WO2023175869A1 - 電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法 - Google Patents

電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法 Download PDF

Info

Publication number
WO2023175869A1
WO2023175869A1 PCT/JP2022/012451 JP2022012451W WO2023175869A1 WO 2023175869 A1 WO2023175869 A1 WO 2023175869A1 JP 2022012451 W JP2022012451 W JP 2022012451W WO 2023175869 A1 WO2023175869 A1 WO 2023175869A1
Authority
WO
WIPO (PCT)
Prior art keywords
set pressure
relief valve
coil
electromagnetic relief
current
Prior art date
Application number
PCT/JP2022/012451
Other languages
English (en)
French (fr)
Inventor
達夫 伊藤
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to JP2024507377A priority Critical patent/JP7498877B2/ja
Priority to CN202280059872.8A priority patent/CN117940697A/zh
Priority to PCT/JP2022/012451 priority patent/WO2023175869A1/ja
Publication of WO2023175869A1 publication Critical patent/WO2023175869A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/06Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for adjusting the opening pressure

Definitions

  • the present invention relates to an electromagnetic relief valve system and a method of controlling an electromagnetic relief valve.
  • JPH2-256984A discloses an electromagnetic pressure control valve equipped with a set pressure adjusting solenoid that reduces the set pressure by reducing the valve closing force of a poppet caused by a spring using magnetic force generated by inputting an electric signal.
  • the setting pressure adjustment solenoid has a stator that has a coil that generates magnetic force by inputting an electric signal, and a plunger that is slidably supported in the axial direction by the stator via a rod, and the rod is connected to a poppet. comes into contact with. When the pressure of the working fluid acting on the poppet exceeds the set pressure, the poppet opens and the working fluid is relieved.
  • An object of the present invention is to use an electromagnetic relief valve system to reduce the variation in set pressure in an electromagnetic relief valve and to stabilize its operation.
  • an electromagnetic relief valve system having a solenoid portion that adjusts a set pressure at which the valve body opens by changing the biasing force of a biasing member acting on the valve body.
  • a valve, and a control section that controls the electromagnetic relief valve, and the solenoid section includes a coil that forms a magnetic field by supplying current, and is slidably housed in a housing, and the solenoid section is slidably housed in a housing, and the solenoid section is slidably housed in a housing, and the solenoid section is slidably housed in a housing, and the solenoid section is slidably housed in a housing.
  • the control section includes a drive control section that supplies current to the coil of the solenoid section; a dither generating section that generates dither in the plunger by applying either a first dither signal to the current and a second dither signal having a different amplitude or frequency from the first dither signal;
  • the generating section applies the first dither signal to the current supplied from the drive control section to the coil during adjustment of the set pressure that changes the current supplied from the drive control section to the coil. , when the set pressure is not adjusted, the second dither signal is applied to the current supplied from the drive control section to the coil.
  • the solenoid section includes a coil that forms a magnetic field by supplying current, and a plunger that is slidably housed in a housing and that is provided with a thrust that resists the urging force of the urging member by the magnetic field formed by the coil.
  • the method for controlling an electromagnetic relief valve includes a command signal generation step of generating a command signal that is a current value to be supplied to the coil based on a desired set pressure input by an operator; During adjustment of the set pressure that changes the current supplied to the coil, a current is supplied to the coil at a current value based on the first dither signal and the command signal, and the set pressure is not adjusted.
  • a second dither signal having a different amplitude or frequency from the first dither signal includes a current supply step of supplying a current to the coil at a current value based on the command signal.
  • FIG. 1 is a schematic diagram of an electromagnetic relief valve system according to an embodiment of the present invention.
  • FIG. 2 is a sectional view of an electromagnetic relief valve according to an embodiment of the invention.
  • FIG. 3 is a flowchart showing a processing procedure in which the control section supplies current to the coil when the electromagnetic relief valve is activated.
  • FIG. 4 is a flowchart showing a processing procedure in which the control unit supplies current to the coil after the electromagnetic relief valve is activated.
