WO2023176207A1 - 熱源システム - Google Patents

熱源システム Download PDF

Info

Publication number
WO2023176207A1
WO2023176207A1 PCT/JP2023/004129 JP2023004129W WO2023176207A1 WO 2023176207 A1 WO2023176207 A1 WO 2023176207A1 JP 2023004129 W JP2023004129 W JP 2023004129W WO 2023176207 A1 WO2023176207 A1 WO 2023176207A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
flow rate
water supply
supply amount
required flow
Prior art date
Application number
PCT/JP2023/004129
Other languages
English (en)
French (fr)
Inventor
有亮 朝田
浩 中山
明弘 稲生
嵩俊 中神
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023176207A1 publication Critical patent/WO2023176207A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure

Definitions

  • the present disclosure relates to a heat source system.
  • Patent Document 1 discloses a heat source system in which a plurality of heat source machines connected in parallel and a plurality of pumps connected in parallel are connected in series via manifold piping. In a manifold piping type heat source system, even if a specific pump or heat source device breaks down, other pumps or heat source devices can be started to continue operation.
  • An object of the present disclosure is to enable stable control in a manifold piping type heat source system.
  • a first aspect of the present disclosure includes a plurality of heat source devices (101) provided in parallel with each other, a plurality of pumps (102) provided in parallel with each other, and a plurality of heat source devices (101) and a plurality of pumps provided in parallel with each other.
  • a control unit that controls the operation of a collection pipe (103) arranged so as to integrate flow paths between the pump (102), the plurality of heat source devices (101), and the plurality of pumps (102); (150) is a manifold piping type heat source system.
  • the control unit (150) [A] determines the required flow rate based on at least the required minimum flow rate set for the plurality of heat source devices (101) and the operating state of the plurality of heat source devices (101).
  • the required flow rate according to the operating state of each heat source device (101) and the current water supply amount or maximum water supply amount according to the operating state of each pump (102) are constantly compared, and as needed. It is possible to adjust the increase/decrease stage of the heat source device (101) or the pump (102), etc. Therefore, the required minimum flow rate of each heat source device (101) can be ensured and stable control can be performed.
  • a second aspect of the present disclosure is that in the first aspect, at least one of the plurality of heat source machines (101) and the plurality of pumps (102) is configured with a plurality of different capacities.
  • control unit (150) controls the number of operating units of the plurality of heat source devices (101) or the number of operating units of the plurality of pumps (102). Increase or decrease.
  • stable control can be performed by ensuring the required minimum flow rate of each heat source device (101) by increasing/decreasing stages of the heat source device (101) or the pump (102).
  • control unit (150) controls the flow rate variation in each piping (105) connected to the plurality of heat source devices (101).
  • the required flow rate is determined based on the flow rate obtained by multiplying the required minimum flow rate by a coefficient that takes into account the flow rate, and the operating state of the plurality of heat source devices (101).
  • the required flow rates for the plurality of heat source devices (101) can be determined more accurately, so more stable control can be performed.
  • control unit (150) compares the requested flow rate and the current water supply amount, and determines that the requested flow rate is higher. If it is larger, the pump (102) to be started is selected from among the plurality of pumps (102) so that the current water flow rate satisfies the required flow rate and the change in the current water flow rate is the smallest.
  • the required minimum flow rate of each heat source device (101) can be ensured and stable control can be performed. Further, since the pump (102) is increased in stages so that the change in the current water supply amount is minimized, the influence on the system load due to the increase in the pump (102) stages can be suppressed to the lowest possible extent.
  • the control unit (150) uses information about a pump (102) scheduled to be stopped from among the plurality of pumps (102). Based on the above-mentioned current water supply amount, calculate the water supply amount after stage reduction from the current water supply volume, compare the water transmission volume after stage reduction with the required flow rate, and, depending on the result, permit or prohibit the operation stoppage of the pump (102). .
  • the required minimum flow rate of each heat source device (101) can be ensured and stable control can be performed.
  • At least one of the plurality of pumps (102) is a VFD type pump (102), and the control unit (150) updates the VFD command value for the VFD type pump (102) in operation based on the difference between the requested flow rate and the current water supply amount.
  • the required minimum flow rate of each heat source device (101) can be ensured and stable control can be performed.
  • the control unit (150) controls the difference between the pressure of the piping (107, 116) connected to the VFD pump (102) and the set value of the pressure. Based on this, determine the VFD command value of the VFD type pump (102), determine the current water supply amount by multiplying the flow rate set in the VFD type pump (102) in operation by the rotation rate, and determine the required flow rate. and the current water supply amount, and if the required flow rate is larger, calculate the lower limit value of the VFD command value so as to compensate for the difference between the required flow rate and the current water supply amount, and When the lower limit value is larger than the VFD command value, the VFD command value is updated by the lower limit value.
  • the VFD command value of the VFD pump (102) can be adjusted so that the required minimum flow rate of each heat source device (101) can be ensured.
  • a ninth aspect of the present disclosure is that in any one of the first to fourth aspects, the control unit (150) compares the required flow rate and the maximum water supply amount, and determines that the required flow rate is higher. If it is larger, a heat source device (101) to be shut down is selected from the plurality of heat source devices (101) so that the maximum amount of water fed satisfies the required flow rate.
  • the required minimum flow rate of the other heat source devices (101) in operation can be ensured, and stable control can be performed.
  • control unit (150) compares the required flow rate and the maximum water supply amount, and if the required flow rate is larger, the control unit (150) control and second control are selectively performed, and in the first control, a heat source device (101) is stopped from among the plurality of heat source devices (101) so that the maximum water supply amount satisfies the required flow rate. is selected, and in the second control, a heat source device (101) is stopped from among the plurality of heat source devices (101) so that the maximum water supply amount satisfies the required flow rate and the change in the required flow rate is minimized. 101).
  • the required minimum flow rate of the other heat source devices (101) in operation can be ensured, and stable control can be performed.
  • the heat source equipment (101) is reduced in stage so that the change in the required flow rate is minimized, so the impact on the system load due to the reduction in the stage of the heat source equipment (101) is suppressed as much as possible. can do.
  • control unit (150) controls a heat source device (101) scheduled to start operation among the plurality of heat source devices (101). Based on the information, calculate the required flow rate after increasing the stage from the required flow rate, compare the required flow rate after increasing the stage with the maximum water supply amount, and according to the result, permit the start of operation of the heat source equipment (101). or prohibit.
  • the number of heat source devices (101) is increased while ensuring the required minimum flow rate of each heat source device (101) during operation, so stable control can be performed.
  • a twelfth aspect of the present disclosure is that in any one of the first to fourth aspects, the control unit (150) compares the required flow rate and the maximum water supply amount, and determines that the required flow rate is higher. If it is large, the capacity of the heat source device (101) in operation among the plurality of heat source devices (101) is limited.
  • the required minimum flow rate of each heat source machine (101) can be ensured and stable control can be performed.
  • a thirteenth aspect of the present disclosure is that in any one of the first to fourth aspects, the control unit (150) compares the required flow rate and the maximum water supply amount, and determines that the required flow rate is higher. If the amount is large, a third control and a fourth control are selectively performed, and in the third control, one of the plurality of heat source devices (101) is operated so that the maximum water supply amount satisfies the required flow rate. A heat source device (101) to be stopped is selected, and in the fourth control, the capacity of the heat source device (101) in operation among the plurality of heat source devices (101) is limited.
  • the required minimum flow rate of each heat source device (101) is ensured by selectively reducing the stages of the heat source device (101) or limiting the capacity of the heat source device (101) during operation. , stable control can be performed.
  • a fourteenth aspect of the present disclosure is that in the thirteenth aspect, the control unit (150) performs the fourth control when the required flow rate is larger than the maximum water supply amount.
  • a fifteenth aspect of the present disclosure is that in the thirteenth or fourteenth aspect, the control unit (150) determines that the required flow rate is larger than the maximum water supply amount and that one of the plurality of heat source devices (101) When the capacity of the heat source device (101) in operation is lower than the predetermined lower limit value, the third control is performed.
  • the required minimum flow rate of the other heat source device (101) in operation is ensured by reducing the stages of the heat source device (101). This allows stable control to be performed.
  • the control unit (150) is configured such that the required flow rate is larger than the maximum water supply amount and the plurality of heat source units (101), when the capacity of the heat source device (101) in operation is lower than a predetermined lower limit value, the fifth control and the sixth control are selectively performed as the third control, and the fifth control is performed selectively as the third control.
  • a heat source device to be shut down is selected from among the plurality of heat source devices (101) so that the maximum water supply amount satisfies the required flow rate, and in the sixth control, the maximum water supply amount satisfies the required flow rate.
  • a heat source device (101) to be shut down is selected from among the plurality of heat source devices (101) so that the following equation is satisfied and the change in the required flow rate is the smallest.
  • the required minimum flow rate of the other heat source device (101) in operation is ensured by reducing the stages of the heat source device (101). This allows stable control to be performed.
  • the stages of the heat source equipment (101) are reduced so that the change in the required flow rate is minimized, so the impact on the system load due to the stage reduction of the heat source equipment (101) is suppressed as much as possible. can do.
  • FIG. 1 is a configuration diagram schematically showing a heat source system according to an embodiment.
  • FIG. 2 is a flowchart illustrating control of the number of pumps in the heat source system shown in FIG. 1.
  • FIG. 3 is a schematic diagram showing the details of pump stage increasing processing in the heat source system shown in FIG. 1.
  • FIG. 4 is a schematic diagram showing the details of the pump stage reduction process in the heat source system shown in FIG. 1.
  • FIG. 5 is a flow diagram illustrating pump VFD control in the heat source system shown in FIG. 1.
  • FIG. 6 is a flow diagram illustrating control of the number of heat source devices in the heat source system shown in FIG. 1.
  • FIG. 7 is a schematic diagram showing the details of the heat source functional power limitation process in the heat source system shown in FIG.
  • FIG. 8 is a schematic diagram showing the details of the heat source equipment stage reduction process in the heat source system shown in FIG. 1.
  • FIG. 9 is a schematic diagram showing the details of the heat source equipment stage increasing process in the heat source system shown in FIG.
  • the heat source system (100) mainly includes a plurality of (three in this example) heat source devices (101) and a plurality of (four in this example) pumps (102). ) and a control section (150).
  • a heat medium such as cold water or hot water circulates in the direction of the arrow between each heat source device (101) and the system load.
  • the system load is the load of air conditioning equipment, etc.
  • the plurality of heat source devices (101) are, for example, chillers, heat pumps, etc., but below, a case where the plurality of heat source devices (101) are chillers will be described as an example.
  • the plurality of pumps (102) are in this example primary pumps with a VFD (102a).
  • the control unit (150) mainly controls the operation of the heat source device (101) and the pump (102).
  • a plurality of heat source machines (101) are arranged in parallel with each other.
  • a plurality of pumps (102) are arranged in parallel with each other.
  • the respective numbers of heat source machines (101) and pumps (102) are not particularly limited. Moreover, the respective numbers of heat source devices (101) and pumps (102) may be different as in this example, or may be the same. Furthermore, at least one of the plurality of heat source devices (101) and the plurality of pumps (102) may be configured with a plurality of different capacities.
  • a collection pipe (103) is arranged so as to combine the flow paths between the plurality of heat source machines (101) and the plurality of pumps (102) into one. That is, the heat source system (100) is of a manifold piping type.
  • the collective pipe (103) is connected to a plurality of pipes (105) communicating with each heat source device (101) via a first header (104).
  • the collective pipe (103) is connected to a plurality of pipes (107) communicating with each pump (102) via a second header (106).
  • the cold water cooled by the plurality of heat source machines (101) is sent to the system load via the plurality of pipes (108) communicating with each heat source machine (101).
  • the plurality of pipes (108) are connected to the water supply pipe (110) via a third header (109).
  • the third header (109) may be provided with a sensor (T, P in FIG. 1) that measures the temperature and pressure of the cold water sent to the system load.
  • a secondary pump may be placed between the water pipe (110) and the system load.
  • the heat medium (water in this example) used in the system load is sent to the heat source machine (101) via the return pipe (111).
  • the return pipe (111) is connected to a measurement pipe (114) provided with a flow meter (113) via a fourth header (112).
