from the backlight Transfer efficiency from module 2 to LCD panel 1.
  • position a in Figure 19 can be tape.
  • the elastic support member 17 is provided with an interference between the backlight module 2 and the liquid crystal display panel 1. That is, the combination of both sides of the elastic support member 17 with the liquid crystal display panel 1 and the backlight module 2 can adopt a size interference fit design. That is, the size of the elastic support member 17 is larger than the height design size between the liquid crystal display panel 1 and the backlight module 2 .
  • Figure 20 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the elastic support member 17 is in a free contact state.
  • 21 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the sound exciter 6 is not vibrating and the elastic support member 17 is placed in a static state, the elastic support member 17 is caused by the liquid crystal display panel 1 and the backlight module 2 The extrusion is in a state of interference compression.
  • Figure 22 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the elastic support member 17 When the vibrator corresponding to the sound exciter 6 is pushed forward, the elastic support member 17 is in a further overpressure state.
  • the size of the elastic support member 17 can be, for example, The sum of the distance between the LCD panel 1 and the backlight module 2 and half the vibration amplitude of the vibrator ensures that in the state shown in Figure 20, the elastic support 17 is in contact with both the LCD panel 1 and the backlight module 2, thereby improving the vibration The transmission efficiency from the backlight module 2 to the liquid crystal display panel 1.
  • the elastic support member 17 can be fixed to the backlight module 2 through a first adhesive structure 19 , and the first adhesive structure 19 is, for example, double-sided tape.
  • FIG. 23 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application. As shown in FIG. 23, an elastic support member 17 may also be provided with a welding structure 20 on one side adjacent to the backlight module 2. The elastic support The component 17 is welded and fixed to the position 67 of the backlight module 2 through the welding structure 20 .
  • the elastic support member 17 can be injection molded, mechanically matched, or bonded with a metal weldable material structure, and the welding structure 20 is fixedly connected to the backlight plate 30 of the backlight module 2 through welding, thereby achieving the fixation of the elastic support member 17
  • this method can make the elastic support member 17 firmly installed and facilitate batch automatic assembly.
  • the material of the elastic support member 17 can be, for example, elastic materials such as silicone rubber.
  • the elastic material has a problem of hardness change due to the influence of temperature. Changes in the internal temperature when the display device is working will cause the hardness of the elastic support member 17 to change, thus Affects the support and vibration transmission optimization of the elastic support member 17. As shown in Figure 23, optimization can be carried out through a dual-material composite method.
  • the elastic material part ensures the vibration buffering effect
  • the inelastic material part that is, the welded structure 20 ensures that the vibration transmission effect does not change with temperature changes.
  • FIG. 24 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • suction cup structures may also be provided at both ends of the elastic support member 17 , and the elastic support member 17 is fixed to the backlight module 2 and the liquid crystal display panel 1 respectively through the suction cup structures at both ends.
  • Figure 25 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • one end of the elastic support member 17 can also be fixed to the backlight module 2 through a first adhesive structure 19, such as double-sided tape, and the other end of the elastic support member 17 is provided with a suction cup structure and the elastic support member 17 passes through
  • the suction cup structure is fixed to the liquid crystal display panel 1. Therefore, the elastic support member 17 can be fixed by double-sided bonding or mechanical structure fixation, thereby realizing the vibration linkage between the backlight module 2 and the liquid crystal display panel 1 and improving the vibration transmission efficiency.
  • double-sided bonding or Mechanical structure fixation has the disadvantage of complicated process implementation.
  • the suction cup adsorption solution can improve the achievability of the solution.
  • FIG. 26 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application
  • FIG. 27 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the elastic support member 17 is provided in an interference relationship between the sound-generating panel 5 and the liquid crystal display panel 1.
  • the side of the backlight module 2 adjacent to the liquid crystal display panel 1 includes a plurality of light-emitting structures 18.
  • the elastic support member 17 is located on between the light-emitting structures 18.
  • a fixing plate 22 can be provided on the side of the backlight module 2 adjacent to the liquid crystal display panel 1 .
  • the fixing plate 22 is provided with a plurality of clamping holes 23 .
  • a plurality of through-mounting holes 24 are provided, and the locking holes 23 are used to fix the elastic support member 17 in the through-mounting holes 24 and on the sounding board 5; or, as shown in Figure 27, the backlight module 2 includes a plurality of countersunk holes 25 , the counterbore 25 is used to fix the elastic support member 17 on the sounding board 5 .
  • the adhesive layer between the elastic support 17 and the backlight module 2 is prone to falling off after long-term vibration, and the assembly process is cumbersome.
  • the backlight module 2 is The mounting hole 24 is provided at the installation position of the elastic support member 17.
  • the bottom of the backlight module 2 and the surface of the sounding board 5 are provided with a glue layer.
  • the bottom surface of the elastic support member 17 is bonded to the glue layer.
  • a layer of fixing plate 22 is added to the surface of the backlight module 2.
  • the fixed plate 22 opens a hole and makes the top of the elastic support member 17 protrude.
  • the bottom cross-sectional area of the elastic support member 17 is larger than the top side cross-sectional area.
  • the corresponding opening size of the fixed plate 22 is smaller than the bottom surface area of the elastic support member 17. Therefore, Through this structure, the elastic support member 17 is fixed at the position of the backlight module 2 to prevent the elastic support member 17 from falling off.
  • the backlight module 2 adds a countersunk hole 25 at the installation position of the elastic support member 17 to fix the elastic support member 17 more easily.
  • the concept of fixing the elastic support member 17 of the structure shown in FIG. 26 and FIG. 27 may also be used for reference and a similar structure may be used to fix the elastic support member 17. Some embodiments of the present application do not specifically limit this.
  • the elastic support member 17 may be, for example, conical or cylindrical, or may be configured in a shape similar to that shown in FIG. 19 .
  • the elastic support member 17 may be disposed adjacent to a portion of the liquid crystal display panel 1 .
  • the cross-sectional area is smaller than the cross-sectional area of the part of the elastic support member 17 adjacent to the backlight module 2 .
  • the elastic support member 17 is disposed within the illumination range of the light-emitting structure 18 on the backlight module 2.
  • the shape design of the elastic support member 17 needs to consider the problem of local bright spots or dark spots caused by the refraction of light when the light-emitting structure 18 emits light.
  • the elastic support member 17 can be placed equidistantly from the surrounding four light-emitting structures 18 and adopt a conical or conical tetrahedron design.
  • the off-axis angle between each surface of the elastic support member 17 and the corresponding light-emitting structure 18 may be the same, for example.
  • FIG. 28 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the side of the backlight module 2 adjacent to the liquid crystal display panel 1 includes a plurality of light-emitting structures 18.
  • the light-emitting structures 18 can also be covered with light-guiding elastic supports 68, and the light-guiding elastic supports 68 are arranged in an interference manner. Between the backlight module 2 and the liquid crystal display panel 1.
  • the light-emitting structure 18 is, for example, a MiniLED
  • the light-guiding elastic support 68 can be implemented by arranging light-guiding parts or light-guiding glue dots at the position of the light-emitting structure 18 , thereby utilizing the light-emitting structure 18 and the backlight in the backlight module 2
  • the welding of the plate 30 installs the light guide elastic support 68 on the backlight module 2, which is beneficial to improving assembly efficiency.
  • the interference involved in the light-guiding elastic support member 68 and the working principle for support and sound transmission can be understood with reference to the foregoing embodiments, and will not be described again here.
  • Figure 29 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the light guide elastic support 68 can be set as a multi-functional elastic diffusion plate bracket. That is, the light guide elastic support 68 can be used to replace the lens and diffusion plate bracket in the backlight.
  • the light guide elastic support 68 can pass through the The diffusion plate contact in the optical diffusion film layer 11 effectively supports the liquid crystal display panel 1, and the cross-sectional area of the light-guiding elastic support member 68 gradually increases in the direction away from the backlight plate 30, which has the effect of improving the light-emitting structure.
  • the uniform light effect of the light emitted by 18 can evenly distribute the uneven light intensity of the light-emitting structure 18.
  • the light-guiding elastic support 68 can be a silicone material with a set transparency. For example, it can be provided in the light-guiding elastic support 68.
  • a plurality of bubbles or filled with, for example, silica particles can achieve the light uniformity function of the light-guiding elastic support 68 .
  • the distribution density of the bubbles or silica particles can be set to gradually decrease along the direction away from the longitudinal central axis of the light-guiding elastic support 68 .
  • the light guide elastic support member 68 has a light control effect. In the local dimming (regional dimming) display mode, the arrangement of the light guide elastic support member 68 can reduce the impact on other light control areas.
  • the light guide elastic support member 68 can be used to control light.
  • the surface of the support 68 is coated with reflective material to avoid light interference between different local dimming display areas.
  • the backlight module in the structure shown in Figure 29 can be a light panel or a light bar.
  • FIG. 30 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application. 6 and 30, the optical diffusion film layer 11 includes an optical film 27 and a diffusion plate 28.
  • the diffusion plate 28 is located on the side of the optical film 27 away from the liquid crystal film layer 10, and is provided between the optical film 27 and the diffusion plate 28.
  • There is a multifunctional optical adhesive layer 29 and the multifunctional optical adhesive layer 29 is arranged corresponding to the light-emitting structure 18 .
  • the multifunctional optical adhesive layer 29 may include a convex structure 291 protruding in a direction away from the backlight plate 30, such as a convex lens structure, used to converge the light emitted by the light-emitting structure, and have an effect of viewing angle.
  • the problem of enlarged viewing angle and reduced brightness after the optical film 27 and the diffusion plate 28 are attached is solved, and multi-functional optical adhesive layers 29 are provided in multiple local areas between the optical film 27 and the diffusion plate 28, which can effectively prevent The problem of wear on the optical film 27 and the diffusion plate 28.
  • the multi-functional optical adhesive layer 29 can also include a large-angle reflective film 292, that is, a large-angle filter film, so that the light incident on the multi-functional optical adhesive layer 29 at a large angle is reflected, thereby creating a gap between the optical film 27 and the diffusion plate 28.
  • a local dimming dynamic area can be set to correspond to a multi-functional optical adhesive layer 29, and a multi-functional optical adhesive layer 29 can be arranged to correspond to one light-emitting structure 18 or multiple light-emitting structures 18.
  • FIG. 31 is a schematic top structural view of another display device according to an embodiment of the present application.
  • the elastic support members 17 are distributed in multiple circles with the sound exciter 6 as the center.
  • the distribution density of the elastic support members 17 decreases in the direction away from the sound exciter 6 .
  • a large number of elastic support members 17 are installed, which affects the difficulty of process assembly.
  • some embodiments of the present application propose a solution to optimize the number of elastic support members 17 under the premise of ensuring the vibration buffering and vibration transmission effects.
  • the elastic support members 17 are arranged according to The distance from the installation position of the sound exciter 6 is arranged non-uniformly. Among them, the position of the sound exciter 6 vibrates the most violently, and the arrangement density of the elastic supports 17 is the largest. The position far away from the sound exciter 6 has a small vibration amplitude, and the elastic supports 17 are arranged in a row. The cloth density is reduced to ensure that the vibration buffering and vibration transmission effects of the entire display device area are relatively uniform, and the number of elastic supports 17 is optimized, which is beneficial to reducing the implementation cost of the display device and the difficulty of process assembly.
  • FIG. 32 is a schematic top structural view of another display device according to an embodiment of the present application.
  • the support strength of the elastic support member 17 decreases; and/or in the direction away from the sound exciter 6 , the height of the elastic support member 17 decreases.
  • different degrees of grayscale are used to represent the difference in support strength or height of the elastic support member 17. The greater the grayscale, the darker the corresponding filling color, and the greater the support strength or height of the elastic support member 17; the smaller the grayscale, the corresponding filling color. The lighter the color, the smaller the support strength or height of the elastic support member 17 .
  • the above settings can be made only for the support strength of the elastic support member 17 , or only for the elastic support member 17
  • the above settings can be made for the height of the elastic support member 17 , or the above settings can be made for the support strength and height of the elastic support member 17 at the same time.
  • elastic supports 17 of different hardnesses or sizes are provided according to the distance between the elastic support 17 and the installation area of the sound exciter 6, so as to achieve the effect that the support strength of the elastic support 17 is inversely proportional to the distance from the sound exciter 6, that is, the distance from the sound excitation is
  • the uniformity of vibration buffering and vibration transmission effects in the area are provided according to the distance between the elastic support 17 and the installation area of the sound exciter 6, so as to achieve the effect that the support strength of the elastic support 17 is inversely proportional to the distance from the sound exciter 6, that is, the distance from the sound excitation is
  • the degree of interference fit of the elastic support member 17 can also be adjusted according to the position of the sound exciter 6 , that is, the height of the elastic support member 17 closer to the sound exciter 6 is larger than that of the elastic support member far away from the sound exciter 6 17 height, so that the vibration transmission efficiency is the highest at the position close to the sound exciter 6, and to avoid the assembly tolerance of the elastic support member 17 at the position far away from the sound exciter 6, resulting in a non-interference fit of the elastic support member 17 at the position close to the sound exciter 6, That is, it is ensured that the upper and lower surfaces of the elastic supports 17 provided at various positions in the area corresponding to the display device are not separated from the liquid crystal display panel 1 and the backlight module 2 when vibrating, thereby optimizing the vibration transmission efficiency of the elastic supports 17 at each position.
  • Figure 33 is a schematic top structural view of another display device according to an embodiment of the present application
  • Figure 34 is a schematic top structural view of another display device according to an embodiment of the present application
  • Figure 35 is a schematic top structural view of another display device according to an embodiment of the present application.
  • the backlight module 2 includes a plurality of backlight panels 30
  • a first buffer structure 31 is provided between adjacent backlight panels 30 .
  • the first buffer structure 31 is located on the sound-generating panel 5 and is used to space adjacent ones.
  • Backlight panel 30 is a schematic top structural view of another display device according to an embodiment of the present application.
  • some embodiments of the present application set a gap between adjacent backlight panels 30 A first buffer structure 31 is provided.
  • the first buffer structure 31 is located on the sound board 5 and is used to separate adjacent backlight panels 30.
  • the first buffer structure 31 is, for example, an elastic colloid structure.
  • the first buffer structure 31 can be installed on each The gap between the backlight panels 30 is used to increase the vibration buffer between the edges of the backlight panels 30 and avoid abnormal vibration.
  • the transfer positions between four adjacent backlight panels 30 are also prone to vibration noise due to overlapping areas of the backlight panels 30 .
  • the first buffer structure 31 can be provided on the four adjacent backlight panels. 30 to increase the vibration buffering of the backlight plate 30 at the junction position to avoid abnormal vibration.
  • the first buffer structure 31 can be provided in a strip shape, and the first buffer structure 31 is used to connect multiple elastic support members 17 into one body. Specifically, there are a large number of elastic support members 17 to be installed, and there is a problem of complicated process. In order to optimize this problem, some embodiments of the present application connect the elastic support members 17 into one body through the first buffer structure 31.
  • a first buffer may be provided. The structure 31 and the corresponding elastic support member 17 are integrally formed, which effectively reduces the installation difficulty of the elastic support member 17.
  • FIG. 36 is a schematic top structural view of another display device according to an embodiment of the present application
  • FIG. 37 is a schematic top structural view of another display device according to an embodiment of the present application.
  • the display device further includes a sound channel isolation structure 32 .
  • the sound channel isolation structure 32 is provided on the backlight module 2 and used to space adjacent sound exciters 6 .
  • the vocal channel isolation structure 32 For example, it is an elastic colloid structure.
  • the vocal channel isolation structure 32 is arranged in the areas where different sound exciters 6 are located, that is, between the vibration areas of the vocal channels. This improves the speech isolation between the vocal channels and reduces the noise between the vibration areas of each vocal channel. The impact of vibration between rooms optimizes the sound effect of the display device.
  • the channel isolation structure 32 is used to separate the two left and right sound exciters 6.
  • three channel isolation structures 32 are provided to separate the areas where the three sound exciters 6 are located.
  • Some embodiments of the present application Improved isolation that extends to more channel vibration areas.
  • the channel isolation structure 32 can also be implemented using the first buffer structure 31 described in the above embodiment.
  • multiple sound channel isolation structures 32 are provided between adjacent sound exciters 6.
  • the sound channel isolation structures 32 are used to connect multiple elastic supports 17 into one body.
  • Different The elastic supporting members 17 on the vocal channel isolation structure 32 are arranged in a staggered manner. Specifically, there are a large number of elastic supports 17 to be installed, and there is a problem of complicated process. In order to optimize this problem, some embodiments of the present application connect the elastic supports 17 into one body through the sound channel isolation structure 32.
  • sound channel isolation can be provided The structure 32 and the corresponding elastic support member 17 are integrally formed, which effectively reduces the installation difficulty of the elastic support member 17.
  • three sound channel isolation structures 32 are provided between adjacent sound exciters 6.
  • the elastic supports 17 on the three sound channel isolation structures 32 are staggered, so that the vibrations in the sound channel isolation structures 32 are Effective attenuation to further optimize the voice isolation between each channel, reduce the vibration impact between the vibration areas of each channel, and optimize the sound effect of the display device.
  • FIG. 38 is a schematic top structural view of another display device according to an embodiment of the present application
  • FIG. 39 is a schematic cross-sectional structural view of another display device according to an embodiment of the present application.
  • the backlight module 2 is a direct-type backlight module or a side-type backlight module.
  • a plurality of filling structures 33 are provided in the second sealed air cavity 4.
  • the sound-generating plate 5 is adjacent to the liquid crystal display panel 1.
  • One side includes a plurality of light-emitting structures 18
  • the filling structure 33 is disposed on the sound-generating board 5 and located between the light-emitting structures 18 .
  • the backlight module 2 may be a direct-type backlight module 2 or an edge-type backlight module 2.
  • the backlight module 2 may include, for example, a plurality of light bars 69, and the light bars 69 are fixed on the sound-generating panel 5.
  • the sound-generating panel 5 and the liquid crystal display panel 1 form a second sealed air cavity 4.
  • the sound-generating exciter 6 drives the sound-generating panel 5 to vibrate, the liquid crystal display panel 1 is driven to produce sound through the air gap of the second sealed air.
  • the direct-type backlight module 2 or the edge-type backlight module 2 both use about 100 light-emitting structures 18. For example, lamp beads require a large light mixing distance, such as 10mm, while the backlight distance of MiniLED is only about 3mm.
  • FIG. 38 shows several filling schemes.
  • a filling structure 33 of a certain shape is attached in the space between the backlight module 2 and the liquid crystal display panel 1, in the area that avoids the direct light path of the lamp.
  • the surface of the filling structure 33 can be conical. shape, trapezoid, triangle or circle, the filling structure 33 can also be in the shape of a cone, a pyramid or a quasi-cone or a quasi-pyramid.
  • the filling structure 33 may be made of lightweight high-density foam material, such as melamine material.
  • a diffuse reflection film layer can be attached to the surface of the filling structure 33.
  • a layer of diffuse reflection reflective material is attached to the surface of the filling structure 33 through spraying, pasting and other processes, thereby reducing the impact of the filling structure 33 on the light circuit.
  • stuffed knot Structure 33 absorbs light.
  • some embodiments of the present application utilize the sound-generating panel 5 and two sealed air cavities whose internal air has viscosity, so that the sound-generating exciter 6 can pass through the sound-generating panel 5, the backlight module 2, and the second sealed air cavity in sequence. 4 and the first sealed air cavity 3 transmit the vibration to the front panel of the liquid crystal display panel 1, causing the liquid crystal display panel 1 to vibrate and sound, and because the vibration output terminal 7 of the sound exciter 6 is fixed to the sound plate 5 away from the backlight module 2, the setting of the sound exciter 6 does not affect the display of the display device, making it possible to produce sound on the traditional LCD screen, giving the user an audio-visual experience where the sound comes from the image, and overcoming the difficulty of producing sound on the LCD screen. solve the industry bottleneck problem, and use the filling structure 33 to reduce the volume of the sound transmission cavity, improve the air viscosity of the sound transmission cavity, and optimize the sound transmission effect.
  • the backlight module 2 includes a plurality of light bars 69 , the light-emitting structure 18 is disposed on the surface of the light bar 69 away from the sound-generating panel 5 , and the filling structure 33 is disposed on the sound-generating panel 5 and located on the sound-generating panel 5 . between adjacent light bars 69.
  • the backlight module 2 may include, for example, a plurality of light bars 69 .
  • the light bars 69 may be fixed on the sound-generating panel 5 through an adhesive structure, for example.
  • the light bars 69 included in the backlight module 2 may be arranged along the transverse direction in FIG. 38 Extended and attached to the sound-generating panel 5, or can also extend longitudinally and attached to the sound-generating panel 5 as shown in Figure 38.
  • the filling structure 33 is provided on the sound-generating panel 5 and is located between the adjacent light bars 69. Thus, The arrangement of the filling structure 33 does not affect the arrangement of the light bar 69 on the sounding board 5, and the filling structure 33 occupies the space of the second sealed air cavity 4, reducing the volume of the air in the second sealed air cavity 4. The air viscosity of the second sealed air cavity 4 is improved, further optimizing the sound transmission effect of the display device.
  • FIG. 40 is a schematic top structural view of another display device according to an embodiment of the present application
  • FIG. 41 is a schematic cross-sectional structural view of another display device according to an embodiment of the present application.
  • the backlight module includes a backlight panel 30
  • the light-emitting structure 18 is disposed on the surface of the backlight panel 30 away from the sound-generating panel 5
  • the filling structure 33 is disposed on the backlight panel 30 .
  • the backlight module 2 includes a backlight panel 30.
  • the backlight panel 30 is a plate-like structure with approximately the same area as the display device.
  • the filling structure 33 is provided on the backlight panel 30 and is located between adjacent light-emitting structures 18. Therefore, the arrangement of the filling structure 33 does not affect the arrangement of the light-emitting structure 18 on the backlight panel 30 , and the filling structure 33 occupies the space of the second sealed air cavity 4 , reducing the air in the second sealed air cavity 4 .
  • the volume increases the air viscosity of the second sealed air cavity 4 and further optimizes the sound transmission effect of the display device.
  • FIG. 42 is a schematic top structural view of another display device according to an embodiment of the present application
  • FIG. 43 is a schematic cross-sectional structural view of another display device according to an embodiment of the present application.
  • the display device further includes: a connecting portion 34, which is located on the sounding board 5 and is integrally formed with a plurality of filling structures 33; the connecting portion 34 is provided with a plurality of filling structures 33.
  • the backlight module 2 includes a plurality of light bars 69 .
  • the light-emitting structure 18 is disposed on a surface of the light bars 69 away from the sound-generating panel 5 .
  • the light bars 69 are located in the accommodation cavity 35 .
  • some embodiments of the present application may be provided with a connecting part 34, and the connecting part 34 may be configured to be connected to
  • the display device has an overall elastic plate-like structure of approximately equal area and is located at the On the board 5 , the connecting portion 34 can be provided on the sound-generating plate 5 , for example, through an adhesive structure.
  • the connecting portion 34 connects the filling structures 33 into one body.
  • multiple filling structures 33 and the connecting portions 34 can be provided to be integrally formed.
  • the plurality of filling structures 33 It can be installed on the sounding board 5 together with the connecting part 34, and the number of installations will not increase with the increase in the number of filling structures 33, which effectively reduces the installation difficulty of the filling structures 33.
  • the connecting part 34 is also provided with a plurality of receiving cavities 35.
  • the plurality of light bars 69 included in the backlight module 2 can be placed in the receiving cavities 35.
  • the light-emitting structure 18 can be installed on the surface of the light bar 69 away from the sound-generating panel 5. Therefore, The existence of the connecting portion 34 will not affect the installation of the light bar 69 and the light emitting structure 18 .
  • the accommodation cavity 35 can be provided as a through hole 351 penetrating the connection part, and the light bar 69 is arranged in contact with the sounding board 5 .
  • Figure 44 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the receiving cavity 35 may also be provided as a groove 352 on a side surface of the connecting part 34 adjacent to the liquid crystal display panel 1 , and the light bar 69 is disposed in contact with the connecting part 34 .
  • the accommodation cavity 35 is a through hole 351 that runs through the connecting portion as shown in FIG. 43
  • the light bar 69 is in contact with the sounding board 5 .
  • the connecting portion 34 connects the filling structure 33 through the connecting portion 34 as In one piece, the filling structure 33 does not affect the arrangement of the light bar 69 and the light-emitting structure 18 , and the connection part 34 reduces the installation difficulty of the filling structure 33 .
  • the receiving cavity 35 is a groove 352 provided on one side of the connecting portion 34 adjacent to the liquid crystal display panel 1 as shown in FIG. 44
  • the light bar 69 is in contact with the connecting portion 34 , that is, the connecting portion 34 is not positioned corresponding to the light bar 69 .
  • the connection part 34 and the filling structure 33 the installation difficulty of the filling structure 33 can be reduced without affecting the installation of the light bar 69 and the light-emitting structure 18 .
  • FIG. 45 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the light bar 69 included in the backlight module 2 can be applied horizontally when arranged horizontally or applied vertically when arranged vertically.
  • the filling structure 33 can also be made to be the same as the sound board 5
  • all the filling structures 33 are integrally formed to simplify the manufacturing process. Only through holes for placing the light bars 69 are formed in the integrally formed filling structure 33.
  • the filling structure 33 still has the structure as shown in Figure 38 The raised portion shown is used to reduce the volume of the second sealed air cavity 4 and optimize the sound transmission effect of the display device.
  • the area of the filling structure 33 parallel to the cross-section of the liquid crystal display panel 1 decreases in the direction away from the sound-emitting plate 5 , that is, in the direction from bottom to upward in FIG. 39 .
  • the cross-sectional area of the filling structure 33 close to the sound-generating plate 5 can be larger than the cross-section area close to the liquid crystal display panel 1 , and the light-emitting structure 18 needs to emit light toward the side of the liquid crystal display panel 1 to emit light.
  • the filling structure 33 is located between the light-emitting structures 18. In order to avoid the light emitted by the light-emitting structure 18 and avoid affecting the light-emitting effect of the light-emitting structure 18, it is arranged in a direction away from the sound-emitting board 5, that is, along the direction shown in Figure 39.
  • the filling structure 33 may be made of lightweight high-density foam material, such as melamine material.
  • the filling structure 33 may be in the shape of a cone, a pyramid, or a cone-like or pyramid-like shape. Some embodiments of the present application do not limit the specific shape of the filling structure 33 .
  • the shapes of the filling structures 33 in the same display device may be the same or different, which is not specifically limited in some embodiments of the present application.
  • the surface of the filling structure 33 is covered with a diffuse reflection film layer or coated with a diffuse reflection material.
  • a diffuse reflection film layer may be attached to the surface of the filling structure 33, for example, filled A layer of white diffuse reflective material is attached to the surface of the structure 33 through spraying, adhering and other processes, thereby using the diffuse reflective material to reduce the absorption of the light emitted by the light-emitting structure 18 by the filling structure 33.
  • the diffuse reflection film layer can also be used to reduce the absorption of the light emitted by the light emitting structure 18 by the filling structure 33 .
  • the filling structure 33 can be provided as the elastic support 17 and interposed between the first structure and the liquid crystal display panel 1; wherein the first structure is the backlight module 2 or Sound board 5.
  • some embodiments there are problems in the vibration transmission process of the sound exciter 6.
  • the thickness of the air gap between the liquid crystal display panel 1 and the backlight module 2 changes greatly due to material tolerances, assembly process tolerances, and its own gravity. As a result, the consistency of vibration transmission efficiency cannot be guaranteed, and the fit between the LCD panel 1 and the backlight module 2 causes vibration noise and wear.
  • some embodiments of the present application provide a filling structure 33 as the elastic support 17 and interferingly disposed between the first structure and the liquid crystal display panel 1 .
