WO2020253751A1 - 显示装置及可发声屏幕 - Google Patents

显示装置及可发声屏幕 Download PDF

Info

Publication number
WO2020253751A1
WO2020253751A1 PCT/CN2020/096670 CN2020096670W WO2020253751A1 WO 2020253751 A1 WO2020253751 A1 WO 2020253751A1 CN 2020096670 W CN2020096670 W CN 2020096670W WO 2020253751 A1 WO2020253751 A1 WO 2020253751A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
display device
electromagnetic
sounding substrate
substrate
Prior art date
Application number
PCT/CN2020/096670
Other languages
English (en)
French (fr)
Inventor
王海盈
杨建新
张婵
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Priority to CN202090000329.7U priority Critical patent/CN215956626U/zh
Publication of WO2020253751A1 publication Critical patent/WO2020253751A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers

Definitions

  • the present disclosure relates to electronic technology, and more particularly to a display device and a screen capable of producing sound.
  • the present disclosure provides a display device and a sound-producing screen, which can improve the discrimination of sound channels when the display device is sounded by electromagnetic exciters corresponding to different sound channels, thereby improving the performance of electronic equipment with a display device and a sound-producing screen. user experience.
  • a first aspect of the present disclosure provides a display device, including:
  • a display structure a sounding substrate and at least two electromagnetic exciters; wherein the sounding substrate and the display structure are attached to each other, and the at least two electromagnetic exciters are attached to the sides of the sounding substrate;
  • the display structure is used for receiving light signals and displaying
  • the at least two electromagnetic exciters are respectively used to send magnetic excitation signals to the sounding substrate, and to generate bending waves where the at least two electromagnetic exciters are attached to the sounding substrate;
  • the sounding substrate is used to receive and conduct the bending wave, so that the sounding substrate vibrates and produces sound;
  • the amplitude attenuation law along the first direction is different from the amplitude attenuation law along the second direction, and the first direction is different from the second direction.
  • the amplitude attenuation speed along the first direction is different from the amplitude attenuation speed along the second direction.
  • the sounding substrate includes: a first skin, a second skin, and an intermediate layer; the intermediate layer includes a honeycomb core composed of a plurality of unit cells, and the first The skin and the second skin are attached to the two ends of the middle layer respectively.
  • the at least two electromagnetic exciters are arranged symmetrically, the second direction is perpendicular to the first direction, and the axial direction of the cell in the honeycomb core of the intermediate layer is The first direction is perpendicular to the plane formed by the second direction; the stretch ratio of the honeycomb core along the second direction is less than a preset threshold, and the stretch ratio is d/L, where d is all When a plurality of hexagonal cell cells in the honeycomb core are arranged in sequence, the minimum unit length of the honeycomb core in the first direction; L is when the plurality of hexagonal cell cells are arranged in sequence, the honeycomb The minimum unit length of the core in the second direction.
  • the fiber density of the first skin in the first direction is less than the fiber density of the first skin in the second direction, wherein the first direction corresponds to The left and right sides of the user's viewing direction, the second direction corresponds to the upper side and the lower side of the user's viewing direction;
  • the fiber density of the second skin in the first direction is smaller than the fiber density of the second skin in the second direction, wherein the first direction corresponds to the left and right sides of the user's viewing direction, and the first The two directions correspond to the upper and lower sides of the user's viewing direction.
  • the amplitude attenuation value of the bending wave in the first direction is greater than the amplitude of the bending wave in the second direction Attenuation value.
  • the preset threshold is 0.58:1;
  • the at least two electromagnetic exciters include a first electromagnetic exciter and a second electromagnetic exciter
  • the intermediate layer includes a first area sequentially arranged along the first direction, An isolation area and a second area, the first electromagnetic exciter is arranged in the first area, the second electromagnetic exciter is arranged in the second area, the stretch ratio and the second area of the first area
  • the stretch ratios of the second regions are all greater than the stretch ratios of the isolation regions.
  • the thickness of the first skin and the second skin ranges from 0.18 to 0.36 mm.
  • At least two stabilizers for supporting the at least two electromagnetic exciters, and the vibration output ends of the first electromagnetic exciters of the at least two electromagnetic exciters all pass through the first of the at least two stabilizers
  • the stabilizer is in contact with the sounding substrate.
  • the first stabilizer includes a bracket and a plurality of sheet-shaped elastic feet extending away from the bracket, and a first leg of the plurality of elastic feet is away from the
  • the stent extends in a rotating direction, the stent includes a first fixing position, the first fixing position is collinear with the axial direction of the stent, and the vibration output end of the first electrical exciter passes through the corresponding first fixing The position abuts the sounding substrate.
  • the first stabilizer further includes a damping block disposed at an end of the first leg away from the bracket, and the damping block is fixedly connected to the sounding substrate.
  • a second aspect of the present disclosure provides a soundable screen, including a display structure, a sounding substrate, and at least two electromagnetic exciters; wherein the sounding substrate and the display structure are attached to each other, and the at least two electromagnetic exciters are attached to On one side of the sounding substrate;
  • the display structure is used for receiving light signals and displaying
  • the at least two electromagnetic exciters are respectively used to generate bending waves where the at least two electromagnetic exciters are attached to the sounding substrate;
  • the sounding substrate is used to receive and conduct the bending waves, so that the sounding substrate vibrates and emits sound;
  • the sounding substrate includes: a first skin, a second skin, and an intermediate layer;
  • the intermediate layer includes a plurality of units In a honeycomb core composed of cells, the first skin and the second skin are respectively attached and arranged on both ends of the intermediate layer.
  • FIG. 1 is a schematic structural diagram of a display device with a speaker
  • Figure 2 is a schematic structural diagram of another display device with a speaker
  • FIG. 3 is a schematic cross-sectional structure diagram of a display device
  • FIG. 4 is a schematic diagram of a disassembled structure of a display device
  • FIG. 5 is a schematic diagram of the amplitude distribution of a bending wave generated by a display device under the action of an electromagnetic exciter during propagation;
  • FIG. 6 is a schematic diagram of a cross-sectional structure of an embodiment of a display device according to the present application.
  • FIG. 7 is a schematic diagram of a disassembled structure of an embodiment of a display device according to the present application.
  • FIG. 8 is a schematic diagram of the structure of the intermediate layer of the sounding substrate according to the present application.
  • FIG. 9 is a schematic diagram of the bonding structure of the intermediate layer, the first skin and the second skin of the sounding substrate according to the present application.
  • FIG. 10 is a schematic diagram of a cross-sectional structure of an intermediate layer of a sounding substrate according to the present application.
  • FIG. 11 is a schematic diagram of the structure of the first skin and the second skin of the sounding substrate according to the present application.
  • Fig. 12 is a schematic structural diagram of an electronic device with a display device according to the present application.
  • FIG. 13 is a schematic diagram of the amplitude attenuation law when the display device according to the present application conducts bending waves;
  • FIG. 14 is a schematic structural diagram of an embodiment of an intermediate layer of a sounding substrate according to the present application.
  • 15 is a schematic structural diagram of another embodiment of the intermediate layer of the sounding substrate according to the present application.
  • Figure 16 is a schematic cross-sectional structure diagram of the stabilizer according to the present application after installation
  • Figure 17 is a schematic diagram of the installation structure of the stabilizer and the electromagnetic exciter according to the present application.
  • Figure 18 is a schematic structural diagram of a stabilizer according to another structure of the present application.
  • FIG. 19 is a schematic cross-sectional structure diagram of an embodiment of the supporting structure according to the present application.
  • 20 is a schematic cross-sectional structure diagram of another embodiment of the supporting structure according to the present application.
  • 21 is a schematic structural diagram of another embodiment of a supporting structure according to the present application.
  • 22 is a schematic structural diagram of a specific implementation of the display device according to the present application.
  • FIG. 23 is a schematic diagram of a disassembled structure of a specific implementation of the display device according to the present application.
  • FIG. 24 is a schematic structural diagram of a specific implementation manner of another display device according to the present application.
  • Fig. 25 is a schematic structural diagram of an embodiment of an electronic device according to the present application.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms . These terms can only be used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Unless the context clearly indicates, terms such as “first”, “second” and other numbers used herein do not imply a sequence or order. Therefore, without departing from the teachings of the exemplary embodiments, the first element, first component, first region, first layer or first portion discussed below may be referred to as a second element, second component, second Area, second layer or second part.
  • spatially relative terms such as “internal”, “external”, “below”, “below”, “lower”, “above”, “upper”, etc. may be used in this text. Used to describe the relationship between one element or feature shown in the figure and another or more elements or features.
  • spatial relative terms may also be intended to cover different orientations of the device in use or operation. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features will be reoriented “above” the other elements or features. Therefore, the exemplary term “under” can include two relative orientations of upper and lower. The device can be oriented in other ways (rotated by 90 degrees or other directions), thereby explaining the spatial relative descriptors used herein.
  • electronic devices use "flat panel sound technology" to install an electromagnetic exciter behind the screen displayed on the display screen.
  • the display screen emits sound through bending waves emitted by modal resonance. That is, the display screen in the electronic device can be used for display and can be used to replace the speaker for sound. Therefore, there is no need to set an installation position for the speaker in the electronic device, so as to realize a lighter and thinner design of the electronic device.
  • the display screen of the electronic device produces sound through the overall vibration mode of the modal resonance of the display screen. Even if the display screen produces sound under the action of multiple electromagnetic exciters corresponding to different channels, the user It is also impossible to clearly distinguish the sound channels corresponding to the sound produced by the display screen, which results in poor discrimination of the sound channels on the display screen when sound is produced, thereby affecting the experience of the user of the electronic device.
  • FIG. 1 is a schematic structural diagram of a display device with speakers.
  • the electronic device shown in FIG. 1 takes a television 11 as an example.
  • the television 11 includes a display screen 12 and a speaker 13; wherein the speaker 13 is provided on the television 11
  • the inner display screen 12 is behind.
  • the speakers 13 are usually arranged on the left and right sides of the direction in which the user views the display screen 12, and provide left and right channel sounds.
  • FIG. 2 is a schematic structural diagram of another display device with speakers.
  • the laser TV box 21 can project a laser beam onto the display screen 22 for the user to watch the video, and can also provide a sound signal to the connected external speaker 23 so that the speaker 23 can play audio.
  • the speaker 23 since the speaker 23 needs to be installed independently, the speaker 23 can achieve more sound effects through a larger volume. Accordingly, the speaker 23 of the electronic device needs to occupy more external space.
  • Figure 3 is a schematic cross-sectional structure diagram of a display device
  • Figure 4 is a schematic diagram of a disassembled structure of a display device
  • the display device includes: an optical film 31, a sounding substrate 32 and an electromagnetic exciter 33.
  • the optical film 31 can be used to receive and display video or image content; under the action of the electromagnetic exciter 33, the sounding substrate 32 emits sound through bending waves emitted by modal resonance. That is, the display device in the electronic device can be used for display and can be used to replace the speaker for sound.
  • the area of the sounding substrate 32 can be set equal to the area of the optical film 31 at most, a larger sounding device can bring better sound effects such as heavy bass, and the display device also has stronger playback performance.
  • FIG. 5 is a schematic diagram of the amplitude distribution of a bending wave generated by a display device under the action of an electromagnetic exciter during propagation.
  • FIG. 5 shows a schematic diagram of the amplitude of a bending wave propagating in a sounding substrate 32, wherein the sounding substrate 32 A bending wave is generated under the action of the electromagnetic exciter 33, and the bending wave generated by the sounding substrate 32 spreads around the place where the electromagnetic exciter 33 and the sounding substrate 32 are attached as the center, and covers the entire sounding substrate 32.
  • the darker the color on the sounding substrate 32 the greater the amplitude of the bending wave at that position in the upward direction of observation; the lighter the color, the greater the amplitude of the flexural wave at that position downward in the direction of observation.
  • the frequency of bending wave A in FIG. 5 is 200 Hz
  • the frequency of bending wave B is 1000 Hz
  • the frequency of bending wave C is 10000 Hz.
  • the amplitude attenuation in all directions is not large, even if it is far from the rightmost position of the electromagnetic exciter 33 in the figure.