  • FIG. 5 is a diagram showing the relationship between the current supplied to the coil and the set pressure of the electromagnetic relief valve in a state where dither is not generated in the plunger of the solenoid part.
  • the electromagnetic relief valve system 100 changes the biasing force of a spring 74 (see FIG. 2) as a biasing member that acts on a pilot poppet 9 (see FIG. 2) as a valve body. It includes an electromagnetic relief valve 90 having a solenoid section 70 (see FIG. 2) that adjusts the set pressure at which the pilot poppet 9 opens, and a control section 91 (see FIG. 1) that controls the electromagnetic relief valve 90.
  • the electromagnetic relief valve system 100 is used, for example, in a working machine such as a power shovel. In this embodiment, a case will be described in which the working machine is a power shovel, but the electromagnetic relief valve system 100 is also applicable to other working machines.
  • the power shovel includes a crawler-type running section, a swing section that is rotatably provided above the running section, and an excavation section that is provided on the swing section.
  • the running section has a pair of left and right crawlers.
  • the power shovel travels by driving a pair of left and right crawlers in the traveling section.
  • the excavation section includes a boom rotatably attached to the revolving section, an arm rotatably attached to the boom, and a bucket rotatably attached to the arm.
  • the electromagnetic relief valve 90 in this embodiment is attached to a boom cylinder that drives a boom, and defines the relief pressure of the boom cylinder.
  • the electromagnetic relief valve 90 may also be one that regulates the relief pressure of a cylinder other than the boom cylinder.
  • hydraulic oil is used as the working fluid, but other fluids such as working water and compressed air may also be used.
  • the electromagnetic relief valve 90 opens when the pressure of the hydraulic oil in the high-pressure passage H that communicates with the equipment main body 1 that controls the drive of the boom cylinder etc. reaches a set pressure, and discharges the hydraulic oil from the high-pressure passage H to the low-pressure passage L. By releasing the pressure, the pressure of the hydraulic oil in the high pressure passage H is prevented from becoming abnormally high. Further, the electromagnetic relief valve 90 can change the set pressure at which the valve opens by driving the solenoid section 70 as described later.
  • the electromagnetic relief valve 90 includes a pilot poppet 9 biased by a spring 74, a solenoid section 70 that changes the biasing force of the spring 74 acting on the pilot poppet 9, a valve housing 2 that accommodates the pilot poppet 9, and a solenoid section.
  • the solenoid housing 71 has an opening 71b in which the plunger 72 of the solenoid section 70 is inserted, and a connecting member 80 that connects the valve housing 2 and the solenoid housing 71.
  • a suction poppet 3 having a cylindrical shape with a bottom is housed in the valve housing 2, and a main poppet 5 and a sleeve 7 in which a pilot poppet 9 is housed are housed in the suction poppet 3.
  • the suction poppet 3 is seated between the high pressure passage H and the low pressure passage L, and the main poppet 5 is seated on the suction poppet 3.
  • the main poppet 5 is provided with a pilot passage 10 that communicates the high pressure passage H and the back pressure chamber 8.
  • a drain chamber 12 is formed in the sleeve 7 and communicates with the low pressure passage L through a gap 2d between the outer peripheral surface of the suction poppet 3 and the inner peripheral surface of the valve housing 2. Drain chamber 12 communicates with back pressure chamber 8 through passage 11 formed within sleeve 7 .
  • a pilot poppet 9 for opening and closing the passage 11 is accommodated within the sleeve 7 and is slidably supported.
  • the pilot poppet 9 is a member formed in a substantially cylindrical shape, and has a conical valve portion 9a at one end, and a flange portion 9b formed annularly protruding radially outward at the other end. have.
  • a valve portion 9a of the pilot poppet 9 is seated in the passage 11.
  • a spring 83 is provided between the flange portion 9b of the pilot poppet 9 and the sleeve 7, and urges the pilot poppet 9 so that the other end of the pilot poppet 9 comes into contact with a rod 73 of a solenoid portion 70, which will be described later.
  • the solenoid section 70 includes a coil 75 that forms a magnetic field by supplying current, and is provided inside the coil 75 and is slidably housed in the solenoid housing 71, and resists the urging force of the spring 74 by the magnetic field formed by the coil 75.