  • the filling structure 33 reduces the air in the sealed air cavity 4 volume, improves the air viscosity of the sealed air cavity 4, further optimizes the sound transmission effect of the display device, and ensures the stability of the air gap size between the LCD panel 1 and the backlight module 2, preventing the LCD panel 1 from The abnormal collision with the backlight module 2 generates noise, and the solid filling structure 33 improves the transmission efficiency of vibration from the backlight module 2 to the liquid crystal display panel 1 .
  • the first structure is the sounding board 5, that is, the filling structure 33 serves as the elastic support 17 and is provided in an interference relationship between the sounding board 5 and the liquid crystal display.
  • the first structure is the backlight module 2, that is, the filling structure 33 serves as the elastic support member 17 and is provided in the backlight module 2 with interference, for example, between the backlight plate 30 and the liquid crystal display panel 1 between. 38 to 44 , the combination of both sides of the filling structure 33 with the LCD panel 1 and the first structure can adopt a size interference fit design, that is, the size of the filling structure 33 is larger than the height between the LCD panel 1 and the first structure. Design size.
  • Figure 20 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the filling structure 33 is in a free contact state.
  • Figure 21 is a schematic cross-sectional structural view of another display device according to an embodiment of the present application.
  • the filling structure 33 is squeezed by the liquid crystal display panel 1 and the backlight module 2. The pressure is in a state of interference compression.
  • Figure 22 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the size of the filling structure 33 can be, for example, a liquid crystal display
  • the sum of the distance between panel 1 and backlight module 2 and half the vibration amplitude of the vibrator ensures that in the state shown in Figure 20, the filling structure 33 is in contact with both the liquid crystal display panel 1 and the backlight module 2, which improves the vibration from the first
  • the structure for example, the transmission efficiency from the backlight module 2 to the liquid crystal display panel 1 .
  • the filling structure 33 can be fixed to the first structure through the first adhesive structure 19.
  • the first adhesive structure 19 is, for example, double-sided tape.
  • Figure 23 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • a welding structure 20 can also be provided on one side of the filling structure 33 adjacent to the first structure. The filling structure 33 is welded and fixed to the first structure at position 67 by the welding structure 20 .
  • the filling structure 33 can be injection molded, mechanically matched, or bonded with a metal weldable material structure, and the welding structure 20 is fixedly connected to the first structure through welding, thereby achieving the purpose of fixing the filling structure 33.
  • the filling structure 33 can be installed firmly and is conducive to batch automatic assembly.
  • the material of the filling structure 33 can be, for example, elastic materials such as silicone rubber.
  • the elastic material has the problem of hardness changing due to the influence of temperature. Changes in the internal temperature when the display device is working will cause the hardness of the filling structure 33 to change, thereby affecting the filling.
  • Structure 33 supports and optimizes vibration transmission. As shown in Figure 23, optimization can be carried out through a dual-material composite method.
  • the elastic material part ensures the vibration buffering effect
  • the inelastic material part that is, the welded structure 20 ensures that the vibration transmission effect does not change with temperature changes.
  • FIG. 24 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the filling structure 33 can also be provided with suction cup structures at both ends, and the filling structure 33 is fixed to the first structure and the liquid crystal display panel 1 through the suction cup structures at both ends.
  • Figure 25 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application. With reference to Figures 38 to 43 and Figure 25, one end of the filling structure 33 can also be fixed to the first structure through the first adhesive structure 19, such as double-sided tape, and the other end of the filling structure 33 is provided with a suction cup structure and the filling structure 33 It is fixed to the LCD panel 1 through a suction cup structure.
  • the filling structure 33 can be fixed by double-sided bonding or mechanical structure fixation, thereby realizing vibration linkage between the backlight module 2 and the liquid crystal display panel 1 and improving the vibration transmission efficiency.
  • double-sided bonding or mechanical fixation is not sufficient.
  • Structural fixation has the disadvantage of complicated process implementation.
  • the suction cup adsorption solution can improve the achievability of the solution.
  • the filling structure 33 is used not only to reduce the air volume in the second sealed air cavity 4 but also as the elastic support member 17 described in the above embodiment.
  • the filling structure 33 can also be glued. Or fixed to the sound-generating plate 5 by welding.
  • the supporting function and vibration efficiency enhancing function of the filling structure 33 can be understood with reference to the above embodiments, and will not be described again here.
  • FIG. 46 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application
  • FIG. 47 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application
  • FIG. 48 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • a schematic cross-sectional structural diagram of another display device according to the embodiment. 46 to 48 the backlight module includes multiple backlight panels 30 .
  • the backlight panels 30 are fixed to the sound-generating panel 5 through a first viscous buffer structure (not shown in FIGS. 46 to 48 ).
  • the backlight panel 30 and the sound-generating panel 5 Installation positioning holes are provided on both sides, and a pre-positioned columnar structure 36 is used to insert into the installation positioning holes of the backlight panel 30 and the sound-generating panel 5 to position the backlight panel 30 and the sound-generating panel 5 .
  • the display device and backlight module of the Mini LED backlight module are composed of multiple backlight panels 30. As shown in Figures 11 and 12, the backlight panels 30 are evenly arranged. cloth and stick it on the sound board 5. It is worth noting that the pasting accuracy of the backlight panel 30 is strictly limited. If the backlight panel 30 is pasted too tightly, there will be hard contact between the two backlight panels 30. It will produce noise when vibrating. If the size of the edge of the backlight panel 30 is reduced and the spacing between the backlight panels 30 is enlarged, although the above problem can be solved, the backlight panel 30 and the gap together with the sound-generating panel 5 constitute a vibration system, and the gap in the backlight panel 30 will cause vibration.
  • the segmented vibration of the surface will cause sound resonance at a frequency with a wavelength similar to the length and width of the backlight panel 30, resulting in peaks or peaks and valleys in the frequency response.
  • a frequency with a wavelength similar to the length and width of the backlight panel 30 For example, when the length of the backlight panel 30 is 0.3 meters, it will resonate with the frequency of 1133Hz. This resonance will cause an abnormal peak at this frequency, and 566Hz will produce both peaks and valleys at this length, resulting in the cancellation of sound waves. , producing a valley value.
  • the fixing accuracy of the backlight panel 30 and the sound panel 5 needs to be strictly controlled.
  • the backlight plate 30 is locked on the metal plate with screws, and the positioning accuracy is high.
  • There is no glue between the backlight plate 30 and the metal back plate so the requirements for installation and positioning operations are not high.
  • this method cannot be applied to the screen to produce sound, because the sounding board 5 is made of honeycomb aluminum plate and other materials, which is soft and hollow, and cannot form a screw mouth.
  • the backlight panel 30 and the sound panel 5 are fully fitted and need to be accurately positioned and successfully operated in one time.
  • the backlight panel 30 and the sound panel 5 are always in a state of vibration. If a screw structure is used, the screws may easily fall off after long-term use, causing noise and other problems.
  • an automated high-precision manipulator can also be used to strictly control the installation accuracy of the backlight panel 30 and attach the backlight panel 30 to the sound-generating panel 5 .
  • the technical modification requirements for the product line are relatively high, and manual attachment cannot be achieved.
  • the pre-positioned columnar structure 36 can be an SMT (Surface Mounted Technology) T-shaped positioning pin. Of course, it can also be fixed by glue bonding or manual welding. The positioning pin passes through the backlight board.
  • the sound board 5 has installation positioning holes in the corresponding parts.
  • the pre-positioning columnar structure 36 can use a pre-positioning tooling with an ejector pin. First, place the sounding board 5 on the pre-positioning tooling, and let the ejector pin of the pre-positioning tooling pass through the sounding board 5 for installation and positioning. hole, and then pass the backlight plate 30 through the pre-positioned thimble, and then press and fit the backlight plate 30 and the sound panel 5 together.
  • the pre-positioned columnar structure 36 and the elastic support member 17 are fixedly arranged.
  • the elastic support member 17 is fixed to the backlight panel 30 through the pre-positioned columnar structure 36 .
  • the elastic support member 17 is provided in an interference manner. between the backlight panel 30 and the liquid crystal display panel 1 .
  • the pre-positioned columnar structure 36 and the elastic support 17 are combined together, for example, through two-color injection molding or other processes.
  • the customized device does not use SMT, which reduces the difficulty of processing.
  • the backlight panel 30 and the sound panel 5 play a fixed role in the elastic support member 17 to avoid long-term aging of the elastic support member 17. Or in the case of high heat, the elastic support member 17 that is only glued will fall off.
  • FIG. 49 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • positioning rivets 70 on the middle frame back plate 37 can be used to fix the backlight panel 30 and the sound panel 5 .
  • FIG. 50 is a top view structure of another display device according to an embodiment of the present application. Structure diagram. As shown in FIG. 50 , the backlight module includes multiple backlight panels 30 , and the multiple backlight panels 30 are distributed in non-equal areas.
  • the sound exciter 6 is used to excite the modal resonance of the sound body to achieve sound.
  • the richer the modes the more frequency points that can resonate, the richer the sound, and the better the sound quality.
  • the sound board 5 is made through the backlight board 30
  • the division of multiple areas will cause the concentration of modes.
  • a 0.3-meter-long backlight panel 30 will resonate at 1133Hz.
  • some embodiments of the present application set up multiple backlight panels 30 distributed in unequal areas, as shown in Figure 50. In the area where the sound exciter 6 is located, a sound board 5 and the like are used.
  • the long backlight panel 30 has a continuous and complete vibration surface in the transverse direction, which facilitates the excitation of low-frequency modes, while in other areas, small-area backlight panels 30 that are gradually divided are used to ensure other frequency modes. can be excited. This arrangement of the non-equal area backlight plate 30 ensures that the backlight plate 30 will not be excited into only one mode.
  • the side of the backlight plate 30 adjacent to the liquid crystal display panel 1 includes a plurality of light-emitting structures 18 , and the number of the light-emitting structures 18 on the backlight plate 30 is an integer multiple of N; where N is greater than an integer of 1.
  • the backlight module is a MiniLED backlight module.
  • the brightness of the MiniLED backlight module changes according to the brightness of the image displayed in its corresponding liquid crystal area. Therefore, during use, a backlight driving algorithm is required to be linked to the current displayed image.
  • the backlight module driver chip 71 has multiple outputs, that is, one backlight module driver chip 71 drives multiple light-emitting structures 18 . As shown in FIG. 50 , the number of backlight module driver chips 71 on each backlight panel 30 is not consistent because the area of each backlight panel 30 is different and the number of light-emitting structures 18 is also different.
  • the greatest common denominator of the area of the backlight panel 30 can be determined, such as the nine light-emitting structures 18 in the upper left corner and the backlight module driver chip 71 that can drive the nine light-emitting structures 18.
  • N is equal to 9
  • other backlight panels 30 are equal to this.
  • An integer multiple of the number of light-emitting structures 18 on the backlight panel 30 For example, the integer multiple corresponding to the second backlight panel 30 on the upper left is two times. The integer multiple corresponding to the backlight panels 30 in the middle row is six times.
  • the corresponding backlight module driver chip 71 is also That becomes two or six per backlight panel 30.
  • the backlight panel 30 when the backlight panel 30 is connected to each backlight panel 30 through the FPC, that is, the flexible circuit board, there is no need to consider the area and position of the backlight panel 30.
  • the backlight driving algorithm of the light-emitting structure 18 it can also be based on nine lights per chip. The design greatly reduces the need for universal driving algorithms and backlight module driver chips 71 for different areas of the backlight panel 30 .
  • FIG. 51 is a schematic top structural view of another display device according to an embodiment of the present application
  • FIG. 52 is a schematic top structural view of another display device according to an embodiment of the present application.
  • the backlight module includes a plurality of backlight panels 30, and adjacent first backlight panels are spaced at a set distance; wherein, the first backlight panel is the backlight panel 30 provided corresponding to the area where the sound-generating actuator 6 is located. .
  • the vibration mode generates a boundary condition, which can effectively prevent the vibrations of the left and right half areas from transmitting to each other, and can have It effectively controls the crosstalk of vibration in the left and right areas.
  • the vibration of the left sound exciter 6 mainly causes the vibration of the left area, and the same applies to the right side.
  • the distance between the backlight panels 30 of adjacent areas is relatively far, so that the amount of vibration transmitted to the adjacent areas from the area where each sound exciter 6 is located becomes smaller.
  • the four sound exciters 6 correspond to The sound of different channels can enhance the sense of localization of the sound. For example, when the person in the picture is speaking in the upper left corner, only the upper left corner area is vibrating and making sound, thus improving the picture quality of the sound. For example, it can be used in video conference calls.
  • a buffer structure such as a rubber strip may also be provided between adjacent first backlight panels to reduce noise.
  • FIG. 53 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the backlight module is a complete PCB board, such as for a small-sized Mini LED display device
  • the backlight module can be pasted on the sounding board, and a sounding exciter can be arranged on the back of the sounding board, or the sounding board can be
  • the actuator is directly attached to the back of the backlight module and drives the screen to vibrate and produce sound by driving the backlight module and the airtight layer between the backlight module and the LCD panel.
  • the core fixing structure is a locking screw 72, in which the nut is fixed on the backlight plate 30 or the nut thread is processed directly on the backlight plate 30.
  • the locking screw passes through the backlight plate 30 from the side of the light-emitting structure 18 and is then fixed on the back of the middle frame. on plate 37.
  • the locking screw 72 and the backlight panel 30 are fixed by a soft rubber pad, and a spring structure 73 is provided between the soft rubber pad 74 and the middle frame back plate 37 .
  • the spring structure 73 is compressed by the screws and is in a taut state, applying pressure to the LCD panel 1 side and squeezing the soft rubber pad 74 and the backlight panel 30 at the same time, so that the backlight panel 30 is fixed on the top of the screws 72 under the action of stress. .
  • the soft rubber pad 74 slightly deforms to adapt to the vibration of the backlight panel 30.
  • the screws 72 play a positioning role, and the soft rubber pad 74 can buffer the tiny vibrations caused by medium and high frequencies.
  • multiple core fixing structures shown in FIG. 53 are required.
  • the core fixing structures can be arranged in a rectangular, circular, etc. manner, for example.
  • FIG. 54 is a schematic front structural view of another display device according to an embodiment of the present application.
  • the display device also includes a middle frame back plate 37.
  • the middle frame back plate 37 is located on the side of the sound board 5 away from the backlight module 2, and is provided between the middle frame back plate 37 and the sound board 5.
  • relevant circuit boards, brackets, shells and other structures are installed on the middle frame backplane 37.
  • the buffer structure 38 such as double-sided tape, can realize buffering between the sound board 5 and the middle frame backplane 37.
  • the buffer structure 38 is bonded between the middle frame back panel 37 and the sound-generating panel 5 to prevent vibration from being transmitted to the middle frame back panel 37 through the sound-generating panel 5 and affecting the structure of the middle frame back panel 37 .
  • the electrical components on the circuit board are prone to problems such as poor electrical contact, which affects the display stability of the display device.
  • the circuit board installed on the middle frame backplane 37 Mechanical structures such as brackets are prone to displacement and falling off after being vibrated, which affects the mechanical stability of the display device. Therefore, the buffer structure 38 can be used to improve the overall electrical stability and mechanical stability of the middle frame backplane 37 .
  • a hole in the middle of the sound board 5 can be provided for the outlet of the backlight module 2.
  • a buffer structure 38 is provided at the frame position of the liquid crystal display panel 1 ; and/or a buffer structure 38 is provided adjacent to the sound exciter 6 .
  • a gap around the liquid crystal display panel 1 there is a second buffer structure 382 at the frame position, such as double-sided tape, to prevent the hard structures of the middle frame back panel 37 and the sound panel 5 from producing noise when they contact and collide with each other.
  • a first buffer structure 381, such as double-sided tape can also be provided near the sound exciter 6.
  • the first buffer structure 381 can be set to be softer than the second buffer structure 382 to adapt to the larger area where the sound exciter 6 is located. amplitude.
  • the second buffer structure 382 can be disposed at the center of the liquid crystal display panel 1 and near the surrounding frames of the liquid crystal display panel 1 as shown in FIG. 54 .
  • the second buffer structure 382 can also be disposed at other positions.
  • the buffer structure 38 may be provided at both the frame position of the liquid crystal display panel 1 and the adjacent position of the sound exciter 6 , or the buffer structure 38 may be provided only at the frame position of the liquid crystal display panel 1 , or only at the frame position of the liquid crystal display panel 1 .
  • a buffer structure 38 is provided near the sound exciter 6, which is not specifically limited in some embodiments of the present application.
  • Figure 55 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the display device also includes a back shell 39.
  • the display device includes a middle frame back plate 37 located on the side of the sound panel 5 away from the backlight module 2, and at least part of the back shell 39 is located in the middle.
  • the frame back plate 37 and the sound exciter 6 are on the side away from the sound plate 5 .
  • the rear case 39 is an exterior case of a display device, which may be, for example, but is not limited to a television.
  • FIG. 56 is a schematic front structural view of another display device according to an embodiment of the present application.
  • an isolation wall 40 is provided between the middle frame back plate 37 and the rear shell 39 .
  • a back radiation superposition cavity 41 is formed between the isolation wall 40 , the rear shell 39 and the middle frame back plate 37 .
  • the radiation superposition cavity 41 has a sound emission opening facing the front or side of the display device.
  • the display device of the present application emits sound in the form of DML (dispersed loudspeaker) multi-mode resonant bending waves.
  • the sound waves have superposition enhancement properties.
  • the display device provided in some embodiments of the present application It has a back-facing high-frequency enhancement design.
  • the contact surface between the isolation wall 40 and the middle frame back plate 37 is provided with a soundproof sponge 76.
  • the isolation wall 40 and the rear A rear radiation superposition cavity 41 of a desired shape is formed between the shell 39 and the middle frame back plate 37 .
  • the back radiation superposition cavity 41 has a sound emitting opening, and the sound emitting opening faces the front of the screen of the display device as shown in FIGS. 55 and 56 . Therefore, the back radiation superimposed cavity 41 is used to form a sound resonance cavity, and the back vibration multi-mode high-frequency vibration bending wave is directed to the front of the screen or to the side to emit sound, which can improve the response at the resonant frequency to compensate for the display Loss of high frequencies in device pronunciation.
  • Figure 57 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the length L on the sound path of the back radiation superimposed cavity 41 can be set to the length of N half sound wavelengths.
  • the sound frequency of this wavelength is the lowest resonant frequency of the compensation band.
  • the mouth position can be near any antinode of one-half sound wavelength.
  • Figure 58 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the sound exciter 6 can also be provided as shown in Figure 58 and the sound exciter 6 with the structure shown in Figure 10 can be used.
  • the back-facing diaphragm can radiate additional high-frequency sound waves, further improving the high-frequency response of the display device.
  • FIG. 59 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application
  • FIG. 60 is a schematic front structural view of another display device according to an embodiment of the present application.
  • the back radiation superimposed cavity 41 can also be provided with a sound outlet opening facing the side of the display device, and the back radiation superimposed cavity 41 can also be used.
  • the resonant cavity that forms the sound guides the back-vibrating multi-mode high-frequency vibration bending wave to the side of the screen to emit sound, improving the response at the resonant frequency to compensate for the high-frequency loss of the display device's pronunciation.
  • the wavy arrows in FIG. 55, FIG. 58, and FIG. 59 indicate the propagation direction of sound.
  • some embodiments of the present application utilize the sound-generating panel 5 and two sealed air cavities whose internal air has viscosity, so that the sound-generating exciter 6 can pass through the sound-generating panel 5, the backlight module 2, and the second sealed air cavity in sequence. 4 and the first air cavity 3 transmit the vibration to the front panel of the liquid crystal display panel 1, causing the liquid crystal display panel 1 to vibrate and sound, and because the vibration output terminal 7 of the sound exciter 6 is fixed to the sound generating plate 5 away from the backlight module 2 On the surface, the setting of the sound exciter 6 does not affect the display of the display device, making it possible for the traditional LCD screen to sound, giving the user an audio-visual experience where the sound comes from the image, overcoming the difficulty of the sound coming from the LCD screen.
  • a back radiation superimposed cavity 41 is formed between the isolation wall 40, the rear shell 39 and the middle frame back plate 37.
  • the back radiation superimposed cavity 41 constitutes a sound resonance cavity, which converts the back vibration into multi-mode high-frequency vibration.
  • the bending wave guides the sound in front of the screen or to the side, which can improve the response at the resonant frequency to compensate for the high-frequency loss of the display device's sound.
  • At least one sound exciter 6 may be disposed in the back-radiating superposition cavity 41 .
  • one sound-generating exciter 6 can be provided in a back-radiating superimposed cavity 41 as shown in Figure 55 , or multiple sound-generating exciters 6 can be provided in a back-radiating superimposed cavity 41 as shown in Figure 56
  • Exciter 6 when the sound exciter 6 is provided in the back radiation superposition cavity 41, the sound used for forward sound or side sound can be generated by the sound exciter 6 in the back radiation superposition cavity 41.
  • the sound transmitted from the resonant cavity formed by other back-radiating superimposed cavities 41 can also be superimposed, and the sounds generated in different cavities can be propagated outward through the same sound emission opening.
  • the number of sound exciters 6 in the back radiation superimposed cavity 41 can be adjusted according to the forward or side sound emission requirements of the display device, which is not specifically limited in some embodiments of the present application.
  • a part of the back-radiating superimposed cavity 41 without the sound exciter 6 can also be provided.
  • This part of the back-radiated superimposed cavity 41 can be provided with the forward sound opening or the lateral sound opening described in the previous embodiment.
  • the sound transmitted from the resonant cavity formed by the back-radiation superimposed cavity 41 provided with the sound exciter 6 can be used to guide the back-vibration multi-mode high-frequency vibration bending wave to the front of the screen or to the side. The sound is emitted from the side, and the response at the resonant frequency is improved to compensate for the high-frequency loss of the display device's sound.
  • the back radiation superposition cavity 41 has a forward sound opening toward the front of the display device, and the back shell 39 covers the frame of the liquid crystal display panel 1 .
  • the back shell 39 is connected to the liquid crystal.
  • the gap between the frames of the display panel 1 forms a forward sound opening 391 .
  • the back radiation superimposed cavity 41 has a forward sound opening 391 toward the front of the display device
  • the back shell 39 covers the frame of the liquid crystal display panel 1
  • the back shell 39 can be configured to
  • the shell 39 covers the four upper, lower, left and right frames of the display device in a direction parallel to the plane of the liquid crystal display sound-generating device.
  • the rear shell 39 can also be provided to cover the frames at any optional position of the display device. Some embodiments of the present application are not limited to this. .
  • the gap formed between the rear case 39 and the frame of the liquid crystal display panel 1 forms a forward sound opening 391 .
  • the back-radiation superimposed cavity 41 forms a resonant cavity for sound
  • the back-vibration multi-mode high-frequency vibration bending wave is directed to the front of the screen to emit sound, which can increase the resonance frequency. response to compensate for the high-frequency loss of the display device’s pronunciation.
  • the forward sound opening 391 is not limited to the structure shown in Figures 28 to 31, and can also be implemented through other structures, which is not specifically limited in some embodiments of the present application.
  • the back radiation superimposed cavity 41 has a lateral sound opening 392 facing the side of the display device, and the rear shell 39 is located on the side of the middle frame back plate 37 away from the sound generating plate 5 , along the direction The gaps between the plates 37 form lateral sound-emitting openings 392 .
  • the back radiation superimposed cavity 41 can also be provided with a lateral sound opening 392 facing the side of the display device, and the back shell 39 is located
  • the side of the middle frame back plate 37 away from the sound panel 5 can be set along the geometric center of the display device in the direction The distance gradually decreases, and is set along the geometric center of the display device in the direction , at the frame position of the display device, the gap formed between the rear case 39 and the middle frame back plate 37 forms a lateral sound opening 392 .
  • the back-radiation superimposed cavity 41 forms a resonant cavity for sound, and guides the back-vibration multi-mode high-frequency vibration bending wave to the side of the screen to emit sound, which can improve the response at the resonant frequency to compensate for the high-frequency sound produced by the display device. loss.
  • the lateral sound opening 392 is not limited to the structure shown in Figures 59 to 60, and can also be implemented through other structures, which is not specifically limited in some embodiments of the present application.
  • FIG. 61 is a schematic front structural view of another display device according to an embodiment of the present application
  • FIG. 62 is a schematic front structural view of another display device according to an embodiment of the present application.
  • the back radiation superimposed cavity 41 can be configured to have a horn-like shape to improve the propagation efficiency of sound in the back radiation superimposed cavity 41 .
  • the isolation wall 40 is arranged perpendicular to the direction of the display device, and the isolation wall 40 is a plane or a curved surface perpendicular to the surface of the display device.
  • the isolation wall 40 is set perpendicular to the surface of the display device as a plane or a curved surface, and the isolation wall 40 can form a back radiation superposition together with the rear case 39 and the middle frame back plate 37
  • the cavity 41 uses the resonant cavity formed by superimposing the cavity 41 with back radiation to guide the back vibration multi-mode high-frequency vibration bending wave to the front of the screen or the side to emit sound, which can improve the response at the resonant frequency to compensate for the display Loss of high frequencies in device pronunciation.
  • the surface of the isolation wall 40 perpendicular to the direction of the display device may be a plane as shown in FIGS. 55 to 60 and FIG.
  • the surface of the isolation wall 40 perpendicular to the direction of the display device may also be as shown in FIG. 61 An arcuate surface with curvature.
  • the surface of the isolation wall 40 perpendicular to the direction of the display device shown in FIG. 56 includes both a planar portion and an arcuate surface portion, which is not limited in some embodiments of the present application.
  • a sound insulation buffer structure 76 is provided between the isolation wall 40 and the middle frame back panel 37 .
  • the screen of the display device vibrates because the back radiation superimposed cavity 41 formed by the middle frame back plate 37 , the isolation wall 40 and the rear case 39 constitutes a sound resonance cavity. will cause vibration of the rear shell 39, and the back radiation superimposes the middle frame back plate 37 in the cavity 41 And the isolation wall 40 will also vibrate. Since the isolation wall 40 and the middle frame back plate 37 are both hard structures, they will collide during the vibration process to produce noise. In order to eliminate the noise, the isolation wall 40 and the middle frame back plate 37 are A soundproof buffer structure 76 is provided in between, which effectively prevents the rigid contact between the isolation wall 40 and the middle frame back panel 37, and avoids the impact of noise on the sound quality of the display device.
  • the sound-insulating buffer structure 76 may be, for example, sound-insulating sponge or foam, which is not specifically limited in some embodiments of the present application.
  • Figure 63 is a schematic front structural view of another display device according to an embodiment of the present application.
  • the cross-sectional area of the back-radiating superposition cavity 41 perpendicular to the direction of the display device gradually increases.
  • the display device is generally rectangular, and the geometric center of the display device is the geometric center of the corresponding rectangle.
  • the back-radiation superposition cavity 41 is perpendicular to the direction of the display device.
  • the cross-sectional area gradually increases, that is, the cross-sectional area of the back-radiation superposition cavity 41 near the sound opening is greater than the cross-sectional area of the back-radiation superposition cavity 41 near the geometric center of the display device, that is, the back-radiation superposition cavity 41 is set
  • They are all in the shape of a horn, which can further optimize the forward or side sound volume of the display device on the basis of compensating for the high-frequency loss of the display device's sound.
  • the two back-radiation superposition cavities 41 shown in FIGS. 56 and 60 and the back-radiation superposition cavities 41 at the left and right sides shown in FIGS. 61 to 63 all meet the requirements along the display device.
  • the geometric center is toward the direction of the sound emission opening, and the cross-sectional area of the back radiation superimposed cavity 41 perpendicular to the direction of the display device gradually increases.
  • the part of the back-radiation superimposed cavity 41 can also be arranged to meet the direction along the geometric center of the display device toward the sound opening, and the cross-sectional area of the back-radiation superimposed cavity 41 perpendicular to the direction of the display device gradually increases, for example, Figure 61 Of the two middle back-radiation superimposed cavities 41 shown in FIG.
  • the display device when the display device includes multiple back-radiation superimposed cavities 41, only part of the back-radiation superimposed cavities 41 can also be provided to meet the aforementioned cross-sectional area change rules, such as the middle back-radiation superimposed cavity shown in Figure 62 In the upper area of 41, along the geometric center of the display device toward the direction of the sound emission opening, the cross-sectional area perpendicular to the direction of the display device gradually decreases.