  • the fourth header (112) may be provided with a sensor (T in FIG. 1) that measures the temperature of the heat medium sent to the heat source device (101).
  • the measurement pipe (114) is connected to a plurality of pipes (116) communicating with each pump (102) via a fifth header (115).
  • bypass pipe (117) that bypasses the plurality of heat source devices (101) and the plurality of pumps (102) is provided between the third header (109) and the fifth header (115).
  • a valve (118) is provided in the bypass pipe (117).
  • the control unit (150) includes, for example, a computer and its peripheral devices.
  • the control unit (150) executes various functions described below using hardware such as a computer and programs executed by the computer.
  • the control unit (150) outputs a command signal to start or stop the heat source device (101) or the pump (102).
  • the control unit (150) outputs a command signal to control the VFD (102a) of the pump (102).
  • Measurement signals (temperature, pressure) from sensors provided in the third header (109) and fourth header (112) and measurement signals from the flowmeter (113) are input to the control unit (150).
  • the control unit (150) controls the opening degree of the valve (118) provided in the bypass pipe (117).
  • the control unit (150) determines the required flow rate based on at least the required minimum flow rate set for the plurality of heat source devices (101) and the operating state of the plurality of heat source devices (101). The control unit (150) determines the current water supply amount or the maximum water supply amount based on the flow rates set for the plurality of pumps (102) and the operating states of the plurality of pumps (102). The control unit (150) compares the required flow rate with the current water supply amount or the maximum water supply amount, and controls the operation of the plurality of heat source devices (101) or the plurality of pumps (102) according to the result. Control. The control unit (150) may, for example, increase or decrease the number of operating heat source devices (101) or the number of operating pumps (102).
  • the "operating state” includes not only the ON/OFF states of the heat source device (101) and the pump (102) but also the VFD command values of the heat source device (101) and the pump (102).
  • “controlling operation” includes not only control of the ON/OFF state of the heat source device (101) and the pump (102) but also VFD control of the heat source device (101) and the pump (102).
  • the control unit (150) may, for example, The required flow rate may be determined based on the flow rate obtained by multiplying the required minimum flow rate by a coefficient that takes into account flow rate variations, and the operating status of the plurality of heat source devices (101). Specifically, the piping length L1 of the piping (105) from the first header (104) to the first heat source device (101), and the piping length L1 of the piping (105) from the first header (104) to the other heat source device (101).
  • the required minimum flow rate of the other heat source device (101) is the flow rate obtained by multiplying the predetermined required minimum flow rate by the coefficient L2/L1. You can set it to .
  • FIG. 2 is a flow diagram illustrating the control of the number of pumps by the control unit (150).
  • step S101 the control unit (150) determines whether the flow rate at the system load (hereinafter referred to as load-side flow rate) exceeds the capacity of the total number of pumps (102) in operation.
  • load-side flow rate the flow rate at the system load
  • the control unit (150) increases the number of pumps (102) by normal number control.
  • step S102 the control unit (150) enables starting, for example, the pump (102) with the shortest cumulative operating time among the startable pumps (102), and in step S103, the control unit (150) enables starting the pump (102) with the shortest cumulative operating time. (102) will be increased.
  • step S101 determines in step S101 that the load-side flow rate is not larger. If it is determined in step S101 that the load-side flow rate is not larger, the control unit (150) determines in step S104 that if the load-side flow rate is reduced by one from the number of pumps (102) in operation. Determine whether the capacity is smaller than the capacity of . If the load-side flow rate is not smaller, the control unit (150) determines in step S105 that the total required minimum flow rate set for each operating heat source device (101), that is, the required flow rate, is equal to or smaller than the required flow rate for each operating pump (101). 102) is larger than the total flow rate (rated flow rate), that is, the current water supply amount.
  • control unit (150) forcibly increases the pump (102) in step S106, and if the required flow rate is not larger, the control unit (150) increases the pump (102) in step S107. Decided to maintain the current number of operating vehicles (102). Incidentally, when determining the required flow rate in step S105, as described above, variations in the flow rate in the pipes (105) connected to each heat source device (101) may be taken into consideration.
  • the control unit (150) controls the standby pump (102) to Among the pumps (102) in the middle, the pump (102) with the smallest change in the current water supply amount (in other words, the smallest capacity) after stage increase (standby pump in Figure 3, Pump 2 in Case 1) can be activated. .
  • step S106 if there is no pump (102) on standby whose current water supply amount after stage increase satisfies the required flow rate (standby pump case 2 (no applicable pump) in FIG. 3), the control unit (150)
  • the pump (102) with the largest capacity among the standby pumps (102) (pump 1 in standby pump case 2 in FIG. 3) can be activated.
  • the pumps (102) can be started sequentially in descending order of capacity until a standby pump (102) whose current water supply amount after stage increase satisfies the required flow rate is found.
  • step S102 the control unit (150) selects, for example, the pump with the shortest cumulative operating time from among the plurality of applicable pumps (102). (102) can be activated. Thereafter, in step S103, the control unit (150) increases the stage of the pump (102) that is enabled to start.
  • step S104 if the control unit (150) determines that the load side flow rate is smaller, the control unit (150) performs stage reduction of the pumps (102) by normal number control. Specifically, in step S108, the control unit (150) determines that the "total required minimum flow rate set for each operating heat source device (101)", that is, the required flow rate, is equal to "the total required minimum flow rate set for each operating pump (102)". The sum of the rated flow rates (current water supply volume) minus the rated flow rate of the pump (102) scheduled to be shut down next, that is, the flow rate is determined to be smaller than the water supply volume after stage reduction.
  • step S109 the control unit (150) enables the pump (102) scheduled to be stopped, for example, the pump (102) with the longest cumulative operating time, to stop the pump (102), and in step S110, Perform stage reduction of the pump (102).
  • the control unit (150) enables the pump (102) scheduled to be stopped, for example, the pump (102) with the longest cumulative operating time, to stop the pump (102), and in step S110, Perform stage reduction of the pump (102).
  • variations in the flow rate in the piping (105) connected to each heat source device (101) may be taken into consideration.
  • step S108 if the control unit (150) determines that the required flow rate is not smaller than the water supply amount after stage reduction, in step S111, the control unit (150) determines that the required flow rate is not smaller than the water supply amount after stage reduction, in addition to the pump (102) scheduled to be stopped. , it is determined whether there is a pump (102) in operation whose current water supply amount after stage reduction is larger than the required flow rate.
  • the details of the pump stage reduction process by the control unit (150) will be described below with reference to FIG. 4. In FIG. 4, it is assumed that the pump (102) that is originally scheduled to be shut down (OFF) is pump 2.
  • step S107 If there is no pump (102) in operation whose current water supply amount after step reduction satisfies the required flow rate (pump in operation in Figure 4 Case 1 (no corresponding pump including pump 2)), the control unit (150) performs step S107. In this step, it is decided to prohibit stage reduction of all pumps (102) and maintain the current number of operating pumps (102). On the other hand, if there is an operating pump (102) whose current water supply amount after stage reduction is larger than the required flow rate (operating pump case 2 (pump 1 applies) in Figure 4), the control unit (150) In S109, among the pumps (102) that can be stopped, for example, the pump (102) with the longest cumulative operating time (pump 1 in the running pump case 2 in FIG. 4) is made stopable, and in step S110, perform stage reduction of the pump (102).
  • steps S101 to S111 described above may be repeatedly performed at predetermined time intervals.
  • VFD control When at least one of the plurality of pumps (102) has a VFD function, the control unit (150) controls the above-mentioned required flow rate instead of or in addition to the pump number control shown in FIG.
  • the VFD command value for the pump with VFD function (102) in operation (hereinafter referred to as the VFD type pump (102)) may be updated based on the difference from the current water supply amount described above.
  • FIG. 5 is a flow diagram illustrating pump VFD control by the control unit (150).
  • step S151 the control unit (150) controls the VFD pump (102) based on the difference between the pressure of the piping (107, 116) connected to the VFD pump (102) and the set value of the pressure. Determine the command value.
  • step S152 the control unit (150) determines the lower limit value of the VFD command value from the information of each heat source device (101) in operation and each pump (102) in operation. Specifically, for the VFD type pump (102) in operation, the current flow rate estimate is calculated by multiplying the flow rate set in the VFD type pump (102) by the rotation rate, and the estimated value is used to calculate the current flow rate. The above-mentioned current water flow rate is determined, and if the above-mentioned required flow rate is larger than the current water flow rate, the lower limit value of the VFD command value is set so as to compensate for the difference between the required flow rate and the current water flow rate. calculate.
  • step S153 the control unit (150) determines whether the lower limit value of the VFD command value determined in step S152 is larger than the VFD command value determined based on the pressure in step S151.
  • step S154 the control unit (150) increases the VFD command value to the lower limit value. That is, the VFD command value is updated by the lower limit value, and then, in step S155, the control unit (150) outputs the updated VFD command value as the VFD command value for the VFD type pump (102).
  • step S153 if the control unit (150) determines that the lower limit of the VFD command value determined in step S152 is not larger than the VFD command value determined based on the pressure in step S151, in step S155, The control unit (150) directly outputs the VFD command value determined based on the pressure as a VFD command value for the VFD pump (102).
  • the processes of steps S151 to S155 described above may be repeatedly performed at predetermined time intervals. Furthermore, when a plurality of VFD pumps (102) are provided, the same VFD command value may be output to each VFD pump (102) in the pump VFD control shown in FIG.
  • FIG. 6 is a flow diagram illustrating the control of the number of heat source devices by the control unit (150).
  • step S301 the control unit (150) determines whether the amount of heat in the system load (hereinafter referred to as load-side heat amount) exceeds the capacity of the total number of heat source devices (101) in operation. If the load-side heat amount is not larger, the control unit (150) determines in step S302 whether the load-side heat amount is smaller than the capacity when the number of pumps (102) in operation is reduced by one. Determine. When the load-side heat amount is smaller, the control unit (150) reduces the number of heat source devices (101) through normal number control.
  • load-side heat amount the amount of heat in the system load
  • step S303 the control unit (150) enables the heat source device (101) with the longest cumulative operating time to be stopped, for example, from among the heat source devices (101) that can be stopped, and in step S304, Implement stage reduction of the heat source machine (101).
  • step S302 determines whether the "total”, that is, the requested flow rate, is larger than the "sum of the flow rates (rated flow rates) set for all pumps (102) that have not failed", that is, the maximum water flow rate. If the required flow rate has not become larger, the control unit (150) determines to maintain the current number of operating heat source devices (101) in step S306. Note that when determining the required flow rate in step S305, as described above, variations in flow rate in the piping (105) connected to each heat source device (101) may be taken into consideration.
  • step S305 determines that the required flow rate is larger, if at least one of the plurality of heat source devices (101) has a VFD function or the like and capacity adjustment is possible, the control unit (150) performs heat source functional capacity restriction processing in steps S307 and S308, which will be described later.
  • the capacity limit value of the compressor of the heat source machine (101) is limited to 80%, operation will continue even if the flow rate is 40% of the original rating. It becomes possible. It should be noted that the capacity limit value of the heat source device (101) has a lower limit set according to specifications and the like.
  • step S307 the control unit (150) first calculates the capacity limit value of the heat source device (101) that allows continued operation, and then in step S308, the control unit (150) determines that the calculated capacity limit value is a predetermined lower limit value. If it is larger, in step S309, the capacity of the heat source machine (101) is limited to the capacity limit value while the number of heat source machines (101) in operation remains the same. On the other hand, if the capacity limit value of the heat source device (101) is not larger than the predetermined lower limit value, the control unit (150) performs forced stage reduction of the heat source device (101) from step S310 described later.
  • the heat source functional capacity restriction processing in steps S307 and S308 described above can be selected, for example, by the user, and if it is determined in step S305 that the required flow rate is larger, the control unit (150) performs the processing in step S307.
  • the heat source functional power limitation process in S308 may be omitted, and the heat source device (101) may be forced to be reduced in stage from step S310, which will be described later.
  • step S310 the control unit (150) determines whether there is an operating heat source unit (101) whose required flow rate after stage reduction is smaller than the maximum water supply amount (operating heat source unit in FIG. 8 Case 1 (heat source unit 2)). , heat source unit 3)), among the operating heat source units (101), the change in the required flow rate after stage reduction is the smallest (that is, the required minimum flow rate is the smallest) (the heat source unit (101) (operating in Figure 8) Medium heat source equipment (in case 1, heat source equipment 2) can be stopped.