  • the amplitude of the bending wave and the amplitude near the electromagnetic exciter 33 are also basically the same. That is to say, the flexural wave generated by the acoustic substrate 32 under the action of the electromagnetic exciter 33 has a more uniform amplitude distribution at all positions when propagating in the acoustic substrate 32, resulting in a sound with a relatively similar intensity as a whole.
  • the intuitive feeling is that all positions of the entire screen are emitting similar sounds, and it is impossible to distinguish the channels corresponding to different electromagnetic exciters, which causes the display device to emit sound.
  • the sound channel is poorly distinguished, it affects the experience of users of electronic devices.
  • the present application provides a display device and an electromagnetic exciter.
  • the flexural wave generated by the electromagnetic exciter When the flexural wave generated by the electromagnetic exciter is transmitted through the sound-producing substrate, it can have different amplitude attenuation in different propagation directions, thereby improving the performance of the display device.
  • the discrimination of the sound channel when the electromagnetic exciters corresponding to different sound channels act on the sound channel further improves the user experience of the electronic equipment with the display device and the electromagnetic exciter.
  • FIG. 6 is a schematic diagram of a cross-sectional structure of an embodiment of a display device according to the present application
  • FIG. 7 is a schematic diagram of a disassembled structure of an embodiment of the display device according to the present application.
  • the display device is a laser TV as an example for description. In other embodiments, it may be other types of display devices other than the laser TV.
  • the display device provided in this embodiment includes: a display structure 31, a sounding substrate 32 and at least one electromagnetic exciter 33.
  • the display structure 31 and the sounding substrate 32 are attached to one side, and at least one electromagnetic exciter 33 is attached to the other side of the sounding substrate 32.
  • the surface area of the sounding substrate 32 is equal to or smaller than the surface area of the display structure 31.
  • the display structure 31 of the display device is used to realize the display function of the display device, and is used to receive and display light signals.
  • the display structure 31 provided in this embodiment includes: a liquid crystal display (Liquid Crystal Display, abbreviated as LCD), an organic light-emitting diode (Organic Light-Emitting Diode, abbreviated as: OLED), laser projection hard screen, image display film, A touch control functional membrane, the image display membrane specifically includes a membrane with optical microstructures such as Fresnel, bar grid or micro lens array.
  • the display structure is a rectangular structure as an example for description. In other embodiments, the display structure may have other shapes, for example, the display structure may also be an arc structure.
  • the display structure 31, the sounding substrate 32 and the at least one electromagnetic actuator 33 of the display device cooperate with each other to realize the sounding function of the display device.
  • the electromagnetic exciter 33 includes: a first electromagnetic exciter 331 and a second electromagnetic exciter 332 as an example for description. Taking the electromagnetic exciter 331 as an example, the electromagnetic exciter 331 is used to receive an electric signal corresponding to the sound to be played, and after converting the electric signal into mechanical vibration, the mechanical vibration is applied to the sounding substrate 32. The sounding substrate 32 generates bending waves through modal resonance under the action of the mechanical vibration of the electromagnetic exciter 331.
  • the bending waves generated on the sounding substrate 32 are centered on the place where the electromagnetic exciter 331 and the sounding substrate 32 are attached to the circumference in a 360-degree direction Scope spread.
  • the sounding substrate 32 and the display structure 31 to which the sounding substrate 32 is bonded are reciprocated in the vertical direction of the cross-sectional view shown in FIG. 6 under the action of bending waves propagating in the sounding substrate 32 to realize sound.
  • the sounding substrate 32 when the sounding substrate 32 provided in this embodiment conducts bending waves in a 360-degree direction around the place where the electromagnetic exciter 331 and the sounding substrate 32 are attached as the center, the sounding substrate 32 responds to the bending waves in the first direction.
  • the attenuation law of the amplitude of is different from the law of amplitude attenuation of the bending wave caused by the sounding substrate 32 in the second direction.
  • the attenuation law may be the magnitude change mode of amplitude attenuation.
  • the material of the sounding substrate 32 can be set in this embodiment, so that the conductive performance of the sounding substrate for bending waves in the first direction is the same as
  • the acoustic substrate has different conduction properties for bending waves in the second direction. That is, the sounding substrate 32 provided in this embodiment has a specific orthogonal and/or zoned strength anisotropic mechanical structure and conductivity.
  • the sounding substrate provided in this embodiment specifically includes: a first skin 321, an intermediate layer 322 and a second skin 323.
  • the first skin 321 and the second skin 323 are respectively attached to the two sides of the middle layer 322, and the surface areas of the first skin 321, the middle layer 322 and the second skin 323 are the same;
  • the one skin 322 and the second skin 323 may cover at least part of the intermediate layer 322.
  • FIG. 8 is a schematic diagram of the structure of the intermediate layer of the sounding substrate according to the present application.
  • the sounding substrate 32 provided by this embodiment is formed by connecting a plurality of honeycomb cores 3221 arranged in a hexagonal shape.
  • the honeycomb cores around the structure, and the side surfaces corresponding to the six sides of each honeycomb core 3221 are respectively connected to the corresponding side surfaces of the other six honeycomb cores.
  • FIG. 9 is a schematic diagram of the bonding structure of the intermediate layer, the first skin, and the second skin of the sounding substrate according to the present application. As shown in FIG.
  • the honeycomb core 3221 included in the intermediate layer 322 The cross section of is perpendicular to the first skin 321 and the second skin 323.
  • the intermediate layer including the honeycomb core according to the present application is provided with two parallel sides of the hexagonal honeycomb core wall parallel to the y direction, and the honeycomb core wall does not have parallel sides in the x direction, so that the sounding substrate is in the x direction and the y direction.
  • FIG. 10 is a schematic diagram of the cross-sectional structure of the intermediate layer of the sounding substrate according to the present application.
  • the stretch ratio of the hexagonal section of the honeycomb core in the x-y direction is d/L.
  • the first direction is the x direction in the figure
  • the second direction is the y direction in the figure
  • d is the unit length of each honeycomb core in the x direction when multiple hexagonal honeycomb cores are arranged in sequence.
  • Length d refers to the smallest unit of length in the x direction after multiple hexagonal honeycomb cores are arranged in sequence, that is, multiple hexagonal honeycomb cores are repeatedly arranged in the x direction according to the law of unit length d; in Figure 10, the unit length d is six The distance d between the side 3 and side 6 perpendicular to the x-axis of the angular shape; L is the unit length of each honeycomb core in the y direction when multiple hexagonal honeycomb cores are arranged in sequence, and the unit length L refers to: multiple The smallest unit of length in the y direction after the hexagonal honeycomb cores are arranged in sequence, that is, multiple hexagonal honeycomb cores are repeatedly arranged in the y direction according to the law of the unit length L; in Figure 10, the unit length L is the hexagonal sides 1, 6 , 5 and 7 the sum of the distances in the y direction.
  • the stretch ratio in the x direction is 0.58:1.
  • all the honeycomb cores in the middle layer of the sounding substrate can be stretched with a preset stretching ratio in the x direction of the hexagonal cross section. Stretched so that the stretch ratio of the hexagonal interface of each honeycomb core is less than the predetermined threshold value of 0.58:1.
  • the stretch ratio d/L when the stretch ratio d/L is smaller, it means that the hexagonal section of the honeycomb core as shown in Figure 10 has a denser parallel wall distribution along the y direction, and the rigidity is stronger, so it is easy to transmit bending waves through vibration; In the x direction, the angle of the hexagonal honeycomb core wall is larger and the rigidity is weaker, so it is easy to absorb the conduction of bending wave vibration.
  • the intermediate layer realizes that the conduction performance of the sounding substrate is different in the x direction and the y direction, and the sounding substrate conducts bending waves in the x direction and the y direction.
  • the amplitude decay law is different. Specifically, in the embodiment shown in FIG. 10, when the stretch ratio in the xy direction is less than 0.58:1, the conduction performance of the sounding substrate for bending waves in the x direction is weaker than its conduction performance for bending waves in the y direction.
  • the first skin and the second skin are arranged on both sides of the middle layer, in order to match the conductivity of the middle layer in the xy direction, in the middle layer provided in this embodiment, the first skin and the second skin The fibers of the second skin are also set accordingly.
  • FIG. 11 is a schematic diagram of the structure of the first skin and the second skin of the sounding substrate according to the present application, as shown in FIG. 11, a schematic diagram of the surface fiber structure of the skin, which may be the first skin in the above-mentioned embodiment. Skin, or second skin.
  • the skin structure shown in FIG. 11 is an interwoven fiber structure in the xy direction, wherein the density of fibers parallel to the y direction and perpendicular to the x direction is greater than that of fibers parallel to the x direction and perpendicular to the y direction. density.
  • the fibers parallel to the x direction and perpendicular to the y direction may not be provided, that is, the first skin and the second skin It is a unidirectional fiber structure, all the fiber directions are parallel to the y direction and perpendicular to the x direction.
  • the structure of the first skin and the second skin as shown in FIG. 11 can cooperate with the conduction in the intermediate layer, so that when the acoustic substrate conducts bending waves, the amplitude attenuation laws in the x direction and the y direction are different.
  • the fibers of the first skin and the second skin have a denser parallel fiber distribution in the y direction, and their rigidity is stronger, so it is easier to conduct bending waves through vibration;
  • the fibers of the first and second skins are sparsely distributed in the x-direction parallel to the fibers, and their rigidity is weaker, so it is not easy to transmit bending waves through vibration. Therefore, when the sounding substrate 32 with the intermediate layer as shown in FIG. 10 and the first skin and the second skin as shown in FIG. 11 transmits bending waves, the amplitude attenuation of the bending waves in the x direction can be greater than The amplitude attenuation of the bending wave in the y direction.
  • the material of the honeycomb core may be paper, aramid, metal, or other composite materials.
  • the materials of the first skin and the second skin include but are not limited to glass fiber, carbon fiber, glass-carbon hybrid fiber, plastic, lightweight aluminum, and the like.
  • the thickness of the first skin and the second skin may be the same or different.
  • the thickness of the first skin and the second skin is in the range of 0.1 to 0.5 mm; or, optionally, the thickness of the first skin and the second skin is in the range of 0.18 to 0.36 mm.
  • the first direction and the second direction are mutually perpendicular x-y directions as an example for description.
  • the y direction can be the up and down direction of the electronic device
  • the x direction can be The left and right direction of the electronic device.
  • FIG. 12 is a schematic structural diagram of an electronic device with a display device according to the present application.
  • the electronic device shown in FIG. 12 includes the display device as described in any one of FIGS. 6 to 11.
  • the user can view the displayed content through the display structure 31 of the display device.
  • the user's viewing direction is the center and the display device is set on the left side of the same height.
  • the first electromagnetic exciter 331 is provided with a second electromagnetic exciter 332 on the right side of the same height of the display device.
  • the x direction corresponds to the left and right sides of the user's viewing direction in FIG. 12
  • the y direction corresponds to the user in FIG. 12 The upper and lower sides of the viewing direction.
  • FIG. 13 is a schematic diagram of the amplitude attenuation law when the display device conducts bending waves according to the present application.
  • FIG. 13 shows that in the screen shown in FIG. 12, under the excitation of the first electromagnetic exciter 331, the sounding substrate 32 The magnitude of amplitude attenuation in each direction.
  • the bending wave generated under the action of 331 spreads around the point P as the center, and the amplitude of the sounding substrate 32 at point P is the largest.
  • the stretch ratio of the honeycomb core of the intermediate layer is less than the preset threshold and the fiber density of the first and second skins in the y-direction is greater than The fiber density in the x direction, therefore, the amplitude attenuation value and attenuation speed of the amplitude at point P in the x direction is greater than the amplitude attenuation value and attenuation speed of the amplitude at point P in the y direction.
  • the bending waves excited by the electromagnetic exciter 331 and the electromagnetic exciter 332 and propagated through the sounding substrate 32 attenuate less when conducted in the vertical direction, and attenuate greatly when conducted in the left and right direction. Therefore, because the bending wave obtained by the electromagnetic exciter 331 on the left side excites the sounding substrate 32 quickly attenuates when propagating to the right side, the bending wave intensity on the left side is greater than the bending wave intensity on the right side, and the user can hear the left side of the screen. The sound on the side is greater than the sound on the right side of the screen, so that the sound of the left channel corresponding to the electromagnetic exciter 331 can be distinguished.
  • the bending wave obtained by the electromagnetic exciter 332 on the right excites the sounding substrate 32 quickly decays when it propagates to the left, the bending wave intensity on the right is greater than the bending wave intensity on the left, and the user can hear the screen at this time.
  • the sound on the right is larger than the sound on the left of the screen, so that the sound of the right channel corresponding to the electromagnetic exciter 332 can be distinguished.