  • the display device includes: a plurality of back-radiating superimposed cavities 41 , at least some of the back-radiating superimposed cavities 41 are symmetrically distributed in the display device.
  • the display device may be configured to include multiple back-radiation superimposed cavities 41 , for example, FIG. 60 shows two back-radiation superimposed cavities 41 , two back-radiation superimposed cavities 41 .
  • the superimposed cavities 41 are arranged symmetrically with respect to the vertical centerline of the display device.
  • Four back-radiating superimposed cavities 41 are shown in FIG.
  • the radiation superposition cavities 41 are arranged symmetrically with respect to the vertical centerline of the display device.
  • Three back radiation superposition cavities 41 are shown in FIGS. 62 and 63 , the left back radiation superposition cavity 41 and the right back radiation superposition cavity 41 .
  • the radiation superposition cavity 41 is arranged symmetrically with respect to the vertical centerline of the display device.
  • the back-radiation superimposed cavities 41 are symmetrically distributed in the display device.
  • the increase in the number and the symmetrical arrangement of the back-radiation superimposed cavities 41 can cause the sound propagating in multiple directions to pass through the resonant cavity, and the resonant cavity will be back-radiated.
  • the multi-mode high-frequency vibration bending wave guides the sound to the front or side of the screen to further compensate for the high-frequency loss of the display device, improve the sound quality of the display device, and utilize symmetrically distributed back radiation to superimpose the cavity 41 increase
  • the sound uniformity of the display device is enhanced, and the overall sound uniformity of the display device is good.
  • FIG. 64 is a schematic front structural view of another display device according to an embodiment of the present application
  • FIG. 65 is a schematic three-dimensional structural view of a display device according to an embodiment of the present application. 64 and 65, a sound exciter 6 is provided on the rear shell 39, and the sound exciter 6 is used to excite the rear shell 39 to vibrate.
  • the display device is in a state of vibration when it makes sound.
  • the casing of the display device is an integral back shell 39
  • the area of the back shell 39 is equivalent to the area of the screen, a certain resonance will inevitably occur.
  • This resonance frequency is the same as that of the screen.
  • the frequency is the same and is also in the audible frequency range, so the sound emitted by the rear shell 39 will also be heard, resulting in similar noise.
  • some embodiments of the present application provide a sound exciter 6 on the back case 39. The sound exciter 6 is used to excite the back case 39 to vibrate.
  • the sound exciter 602 can be arranged to have the sound exciter 601 and the sound exciter 602 arranged in opposite directions, that is, the screen vibration sound exciter 601 is attached to the sound plate 5, and the rear shell 39 vibrates the sound exciter 602 to the rear shell. 39 on.
  • the vibration mode of the panel vibration transmitted to the back shell 39 is not linear, which is reflected in two aspects. One is the amplitude.
  • the vibration amplitude of the 100Hz panel is 0.2mm
  • the vibration amplitude of the 1000Hz is 0.05mm
  • the vibration amplitude transmitted to the back shell 39 The vibration amplitude of 100Hz at the rear may be amplified to 0.4mm by the resonance effect, and the resonance of the rear shell 39 is mainly concentrated at the low frequency end, so the vibration of 1000Hz may be attenuated to 0.02mm, and because the transmission from the screen to the rear shell 39 must pass through the middle frame
  • the phase difference at 100Hz is 180°, that is, the back shell 39 and the screen are in opposite directions
  • the phase difference at 1000Hz is only 120°.
  • the above-mentioned vibration amplitude and phase relationships are not certain and will change with the structure and materials of the display device.
  • the maximum amplitude area is obtained through testing, and the correlation between the amplitude and phase of the maximum vibration area and the screen vibration is determined.
  • the correlation function F(x) between the sound exciter 601 of the rear case 39 and the screen sound exciter 602 is obtained, and the F(x) processing is applied to the signal processing link where the sound exciter 601 of the vibrating rear case 39 is located.
  • F(x) the frequency points of the vibration of the back shell 39 are obtained through testing.
  • FIG. 66 is a schematic front structural view of another display device according to an embodiment of the present application
  • FIG. 67 is a schematic front structural view of another display device according to an embodiment of the present application.
  • the sound exciter 601 is arranged near the maximum vibration area, and the arrangement area can be a single point as shown in Figure 58, or it can be multiple points as shown in Figures 66 and 67 , it can be symmetrical or asymmetrical, and this is not specifically limited in the embodiment of the present invention.
  • FIG. 68 is a schematic front structural view of another display device according to an embodiment of the present application.
  • a plurality of reinforcing ribs are provided on the surface of the rear shell 39 adjacent to the back panel of the middle frame.
  • the stiffeners are unevenly distributed.
  • Figure 69 is a schematic front view of another display device according to an embodiment of the present application.
  • mesh-like reinforcing ribs are added to a large area of the same thickness inside the back shell 39.
  • the thick dot-dashed lines indicate the stiffeners with higher height, while the thin dot-dashed lines indicate the stiffeners with smaller height.
  • the traditional stiffeners adopt a regular square or rectangular continuous grid structure, such that The design of the reinforcing ribs is simple and can ensure the uniformity of the thickness of the back shell 39.
  • the back shell 39 is prone to produce a fixed loudness resonant frequency.
  • some embodiments of the present application propose a non-equally spaced fixed-shape reinforcing rib structure.
  • the reinforcing ribs can be a trapezoidal structure, a honeycomb structure, or a non-equally spaced rectangle or an irregular polygon.
  • higher reinforcement ribs can also be designed diagonally.
  • the maximum vibration amplitude point can also be tested through simulation or actual prototype.
  • the reinforcing rib can even be made into a convex and concave gear shape, and the maximum vibration amplitude can be
  • the vibration mode of the rear shell 39 is destroyed to a maximum extent, and the resonance amplitude of the rear shell 39 is reduced, thereby achieving the purpose of reducing vibration noise.
  • the stiffeners with fixed spacing or fixed width have a certain resonant frequency. When the resonant frequency is within the audible audio range and is excited by screen vibration, resonant noise is likely to occur.
  • the reinforcement design shown in Figure 68 can destroy or reduce the natural resonant frequency, making the resonant frequency more dispersed and inconsistent. A maximum value will be generated at a certain frequency point, thereby achieving the purpose of reducing resonance noise and reducing the requirements of the sound exciter 6 of the rear shell 39 and the software algorithm F(x) on the audio processor of the display device chip.
  • the reinforcing ribs may be in a rectangular wave shape, a wavy shape, an inclined straight line shape, etc. The embodiment of the present application does not specifically limit the shape of the reinforcing ribs.
  • FIG. 70 is a schematic front structural view of another display device according to an embodiment of the present application
  • FIG. 71 is a schematic front structural view of another display device according to an embodiment of the present application. 70 and 71 , the rear shell 39 is non-uniformly divided into multiple shells 43 , and adjacent shells 43 are fixed by a third viscous buffering structure 44 .
  • the vibration of the back shell 39 mostly occurs in the low-frequency band.
  • the back shell 39 of general display devices adopts an overall design, and the area is equivalent to the screen, so low-frequency resonance is easily generated.
  • the back shell 39 is designed in segments. As shown in Figure 70, the back shell 39 is divided into two sections.
  • the two sections of the back shell 39 are connected in a staggered manner and are connected through a third viscous buffer structure 44, such as double
  • a third viscous buffer structure 44 such as double
  • the surface of the back shell 39 is fixed with foam glue, so that the back shell 39 is divided into two areas, and the area is reduced by half compared with the original area, so that the back shell 39 as a whole cannot achieve unified resonance, and resonance cannot be formed in the center area where the back shell 39 has the weakest vibration.
  • the rear shell 39 can also be divided into two parts in the transverse direction, as shown in FIG. 71 , and the rear shell 39 can also be divided into multiple sections, such as three sections or four sections.
  • FIG. 72 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the back shell 39 is suspended relative to the middle frame backplate 37 through a hard fixing structure 45.
  • the hard fixing structure 45 is used to fix the back shell 39.
  • Corresponding to the frame position of the back shell 39 there is a and the third buffer structure 46 between the middle frame back panel 37 .
  • part of the noise in the display device is caused by friction at the contact position between the back shell 39 and the middle frame backplate 37.
  • Some embodiments of the present application set the back shell 39 to be suspended relative to the middle frame backplate 37 through a hard fixing structure 45. set, hard
  • the material fixing structure 45 is, for example, a screw.
  • a third buffer structure 46 is provided between the rear case 39 and the middle frame backplate 37 corresponding to the frame position of the rear case 39.
  • the third buffer structure 46 is, for example, foam, which effectively prevents the rear case from being blocked.
  • the shell 39 is in rigid contact with the middle frame back plate 37 .
  • FIG. 73 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application
  • FIG. 74 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application
  • FIG. 75 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the hard fixing is, for example, screws
  • the elastic structure 47 can be a damping sleeve as shown in FIG. 73.
  • the rear shell 39 is fixed on the middle frame back plate 37 through the damping sleeve added to the screw.
  • the damping sleeve adopts Made of silicone material, the damping sleeve is in an interference state when the screws are tightened to support the rear shell 39 in floating relative to the middle frame back plate 37, effectively preventing the rear shell 39 from being in rigid contact with the middle frame back plate 37.
  • the spring shown in Figure 68, the foam shown in Figure 75 and other materials can also be used to achieve a function similar to a damping sleeve to reduce the transmission of vibration between the rear shell 39 and the back plate.
  • a layer of decorative part 77 is provided on the frame of the display device.
  • the decorative part 77 may be integrally formed with the frame, or may be adhered to the frame in an adhesive manner.
  • the decorative part 77 is higher than the back of the middle frame in the opposite direction of the screen.
  • the board 37 is flat and has a height higher than the gap between the rear shell 39 and the back plate, so as to ensure that the safety regulations are met and the appearance of the whole machine is aesthetically pleasing.
  • FIG. 76 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the sound exciter 6 includes a vibration transmission structure 48 , and the vibration transmission structure 48 is used to excite the rear shell 39 to vibrate.
  • the sound exciter 6 vibrates forward and backward when working, and a vibration transmission structure 48 is fixed to the rear shell 39 and used to excite the rear shell 39 to vibrate, and transmits the vibration energy of the sound exciter 6 to the rear shell 39.
  • the vibration of the rear shell 39 generates sound waves, and since the low-frequency sound has no directionality, it can be superimposed and enhanced with the forward sound of the display device, thereby achieving the purpose of increasing the intensity of the low-frequency sound.
  • FIG. 77 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the vibration transmission structure 48 is provided with a vibration stabilizing structure 49 .
  • the vibration stabilizing structure 49 is used to balance the reaction force exerted by the rear shell 39 on the vibration transmission structure 48 so that the vibration transmission structure 48 moves along the center of the sound exciter 6 Shaft vibration.
  • FIG. 78 is a schematic top view of a vibration stabilizing structure according to an embodiment of the present application.
  • the vibration stabilizing structure 49 includes a plurality of first spring structures 50.
  • the plurality of first spring structures 50 form a corrugated concentric structure.
  • One end of the first spring structure 50 is fixed to the vibration transmission structure 48.
  • the other end of the spring structure 50 is fixed to the sound exciter 6 .
  • the vibration transmission structure 48 vibrates up and down, due to the assembly deviation of the rear shell 39 , the assembly deviation of the sound exciter 6 , the uneven force after the back shell 39 and the sound exciter 6 cooperate, etc., the rear shell 39 gives the sound exciter 6 6
  • the reaction force is uneven, causing the vibration transmission structure 48 to be unable to vibrate vertically up and down, resulting in vibration noise.
  • the vibration transmission structure 48 and the magnetic circuit of the sound exciter 6 are A vibration stabilizing structure 49 is provided in between.
  • the vibration stabilizing structure 49 can be, for example, a corrugated concentric circular structure as shown in Figure 78, such as a centering support piece, including a spring structure arranged in multiple rings.
  • the material of the vibration stabilizing structure 49 can be, for example, Rubber, plastic and fiber materials that are hot pressed or injection molded.
  • the center of the vibration stabilizing structure 49 overlaps with the center of the vibration transmission structure 48, and the extension of the vibration stabilizing structure 49 is installed with the magnetic circuit of the sound exciter 6, or with the sound exciter 6 other than the magnetic circuit.
  • the final purpose is to pass
  • the vibration stabilizing structure 49 ensures that the vibration transfer structure 48 is located at the central axis of the sound exciter 6 to prevent the vibration transfer structure from rubbing against the sound exciter 6 when it vibrates up and down.
  • the vibration stabilizing structure 49 adopts a corrugated concentric structure, that is, a spring structure including multiple circular rings.
  • the vibration stabilizing structure 49 may be configured as an asymmetric structure. Since the sound exciter 6 is not installed at the center of the display device, the two sides or the upper and lower sides of the sound exciter 6 receive different reaction forces from the rear shell 39 , which may easily cause the vibration transmission structure 48 to vibrate in a deflective manner due to the asymmetric force. Therefore, the vibration stabilizing structure 49 is set to an asymmetric design that compensates for the reaction force of the rear shell 39 , thereby offsetting the reaction force of the rear shell 39 on the vibration transmission structure 48 and ensuring the vertical downward vibration of the vibration transmission structure 48 .
  • the asymmetric design of the vibration stabilizing structure 49 can be achieved through differences in corrugation width, material thickness, material hardness, etc.
  • the sound exciter 6 can also be directly attached to the sound plate 5 as shown in Figure 79 instead of being directly installed with the middle frame back plate 37. This prevents the vibration of the sound exciter 6 from being transmitted to the middle frame back plate 37, causing the middle frame back plate to be damaged.
  • the board 37 vibrates abnormally and the circuit board installed on the middle frame back panel 37 resonates.
  • FIG. 80 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the vibration transmission structure 48 is provided with a high-frequency filtering structure 51 correspondingly.
  • the high-frequency filtering structure 51 is used to filter out the high-frequency vibration transmitted from the vibration transmission structure 48 to the rear shell 39 .
  • the vibration transmission structure 48 of the sound exciter 6 transmits the full-band vibration to the rear shell 39, which may easily cause the rear shell 39 to vibrate abnormally in the middle and high frequency bands and cause noise.
  • high-frequency sound waves have strong directivity and are easy to interact with the front shell. The sound waves emitted in different directions produce phase differences, causing the sound field to be disordered.
  • some embodiments of the present application add a high-frequency filter structure 51 between the sound exciter 6 and the back shell 39 so that the high-frequency vibration of the sound exciter 6 cannot be transmitted to the back shell 39 .
  • a buffer member 78 is provided between the rear case 39 and the middle frame backplate 37 to prevent high-frequency vibrations of the middle frame backplate 37 from being transmitted to the rear case 39 and to avoid the impact of low-frequency vibrations of the rear case 39 on the middle frame backplate 37.
  • the middle frame backplane 37 resonates and causes abnormal vibrations of components such as circuit boards provided on the middle frame backplane 37 .
  • the high-frequency filter structure 51 includes a plurality of second spring structures 52 , one end of the second spring structure 52 is fixed to the vibration transmission structure 48 , and the other end of the second spring structure 52 is fixed to the rear shell. 39.
  • the high-frequency filter structure 51 can be, for example, single or multiple corrugated designs and have a certain elasticity, such as the second spring structure 52 .
  • the small-amplitude vibration energy is absorbed by the high-frequency filter structure 51 and will not be transmitted to the rear shell 39 .
  • the vibration amplitude is greater than the vibration absorption degree of the low-frequency filter structure, so the low-frequency vibration can be transmitted to the rear shell 39 to generate a low-frequency response.
  • the sound exciter 6 can also be directly attached to the sound plate 5 as shown in Figure 81 instead of being directly installed with the middle frame back plate 37, which avoids the vibration of the sound exciter 6 being transmitted to the middle frame back plate 37, causing the middle frame back plate to be damaged.
  • the board 37 vibrates abnormally and the circuit board installed on the middle frame back panel 37 resonates.
  • the sound exciter 6 can also be fixed to the middle frame back panel 37 as shown in FIG. 81 so that the sound can be transmitted to the base of the display device and then to the furniture on which the display device is placed to enhance the sound.
  • FIG. 82 is a cross-sectional structure of another display device according to an embodiment of the present application. Structure diagram. As shown in Figure 82, the rear shell 39 is provided with a first through hole 53 corresponding to the position of the sound exciter 6, and part of the vibration transmission structure 48 is located in the first through hole 53.
  • the high frequency filter structure 51 is a mechanically compliant structure, and the vibration transmission structure 48 is fixed to the rear shell 39 at the edge of the first through hole 53 through a mechanically compliant structure.
  • the high-frequency filtering structure 51 can be made of soft rubber or other materials that can provide mechanical compliance, which can also achieve high-frequency small-amplitude vibrations passing through the high-frequency filtering structure 51.
  • the small-amplitude vibration energy is passed by the high-frequency filtering structure. 51 is absorbed and will not be transmitted to the back shell 39; when low-frequency large-amplitude vibration occurs, the vibration amplitude is greater than the vibration absorption degree of the low-frequency filter structure, and the low-frequency vibration can be transmitted to the back shell 39 to produce a low-frequency response.
  • arranging part of the vibration transmission structure 48 in the first through hole 53 can reduce the impact of the high-frequency filtering structure 51 on the thickness of the entire machine, and the high-frequency filtering structure 51 and the vibration transmission structure 48 form a diaphragm-like structure and are exposed at the rear
  • the position of shell 39 can be used as an explicit feature of the sound.
  • the high-frequency filter structure 51 can also be configured as the structure shown in Figure 78.
  • the high-frequency filter structure 51 also has a similar function to the vibration stabilizing structure 49, that is, based on the asymmetric reaction force of the rear shell 39 to the sound exciter 6 existence, the high-frequency filter structure 51 can be designed to be asymmetrically supported and counteract the asymmetry of the reaction with the rear shell 39 to ensure the vertical downward movement of the vibration transmission structure 48 .
  • Asymmetry can be achieved through different R-ring sizes, different materials, and different hardness settings.
  • the sound exciter 6 can also be directly attached to the sound plate 5 as shown in Figure 83 instead of being directly installed with the middle frame back plate 37. This avoids the vibration of the sound exciter 6 from being transmitted to the middle frame back plate 37, causing the middle frame back plate to be damaged.
  • the board 37 vibrates abnormally and the circuit board installed on the middle frame back panel 37 resonates.
  • FIG. 84 is a schematic cross-sectional structural diagram of another display device according to an embodiment of the present application.
  • the rear shell 39 is provided with a second through hole 54 corresponding to the position of the sound exciter 6.
  • the vibration transmission structure 48 sinks into the second through hole 54.
  • the vibration transmission structure 48 is connected to the second through hole through the auxiliary fixing plate 79. Holes 54 are secured to the edges of the rear shell 39 .
  • the vibration transmission structure 48 of the sound exciter 6 will occupy the thickness of the entire display device, resulting in an increase in the thickness of the entire device.
  • Some embodiments of the present application are provided with openings in the rear shell 39, and the vibration transmission structure 48 sinks to the opening of the rear shell 39. In the hole area, the vibration transmission structure 48 and the rear shell 39 are fixed as one body through the auxiliary fixing plate 79 .
  • the sound exciter 6 can also be directly attached to the sound plate 5 as shown in Figure 85 instead of being directly installed with the middle frame back plate 37, which avoids the vibration of the sound exciter 6 being transmitted to the middle frame back plate 37, causing the middle frame back plate to be damaged.
  • the board 37 vibrates abnormally and the circuit board installed on the middle frame back panel 37 resonates.
  • FIG. 86 is a schematic front structural view of another display device according to an embodiment of the present application
  • FIG. 87 is a schematic rear structural view of another display device according to an embodiment of the present application.
  • a plurality of tweeters 56 are provided on the frame of the display device, and the tweeters 56 are symmetrically distributed about the central axis of the display device.
  • the screen sound effect due to the difference in the space between the backlight module and the screen caused by the light mixing distance of different models, there will also be some differences in the screen sound effect.
  • the upper limit of the vibration frequency of the screen is 1.5kHz.
  • Some embodiments of the present application add an upward-firing tweeter 56 at the top, that is, a tweeter unit, or add a downward-firing tweeter 56 at the bottom, or provide several left-firing or right-firing speakers on the left and right sides respectively.
  • the high-frequency speakers 56 effectively improve the treble effect of the display device, and the above-mentioned high-frequency speakers 56 are arranged to be symmetrically distributed along the central vertical axis of the display device, further optimizing the sound effect of the display device.
  • the sound output surface of the tweeter 56 is provided with a phase plug.
  • Figure 88 is a schematic structural diagram of a phase plug according to an embodiment of the present application. As shown in Figure 88, the phase plug 57 is used to make the high frequency The speaker 56 emits sound in a direction of the display device away from the rear case 39 , that is, toward the left side in FIG. 88 .
  • Figure 89 is a schematic structural diagram of a driving circuit in a display device according to an embodiment of the present application.
  • the full-frequency signal is used to drive the screen sound exciter 6, and the signal after the high-pass filter is sent to the tweeter 56.
  • this can supplement the high frequency, there is still a problem. Since the sound frequency of the screen is below 2kHz, and sound signals below 5kHz will have a significant impact on the sense of positioning, and the directional axis of the upward speakers in Figure 86 and Figure 87 is in the vertical direction, this will cause the sound image to be blurry. Unable to concentrate, facing downward, left, or right will have similar problems.
  • phase plug 57 on the sound output surface of the tweeter 56 .
  • the phase plug 57 is used to make the tweeter 56 emit sound in a direction away from the rear case 39 of the display device, that is, toward the display device. Sound from the front.
  • the phase plug 57 is a tweeter unit with extended directivity. This tweeter unit is different from the ordinary tweeter unit.
  • a phase plug 57 is added to the sound output surface of the speaker. As shown in Figure 88, when the sound wave hits the phase plug 57 Due to the arc surface of the phase plug 57, the sound wave is reflected from another direction.
  • the phase plug 57 By reasonably designing the angle, shape and curvature relationship of the phase plug 57 and the diaphragm, the sound wave that originally sounded upward can be turned to sound forward. In order for the forward-firing speakers on the machine to radiate sound, the phase plug 57 needs to protrude beyond the top of the display device.
  • 80 is the high-pass filter and 81 is the amplifier.
  • Figure 90 is a schematic diagram of an application scenario of a display device according to an embodiment of the present application. As shown in Figure 90, taking the tweeter 56 that sounds upward as an example, there are certain differences in the directivity of sounds of different frequencies. The screen sound is assumed to be at P1, and the tweeter 56 is responsible for sounds above 2 kHz. , assuming that the sound directivity of 4kHz is shown as the dotted line in Figure 91, the emission position point on the wall is P2, the directivity of 6kHz is more pointed, and the emission position point on the wall 82 is P3.
  • the sound should originally be emitted from a tweeter 56, because the sound is emitted from the front of the screen, the tweeter is emitted from the side, and there are multi-point sound reflection areas with different frequencies and locations, and each location point, that is, the sound source points P1, P2, and P3, reaches the person.
  • the distance between the ears is not the same.
  • P1 is direct, that is, directly from the screen surface to the human ear, while the distance of 4kHz is from the top tweeter 56 to the P2 point and then to the human ear, and the distance of 6kHz is from the tweeter 56 to the P3 point and then to the human ear. Sounds of different frequencies have different delays.
  • Figure 91 is a schematic diagram of the processing process of a frequency division delay algorithm according to an embodiment of the present application.
  • the entire sound band is divided into N segments, and each segment is given a different delay.
  • a certain point on the screen can be set, such as the horizontal center line four
  • the points are divided into virtual sound and image points, and then use this as a starting point to calculate the paths for sounds of different frequencies to reach the human ear, and then calculate the delays of each frequency band, so that the sounds heard by the human ear seem to come from the virtual sound and image point.
  • Pronunciation can be in the form of up and down pronunciation, left and right pronunciation, etc.
  • f0 corresponds to the low frequency band, which corresponds to the frequency band of the screen sound
  • fn is the high frequency band
  • the total sum corresponds to the working frequency band of the tweeter.
  • test the sound delay of the frequency band corresponding to point P2 and P3 to reach the human ear recorded as t0, t1, t2 respectively. If the frequency band is n+1, it is necessary to calculate the sound delay corresponding to the fn frequency band. Delay tn, because the higher the frequency, the farther the sound reflection point is from the display device, the greater the delay.
  • the display device further includes a base.
  • Figure 92 is a schematic three-dimensional structural diagram of a base according to an embodiment of the present application.
  • the base 58 includes an inclined portion 83 facing away from the rear case 39 of the display device.
  • a sound emitting structure 59 is provided inside the inclined portion 83
  • a plurality of sound holes 60 are provided on the surface of the inclined portion 83 corresponding to the sound emitting structure 59 .
  • a sound-emitting structure 59 in the base 58 such as a tweeter, where the surface of the base 58 has multiple outlets for sound.
  • a tweeter is placed inside the sound hole 60.
  • the tweeter is electrically connected to the interface between the base 58 and the display device through wires, and can be electrically connected to the display device through a socket.
  • ceramic speakers can be arranged on the surface of the base 58 or the base 58 can be made into a hollow structure and the ceramic speakers can be embedded in the base 58 so that the base 58 has the same thickness in appearance.
  • the middle part of the base 58 can be hollowed out and a thin metal sheet can be embedded in the structure.
  • the vibration unit arranged inside the display device can drive the thin metal sheet embedded inside the base 58 to vibrate and produce sound. This achieves the effect that the driver is internal and drives the external device to produce sound, thereby achieving the sound effect of front pronunciation.
  • FIG. 93 is a perspective structural schematic diagram of a display device according to an embodiment of the present application.
  • A is a partial magnification area.
  • the display device also includes a metal sheet-shaped decorative part 61.
  • the metal sheet-shaped decorative part 61 is located on the side of the display device away from the rear case 39.
  • a sound driver 62 is provided in the rear case 39. The sound driver 62 is connected to the metal sheet-shaped decorative part 61 through the bottom space of the display device and is used to drive the metal sheet-shaped decorative part 61 to emit sound.
  • the decorative parts at the bottom of the display device can be made in the form of thin metal sheets to form the metal sheet-shaped decorative parts 61, which extend to the front of the display device through the hollow of the rear shell 39 at the bottom of the display device.
  • the metal sheet-shaped decorative part 61 is driven to produce sound through the sound-generating driver 62 placed in the back shell 39 of the display device, such as an electromagnetic driver, a ceramic vibrator, a magnetostrictive driver, etc., thereby realizing that the internal driving of the machine is transferred to the front of the external device. Vocal effect.
  • the material of the sound-generating piece can be two-color injection molding of other materials such as plastic, metal and plastic, and the shape of the metal piece needs to be designed in a reasonable shape according to the frequency characteristics. For example, it can be small in the middle and large on both sides, which is convenient for forming on both sides of the U-shaped metal piece. Resonance at the same frequency.
  • some embodiments of the present application use a sound-generating panel and two sealed air cavities with viscous internal air, so that the sound-generating exciter can pass through the sound-generating panel, the backlight module, the second sealed air cavity and the
  • the first sealed air cavity transmits vibration to the liquid crystal display panel, causing the liquid crystal display panel to vibrate and produce sound, and since the vibration output terminal of the sound exciter is fixed to the surface of the sound plate away from the backlight module, the setting of the sound exciter does not affect
  • the display of the display device makes it possible for the traditional LCD screen to produce sound, giving users an audio-visual experience where the sound comes from the image, and overcoming the industry bottleneck that makes it difficult to produce sound on the LCD screen.
  • some embodiments of the present application do not determine whether the display device is a flexible display device. Limitation, some embodiments of the present application may be applied to curved screens, for example. In addition, the same and similar parts between the various embodiments of the present application can be referred to each other, and the relevant content will not be repeated. Moreover, some embodiments of the present application do not list all possible combinations. Among the technical features of each embodiment of the present application, Any combination between them also belongs to the protection scope of this application.
  • the characteristic combination methods include but are not limited to the liquid crystal display panel 1 combined with MiniLED; the sound exciter 6 combined with MiniLED; the sound exciter 6 combined with MiniLED combined with the elastic support 17; the sound exciter 6 combined
  • the sound-generating panel 5 is combined with the backlight panel 30; the sound-generating exciter 6 is combined with the sound-generating panel 5 with the light bar; the sound-generating exciter 6 is combined with the sound-generating panel 5 and the backlight panel 30 is combined with the elastic support member 17; the tweeter and bass speakers are combined into different embodiments.
  • the present application also provides a computer storage medium, wherein the computer storage medium may store a program, and when executed, the program may include some or all of the steps in each embodiment of the method provided by the present application.
  • the storage media can be disks, optical disks, read-only memory (English: read-only memory, abbreviation: ROM) or random access memory (English: random access memory, abbreviation: RAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Planar Illumination Modules (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