  • step S310 if there is no heat source device (101) in operation for which the required flow rate after stage reduction is smaller than the maximum water supply amount (heat source device in operation in Fig. 8 Case 2 (no applicable heat source device)), the control The part (150) is capable of stopping the heat source device (101) with the largest required minimum flow rate among the operating heat source devices (101) (heat source device 1 in operation heat source device Case 2 in Figure 8). In this case, the heat source devices (101) can be stopped in order of decreasing required minimum flow rate until an operating heat source device (101) whose required flow rate after stage reduction is smaller than the maximum water supply amount is found.
  • step S303 the control unit (150) selects the heat source device (101) with the highest total operating time, for example, from among the plurality of heat source devices (101). It is possible to stop a long heat source machine (101). After that, in step S304, the control unit (150) performs stage reduction of the heat source device (101) that can be stopped.
  • step S310 when determining the required flow rate in step S310, as described above, variations in the flow rate in the piping (105) connected to each heat source device (101) may be taken into consideration.
  • step S301 The heat source equipment stage reduction process when it is determined in step S301 that the load-side heat amount does not exceed the capacity of the total number of operating heat source equipment (101) has been described.
  • the control unit (150) controls the heat source devices ( 101). Specifically, first, in step S311, the control unit (150) adds "the total required minimum flow rate (required flow rate) set for each heat source device (101) in operation to the next scheduled start of operation.
  • step S312 the control unit (150) enables starting the heat source device (101) scheduled to start operation, for example, the heat source device (101) with the shortest cumulative operating time, In step S313, the number of stages of the heat source device (101) is increased. Note that when determining the required flow rate in step S311, as described above, variations in flow rate in the piping (105) connected to each heat source device (101) may be taken into consideration.
  • step S311 if it is determined in step S311 that the required flow rate after stage increase is not smaller than the maximum water supply amount, in step S314, the control unit (150) controls the increase It is determined whether there is a standby heat source device (101) whose required flow rate after the stage is smaller than the maximum water supply amount.
  • the control unit (150) determines in step S306 to prohibit increasing the number of heat source devices (101) and maintain the current number of operating heat source devices (101).
  • step S312 the control unit (150)
  • step S313 the heat source device (101) with the shortest cumulative operating time is started from among the heat source devices (101) that can be started (in the standby heat source device case 2 of FIG. 9, the heat source device 1 corresponds to the heat source device).
  • step S313 the number of stages of the heat source device (101) is increased.
  • steps S301 to S313 described above may be repeatedly performed at predetermined time intervals.
  • the heat source system (100) of this embodiment includes a plurality of heat source machines (101) arranged in parallel with each other, a plurality of pumps (102) arranged in parallel with each other, a plurality of heat source machines (101), and a plurality of heat source machines (101).
  • a control unit (150) that controls the operation of a collection pipe (103) arranged to combine the flow paths between the pump (102) and the plurality of heat source devices (101) and the plurality of pumps (102). Equipped with.
  • the required flow rate is determined according to the number of activated heat source devices (101), and the current water supply amount (current amount) is determined according to the number of activated pumps (102). (101) or the maximum amount of water that can be sent (the maximum amount of water that can be sent), and if necessary, increase or decrease the stages of the heat source device (101) or pump (102), or the pump (102) with VFD function. VFD setting values can be adjusted. Therefore, the required minimum flow rate of each heat source device (101) can be ensured and stable control can be performed.
  • the number of activated heat source machines (101) can be limited according to the number of operable pumps (102). For example, when one or more pumps (102) are out of order, even if a start/stop command is output to the heat source equipment (101) during high load, the number of pumps (102) that can be operated is insufficient, and the required minimum There is a heat source device (101) whose flow rate cannot be ensured, and stable control may not be possible. In contrast, in the heat source system (100) of the present embodiment, the number of activated heat source devices (101) can be limited based on the amount of water supplied by the operable pumps (102).
  • the current estimated flow rate is calculated according to the various operating information described above, and the required flow rate is calculated from the estimated flow rate. If is larger, the VFD command value of the pump (102) can be increased to cover the required flow rate. Furthermore, if the VFD command value becomes low, the flow rate may not be sufficient in the heat source device (101) and stable control may not be possible. The lower limit of the VFD command value may be determined.
  • the heat source system (100) of the present embodiment it is possible to reduce the number of man-hours required for trial run adjustment to ensure the required minimum flow rate of the heat source machine (101), and it is possible to provide stable quality even without being an expert. Therefore, it can contribute to resolving labor shortages and reducing adjustment costs.
  • At least one of the plurality of heat source machines (101) and the plurality of pumps (102) may be configured with a plurality of different capacities.
  • the pump (102) is increased or decreased depending on, for example, the number of activated heat source devices (101) or the rated flow rate of the activated pump (102). be able to. Therefore, unlike the conventional manifold piping type heat source system, even if heat source machines (101) and pumps (102) of different capacities are mixed, the required minimum flow rate of each heat source machine (101) can be secured and stable can be controlled.
  • control unit (150) may increase or decrease the number of operating plural heat source machines (101) or the operating number of plural pumps (102). In this way, the required minimum flow rate of each heat source device (101) can be ensured by increasing/decreasing stages of the heat source device (101) or the pump (102), and stable control can be performed.
  • the control unit (150) calculates the required minimum flow rate by multiplying it by a coefficient that takes into account flow rate variations in each pipe (105) connected to the plurality of heat source devices (101).
  • the required flow rate may be determined based on the flow rate and the operating state of the plurality of heat source devices (101). In this way, the required flow rates for the plurality of heat source devices (101) can be determined more accurately, so that more stable control can be performed.
  • the control unit (150) compares the requested flow rate with the current water supply amount, and if the requested flow rate is larger, the control unit (150) compares the requested flow rate with the current water supply amount.
  • the pump (102) to be started may be selected from among the plurality of pumps (102) so that the flow rate is satisfied and the change in the current water supply amount is minimized. In this way, by increasing the number of pumps (102), the required minimum flow rate of each heat source device (101) can be ensured, and stable control can be performed. Further, since the pump (102) is increased in stages so that the change in the current water supply amount is minimized, the influence on the system load due to the increase in the pump (102) stages can be suppressed to the lowest possible extent.
  • the control unit (150) calculates the post-reduced water supply amount from the current water supply amount based on information about the pump (102) scheduled to be shut down among the plurality of pumps (102).
  • the pump (102) may be permitted or prohibited to stop operating according to the calculated result, and the water supply amount after stage reduction is compared with the required flow rate. In this way, by reducing the stages of the pump (102), the required minimum flow rate of each heat source device (101) can be ensured, and stable control can be performed.
  • At least one of the plurality of pumps (102) is a VFD type pump (102), and the control unit (150) controls the difference between the requested flow rate and the current water supply amount. Based on this, the VFD command value for the VFD pump (102) in operation may be updated. In this way, by adjusting the VFD command value of the VFD type pump (102), the required minimum flow rate of each heat source device (101) can be ensured and stable control can be performed.
  • the control unit (150) issues a VFD command for the VFD pump (102) based on the difference between the pressure of the piping (107, 116) connected to the VFD pump (102) and the set value of the pressure.
  • the current water supply amount is determined by multiplying the flow rate set by the operating VFD pump (102) by the rotation rate, and the requested flow rate is compared with the current water supply amount. is larger, a lower limit value of the VFD command value is calculated so as to compensate for the difference between the required flow rate and the current water supply amount, and if the lower limit value is larger than the VFD command value, The VFD command value may be updated by the lower limit value. In this way, the VFD command value of the VFD pump (102) can be adjusted so that the required minimum flow rate of each heat source device (101) can be ensured.
  • the control unit (150) compares the required flow rate and the maximum water supply amount, and if the required flow rate is larger, the control unit (150) determines that the maximum water supply amount is higher than the requested flow rate.
  • the heat source device (101) whose operation is to be stopped may be selected from among the plurality of heat source devices (101) so as to satisfy the flow rate. In this way, by reducing the stage of the heat source device (101), the required minimum flow rate of the other heat source devices (101) in operation can be ensured, and stable control can be performed. Further, in this case, the control unit (150) compares the required flow rate with the maximum water supply amount, and if the required flow rate is larger, selectively performs the first control and the second control.
  • a heat source device (101) to be shut down is selected from among the plurality of heat source devices (101) so that the maximum water supply amount satisfies the required flow rate
  • the maximum A heat source device (101) to be shut down may be selected from among the plurality of heat source devices (101) so that the water supply amount satisfies the required flow rate and the change in the required flow rate is the smallest. In this way, by reducing the stage of the heat source device (101), the required minimum flow rate of the other heat source devices (101) in operation can be ensured, and stable control can be performed.
  • the heat source equipment (101) is reduced in stage so that the change in the required flow rate is minimized, so the impact on the system load due to the reduction in the stage of the heat source equipment (101) is suppressed as much as possible. can do.
  • the control unit (150) calculates the post-increase required flow rate from the required flow rate based on the information of the heat source device (101) scheduled to start operation among the plurality of heat source devices (101). is calculated, and the required flow rate after stage increase is compared with the maximum water supply amount, and depending on the result, the start of operation of the heat source device (101) may be permitted or prohibited. In this way, the number of heat source devices (101) is increased while ensuring the required minimum flow rate of each heat source device (101) during operation, so stable control can be performed.
  • control unit (150) compares the required flow rate with the maximum water supply amount, and if the required flow rate is larger, the control unit (150) controls the plurality of heat source devices (101).
  • the capacity of the heat source device (101) that is in operation may be limited. In this way, the required minimum flow rate of each heat source device (101) can be ensured by limiting the capacity of the heat source device (101) in operation, and stable control can be performed.
  • the control unit (150) compares the required flow rate and the maximum water supply amount, and if the required flow rate is larger, the control unit (150) performs a third control and a fourth control.
  • the third control a heat source device (101) to be stopped from among the plurality of heat source devices (101) is selected so that the maximum water supply amount satisfies the required flow rate
  • the third control In the 4-control, the capacity of the heat source device (101) in operation among the plurality of heat source devices (101) may be limited. In this way, the required minimum flow rate of each heat source device (101) can be ensured by selectively reducing the stages of the heat source device (101) or limiting the capacity of the heat source device (101) during operation.
  • Stable control can be performed.
  • the control unit (150) performs the fourth control when the requested flow rate is larger than the maximum water supply amount, the influence on the system load due to the stage reduction of the heat source device (101) will be reduced. can be avoided. Further, the control unit (150) determines that the requested flow rate is larger than the maximum water supply amount, and the capacity of the heat source device (101) in operation among the plurality of heat source devices (101) is lower than a predetermined lower limit value. In such cases, if the third control is performed, even if the capacity of the heat source machine (101) in operation cannot be restricted, the capacity of the other heat source machine (101) in operation can be reduced by reducing the stage of the heat source machine (101).
  • control unit (150) determines that the required flow rate is larger than the maximum water supply amount and that the capacity of the heat source device (101) in operation among the plurality of heat source devices (101) is lower than a predetermined lower limit value.
  • a fifth control and a sixth control are selectively performed as the third control, and in the fifth control, the plurality of heat source devices (101) are controlled so that the maximum water supply amount satisfies the required flow rate.
  • a heat source device to be stopped is selected from among the plurality of heat source devices (101), and in the sixth control, the heat source device is selected from among the plurality of heat source devices (101) so that the maximum water flow rate satisfies the required flow rate and the change in the required flow rate is minimized.
  • the heat source device (101) is reduced in stage so that the change in the required flow rate is minimized, so the effect on the system load due to the step reduction in the heat source device (101) is minimized. Can be suppressed.
  • the present disclosure is useful for heat source systems.
  • heat source system 101 heat source machine 102 pump 103 collective piping 105, 107, 116 piping 150 control section