  • the solenoid housing 71 also includes a housing that covers the coil 75.
  • a spring chamber 77 is formed in the solenoid housing 71 and is continuous with the opening 71b in the axial direction.
  • a spring 74 is disposed within the spring chamber 77 and has one end locked in the plunger 72 and the other end locked in the solenoid housing 71 .
  • the biasing force of the spring 74 acts on the pilot poppet 9 via the plunger 72 and a rod 73 connected to the axis of the plunger 72. That is, the spring 74 urges the pilot poppet 9 so that the valve portion 9a of the pilot poppet 9 is seated in the passage 11.
  • a current is supplied to the coil 75 of the solenoid section 70 from the control section 91.
  • a thrust force that resists the biasing force of the spring 74 acts on the plunger 72. Therefore, the biasing force of the spring 74 acting on the pilot poppet 9 via the plunger 72 and the rod 73 becomes smaller, and as a result, the pressure required to separate the valve portion 9a of the pilot poppet 9 from the passage 11.
  • the so-called cracking pressure becomes smaller.
  • the set pressure of the electromagnetic relief valve 90 specifically, the setting at which the pilot poppet 9 opens. The pressure can be adjusted. Below, the set pressure of the electromagnetic relief valve 90 is also simply referred to as "set pressure.”
  • control unit 91 that controls the electromagnetic relief valve 90 will be described with reference to FIG. 1.
  • the control unit 91 includes a drive control unit 92 that supplies current to the coil 75, and an input unit 95 that allows the operator to adjust the set pressure.
  • the drive control unit 92 controls the excavator, and includes a CPU (central processing unit), ROM (read only memory), RAM (random access memory), I/O interface (input/output interface), etc. It consists of a microcomputer with a The RAM stores data for processing by the CPU, the ROM stores in advance control programs for the CPU, and the I/O interface is used for inputting and outputting information with connected devices. Control of the power shovel is realized by operating the CPU, RAM, etc. according to programs stored in the ROM.
  • the drive control unit 92 is provided in the power shovel vehicle and controls the drive of the solenoid unit 70 during civil engineering work and the like and during adjustment of the set pressure.
  • a desired set pressure is input into the input section 95 by the operator.
  • the input section 95 is, for example, a dial knob type member, and is rotated in the circumferential direction to input a desired set pressure.
  • the input unit 95 may be a touch panel or the like through which a desired set pressure can be input.
  • Input section 95 is connected to drive control section 92 .
  • the drive control unit 92 supplies current to the coil 75 and controls the set pressure to be the one input to the input unit 95, as will be described later.
  • the drive control unit 92 includes a current control unit 92a that controls the current supplied to the coil 75, a detection unit 92b that detects the start and end of adjustment of the set pressure, and a dither signal that applies a dither signal to the current supplied to the coil 75. It has a dither generating section 92c that generates dither (vibration with a small amplitude) in the plunger 72.
  • the current control section 92a is composed of an electronic circuit using a capacitor, a transistor, etc.
  • the current control unit 92a is connected to the input unit 95 and generates a command signal based on the pressure indicated by the input unit 95, in other words, a desired set pressure input to the input unit 95.
  • a desired set pressure input to the input unit 95 Specifically, for example, the relationship between the set pressure and the current value supplied to the coil 75 to achieve the set pressure is stored in advance in the drive control unit 92.
  • the current control unit 92a generates a command signal that is a current value to be supplied to the coil 75 from the relationship between the desired set pressure input to the input unit 95, the set pressure stored in advance in the drive control unit 92, and the current value.
  • the current control unit 92a generates a control signal based on the command signal as described later, supplies current to the coil 75 based on the control signal, and controls the set pressure to be the same as that input to the input unit 95.
  • the detection unit 92b is composed of an electronic circuit using a capacitor, a transistor, a timer, etc.
  • the detection unit 92b detects turning on of an ignition switch (not shown). Thereby, the detection unit 92b detects starting of the engine (not shown) of the power shovel.