一种显示设备(200),包括:液晶显示面板(1)和背光模组(2),液晶显示面板(1)内部形成第一密封空气腔体(3),背光模组(2)位于液晶显示面板(1)的一侧并与液晶显示面板(1)形成第二密封空气腔体(4);发声板(5)和发声激励器(6),发声板(5)固定至背光模组(2)远离液晶显示面板(1)的表面,发声激励器(6)的振动输出端子(7)固定至发声板(5)远离背光模组(2)的表面,发声激励器(6)用于通过振动输出端子(7)激励发声板(5)振动以带动背光模组(2)振动。

Description

显示设备
相关申请的交叉引用
本申请要求在2022年03月21日提交的、申请号为202210279174.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年03月21日提交的、申请号为202210281470.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年05月31日提交的、申请号为202210610379.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域。更具体的讲,尤其涉及一种显示设备。
背景技术
显示设备,例如电视机中的扬声器受外观超薄造型安装位置等所限,尺寸一般较小且被迫采用下出音或后出音等方式,所形成的声像位置与图像位置分离,观感体验不好,无法提供音画合一的视听体验。
理论上平板类显示设备只要能够通过发声激励器直接振动显示面板都可以产生声波,例如OLED(Organic Light-Emitting Diode,有机发光二极管)屏幕已经实现自发声技术,即以OLED面板身兼显示和扬声器振膜的发声功能实现音画合一的视听效果。但当显示面板是LCD(Liquid Crystal Display,液晶显示面板)时,液晶显示面板具有许多独立而层叠的层,并且显示面板后部需要设置均匀照明的背光光源,背光光源照明不能被遮挡,因此无法在面板上安装发声激励器,且背光光源与显示面板之间具有较大距离,没有将振动有效传递到液晶显示面板的路径,这些瓶颈问题使得至今没有液晶显示面板发声的解决方案。
发明内容
本申请提供了一种显示设备,包括:液晶显示面板和背光模组,所述液晶显示面板内部形成第一密封空气腔体,所述背光模组位于所述液晶显示面板的一侧并与所述液晶显示面板形成第二密封空气腔体;发声板和发声激励器,所述发声板固定至所述背光模组远离所述液晶显示面板的表面,所述发声激励器的振动输出端子固定至所述发声板远离所述背光模组的表面,所述发声激励器用于通过所述振动输出端子激励所述发声板振动以带动所述背光模组振动。
附图说明
图1为根据本申请实施例的一种显示设备与控制装置之间操作场景的示意图;
图2为根据本申请实施例的一种控制装置的配置框图;
图3为根据本申请实施例的一种显示设备的配置框图;
图4为根据本申请实施例的一种视频点播程序的界面示意图;
图5为根据本申请实施例的一种显示设备的立体结构示意图;
图6为根据本申请实施例的一种沿图5中AA’方向的剖面结构示意图;
图7为根据本申请实施例的另一种显示设备的剖面结构示意图;
图8为根据本申请实施例的另一种显示设备的剖面结构示意图;
图9为根据本申请实施例的一种发声激励器的立体结构示意图;
图10为根据本申请实施例的一种发声激励器的剖面结构示意图;
图11为根据本申请实施例的一种背光模组的俯视结构示意图;
图12为根据本申请实施例的沿图11中BB’方向的剖面结构示意图;
图13为根据本申请实施例的一种显示设备的***结构示意图;
图14为根据本申请实施例的另一种显示设备的立体结构示意;
图15为根据本申请实施例的另一种显示设备的剖面结构示意图;
图16为根据本申请实施例的一种低频气流通道的俯视结构示意图;
图17为根据本申请实施例的另一种低频气流通道的俯视结构示意图;
图18为根据本申请实施例的另一种显示设备的剖面结构示意图;
图19为根据本申请实施例的另一种显示设备的立体结构示意图;
图20为根据本申请实施例的另一种显示设备的剖面结构示意图;
图21为根据本申请实施例的另一种显示设备的剖面结构示意图;
图22为根据本申请实施例的另一种显示设备的剖面结构示意图;
图23为根据本申请实施例的另一种显示设备的剖面结构示意图;
图24为根据本申请实施例的另一种显示设备的剖面结构示意图;
图25为根据本申请实施例的另一种显示设备的剖面结构示意图;
图26为根据本申请实施例的另一种显示设备的剖面结构示意图;
图27为根据本申请实施例的另一种显示设备的剖面结构示意图;
图28为根据本申请实施例的另一种显示设备的剖面结构示意图;
图29为根据本申请实施例的另一种显示设备的剖面结构示意图;
图30为根据本申请实施例的另一种显示设备的剖面结构示意图;
图31为根据本申请实施例的另一种显示设备的俯视结构示意图;
图32为根据本申请实施例的另一种显示设备的俯视结构示意图;
图33为根据本申请实施例的另一种显示设备的俯视结构示意图;
图34为根据本申请实施例的另一种显示设备的俯视结构示意图;
图35为根据本申请实施例的一种沿图33中CC’方向的剖面结构示意图;
图36为根据本申请实施例的另一种显示设备的俯视结构示意图;
图37为根据本申请实施例的另一种显示设备的俯视结构示意图;
图38为根据本申请实施例的另一种显示设备的俯视结构示意图;
图39为根据本申请实施例的另一种显示设备的剖面结构示意图;
图40为根据本申请实施例的另一种显示设备的俯视结构示意图;
图41为根据本申请实施例的另一种显示设备的剖面结构示意图;
图42为根据本申请实施例的另一种显示设备的俯视结构示意图;
图43为根据本申请实施例的另一种显示设备的剖面结构示意图;
图44为根据本申请实施例的另一种显示设备的剖面结构示意图;
图45为根据本申请实施例的另一种显示设备的剖面结构示意图;
图46为根据本申请实施例的另一种显示设备的剖面结构示意图;
图47为根据本申请实施例的另一种显示设备的剖面结构示意图;
图48为根据本申请实施例的另一种显示设备的剖面结构示意图;
图49为根据本申请实施例的另一种显示设备的剖面结构示意图;
图50为根据本申请实施例的另一种显示设备的俯视结构示意图;
图51为根据本申请实施例的另一种显示设备的俯视结构示意图;
图52为根据本申请实施例的另一种显示设备的俯视结构示意图;
图53为根据本申请实施例的另一种显示设备的剖面结构示意图;
图54为根据本申请实施例的另一种显示设备的正视结构示意图;
图55为根据本申请实施例的另一种显示设备的剖面结构示意图;
图56为根据本申请实施例的另一种显示设备的正视结构示意图;
图57为根据本申请实施例的另一种显示设备的剖面结构示意图;
图58为根据本申请实施例的另一种显示设备的剖面结构示意图;
图59为根据本申请实施例的另一种显示设备的剖面结构示意图;
图60为根据本申请实施例的另一种显示设备的正视结构示意图;
图61为根据本申请实施例的另一种显示设备的正视结构示意图;
图62为根据本申请实施例的另一种显示设备的正视结构示意图;
图63为根据本申请实施例的另一种显示设备的正视结构示意图;
图64为根据本申请实施例的另一种显示设备的正视结构示意图;
图65为根据本申请实施例的另一种显示设备的立体结构示意图;
图66为根据本申请实施例的另一种显示设备的正视结构示意图;
图67为根据本申请实施例的另一种显示设备的正视结构示意图;
图68为根据本申请实施例的另一种显示设备的正视结构示意图;
图69为根据本申请实施例的另一种显示设备的正视结构示意图;
图70为根据本申请实施例的另一种显示设备的正视结构示意图;
图71为根据本申请实施例的另一种显示设备的正视结构示意图;
图72为根据本申请实施例的另一种显示设备的剖面结构示意图;
图73为根据本申请实施例的另一种显示设备的剖面结构示意图;
图74为根据本申请实施例的另一种显示设备的剖面结构示意图;
图75为根据本申请实施例的另一种显示设备的剖面结构示意图;
图76为根据本申请实施例的另一种显示设备的剖面结构示意图;
图77为根据本申请实施例的另一种显示设备的剖面结构示意图;
图78为根据本申请实施例的一种振动稳定结构的俯视结构示意图;
图79为根据本申请实施例的另一种显示设备的剖面结构示意图;
图80为根据本申请实施例的另一种显示设备的剖面结构示意图;
图81为根据本申请实施例的另一种显示设备的剖面结构示意图;
图82为根据本申请实施例的另一种显示设备的剖面结构示意图;
图83为根据本申请实施例的另一种显示设备的剖面结构示意图;
图84为根据本申请实施例的另一种显示设备的剖面结构示意图;
图85为根据本申请实施例的另一种显示设备的剖面结构示意图;
图86为根据本申请实施例的另一种显示设备的正视结构示意图;
图87为根据本申请实施例的一种显示设备的背视结构示意图;
图88为根据本申请实施例的一种相位塞的结构示意图;
图89为根据本申请实施例的一种显示设备中驱动电路的结构示意图;
图90为根据本申请实施例的一种显示设备的应用场景示意图;
图91为根据本申请实施例的一种分频延时算法的处理过程示意图;
图92为根据本申请实施例的一种底座的立体结构示意图;
图93为根据本申请实施例的一种显示设备的透视结构示意图。
具体实施方式
为使本申请的目的和实施方式更加清楚,下面将结合本申请示例性实施例中的附图,对本申请示例性实施方式进行清楚、完整地描述,显然,描述的示例性实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,本申请中对于术语的简要说明,仅是为了方便理解接下来描述的实施方式,而不是意图限定本申请的实施方式。除非另有说明,这些术语应当按照其普通和通常的含义理解。
本申请实施方式提供的显示设备可以具有多种实施形式,例如,可以是电视、智能电视、显示器(monitor)、电子白板(electronic bulletin board)、电子桌面(electronic table)等。图1和图2为本申请的显示设备的一种具体实施方式。
图1为根据本申请实施例的一种显示设备与控制装置之间操作场景的示意图。如图1所示,用户可通过智能设备300或控制装置100操作显示设备200。
在一些实施例中,控制装置100可以是遥控器,遥控器和显示设备200的通信可以包括红外协议通信或蓝牙协议通信,及其它短距离通信方式,通过无线或有线方式来控制显示设备200。用户可以通过遥控器上按键、语音输入、控制面板输入等输入用户指令,来控制显示设备200。
在一些实施例中,也可以使用智能设备300(如移动终端、平板电脑、计算机、笔记本电脑等)以控制显示设备200。例如,使用在智能设备上运行的应用程序控制显示设备200。
在一些实施例中,显示设备200可以不使用上述的智能设备或控制设备接收指令,而是通过触摸或者手势等接收用户的控制。
在一些实施例中,显示设备200还可以采用除了控制装置100和智能设备300之外的方式进行控制,例如,可以通过显示设备200设备内部配置的获取语音指令的模块直接接收用户的语音指令控制,也可以通过显示设备200设备外部设置的语音控制设备来接收用户的语音指令控制。
在一些实施例中,显示设备200还与服务器400进行数据通信。可允许显示设备200通过局域网(LAN)、无线局域网(WLAN)和其它网络进行通信连接。服务器400可以向显示设备200提供各种内容和互动。
图2为根据本申请实施例的一种控制装置的配置框图。如图2所示,控制装置100包括控制器110、通信器130、用户输入/输出接口140、存储器、供电电源。控制装置100可接收用户的输入操作指令,通信器130与显示设备通信连接,控制装置100将操作指令转换为显示设备200可识别和响应的指令,起到用户与显示设备200之间交互中介作用。
图3为根据本申请实施例的一种显示设备的配置框图。如图3所示,显示设备200包括调谐解调器210、通信器220、检测器230、外部装置接口240、控制器250、显示器260、音频输出接口270、存储器、供电电源、用户接口中的至少一种。
在一些实施例中控制器250包括处理器,视频处理器,音频处理器,图形处理器,RAM,ROM,用于输入/输出的第一接口至第n接口。
显示器260用于显示界面,包括用于呈现画面的显示屏组件,以及驱动图像显示的驱动组件,用于接收源自控制器输出的图像信号,进行显示视频内容、图像内容以及菜单操控界面的组件以及用户操控UI界面。
通信器220是用于根据各种通信协议类型与外部设备或服务器进行通信的组件。例如:通信器可以包括Wifi模块,蓝牙模块,有线以太网模块等其它网络通信协议芯片或近场通信协议芯片,以及红外接收器中的至少一种。显示设备200可以通过通信器220与控制装置100或服务器400通信连接,即建立控制信号和数据信号的发送和接收。
用户接口,可用于接收控制装置100(如:红外遥控器等)的控制信号。
检测器230用于采集外部环境或与外部交互的信号。例如,检测器230包括光接收器,用于采集环境光线强度的传感器;或者,检测器230包括图像采集器,如摄像头,可以用于采集外部环境场景、用户的属性或用户交互手势,再或者,检测器230包括声音采集器,如麦克风等,用于接收外部声音。
外部装置接口240可以包括但不限于如下:高清多媒体接口(HDMI)、模拟或数据高清分量输入接口(分量)、复合视频输入接口(CVBS)、USB输入接口(USB)、RGB端口等任一个或多个接口。也可以是上述多个接口形成的复合性的输入/输出接口。
调谐解调器210通过有线或无线接收方式接收广播电视信号,以及从多个无线或有线广播电视信号中解调出音视频信号,如以及EPG数据信号。
在一些实施例中,控制器250和调谐解调器210可以位于不同的分体设备中,即调谐解调器210也可在控制器250所在的主体设备的外置设备中,如外置机顶盒等。
控制器250,通过存储在存储器上中各种软件控制程序,来控制显示设备的工作和响应用户的操作。控制器250控制显示设备200的整体操作。例如:响应于接收到用于选择在显示器260上显示UI对象的用户命令,控制器250 便可以执行与由用户命令选择的对象有关的操作。
在一些实施例中控制器250包括中央处理器(Central Processing Unit,CPU),视频处理器,音频处理器,图形处理器(Graphics Processing Unit,GPU),RAM Random Access Memory,RAM),ROM(Read-Only Memory,ROM),用于输入/输出的第一接口至第n接口,通信总线(Bus)等中的至少一种。
用户可在显示器260上显示的图形用户界面(GUI)输入用户命令,则用户输入接口通过图形用户界面(GUI)接收用户输入命令。或者,用户可通过输入特定的声音或手势进行输入用户命令,则用户输入接口通过传感器识别出声音或手势,来接收用户输入命令。
在一些实施例中,显示设备启动后可以直接进入预置的视频点播程序的界面,视频点播程序的界面可以如图4中所示,至少包括导航栏310和位于导航栏310下方的内容显示区,内容显示区中显示的内容会随导航栏中被选中控件的变化而变化。应用程序层中的程序可以被集成在视频点播程序中通过导航栏的一个控件进行展示,也可以在导航栏中的应用控件被选中后进行进一步显示。
在一些实施例中,显示设备启动后可以直接进入上次选择的信号源的显示界面,或者信号源选择界面,其中信号源可以是预置的视频点播程序,还可以是HDMI接口,直播电视接口等中的至少一种,用户选择不同的信号源后,显示器可以显示从不同信号源获得的内容。
图5为根据本申请实施例的一种显示设备的立体结构示意图,图6为根据本申请实施例的一种沿图5中AA’方向的剖面结构示意图。结合图5和图6,显示设备包括液晶显示面板1和背光模组2,液晶显示面板1内部形成第一密封空气腔体3,背光模组2位于液晶显示面板1的一侧并与液晶显示面板1形成第二密封空气腔体4;显示设备还包括发声板5和发声激励器6,发声板5固定至背光模组2远离液晶显示面板1的表面,发声激励器6的振动输出端子固定至发声板5远离背光模组2的表面,发声激励器6用于通过振动输出端子激励发声板5振动以带动背光模组2振动。
具体地,本申请一些实施例提供了一种屏幕自发声液晶显示设备,属于显示设备和电声结合的多媒体技术领域。结合图5和图6,液晶显示面板1内部形成第一密封空气腔体3,背光模组2位于液晶显示面板1的一侧并与液晶显示面板1形成第二密封空气腔体4,第一密封空气腔体3和第二密封空气腔体4形成的气隙中的空气具有粘滞性,其运动粘度比水高多倍,例如15倍,密封气隙在液晶显示面板1与背光模组2之间以及液晶显示面板1内部等效为阻尼弹簧,发声激励器6用于通过振动输出端子激励发声板5振动以带动背光模组2振动,再利用密封气隙等效成的阻尼弹簧,将发声激励器6振动背光模组2中背光板30的振动力通过等效的阻尼弹簧传递到液晶显示面板1的前面板上,使得液晶显示面板1振动发声,且由于发声激励器6位于发声板5远离背光模组2的表面,发声激励器6的设置并不影响显示设备的显示。另外,背光模组2包括背光板30与背光板30上的发光结构18,液晶显示面板1的下表面与背光板30上发光结构18,例如灯珠顶部之间具有一定的距离, 液晶显示面板1与背光模组2中背光板30之间的气隙可与发光结构18高度相同或略高于发光结构18的高度。
示例性地,发声板5可以为蜂窝板或碳纤维板。当显示设备的屏幕尺寸为65寸且采用铝质蜂窝作为发声板5时,发声板5的厚度例如可以为1mm至4mm。发声板5芯材的材质包括但不限于纸质、芳纶、金属或其它硬质泡沫材料,发声板5蒙皮材料包括但不限于玻璃纤维、碳纤维、玻璃碳混合纤维、塑料或轻质铝等材料。另外,发声板5也可以作为背光模组2中背光板30的导热和散热板。
图7为根据本申请实施例的另一种显示设备的剖面结构示意图,图8为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图5至图8,发声激励器6例如可以为电磁振动激励器,发声激励器6包括线圈管805和806、磁场磁路801和802以及804、弹波807以及缓冲垫等结构组成。发声激励器6以惯性驱动方式振动发声板5,惯性驱动包括发声激励器6及其自身支持稳定结构,惯性驱动不需要对发声激励器6后部进行额外的支持固定,发声激励器6整体随显示设备一起振动。
在一些实施例中,发声激励器6的振动输出端子7直接与发声板5一侧连接,发声激励器6中心轴线垂直于发声板5平面,振动输出方向沿发声激励器6中心轴线并垂直于显示设备表面,即图7中的竖直方向。在磁场作用下,电磁力使质量较轻的线圈管上产生频率较高的共振,来直接振动发声板5和背光模组2,电磁力的反作用力使质量较大的发声激励器6本体产生频率较低的共振并通过支点的缓冲垫来振动发声板5和背光模组2。发声激励器6本体无固定依托,而是随被驱动的发声板5和背光模组2的振动而振动,这也是OLED屏幕发声激励器6本体固定于支架激励方式的最大区别。
如图7所示,中框背板37位置设置有固定销63,发声激励器6通过工字型硅胶隔离垫连接在固定销63上,使发声激励器6通过硅胶隔离垫获得具有一定前后移动自由度的悬浮式的支撑和固定。或者,也可以如图8所示,发声激励器6直接固定至发声板5。图9为根据本申请实施例的一种发声激励器的立体结构示意图,结合图8和图9,发声激励器6具有三或四个向远离中心延伸的低弹性系数的片状弹性支脚64,片状弹性支脚64向远离中心处回旋延伸或辐射延伸,片状弹性支脚64远离中心一端通过阻尼块65固定于发声板5,阻尼块65例如可以为表面具有双面胶的EVA(乙烯-乙酸乙烯共聚物)。图10为根据本申请实施例的一种发声激励器的剖面结构示意图。如图10所示,发声激励器6具有导杆807和振膜808,线圈管805和806上产生频率较高的共振通过导杆807传递到背向振膜808,可以增加高频声波辐射,增强高频响应。
需要说明的是,除上述实施例所述的电磁振动激励器,发声激励器6也可以采用压电驱动方式实现激励振动,本申请一些实施例对发声激励器6的具体实现类型和具体结构不作限定,且发声激励器6的具体工作原理为本领域技术人员熟知内容,这里不再赘述。
另外,图5仅示例性地示出了显示设备中发声激励器6的分布位置,本申请一些实施例对显示设备中发声激励器6的分布位置不作具体限定,可以 根据显示设备的发声需求进行发声激励器6分布位置的具体设置。
由此,本申请一些实施例利用发声板5以及两个内部空气具有粘滞性的密封空气腔体,使得发声激励器6能够依次通过发声板5、背光模组2、第二密封空气腔体4和第一密封空气腔体3将振动传递到液晶显示面板1的前面板上,使得液晶显示面板1振动发声,且由于发声激励器6的振动输出端子7固定至发声板5远离背光模组2的表面,发声激励器6的设置并不影响显示设备的显示,使得传统的液晶显示装置屏幕发声成为可能,带给用户声音来自于图像的音画一体的视听体验,克服了液晶显示面板发声难以实现的行业瓶颈难题。
在一些实施例中,图11为根据本申请实施例的一种背光模组的俯视结构示意图,图12为根据本申请实施例的沿图11中BB’方向的剖面结构示意图。结合图6至图8以及图11至图12,发声板5通过第一粘性缓冲结构(图12中未示出)与背光模组2固定。
在一些实施例中,出于显示设备加工成品率及成本要求,显示设备中的背光模组2可以包括多块背光板30,多块背光板30均匀排布并拼接组成背光模组2,可以设置发声板5与背光板30均为矩形平板,第一粘性缓冲结构可以为双面胶,背光板30均布排布并通过第一粘性缓冲结构贴在发声板5上,发声板5使相邻的背光板30相互连接,以使所有背光板30连接成一张整板,背光板30与背光板30之间具有紧密的拼缝。另外,第一粘性缓冲结构还起到发声板5与背光模组2之间的缓冲作用,避免振动时二者硬性碰撞产生杂音,影响显示设备的显示效果。
在一些实施例中,结合图7和图8,振动输出端子7通过第二粘性缓冲结构(图7和图8中未示出)与发声板5固定。具体地,振动输出端子7也可以与发声板5直接接触,同样可以带动发声板5振动,但会导致发声激励器6向下振动时其振动输出端子7与发声板5脱离,无法激励液晶显示面板1发声,发声激励器6向上振动时,又会与发声板5之间产生硬性碰撞产生杂音。本申请一些实施例中设置振动输出端子7通过第二粘性缓冲结构与发声板5固定,第二粘性缓冲结构例如可以为双面胶,解决了发声激励器6向下振动时其振动输出端子7与发声板5脱离,无法激励液晶显示面板1发声,以及发声激励器6向上振动时与发声板5之间产生硬性碰撞产生杂音的问题。
在一些实施例中,图13为根据本申请实施例的一种显示设备的***结构示意图。结合图6至图8以及图13,液晶显示面板1包括液晶膜层10和光学扩散膜层11,液晶膜层10与光学扩散膜层11之间对应液晶显示面板1的边框位置设置有第一环形密封结构12,液晶膜层10与光学扩散膜层11通过第一环形密封结构12形成第一密封空气腔体3。
在一些实施例中,第一环形密封结构12例如可以为光学胶,第一环形密封结构12使得第一密封空气腔体3气隙中的空气具有粘滞性,发声激励器6用于通过振动输出端子7激励发声板5振动以带动背光模组2振动,再利用密封气隙等效成的阻尼弹簧,将发声激励器6振动背光模组2中背光板30的振动力通过等效的阻尼弹簧传递到液晶显示面板1的前面板上,使得液晶显 示面板1振动发声。由此,本申请一些实施例利用光学胶实现了液晶显示面板1全贴合结构,光学扩散膜层11可以包括光学膜片和扩散板,液晶显示面板1的显示用结构及对应的工作原理为本领域技术人员熟知内容,这里不再赘述。采用光学胶将液晶膜层10、光学膜片以及扩散板贴合,使多层膜片结构成为一个组件,等效为一个单层的屏幕,使得发声激励器6产生的振动能够通过全贴合结构的液晶显示面板1传递至液晶显示面板1前方。示例性地,构成扩散板的材料包括但不限于玻璃、压克力或聚碳酸酯等轻质透明有机板材。
需要说明的是,光学扩散膜层11可以包括光学膜片和扩散板,光学膜片位于扩散板临近液晶膜层10的一侧,图6示例性地设置光学膜片与液晶膜层10之间形成有空气腔体,也可以设置光学膜片与扩散板之间形成有空气腔体,也可以设置光学膜片与液晶膜层10之间,以及光学膜片与扩散板之间均形成有空气腔体。另外,可以设置对应显示设备的部分边框位置,光学膜片和扩散板均与中框背板37接触设置,例如图6中右侧边框位置处光学膜片和扩散板均与中框背板37接触设置。其余边框位置,光学膜片和扩散板相对于中框背板37悬空设置,例如图6中左侧边框位置处光学膜片和扩散板相对于中框背板37悬空设置。
由此,前述空气腔体通过悬空位置,例如图6中左侧边框位置,与背光板30和扩散板之间的空气腔体连通以形成背光模组2与液晶显示面板1之间的第二密封空气腔体4,以实现发声板声音向显示面板前侧的传导,进而实现屏幕发声。即此时第二密封空气腔体4包括背光板30和扩散板之间的空气腔体,还包括光学膜片与液晶膜层10之间的空气腔体,或者还包括光学膜片与扩散板之间的空气腔体。
或者,也可以设置光学膜片与液晶膜层10之间,以及光学膜片与扩散板之间均未形成空气腔体,即光学膜片与液晶膜层10直接接触,光学膜片与扩散板直接接触,则此时的第二密封空气腔体4包括背光板30和扩散板之间的空气腔体,还包括悬空位置,例如图6中左侧边框位置处的空气间隙,二者连通构成密封空气腔体。
在一些实施例中,图14为根据本申请实施例的另一种显示设备的立体结构示意图。结合图6至图8以及图13和图14,背光模组2与液晶显示面板1之间对应液晶显示面板1的边框位置设置有第二环形密封结构13,背光模组2与液晶显示面板1通过第二环形密封结构13形成第二密封空气腔体4。
在一些实施例中,第二环形密封结构13例如可以为光学胶,第二环形密封结构13环绕液晶显示面板1的边框位置设置,使得第二密封空气腔体4气隙中的空气具有粘滞性,发声激励器6用于通过振动输出端子7激励发声板5振动以带动背光模组2振动,再利用密封气隙等效成的阻尼弹簧,将发声激励器6振动背光模组2中背光板30的振动力通过等效的阻尼弹簧传递到液晶显示面板1的前面板上,使得液晶显示面板1振动发声。示例性地,第二密封空气腔体4形成的气隙高度最大可为10mm,例如也可以为1mm。另外,第一环形密封结构12也可以类似第二环形密封结构13环绕液晶显示面板1 的边框位置设置。