  • the stretch ratio of the honeycomb core in the middle layer of the sounding substrate is set, and the fiber direction of the first skin and the second skin are set, so that the sounding substrate is in the conductive electromagnetic exciter.
  • bending waves they can have different amplitude attenuations in different directions of propagation, thereby improving the display device’s discrimination of the channels when the display device is sounded by the electromagnetic actuators corresponding to different channels, thereby improving the The user experience of the electronic device of the display device.
  • an isolation region may also be provided in the middle layer of the sounding substrate, so that the first electromagnetic exciter and the second electromagnetic exciter respectively generate and conduct bending waves by exciting the regions on both sides of the isolation region.
  • FIG. 14 is a schematic structural diagram of an embodiment of an intermediate layer of a sounding substrate according to the present application.
  • the middle layer of the sounding substrate 32 provided in the embodiment shown in FIG. 14 sequentially includes: the left side first electromagnetic exciter 331 corresponds to The first area, the isolation area and the second area corresponding to the second electromagnetic exciter 332 on the right.
  • the first area, the second area and the isolation area are all composed of honeycomb cores arranged in a hexagonal shape.
  • the stretch ratio of the honeycomb core used to compose the first region and the second region is greater than the stretch ratio of the honeycomb core used to compose the isolation region.
  • the amplitude of the bending wave When passing through the isolation region, the amplitude of the bending wave will change There is more attenuation than when there is no isolation zone, so that the bending wave intensity in the first area on the left is significantly greater than the bending wave intensity in the second area on the right. At this time, the user can clearly hear the sound on the left side of the screen, but basically There is no sound on the right side of the screen, so that the sound of the left channel corresponding to the electromagnetic exciter 331 can be distinguished more clearly. Similarly, when the electromagnetic exciter 332 on the right excites the second area of the sound-producing substrate 32, the bending wave will attenuate the amplitude of the bending wave more when it passes through the isolation area while propagating to the left.
  • the bending wave intensity of the second area is obviously greater than the bending wave intensity of the first area on the left. At this time, the user can clearly hear the sound on the right side of the screen, but basically cannot hear the sound on the left side of the screen, so that it can be distinguished more clearly
  • the electromagnetic exciter 332 corresponds to the sound of the right channel.
  • FIG. 15 is a schematic structural diagram of another embodiment of the intermediate layer of a sounding substrate according to the present application.
  • the sounding substrate 32 provided in the embodiment shown in FIG. 15 has a structure similar to that of the sounding substrate 32 shown in FIG. 14, except that The honeycomb core in the isolation area is filled with foam damping material. Similarly, the foam damping material in the isolation area is used to increase the amplitude attenuation of the acoustic substrate 32 when the bending wave is conducted in the x direction.
  • the present application also provides a stabilizer for supporting the electromagnetic exciter to prevent the electromagnetic exciter from deviating from the optimal working area and reduce the electromagnetic excitation
  • the torsion movement of the display device in different directions due to vibration reduces the distortion of the sound emitted by the display device under the action of the electromagnetic exciter.
  • FIGS. 16 and 17 where FIG. 16 is a schematic cross-sectional structure diagram of the stabilizer according to the present application after installation; FIG. 17 is a schematic diagram of the installation structure of the stabilizer and electromagnetic exciter according to the present application.
  • the stabilizer 7 provided by this embodiment includes a bracket 72 and a plurality of sheet-shaped elastic feet 71 extending away from the bracket 72.
  • each leg 71 extends in a direction away from the bracket 72, and the leg 71 is distributed on the circumference of a first circle (not shown in FIGS. 17 and 18), and the center of the first circle is located on the axis of the bracket 72 (FIG. 17 and FIG. 18 are not marked), the first circle can be any circle whose center is on the axis of the bracket 72.
  • the bracket 72 has a first fixing position (not shown in FIGS. 17 and 18).
  • the axis of the first fixing position can be collinear with the axis of the bracket 72.
  • the vibration output end of the electromagnetic exciter 331 passes through the first fixing position of the bracket 72.
  • the fixed position abuts against the sounding substrate 32.
  • the structure of the stabilizer may be referred to as a "Spider structure" due to its outwardly extending legs.
  • the support 72 of the stabilizer has a cavity whose shape matches the shape of the electromagnetic exciter 331 and is used to accommodate and fix the electromagnetic exciter.
  • the shape of the cavity is circular; when the electromagnetic exciter 331 is elliptical, the shape of the cavity is ellipse.
  • the stabilizer 7 further includes a damping block 8 which is arranged at one end of the leg 71, the number of the damping block 8 is less than or equal to the number of the leg 71, and the damping block 8 is fixedly connected to the sounding base plate 32.
  • the leg 71 may extend in the circumferential direction of the stabilizer 7 (that is, it extends away from the center of the stabilizer 7), or the leg 72 may extend in a direction away from the axis of the stabilizer 7 (that is, the leg can Radiation extension).
  • the stabilizer can jointly form a mechanical low-pass filter position stabilizer for vibration from the flat plate, and the fulcrums of the elastic feet of the position stabilizer are respectively affected by bending waves. Different random vibrations remain stable after being filtered by a mechanical low-pass filter, thereby maintaining the stability of the electromagnetic exciter 331 in the bracket 72.
  • the stabilizer 7 can make the electromagnetic exciter 331 and the sounding substrate 32 It is in a relatively stable state, and it is ensured that the electromagnetic exciter 331 will not produce axial rotation. Further, the structure of the stabilizer 7 enables the stabilizer 7 to have the function of a mechanical low-pass filter (similar to a shock absorber), so that the vibration is transmitted to the feet 72 of the stabilizer 7 and then filtered without affecting the electromagnetic excitation
  • the device 331 vibrates by itself.
  • the electromagnetic exciter 331 has a driving coil tube and a magnetic pole device.
  • the magnetic pole device can generate a magnetic field.
  • the driving coil tube can generate a relatively large electromotive force in the center of the magnetic field to drive the coil tube to actuate.
  • the stabilizer 7 can prevent the drive coil of the electromagnetic exciter from deviating from the center of the magnetic field due to the vibration of the sounding substrate, thereby ensuring that the electromagnetic exciter is in the best working condition, and the stabilizer 7 can ensure that the electromagnetic exciter will not Generate axial twist, thereby greatly reducing the sound distortion of the sounding substrate.
  • FIG. 18 is a schematic structural diagram of a stabilizer according to another structure of the present application.
  • Fig. 18 shows stabilizers of several other structures.
  • the stabilizer can have 3 or 4 legs, and the legs can extend in a direction away from the support or extend radially.
  • the implementation is the same as the principle, and will not be repeated.
  • the display device provided in the present application further includes a screen frame to support the display device.
  • FIG. 19 is a schematic cross-sectional structure diagram of a support structure according to an embodiment of the present application, wherein the edges of the sounding substrate 32 and the display structure 31 are wrapped by the suspension structure 6 and then fixed by the support mechanism 5.
  • the suspension structure is used to accommodate the sounding substrate 32 and the display structure 31, and the suspension structure may be a styrofoam strip.
  • the supporting mechanism is a screen frame.
  • the supporting mechanism 5 further includes a supporting structure 501 and a supporting structure 502 on the side of the sounding substrate 32 close to the electromagnetic exciter to jointly support and fix the electromagnetic exciter on the side of the sounding base 32.
  • FIG. 20 is a schematic cross-sectional structure diagram of a supporting structure according to another embodiment of the present application
  • FIG. 21 is a schematic structural diagram of a supporting structure according to another embodiment of the present application.
  • the supporting structure of this embodiment includes: a back cover 503, a buffer component 504 and a sealing buffer material 505.
  • the buffer member 504 is a sound damping isolation ring, which is realized by EVA foam material.
  • FIG. 22 is a specific implementation of the display device according to the present application.
  • FIG. 23 is a schematic diagram of a disassembled structure of a specific implementation manner of the display device according to the present application.
  • Fig. 23 shows the arrangement of the electromagnetic exciter, the frame structure and the buffer in an actual electronic device with a display device. In the example shown in FIG.
  • the display device is provided with a plurality of electromagnetic exciters with different excitation frequencies according to the playback performance requirements of the electronic device, so as to excite the sounding substrate through different electromagnetic exciters to generate bending waves with different resonance frequencies. This broadens the frequency response of the display device.
  • the sounding substrate of the display device provided in this embodiment has different conduction properties in the x direction and the y direction shown in the figure, and furthermore, when the sounding substrate conducts bending waves, the amplitude attenuation laws in the x direction and the y direction are different.
  • the right channel of the display device in the figure corresponds to the electromagnetic exciters a, c, and d in the negative x direction, that is, the electromagnetic exciters a, c, and d are used to excite the display device to generate bending waves corresponding to the right channel sound signal;
  • the left channel of the middle display device corresponds to the electromagnetic exciters b, e, and f in the positive x direction, that is, the electromagnetic exciters b, e, and f can be used to excite the display device to generate bending waves corresponding to the left channel sound signal.
  • Electromagnetic exciters with different properties are arranged in a diagonal line, and the electromagnetic exciter at the upper end of the diagonal line along the positive y direction is closer to the boundary of the display device.
  • the electromagnetic exciters corresponding to the left sound channel and the electromagnetic exciters corresponding to the right sound channel are generally arranged in a "v" shape on the display device.
  • the specific structure of the display device in FIG. 22 can be referred to as shown in FIG. 23, in which the display structure 31 of the display device and the sounding substrate 32 are attached and arranged, and the edges of the two are wrapped by the double-sided foam tape 6 After that, it is fixed by the supporting mechanism 5.
  • the electromagnetic exciter a and the electromagnetic exciter b are fixed by the support structure 501.
  • the two sides of the support structure 501 are arranged between the longer sides of the support mechanism 5.
  • the specific connection between the support structure 501 and the electromagnetic exciter can be Refer to Figure 19.
  • the electromagnetic exciters c, d, and the electromagnetic exciters e, f are fixed by the back cover 503 and the buffer component 504.
  • each electromagnetic exciter as shown in the figure is mounted on the sounding substrate 32 through a stabilizer 7.
  • FIG. 22 and FIG. 23 are only exemplary descriptions of the display device in one implementation manner.
  • the installation methods and position setting methods of different numbers of electromagnetic exciters are all described in this Within the protection scope of the application, for example, FIG. 24 is a schematic structural diagram of other specific implementations of a display device according to the present application.
  • the left channel and the right channel each correspond to two electromagnetic exciters, and the two electromagnetic exciters are arranged on the same supporting structure.
  • the left channel and the right channel each correspond to two electromagnetic exciters, and the two electromagnetic exciters are arranged in the same back cover and buffer component.
  • the left and right channels each correspond to three electromagnetic exciters, and only one of the three electromagnetic exciters is arranged on the supporting structure.
  • the left channel and the right channel each correspond to three electromagnetic exciters, and two of the three electromagnetic exciters are arranged in the same back cover and buffer part, and the other electromagnetic exciter is arranged in A back cover and cushioning parts.
  • FIG. 25 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 200 provided in this embodiment includes: the display device as described in any one of FIGS. 6 to 24 2001.
  • the electronic devices include but are not limited to the following devices: mobile phones, tablet computers, desktop computers, televisions, and other electrical appliances with display screens, such as washing machines, refrigerators, etc.
  • the embodiments of the present application provide a display device and a sound-producing screen of an electronic device.
  • the display device includes a display structure, a sound-producing substrate, and at least one electromagnetic exciter; wherein the sound-producing substrate and the display structure are attached to each other, and at least one electromagnetic excitation
  • the electromagnetic exciter is attached to one side of the sounding substrate, and the electromagnetic exciter is used to send a magnetic excitation signal to the sounding substrate and generate bending waves at the place where the electromagnetic exciter and the sounding substrate are attached; the sounding substrate is used to receive and conduct the magnetic excitation signal generated
  • the bending wave makes the sounding substrate and the display structure vibrate and sound; when the sounding substrate conducts bending waves, the amplitude attenuation law of the bending wave in the first direction is different from the amplitude attenuation law of the bending wave in the second direction.
  • the sounding substrate provided in the display device or the soundable screen when the bending wave generated by the electromagnetic exciter is conducted, it can have different amplitude attenuation in different propagation directions, thereby improving the display device or the soundable screen.
  • the display device or the soundable screen distinguishes the sound channel, thereby improving the user experience of the electronic device with the above-mentioned display device or soundable screen.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