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

熱源システム(100)は、並列に設けられた複数の熱源機(101)と、並列に設けられた複数のポンプ(102)と、複数の熱源機(101)と複数のポンプ(102)との間の流路を一つにまとめる集合配管(103)と、制御部(150)とを備える。制御部(150)は、少なくとも、各熱源機(101)に設定された必要最低流量と、各熱源機(101)の運転状態とに基づき、要求流量を決定し、各ポンプ(102)に設定された流量と、各ポンプ(102)の運転状態とに基づき、現在送水量又は最大送水量を決定し、要求流量と現在送水量又は最大送水量とを比較し、その結果に応じて、複数の熱源機(101)又は複数のポンプ(102)の運転を制御する。

Description

熱源システム
 本開示は、熱源システムに関する。
 特許文献1には、並列に接続された複数の熱源機と、並列に接続された複数のポンプとがマニホールド配管を介して直列に接続された熱源システムが開示されている。マニホールド配管型の熱源システムでは、特定のポンプ又は熱源機が故障した場合でも、他のポンプ又は熱源機を起動させて運転を継続することができる。
 従来のマニホールド配管型の熱源システムでは、ポンプの最低起動台数や、VFD(variable frequency drive)機能付きポンプのVFD指令値の下限値を固定することによって、各熱源機の必要最低流量を確保している。
特開2021-17995号公報
 しかしながら、従来のマニホールド配管型の熱源システムでは、熱源機の台数とポンプの台数とが異なっていたり、異容量のポンプが混在している場合、熱源機の必要最低流量を確保できなくなることがある。また、1台以上のポンプが故障すると、ポンプの運転可能台数が足りなくなり、熱源機の必要最低流量を確保できなくなることがある。さらに、VFD機能付きポンプを用いている場合、VFD指令値が低くなると、熱源機の必要最低流量を確保できなくなることがある。
 このように、従来のマニホールド配管型の熱源システムでは、熱源機の必要最低流量を確保できなくなって、安定した制御ができなくなるおそれがある。
 本開示の目的は、マニホールド配管型の熱源システムにおいて安定した制御を行えるようにすることにある。
 本開示の第1の態様は、互いに並列に設けられた複数の熱源機(101)と、互いに並列に設けられた複数のポンプ(102)と、前記複数の熱源機(101)と前記複数のポンプ(102)との間の流路を一つにまとめるように配置された集合配管(103)と、前記複数の熱源機(101)、及び前記複数のポンプ(102)を運転制御する制御部(150)とを備えるマニホールド配管型の熱源システムである。前記制御部(150)は、[A]少なくとも、前記複数の熱源機(101)に設定された必要最低流量と、前記複数の熱源機(101)の運転状態とに基づき、要求流量を決定し、[B]前記複数のポンプ(102)に設定された流量と、前記複数のポンプ(102)の運転状態とに基づき、現在送水量又は最大送水量を決定し、[C]前記要求流量と、前記現在送水量又は前記最大送水量とを比較し、その結果に応じて、前記複数の熱源機(101)、又は前記複数のポンプ(102)の運転を制御する。
 第1の態様では、各熱源機(101)の運転状態等に応じた要求流量と、各ポンプ(102)の運転状態等に応じた現在送水量又は最大送水量を常時比較し、必要に応じて、熱源機(101)又はポンプ(102)の増減段等の調整を行うことができる。このため、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本開示の第2の態様は、第1の態様において、前記複数の熱源機(101)、及び前記複数のポンプ(102)の少なくとも一方は、異なる複数の容量のもので構成される。
 第2の態様では、従来のマニホールド配管型の熱源システムと異なり、異容量の熱源機(101)やポンプ(102)が混在していても、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本開示の第3の態様は、第1又は第2の態様において、前記制御部(150)は、前記複数の熱源機(101)の運転台数、又は前記複数のポンプ(102)の運転台数を増減させる。
 第3の態様では、熱源機(101)又はポンプ(102)の増減段によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本開示の第4の態様は、第1~第3のいずれか1つの態様において、前記制御部(150)は、前記複数の熱源機(101)に接続された各配管(105)における流量ばらつきを考慮した係数を前記必要最低流量に乗じて求めた流量と、前記複数の熱源機(101)の運転状態とに基づき、前記要求流量を決定する。
 第4の態様では、複数の熱源機(101)における要求流量をより正確に決定できるので、より安定した制御を行うことができる。
 本開示の第5の態様は、第1~第4のいずれか1つの態様において、前記制御部(150)は、前記要求流量と前記現在送水量とを比較して、前記要求流量の方が大きい場合には、前記現在送水量が前記要求流量を満たし且つ前記現在送水量の変化が最も小さくなるように、前記複数のポンプ(102)の中から運転開始させるポンプ(102)を選択する。
 第5の態様では、ポンプ(102)の増段によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。また、現在送水量の変化が最も小さくなるようにポンプ(102)の増段を行うので、ポンプ(102)の増段に伴うシステム負荷への影響を可能な限り小さく抑制することができる。
 本開示の第6の態様は、第1~第4のいずれか1つの態様において、前記制御部(150)は、前記複数のポンプ(102)のうち運転停止予定のポンプ(102)の情報に基づき、前記現在送水量から減段後送水量を算出し、当該減段後送水量と前記要求流量とを比較し、その結果に応じて、当該ポンプ(102)の運転停止を許可又は禁止する。
 第6の態様では、ポンプ(102)の減段によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本開示の第7の態様は、第1~第4のいずれか1つの態様において、前記複数のポンプ(102)のうち少なくとも1つはVFD型ポンプ(102)であり、前記制御部(150)は、前記要求流量と前記現在送水量との差分に基づいて、運転中の前記VFD型ポンプ(102)に対するVFD指令値を更新する。
 第7の態様では、VFD型ポンプ(102)のVFD指令値の調整によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本開示の第8の態様は、第7の態様において、前記制御部(150)は、前記VFD型ポンプ(102)に接続された配管(107,116)の圧力と、当該圧力の設定値との差に基づき、前記VFD型ポンプ(102)のVFD指令値を決定し、運転中の前記VFD型ポンプ(102)で設定された流量に回転率を乗じて前記現在送水量を決定し、前記要求流量と前記現在送水量とを比較して、前記要求流量の方が大きい場合には、前記要求流量と前記現在送水量との差分を補償できるように前記VFD指令値の下限値を算出し、前記下限値が前記VFD指令値よりも大きい場合には、前記VFD指令値を前記下限値により更新する。
 第8の態様では、各熱源機(101)の必要最低流量を確保できるように、VFD型ポンプ(102)のVFD指令値を調整することができる。
 本開示の第9の態様は、第1~第4のいずれか1つの態様において、前記制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、前記最大送水量が前記要求流量を満たすように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択する。
 第9の態様では、熱源機(101)の減段によって、運転中の他の熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本開示の第10の態様は、第9の態様において、前記制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、第1制御と第2制御とを選択的に行い、前記第1制御では、前記最大送水量が前記要求流量を満たすように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択し、前記第2制御では、前記最大送水量が前記要求流量を満たし且つ前記要求流量の変化が最も小さくなるように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択する。
 第10の態様では、熱源機(101)の減段によって、運転中の他の熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。また、第2制御では、要求流量の変化が最も小さくなるように熱源機(101)の減段を行うので、熱源機(101)の減段に伴うシステム負荷への影響を可能な限り小さく抑制することができる。
 本開示の第11の態様は、第1~第4のいずれか1つの態様において、前記制御部(150)は、前記複数の熱源機(101)のうち運転開始予定の熱源機(101)の情報に基づき、前記要求流量から増段後要求流量を算出し、当該増段後要求流量と前記最大送水量とを比較し、その結果に応じて、当該熱源機(101)の運転開始を許可又は禁止する。
 第11の態様では、運転中の各熱源機(101)の必要最低流量を確保しつつ熱源機(101)を増段させるので、安定した制御を行うことができる。
 本開示の第12の態様は、第1~第4のいずれか1つの態様において、前記制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、前記複数の熱源機(101)のうち運転中の熱源機(101)の能力を制限する。
 第12の態様では、運転中の熱源機(101)の能力の制限によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本開示の第13の態様は、第1~第4のいずれか1つの態様において、前記制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、第3制御と第4制御とを選択的に行い、前記第3制御では、前記最大送水量が前記要求流量を満たすように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択し、前記第4制御では、前記複数の熱源機(101)のうち運転中の熱源機(101)の能力を制限する。
 第13の態様では、熱源機(101)の減段、又は運転中の熱源機(101)の能力の制限を選択的に行うことによって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本開示の第14の態様は、第13の態様において、前記制御部(150)は、前記最大送水量よりも前記要求流量の方が大きい場合には、前記第4制御を行う。
 第14の態様では、熱源機(101)の減段に伴うシステム負荷への影響を回避することができる。
 本開示の第15の態様は、第13又は第14の態様において、前記制御部(150)は、前記最大送水量よりも前記要求流量の方が大きく且つ前記複数の熱源機(101)のうち運転中の熱源機(101)の能力が所定の下限値よりも低い場合には、前記第3制御を行う。
 第15の態様では、運転中の熱源機(101)の能力を制限できない場合には、熱源機(101)の減段によって、運転中の他の熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本開示の第16の態様は、第13~第15の態様のいずれか1つにおいて、前記制御部(150)は、前記最大送水量よりも前記要求流量の方が大きく且つ前記複数の熱源機(101)のうち運転中の熱源機(101)の能力が所定の下限値よりも低い場合には、前記第3制御として、第5制御と第6制御とを選択的に行い、前記第5制御では、前記最大送水量が前記要求流量を満たすように、前記複数の熱源機(101)の中から運転停止させる熱源機を選択し、前記第6制御では、前記最大送水量が前記要求流量を満たし且つ前記要求流量の変化が最も小さくなるように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択する。