由此,规避本申请一些实施例所述的显示设备发音的堆叠结构,尤其是规避液晶显示面板1与背光模组2之间的气密层,将不能达到或严重降低将振动耦合到液晶显示面板1以实现发音的效果。同样地,规避液晶显示面板1内部的全贴合结构,将严重降低振动传递效果,影响显示设备的低中高频全频段响应。
在一些实施例中,图15为根据本申请实施例的另一种显示设备的剖面结构示意图,图16为根据本申请实施例的一种低频气流通道的俯视结构示意图。在上述实施例的基础上,结合图15和图16,第一环形密封结构12包括多条低频气流通道,图16中箭头即表示低频气流通道中的气流流向,低频气流通道用于连通第一密封空气腔体3与显示设备所处外部环境。
具体地,液晶显示面板1内部的液晶膜层10与光学扩散膜层11之间的气隙利用第一环形密封结构12形成了第一密封空气腔体3,光学扩散膜层11的振动通过第一密封空气腔体3传递至液晶膜层10以及液晶显示面板1前方的玻璃盖板等结构,液晶显示面板1振动发声。但是传递低频且振幅较大的振动时,第一密封空气腔体3受压大,挤压液晶膜层10导致液晶膜层10受压变形,进而导致显示问题。如降低振动能量或者将第一密封空气腔体3厚度加大,又会导致振动能量传递效率降低,不利于声频提升。
本申请一些实施例设置第一环形密封结构12包括多条低频气流通道,低频气流通道用于连通第一密封空气腔体3与显示设备所处外部环境,利用液晶显示面板1边缘的第一环形密封结构12设置多条低频气流通道,即设置滤波结构,低频振动时空气压力由低频气流通道向外泄露,低频声波通过低频气流通道向外辐射,避免光学扩散膜层11大振幅时液晶膜层10受压严重而影响显示的问题,且实现了低频声波直接由低频气流通道向外输出,提升了低频传递辐射效率。中高频振动时,通过对低频气流通道结构的设置,使得低频气流通道失效,但高频振动时光学扩散膜层11振幅较小,液晶膜层10不会因受压导致显示问题。
在一些实施例中,结合图15和图16,沿平行于液晶显示面板1的平面,第一环形密封结构12包括沿第一方向XX’排列的多排通道形成结构15,一排通道形成结构15包括间隔设定距离设置的多个阻隔结构16,不同排通道形成结构15中的阻隔结构16交错设置;其中,第一方向XX’垂直于液晶显示面板1边框的延伸方向。
具体地,例如可以设置低频气流通道截面积的三倍等效直径小于等于通道长度。在此设计下,低频气流通道可等效为声学器件管,管内的空气振动时形成一定频率的共振,可等效为一个顺性器件与一个质量器件的共振,即等效为空气弹性与密闭空气质量的共振,使得多条低频气流通道具备高频滤波作用,即高频振动无法通过管道向外传递,高频时等效为通道密封,以保证液晶膜层10与光学扩散膜层11之间足够的支撑性。低频时低频气流通道无滤波作用,低频振动时等效为通道开放。图15和图16示例性地设置第一环形密封结构12包括沿第一方向XX’排列的两排通道形成结构15,当然,也 可以排列成其他排数的通道,本申请一些实施例对第一环形密封结构12包括的沿第一方向XX’排列的通道形成结构15的排数不作具体限定。
在一些实施例中,图17为根据本申请实施例的另一种低频气流通道的俯视结构示意图。结合图16和图17,为避免外部灰尘通过低频气流通道进入显示设备内部,在低频气流通道内部增加多孔阻尼材料66,进一步优化低频气流通道的滤波性能且避免异物进入。或者,也可直接将组成低频气流通道的例如图15至图17示出的双层胶带更换为一条微孔透气胶带,实现低成本滤波方案及防尘效果。
在一些实施例中,背光模组2为MiniLED背光模组。具体地,MiniLED背光模组尺寸较小,设置背光模组2为MiniLED背光模组,能够有效减小液晶显示面板1与背光模组2之间的气隙,并利用液晶显示面板1与背光模组2四周密封使得气隙中的空气具有粘滞性,密封气隙在液晶显示面板1与背光模组2之间等效出一个阻尼弹簧,将发声激励器6振动背光模组2的振动力通过阻尼弹簧传递到液晶显示面板1发声。
需要说明的是,背光模组2可以包括多块背光板30,即灯板,也可以包括多个灯条,本申请一些实施例对此不作具体限定。背光模组2不限于包括MiniLED背光模组,也可以采用其余可自发光的结构作为背光模组2。需要说明的是,背光模组2可以包括多块背光板30,即灯板,也可以包括多个灯条,本申请一些实施例对此不作具体限定。
在一些实施例中,图18为根据本申请实施例的另一种显示设备的剖面结构示意图,图19为根据本申请实施例的另一种显示设备的立体结构示意图。在上述各实施例的基础上,结合图18和图19,显示设备还包括多个弹性支撑件17,弹性支撑件17过盈设置于背光模组2与液晶显示面板1之间,背光模组2临近液晶显示面板1的一侧包括多个发光结构18,弹性支撑件17位于发光结构18之间。
具体地,发声激励器6的振动传递过程中存在问题,液晶显示面板1与背光模组2之间的气隙厚度因物料公差、装配工艺公差以及自身重力等影响存在较大变化,导致振动传递效率一致性无法保证,液晶显示面板1与背光模组2贴合导致振动杂音及磨伤。为避免上述风险,本申请一些实施例液晶显示面板1与背光模组2之间增加弹性支撑件17,弹性支撑件17具备如下特征:一侧与液晶显示面板1接触,另一侧与背光模组2接触,一侧或者两侧分别与接触位置通过机械结构或粘贴等固定方式连接,弹性支撑件17例如可以为高回弹材质或者具备回弹功能的材质组合,如硅胶等。弹性支撑件17可确保液晶显示面板1与背光模组2之间的气隙尺寸稳定,避免液晶显示面板1与背光模组2的异常碰撞杂音,且固体的弹性支撑件17提升了振动自背光模组2至液晶显示面板1的传递效率。另外,图19中a位置可以为胶带。
具体地,弹性支撑件17过盈设置于背光模组2与液晶显示面板1之间,即弹性支撑件17两侧与液晶显示面板1及背光模组2的结合可采用尺寸过盈配合设计,即弹性支撑件17尺寸大于液晶显示面板1与背光模组2之间的高度设计尺寸。
图20为根据本申请实施例的另一种显示设备的剖面结构示意图,对应发声激励器6的振子向后振动时,弹性支撑件17处于自由接触状态。图21为根据本申请实施例的另一种显示设备的剖面结构示意图,对应发声激励器6未振动且弹性支撑件17处于静态放置时,弹性支撑件17因液晶显示面板1与背光模组2的挤压处于过盈压缩状态。图22为根据本申请实施例的另一种显示设备的剖面结构示意图,对应发声激励器6的振子向前推动时,弹性支撑件17处于进一步过压状态,弹性支撑件17的尺寸例如可以为液晶显示面板1与背光模组2之间的距离与一半振子振动幅度的和值,确保图20所示状态下,弹性支撑件17与液晶显示面板1以及背光模组2均接触,提升了振动自背光模组2至液晶显示面板1的传递效率。
在一些实施例中,结合图20至图22,可以设置弹性支撑件17通过第一粘性结构19与背光模组2固定,第一粘性结构19例如为双面胶。或者,图23为根据本申请实施例的另一种显示设备的剖面结构示意图,如图23所示,也可以设置弹性支撑件17临近背光模组2的一侧设置有焊接结构20,弹性支撑件17通过焊接结构20焊接固定至背光模组2的位置67处。具体地,弹性支撑件17内可以注塑或者机械配合或者粘接金属易焊类材质结构,通过焊接将此焊接结构20与背光模组2的背光板30固定连接,从而达到固定弹性支撑件17的目的,此方式可使弹性支撑件17安装牢固,且有利于批量化自动组装。
另外,弹性支撑件17的材质例如可以为硅橡胶等弹性材料,但是弹性材料存在受温度影响导致硬度变化的问题,显示设备工作时内部温度发生变化,会导致弹性支撑件17的硬度变化,从而影响弹性支撑件17的支撑及振动传递优化作用。如图23所示,可以通过双材料复合的方式进行优化,弹性材料部分确保振动缓冲效果,非弹性材料部分,即焊接结构20确保振动传递效果不随温度变化而改变。
在一些实施例中,图24为根据本申请实施例的另一种显示设备的剖面结构示意图。如图24所示,也可以设置弹性支撑件17的两端设置有吸盘结构,弹性支撑件17通过两端的吸盘结构分别与背光模组2和液晶显示面板1固定。图25为根据本申请实施例的另一种显示设备的剖面结构示意图。如图25所示,也可以设置弹性支撑件17的一端通过第一粘性结构19,例如双面胶与背光模组2固定,弹性支撑件17的另一端设置有吸盘结构且弹性支撑件17通过吸盘结构与液晶显示面板1固定。由此,弹性支撑件17可采用双侧粘接或通过机械结构固定的方式进行固定,由此实现背光模组2与液晶显示面板1的振动联动,提升振动传递效率,但双面粘接或机械结构固定存在工艺实现复杂的缺点,通过吸盘吸附的方案可提升方案可实现性。
在一些实施例中,图26为根据本申请实施例的另一种显示设备的剖面结构示意图,图27为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图26和图27,弹性支撑件17过盈设置于发声板5与液晶显示面板1之间,背光模组2临近液晶显示面板1的一侧包括多个发光结构18,弹性支撑件17位于发光结构18之间。
在一些实施例中,如图26所示,可以设置背光模组2临近液晶显示面板1的一侧设置有固定板22,固定板22上设置有多个卡位孔23,背光模组2上设置有多个贯穿安装孔24,卡位孔23用于固定弹性支撑件17于贯穿安装孔24内以及发声板5上;或者,如图27所示,背光模组2包括多个沉孔25,沉孔25用于固定弹性支撑件17于发声板5上。
在一些实施例中,弹性支撑件17与背光模组2之间的胶层在长时间振动后易出现脱落风险,且装配工序繁琐,本申请一些实施例如图26所示,背光模组2在弹性支撑件17安装位置设置安装孔24,背光模组2底部,发声板5表面设置胶层,其中弹性支撑件17的底面与胶层粘接,背光模组2表面增加一层固定板22,固定板22开孔并使弹性支撑件17的顶端凸出,弹性支撑件17的底侧截面积大于顶侧截面积,相应的固定板22开孔尺寸小于弹性支撑件17的底面面积,由此通过此结构将弹性支撑件17固定于背光模组2位置,防止弹性支撑件17脱落。或者,如图27所示,背光模组2在弹性支撑件17安装位置增加沉孔25,以此更简便地固定弹性支撑件17。需要说明的是,也可以借鉴图26和图27所示结构的固定弹性支撑件17的构思采用类似结构用于固定弹性支撑件17,本申请一些实施例对此不作具体限定。
示例性地,结合图18至图27,弹性支撑件17例如可以为圆锥形或者圆柱形,或者也可以设置为类似图19所示形状,例如可以设置弹性支撑件17临近液晶显示面板1部分的横截面积小于弹性支撑件17临近背光模组2部分的横截面积。
另外,弹性支撑件17设置于背光模组2上发光结构18光照范围内,弹性支撑件17的形状设计需要考虑发光结构18发光时的光线折射导致的局部亮斑或暗斑问题,为避免光线折射导致的局部显示问题,弹性支撑件17例如可以选择放置的位置是与周边四个发光结构18等间距,且采用圆锥形或锥形四面体设计。采用锥形四面体设计弹性支撑件17时,弹性支撑件17的每个面与对应发光结构18的偏轴角度例如可以相同。
在一些实施例中,图28为根据本申请实施例的另一种显示设备的剖面结构示意图。如图28所示,背光模组2临近液晶显示面板1的一侧包括多个发光结构18,也可以设置发光结构18上覆盖有导光弹性支撑件68,导光弹性支撑件68过盈设置于背光模组2与液晶显示面板1之间。具体地,发光结构18例如为MiniLED,导光弹性支撑件68可以通过在发光结构18位置设置导光件或导光胶点等方式实现,由此可利用发光结构18与背光模组2中背光板30的焊接将导光弹性支撑件68安装在背光模组2上,有利于组装效率的提升。另外,导光弹性支撑件68的过盈涉及以及用于支撑和声音传导的工作原理可参照前述实施例理解,这里不再赘述。
图29为根据本申请实施例的另一种显示设备的剖面结构示意图。如图29所示,可以设置导光弹性支撑件68为多功能弹性扩散板支架,即使用导光弹性支撑件68可以代替背光中的透镜和扩散板支架,导光弹性支撑件68能够通过与光学扩散膜层11中的扩散板接触有效支撑液晶显示面板1,且导光弹性支撑件68沿远离背光板30的方向其横截面积逐渐增加,具有对发光结构 18发出光线的匀光效果,能够使发光结构18不均匀的光强均匀分布,构成导光弹性支撑件68可以为具有设定透明度的硅胶材料,例如可以通过在导光弹性支撑件68中设置多个气泡或者填充例如二氧化硅粒子以实现导光弹性支撑件68的匀光功能,可以设置气泡或者二氧化硅粒子沿远离导光弹性支撑件68纵向中心轴方向的分布密度逐渐减小。另外,导光弹性支撑件68具有控光效果,在local dimming(区域调光)显示模式下,导光弹性支撑件68的设置能够减少对其它控光区域的影响,例如可以通过在导光弹性支撑件68表面涂覆反射材料,避免不同local dimming显示区域之间的光线干扰。示例性地,图29所示结构中的背光模组可以为灯板也可以为灯条。
在一些实施例中,图30为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图6和图30,光学扩散膜层11包括光学膜片27和扩散板28,扩散板28位于光学膜片27远离液晶膜层10的一侧,光学膜片27和扩散板28之间设置有多功能光学胶层29,多功能光学胶层29对应发光结构18设置。
在一些实施例中,多功能光学胶层29可以包括向背离背光板30方向凸起的凸起结构291,例如为凸透镜结构,用于对发光结构发出的光线进行汇聚,具有收视角的效果,解决了光学膜片27和扩散板28贴合后视角扩大、亮度减少的问题,且通过在光学膜片27和扩散板28之间多个局部区域设置有多功能光学胶层29,能够有效防止光学膜片27和扩散板28的磨伤问题。另外,多功能光学胶层29还可以包括大角度反射膜292,即大角度滤波膜,使得大角度入射至多功能光学胶层29的光线被反射,从而在光学膜片27与扩散板28之间形成光学壁垒,减少local dimming动态区域之间的影响。示例性地,可以设置一个local dimming动态区域对应设置有一个多功能光学胶层29,一个多功能光学胶层29可以对应一个发光结构18或者多个发光结构18设置。
在一些实施例中,图31为根据本申请实施例的另一种显示设备的俯视结构示意图。如图31所示,弹性支撑件17以发声激励器6为圆心呈多圈圆环分布,沿远离发声激励器6的方向,弹性支撑件17的分布密度降低。
具体地,弹性支撑件17安装数量较多,影响工艺组装难度,本申请一些实施例基于此提出了保证振动缓冲及振动传递效果前提下的弹性支撑件17数量优化方案,设置弹性支撑件17根据距离发声激励器6安装位置的距离进行非均匀排布,其中发声激励器6位置振动最剧烈,弹性支撑件17的排布密度最大,远离发声激励器6位置振动幅度小,弹性支撑件17排布密度降低,以此保证整个显示设备所在区域的振动缓冲及振动传递效果较为均匀,且优化了弹性支撑件17数量,有利于降低显示设备的实现成本以及工艺组装难度。
在一些实施例中,图32为根据本申请实施例的另一种显示设备的俯视结构示意图。如图32所示,沿远离发声激励器6的方向,弹性支撑件17的支撑强度降低;和/或,沿远离发声激励器6的方向,弹性支撑件17的高度减小。图32中用不同程度灰度表示弹性支撑件17支撑强度或高度的差异,灰度越大即对应填充颜色越深,弹性支撑件17的支撑强度或高度越大;灰度越小即对应填充颜色越浅,弹性支撑件17的支撑强度或高度越小。示例性地,可以仅对弹性支撑件17的支撑强度进行上述设置,也可以仅针对弹性支撑件17 的高度进行上述设置,也可以针对弹性支撑件17的支撑强度以及高度同时进行上述设置。
具体地,根据弹性支撑件17与发声激励器6安装区域的距离设置不同硬度或尺寸的弹性支撑件17,达到弹性支撑件17支撑强度与发声激励器6距离成反比的效果,即距离发声激励器6越近,弹性支撑件17支撑强度越大,距离发声激励器6越远,弹性支撑件17支撑强度越小,由此实现弹性支撑件17根据振动幅度的对应排列,进一步优化整个显示设备所在区域的振动缓冲及振动传递效果的均匀性。另一方面,也可根据与发声激励器6的位置调整弹性支撑件17的过盈配合程度,即靠近发声激励器6的位置,设置弹性支撑件17的高度大于远离发声激励器6弹性支撑件17的高度,从而使靠近发声激励器6的位置振动传递效率最高,避免远离发声激励器6位置的弹性支撑件17装配公差,导致靠近发声激励器6位置弹性支撑件17的非过盈配合,即确保对应显示设备所在区域各个位置设置的弹性支撑件17在振动时,其上下表面不与液晶显示面板1以及背光模组2脱离,优化各个位置弹性支撑件17的振动传递效率。
在一些实施例中,图33为根据本申请实施例的另一种显示设备的俯视结构示意图,图34为根据本申请实施例的另一种显示设备的俯视结构示意图,图35为根据本申请实施例的一种沿图33中CC’方向的剖面结构示意图。结合图33至图35,背光模组2包括多块背光板30,相邻的背光板30之间设置有第一缓冲结构31,第一缓冲结构31位于发声板5上并用于间隔相邻的背光板30。
具体地,多个背光板30组装时,相邻背光板30的边缘可能存在重合,振动时易导致异常振动杂音,如图33所示,本申请一些实施例设置相邻的背光板30之间设置有第一缓冲结构31,第一缓冲结构31位于发声板5上并用于间隔相邻的背光板30,第一缓冲结构31例如为弹性胶体结构,设置第一缓冲结构31例如可以安装于各个背光板30之间的间隙,以增加背光板30边缘之间的振动缓冲,避免异常振动。另外,如图34所示,相邻的四个背光板30之间的交接位置同样易因背光板30区域重合而导致振动杂音,第一缓冲结构31例如可以设置于相邻的四个背光板30之间的交接位置,以增加背光板30交接位置的振动缓冲,避免异常振动。
在一些实施例中,结合图33和图35,可以设置第一缓冲结构31呈条状,第一缓冲结构31用将多个弹性支撑件17连接为一体。具体地,弹性支撑件17安装数量较多,存在工艺难度复杂的问题,为优化此问题,本申请一些实施例将弹性支撑件17通过第一缓冲结构31连接为一体,例如可以设置第一缓冲结构31与对应的弹性支撑件17一体成型,有效降低了弹性支撑件17的安装难度。
在一些实施例中,图36为根据本申请实施例的另一种显示设备的俯视结构示意图,图37为根据本申请实施例的另一种显示设备的俯视结构示意图。结合图36和图37,显示设备还包括声道隔离结构32,声道隔离结构32设置于背光模组2上并用于间隔相邻的发声激励器6。具体地,声道隔离结构32 例如为弹性胶体结构,将声道隔离结构32设置于不同发声激励器6所在区域,即声道振动区域之间,提升了各声道之间的语音隔离度,降低了各声道振动区域之间的振动影响,优化了显示设备的发声效果。图36中声道隔离结构32用于间隔左右两个发声激励器6,图37中设置有三个声道隔离结构32,用于将三个发声激励器6所在区域间隔开,本申请一些实施例可扩展至更多声道振动区域的隔离度提升。示例性地,声道隔离结构32也可以采用上述实施例所述的第一缓冲结构31实现。
在一些实施例中,如图36所示,相邻的发声激励器6之间设置有多个声道隔离结构32,声道隔离结构32用于将多个弹性支撑件17连接为一体,不同声道隔离结构32上的弹性支撑件17交错排布。具体地,弹性支撑件17安装数量较多,存在工艺难度复杂的问题,为优化此问题,本申请一些实施例将弹性支撑件17通过声道隔离结构32连接为一体,例如可以设置声道隔离结构32与对应的弹性支撑件17一体成型,有效降低了弹性支撑件17的安装难度。另外,图36中设置相邻的发声激励器6之间设置有三个声道隔离结构32,三个声道隔离结构32上的弹性支撑件17交错排布,使得振动在声道隔离结构32得到有效衰减,以进一步优化各声道之间的语音隔离度,降低各声道振动区域之间的振动影响,优化显示设备的发声效果。
在一些实施例中,图38为根据本申请实施例的另一种显示设备的俯视结构示意图,图39为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图38和图39,背光模组2为直下式背光模组或侧入式背光模组,第二密封空气腔体4内设置有多个填充结构33,发声板5临近液晶显示面板1的一侧包括多个发光结构18,填充结构33设置于发声板5上且位于发光结构18之间。
在一些实施例中,背光模组2可以为直下式背光模组2或侧入式背光模组2,背光模组2例如可以包括多个灯条69,灯条69固定在发声板5上,发声板5与液晶显示面板1形成第二密封空气腔体4,发声激励器6带动发声板5振动时,通过第二密封空气的气隙带动液晶显示面板1发声。第二密封空气腔体4越大,背光模组2振动形变引起的气压变化敏感度越低,而直下式背光模组2或侧入式背光模组2都采用100颗左右的发光结构18,例如灯珠,需要混光距离大,如10mm的距离,而MiniLED的背光距离仅仅为3mm左右。
适用于大混光距离机型,为了减小第二密封空气腔体4内的空气体积,本申请一些实施例采用填充结构33减小第二密封空气腔体4大小。图38示出了几种填充方案,在背光模组2与液晶显示面板1之间的空间,在避让灯直射光路的区域内,贴附一定形状的填充结构33,填充结构33表面可以是锥形、梯形、三角形或圆形,填充结构33也可以呈圆锥体、棱锥体或者类圆锥体以及类棱锥体等形状。为了尽量减少发声板5的重量,填充结构33例如可以选采用轻质高密度发泡材料,如三聚氰胺材料。同时为了减小填充结构33对灯路的影响,可以设置填充结构33的表面附着有漫反射膜层,例如填充结构33表面通过喷涂、贴敷等工艺附着一层漫反射反光材料,从而减小填充结 构33对光的吸收。
由此,本申请一些实施例利用发声板5以及两个内部空气具有粘滞性的密封空气腔体,使得发声激励器6能够依次通过发声板5、背光模组2、第二密封空气腔体4和第一密封空气腔体3将振动传递到液晶显示面板1的前面板上,使得液晶显示面板1振动发声,且由于发声激励器6的振动输出端子7固定至发声板5远离背光模组2的表面,发声激励器6的设置并不影响显示设备的显示,使得传统的液晶屏幕发声成为可能,带给用户声音来自于图像的音画一体的视听体验,克服了液晶显示屏幕发声难以实现的行业瓶颈难题,并且利用填充结构33减小了声音传递腔体的体积,提高了声音传递腔体的空气粘滞性,优化了声音传递效果。
在一些实施例中,结合图38和图39,背光模组2包括多个灯条69,发光结构18设置于灯条69远离发声板5的表面,填充结构33设置于发声板5上且位于相邻的灯条69之间。
在一些实施例中,背光模组2例如可以包括多个灯条69,灯条69例如可以通过粘性结构固定在发声板5上,背光模组2所包括的灯条69可以沿图38中横向延伸并贴附于发声板5上,也可以沿图38中纵向延伸并贴附于发声板5上,填充结构33设置于发声板5上且位于相邻的灯条69之间,由此,填充结构33的设置不影响被灯条69在发声板5上的设置,且填充结构33占据了第二密封空气腔体4的空间,减小了第二密封空气腔体4中空气的体积,提高了第二密封空气腔体4的空气粘滞性,进一步优化了显示设备的声音传递效果。
图40为根据本申请实施例的另一种显示设备的俯视结构示意图,图41为根据本申请实施例的另一种显示设备的剖面结构示意图。在一些实施例中,结合图40和图41,背光模组包括背光板30,发光结构18设置于背光板30远离发声板5的表面,填充结构33设置于背光板30上。
在一些实施例中,背光模组2包括背光板30,背光板30为与显示设备近似等面积的板状结构,填充结构33设置在背光板30上且位于相邻的发光结构18之间,由此,填充结构33的设置不影响发光结构18在背光板30上的设置,且填充结构33占据了第二密封空气腔体4的空间,减小了第二密封空气腔体4中空气的体积,提高了第二密封空气腔体4的空气粘滞性,进一步优化了显示设备的声音传递效果。
图42为根据本申请实施例的另一种显示设备的俯视结构示意图,图43为根据本申请实施例的另一种显示设备的剖面结构示意图。在一些实施例中,结合图42和图43,显示设备还包括:连接部34,连接部34位于发声板5上且连接部34与多个填充结构33一体成型;连接部34设置有多个容纳腔35,背光模组2包括多个灯条69,发光结构18设置于灯条69远离发声板5的表面,灯条69位于容纳腔35内。
在一些实施例中,填充结构33的安装数量较多,存在安装工艺难度较大且较复杂的问题,为了解决此问题,本申请一些实施例可以设置连接部34,连接部34可以设置为与显示设备近似等面积的整体弹性板状结构并位于发声 板5上,连接部34例如可以通过粘性结构设置于发声板5上,连接部34将填充结构33连接为一体,例如可以设置多个填充结构33和连接部34一体成型,多个填充结构33可以随连接部34一起安装在发声板5上,安装次数不会随填充结构33数量的增加而增多,有效降低了填充结构33的安装难度。连接部34上还设置有多个容纳腔35,背光模组2所包括的多个灯条69可以放置于容纳腔35内,发光结构18可以安装在灯条69远离发声板5的表面,因此连接部34的存在不会影响灯条69和发光结构18的安装。
在一些实施例中,结合图42和图43,可以设置容纳腔35为贯穿连接部的通孔351,灯条69与发声板5接触设置。图44为根据本申请实施例的另一种显示设备的剖面结构示意图。在一些实施例中,结合图42和图44,也可以设置容纳腔35为设置于连接部34临近液晶显示面板1一侧表面的凹槽352,灯条69与连接部34接触设置。
在一些实施例中,容纳腔35为如图43所示的贯穿连接部的通孔351时,灯条69与发声板5接触设置,此时连接部34将填充结构33通过连接部34连接为一体,填充结构33不影响灯条69以及发光结构18的设置,且利用连接部34降低了填充结构33的安装难度。容纳腔35为如图44所示的设置于连接部34临近液晶显示面板1一侧表面的凹槽352时,灯条69与连接部34接触设置,即连接部34对应灯条69所在位置未贯穿,由此,利用连接部34与填充结构33一体成型可以在不影响灯条69和发光结构18安装的情况下,降低了填充结构33的安装难度。