一种显示装置(2001)及可发声屏幕,通过发声基板(32)的设置,使得发声基板(32)在传导电磁激励器(33)所产生的弯曲波时,能够在不同的传播方向的具有不同的振幅衰减,从而提高显示装置(2001)在被不同声道对应的电磁激励器(33)作用下发声时对于声道的区分度,进而提高了具有该显示装置(2001)及可发声屏幕的电子设备(200)的用户体验。

Description

显示装置及可发声屏幕
相关申请交叉引用
本申请要求于2019年6月17日提交中国专利局、申请号为201910522902.4、发明名称为“显示装置及可发声屏幕”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电子技术,尤其涉及一种显示装置及可发声屏幕。
背景技术
随着电子技术的不断发展以及客户需求的不断提高,电子设备不断向大尺寸、轻薄化的方向发展,例如:手机、平板电脑、电视等电子设备,在需要保证电子设备整体更加轻薄的同时,电子设备的内部还需要设置扬声器等发声装置。由于受到电子设备内部空间的局限,留给扬声器的安装位置空间较小,使得电子设备中安装的扬声器通常仅能满足普通的播放功能,不能实现更多的的音效效果,例如重低音等,导致了扬声器的播放性能较差。
发明内容
本公开提供一种显示装置及可发声屏幕,能够提高显示装置在被不同声道对应的电磁激励器作用下发声时对于声道的区分度,进而提高具有显示装置及可发声屏幕的电子设备的用户体验。
本公开第一方面提供一种显示装置,包括:
显示结构、发声基板和至少两个电磁激励器;其中,所述发声基板和所述显示结构贴合设置,所述至少两个电磁激励器贴合在所述发声基板的侧边;
所述显示结构用于接收光信号并进行显示;
所述至少两个电磁激励器分别用于向所述发声基板发送磁励信号,并在所述至少两个电磁激励器与所述发声基板贴合处产生弯曲波;
所述发声基板用于接收并传导所述弯曲波,使得所述发声基板振动发声;
所述弯曲波在所述发声基板中传导时,沿第一方向的振幅衰减规律与沿第二方向的振幅衰减规律不同,所述第一方向与所述第二方向不同。
在本公开第一方面一实施例中,所述弯曲波在所述发声基板中传导时,沿所述第一方向的振幅衰减速度与沿所述第二方向的振幅衰减速度不同。
在本公开第一方面一实施例中,所述发声基板包括:第一蒙皮、第二蒙皮和中间层;所述中间层包括由多个单元孔格构成的蜂窝芯,所述第一蒙皮和所述第二蒙皮分别贴合设置在所述中间层的两端。
在本公开第一方面一实施例中,所述至少两个电磁激励器对称布置,所述第二方向与所述第一方向垂直,所述中间层的蜂窝芯中单元孔格的轴向与所述第一方向与所述第二方向构成的平面垂直;所述蜂窝芯沿所述第二方向的拉伸比小于预设阈值,所述拉伸比为d/L,其中,d为所述蜂窝芯中的多个六角形单元孔格依次排列时,所述蜂窝芯在所述第一方向上 的最小单位长度;L为所述多个六角形单元孔格依次排列时,所述蜂窝芯在所述第二方向上的最小单位长度。
在本公开第一方面一实施例中,所述第一蒙皮在所述第一方向的纤维密度,小于所述第一蒙皮在第二方向的纤维密度,其中,所述第一方向对应用户观看方向的左侧和右侧,所述第二方向对应用户观看方向的上侧和下侧;
所述第二蒙皮在第一方向的纤维密度,小于所述第二蒙皮在第二方向的纤维密度,其中,所述第一方向对应用户观看方向的左侧和右侧,所述第二方向对应用户观看方向的上侧和下侧。
在本公开第一方面一实施例中,所述发声基板在传导所述弯曲波时,所述弯曲波沿所述第一方向的振幅衰减数值,大于所弯曲波沿所述第二方向的振幅衰减数值。
在本公开第一方面一实施例中,所述预设阈值为0.58:1;
在本公开第一方面一实施例中,所述至少两个电磁激励器包括第一电磁激励器和第二电磁激励器,所述中间层包括沿所述第一方向依次设置的第一区域、隔离区域以及第二区域,所述第一电磁激励器设置于所述第一区域,所述第二电磁激励器设置于所述第二区域,所述第一区域的所述拉伸比和所述第二区域的所述拉伸比均大于所述隔离区域的所述拉伸比。
在本公开第一方面一实施例中,所述第一蒙皮和所述第二蒙皮的厚度范围为0.18~0.36mm。
在本公开第一方面一实施例中,还包括:
至少两个稳定器,用于支撑所述至少两个电磁激励器,所述至少两个电磁激励器中的第一电磁激励器的振动输出端均通过所述至少两个稳定器中的第一稳定器与所述发声基板抵接。
在本公开第一方面一实施例中,所述第一稳定器包括支架和多个向远离所述支架方向延伸的片状弹性支脚,所述多个弹性支脚中的第一支脚向远离所述支架的方向回旋延伸,所述支架包括第一固定位,所述第一固定位与所述支架的轴向共线,所述第一电器激励器的振动输出端通过对应的所述第一固定位与所述发声基板抵接。
在本公开第一方面一实施例中,所述第一稳定器还包括设置于所述第一支脚远离所述支架一端的阻尼块,所述阻尼块与所述发声基板固定连接。
本公开第二方面提供一种可发声屏幕,包括显示结构、发声基板和至少两个电磁激励器;其中,所述发声基板和所述显示结构贴合设置,所述至少两个电磁激励器贴合在所述发声基板一侧;
所述显示结构用于接收光信号并进行显示;
所述至少两个电磁激励器分别用于在所述至少两个电磁激励器与所述发声基板贴合处产生弯曲波;
所述发声基板用于接收并传导所述弯曲波,使得所述发声基板振动发声;所述发声基板包括:第一蒙皮、第二蒙皮和中间层;所述中间层包括由多个单元孔格构成的蜂窝芯,所述第一蒙皮和所述第二蒙皮分别贴合设置在所述中间层的两端。
附图说明
为了更清楚地说明本公开实施例或相关技术,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例, 对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种具有扬声器的显示装置的结构示意图;
图2为另一种具有扬声器的显示装置的结构示意图;
图3为一种显示装置的剖面结构示意图;
图4为一种显示装置的拆解结构示意图;
图5为一种显示装置在电磁激励器作用下产生的弯曲波在传播时的振幅分布示意图;
图6为根据本申请的显示装置一实施例的剖面结构示意图;
图7为根据本申请的显示装置一实施例的拆解结构示意图;
图8为根据本申请的发声基板的中间层的结构示意图;
图9为根据本申请的发声基板的中间层、第一蒙皮以及第二蒙皮的贴合结构示意图;
图10为根据本申请的发声基板的中间层剖面结构示意图;
图11为根据本申请的发声基板的第一蒙皮和第二蒙皮的结构示意图;
图12为根据本申请的具有显示装置的电子设备的结构示意图;
图13为根据本申请的显示装置传导弯曲波时的振幅衰减规律示意图;
图14为根据本申请的发声基板的中间层一实施例的结构示意图;
图15为根据本申请的发声基板的中间层另一实施例的结构示意图;
图16为根据本申请的稳定器安装后的剖面结构示意图;
图17为根据本申请的稳定器与电磁激励器的安装结构示意图;
图18为根据本申请的其他结构的稳定器的结构示意图;
图19为根据本申请的支撑结构一实施例的剖面结构示意图;
图20为根据本申请的支撑结构另一实施例的剖面结构示意图;
图21为根据本申请的支撑结构另一实施例的结构示意图;
图22为根据本申请的显示装置一具体实现方式的结构示意图;
图23为根据本申请的显示装置一具体实现方式的拆解结构示意图;
图24为根据本申请的其他显示装置具体实现方式的结构示意图;以及
图25为根据本申请的电子设备一实施例的结构示意图。
具体实施方式
提供示例性实施例以使本公开是透彻的且将本公开的范围完全传达给本领域技术人员。为了透彻理解本公开实施例,阐述了许多具体细节,例如具体组件,具体设备和具体方法的示例。对本领域技术人员显而易见的是,不需要采用具体细节,示例性实施例可以以许多不同的形式来体现,并且都不应被解释为限制本公开的范围。在一些示例性实施例中,公知过程、公知的设备结构和公知技术并未详细描述。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本文中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。术语“包括”、“包含”和“具有”或者其任何其他变体,意在涵盖非排他性的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地包括对于这些过程、方法、产品或设备固有的其他步骤或单元。除非明确标识为执行顺序,否则本文描述的方法步骤、过程和操作不应被解释为必须以所讨论或图示的特定顺序执行。还 应理解可以采用附加步骤或替代步骤。
尽管本文可以使用术语第一,第二,第三等来描述各种元件、组件、区域、层和/或部分,但是这些元件、组件、区域、层和/或部分不应受这些术语的限制。这些术语仅可用于区分一元件、组件、区域、层或部分与另一元件、组件、区域、层或部分。除非上下文明确指出,否则本文中使用的诸如“第一”、“第二”和其他数字之类的术语并不暗示顺序或次序。因此,在不脱离示例性实施例的教导的情况下,下面讨论的第一元件,第一组件,第一区域,第一层或第一部分可以被称为第二元件,第二组件,第二区域,第二层或第二部分。