  • the current control unit 92a applies current to the coil 75 so that the set pressure becomes the pressure indicated by the input unit 95 from a state in which no current is supplied to the coil 75, as described later. is supplied. As a result, the electromagnetic relief valve 90 is activated.
  • the detection unit 92b may detect the start of the engine using a rotation speed sensor or the like.
  • the detection unit 92b detects the start and end of adjustment of the set pressure after the electromagnetic relief valve 90 is activated.
  • the start and end of adjustment of the set pressure refers not only to the time during which the current supplied to the coil 75 is actually changing, but also to the time set in advance for changing the current supplied to the coil 75. Also included. In other words, as long as the predetermined time period is set for adjusting the set pressure, the set pressure is being adjusted even if the current is not actually changing.
  • the detection unit 92b detects that a predetermined operation has been performed on the input unit 95 of the drive control unit 92 after the electromagnetic relief valve 90 is activated. Specifically, it is detected that the displacement amount of the input section 95 in the circumferential direction exceeds a predetermined value.
  • the detection unit 92b detects the start of adjustment of the set pressure.
  • the "predetermined value” is set to be larger than the amount of displacement of the input section 95 that would be expected due to an unintended operation such as an operator accidentally touching the input section 95.
  • the detection unit 92b detects the end of the adjustment of the set pressure when a predetermined period of time has elapsed without any operation of the input unit 95 after detecting the start of the adjustment of the set pressure.
  • the "predetermined time” is set shorter than the time from the start of adjustment of the set pressure to the start of work of the power shovel.
  • the detection unit 92b may be in a state where the end of adjustment of the set pressure has already been detected or the set pressure may not be changed after the electromagnetic relief valve 90 has been activated. This results in a state before the start of adjustment of the set pressure is detected.
  • the detection result of the detection section 92b is output to the dither generation section 92c. In this way, the time from when a predetermined operation is performed on the input section 95 after activation of the electromagnetic relief valve 90 until the elapse of a predetermined time is the time set for adjusting the set pressure.
  • the current control section 92a supplies current to the coil 75 from a state in which no current is supplied to the coil 75 so that the set pressure becomes the pressure indicated by the input section 95. Supplied. Therefore, although the input section 95 of the drive control section 92 is not operated, the activation of the electromagnetic relief valve 90 is included in "adjustment of the set pressure" because the current supplied to the coil 75 changes.
  • the detection unit 92b detects the end of adjustment of the set pressure.
  • the detection unit 92b detects the end of the adjustment of the set pressure when a predetermined period of time has elapsed after detecting the start of the engine (in other words, after starting the adjustment of the set pressure).
  • the detection by the detection unit 92b of starting the engine is different from the detection by the detection unit 92b of the start of adjustment of the set pressure.
  • the "predetermined time” may be set shorter than the time from the start of adjusting the set pressure to the start of work on the power shovel, and the "predetermined time” in adjusting the set pressure after the electromagnetic relief valve 90 is started. may be different.
  • the detection unit 92b detects the start of the engine, the elapse of a predetermined time since the start of the engine (end of adjustment of the set pressure), and the fact that a predetermined operation has been performed on the input unit 95 (adjustment of the set pressure). (start of)) and that a predetermined time has elapsed without any operation of the input unit 95 after a predetermined operation was performed on the input unit 95 (end of adjustment of the set pressure).
  • the electromagnetic relief valve 90 When the electromagnetic relief valve 90 is started, the period from when the detection section 92b detects the start of the engine to when it detects that a predetermined time has elapsed is "adjustment of the set pressure.” Further, after the electromagnetic relief valve 90 is activated, the detection unit 92b detects that a predetermined operation has been performed on the input unit 95, and then detects that a predetermined time has elapsed without any operation of the input unit 95. The period up to this point is ⁇ adjustment of the set pressure''.
  • the dither generating section 92c is an electronic circuit using a capacitor, a transistor, etc.
  • the dither generation section 92c outputs either a first dither signal or a second dither signal having a constant frequency and amplitude as parameters to the current control section 92a of the drive control section 92.