在一些实施例中,图45为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图38至图45,背光模组2所包括的灯条69可以为横向布置时横向贴敷灯条或者纵向布置时纵向贴敷灯条,此时填充结构33还可以做成与发声板5等大面积的,即将所有的填充结构33一体成型,以简化制作工艺,仅在一体成型的填充结构33中形成用于放置灯条69的通孔即可,填充结构33仍具有如图38所示的凸起部分,以减小第二密封空气腔体4的体积,优化显示设备的声音传递效果。
在一些实施例中,结合图38图23,沿远离发声板5的方向,即沿图39中由下向上的方向,填充结构33平行于液晶显示面板1的横截面的面积减小。
在一些实施例中,可以设置填充结构33靠近发声板5一侧的横截面的截面积大于靠近液晶显示面板1一侧的横截面的面积,发光结构18需向液晶显示面板1所在侧发光以实现显示设备的显示功能,填充结构33位于发光结构18之间,为避让发光结构18出射的光线以避免影响发光结构18的发光效果,设置沿远离发声板5的方向,即沿图39中由下向上的方向,填充结构33平行于液晶显示面板1的横截面的面积减小。另外,为了尽量减少发声板5的重量,填充结构33例如可以选采用轻质高密度发泡材料,如三聚氰胺材料。示例性地,填充结构33可以呈圆锥体、棱锥体或者类圆锥体以及类棱锥体等形状,本申请一些实施例对填充结构33的具体形状不作限定。另外,同一显示设备中的填充结构33的形状可以相同,也可以不同,本申请一些实施例对此不作具体限定。
在一些实施例中,填充结构33的表面包覆有漫反射膜层或涂覆有漫反射材料。在一些实施例中,为了减小填充结构33对灯路的影响,即为了减小填充结构33对发光结构18发出光线的影响,可以设置填充结构33的表面附着有漫反射膜层,例如填充结构33表面通过喷涂、贴附等工艺附着一层白色漫反射反光材料,从而利用漫反射材料减小填充结构33对发光结构18发出光线的吸收。同样地,通过设置填充结构33的表面包覆有漫反射膜层,同样可以利用漫反射膜层减小填充结构33对发光结构18发出光线的吸收。
在一些实施例中,结合图39至图44,可以设置填充结构33作为弹性支撑件17并过盈设置于第一结构与液晶显示面板1之间;其中,第一结构为背光模组2或者发声板5。
在一些实施例中,发声激励器6的振动传递过程中存在问题,液晶显示面板1与背光模组2之间的气隙厚度因物料公差、装配工艺公差以及自身重力等影响存在较大变化,导致振动传递效率一致性无法保证,液晶显示面板1与背光模组2贴合导致振动杂音及磨伤。为避免上述风险,本申请一些实施例设置填充结构33作为弹性支撑件17并过盈设置于第一结构与液晶显示面板1之间,填充结构33在减小了密封空气腔体4中空气的体积,提高了密封空气腔体4的空气粘滞性,进一步优化了显示设备声音传递效果的同时,可确保液晶显示面板1与背光模组2之间的气隙尺寸稳定,避免液晶显示面板1与背光模组2的异常碰撞产生杂音,且固体的填充结构33提升了振动自背光模组2至液晶显示面板1的传递效率。
在一些实施例中,对应图38、图39、图42、图43以及图44,第一结构为发声板5,即填充结构33作为弹性支撑件17并过盈设置于发声板5与液晶显示面板1之间;对应图40和图41,第一结构为背光模组2,即填充结构33作为弹性支撑件17并过盈设置于背光模组2,例如背光板30与液晶显示面板1之间。结合图38至图44,填充结构33两侧与液晶显示面板1及第一结构的结合可采用尺寸过盈配合设计,即填充结构33的尺寸大于液晶显示面板1与第一结构之间的高度设计尺寸。
以第一结构为背光模组2,即以图40和图41为例。图20为根据本申请实施例的另一种显示设备的剖面结构示意图,对应发声激励器6的振子向后振动时,填充结构33处于自由接触状态。图21为根据本申请实施例的另一种显示设备的剖面结构示意图,对应发声激励器6未振动且填充结构33处于静态放置时,填充结构33因液晶显示面板1与背光模组2的挤压处于过盈压缩状态。图22为根据本申请实施例的另一种显示设备的剖面结构示意图,对应发声激励器6的振子向前推动时,填充结构33处于进一步过压状态,填充结构33的尺寸例如可以为液晶显示面板1与背光模组2之间的距离与一半振子振动幅度的和值,确保图20所示状态下,填充结构33与液晶显示面板1以及背光模组2均接触,提升了振动自第一结构例如背光模组2至液晶显示面板1的传递效率。需要说明的是,当第一结构为发声板5时,填充结构33过盈设置的工作原理可参照上述实施例理解,这里不再赘述。
在一些实施例中,以第一结构为背光模组2为例,结合图20至图22以 及图38至图44,可以设置填充结构33通过第一粘性结构19与第一结构固定,第一粘性结构19例如为双面胶。或者,图23为根据本申请实施例的另一种显示设备的剖面结构示意图,结合图38至图43以及图23,也可以设置填充结构33临近第一结构的一侧设置有焊接结构20,填充结构33通过焊接结构20焊接固定至第一结构的位置67处。在一些实施例中,填充结构33内可以注塑或者机械配合或者粘接金属易焊类材质结构,通过焊接将此焊接结构20与第一结构固定连接,从而达到固定填充结构33的目的,此方式可使填充结构33安装牢固,且有利于批量化自动组装。另外,填充结构33的材质例如可以为硅橡胶等弹性材料,但是弹性材料存在受温度影响导致硬度变化的问题,显示设备工作时内部温度发生变化,会导致填充结构33的硬度变化,从而影响填充结构33的支撑及振动传递优化作用。如图23所示,可以通过双材料复合的方式进行优化,弹性材料部分确保振动缓冲效果,非弹性材料部分,即焊接结构20确保振动传递效果不随温度变化而改变。
在一些实施例中,图24为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图38至图43以及图24,也可以设置填充结构33的两端设置有吸盘结构,填充结构33通过两端的吸盘结构分别与第一结构和液晶显示面板1固定。图25为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图38至图43以及如图25,也可以设置填充结构33的一端通过第一粘性结构19,例如双面胶与第一结构固定,填充结构33的另一端设置有吸盘结构且填充结构33通过吸盘结构与液晶显示面板1固定。由此,填充结构33可采用双侧粘接或通过机械结构固定的方式进行固定,由此实现背光模组2与液晶显示面板1的振动联动,提升振动传递效率,但双面粘接或机械结构固定存在工艺实现复杂的缺点,通过吸盘吸附的方案可提升方案可实现性。需要说明的是,当第一结构为发声板5时,填充结构33在第一结构上的固定方式可参照上述实施例理解,这里不再赘述。
在上述实施例的基础上,填充结构33既用于减小第二密封空气腔体4内的空气体积,又用作上述实施例所述的弹性支撑件17,填充结构33同样可以采用贴胶或焊接的方式固定至发声板5上,填充结构33的支撑作用以及振动效率增强作用可参照上述实施例理解,这里不再赘述。
在一些实施例中,图46为根据本申请实施例的另一种显示设备的剖面结构示意图,图47为根据本申请实施例的另一种显示设备的剖面结构示意图,图48为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图46至图48,背光模组包括多块背光板30,背光板30通过第一粘性缓冲结构(图46至图48中未示出)与发声板5固定,背光板30和发声板5上均设置有安装定位孔,采用预定位柱状结构36***背光板30的安装定位孔以及发声板5的安装定位孔以定位背光板30与发声板5。
具体地,出于加工成品率及成本要求,MiniLED背光模组的显示装置,背光模组都采用多块背光板30拼接组成,如图11和图12所示,背光板30被均布的排布并且贴在发声板5上。值得注意的是,背光板30的黏贴精度是被严格限制的,如果背光板30黏贴过紧,两块背光板30就会存在硬接触, 在振动时会产生杂音。如果减小背光板30边缘的尺寸,从而扩大背光板30之间的间距,虽然可以解决上述问题,但是背光板30以及缝隙与发声板5一起构成了振动***,而背光板30缝隙会造成振动表面的分割振动,这个分割振动会导致波长与背光板30长度、宽度相近的频率发声共振,从而导致频响出现峰值或者峰谷。例如背光板30的长度为0.3米时,会与频率1133Hz的频率发声共振,这个共振会导致此频率上产生异常峰值,而566Hz会在这个长度上同时产生峰值和谷值,从而导致声波的抵消,产生谷值。
为了避免上述问题,需要严格控制背光板30与发声板5的固定精度。非屏幕发声的Mini LED显示装置中,背光板30通过螺丝锁紧在金属板上,定位精度较高,且背光板30与金属背板之间没有胶粘结,因此对于安装定位操作要求不高,但是这种方式无法应用于屏幕发声,原因是发声板5采用蜂窝铝板等材质,质地较软且多中空,无法形成螺口。背光板30与发声板5全贴合,需要精准定位后一次性操作成功,并且背光板30与发声板5一直处于振动状态,如果采用螺丝结构容易造成螺丝长期使用而脱落,产生杂音等问题。
另外,也可以利用自动化高精度的机械手,严格控制背光板30的安装精度,将背光板30贴附在发声板5上。但是对产品线技改要求较高,无法实现手动贴附。结合图46至图48,本申请一些实施例提出了几种方式实现背光板30高精度定位的方式,第一粘性缓冲结构例如为双面胶。如图46所示,预定位柱状结构36可以为SMT(Surface Mounted Technology,表面贴装技术)丁字形的定位钉,当然也可以采用胶水粘合或手工焊接等方式固定,定位钉穿过背光板30上的安装定位孔,并且发声板5在相应部位留有安装定位孔,在装配背光板30时,先将钉尖头部位穿过发声板5的安装定位孔,起到预定位作用后,再压覆贴合背光板30与发声板5,提升了操作效率和精度。或者,也可以如图47所示,预定位柱状结构36采用带有顶针的预定位工装,先将发声板5放置于预定位工装上,并让预定位工装的顶针穿过发声板5安装定位孔,再将背光板30穿过预定位顶针后,压覆贴合背光板30与发声板5。
在一些实施例中,如图48所示,预定位柱状结构36与弹性支撑件17固定设置,弹性支撑件17通过预定位柱状结构36固定至背光板30上,弹性支撑件17过盈设置于背光板30与液晶显示面板1之间。具体地,将预定位柱状结构36与弹性支撑件17结合在一起,比如通过双色注塑等工艺实现。装配时先将预定位柱状结构36穿过背光板30的安装定位孔,并使得弹性支撑件17底面与背光板30表面粘结牢固后,再将预定位柱状结构36穿过发声板5的安装定位孔,而后压覆贴合背光板30与发声板5。这种方式优势较为明显,首先定制装置不用SMT,减小了加工难度,第二装配完成后,背光板30与发声板5对弹性支撑件17起到固定作用,避免弹性支撑件17长时间老化或高热情况下,仅靠黏贴胶合的弹性支撑件17脱落的问题。
图49为根据本申请实施例的另一种显示设备的剖面结构示意图,或者也可以如图49所示,利用中框背板37上的定位铆钉70固定背光板30与发声板5。
在一些实施例中,图50为根据本申请实施例的另一种显示设备的俯视结 构示意图。如图50所示,背光模组包括多块背光板30,多块背光板30非等面积分布。
具体地,通过发声激励器6激励发声体的模态共振实现发声,模态越丰富,可以共振的频率点越多,发出的声音越丰富,音质越好,将发声板5通过背光板30做多个区域的分割,会造成模态的集中,比如0.3米长的背光板30会在1133Hz处产生谐振。为了尽量消除这种共振以及确保模态的丰富性,本申请一些实施例设置多块背光板30非等面积分布,如图50所示,在发声激励器6所在区域采用一个与发声板5等长的背光板30,使得在横轴向方向上具有连续的完整的振动面,便于低频模态被激发出来,而在其它区域采用逐步被分割的小面积背光板30,确保其它频率的模态可以被激发出来,这种非等面积背光板30的排布,确保背光板30不会只被激发出一种模态。
在一些实施例中,如图50所示,背光板30临近液晶显示面板1的一侧包括多个发光结构18,背光板30上发光结构18的数量为N的整数倍;其中,N为大于1的整数。
具体地,背光模组为MiniLED背光模组,MiniLED背光模组的亮度是根据其对应的液晶区域所显示的图像亮度变化而变化的,因此在使用过程中需要有背光驱动算法与当前显示图像联动,并通过背光模组驱动芯片71驱动发光结构18。背光模组驱动芯片71多路输出,即一个背光模组驱动芯片71驱动多颗发光结构18。如图50所示,每个背光板30上的背光模组驱动芯片71数量不是一致的,因为每个背光板30的面积不同,发光结构18的数量也不同。为此可以确定背光板30的面积最大公约数,如左上角九颗发光结构18以及可以驱动九颗发光结构18的背光模组驱动芯片71,此时N等于9,其它背光板30都为此背光板30上发光结构18数量的整数倍,如左上第二块背光板30对应的整数倍是两倍,中间一行背光板30对应的整数倍是六倍,相应的背光模组驱动芯片71也变成每个背光板30两个或六个。这样在背光板30背面通过FPC,即柔性线路板连接各个背光板30时,不用考虑到背光板30的面积与位置,设计发光结构18的背光驱动算法时,也可以按照每个芯片九颗灯设计,大大降低了背光板30面积不同对驱动的算法以及背光模组驱动芯片71的通用化需要。
在一些实施例中,图51为根据本申请实施例的另一种显示设备的俯视结构示意图,图52为根据本申请实施例的另一种显示设备的俯视结构示意图。结合图51和图52,背光模组包括多块背光板30,相邻第一背光板之间间隔设定距离设置;其中,第一背光板为对应发声激励器6所在区域设置的背光板30。
具体地,如图51所示,中间区域的背光板30之间间距扩大,贴有背光板30区域硬度较高,未设置背光板30区域的硬度较低,振动能力在横向传递的过程中,在硬度较弱区域会存在较大的衰减。因为在背光板30与发声板5的贴合部分,振动传播的物质的密度是相对均匀的,而在背光板30的间隙处,传输介质的密度发生了较大的变化,破坏了振动的传递,振动模态产生一个边界条件,从而能够有效的阻止左右两个半区的振动相互传递,可以有 效控制振动在左右两个区域的串扰,因此左边发声激励器6的振动主要引起了左侧区域的振动,右侧同理。如图52所示,对应四个区域,相邻区域的背光板30间距都比较远,使得每个发声激励器6所在区域传递到相邻区域的振动量变小,四个发声激励器6分别对应不同声道的声音,从而增强声音的定位感,比如画面中的人说话位置在左上角时,只有左上角区域在振动发声,从而提升声音的画面感,例如应用于视频电话会议。示例性地,也可以设置相邻第一背光板之间设置有胶条等缓冲结构,以降低杂音。
在一些实施例中,图53为根据本申请实施例的另一种显示设备的剖面结构示意图。具体地,当背光模组是一个完整的PCB板时,例如对应小尺寸的Mini LED显示装置,可以将背光模组黏贴在发声板上,发声板背面再布置发声激励器,也可以将发声激励器直接贴敷在背光模组背面,通过驱动背光模组以及背光模组与液晶显示面板之间的密闭空气层带动屏幕振动发声。如图53所示,因为PCB板材质均匀且振动模态单一,并且材质较软平整度、支撑性差,因此需要通过其它固定结构加以辅助固定。图53中核心固定结构为锁紧螺丝72,其中螺母固定在背光板30上或直接在背光板30上加工螺母螺纹,锁紧螺丝从发光结构18侧穿过背光板30后固定在中框背板37上。其中锁紧螺丝72与背光板30间通过软胶垫固定,软胶垫74与中框背板37间设置有弹簧结构73。在实际使用时,弹簧结构73被螺丝压缩处于绷紧状态,向液晶显示面板1侧施加压力,同时挤压软胶垫74以及背光板30,使得背光板30在应力作用下固定在螺丝72顶端。在发声激励器6带动背光板30振动时,软胶垫74微变形适应背光板30的振动,螺丝72起到定位作用,软胶垫74可以将中高频引起的微小振动缓冲掉。另外,为了确保背光板30的平整性,需要多个图53所示的核心固定结构,核心固定结构例如可以通过矩形、圆形等方式排列。
在一些实施例中,图54为根据本申请实施例的另一种显示设备的正视结构示意图。结合图6、图19以及图54,显示设备还包括中框背板37,中框背板37位于发声板5远离背光模组2的一侧,中框背板37与发声板5之间设置有缓冲结构38。
在一些实施例中,相关电路板、支架、外壳等结构均安装在中框背板37上,缓冲结构38例如双面胶能够实现发声板5和中框背板37之间的缓冲,缓冲结构38粘接在中框背板37和发声板5之间,能够避免振动通过发声板5传递到中框背板37,影响中框背板37上的结构。示例性地,中框背板37上安装的电路板在受到振动后,电路板上的电器件容易出现电接触不良等问题,影响显示设备的显示稳定性,另外安装在中框背板37上的支架等机械结构在受到振动后容易发生移位脱落等问题,影响显示设备的机械稳定性,因此利用缓冲结构38可以提高中框背板37的整体的电学稳定性和机械稳定性。另外,结合图13和图19,可以设置发声板5中间开孔以用于背光模组2出线。
在一些实施例中,结合图6和图54,液晶显示面板1的边框位置设置有缓冲结构38;和/或,发声激励器6的临近位置设置有缓冲结构38。
在一些实施例中,中框背板37与发声板5之间在液晶显示面板1四周边 框位置有第二缓冲结构382,例如双面胶贴合,防止中框背板37和发声板5的硬质结构在相互接触碰撞时产生杂音。另外,也可以在发声激励器6的临近位置设置第一缓冲结构381,例如双面胶,可以设置第一缓冲结构381比第二缓冲结构382更加柔软,以适应发声激励器6所在区域较大的振幅。第二缓冲结构382可以如图54所示设置于液晶显示面板1的中心位置以及靠近液晶显示面板1四周边框位置处,也可以将第二缓冲结构382设置在其它位置,本申请一些实施例对此不作具体限定。
需要说明的是,可以在液晶显示面板1的边框位置和发声激励器6的临近位置均设置有缓冲结构38,也可以仅在液晶显示面板1的边框位置设置有缓冲结构38,也可以仅在发声激励器6的临近位置设置有缓冲结构38,本申请一些实施例对此不作具体限定。
图55为根据本申请实施例的另一种显示设备的剖面结构示意图。如图55所示,在上述实施例的基础上,显示设备还包括后壳39,显示设备包括位于发声板5远离背光模组2一侧的中框背板37,至少部分后壳39位于中框背板37以及发声激励器6远离发声板5的一侧。具体地,后壳39为显示设备的外观壳体,显示设备例如可以为但不限于电视。
在一些实施例中,图56为根据本申请实施例的另一种显示设备的正视结构示意图。结合图55和图56,中框背板37与后壳39之间设置有隔离壁40,隔离壁40、后壳39与中框背板37之间形成背向辐射叠加腔体41,背向辐射叠加腔体41具有朝向显示设备前方或侧方的出音开口。
在一些实施例中,与传统活塞式扬声器不同,本申请的显示设备是以DML(散布式扬声器)多模态共振弯曲波形式发声,声波具有叠加增强性,本申请一些实施例提供的显示设备具有背向高频增强设计,显示设备的后壳39与中框背板37之间具有隔离壁40,隔离壁40与中框背板37的接触面设置有隔音海绵76,隔离壁40、后壳39与中框背板37之间构成所需形状的背向辐射叠加腔体41。背向辐射叠加腔体41具有出音开口,出音开口如图55和图56所示朝向显示设备的屏幕前方。由此,利用背向辐射叠加腔体41构成声音的谐振腔,将背向振动多模态高频振动弯曲波导向屏幕前方出音或侧方出音,可以提高谐振频率上的响应以弥补显示设备发音的高频损失。
图57为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图55至图57,可以设置背向辐射叠加腔体41出音路径上的长度L为N个二分之一声音波长的长度,该波长的声音频率为补偿频段的最低谐振频率,出音口位置可在任意一个二分之一声音波长的波腹附近位置。另外,图58为根据本申请实施例的另一种显示设备的剖面结构示意图,也可以如图58所示设置发声激励器6采用图10所示结构的发声激励器6,发声激励器6的背向振膜可以辐射出额外的高频声波,进一步提高显示设备高频响应。
在一些实施例中,图59为根据本申请实施例的另一种显示设备的剖面结构示意图,图60为根据本申请实施例的另一种显示设备的正视结构示意图。结合图59和图60,通过对后壳39形状的设置,也可以设置背向辐射叠加腔体41具有朝向显示设备侧方的出音开口,同样可以利用背向辐射叠加腔体41 构成声音的谐振腔,将背向振动多模态高频振动弯曲波导向屏幕侧方出音,提高谐振频率上的响应以弥补显示设备发音的高频损失。另外,图55、图58和图59中的波浪线箭头表示声音的传播方向。
由此,本申请一些实施例利用发声板5以及两个内部空气具有粘滞性的密封空气腔体,使得发声激励器6能够依次通过发声板5、背光模组2、第二密封空气腔体4和第一空气腔体3将振动传递到液晶显示面板1的前面板上,使得液晶显示面板1振动发声,且由于发声激励器6的振动输出端子7固定至发声板5远离背光模组2的表面,发声激励器6的设置并不影响显示设备的显示,使得传统的液晶屏幕发声成为可能,带给用户声音来自于图像的音画一体的视听体验,克服了液晶显示屏幕发声难以实现的行业瓶颈难题。并且,利用隔离壁40、后壳39和中框背板37之间形成背向辐射叠加腔体41,背向辐射叠加腔体41构成声音的谐振腔,将背向振动多模态高频振动弯曲波导向屏幕前方出音或侧方出音,可以提高谐振频率上的响应以弥补显示设备发音的高频损失。
在一些实施例中,结合图55至图60,背向辐射叠加腔体41内可以设置有至少一个发声激励器6。
在一些实施例中,一个背向辐射叠加腔体41内可以如图55所示设置一个发声激励器6,也可以如图56所示设置在一个背向辐射叠加腔体41内设置多个发声激励器6,当背向辐射叠加腔体41内设置有发声激励器6时,用于前向出音或者侧向出音的声音可以由本背向辐射叠加腔体41内的发声激励器6产生,也可以叠加其它背向辐射叠加腔体41构成的谐振腔内传播过来的声音,不同腔体内产生的声音均可以通过同一个出音开口向外传播。背向辐射叠加腔体41内的发声激励器6的数量可以根据显示设备的前向或侧向发声需求进行调整,本申请一些实施例对此不作具体限定。
另外,也可以设置部分背向辐射叠加腔体41内未设置发声激励器6,这部分背向辐射叠加腔体41可以设置有前述实施例所述的前向出音开口或者侧向出音开口,此时可以利用其它设置有发声激励器6的背向辐射叠加腔体41构成的谐振腔内传播过来的声音,实现将背向振动多模态高频振动弯曲波导向屏幕前方出音或侧方出音,提高谐振频率上的响应以弥补显示设备发音的高频损失。
在一些实施例中,结合图55至图58,背向辐射叠加腔体41具有朝向显示设备前方的前向出音开口,后壳39包覆液晶显示面板1的边框设置,后壳39与液晶显示面板1边框之间的间隙构成前向出音开口391。
在一些实施例中,结合图55至图58,背向辐射叠加腔体41具有朝向显示设备前方的前向出音开口391,后壳39将液晶显示面板1的边框进行包覆,可以设置后壳39沿平行于液晶显示发声装置平面的方向,包覆显示设备的上下左右四个边框,也可以设置后壳39包覆显示设备任意可选位置的边框,本申请一些实施例对此不作限定。后壳39与液晶显示面板1边框之间形成的空隙形成了前向出音开口391。由此,背向辐射叠加腔体41构成声音的谐振腔,将背向振动多模态高频振动弯曲波导向屏幕前方出音,可以提高谐振频率上 的响应以弥补显示设备发音的高频损失。需要说明的是,前向出音开口391不限于图28至图31所示结构实现,也可以通过其它结构实现,本申请一些实施例对此不作具体限定。
在一些实施例中,结合图59和图60,背向辐射叠加腔体41具有朝向显示设备侧方的侧向出音开口392,后壳39位于中框背板37远离发声板5的一侧,沿显示设备的几何中心朝向显示设备边框的方向X,后壳39临近显示设备边框的部分至中框背板37的距离逐渐减小,显示设备的边框位置处,后壳39与中框背板37之间的间隙构成侧向出音开口392。
在一些实施例中,结合图59和图60,通过对后壳39形状的设置,也可以设置背向辐射叠加腔体41具有朝向显示设备侧方的侧向出音开口392,后壳39位于中框背板37远离发声板5的一侧,可以如图59所示设置沿显示设备的几何中心朝向显示设备边框的方向X,后壳39临近显示设备边框的部分至中框背板37的距离逐渐减小,设置沿显示设备的几何中心朝向显示设备边框的方向X,后壳39逐渐向临近中框背板37的位置收敛,具有声音汇聚效果,即图59中的距离d1大于距离d2,在显示设备的边框位置处,后壳39和中框背板37之间形成的间隙构成侧向出音开口392。由此,背向辐射叠加腔体41构成声音的谐振腔,将背向振动多模态高频振动弯曲波导向屏幕侧向出音,可以提高谐振频率上的响应以弥补显示设备发音的高频损失。需要说明的是,侧向出音开口392不限于图59至图60所示结构实现,也可以通过其它结构实现,本申请一些实施例对此不作具体限定。
图61为根据本申请实施例的另一种显示设备的正视结构示意图,图62为根据本申请实施例的另一种显示设备的正视结构示意图。结合图60至图62,可以设置背向辐射叠加腔体41呈类似喇叭的形状,以提高背向辐射叠加腔体41中声音的传播效率。
在一些实施例中,结合图55至图62,隔离壁40垂直于显示设备的方向设置,隔离壁40垂直于显示设备的表面为平面或弧面。
在一些实施例中,结合图55至图62,设置隔离壁40垂直于显示设备的表面为平面或弧面,隔离壁40均可以与后壳39和中框背板37共同形成背向辐射叠加腔体41,利用背向辐射叠加腔体41构成的谐振腔,将背向振动多模态高频振动弯曲波导向屏幕前方出音或侧方出音,可以提高谐振频率上的响应以弥补显示设备发音的高频损失。示例性地,隔离壁40垂直于显示设备方向的表面可以为如图55至图60以及图62中所示的平面,隔离壁40垂直于显示设备方向的表面也可以为如图61所示的具有弯曲度的弧面,另外,图56示出的隔离壁40垂直于显示设备方向的表面既包括平面部分,也包括弧面部分,本申请一些实施例对此不作限定。
在一些实施例中,如图55所示,隔离壁40与中框背板37之间设置有隔音缓冲结构76。
在一些实施例中,在显示设备发声的过程中,由于中框背板37、隔离壁40和后壳39所形成的背向辐射叠加腔体41构成了声音的谐振腔,显示设备的屏幕振动时会引起后壳39的振动,背向辐射叠加腔体41中的中框背板37 以及隔离壁40也会发生振动,由于隔离壁40和中框背板37均为硬质结构,在振动过程中二者会碰撞产生杂音,为了消除杂音,在隔离壁40和中框背板37之间设置有隔音缓冲结构76,有效阻止了隔离壁40与中框背板37的刚性接触,避免了杂音对显示设备音质的影响。隔音缓冲结构76例如可以为隔音海绵或者泡棉等,本申请一些实施例对此不作具体限定。