为了方便起见,在本文中可以使用空间相对术语,例如“内部”、“外部”、“之下”、“下方”、“下部”、“上方”、“上部”等。用于描述图中所示的一个元件或特征与另一个或多个元件或特征的关系。空间相对术语除了附图中描绘的方位之外,还可以意图涵盖使用或操作中的设备的不同方位。例如,如果附图中的装置被翻转,则被描述为在其他元件或特征“之下”或“下方”的元件将被重新定向在其他元件或特征“之上”。因此,示例性术语“在...下”可以包括上和下两个相对方位。可以其他方式(旋转90度或其他方向)为设备定向,由此解释本文所用的空间相对描述语。
在一些技术中,电子设备通过“平板发声技术”,在显示屏幕所显示画面的后方设置电磁激励器,在电磁激励器的作用下,显示屏幕通过模态共振发出的弯曲波进行发声。即电子设备中的显示屏幕即能够用于显示,又能够用于代替扬声器发声。因此,电子设备中不需要再为扬声器设置安装位置,以实现电子设备更加轻薄化的设计。
但是,在相关技术中,电子设备的显示屏幕,由于电磁激励器通过显示屏幕的模态共振的整体振动方式发声,即使显示屏幕在不同声道对应的多个电磁激励器的作用下发声,用户也无法明显区分显示屏幕所发声所对应的声道,导致了显示屏幕在发声时的声道的区分度较差,进而影响电子设备用户的体验。
图1为一种具有扬声器的显示装置的结构示意图,如图1所示的电子设备以电视机11为例,电视机11包括:显示屏幕12和扬声器13;其中,扬声器13设置在电视机11内部的显示屏幕12后方。扬声器13通常设置在用户观看显示屏幕12方向的左右两侧,提供左右声道声音。
随着市场上用户对于电子设备的需求逐渐向轻薄化的方向发展,以及电子技术的不断进步,越来越多的电子设备中显示屏幕、基础框架等关键组件能够以较薄的厚度实现,从而降低电子设备的整体厚度。因此,在如图1所示的电视机11内部,除了设置一些用于显示的装置,给扬声器13预留的空间越来越小,电视机11的生产商只能够减少扬声器13的例如重低音等音效功能,以减小扬声器13在电视机11中所占的空间。使得电视机11中安装的扬声器13仅能满足普通的播放功能,不能实现更多的音效效果,降低了扬声器13的播放性能。
同时,激光投影电视等电子设备为了追求更好的影音效果,通常会设置独立的投影屏幕,并设置独立的音箱作为扬声器,例如,图2为另一种具有扬声器的显示装置的结构示意图,其中,激光电视盒子21既可以将激光光束投射到显示屏幕22上供用户观看视频画面,还可以向连接的外置扬声器23提供声音信号,使得扬声器23播放音频。在如图2所示的电子设备中,由于扬声器23需要独立设置,因此扬声器23可以通过较大的体积实现更多的音效效果,则相应地,电子设备的扬声器23需要占用更多外部空间。
如图1和如图2所示的电子设备中,扬声器除了存在位置局限性等问题,无论是电子 设备内置的扬声器,还是外接的扬声器,扬声器所播放的声音均来自于显示屏幕之外,不具备良好的视听重放效果。
因此,一些技术中的电子设备具有了“可发声屏幕”,例如,可参考图3和图4,图3为一种显示装置的剖面结构示意图;图4为一种显示装置的拆解结构示意图。其中,该显示装置包括:光学膜片31、发声基板32和电磁激励器33。光学膜片31可用于接收并显示视频或图像内容;在电磁激励器33的作用下,发声基板32通过模态共振发出的弯曲波进行发声。即电子设备中的显示装置即能够用于显示,又能够用于代替扬声器发声。因此,电子设备中不需要再为扬声器设置安装位置,也不需要用户再外接扬声器,从而实现电子设备更加轻薄化的设计。同时,由于发声基板32的面积最大可设置为等于光学膜片31的面积,而越大的发声装置可以带来更好的例如重低音等音效效果,显示装置还具有较强的播放性能。
但是,在现有如图3和图4所示的显示装置中,由于发声基板32整体设置,无论设置多少电磁激励器33,每个电磁激励器33均通过作用同一发声基板32的方式,使得发声基板32通过模态共振发出的弯曲波而发声。例如,图5为一种显示装置在电磁激励器作用下产生的弯曲波在传播时的振幅分布示意图,如图5示出了弯曲波在发声基板32中传播的振幅示意图,其中,发声基板32在电磁激励器33作用下产生弯曲波,发声基板32产生的弯曲波以电磁激励器33和发声基板32贴合处为中心向四周扩散,并覆盖整个发声基板32。图中发声基板32上的颜色越深,表示该位置处弯曲波的振幅向观察方向上方的振幅越大;颜色越浅,表示该位置处弯曲波的振幅向观察方向下方的振幅越大。同时,图5中的弯曲波A的频率为200Hz,弯曲波B的频率为1000Hz,弯曲波C的频率为10000Hz。
则从图5中可以看出,无论弯曲波的频率如何变化,弯曲波在发声基板中扩散时,向各个方向的振幅衰减均不大,即使在图中远离电磁激励器33的最右侧位置,弯曲波的振幅与电磁激励器33附近的振幅也基本相同。也就是说发声基板32在电磁激励器33的作用下产生的弯曲波,在发声基板32中传播时所有位置的振幅分布较为均匀,导致了发声基板整体均发出强度较为相似的声音。使得用户听到显示装置所发出的声音时,带来的直观感受是整个屏幕的所有位置都在发出相似的声音,而无法区分不同电磁激励器所对应的声道,进而导致了显示装置在发声时的声道的区分度较差,影响电子设备用户的体验。
因此,本申请提供一种显示装置及电磁激励器,通过设置的发声基板在传导电磁激励器所产生的弯曲波时,能够在不同的传播方向的具有不同的振幅衰减,从而提高显示装置在被不同声道对应的电磁激励器作用下发声时对于声道的区分度,进而提高了具有该显示装置及电磁激励器的电子设备的用户体验。
下面以具体的实施例对本公开的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图6为根据本申请的显示装置一实施例的剖面结构示意图;图7为根据本申请的显示装置一实施例的拆解结构示意图。在如图6和图7所示的实施例中,以显示装置为激光电视为例进行说明,在其他实施例中,可以是激光电视之外的其他类型的显示设备。
具体地,本实施例提供的显示装置包括:显示结构31、发声基板32和至少一个电磁激励器33。其中,显示结构31和发声基板32的一侧贴合设置,至少一个电磁激励器33贴合设置在发声基板32的另一侧。所述发声基板32的表面积等于或小于所述显示结构31的表面积。
第一方面,该显示装置的显示结构31用于实现显示装置的显示功能,用于接收并显示 光信号。具体地,本实施例提供的显示结构31包括:液晶显示器(Liquid Crystal Display,简称:LCD)、有机发光二极管(Organic Light-Emitting Diode,简称:OLED)、激光投影硬屏、图像显示膜片或触摸控制功能膜片,所述图像显示膜片具体包括具有菲涅尔、条栅或微透镜阵列等光学微结构的膜片。本实施例中以显示结构为矩形结构为示例进行说明,在其他实施例中显示结构可以是其他形状,例如,所述显示结构还可以是弧形结构。
第二方面,该显示装置的显示结构31、发声基板32和至少一个电磁激励器33相互配合能够实现显示装置的发声功能。在如图6和图7所示的示例中,以电磁激励器33包括:第一电磁激励器331和第二电磁激励器332为例进行说明。以电磁激励器331为例,电磁激励器331用于接收待播放的声音对应的电信号,并将电信号转换为机械振动后,将机械振动作用于发声基板32上。发声基板32在电磁激励器331的机械振动的作用下通过模态共振产生弯曲波,发声基板32上产生的弯曲波以电磁激励器331和发声基板32贴合处为中心向四周360度的方向范围扩散。发声基板32以及发声基板32所贴合的显示结构31在发声基板32中传播的弯曲波的作用下,以图6所示剖面图的上下方向往复振动从而实现发声。
特别地,本实施例提供的发声基板32,在以电磁激励器331和发声基板32贴合处为中心向四周360度的方向传导弯曲波时,发声基板32对于弯曲波在第一方向所造成的振幅衰减规律,与发声基板32对于该弯曲波在第二方向所造成的振幅衰减规律不同。其中,所述衰减规律可以是振幅衰减的大小变化方式。
可选地,为了实现发声基板32在传导弯曲波时不同方向的振幅衰减规律不同,本实施例中可以通过发声基板32的材料设置,使得发声基板在第一方向对于弯曲波的传导性能,与发声基板在第二方向对于弯曲波的传导性能不同。即,本实施例提供的发声基板32具有特定的正交和/或分区强度各向异性的力学结构及传导性能。
在一种具体的实现方式中,如图6和图7所示,本实施例提供的发声基板具体包括:第一蒙皮321、中间层322和第二蒙皮323。可选的,第一蒙皮321和第二蒙皮323分别贴合设置在中间层322两侧,第一蒙皮321、中间层322和第二蒙皮323的表面积相同;可选的,第一蒙皮322和第二蒙皮323可以覆盖中间层322的至少部分。