 第16の態様では、運転中の熱源機(101)の能力を制限できない場合には、熱源機(101)の減段によって、運転中の他の熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。また、第6制御では、要求流量の変化が最も小さくなるように熱源機(101)の減段を行うので、熱源機(101)の減段に伴うシステム負荷への影響を可能な限り小さく抑制することができる。
図1は、実施形態に係る熱源システムの概略を示す構成図である。 図2は、図1に示す熱源システムにおけるポンプ台数制御を例示するフロー図である。 図3は、図1に示す熱源システムにおけるポンプ増段処理の内容を示す模式図である。 図4は、図1に示す熱源システムにおけるポンプ減段処理の内容を示す模式図である。 図5は、図1に示す熱源システムにおけるポンプVFD制御を例示するフロー図である。 図6は、図1に示す熱源システムにおける熱源機台数制御を例示するフロー図である。 図7は、図1に示す熱源システムにおける熱源機能力制限処理の内容を示す模式図である。 図8は、図1に示す熱源システムにおける熱源機減段処理の内容を示す模式図である。 図9は、図1に示す熱源システムにおける熱源機増段処理の内容を示す模式図である。
 (実施形態)
 以下、本開示の実施形態について図面を参照しながら説明する。尚、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、或いはその用途の範囲を制限することを意図するものではない。また、各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比又は数を誇張又は簡略化して表す場合がある。
  <熱源システム>
 本実施形態に係る熱源システム(100)は、図1に示すように、主に、複数(本例では3台)の熱源機(101)と、複数(本例では4台)のポンプ(102)と、制御部(150)とを備える。図1に示す熱源システム(100)では、各熱源機(101)とシステム負荷との間で、冷水又は温水等の熱媒体が矢印の向きに循環する。システム負荷は、空調機器等の負荷である。複数の熱源機(101)は、例えば、チラー、ヒートポンプ等であるが、以下では、複数の熱源機(101)がチラーである場合を例として説明する。複数のポンプ(102)は、本例では、VFD(102a)を有する一次ポンプである。制御部(150)は、主に、熱源機(101)及びポンプ(102)の運転制御を行う。
 複数の熱源機(101)は互いに並列に配置される。複数のポンプ(102)は互いに並列に配置される。熱源機(101)及びポンプ(102)のそれぞれの台数は特に限定されない。また、熱源機(101)及びポンプ(102)のそれぞれの台数は、本例のように異なっていてもよいし、同じであってもよい。さらに、複数の熱源機(101)及び複数のポンプ(102)の少なくとも一方が、異なる複数の容量のもので構成されてもよい。
 熱源システム(100)では、複数の熱源機(101)と複数のポンプ(102)との間の流路を一つにまとめるように、集合配管(103)が配置される。すなわち、熱源システム(100)では、マニホールド配管型である。集合配管(103)は、第1ヘッダ(104)を介して、各熱源機(101)に連通する複数の配管(105)と接続される。集合配管(103)は、第2ヘッダ(106)を介して、各ポンプ(102)に連通する複数の配管(107)と接続される。
 複数の熱源機(101)で冷却された冷水は、各熱源機(101)に連通する複数の配管(108)を経由してシステム負荷に送水される。複数の配管(108)は、第3ヘッダ(109)を介して、送水配管(110)と接続される。第3ヘッダ(109)には、システム負荷に送水される冷水の温度や圧力を計測するセンサ(図1のT,P)が設けられてもよい。送水配管(110)とシステム負荷との間には、二次ポンプが配置されてもよい。
 システム負荷で利用された熱媒体(本例では水)は、戻り配管(111)を経由して熱源機(101)に送られる。戻り配管(111)は、第4ヘッダ(112)を介して、流量計(113)が設けられた計測用配管(114)と接続される。第4ヘッダ(112)には、熱源機(101)に送られる熱媒体の温度を計測するセンサ(図1のT)が設けられてもよい。計測用配管(114)は、第5ヘッダ(115)を介して、各ポンプ(102)に連通する複数の配管(116)と接続される。
 尚、第3ヘッダ(109)と第5ヘッダ(115)との間には、複数の熱源機(101)及び複数のポンプ(102)を迂回するバイパス配管(117)が設けられる。バイパス配管(117)には弁(118)が設けられる。
  <制御部>
 制御部(150)は、例えば、コンピュータとその周辺装置とから構成される。制御部(150)は、コンピュータ等のハードウェアと、そのコンピュータが実行するプログラム等とによって、後述する各機能を実行する。
 制御部(150)は、熱源機(101)又はポンプ(102)を起動又は停止させる指令信号を出力する。制御部(150)は、ポンプ(102)のVFD(102a)を制御する指令信号を出力する。制御部(150)には、第3ヘッダ(109)及び第4ヘッダ(112)に設けられたセンサの計測信号(温度、圧力)や、流量計(113)の計測信号が入力される。制御部(150)は、バイパス配管(117)に設けられた弁(118)の開度を制御する。
 制御部(150)は、少なくとも、複数の熱源機(101)に設定された必要最低流量と、複数の熱源機(101)の運転状態とに基づき、要求流量を決定する。制御部(150)は、複数のポンプ(102)に設定された流量と、複数のポンプ(102)の運転状態とに基づき、現在送水量又は最大送水量を決定する。制御部(150)は、前記要求流量と、前記現在送水量又は前記最大送水量とを比較し、その結果に応じて、複数の熱源機(101)、又は複数のポンプ(102)の運転を制御する。制御部(150)は、例えば、熱源機(101)の運転台数又はポンプ(102)の運転台数を増減させてもよい。ここで、「運転状態」とは、熱源機(101)及びポンプ(102)のON/OFF状態のみならず、熱源機(101)及びポンプ(102)のVFD指令値を含む。また、「運転を制御」とは、熱源機(101)及びポンプ(102)のON/OFF状態の制御のみならず、熱源機(101)及びポンプ(102)のVFD制御を含む。
 複数の熱源機(101)のそれぞれに接続される配管(105)の配管長に差がある場合、制御部(150)は、例えば、各熱源機(101)に接続された配管(105)における流量ばらつきを考慮した係数を必要最低流量に乗じて求めた流量と、複数の熱源機(101)の運転状態とに基づき、要求流量を決定してもよい。具体的には、第1ヘッダ(104)から一の熱源機(101)までの配管(105)の配管長L1と、第1ヘッダ(104)から他の熱源機(101)までの配管(105)の配管長L2とが異なる場合において一の熱源機(101)を基準とする場合、他の熱源機(101)の必要最低流量は、所定の必要最低流量に係数L2/L1を乗じた流量に設定すればよい。
 以下、図2~図9を参照しながら、制御部(150)による熱源機(101)又はポンプ(102)の運転制御の詳細について説明する。
  <ポンプ台数制御>
 図2は、制御部(150)によるポンプ台数制御を例示するフロー図である。
 まず、ステップS101において、制御部(150)は、システム負荷における流量(以下、負荷側流量という)が、運転中のポンプ(102)の全台数の容量を超えているかどうかを判定する。負荷側流量の方が大きい場合、制御部(150)は、通常の台数制御によるポンプ(102)の増段を行う。具体的には、ステップS102において、制御部(150)は、起動可能なポンプ(102)の中から、例えば累計の運転時間が最も短いポンプ(102)を起動可能とし、ステップS103において、当該ポンプ(102)の増段を実施する。
 一方、ステップS101で負荷側流量の方が大きくないと判定された場合、制御部(150)は、ステップS104において、負荷側流量が、運転中のポンプ(102)の台数から1台減らした場合の容量よりも小さいかどうかを判定する。負荷側流量の方が小さくない場合、制御部(150)は、ステップS105において、運転中の各熱源機(101)に設定された必要最低流量の合計つまり要求流量が、運転中の各ポンプ(102)に設定された流量(定格流量)の合計つまり現在送水量よりも大きいかどうかを判定する。要求流量の方が大きい場合、制御部(150)は、ステップS106でポンプ(102)の強制増段を行い、要求流量の方が大きくない場合、制御部(150)は、ステップS107において、ポンプ(102)の運転台数の現状維持を決定する。尚、ステップS105で要求流量を決定する際に、前述のように、各熱源機(101)に接続された配管(105)における流量ばらつきを考慮してもよい。
 以下、制御部(150)によるポンプ増段処理(ステップS106等での処理)の内容について、図3を参照しながら説明する。制御部(150)は、増段後の現在送水量が要求流量を満たす待機中のポンプ(102)が有る場合(図3のスタンバイポンプ ケース1(ポンプ2、ポンプ3が該当))、当該待機中のポンプ(102)のうち増段後の現在送水量の変化が最も小さい(つまり最も容量の小さい)ポンプ(102)(図3のスタンバイポンプ ケース1ではポンプ2が該当)を起動可能とする。一方、ステップS106において、増段後の現在送水量が要求流量を満たす待機中のポンプ(102)が無い場合(図3のスタンバイポンプ ケース2(該当ポンプ無し))、制御部(150)は、待機中のポンプ(102)のうち最も容量の大きいポンプ(102)(図3のスタンバイポンプ ケース2ではポンプ1が該当)を起動可能とする。この場合、増段後の現在送水量が要求流量を満たす待機中のポンプ(102)が見つかるまで、容量の大きい順にポンプ(102)を順次起動可能とする。ステップS106で条件を満たすポンプ(102)が複数有った場合は、ステップS102において、制御部(150)は、該当する複数のポンプ(102)の中から、例えば累計の運転時間が最も短いポンプ(102)を起動可能とする。その後、ステップS103において、制御部(150)は、起動可能としたポンプ(102)の増段を実施する。
 ステップS104において、制御部(150)が、負荷側流量の方が小さいと判定した場合、制御部(150)は、通常の台数制御によるポンプ(102)の減段を行う。具体的には、ステップS108において、制御部(150)は、「運転中の各熱源機(101)に設定された必要最低流量の合計」つまり要求流量が、「運転中の各ポンプ(102)の定格流量の合計(現在送水量)から、次に運転停止する予定のポンプ(102)の定格流量を差し引いた流量」つまり減段後送水量よりも小さいかどうかを判定する。要求流量の方が小さい場合、ステップS109において、制御部(150)は、運転停止予定のポンプ(102)、例えば累計の運転時間が最も長いポンプ(102)を停止可能とし、ステップS110において、当該ポンプ(102)の減段を実施する。尚、ステップS108で要求流量を決定する際に、前述のように、各熱源機(101)に接続された配管(105)における流量ばらつきを考慮してもよい。