  • the dither generator 92c applies either the first dither signal or the second dither signal to the current supplied to the coil 75.
  • the first dither signal and the second dither signal are for applying dither to the current supplied to the coil 75.
  • the amplitude and frequency of the first dither signal are set so that the plunger 72 vibrates in the axial direction while the current control unit 92a supplies current to the coil 75 at a current value based on the first control signal, as described later. be done. Further, the amplitude and frequency of the second dither signal are set so that the plunger 72 does not displace while the current control unit 92a supplies current to the coil 75 at a current value based on the second control signal, as will be described later. Ru.
  • the second dither signal has a smaller amplitude than the first dither signal and the same frequency as the first dither signal.
  • the dither generator 92c applies a first dither signal to the current supplied from the current controller 92a to the coil 75 during adjustment of the set pressure.
  • the dither generating section 92c operates during the period from when the detecting section 92b detects the start of the engine to when the end of adjustment of the set pressure is detected after a predetermined period of time has elapsed, and after the electromagnetic relief valve 90 is activated.
  • the current control section 92a Output a first dither signal.
  • the dither generating section 92c applies a second dither signal to the current supplied from the current control section 92a to the coil 75 in a state where the set pressure is not adjusted. Specifically, the dither generating section 92c detects the start of adjusting the set pressure after the detecting section 92b detects the end of adjusting the set pressure and after the detecting section 92b detects the end of adjusting the set pressure. Until then, a second dither signal is output to the current control section 92a. That is, during work such as civil engineering work on the power shovel, the dither generation section 92c outputs the second dither signal to the current control section 92a.
  • the current control section 92a When the first dither signal is output from the dither generating section 92c, the current control section 92a synthesizes the command signal and the first dither signal to generate a first composite signal.
  • the current control unit 92a generates a first control signal while comparing the first composite signal and the DC component of the actual current value, and supplies current to the coil 75 based on the first control signal.
  • the generated first control signal has the frequency and amplitude based on the first dither signal as parameters, and the numerical values periodically vary. Therefore, the current value of the current supplied to the coil 75 changes depending on the frequency.
  • the plunger 72 moves to adjust the set pressure while vibrating in the axial direction.
  • a first dither signal is output from the dither generating section 92c to the current control section 92a, and the current control section 92a supplies current to the coil 75 based on the first control signal.
  • the current control section 92a When the second dither signal is output from the dither generating section 92c, the current control section 92a synthesizes the command signal and the second dither signal to generate a second composite signal.
  • the current control unit 92a generates a second control signal while comparing the second composite signal and the DC component of the actual current value, and supplies current to the coil 75 using the second control signal.
  • the generated second control signal periodically fluctuates in numerical value like the first control signal. Therefore, the current value of the current supplied to the coil 75 changes depending on the frequency.
  • the second dither signal has a smaller amplitude than the first dither signal, and even if the current supplied to the coil 75 is dithered by the second dither signal, the plunger 72 is not displaced.
  • the plunger 72 is not displaced.
  • the current control unit 92a of this embodiment generates the control signal as described above using a hardware electronic circuit using a capacitor, a transistor, or the like.
  • FIG. 3 and 4 are flowcharts summarizing the above processing procedure in which the control unit 91 supplies current to the coil 75, in other words, the method of controlling the electromagnetic relief valve 90.
  • FIG. 3 summarizes a method of controlling the electromagnetic relief valve 90 when the electromagnetic relief valve 90 is activated.
  • FIG. 4 summarizes the control method of the electromagnetic relief valve 90 after the electromagnetic relief valve 90 is activated. After detecting the start of the engine, the control unit 91 first executes the process shown in FIG. 3 to start the electromagnetic relief valve 90, and then repeatedly executes the process shown in FIG. 4 at predetermined time intervals.
  • step S101 the control unit 91 first generates a command signal that is a current value that the current control unit 92a supplies to the coil 75 based on the set pressure indicated by the input unit 95.
  • step S102 the dither generator 92c outputs a first dither signal to the current controller 92a.
  • step S101 may be performed after step S102, or step S101 and step S102 may be performed in parallel.