例如,图8为根据本申请的发声基板的中间层的结构示意图,如图8所示,本实施例提供的发声基板32由多个呈六角形排列的蜂窝芯3221连接而成,除了位于该结构四周的蜂窝芯,每个蜂窝芯3221的六个边对应的侧面,分别与其他六个蜂窝芯的对应的侧面相连接。并且,图9为根据本申请的发声基板的中间层、第一蒙皮以及第二蒙皮的贴合结构示意图,如图9所示,在发声基板中,中间层322所包括的蜂窝芯3221的截面与第一蒙皮321和第二蒙皮323垂直设置。进一步地,根据本申请的包括蜂窝芯的中间层通过设置六角形蜂窝芯壁的两个平行边与y方向平行,在x方向蜂窝芯壁不存在平行边,使得发声基板在x方向与y方向具有不同传导性能。具体通过调整蜂窝芯3221截面的六角形拉伸比,实现不同方向的传导性能不同。具体地,图10为根据本申请的发声基板的中间层剖面结构示意图。如图10所示,蜂窝芯的六角形截面在x-y方向的拉伸比为d/L。其中,记第一方向为图中的x方向、第二方向为图中的y方向;则d为多个六角形蜂窝芯依次排列时,x方向上每个蜂窝芯的单位长度,所述单位长度d指:多个六角形蜂窝芯依次排列后在x方向的最小长度单位,即多个六角形蜂窝芯在x方向上按照单位长度d的规律重复排列;在图10中单位长度d为六角形的与x轴垂直的边③和边⑥之间的距离d;L为多个六角形蜂窝芯依次排列时,y方向上每个蜂窝芯的单位长度,所述单位长度L指:多个六角形蜂窝芯依次排列后 在y方向的最小长度单位,即多个六角形蜂窝芯在y方向上按照单位长度L的规律重复排列;在图10中单位长度L为六角形的边①、⑥、⑤和⑦在y方向的距离之和。
由于对于标准的六角形,在x方向的拉伸比为0.58:1。则在本实施例中,为了使得发声基板在不同方向的传导性能不同,则可以将发声基板的中间层中的所有蜂窝芯,均以截面六角形的x方向以预设的拉伸比进行拉伸,使得每个蜂窝芯的六角形界面的拉伸比均小于预定阈值0.58:1。
其中,当拉伸比d/L越小,则说明如图10所示的蜂窝芯的六角形截面沿y方向上有更密集平行壁分布,刚度更强,因此容易通过振动而传导弯曲波;在x方向上六角形蜂窝芯壁的夹角更大,刚度更弱,因此容易吸收弯曲波振动的传导。
因此,如图10所示的中间层通过蜂窝芯拉伸比的设置,实现了发声基板在x方向和y方向的传导性能不同,进而发声基板在传导弯曲波时,在x方向和y方向的振幅衰减规律不同。具体地,如图10所示的实施例中,当x-y方向的拉伸比小于0.58:1时,发声基板在x方向对于弯曲波的传导性能弱于其在y方向对于弯曲波的传导性能,能够造成设置如图10所示中间层的发声基板在传输弯曲波时,弯曲波在x方向的振幅衰减大小,大于弯曲波在y方向的振幅衰减大小。
同时,由于第一蒙皮和第二蒙皮贴合在中间层两侧设置,因此为了配合中间层在x-y方向上的传导性能,本实施例提供的中间层中,对于第一蒙皮和第二蒙皮的纤维也进行相应的设置。
例如,图11为根据本申请的发声基板的第一蒙皮和第二蒙皮的结构示意图,如图11所示的蒙皮表面纤维结构示意图,该蒙皮可以是上述实施例中的第一蒙皮,或者第二蒙皮。具体地,如图11所示的蒙皮结构为x-y方向上的交织纤维结构,其中,平行于y方向且垂直于x方向的纤维的密度,大于平行于x方向且垂直于y方向的纤维的密度。
或者,在本实施例提供的另一种第一蒙皮和第二蒙皮的结构中,可以不设置平行于x方向且垂直于y方向的纤维,即,第一蒙皮和第二蒙皮为单向纤维结构,所有纤维的方向均平行于y方向且垂直于x方向设置。
因此,如图11所示的第一蒙皮和第二蒙皮的结构,能够配合中间层中的传导,使得发声基板在传导弯曲波时,x方向和y方向的振幅衰减规律不同。具体地,如图11所示的实施例中,第一蒙皮和第二蒙皮的纤维在y方向具有更密集的平行纤维分布,其刚度更强,因此更加容易通过振动而传导弯曲波;而第一蒙皮和第二蒙皮的纤维在x方向平行纤维分布的较为稀疏,其刚度更弱,因此不容易通过振动而传导弯曲波。因此,能够使得设置如图10所示中间层、设置如图11所示的第一蒙皮和第二蒙皮的发声基板32在传输弯曲波时,弯曲波在x方向的振幅衰减大小,大于弯曲波在y方向的振幅衰减大小。
可选地,在上述实施例中,所述的蜂窝芯的材质可以是纸质、芳纶、金属、或其它复合材料。
可选地,在上述实施例中,第一蒙皮和第二蒙皮的材质包括但不限于玻璃纤维、碳纤维、玻璃-碳混合纤维、塑料、轻质铝等。
更为具体地,第一蒙皮和第二蒙皮厚度可以相同或不同。可选地,第一蒙皮和第二蒙皮的厚度范围为:0.1~0.5mm;或者,可选地,第一蒙皮和第二蒙皮的厚度范围为0.18~0.36mm。
进一步地,在如图6到图11所示的实施例中,以第一方向和第二方向为相互垂直的x-y方向为例进行说明。在一些应用场景中,由于电子设备所播放的声音左右声道设置的需求, 本申请所述的x-y方向在一种具体的实现方式中,y方向可以是电子设备的上下方向,x方向可以是电子设备的左右方向。
例如,图12为根据本申请的具有显示装置的电子设备的结构示意图,如图12所示的电子设备包括如图6到图11任一项所述的显示装置。用户能够通过显示装置的显示结构31观看所显示的内容,同时,由于电子设备所播放的声音需要以左右声道进行设置,因此,以用户观看方向为中心,在显示装置同一高度的左侧设置第一电磁激励器331,在显示装置同一高度的右侧设置第二电磁激励器332。
则对于如图12所示的电子设备使用如图6-图11中任一所述的显示装置时,x方向对应图12中用户观看方向的左侧和右侧,y方向对应图12中用户观看方向的上侧和下侧。
具体地,图13为根据本申请的显示装置传导弯曲波时的振幅衰减规律示意图,如图13示出了如图12所示的屏幕中,在第一电磁激励器331的激励下,发声基板32各方向的振幅衰减大小。其中,在x-y方向上,记图中x=0,y=0的P(0,0)点为第一电磁激励器331贴合发声基板32的位置,则发声基板32在第一电磁激励器331作用下产生的弯曲波以P点为中心向四周扩散,并且发声基板32在P点的振幅最大。将某一时刻P点的振幅记为100%*D,则弯曲波在发声基板32中以P点为中心向四周360度进行扩散时,振幅逐渐衰减,从100%*D逐渐衰减为90%*D、80%*D……。尤其单独针对x方向和y方向,表面波在这两个方向传导时,由于中间层的蜂窝芯的拉伸比小于预设阈值且第一蒙皮和第二蒙皮在y方向的纤维密度大于x方向的纤维密度,因此,P点处的振幅在x方向的振幅衰减数值以及衰减速度,大于P点处的振幅在y方向的振幅衰减数值以及衰减速度。
对于如图12所示的电子设备,电磁激励器331和电磁激励器332激励并通过发声基板32传播的弯曲波在上下方向传导时衰减较小,而在左右方向传导时衰减较大。因此,由于左侧的电磁激励器331激励发声基板32得到的弯曲波向右侧传播时很快衰减,使得左侧的弯曲波强度大于右侧的弯曲波强度,此时用户能够听到屏幕左侧的声音大于屏幕右侧的声音,从而能够分辨出电磁激励器331对应的左声道的声音。同样地,由于右侧的电磁激励器332激励发声基板32得到的弯曲波向左侧传播时很快衰减,使得右侧的弯曲波强度大于左侧的弯曲波强度,此时用户能够听到屏幕右侧的声音大于屏幕左侧的声音,从而能够分辨出电磁激励器332对应的右声道的声音。
因此,在本实施例提供显示装置中,通过发声基板中间层蜂窝芯拉伸比的设置,以及第一蒙皮和第二蒙皮纤维方向的设置,使得发声基板在传导电磁激励器所产生的弯曲波时,能够在不同的传播方向的具有不同的振幅衰减,从而提高显示装置在被不同声道对应的电磁激励器作用下发声时,显示装置对于声道的区分度,进而提高了具有该显示装置的电子设备的用户体验。
进一步地,在上述如图12和图13所示实施例的基础上,为了更进一步地增加使得弯曲波在x方向传播时的振幅衰减大小,使用户能够更加明确地区分左右声道,本申请一实施例中,还可以在发声基板的中间层中设置隔离区,使得第一电磁激励器和第二电磁激励器分别通过激励隔离区两侧的区域产生并传导弯曲波。
例如,图14为根据本申请的发声基板的中间层一实施例的结构示意图,如图14所示的实施例中提供的发声基板32的中间层依次包括:左侧第一电磁激励器331对应的第一区域、隔离区域和右侧第二电磁激励器332对应的第二区域。其中,第一区域、第二区域和隔离区域均由呈六角形排列的蜂窝芯组成。特别地,用于组成第一区域和第二区域的蜂窝芯的拉伸比,大于用于组成隔离区域的蜂窝芯的拉伸比。
结合如图10所示的上述分析可知,当中间层隔离区域的蜂窝芯拉伸比越小时,发声基板在x方向上传导弯曲波时,振幅的衰减越大。则对于设置如图14中发声基板32的电子设备,左侧的电磁激励器331激励发声基板32的第一区域得到的弯曲波向右侧传播过程中,经过隔离区域时,弯曲波的振幅会比没有隔离区时有更多的衰减,从而使得左侧第一区域的弯曲波强度明显大于右侧第二区域的弯曲波强度,此时用户能够明显听到屏幕左侧的声音,而基本听不到屏幕右侧的声音,从而能够更加清晰地分辨出电磁激励器331对应的左声道的声音。同样地,当右侧的电磁激励器332激励发声基板32的第二区域得到的弯曲波在向左侧传播过程中,经过隔离区域时,弯曲波的振幅会更多地衰减,从而使得右侧第二区域的弯曲波强度明显大于左侧第一区域的弯曲波强度,此时用户能够明显地听到屏幕右侧的声音,而基本听不到屏幕左侧的声音,从而更加清晰地分辨出电磁激励器332对应的右声道的声音。