 ステップS108において、制御部(150)が、要求流量が減段後送水量よりも小さくないと判定した場合、ステップS111において、制御部(150)は、運転停止予定のポンプ(102)の他に、減段後の現在送水量が要求流量よりも大きくなる運転中のポンプ(102)が有るかどうかを判定する。以下、制御部(150)によるポンプ減段処理の内容について、図4を参照しながら説明する。尚、図4では、本来の運転停止(OFF)予定のポンプ(102)はポンプ2であるとする。減段後の現在送水量が要求流量を満たす運転中のポンプ(102)が無い場合(図4の運転中ポンプ ケース1(ポンプ2含め該当ポンプ無し))、制御部(150)は、ステップS107において、全てのポンプ(102)の減段を禁止してポンプ(102)の運転台数の現状維持を決定する。一方、減段後の現在送水量が要求流量よりも大きい運転中のポンプ(102)が有る場合(図4の運転中ポンプ ケース2(ポンプ1が該当))、制御部(150)は、ステップS109において、運転停止可能なポンプ(102)の中から、例えば累計の運転時間が最も長いポンプ(102)(図4の運転中ポンプ ケース2ではポンプ1が該当)を停止可能とし、ステップS110において、当該ポンプ(102)の減段を実施する。
 図2に示すポンプ台数制御では、前述のステップS101~S111の処理を所定の時間間隔で繰り返し実施してもよい。
  <ポンプVFD制御>
 複数のポンプ(102)のうち少なくとも1つがVFD機能を有する場合、制御部(150)は、図2に示すポンプ台数制御に代えて、或いは、当該ポンプ台数制御に加えて、前述の要求流量と前述の現在送水量との差分に基づいて、運転中のVFD機能付きポンプ(102)(以下、VFD型ポンプ(102)という)に対するVFD指令値を更新してもよい。
 図5は、制御部(150)によるポンプVFD制御を例示するフロー図である。
 まず、ステップS151において、制御部(150)は、VFD型ポンプ(102)に接続された配管(107,116)の圧力と、当該圧力の設定値との差に基づき、VFD型ポンプ(102)に対するVFD指令値を決定する。
 次に、ステップS152において、制御部(150)は、運転中の各熱源機(101)及び運転中の各ポンプ(102)の情報から、VFD指令値の下限値を決定する。具体的には、運転中のVFD型ポンプ(102)については、当該VFD型ポンプ(102)で設定された流量に回転率を乗じて現在の流量推定値を算出すると共に当該推定値を用いて前述の現在送水量を決定し、当該現在送水量よりも前述の要求流量の方が大きい場合には、当該要求流量と当該現在送水量との差分を補償できるようにVFD指令値の下限値を算出する。
 次に、ステップS153において、制御部(150)は、ステップS152で決定されたVFD指令値の下限値が、ステップS151で圧力に基づき決定されたVFD指令値よりも大きいかどうかを判定する。VFD指令値の下限値の方が大きい場合、ステップS154において、制御部(150)は、VFD指令値を当該下限値まで上昇させる。すなわち、VFD指令値を当該下限値により更新し、その後、ステップS155において、制御部(150)は、更新したVFD指令値を、VFD型ポンプ(102)に対するVFD指令値として出力する。
 ステップS153において、制御部(150)が、ステップS152で決定されたVFD指令値の下限値が、ステップS151で圧力に基づき決定されたVFD指令値よりも大きくないと判定した場合、ステップS155において、制御部(150)は、圧力に基づき決定されたVFD指令値をそのまま、VFD型ポンプ(102)に対するVFD指令値として出力する。
 図5に示すポンプVFD制御では、前述のステップS151~S155の処理を所定の時間間隔で繰り返し実施してもよい。また、VFD型ポンプ(102)が複数設けられる場合、図5に示すポンプVFD制御において、各VFD型ポンプ(102)に対して同一のVFD指令値を出力してもよい。
  <熱源機台数制御>
 制御部(150)は、図2に示すポンプ台数制御及び/又は図5に示すポンプVFD制御に代えて、或いは、当該ポンプ台数制御及び/又は当該ポンプVFD制御に加えて、以下に説明する熱源機台数制御を行ってもよい。
 図6は、制御部(150)による熱源機台数制御を例示するフロー図である。
 まず、ステップS301において、制御部(150)は、システム負荷における熱量(以下、負荷側熱量という)が、運転中の熱源機(101)の全台数の容量を超えているかどうかを判定する。負荷側熱量の方が大きくなっていない場合、制御部(150)は、ステップS302において、負荷側熱量が、運転中のポンプ(102)の台数から1台減らした場合の容量よりも小さいかどうかを判定する。負荷側熱量の方が小さい場合、制御部(150)は、通常の台数制御による熱源機(101)の減段を行う。具体的には、ステップS303において、制御部(150)は、停止可能な熱源機(101)の中から、例えば累計の運転時間が最も長い熱源機(101)を停止可能とし、ステップS304において、当該熱源機(101)の減段を実施する。
 一方、ステップS302で負荷側熱量の方が小さくなっていないと判定された場合、制御部(150)は、ステップS305において、「運転中の各熱源機(101)に設定された必要最低流量の合計」つまり要求流量が、「故障していない全てのポンプ(102)に設定された流量(定格流量)の合計」つまり最大送水量よりも大きいかどうかを判定する。要求流量の方が大きくなっていない場合、制御部(150)は、ステップS306において、熱源機(101)の運転台数の現状維持を決定する。尚、ステップS305で要求流量を決定する際に、前述のように、各熱源機(101)に接続された配管(105)における流量ばらつきを考慮してもよい。
 ステップS305で要求流量の方が大きくなっていると判定された場合において、複数の熱源機(101)のうち少なくとも1つが例えばVFD機能等を有していて能力調整が可能であれば、制御部(150)は、後述するステップS307及びS308の熱源機能力制限処理を行う。
 以下、制御部(150)による熱源機能力制限処理の内容について、図7を参照しながら説明する。図7に示すように、熱源機(101)の圧縮機がVFD機能を有する場合、流量が熱源機(101)の必要最低流量を満たせなくても、熱源機(101)の圧縮機のVFD指令値の最大値を制限すれば、流量が少ないまま運転を継続させることができる。例えば、[1]熱源機(101)の圧縮機が能力100%で運転しているときに、定格の半分の流量が必要最低流量であるとする。その後、[2]前述の最大送水量に対応する流量が、定格の40%となり、そのままでは必要最低流量を満たせない状態になったとする。この場合、[3]熱源機(101)の圧縮機のVFD指令値の上限(つまり能力制限値)を80%に制限すれば、元の定格の40%の流量であっても、運転が継続可能となる。尚、熱源機(101)の能力制限値には、仕様等により設定される下限が存在する。
 そこで、制御部(150)は、まず、ステップS307において、運転を継続可能とする熱源機(101)の能力制限値を算出した後、ステップS308において、算出された能力制限値が所定の下限値よりも大きいかどうかを判定し、大きければ、ステップS309において、熱源機(101)の運転台数は現状のまま熱源機(101)の能力を当該能力制限値に制限する。一方、熱源機(101)の能力制限値が所定の下限値よりも大きくなっていない場合は、制御部(150)は、後述するステップS310以降の熱源機(101)の強制減段を行う。
 尚、前述のステップS307及びS308の熱源機能力制限処理は、例えばユーザにより選択可能とし、制御部(150)は、ステップS305で要求流量の方が大きくなっていると判定された場合、ステップS307及びS308の熱源機能力制限処理を省略して、後述するステップS310以降の熱源機(101)の強制減段を行えるようにしてもよい。
 以下、制御部(150)による熱源機減段処理(ステップS310等での処理)の内容について、図8を参照しながら説明する。ステップS310において、制御部(150)は、減段後の要求流量が最大送水量よりも小さくなる運転中の熱源機(101)が有る場合(図8の運転中熱源機 ケース1(熱源機2、熱源機3が該当))、当該運転中の熱源機(101)のうち減段後の要求流量の変化が最も小さい(つまり必要最低流量が最も小さい)熱源機(101)(図8の運転中熱源機 ケース1では熱源機2が該当)を停止可能とする。一方、ステップS310において、減段後の要求流量が最大送水量よりも小さくなる運転中の熱源機(101)が無い場合(図8の運転中熱源機 ケース2(該当熱源機無し))、制御部(150)は、運転中の熱源機(101)のうち必要最低流量が最も大きい熱源機(101)(図8の運転中熱源機 ケース2では熱源機1が該当)を停止可能とする。この場合、減段後の要求流量が最大送水量よりも小さくなる運転中の熱源機(101)が見つかるまで、必要最低流量の大きい順に熱源機(101)を順次停止可能とする。ステップS310で条件を満たす熱源機(101)が複数有った場合は、ステップS303において、制御部(150)は、該当する複数の熱源機(101)の中から、例えば累計の運転時間が最も長い熱源機(101)を停止可能とする。その後、ステップS304において、制御部(150)は、停止可能とした熱源機(101)の減段を実施する。尚、ステップS310で要求流量を決定する際に、前述のように、各熱源機(101)に接続された配管(105)における流量ばらつきを考慮してもよい。
 以上、ステップS301で、運転中の熱源機(101)の全台数の容量を負荷側熱量が超えていないと判定された場合における熱源機減段処理について説明してきた。それに対して、ステップS301で、運転中の熱源機(101)の全台数の容量を負荷側熱量が超えていると判定された場合、制御部(150)は、通常の台数制御による熱源機(101)の増段処理を行う。具体的には、まず、ステップS311において、制御部(150)は、「運転中の各熱源機(101)に設定された必要最低流量の合計(要求流量)に、次に運転開始する予定の熱源機(101)の必要最低流量を加算した流量」つまり増段後要求流量が、「故障していない全てのポンプ(102)の定格流量の合計」つまり最大送水量よりも小さいかどうかを判定する。増段後要求流量の方が小さい場合、ステップS312において、制御部(150)は、運転開始予定の熱源機(101)、例えば累計の運転時間が最も短い熱源機(101)を起動可能とし、ステップS313において、当該熱源機(101)の増段を実施する。尚、ステップS311で要求流量を決定する際に、前述のように、各熱源機(101)に接続された配管(105)における流量ばらつきを考慮してもよい。
 一方、ステップS311において、増段後要求流量が最大送水量よりも小さくないと判定された場合、ステップS314において、制御部(150)は、運転開始予定の熱源機(101)の他に、増段後の要求流量が最大送水量よりも小さくなる待機中の熱源機(101)が有るかどうかを判定する。
 以下、制御部(150)による熱源機増段処理の内容について、図9を参照しながら説明する。尚、図9では、本来の運転開始(ON)予定の熱源機(101)は熱源機2であるとする。増段後の要求流量が最大送水量よりも小さくなる待機中の熱源機(101)が無い場合(図9のスタンバイ熱源機 ケース1(熱源機2含め該当熱源機無し))、制御部(150)は、ステップS306において、熱源機(101)の増段を禁止して熱源機(101)の運転台数の現状維持を決定する。一方、増段後の要求流量が最大送水量よりも小さくなる待機中の熱源機(101)が有る場合(図9のスタンバイ熱源機 ケース2(熱源機1が該当))、制御部(150)は、ステップS312において、運転開始可能な熱源機(101)の中から、例えば累計の運転時間が最も短い熱源機(101)(図9のスタンバイ熱源機 ケース2では熱源機1が該当)を起動可能とし、ステップS313において、当該熱源機(101)の増段を実施する。
 図6に示す熱源機台数制御では、前述のステップS301~S313の処理を所定の時間間隔で繰り返し実施してもよい。
  <実施形態の特徴>
 本実施形態の熱源システム(100)は、互いに並列に設けられた複数の熱源機(101)と、互いに並列に設けられた複数のポンプ(102)と、複数の熱源機(101)と複数のポンプ(102)との間の流路を一つにまとめるように配置された集合配管(103)と、複数の熱源機(101)及び複数のポンプ(102)を運転制御する制御部(150)とを備える。