图63为根据本申请实施例的另一种显示设备的正视结构示意图。在一些实施例中,结合图56、图60至图63,沿显示设备的几何中心朝向出音开口的方向,背向辐射叠加腔体41垂直于显示设备方向的截面面积逐渐增加。
在一些实施例中,显示设备一般呈矩形,显示设备的几何中心即对应矩形的几何中心,在沿显示设备的几何中心朝向出音开口的方向,背向辐射叠加腔体41垂直于显示设备方向的截面积逐渐增加,即背向辐射叠加腔体41靠近出音开口位置的截面积大于背向辐射叠加腔体41靠近显示设备的几何中心位置的截面积,即设置背向辐射叠加腔体41均呈喇叭型,在弥补显示设备发音的高频损失的基础上,可以进一步优化显示设备的前向或侧向出声音量。
示例性地,图56和图60中示出的两个背向辐射叠加腔体41以及图61至图63中示出的左右两侧位置的背向辐射叠加腔体41均满足沿显示设备的几何中心朝向出音开口的方向,背向辐射叠加腔体41垂直于显示设备方向的截面面积逐渐增加。另外,也可以设置背向辐射叠加腔体41中的部分满足沿显示设备的几何中心朝向出音开口的方向,背向辐射叠加腔体41垂直于显示设备方向的截面面积逐渐增加,例如图61中示出的中间两个背向辐射叠加腔体41,仅背向辐射叠加腔体41的上部区域满足前述截面积变化规律,图63中示出的中间背向辐射叠加腔体41,仅背向辐射叠加腔体41的上部区域满足前述截面积变化规律,即本申请一些实施例不限定背向辐射叠加腔体41的全部区域满足前述截面积变化规律。另外,显示设备中包括多个背向辐射叠加腔体41时,也可以设置仅部分背向辐射叠加腔体41满足前述截面积变化规律,例如图62中示出的中间背向辐射叠加腔体41的上部区域,沿显示设备的几何中心朝向出音开口的方向,垂直于显示设备方向的截面面积逐渐减小。
结合图60至图63,在一些实施例中,显示设备包括:多个背向辐射叠加腔体41,至少部分背向辐射叠加腔体41对称分布于显示设备中。
在一些实施例中,结合图60至图63,可以设置显示设备包括多个背向辐射叠加腔体41,例如图60中示出了两个背向辐射叠加腔体41,两个背向辐射叠加腔体41相对于显示设备的竖直中心线对称设置,图61中示出了四个背向辐射叠加腔体41,左侧两个背向辐射叠加腔体41与右侧两个背向辐射叠加腔体41相对于显示设备的竖直中心线对称设置,图62和图63中示出了三个背向辐射叠加腔体41,左侧背向辐射叠加腔体41和右侧背向辐射叠加腔体41相对于显示设备的竖直中心线对称设置。由此,至少部分背向辐射叠加腔体41对称分布在显示设备中,背向辐射叠加腔体41数量的增加以及对称设置可以使沿多个方向传播的声音均经过谐振腔,谐振腔将背向振动多模态高频振动弯曲波导向屏幕前方出音或侧方出音,进一步弥补显示设备发音的高频损失,改善了显示设备的音质,且利用对称分布的背向辐射叠加腔体41增 强了显示设备的声音均匀性,显示设备整体发声均匀性好。
图64为根据本申请实施例的另一种显示设备的正视结构示意图,图65为根据本申请实施例的一种显示设备的立体结构示意图。结合图64和图65,后壳39上设置有发声激励器6,发声激励器6用于激励后壳39振动。
具体地,显示设备在发声的时候处于一个振动状态,当显示设备的机壳是整体后壳39时,因为后壳39面积与屏幕面积相当,必然会产生一定的共振,这个共振频率与屏幕的频率相同,也在可闻声频段,因此后壳39发出的声音也会被人听到,就产生了类似的杂音。为了消除这个杂音,本申请一些实施例设置后壳39上设置有发声激励器6,发声激励器6用于激励后壳39振动,区分驱动屏幕发声的发声激励器601以及驱动后壳39发声的发声激励器602,可以设置发声激励器601与发声激励器602呈相互反向排列,即屏幕振动发声激励器601贴敷于发声板5上,而后壳39振动发声激励器602贴敷于后壳39上。
当屏幕振动引起了后壳39的振动,通过寻找最大振动点,并在振动点上施加反向振动的驱动力,就可以达到减小后壳39振动量的目的。面板振动传递到后壳39的振动模态不是线性的,体现在两个方面,一个是幅度上,比如100Hz面板的振动幅度为0.2mm,1000Hz的振动幅度为0.05mm,而传导到后壳39上后100Hz振动幅度可能会被共振作用放大到0.4mm,而后壳39共振主要集中在低频端,因此1000Hz的振动可能衰减到了0.02mm,并且由于从屏幕到后壳39的传递即要经过中框背板、螺钉等复杂关系,除了上述幅度差异化,还存在相位的变化,如100Hz的相位差异为180°,即后壳39与屏幕是反向的,而1000Hz的相位只是差了120°。
上述的振动幅度和相位关系都不是确定的,都要随着显示设备整机结构和材料而变化,并且通过测试获得振幅最大区域,以及确定最大振动区域的振幅、相位与屏幕振动的相关性,从而得出后壳39发声激励器601与屏幕发声激励器602相关性函数F(x),并将F(x)处理应用于振动后壳39的发声激励器601所处的信号处理链路上。针对F(x)的实现,通过测试获得后壳39振动的频率点,假设取n个最大振动量的频率点,并以振动频率为中心设置滤波器f0、f1、f2、……、fn,并且测试每个频率段内的后壳39振动频谱特性与发声激励器6的相同频率的信号特性做差,求得此频率段内从发声激励器6到后壳39的振动频域传递函数,在通过测试中心本频段中心频率点的从发声激励器6到后壳39振动的时延,得到△t。这样多个频率段累加,就得到了整个频响范围内从发声激励器6到后壳39的振动传递函数。
图66为根据本申请实施例的另一种显示设备的正视结构示意图,图67为根据本申请实施例的另一种显示设备的正视结构示意图。具体地,根据实际振动最大区域的测定,将发声激励器601布置于振动最大区域附近,并且布置区域可以如图58所示是单点的,也可以如图66和图67所示是多点的,可以是对称的,也可以是不对称的,本发明实施例对此不作具体限定。
在一些实施例中,图68为根据本申请实施例的另一种显示设备的正视结构示意图。如图68所示,后壳39临近中框背板的表面设置有多条加强筋, 加强筋非均匀分布。具体地,为了确保后壳39更小的振动,后壳39上需要做一些处理,限制后壳39产生较大的谐振。图69为根据本申请实施例的另一种显示设备的正视结构示意图,传统的后壳39为了平整度和刚性的要求,在后壳39内部大面积厚度相同区域增加了网状的加强筋,如图69所示,其中粗点划线标识高度较高的加强筋,而细点划线表示高度较小的加强筋,传统加强筋采用了规则的方形或矩形的连续网格状结构,这样的加强筋设计简单,并且能够保证后壳39厚度均匀度,但是因为采用了固定的等间距分割,导致后壳39容易产生固定响度谐振频率。
为了减小这种谐振,本申请一些实施例提出一种非等间距的固定形状的加强筋结构。如图68所示,加强筋可以是梯形结构,也可以是蜂窝状结构,还可以是非等间距矩形或不规则多边形。另外较高的加强筋也可以是斜向的设计。参照上述实施例,同样可以通过仿真或实际样机测试振动幅度最大点,在振动最大位置通过更改后部加强筋的形状以及加强筋的高度或宽度,甚至可以将加强筋做成凸凹齿轮状,最大限度破坏后壳39的振动模态,降低后壳39的共振幅度,进而达到减小振动杂音的目的。因为固定间距或者固定宽度的加强筋,其本身存在确定的谐振频率。而当谐振频率在音频可闻声范围内,并且通过屏幕振动的激励后,容易发生共振杂音,通过图68所示的加强筋设计,可以破坏或者降低固有谐振频率,使得谐振频率较为分散且不会在某个频率点产生极大值,从而达到减小共振杂音的目的,能够减少后壳39发声激励器6以及软件算法F(x)对显示设备芯片音频处理器的要求。需要说明的是,加强筋可以矩形波形状、波浪形状以及倾斜放置的直线形状等,本申请实施例对加强筋的形状不作具体限定。
在一些实施例中,图70为根据本申请实施例的另一种显示设备的正视结构示意图,图71为根据本申请实施例的另一种显示设备的正视结构示意图。结合图70和图71,后壳39非均匀分割为多块壳体43,相邻壳体43之间通过第三粘性缓冲结构44固定。
具体地,后壳39振动多发生在低频段,而一般显示设备后壳39都是采用了整体的设计,而且面积与屏幕相当,极易发生低频共振。本申请一些实施例将后壳39进行分段设计,如图70所示,后壳39被分为两段,两段后壳39采用了错位连接方式并通过第三粘性缓冲结构44,例如双面泡棉胶固定,这样后壳39就被分为两个区域,面积较原来缩小一半,使得后壳39整体无法实现统一的共振,而且在后壳39振动最薄弱的中心区域无法形成共振。按照此方式,后壳39还可以在横向上被分割为两部分,如图71所示,后壳39也还可以被分割为多段,如三段或四段等。
在一些实施例中,图72为根据本申请实施例的另一种显示设备的剖面结构示意图。如图72所示,后壳39通过硬质固定结构45相对于中框背板37悬空设置,硬质固定结构45用于固定后壳39,对应后壳39的边框位置设置有位于后壳39与中框背板37之间的第三缓冲结构46。具体地,显示设备中的部分杂音是后壳39与中框背板37的接触位置产生摩擦导致的,本申请一些实施例设置后壳39通过硬质固定结构45相对于中框背板37悬空设置,硬 质固定结构45例如为螺钉,对应后壳39的边框位置设置有位于后壳39与中框背板37之间的第三缓冲结构46,第三缓冲结构46例如为泡棉,有效阻止了后壳39与中框背板37的刚性接触。
在一些实施例中,图73为根据本申请实施例的另一种显示设备的剖面结构示意图,图74为根据本申请实施例的另一种显示设备的剖面结构示意图,图75为根据本申请实施例的另一种显示设备的剖面结构示意图。结合图73至图75,后壳39通过硬质固定结构45和弹性结构47相对于中框背板37悬空设置,硬质固定结构45用于固定后壳39,弹性结构47对应硬质固定结构45所在位置过盈设计并用于向后壳39施加背离中框背板37方向的压力。
具体地,硬质固定例如为螺钉,弹性结构47如图73所示可以为阻尼套管,通过螺丝上增加的阻尼套管实现后壳39在中框背板37上的固定,阻尼套管采用硅胶材料,螺钉锁紧时阻尼套管处于过盈状态,以支撑后壳39相对于中框背板37悬空,有效阻止了后壳39与中框背板37的刚性接触。或者,也可以采用图68所示的弹簧,图75所示的泡棉等材料实现类似阻尼套管的功能,减少后壳39与背板振动的传递。另外,结合图73至图75,悬空方案会导致背板与后壳39之间存在一定的缝隙,与显示设备的安全规定要求相悖,比如缝隙可能塞入硬币导致内部电路短路等,为此本申请一些实施例在显示设备边框上设置一层装饰件77,装饰件77可以与边框一体成型,也可以采用胶黏方式贴附在边框上,其中装饰件77在屏幕相反方向高于中框背板37平面,高度也高于后壳39与背板的缝隙,确保能保证安全规定要求,同时能够保证整机外观的美观性即可。
在一些实施例中,图76为根据本申请实施例的另一种显示设备的剖面结构示意图。如图76所示,发声激励器6包括振动传递结构48,振动传递结构48用于激励后壳39振动。具体地,发声激励器6工作时存在向前动和向后振动,设置振动传递结构48与后壳39固定并用于激励后壳39振动,将发声激励器6的振动能量传递至后壳39,后壳39振动产生声波,且由于低频发声没有指向性,可以和显示设备向前的声音叠加增强,达到了提升低频声音强度的目的。
在一些实施例中,图77为根据本申请实施例的另一种显示设备的剖面结构示意图。如图77所示,振动传递结构48对应设置有振动稳定结构49,振动稳定结构49用于平衡后壳39施加至振动传递结构48的反作用力以使振动传递结构48沿发声激励器6的中心轴振动。
在一些实施例中,图78为根据本申请实施例的一种振动稳定结构的俯视结构示意图。结合图77和图78,振动稳定结构49包括多个第一弹簧结构50,多个第一弹簧结构50形成波纹状同心圆结构,第一弹簧结构50的一端固定至振动传递结构48,第一弹簧结构50的另一端固定至发声激励器6。
具体地,振动传递结构48上下振动时,由于后壳39组装偏差、发声激励器6组装偏差、后壳39与发声激励器6配合后的受力不均匀等问题,后壳39给发声激励器6反作用力不均匀,导致振动传递结构48无法竖直上下振动,产生振动杂音。本申请一些实施例在振动传递结构48与发声激励器6磁路之 间设置振动稳定结构49,振动稳定结构49例如可以如图78所示波纹状同心圆结构,例如定心支片,包括多个圆环排布的弹簧结构,振动稳定结构49材料例如可以为可热压成型或注塑成型的橡胶类、塑胶类材质及纤维类材质。振动稳定结构49的中心与振动传递结构48的中心重叠,振动稳定结构49的外延与发声激励器6的磁路安装,或与磁路之外的发声激励器6其它位置安装,最终目的是通过振动稳定结构49确保振动传递结构48位于发声激励器6的中心轴位置,避免振动转递结构上下振动时与发声激励器6产生擦碰。振动稳定结构49采用波纹状同心圆结构,即包括多个圆环排布的弹簧结构。
振动稳定结构49可设置为不对称结构。由于发声激励器6未安装于显示设备中心位置,发声激励器6两侧或上下受到后壳39的反作用力不相同,易导致振动传递结构48因受不对称力的作用而发声偏斜振动,故将振动稳定结构49设置为与后壳39反作用力形成补偿的非对称设计,从而抵消后壳39对振动传递结构48的反作用力,确保振动传递结构48的竖直向下振动。振动稳定结构49的非对称设计可通过波纹宽度差异、材料厚度差异、材料硬度差异等实现。另外,发声激励器6也可以如图79所示直接贴附于发声板5而不与中框背板37直接安装,避免了发声激励器6振动传递至中框背板37,导致中框背板37异常振动及中框背板37安装的电路板发声共振。
在一些实施例中,图80为根据本申请实施例的另一种显示设备的剖面结构示意图。如图80所示,振动传递结构48对应设置有高频滤波结构51,高频滤波结构51用于滤除振动传递结构48传递至后壳39的高频振动。
具体地,发声激励器6振动传递结构48将全频段振动均传递至后壳39,易导致后壳39在中高频段出现异常振动而导致杂音,且高频声波指向性较强,易与前向发出的声波产生相位差异,导致声场紊乱。基于此,本申请一些实施例在发声激励器6与后壳39之间增加高频滤波结构51,使发声激励器6的高频振动无法传递至后壳39。另在后壳39与中框背板37之间设置缓冲件78,避免中框背板37高频振动传递至后壳39,且避免后壳39低频振动对中框背板37的影响,避免中框背板37产生共振并导致中框背板37上设置的电路板等器件发生异常振动。
示例性地,如图80所示,高频滤波结构51包括多个第二弹簧结构52,第二弹簧结构52的一端固定至振动传递结构48,第二弹簧结构52的另一端固定至后壳39。具体地,高频滤波结构51例如可以为单个或多个波纹状设计且具备一定弹性,例如第二弹簧结构52。高频小振幅振动通过高频滤波结构51时,小振幅振动能量由高频滤波结构51吸收,不会传递至后壳39。低频大振幅振动时,振动幅度大于低频滤波结构的振动吸收程度,故低频振动可传递至后壳39产生低频响应。另外,发声激励器6也可以如图81所示直接贴附于发声板5而不与中框背板37直接安装,避免了发声激励器6振动传递至中框背板37,导致中框背板37异常振动及中框背板37安装的电路板发声共振。或者,发声激励器6也可以如图81所示固定至中框背板37上,使得声音能够传递至显示设备底座,进而传递至摆放显示设备的家具,增强声音。
在一些实施例中,图82为根据本申请实施例的另一种显示设备的剖面结 构示意图。如图82所示,后壳39对应发声激励器6位置设置有第一通孔53,部分振动传递结构48位于第一通孔53内,高频滤波结构51为机械顺性结构,振动传递结构48通过机械顺性结构与第一通孔53边缘的后壳39固定。具体地,高频滤波结构51可选用软性橡胶材质或其它可提供机械顺性的材质,其同样可以实现高频小振幅振动通过高频滤波结构51时,小振幅振动能量由高频滤波结构51吸收,不会传递至后壳39;低频大振幅振动时,振动幅度大于低频滤波结构的振动吸收程度,低频振动可传递至后壳39产生低频响应。另外,设置部分振动传递结构48位于第一通孔53内,可降低高频滤波结构51对整机厚度的影响,并且高频滤波结构51与振动传递结构48组成振膜状结构并外露于后壳39位置,可作为音响显性化特征。
示例性地,高频滤波结构51也可以设置为图78所示结构,此时高频滤波结构51也具备类似振动稳定结构49的作用,即基于后壳39对发声激励器6不对称反作用力的存在,高频滤波结构51可设计为不对称支撑并与后壳39反作用的非对称形成抵消,确保振动传递结构48的竖直向下运动。非对称的实现可通过不同R环尺寸、不同材料、不同硬度设置实现。另外,发声激励器6也可以如图83所示直接贴附于发声板5而不与中框背板37直接安装,避免了发声激励器6振动传递至中框背板37,导致中框背板37异常振动及中框背板37安装的电路板发声共振。
在一些实施例中,图84为根据本申请实施例的另一种显示设备的剖面结构示意图。如图84所示,后壳39对应发声激励器6位置设置有第二通孔54,振动传递结构48下沉至第二通孔54内,振动传递结构48通过辅助固定板79与第二通孔54边缘的后壳39固定。
具体地,增加发声激励器6的振动传递结构48会占用显示设备整机厚度,导致整机厚度增加,本申请一些实施例设置后壳39开孔,振动传递结构48下沉至后壳39开孔区域,通过辅助固定板79将振动传递结构48与后壳39固定为一体。另外,发声激励器6也可以如图85所示直接贴附于发声板5而不与中框背板37直接安装,避免了发声激励器6振动传递至中框背板37,导致中框背板37异常振动及中框背板37安装的电路板发声共振。
在一些实施例中,图86为根据本申请实施例的另一种显示设备的正视结构示意图,图87为根据本申请实施例的另一种显示设备的背视结构示意图。结合图86和图87,显示设备的边框上设置有多个高频扬声器56,高频扬声器56关于显示设备的中心轴线对称分布。
具体地,由于不同机型混光距离造成的背光模组与屏幕之间的空间不同,屏幕发声的效果也会出现一些差异,其中空间越大高频效果越差,比如混光距离为6mm的机型,屏幕的振动频率上限为1.5kHz,为了实现全频段的声音效果,需要采用其它技术方案或发声器件弥补高频的不足。本申请一些实施例通过在顶部增加朝上发声的高频扬声器56,即高音单元或者在底部增加朝下发声的高频扬声器56亦或者在左侧和右侧分别设置若干个左发声或右发声的高频扬声器56,有效提高了显示设备的高音效果,且设置上述高频扬声器56沿显示设备中心垂直轴线对称分布,进一步优化了显示设备的发声效果。
在一些实施例中,高频扬声器56的出音面设置有相位塞,图88为根据本申请实施例的一种相位塞的结构示意图,如图88所示,相位塞57用于使高频扬声器56向显示设备背离后壳39的方向发声,即向图88中左侧发声。
图89为根据本申请实施例的一种显示设备中驱动电路的结构示意图。如图89所示,其中全频信号用于驱动屏幕发声激励器6,而经过高通滤波器的信号被送至高频扬声器56,虽然这样能够实现对高频的补充,但是仍然存在一个问题,由于屏幕发声频率在2kHz以下,而小于5kHz的声音信号都会对定位感产生明显的影响,而图86和图87中朝上扬声器的指向性轴线在垂直方向,这就会导致声像较虚,无法集中,朝下、朝左、朝右都会有类似的问题。
针对这个问题,本申请一些实施例设置高频扬声器56的出音面设置有相位塞57,相位塞57用于使高频扬声器56向显示设备背离后壳39的方向发声,即向显示设备的前方发声。具体地,相位塞57为一种扩展指向性的高音单元,这个高音单元与普通高音单元不同,在扬声器出音面增加一个相位塞57,如图88所示,当声波打在相位塞57上,由于相位塞57的弧面原因导致声波从另外一个方向反射出去,通过合理设计相位塞57的角度、形状以及与振膜的弧度关系,可以实现原本朝上发声的声波转向朝前发声,整机上为了能够实现朝前发声的扬声器可以辐射出声音,需要将相位塞57突出到显示设备顶部之外。图89中80为高通滤波器,81为放大器。
图90为根据本申请实施例的一种显示设备的应用场景示意图。如图90所示,以朝上发音的高频扬声器56为例,不同频率的声音呈现出来的指向性存在一定的差异,屏幕发声假设位置点为P1,而高频扬声器56负责2kHz以上的声音,假设4kHz的声音指向性如图91中虚线所示,在墙面的发射位置点为P2,6kHz的指向性更尖端一些,在墙面82的发射位置点为P3。本来应该从一个高频扬声器56发出的声音,因为屏幕正面发声、高音侧面发声且存在不同频率不同位置的多点声音反射区,而每个位置点,即声音源点P1、P2、P3到达人耳的距离不相同。P1是直达的,即从屏幕表面直接到人耳,而4kHz的距离是从顶部高频扬声器56到P2点再到人耳,6kHz的距离是从高频扬声器56到P3点再到人耳。不同频率的声音存在不同的延时,导致播放高频声音时,人听到的声像在P3点,播放中频声音时听到的声像在P2点,而播放低频声音时又感觉在屏幕P1点上。而当一个复合了高中低频的信号发声时,则存在多点的声源,从而导致声音不能达到都是从屏幕发出的感觉,与OLED、激光电视等发声存在较大差距。
本申请一些实施例提出一种新的算法,图91为根据本申请实施例的一种分频延时算法的处理过程示意图。如图91所示,即将整个声音频段分成N段,每段赋予不同的延时,这样可以调整各频率段的声音到达人耳的时间,并且可以设置屏幕上某个点,如水平中心线四分之处,作为虚拟声像点,然后以此为起点,计算不同频率的声音到达人耳的路径,然后计算各个频率段的延时,这样人耳听到的声音就仿佛从虚拟声像点发出,可以针对上下发音、左右发音等形式。其中f0对应的是低频段,对应的屏幕发声的频段,f1、f2、……、 fn是高频段,整体加和起来是对应的是高音扬声器的工作频段。以最远的P1点作为基准,测试P2点、P3点对应频段到达人耳的声音延时,分别记为t0,t1,t2,如果频段为n+1段,需要计算到fn频率段对应的延时tn,因为频率越高声音反射的位置点距离显示设备越远,延时也就越大,最终测试得到了各频率段的延时后,最大延时记为tmax,得出△tn=tmax-tn。
在一些实施例中,显示设备还包括底座,图92为根据本申请实施例的一种底座的立体结构示意图,如图92所示,底座58包括朝向显示设备背离后壳39方向的倾斜部分83,倾斜部分83内部设置有发声结构59,倾斜部分83对应发声结构59的表面设置有多个出音孔60。
具体地,由于对前出音的要求从全频扬声器降低成了高频扬声器56,因此可以考虑采用在底座58中使用发声结构59,例如高音扬声器,其中底座58表面有用于发声的多个出音孔60,内部放置一个高音扬声器,高音扬声器通过线电连接到底座58与显示设备的接口处,可以通过插座与显示设备电连接。如果采用超薄的底座58,可以采用陶瓷扬声器布置于底座58表面或将底座58做成镂空结构而将陶瓷扬声器内嵌到底座58中,使得底座58外观上厚度一致。另外也可将底座58的中部镂空后,采用薄金属片内嵌的结构,当底座58安装在显示设备后,布置于显示设备内部的振动单元可以带动底座58内部镶嵌的薄金属片振动发声,从而实现驱动器在内部而驱动外部器件发声的效果,从而实现前发音的音效。
在一些实施例中,图93为根据本申请实施例的一种显示设备的透视结构示意图。如图93所示,A为局部放大区域,显示设备还包括金属片状装饰件61,金属片状装饰件61位于显示设备远离后壳39的一侧,后壳39内设置有发声驱动器62,发声驱动器62通过显示设备底部空间与金属片状装饰件61连接并用于驱动金属片状装饰件61发声。
具体地,可以将显示设备底部的装饰件,如品牌Logo所在区域,做成薄金属片的形式以形成金属片状装饰件61,通过显示设备底部后壳39镂空处,伸出到显示设备前部,通过置于显示设备后壳39内的发声驱动器62,如电磁驱动器、陶瓷振片、磁致伸缩驱动器等方式,驱动金属片状装饰件61发声,从而实现机器内部驱动转到外部器件前发声的效果。其中发声片材质可以是其它材质如塑料、金属和塑料的双色注塑,并且金属片形状需要根据频率特征设计合理的形状,如可以是中间小两边大的方式,便于在U形金属片两侧形成相同频率的共振。
由以上技术方案可知,本申请一些实施例利用发声板以及两个内部空气具有粘滞性的密封空气腔体,使得发声激励器能够依次通过发声板、背光模组、第二密封空气腔体和第一密封空气腔体将振动传递到液晶显示面板上,使得液晶显示面板振动发声,且由于发声激励器的振动输出端子固定至发声板远离背光模组的表面,发声激励器的设置并不影响显示设备的显示,使得传统的液晶显示装置屏幕发声成为可能,带给用户声音来自于图像的音画一体的视听体验,克服了液晶显示屏幕发声难以实现的行业瓶颈难题。
需要说明的是,本申请一些实施例对显示设备是否为柔性显示装置不作 限定,本申请一些实施例例如可以应用于曲面屏。另外,本申请各实施例之间相同相似的部分互相参照即可,相关内容不在赘述,且本申请一些实施例并未罗列出所有的可能组合方式,本申请各实施例中的技术特征之间的任意组合同样属于本申请的保护范围,特征组合方式包括但不限于液晶显示面板1组合MiniLED;发声激励器6组合MiniLED;发声激励器6组合MiniLED组合弹性支撑件17;发声激励器6组合发声板5组合背光板30;发声激励器6组合发声板5组合灯条;发声激励器6组合发声板5组合背光板30组合弹性支撑件17;高低音扬声器组合至不同实施例等。
具体实现中,本申请还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可包括本申请提供的方法的各实施例中的部分或全部步骤。的存储介质可为磁碟、光盘、只读存储记忆体(英文:read-only memory,简称:ROM)或随机存储记忆体(英文:random access memory,简称:RAM)等。
为了方便解释,已经结合具体的实施方式进行了上述说明。但是,上述示例性的讨论不是意图穷尽或者将实施方式限定到上述公开的具体形式。根据上述的教导,可以得到多种修改和变形。上述实施方式的选择和描述是为了更好的解释原理以及实际的应用,从而使得本领域技术人员更好的使用实施方式以及适于具体使用考虑的各种不同的变形的实施方式。