图15为根据本申请的发声基板的中间层另一实施例的结构示意图,如图15所示的实施例中提供的发声基板32与图14所示发声基板32的结构类似,不同之处在于在隔离区域的蜂窝芯中填充泡沫阻尼材料,同样地,隔离区域的泡沫阻尼材料用于增加发声基板32在x方向上传导弯曲波时振幅的衰减。
进一步地,在上述如图6到图15任一实施例的基础上,本申请还提供一种用于支撑电磁激励器的稳定器,以防止电磁激励器偏离最佳工作区域,减小电磁激励器在由于振动而在不同方向的扭摆运动,从而减少电磁激励器作用下,显示装置发出的声音的失真。
具体地,可参照图16和图17,其中,图16为根据本申请的稳定器安装后的剖面结构示意图;图17为根据本申请的稳定器与电磁激励器的安装结构示意图。
如图17所示,本实施例提供的稳定器7包括:支架72和多个向远离支架72方向延伸的片状弹性支脚71。其中,每个支脚71向远离支架72的方向回旋延伸,支脚71分布在第一圆(图17和图18均未标出)的圆周上,该第一圆的圆心位于支架72的轴线(图17和图18均未标出)上,该第一圆可以是圆心位于支架72的轴线上的任一圆。支架72具有第一固定位(图17和图18中未标出),该第一固定位的轴线可以与支架72的轴线共线,电磁激励器331的振动输出端穿过支架72的第一固定位与发声基板32抵接。
在一些实施方式中,所述稳定器由于其向外延伸的支脚,该结构又可被称为“Spider结构”。以电磁激励器331为例,稳定器的支架72具有空腔,所述空腔的形状与电磁激励器331的形状相匹配,用于容纳并固定电磁激励器。则当电磁激励器331为圆形时,所述空腔的形状为圆形;当电磁激励器331为椭圆形时,所述空腔的形状为椭圆形。
稳定器7还包括阻尼块8,阻尼块8设置在支脚71的一端,阻尼块8的数目小于或等于支脚71的数目,阻尼块8与发声基板32固定连接。该支脚71可以沿稳定器7的周向延伸(也即是向远离稳定器7的中心处回旋延伸),或者,该支脚72可以沿远离稳定器7的轴线的方向延伸(也即是支脚可以辐射延伸)。
同时,如图17中所示的稳定器7的四个支脚71分别通过一阻尼块8固定于发声基板32的第二蒙皮323之上。
由于向外延伸的支脚71和阻尼块8具有较低的弹性系数,因此,稳定器能够对来自平板的振动共同构成机械低通滤波位置稳定器,位置稳定器弹性支脚各支点分别受到弯曲波的不同随机振动,经机械低通滤波器滤波后保持稳定状态,进而保持位于支架72中的电磁激励器331的稳定。
具体的,由于电磁激励器331的振动输出端穿过稳定器7与发声基板32抵接,阻尼块 8与发声基板32固定连接,因此,该稳定器7可以使电磁激励器331与发声基板32处于相对稳定的状态,并保证电磁激励器331不会产生轴向旋转。进一步的,该稳定器7的结构使得该稳定器7具有机械低通滤波器(类似于减震器)的功能,从而使得振动传导至稳定器7的支脚72后被过滤,不会影响电磁激励器331自身振动。该电磁激励器331有驱动线圈管和磁极器件,该磁极器件可以产生磁场,驱动线圈管在磁场中心可以产生较大电动力,以驱动线圈管致动。该稳定器7可以防止电磁型激励器的驱动线圈管因发声基板的振动影响,偏离磁场中心,从而保证该电磁型激励器处于最佳工作状态,并且稳定器7可以保证电磁型激励器不会产生轴向扭摆,从而大幅度的减少发声基板的声音失真。
此外,图18为根据本申请的其他结构的稳定器的结构示意图。图18示出了几种其他结构的稳定器,其中,稳定器可具有3或4个支脚,并且支脚可以向远离支架的方向回旋延伸或者辐射延伸。其实现方式与原理相同,不再赘述。进一步地,在上述各实施例的基础上,本申请所提供的显示装置还包括屏幕框架,以对显示装置进行支撑。
具体地,图19为根据本申请的一实施例的支撑结构的剖面结构示意图,其中,发声基板32和显示结构31的边缘处被悬吊结构6包裹后,由支撑机构5进行固定,所述悬吊结构用于容纳发声基板32和显示结构31,所述悬吊结构可以是发泡胶条。在一些实施例中,支撑机构为屏幕框架。同时,支撑机构5在发声基板32靠近电磁激励器一侧,还包括:支撑结构501和支撑结构502,以共同将电磁激励器支撑并固定在发声基板32一侧。
图20为根据本申请的另一实施例的支撑结构的剖面结构示意图,图21为根据本申请的另一实施例的支撑结构的结构示意图。如图20和图21所示,本实施例的支撑结构包括:后盖503、缓冲部件504和密封缓冲材料505。所述缓冲部件504为声音阻尼隔离圈,通过EVA发泡材料实现。
进一步地,在上述实施例的基础上,本申请还提供一种显示装置在工程应用中的具体实现方式,具体可参照图22和图23,其中,图22为根据本申请的显示装置一具体实现方式的结构示意图,图23为根据本申请的显示装置一具体实现方式的拆解结构示意图。如图23示出了实际的具有显示装置的电子设备中,电磁激励器、边框结构以及缓冲件的设置方式。如图22所示的示例中,显示装置根据电子设备需要满足的播放性能要求,设置多个不同激励频率的电磁激励器,以通过不同的电磁激励器激励发声基板产生不同共振频率的弯曲波,从而展宽显示装置的频率响应。
其中,本实施例中提供的显示装置的发声基板在图中所示的x方向和y方向的传导性能不同,进而发声基板在传导弯曲波时,在x方向和y方向的振幅衰减规律不同。其中,图中显示装置的右声道对应x负方向的电磁激励器a,c和d,即电磁激励器a,c和d用于激励显示装置产生右声道声音信号对应的弯曲波;图中显示装置左声道对应x正方向的电磁激励器b,e和f,即电磁激励器b,e和f可用于激励显示装置产生左声道声音信号对应的弯曲波。不同性能的电磁激励器呈斜线排列,斜线沿y正方向上端的电磁激励器距离显示装置的边界距离更近。左声道对应的电磁激励器和右声道对应的电磁激励器在显示装置上总体呈“v”形排列规律。
具体地,有关图22中显示装置的具体结构可参照图23所示,其中,显示装置的显示结构31和发声基板32贴合设置,并且二者的边缘处被发泡双面胶条6包裹后,由支撑机构5进行固定。同时,对于电磁激励器a和电磁激励器b,通过支撑结构501进行固定,支撑结构501的两侧设置在支撑机构5较长的两边之间,支撑结构501具体与电磁激励器的连接方式可参照图19所示。对于电磁激励器c、d,以及电磁激励器e、f,通过后盖503 和缓冲部件504进行固定,后盖503和缓冲部件504具体与电磁激励器的连接方式可参照图21所示。此外,如图中所示的每个电磁激励器均通过稳定器7安装在发声基板32之上。
需要说明的是,如图22和如图23所示的实施例仅为显示装置在一种实现方式中的示例性说明,对于不同数量的电磁激励器的安装方式、位置设置方式,均在本申请的保护范围之内,例如,图24为根据本申请的其他显示装置具体实现方式的结构示意图。
在图24示意图A中,左声道和右声道各对应两个电磁激励器,并且两个电磁激励器设置在同一支撑结构上。在示意图B中,左声道和右声道各对应两个电磁激励器,并且两个电磁激励器设置在同一后盖和缓冲部件中。在示意图C中,左声道和右声道各对应三个电磁激励器,并且三个电磁激励器中仅一个电磁激励器设置在支撑结构上。在示意图D中,左声道和右声道各对应三个电磁激励器,并且三个电磁激励器中的两个电磁激励器设置在同一后盖和缓冲部件中,另一个电磁激励器设置在一个后盖和缓冲部件中。
此外,图25为根据本申请的一实施例的电子设备的结构示意图,如图25所示,本实施例提供的电子设备200包括:如图6到图24中任一项所述的显示装置2001。其中,所述电子设备包括但不限于以下设备:手机、平板电脑、台式电脑、电视机,以及其他具有显示屏幕的电器,例如:洗衣机、冰箱等。
综上,本申请实施方式提供一种显示装置及电子设备可发声屏幕,该显示装置包括显示结构、发声基板和至少一个电磁激励器;其中,发声基板和显示结构贴合设置,至少一个电磁激励器贴合在所述发声基板一侧,电磁激励器用于向发声基板发送磁励信号,并在电磁激励器与发声基板贴合处产生弯曲波;发声基板用于接收并传导磁励信号所产生的弯曲波,使得发声基板和显示结构振动发声;发声基板在传导弯曲波时,弯曲波在第一方向的振幅衰减规律,与所弯曲波在第二方向的振幅衰减规律不同。
以通过显示装置或可发声屏幕中设置的发声基板,在传导电磁激励器所产生的弯曲波时,能够在不同的传播方向的具有不同的振幅衰减,从而提高显示装置或可发声屏幕在被不同声道对应的电磁激励器作用下发声时,显示装置或可发声屏幕对于声道的区分度,进而提高了具有上述显示装置或可发声屏幕的电子设备的用户体验。
出于说明和描述的目的,提供了前述实施例,而非旨在穷举或限制本公开。具体实施例的各个元件或特征通常不限于该具体实施例,而是在适用情况下即使未具体示出或描述也可在所选实施例中使用或互换。同样也可以许多形式变型,这种变型不被认为是脱离本公开,而且所有这样的修改被涵盖在本公开的范围内。