  • step S103 the current control section 92a synthesizes the generated command signal and the first dither signal output from the dither generation section 92c to generate a first composite signal.
  • step S104 the current control unit 92a generates a first control signal based on the first composite signal.
  • step S105 the current control unit 92a supplies current to the coil 75 at a current value based on the first control signal. Once the current is supplied to the coil 75, the process proceeds to step S106.
  • step S106 the detection unit 92b determines whether a predetermined time has elapsed after detecting the start of the engine.
  • the set pressure is being adjusted, and is a state before the detection unit 92b detects the end of the set pressure adjustment.
  • the adjustment of the set pressure is completed, and this is the state after the detection unit 92b detects the end of the adjustment of the set pressure.
  • step S106 if the detection unit 92b determines that the predetermined time has not elapsed after detecting the start of the engine, the process returns to step S101, generates a command signal again based on the set pressure indicated by the input unit 95, and executes the process. continue. That is, when the electromagnetic relief valve 90 is activated, if the set pressure indicated by the input section 95 is changed, a command signal is generated based on the changed set pressure.
  • step S106 if the detection unit 92b determines that a predetermined period of time has passed after detecting the start of the engine (in other words, the adjustment of the set pressure has been completed), the process advances to step S107, and the dither generation unit 92c controls the current control unit 92a.
  • step S108 the current control unit 92a generates a second control signal based on a second composite signal obtained by combining the command signal and the second dither signal, in the same manner as in steps S103 and S104. Then, the process proceeds to step S109, where the current control unit 92a supplies current to the coil 75 at a current value based on the second control signal, and the activation of the electromagnetic relief valve 90 is ended. Thereafter, control of the electromagnetic relief valve 90 after activation shown in FIG. 4 is executed at predetermined time intervals. Control of the electromagnetic relief valve 90 after the electromagnetic relief valve 90 is activated shown in FIG. 4 is started with the current control section 92a supplying current to the coil 75 at a current value based on the second control signal.
  • step S201 the control unit 91 determines whether the set pressure that changes the current supplied to the coil 75 is being adjusted. Specifically, the detection unit 92b determines whether the set pressure is being adjusted or not.
  • step S201 "the set pressure is being adjusted” is a state from when the detection unit 92b detects the start of the set pressure adjustment until it detects the end of the set pressure adjustment.
  • the set pressure is not being adjusted refers to the state from when the electromagnetic relief valve 90 is activated until the detection unit 92b detects the start of adjustment of the set pressure, or when the detection unit 92b detects the end of adjustment of the set pressure. This is the state from when the start of adjustment of the set pressure is detected again.
  • step S201 if the detection unit 92b determines that the set pressure is not being adjusted, the current control unit 92a maintains a state in which current is supplied to the coil 75 at a current value based on the second control signal, and the process ends. do.
  • step S201 if the detection unit 92b determines that the set pressure is being adjusted, the process proceeds to step S202, where the dither generation unit 92c outputs a first dither signal instead of the second dither signal to the current control unit 92a.
  • step S203 similarly to step S101, the current control section 92a generates a command signal based on the set pressure indicated by the input section 95, and the process proceeds to step S204.
  • step S204 the generated command signal and the first dither signal output from the dither generator 92c are combined to generate a first composite signal.
  • step S205 where the current control unit 92a generates a first control signal based on the first composite signal.
  • step S206 where the current control unit 92a supplies current to the coil 75 at a current value based on the first control signal. Once the current is supplied to the coil 75, the process advances to step S207.
  • step S207 the detection unit 92b determines whether a predetermined period of time has elapsed since the detection of the start of the adjustment of the set pressure and has detected the end of the adjustment of the set pressure. In other words, the detection unit 92b determines whether adjustment of the set pressure has been completed. In step S207, if the detection unit 92b determines that the predetermined time has not elapsed since the detection of the start of adjustment of the set pressure, the process returns to step S204 and steps S204 to S207 are repeated. In other words, the state in which current is supplied to the coil 75 based on the first control signal is maintained until it is determined that the predetermined time has elapsed after detecting the start of adjustment of the set pressure in step S207.