Claims (20)

  1. 一种显示设备,包括:
    液晶显示面板和背光模组,所述液晶显示面板内部形成第一密封空气腔体,所述背光模组位于所述液晶显示面板的一侧并与所述液晶显示面板形成第二密封空气腔体;
    发声板和发声激励器,所述发声板固定至所述背光模组远离所述液晶显示面板的表面,所述发声激励器的振动输出端子固定至所述发声板远离所述背光模组的表面,所述发声激励器用于通过所述振动输出端子激励所述发声板振动以带动所述背光模组振动。
  2. 根据权利要求1所述的显示设备,所述发声板通过第一粘性缓冲结构与所述背光模组固定,所述振动输出端子通过第二粘性缓冲结构与所述发光板固定。
  3. 根据权利要求1所述的显示设备,所述液晶显示面板包括液晶膜层和光学扩散膜层,所述液晶膜层与所述光学扩散膜层之间对应所述液晶显示面板的边框位置设置有第一环形密封结构,所述液晶膜层与所述光学扩散膜层通过所述第一环形密封结构形成所述第一密封空气腔体;
    所述背光模组与所述液晶显示面板之间对应所述液晶显示面板的边框位置设置有第二环形密封结构,所述背光模组与所述液晶显示面板通过所述第二环形密封结构形成所述第二密封空气腔体。
  4. 根据权利要求3所述的显示设备,所述第一环形密封结构包括多条低频气流通道,所述低频气流通道用于连通所述第一密封空气腔体与所述显示设备所处外部环境。
  5. 根据权利要求4所述的显示设备,沿平行于所述液晶显示面板的平面,所述第一环形密封结构包括沿第一方向排列的多排通道形成结构,一排所述通道形成结构包括间隔设定距离设置的多个阻隔结构,不同排通道形成结构中的所述阻隔结构交错设置;其中,所述第一方向垂直于所述液晶显示面板边框的延伸方向。
  6. 根据权利要求1所述的显示设备,所述背光模组为MiniLED背光模组。
  7. 根据权利要求1所述的显示设备,还包括:多个弹性支撑件;
    所述弹性支撑件过盈设置于所述背光模组与所述液晶显示面板之间,所述背光模组临近所述液晶显示面板的一侧包括多个发光结构,所述弹性支撑件位于所述发光结构之间。
  8. 根据权利要求7所述的显示设备,所述弹性支撑件通过第一粘性结构与所述背光模组固定;或者,
    所述弹性支撑件临近所述背光模组的一侧设置有焊接结构,所述弹性支撑件通过所述焊接结构焊接固定至所述背光模组;或者,
    所述弹性支撑件的两端设置有吸盘结构,所述弹性支撑件通过两端的所述吸盘结构分别与所述背光模组和所述液晶显示面板固定;或者,
    所述弹性支撑件的一端通过第一粘性结构与所述背光模组固定,所述弹 性支撑件的另一端设置有吸盘结构且所述弹性支撑件通过所述吸盘结构与所述液晶显示面板固定。
  9. 根据权利要求1所述的显示设备,还包括:多个弹性支撑件;
    所述弹性支撑件过盈设置于所述发声板与所述液晶显示面板之间,所述背光模组临近所述液晶显示面板的一侧包括多个发光结构,所述弹性支撑件位于所述发光结构之间。
  10. 根据权利要求9所述的显示设备,所述背光模组临近所述液晶显示面板的一侧设置有固定板,所述固定板上设置有多个卡位孔,所述背光模组上设置有多个贯穿安装孔,所述卡位孔用于固定所述弹性支撑件于所述贯穿安装孔内以及所述发声板上;或者,所述背光模组包括多个沉孔,所述沉孔用于固定所述弹性支撑件于所述发声板上。
  11. 根据权利要求1所述的显示设备,还包括:中框背板和后壳;
    所述中框背板位于所述发声板远离所述背光模组的一侧;所述第二密封空气腔体内设置有多个填充结构,所述发声板临近所述液晶显示面板的一侧包括多个发光结构,所述填充结构设置于所述发声板上,位于所述发光结构之间;
    至少部分所述后壳位于所述中框背板远离所述发声板的一侧,位于所述发声激励器远离所述发声板的一侧,所述中框背板与所述后壳之间设置有隔离壁;
    所述隔离壁、所述后壳与所述中框背板之间形成背向辐射叠加腔体,所述背向辐射叠加腔体具有朝向所述显示设备前方或侧方的出音开口。
  12. 根据权利要求11所述的显示设备,所述背光模组包括多个灯条,所述发光结构设置于所述灯条远离所述发声板的表面,所述填充结构设置于所述发声板上,位于相邻的所述灯条之间;或者,
    所述背光模组包括背光板,所述发光结构设置于所述背光板远离所述发声板的表面,所述填充结构设置于所述背光板上。
  13. 根据权利要求11所述的显示设备,还包括:连接部;
    所述连接部位于所述发声板上,所述连接部与多个所述填充结构一体成型,所述连接部设置有多个容纳腔,所述背光模组包括多个灯条,所述发光结构设置于所述灯条远离所述发声板的表面,所述灯条位于所述容纳腔内;
    所述容纳腔为贯穿所述连接部的通孔,所述灯条与所述发声板接触设置;或者,所述容纳腔为设置于所述连接部临近所述显示面板一侧表面的凹槽,所述灯条与所述连接部接触设置。
  14. 根据权利要求11所述的显示设备,所述填充结构作为弹性支撑件,过盈设置于所述背光模组与所述显示面板之间。
  15. 根据权利要求11-14任一项所述的显示设备,沿远离所述发声板的方向,所述填充结构平行于所述液晶显示面板的横截面的面积减小;和/或,
    所述填充结构的表面包覆有反射膜层或涂覆有反射材料。
  16. 根据权利要求11所述的显示设备,所述背向辐射叠加腔体内设置有至少一个所述发声激励器。
  17. 根据权利要求11或16所述的显示设备,所述背向辐射叠加腔体具有朝向所述显示设备前方的前向出音开口,所述后壳包覆所述液晶显示面板的边框设置,所述后壳与所述液晶显示面板边框之间的间隙构成所述前向出音开口。
  18. 根据权利要求11或16所述的显示设备,所述背向辐射叠加腔体具有朝向所述显示设备侧方的侧向出音开口,所述后壳位于所述中框背板远离所述发声板的一侧;
    沿所述显示设备的几何中心朝向所述显示设备边框的方向,所述后壳临近所述显示设备边框的部分至所述中框背板的距离逐渐减小,所述显示设备的边框位置处,所述后壳与所述中框背板之间的间隙构成所述侧向出音开口。
  19. 根据权利要求11或16所述的显示设备,所述隔离壁垂直于所述显示设备的方向设置,所述隔离壁垂直于所述显示设备的表面为平面或弧面,所述隔离壁与所述中框背板之间设置有隔音缓冲结构。
  20. 根据权利要求11或16所述的显示设备,沿所述显示设备的几何中心朝向所述出音开口的方向,所述背向辐射叠加腔体垂直于所述显示设备方向的截面面积逐渐增加。
PCT/CN2023/081853 2022-03-21 2023-03-16 显示设备 WO2023179444A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210279174.0 2022-03-21
CN202210281470.4 2022-03-21
CN202210279174 2022-03-21
CN202210281470 2022-03-21
CN202210610379.2A CN115145074B (zh) 2022-03-21 2022-05-31 显示设备
CN202210610379.2 2022-05-31

Publications (2)

Publication Number Publication Date
WO2023179444A1 WO2023179444A1 (zh) 2023-09-28
WO2023179444A9 true WO2023179444A9 (zh) 2023-11-02

Family

ID=82815065

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2023/081856 WO2023179446A1 (zh) 2022-03-21 2023-03-16 显示设备
PCT/CN2023/081853 WO2023179444A1 (zh) 2022-03-21 2023-03-16 显示设备
PCT/CN2023/081855 WO2023179445A1 (zh) 2022-03-21 2023-03-16 显示设备
PCT/CN2023/082449 WO2023179526A1 (zh) 2022-03-21 2023-03-20 显示设备
PCT/CN2023/082877 WO2023179621A1 (zh) 2022-03-21 2023-03-21 显示设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081856 WO2023179446A1 (zh) 2022-03-21 2023-03-16 显示设备

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2023/081855 WO2023179445A1 (zh) 2022-03-21 2023-03-16 显示设备
PCT/CN2023/082449 WO2023179526A1 (zh) 2022-03-21 2023-03-20 显示设备
PCT/CN2023/082877 WO2023179621A1 (zh) 2022-03-21 2023-03-21 显示设备

Country Status (2)

Country Link
CN (55) CN117590644A (zh)
WO (5) WO2023179446A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179080A1 (zh) * 2022-03-21 2023-09-28 海信视像科技股份有限公司 显示设备
CN117590644A (zh) * 2022-03-21 2024-02-23 海信视像科技股份有限公司 显示设备

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL140038A0 (en) * 1998-07-03 2002-02-10 New Tranducers Ltd Resonant panel-form loudspeaker
JP3886391B2 (ja) * 2002-02-15 2007-02-28 シャープ株式会社 カード型装置、及び、それを備えた電子機器
JP4503491B2 (ja) * 2005-05-20 2010-07-14 シャープ株式会社 液晶パネルスピーカ
JP2007189604A (ja) * 2006-01-16 2007-07-26 Authentic Ltd パネル型スピーカ
US20100119101A1 (en) * 2007-05-03 2010-05-13 Fratti Roger A Integrated Audiovisual Output Device
WO2010064692A1 (ja) * 2008-12-05 2010-06-10 凸版印刷株式会社 光学部品、照明装置、及び表示装置
KR20110058338A (ko) * 2009-11-26 2011-06-01 엘지전자 주식회사 디스플레이 장치
JP5717675B2 (ja) * 2012-03-02 2015-05-13 シャープ株式会社 表示装置、及びテレビ受信装置
CN102913825B (zh) * 2012-11-02 2015-07-01 京东方科技集团股份有限公司 一种发光单元、背光模组及显示装置
KR101383702B1 (ko) * 2012-12-12 2014-04-09 삼성디스플레이 주식회사 표시 장치 유닛
JP2017163468A (ja) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 スピーカ装置、および、映像表示装置
KR101704517B1 (ko) * 2016-03-28 2017-02-09 엘지디스플레이 주식회사 패널 진동형 음향 발생 표시 장치
KR20170114471A (ko) * 2016-04-05 2017-10-16 엘지디스플레이 주식회사 유기발광 표시 장치
KR101817102B1 (ko) * 2016-11-30 2018-01-10 엘지디스플레이 주식회사 패널 진동형 음향 발생 표시 장치
KR102266209B1 (ko) * 2017-04-29 2021-06-16 엘지디스플레이 주식회사 디스플레이 장치
KR102284718B1 (ko) * 2017-05-31 2021-07-30 엘지디스플레이 주식회사 디스플레이 장치
CN109151677A (zh) * 2017-06-28 2019-01-04 北京太和开元科技有限公司 发声装置
KR101919454B1 (ko) * 2017-07-31 2018-11-16 엘지디스플레이 주식회사 디스플레이 장치 및 이를 이용한 컴퓨팅 장치
KR102437513B1 (ko) * 2017-08-10 2022-08-26 엘지디스플레이 주식회사 디스플레이 장치
KR102320359B1 (ko) * 2017-08-16 2021-11-01 엘지디스플레이 주식회사 디스플레이 장치
CN207067607U (zh) * 2017-08-21 2018-03-02 京东方科技集团股份有限公司 一种背光源及显示模组、显示装置
CN109256070A (zh) * 2017-09-11 2019-01-22 四川长虹电器股份有限公司 一种屏幕自发声的平板显示装置
KR102445686B1 (ko) * 2017-12-11 2022-09-20 엘지디스플레이 주식회사 디스플레이 장치
KR102455501B1 (ko) * 2017-12-20 2022-10-14 엘지디스플레이 주식회사 디스플레이 장치
KR102458174B1 (ko) * 2017-12-28 2022-10-21 엘지디스플레이 주식회사 전자 기기
KR102612609B1 (ko) * 2017-12-29 2023-12-08 엘지디스플레이 주식회사 표시장치
WO2019212089A1 (ko) * 2018-05-03 2019-11-07 엘지전자 주식회사 디스플레이 장치
KR102650344B1 (ko) * 2018-05-03 2024-03-25 엘지전자 주식회사 디스플레이 장치
CN208314412U (zh) * 2018-05-14 2019-01-01 东莞市银泰丰光学科技有限公司 一种导电发声的背光模组
KR102552930B1 (ko) * 2018-06-27 2023-07-07 삼성디스플레이 주식회사 패널 하부 부재 및 이를 포함하는 표시 장치
CN109246560B (zh) * 2018-08-13 2020-05-22 歌尔股份有限公司 发声装置
KR102080213B1 (ko) * 2018-11-02 2020-04-13 엘지디스플레이 주식회사 표시장치
KR102628489B1 (ko) * 2018-11-15 2024-01-22 엘지디스플레이 주식회사 디스플레이 장치
JP7208389B2 (ja) * 2018-11-16 2023-01-18 華為技術有限公司 モバイル端末
CN109581713B (zh) * 2018-12-15 2022-01-25 武汉华星光电技术有限公司 液晶显示模组、液晶显示装置及电子设备
CN111383563B (zh) * 2018-12-31 2022-07-08 乐金显示有限公司 显示装置
CN110047392B (zh) * 2019-03-11 2021-02-02 武汉华星光电技术有限公司 一种显示装置
CN111698620A (zh) * 2019-03-14 2020-09-22 歌尔股份有限公司 一种电子设备
CN110189632B (zh) * 2019-05-23 2022-06-03 云谷(固安)科技有限公司 一种显示发声面板
CN110109216A (zh) * 2019-05-24 2019-08-09 武汉华星光电技术有限公司 一种背光模组、显示装置
US11317199B2 (en) * 2019-05-28 2022-04-26 Apple Inc. Vented acoustic transducers, and related methods and systems
CN112104957A (zh) * 2019-06-17 2020-12-18 海信视像科技股份有限公司 电子设备
CN112102717B (zh) * 2019-06-17 2023-10-20 海信视像科技股份有限公司 显示装置及可发声屏幕
CN116744190A (zh) * 2019-06-17 2023-09-12 海信视像科技股份有限公司 显示装置
CN112099298B (zh) * 2019-06-17 2022-05-06 海信视像科技股份有限公司 显示装置、发声基板以及投影屏幕
KR20210048345A (ko) * 2019-10-23 2021-05-03 엘지디스플레이 주식회사 디스플레이 장치
CN210835567U (zh) * 2019-10-23 2020-06-23 青岛海信激光显示股份有限公司 投影***及投影屏幕
CN210894982U (zh) * 2019-10-23 2020-06-30 青岛海信激光显示股份有限公司 投影***及投影屏幕
CN114143674A (zh) * 2020-09-04 2022-03-04 海信视像科技股份有限公司 显示装置
KR20210133650A (ko) * 2020-04-29 2021-11-08 엘지디스플레이 주식회사 디스플레이 장치
CN111491242A (zh) * 2020-05-26 2020-08-04 京东方科技集团股份有限公司 一种显示面板和显示装置
CN111586534B (zh) * 2020-05-27 2021-08-31 京东方科技集团股份有限公司 屏幕发声单元及其制造方法、显示装置
CN113973251A (zh) * 2020-07-22 2022-01-25 华一声学股份有限公司 整合发声装置的面板模块及显示设备
DE112021004083T5 (de) * 2020-07-28 2023-06-15 Sony Group Corporation Audiogerät und ansteuerverfahren dafür, und anzeigevorrichtung
CN111862818B (zh) * 2020-07-31 2022-11-25 京东方科技集团股份有限公司 显示模组、显示装置及制备方法
CN114071336A (zh) * 2020-08-06 2022-02-18 中兴通讯股份有限公司 一种发声单元和终端
CN112601166A (zh) * 2020-12-14 2021-04-02 维沃移动通信有限公司 屏幕、电子设备及屏幕制备方法
CN214756907U (zh) * 2021-06-11 2021-11-16 海信视像科技股份有限公司 发声设备和激励器
CN215268711U (zh) * 2021-06-11 2021-12-21 海信视像科技股份有限公司 显示装置
CN113851049B (zh) * 2021-09-23 2023-10-10 京东方科技集团股份有限公司 一种发声显示装置
CN113891232A (zh) * 2021-09-28 2022-01-04 京东方科技集团股份有限公司 一种发声装置及其制备方法、显示装置
CN117590644A (zh) * 2022-03-21 2024-02-23 海信视像科技股份有限公司 显示设备

Also Published As

Publication number Publication date
CN217425893U (zh) 2022-09-13
WO2023179446A1 (zh) 2023-09-28
CN114924438B (zh) 2024-02-13
CN115145075B (zh) 2024-03-26
CN217543606U (zh) 2022-10-04
CN217425894U (zh) 2022-09-13
CN117631366A (zh) 2024-03-01
CN219695593U (zh) 2023-09-15
CN117608125A (zh) 2024-02-27
CN115022782A (zh) 2022-09-06
CN217543605U (zh) 2022-10-04
CN117572681A (zh) 2024-02-20
WO2023179526A1 (zh) 2023-09-28
CN217443702U (zh) 2022-09-16
CN117590645A (zh) 2024-02-23
CN115128868B (zh) 2024-01-26
CN217543609U (zh) 2022-10-04
WO2023179445A9 (zh) 2023-11-02
CN117590641A (zh) 2024-02-23
CN217718365U (zh) 2022-11-01
CN218547180U (zh) 2023-02-28
CN217521464U (zh) 2022-09-30
CN217443699U (zh) 2022-09-16
WO2023179444A1 (zh) 2023-09-28
CN217425891U (zh) 2022-09-13
CN217543610U (zh) 2022-10-04
CN117631369A (zh) 2024-03-01
CN217467421U (zh) 2022-09-20
CN219715880U (zh) 2023-09-19
CN115145075A (zh) 2022-10-04
CN115128868A (zh) 2022-09-30
CN217543604U (zh) 2022-10-04
CN217467423U (zh) 2022-09-20
CN219872030U (zh) 2023-10-20
CN115145074A (zh) 2022-10-04
CN217425892U (zh) 2022-09-13
CN219499529U (zh) 2023-08-08
CN217543607U (zh) 2022-10-04
CN217386076U (zh) 2022-09-06
CN114924438A (zh) 2022-08-19
CN117590643A (zh) 2024-02-23
CN217543603U (zh) 2022-10-04
CN219715879U (zh) 2023-09-19
CN117590644A (zh) 2024-02-23
CN117666201A (zh) 2024-03-08
WO2023179621A1 (zh) 2023-09-28
WO2023179445A1 (zh) 2023-09-28
CN217443700U (zh) 2022-09-16
CN117590642A (zh) 2024-02-23
CN117666200A (zh) 2024-03-08
CN114994968A (zh) 2022-09-02
CN217543601U (zh) 2022-10-04
CN115268138A (zh) 2022-11-01
CN117631367A (zh) 2024-03-01
CN117631370A (zh) 2024-03-01
CN117631368A (zh) 2024-03-01
WO2023179446A9 (zh) 2023-11-02
CN117687239A (zh) 2024-03-12
CN217543602U (zh) 2022-10-04
CN117631371A (zh) 2024-03-01
CN117687240A (zh) 2024-03-12
CN217443701U (zh) 2022-09-16
CN117666202A (zh) 2024-03-08
CN115145074B (zh) 2024-03-29
CN118202299A (zh) 2024-06-14
CN217467422U (zh) 2022-09-20
CN117784469A (zh) 2024-03-29
WO2023179526A9 (zh) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2023179444A9 (zh) 显示设备
WO2020253751A1 (zh) 显示装置及可发声屏幕
US11564023B2 (en) Display apparatus and electromagnetic actuator
US20240004228A1 (en) Display device, exciter, and audio signal playback method
CN118112877A (zh) 一种投影屏幕及投影显示设备
CN118118836A (zh) 一种发声屏幕及投影电视

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773692

Country of ref document: EP

Kind code of ref document: A1