 本実施形態の熱源システム(100)によると、起動している熱源機(101)の台数等に応じた要求流量と、起動しているポンプ(102)の台数等に応じた現在送水量(現時点の送水量)又は最大送水量(送水可能な最大の送水量)を常時比較し、必要に応じて、熱源機(101)又はポンプ(102)の増減段や、VFD機能を有するポンプ(102)のVFD設定値の調整を行うことができる。このため、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 また、本実施形態の熱源システム(100)によると、熱源機(101)及びポンプ(102)の台数が異なっていたり、或いは、異なる容量の複数のポンプ(102)が混在している場合であっても、各熱源機(101)の必要最低流量を常時確保することができるので、様々なシステム構成に対応可能である。
 また、本実施形態の熱源システム(100)によると、ポンプ(102)の運転可能台数に応じて、熱源機(101)の起動台数を制限することができる。例えば、1台以上のポンプ(102)が故障した際に、高負荷時に熱源機(101)に対して発停指令を出力したとしても、ポンプ(102)の運転可能台数が足りず、必要最低流量を確保できない熱源機(101)が存在し、安定した制御ができなくなることがあり得る。それに対して、本実施形態の熱源システム(100)では、運転可能なポンプ(102)の送水量から、熱源機(101)の起動台数を制限することができる。
 また、本実施形態の熱源システム(100)によると、VFD機能付きのポンプ(102)については、前述の各種運転情報に応じて現在の流量推定値を算出し、その流量推定値よりも要求流量のほうが大きい場合には、ポンプ(102)のVFD指令値を上昇させて要求流量をまかなうことができる。尚、VFD指令値が低くなると、熱源機(101)では流量が足りなくなり、安定した制御ができなくなる場合があるので、例えば熱源機(101)及びポンプ(102)のそれぞれの起動台数等に応じて、VFD指令値の下限を決めてもよい。
 また、本実施形態の熱源システム(100)によると、熱源機(101)の必要最低流量を確保するための試運転調整にかかる工数を削減できると共に、熟練者でなくても安定した品質を提供できるので、人手不足の解消や調整コストの削減にも貢献できる。
 本実施形態の熱源システム(100)において、複数の熱源機(101)及び複数のポンプ(102)の少なくとも一方は、異なる複数の容量のもので構成されてもよい。例えば異なる容量の複数のポンプ(102)が混在している場合、起動しているポンプ(102)の容量によって現在の送水量が変わるため、熱源機(101)では流量が足りなくなることがある。それに対して、本実施形態の熱源システム(100)では、例えば、熱源機(101)の起動台数や、起動しているポンプ(102)の定格流量に応じて、ポンプ(102)を増減段することができる。従って、従来のマニホールド配管型の熱源システムと異なり、異容量の熱源機(101)やポンプ(102)が混在していても、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本実施形態の熱源システム(100)において、制御部(150)は、複数の熱源機(101)の運転台数、又は複数のポンプ(102)の運転台数を増減させてもよい。このようにすると、熱源機(101)又はポンプ(102)の増減段によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本実施形態の熱源システム(100)において、制御部(150)は、複数の熱源機(101)に接続された各配管(105)における流量ばらつきを考慮した係数を前記必要最低流量に乗じて求めた流量と、複数の熱源機(101)の運転状態とに基づき、前記要求流量を決定してもよい。このようにすると、複数の熱源機(101)における要求流量をより正確に決定できるので、より安定した制御を行うことができる。
 本実施形態の熱源システム(100)において、制御部(150)は、前記要求流量と前記現在送水量とを比較して、前記要求流量の方が大きい場合には、前記現在送水量が前記要求流量を満たし且つ前記現在送水量の変化が最も小さくなるように、複数のポンプ(102)の中から運転開始させるポンプ(102)を選択してもよい。このようにすると、ポンプ(102)の増段によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。また、現在送水量の変化が最も小さくなるようにポンプ(102)の増段を行うので、ポンプ(102)の増段に伴うシステム負荷への影響を可能な限り小さく抑制することができる。
 本実施形態の熱源システム(100)において、制御部(150)は、複数のポンプ(102)のうち運転停止予定のポンプ(102)の情報に基づき、前記現在送水量から減段後送水量を算出し、当該減段後送水量と前記要求流量とを比較し、その結果に応じて、当該ポンプ(102)の運転停止を許可又は禁止してもよい。このようにすると、ポンプ(102)の減段によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本実施形態の熱源システム(100)において、複数のポンプ(102)のうち少なくとも1つはVFD型ポンプ(102)であり、制御部(150)は、前記要求流量と前記現在送水量との差分に基づいて、運転中のVFD型ポンプ(102)に対するVFD指令値を更新してもよい。このようにすると、VFD型ポンプ(102)のVFD指令値の調整によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。また、この場合、制御部(150)は、VFD型ポンプ(102)に接続された配管(107,116)の圧力と、当該圧力の設定値との差に基づき、VFD型ポンプ(102)のVFD指令値を決定し、運転中のVFD型ポンプ(102)で設定された流量に回転率を乗じて前記現在送水量を決定し、前記要求流量と前記現在送水量とを比較して、前記要求流量の方が大きい場合には、前記要求流量と前記現在送水量との差分を補償できるように前記VFD指令値の下限値を算出し、前記下限値が前記VFD指令値よりも大きい場合には、前記VFD指令値を前記下限値により更新してもよい。このようにすると、各熱源機(101)の必要最低流量を確保できるように、VFD型ポンプ(102)のVFD指令値を調整することができる。
 本実施形態の熱源システム(100)において、制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、前記最大送水量が前記要求流量を満たすように、複数の熱源機(101)の中から運転停止させる熱源機(101)を選択してもよい。このようにすると、熱源機(101)の減段によって、運転中の他の熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。また、この場合、制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、第1制御と第2制御とを選択的に行い、前記第1制御では、前記最大送水量が前記要求流量を満たすように、複数の熱源機(101)の中から運転停止させる熱源機(101)を選択し、前記第2制御では、前記最大送水量が前記要求流量を満たし且つ前記要求流量の変化が最も小さくなるように、複数の熱源機(101)の中から運転停止させる熱源機(101)を選択してもよい。このようにすると、熱源機(101)の減段によって、運転中の他の熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。また、第2制御では、要求流量の変化が最も小さくなるように熱源機(101)の減段を行うので、熱源機(101)の減段に伴うシステム負荷への影響を可能な限り小さく抑制することができる。
 本実施形態の熱源システム(100)において、制御部(150)は、複数の熱源機(101)のうち運転開始予定の熱源機(101)の情報に基づき、前記要求流量から増段後要求流量を算出し、当該増段後要求流量と前記最大送水量とを比較し、その結果に応じて、当該熱源機(101)の運転開始を許可又は禁止してもよい。このようにすると、運転中の各熱源機(101)の必要最低流量を確保しつつ熱源機(101)を増段させるので、安定した制御を行うことができる。
 本実施形態の熱源システム(100)において、制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、複数の熱源機(101)のうち運転中の熱源機(101)の能力を制限してもよい。このようにすると、運転中の熱源機(101)の能力の制限によって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。
 本実施形態の熱源システム(100)において、制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、第3制御と第4制御とを選択的に行い、前記第3制御では、前記最大送水量が前記要求流量を満たすように、複数の熱源機(101)の中から運転停止させる熱源機(101)を選択し、前記第4制御では、複数の熱源機(101)のうち運転中の熱源機(101)の能力を制限してもよい。このようにすると、熱源機(101)の減段、又は運転中の熱源機(101)の能力の制限を選択的に行うことによって、各熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。この場合、制御部(150)が、前記最大送水量よりも前記要求流量の方が大きい場合には、前記第4制御を行うと、熱源機(101)の減段に伴うシステム負荷への影響を回避することができる。また、制御部(150)が、前記最大送水量よりも前記要求流量の方が大きく且つ複数の熱源機(101)のうち運転中の熱源機(101)の能力が所定の下限値よりも低い場合には、前記第3制御を行うと、運転中の熱源機(101)の能力を制限できなくても、熱源機(101)の減段によって、運転中の他の熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。さらに、制御部(150)は、前記最大送水量よりも前記要求流量の方が大きく且つ複数の熱源機(101)のうち運転中の熱源機(101)の能力が所定の下限値よりも低い場合には、前記第3制御として、第5制御と第6制御とを選択的に行い、前記第5制御では、前記最大送水量が前記要求流量を満たすように、複数の熱源機(101)の中から運転停止させる熱源機を選択し、前記第6制御では、前記最大送水量が前記要求流量を満たし且つ前記要求流量の変化が最も小さくなるように、複数の熱源機(101)の中から運転停止させる熱源機(101)を選択してもよい。このようにすると、運転中の熱源機(101)の能力を制限できない場合には、熱源機(101)の減段によって、運転中の他の熱源機(101)の必要最低流量を確保して、安定した制御を行うことができる。また、前記第6制御では、要求流量の変化が最も小さくなるように熱源機(101)の減段を行うので、熱源機(101)の減段に伴うシステム負荷への影響を可能な限り小さく抑制することができる。
 (その他の実施形態)
 以上、実施形態及び変形例を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態及び変形例は、適宜組み合わせたり、置換したりしてもよい。さらに、以上に述べた「第1」、「第2」、…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上に説明したように、本開示は、熱源システムについて有用である。
 100  熱源システム
 101  熱源機
 102  ポンプ
 103  集合配管
 105、107、116  配管
 150  制御部