Claims (13)

  1. 一种显示装置,包括:
    显示结构、发声基板和至少两个电磁激励器;其中,所述发声基板和所述显示结构贴合设置,所述至少两个电磁激励器贴合在所述发声基板的侧边;
    所述显示结构用于接收光信号并进行显示;
    所述至少两个电磁激励器分别用于向所述发声基板发送磁励信号,并在所述至少两个电磁激励器与所述发声基板贴合处产生弯曲波;
    所述发声基板用于接收并传导所述弯曲波,使得所述发声基板振动发声;
    所述弯曲波在所述发声基板中传导时,沿第一方向的振幅衰减规律与沿第二方向的振幅衰减规律不同,所述第一方向与所述第二方向不同。
  2. 根据权利要求1所述的显示装置,其中,
    所述弯曲波在所述发声基板中传导时,沿所述第一方向的振幅衰减速度与沿所述第二方向的振幅衰减速度不同。
  3. 根据权利要求1或2所述的显示装置,其中,
    所述发声基板包括:第一蒙皮、第二蒙皮和中间层;所述中间层包括由多个单元孔格构成的蜂窝芯,所述第一蒙皮和所述第二蒙皮分别贴合设置在所述中间层的两端。
  4. 根据权利要求3所述的显示装置,其中,所述至少两个电磁激励器对称布置,所述第二方向与所述第一方向垂直,所述中间层的蜂窝芯中单元孔格的轴向与所述第一方向与所述第二方向构成的平面垂直;
    所述蜂窝芯沿所述第二方向的拉伸比小于预设阈值,所述拉伸比为d/L,其中,d为所述蜂窝芯中的多个六角形单元孔格依次排列时,所述蜂窝芯在所述第一方向上的最小单位长度;L为所述多个六角形单元孔格依次排列时,所述蜂窝芯在所述第二方向上的最小单位长度。
  5. 根据权利要求3所述的显示装置,其中,
    所述第一蒙皮在所述第一方向的纤维密度,小于所述第一蒙皮在第二方向的纤维密度,其中,所述第一方向对应用户观看方向的左侧和右侧,所述第二方向对应用户观看方向的上侧和下侧;
    所述第二蒙皮在第一方向的纤维密度,小于所述第二蒙皮在第二方向的纤维密度,其中,所述第一方向对应用户观看方向的左侧和右侧,所述第二方向对应用户观看方向的上侧和下侧。
  6. 根据权利要求4或5所述的显示装置,其中,所述发声基板在传导所述弯曲波时,所述弯曲波沿所述第一方向的振幅衰减数值,大于所弯曲波沿所述第二方向的振幅衰减数值。
  7. 根据权利要求4所述的显示装置,其中,所述预设阈值为0.58:1。
  8. 根据权利要求4所述的显示装置,其中,所述至少两个电磁激励器包括第一电磁激励器和第二电磁激励器,所述中间层包括沿所述第一方向依次设置的第一区域、隔离区域以及第二区域,所述第一电磁激励器设置于所述第一区域,所述第二电磁激励器设置于所述第二区域,所述第一区域的所述拉伸比和所述第二区域的所述拉伸比均大于 所述隔离区域的所述拉伸比。
  9. 根据权利要求3-8任一项所述的显示装置,其中,所述第一蒙皮和所述第二蒙皮的厚度范围为0.18~0.36mm。
  10. 根据权利要求1-9任一项所述的显示装置,其中,还包括:
    至少两个稳定器,用于支撑所述至少两个电磁激励器,所述至少两个电磁激励器中的第一电磁激励器的振动输出端均通过所述至少两个稳定器中的第一稳定器与所述发声基板抵接。
  11. 根据权利要求10所述的显示装置,其中,所述第一稳定器包括支架和多个向远离所述支架方向延伸的片状弹性支脚,所述多个弹性支脚中的第一支脚向远离所述支架的方向回旋延伸,所述支架包括第一固定位,所述第一固定位与所述支架的轴向共线,所述第一电器激励器的振动输出端通过对应的所述第一固定位与所述发声基板抵接。
  12. 根据权利要求10所述的显示装置,其中,所述第一稳定器还包括设置于所述第一支脚远离所述支架一端的阻尼块,所述阻尼块与所述发声基板固定连接。
  13. 一种可发声屏幕,包括显示结构、发声基板和至少两个电磁激励器;其中,所述发声基板和所述显示结构贴合设置,所述至少两个电磁激励器贴合在所述发声基板一侧;所述显示结构用于接收光信号并进行显示;
    所述至少两个电磁激励器分别用于在所述至少两个电磁激励器与所述发声基板贴合处产生弯曲波;
    所述发声基板用于接收并传导所述弯曲波,使得所述发声基板振动发声;所述发声基板包括:第一蒙皮、第二蒙皮和中间层;所述中间层包括由多个单元孔格构成的蜂窝芯,所述第一蒙皮和所述第二蒙皮分别贴合设置在所述中间层的两端。
PCT/CN2020/096670 2019-06-17 2020-06-17 显示装置及可发声屏幕 WO2020253751A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202090000329.7U CN215956626U (zh) 2019-06-17 2020-06-17 显示装置及可发声屏幕

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910522902.4A CN112102717B (zh) 2019-06-17 2019-06-17 显示装置及可发声屏幕
CN201910522902.4 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020253751A1 true WO2020253751A1 (zh) 2020-12-24

Family

ID=73748600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096670 WO2020253751A1 (zh) 2019-06-17 2020-06-17 显示装置及可发声屏幕

Country Status (2)

Country Link
CN (3) CN112102717B (zh)
WO (1) WO2020253751A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788163A (zh) * 2020-12-30 2021-05-11 维沃移动通信有限公司 电子设备
CN114679672A (zh) * 2020-12-25 2022-06-28 京东方科技集团股份有限公司 一种显示面板及显示装置
CN115493349A (zh) * 2021-06-17 2022-12-20 海信(山东)冰箱有限公司 冰箱

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112743879A (zh) * 2020-12-22 2021-05-04 江苏鸿赞蜂窝科技有限公司 一种激光电视机发声背板的制造工艺方法
CN112848370A (zh) * 2020-12-31 2021-05-28 江苏鸿赞蜂窝科技有限公司 一种激光电视机发声背板及其制造工艺
WO2022165788A1 (zh) * 2021-02-07 2022-08-11 京东方科技集团股份有限公司 显示装置、发声控制方法、参数确定方法及装置
CN115474140A (zh) * 2021-06-11 2022-12-13 海信视像科技股份有限公司 冰箱
WO2022257508A1 (zh) * 2021-06-11 2022-12-15 海信视像科技股份有限公司 冰箱
CN115493351A (zh) * 2021-06-17 2022-12-20 海信(山东)冰箱有限公司 冰箱
CN217443699U (zh) * 2022-03-21 2022-09-16 海信视像科技股份有限公司 显示设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121325A (ja) * 2004-10-20 2006-05-11 Authentic Ltd パネル型スピーカ
US20100111351A1 (en) * 2007-05-03 2010-05-06 Arthur Perry Berkhoff Sound generator
CN202663535U (zh) * 2012-05-17 2013-01-09 瑞声光电科技(常州)有限公司 屏幕发声器
CN108156562A (zh) * 2017-12-28 2018-06-12 上海传英信息技术有限公司 一种显示屏幕发声装置及智能终端
CN108462917A (zh) * 2018-03-30 2018-08-28 四川长虹电器股份有限公司 电磁激励能量转换器和激光投影光学音响屏幕及其同步显示方法
CN108833638A (zh) * 2018-05-17 2018-11-16 Oppo广东移动通信有限公司 发声方法、装置、电子装置及存储介质
CN208273238U (zh) * 2018-05-25 2018-12-21 四川长虹电器股份有限公司 发声面板、硬屏及装置
CN109256070A (zh) * 2017-09-11 2019-01-22 四川长虹电器股份有限公司 一种屏幕自发声的平板显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2407544Y (zh) * 2000-01-12 2000-11-22 浙江天乐集团公司 一种扬声器音盆
CN201682610U (zh) * 2010-01-13 2010-12-22 幻响神州(北京)科技有限公司 一种音频电磁振动换能器
CN103747396A (zh) * 2013-12-25 2014-04-23 汉得利(常州)电子有限公司 悬挂式弹力膜片
US9226057B1 (en) * 2014-05-15 2015-12-29 OIO Tech Inc. External sound systems with integral flat panel loudspeakers for portable electronic devices
CN205800436U (zh) * 2016-06-24 2016-12-14 中国航空工业集团公司西安飞机设计研究所 一种具有电磁蒙蔽功能的内饰板
CN206136285U (zh) * 2016-10-11 2017-04-26 合肥惠科金扬科技有限公司 扬声器固定结构及显示设备
CN107175873A (zh) * 2017-04-10 2017-09-19 溧阳二十八所***装备有限公司 一种蜂窝显示板及其制备方法
CN109494475A (zh) * 2018-07-13 2019-03-19 中国航空工业集团公司济南特种结构研究所 一种具有增强雷达罩根部刚度的多层蜂窝结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121325A (ja) * 2004-10-20 2006-05-11 Authentic Ltd パネル型スピーカ
US20100111351A1 (en) * 2007-05-03 2010-05-06 Arthur Perry Berkhoff Sound generator
CN202663535U (zh) * 2012-05-17 2013-01-09 瑞声光电科技(常州)有限公司 屏幕发声器
CN109256070A (zh) * 2017-09-11 2019-01-22 四川长虹电器股份有限公司 一种屏幕自发声的平板显示装置
CN108156562A (zh) * 2017-12-28 2018-06-12 上海传英信息技术有限公司 一种显示屏幕发声装置及智能终端
CN108462917A (zh) * 2018-03-30 2018-08-28 四川长虹电器股份有限公司 电磁激励能量转换器和激光投影光学音响屏幕及其同步显示方法
CN108833638A (zh) * 2018-05-17 2018-11-16 Oppo广东移动通信有限公司 发声方法、装置、电子装置及存储介质
CN208273238U (zh) * 2018-05-25 2018-12-21 四川长虹电器股份有限公司 发声面板、硬屏及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679672A (zh) * 2020-12-25 2022-06-28 京东方科技集团股份有限公司 一种显示面板及显示装置
CN114679672B (zh) * 2020-12-25 2024-04-02 京东方科技集团股份有限公司 一种显示面板及显示装置
CN112788163A (zh) * 2020-12-30 2021-05-11 维沃移动通信有限公司 电子设备
CN112788163B (zh) * 2020-12-30 2023-12-01 维沃移动通信有限公司 电子设备
CN115493349A (zh) * 2021-06-17 2022-12-20 海信(山东)冰箱有限公司 冰箱

Also Published As

Publication number Publication date
CN112102717A (zh) 2020-12-18
CN215956626U (zh) 2022-03-04
CN117292611A (zh) 2023-12-26
CN112102717B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2020253751A1 (zh) 显示装置及可发声屏幕
CN210090908U (zh) 显示装置
CN107561753B (zh) 面板振动型发声显示装置
EP3528510B1 (en) Flat speaker and display device
WO2020253752A1 (zh) 显示装置及电磁激励器
RU2523094C2 (ru) Низкочастотный громкоговоритель с плоским диффузором и его применение
CN109256070A (zh) 一种屏幕自发声的平板显示装置
CN114967313B (zh) 显示装置、发声基板以及投影屏幕
WO2023179444A9 (zh) 显示设备
WO2020253143A1 (zh) 自发声投影显示装置
CN112631062A (zh) 投影***及投影屏幕
CN114500896B (zh) 显示设备
WO2022193934A1 (zh) 一种显示装置、激励器及音频信号播放方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827305

Country of ref document: EP

Kind code of ref document: A1