Claims (16)

  1.  互いに並列に設けられた複数の熱源機(101)と、
     互いに並列に設けられた複数のポンプ(102)と、
     前記複数の熱源機(101)と前記複数のポンプ(102)との間の流路を一つにまとめるように配置された集合配管(103)と、
     前記複数の熱源機(101)、及び前記複数のポンプ(102)を運転制御する制御部(150)とを備え、
     前記制御部(150)は、
     少なくとも、前記複数の熱源機(101)に設定された必要最低流量と、前記複数の熱源機(101)の運転状態とに基づき、要求流量を決定し、
     前記複数のポンプ(102)に設定された流量と、前記複数のポンプ(102)の運転状態とに基づき、現在送水量又は最大送水量を決定し、
     前記要求流量と、前記現在送水量又は前記最大送水量とを比較し、その結果に応じて、前記複数の熱源機(101)、又は前記複数のポンプ(102)の運転を制御する
    熱源システム。
  2.  請求項1の熱源システムにおいて、
     前記複数の熱源機(101)、及び前記複数のポンプ(102)の少なくとも一方は、異なる複数の容量のもので構成される
    熱源システム。
  3.  請求項1又は2の熱源システムにおいて、
     前記制御部(150)は、前記複数の熱源機(101)の運転台数、又は前記複数のポンプ(102)の運転台数を増減させる
    熱源システム。
  4.  請求項1~3のいずれか1項の熱源システムにおいて、
     前記制御部(150)は、前記複数の熱源機(101)に接続された各配管(105,108)における流量ばらつきを考慮した係数を前記必要最低流量に乗じて求めた流量と、前記複数の熱源機(101)の運転状態とに基づき、前記要求流量を決定する
    熱源システム。
  5.  請求項1~4のいずれか1項の熱源システムにおいて、
     前記制御部(150)は、前記要求流量と前記現在送水量とを比較して、前記要求流量の方が大きい場合には、前記現在送水量が前記要求流量を満たし且つ前記現在送水量の変化が最も小さくなるように、前記複数のポンプ(102)の中から運転開始させるポンプ(102)を選択する
    熱源システム。
  6.  請求項1~4のいずれか1項の熱源システムにおいて、
     前記制御部(150)は、前記複数のポンプ(102)のうち運転停止予定のポンプ(102)の情報に基づき、前記現在送水量から減段後送水量を算出し、当該減段後送水量と前記要求流量とを比較し、その結果に応じて、当該ポンプ(102)の運転停止を許可又は禁止する
    熱源システム。
  7.  請求項1~4のいずれか1項の熱源システムにおいて、
     前記複数のポンプ(102)のうち少なくとも1つはVFD型ポンプ(102)であり、
     前記制御部(150)は、前記要求流量と前記現在送水量との差分に基づいて、運転中の前記VFD型ポンプ(102)に対するVFD指令値を更新する
    熱源システム。
  8.  請求項7の熱源システムにおいて、
     前記制御部(150)は、
     前記VFD型ポンプ(102)に接続された配管(107,116)の圧力と、当該圧力の設定値との差に基づき、前記VFD型ポンプ(102)のVFD指令値を決定し、
     運転中の前記VFD型ポンプ(102)で設定された流量に回転率を乗じて前記現在送水量を決定し、
     前記要求流量と前記現在送水量とを比較して、前記要求流量の方が大きい場合には、前記要求流量と前記現在送水量との差分を補償できるように前記VFD指令値の下限値を算出し、
     前記下限値が前記VFD指令値よりも大きい場合には、前記VFD指令値を前記下限値により更新する
    熱源システム。
  9.  請求項1~4のいずれか1項の熱源システムにおいて、
     前記制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、前記最大送水量が前記要求流量を満たすように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択する
    熱源システム。
  10.  請求項9の熱源システムにおいて、
     前記制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、第1制御と第2制御とを選択的に行い、
     前記第1制御では、前記最大送水量が前記要求流量を満たすように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択し、
     前記第2制御では、前記最大送水量が前記要求流量を満たし且つ前記要求流量の変化が最も小さくなるように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択する
    熱源システム。
  11.  請求項1~4のいずれか1項の熱源システムにおいて、
     前記制御部(150)は、前記複数の熱源機(101)のうち運転開始予定の熱源機(101)の情報に基づき、前記要求流量から増段後要求流量を算出し、当該増段後要求流量と前記最大送水量とを比較し、その結果に応じて、当該熱源機(101)の運転開始を許可又は禁止する
    熱源システム。
  12.  請求項1~4のいずれか1項の熱源システムにおいて、
     前記制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、前記複数の熱源機(101)のうち運転中の熱源機(101)の能力を制限する
    熱源システム。
  13.  請求項1~4のいずれか1項の熱源システムにおいて、
     前記制御部(150)は、前記要求流量と前記最大送水量とを比較して、前記要求流量の方が大きい場合には、第3制御と第4制御とを選択的に行い、
     前記第3制御では、前記最大送水量が前記要求流量を満たすように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択し、
     前記第4制御では、前記複数の熱源機(101)のうち運転中の熱源機(101)の能力を制限する
    熱源システム。
  14.  請求項13の熱源システムにおいて、
     前記制御部(150)は、前記最大送水量よりも前記要求流量の方が大きい場合には、前記第4制御を行う。
    熱源システム。
  15.  請求項13又は14の熱源システムにおいて、
     前記制御部(150)は、前記最大送水量よりも前記要求流量の方が大きく且つ前記複数の熱源機(101)のうち運転中の熱源機(101)の能力が所定の下限値よりも低い場合には、前記第3制御を行う
    熱源システム。
  16.  請求項13~15のいずれか1項の熱源システムにおいて、
     前記制御部(150)は、前記最大送水量よりも前記要求流量の方が大きく且つ前記複数の熱源機(101)のうち運転中の熱源機(101)の能力が所定の下限値よりも低い場合には、前記第3制御として、第5制御と第6制御とを選択的に行い、
     前記第5制御では、前記最大送水量が前記要求流量を満たすように、前記複数の熱源機(101)の中から運転停止させる熱源機を選択し、
     前記第6制御では、前記最大送水量が前記要求流量を満たし且つ前記要求流量の変化が最も小さくなるように、前記複数の熱源機(101)の中から運転停止させる熱源機(101)を選択する
    熱源システム。
PCT/JP2023/004129 2022-03-18 2023-02-08 熱源システム WO2023176207A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022043608A JP2023137404A (ja) 2022-03-18 2022-03-18 熱源システム
JP2022-043608 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176207A1 true WO2023176207A1 (ja) 2023-09-21

Family

ID=88022767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004129 WO2023176207A1 (ja) 2022-03-18 2023-02-08 熱源システム

Country Status (2)

Country Link
JP (1) JP2023137404A (ja)
WO (1) WO2023176207A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035090A (ja) * 2012-08-07 2014-02-24 Daikin Ind Ltd 空調システム
JP2014066453A (ja) * 2012-09-26 2014-04-17 Daikin Ind Ltd 熱源システム制御装置
JP2014145493A (ja) * 2013-01-28 2014-08-14 Shin Nippon Air Technol Co Ltd 2ポンプ方式熱源設備におけるポンプ運転台数決定制御方法
JP2018036028A (ja) * 2016-09-02 2018-03-08 東京瓦斯株式会社 冷温水供給システム
JP2020197345A (ja) * 2019-06-03 2020-12-10 ダイキン工業株式会社 管理装置及び熱源システム
JP2021017995A (ja) * 2019-07-17 2021-02-15 三菱重工サーマルシステムズ株式会社 熱源システム、制御方法、及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035090A (ja) * 2012-08-07 2014-02-24 Daikin Ind Ltd 空調システム
JP2014066453A (ja) * 2012-09-26 2014-04-17 Daikin Ind Ltd 熱源システム制御装置
JP2014145493A (ja) * 2013-01-28 2014-08-14 Shin Nippon Air Technol Co Ltd 2ポンプ方式熱源設備におけるポンプ運転台数決定制御方法
JP2018036028A (ja) * 2016-09-02 2018-03-08 東京瓦斯株式会社 冷温水供給システム
JP2020197345A (ja) * 2019-06-03 2020-12-10 ダイキン工業株式会社 管理装置及び熱源システム
JP2021017995A (ja) * 2019-07-17 2021-02-15 三菱重工サーマルシステムズ株式会社 熱源システム、制御方法、及びプログラム

Also Published As

Publication number Publication date
JP2023137404A (ja) 2023-09-29

Similar Documents

Publication Publication Date Title
CN107036256B (zh) 排气温度的控制方法、排气温度的控制装置和空调器
KR20090010894A (ko) 공조 제어시스템 및 공조 제어 방법
US20050156049A1 (en) Control of multi-zone and multi-stage HVAC system
CN107655180B (zh) 运行控制方法、运行控制装置和多联机式空调器***
WO2005021976A1 (ja) 圧縮機の制御装置
CN107148541B (zh) 热源***及其控制装置以及控制方法
JP2017129340A (ja) 熱源制御システム、制御方法および制御装置
JP2012047412A (ja) 空調制御システムおよび空調制御方法
WO2023176207A1 (ja) 熱源システム
JP5310880B2 (ja) エネルギー制御装置及びエネルギー制御装置を備えたエネルギー制御システム
WO2014050200A1 (ja) 熱源システム制御装置
JP2001241735A (ja) 空気調和システムおよびその制御方法
JP3972342B2 (ja) 空調システムの制御方法及び制御装置及び空調システム
JP5313848B2 (ja) 送水圧力制御システムおよび方法
CN105020822A (zh) 适用于空调一级泵***的变差压控制***
JPH09178248A (ja) 空気調和システム
JP3320631B2 (ja) 冷温熱装置
CN111121153B (zh) 一种多联内机与新风机混接***及其控制方法
CN204830288U (zh) 适用于空调一级泵***的变差压控制***
US9797762B2 (en) Controlling device
JP3865861B2 (ja) 空調設備の自動制御方法
JP6616233B2 (ja) ヒートポンプシステム及びこれを備えた電力制限システム
JP6347800B2 (ja) ヒートポンプシステム及びこれを備えた電力制限システム
JPH08271066A (ja) 冷凍機の台数制御装置
JP7376815B2 (ja) 制御ソフトウェア生成システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770168

Country of ref document: EP

Kind code of ref document: A1