  • step S204 a command signal is generated again based on the set pressure indicated by the input section 95. That is, after the electromagnetic relief valve 90 is activated, when the set pressure indicated by the input section 95 is changed, a command signal is generated based on the changed set pressure.
  • step S207 when the detection unit 92b determines that a predetermined time has elapsed since the detection of the start of adjustment of the set pressure, the process proceeds to step S208, and the dither generation unit 92c causes the current control unit 92a to output the first dither signal. Instead, a second dither signal is output and the process advances to step S209.
  • step S209 the current control unit 92a generates a second control signal based on a second composite signal obtained by combining the command signal and the second dither signal, in the same manner as in steps S204 and S205. The process then proceeds to step S210, where the current control unit 92a supplies current to the coil 75 at a current value based on the second control signal, and the process ends.
  • the command signal generation step is performed in which the control unit 91 generates a command signal that is a current value to be supplied to the coil 75 based on the desired set pressure input by the operator.
  • Step S101, Step S203 and during adjustment of the set pressure that changes the current supplied to the coil 75, a current is supplied to the coil 75 at a current value based on the first dither signal and the command signal (Steps S102 to S203).
  • Step S105, Step S202, Step S204 to Step S206 when the set pressure is not adjusted (in other words, the set pressure adjustment has been completed), the current value based on the second dither signal and the command signal is applied to the coil.
  • the electromagnetic relief valve 90 is controlled by a current supply step (steps S107 to S109, steps S208 to S210) of supplying current to the electromagnetic relief valve 75.
  • the set pressure of the electromagnetic relief valve when the set pressure of the electromagnetic relief valve is adjusted without adding dither to the current supplied to the coil, the set pressure is adjusted due to static frictional force acting on the sliding surface of the plunger. Hysteresis may occur during adjustment. This causes variations in the set pressure of the electromagnetic relief valve that is actually set when adjusting the set pressure. Specifically, the set pressure of the electromagnetic relief valve is the same current value when increasing the current supplied to the solenoid and when decreasing the current, as shown by the arrow in Figure 5. are also different.
  • an electromagnetic relief valve system if the set pressure of the electromagnetic relief valve is adjusted without adding dither to the current supplied to the coil, the strength of the magnetic field generated by the supply of current to the coil and the attachment of the spring generated by the magnetic field can be adjusted. There may be variations in the relationship between the thrust force of the plunger that resists the force, and hysteresis may occur when adjusting the set pressure.
  • the dither generator 92c applies dither to the current supplied to the coil 75 using the first dither signal.
  • the plunger 72 vibrates in the axial direction and enters a state of dynamic friction, so that the frictional force acting on the sliding surface is smaller than when the plunger 72 is stationary. Therefore, occurrence of hysteresis during adjustment of the set pressure is suppressed.
  • the operation of the electromagnetic relief valve 90 may become unstable.
  • the current supplied to the coil 75 is dithered by the second dither signal having a smaller amplitude than the first dither signal. Therefore, by adding a small dither to the current supplied to the coil 75 (specifically, dither to the extent that the plunger 72 does not displace), the operation of the electromagnetic relief valve 90 is stabilized, and the current to the coil 75 is reduced.
  • the electromagnetic relief valve system 100 can reduce variations in the set pressure in the electromagnetic relief valve 90 and stabilize the operation.
  • the dither generator 92c applies dither to the current supplied to the coil 75 using the first dither signal.
  • the plunger 72 is in a state of dynamic friction during adjustment of the set pressure, so that variations in the set pressure in the electromagnetic relief valve 90 can be reduced.
  • the dither generator 92c applies dither to the current supplied to the coil 75 using a second dither signal having a smaller amplitude than the first dither signal. .
  • the input section 95 is a dial knob type member, and the detection section 92b adjusts the set pressure when the circumferential displacement amount of the input section 95 exceeds a predetermined value after the electromagnetic relief valve 90 is activated. Detects the start of.
  • the input unit 95 is not limited to this, and may be a touch panel or the like.
  • the detection unit 92b detects the start of adjustment of the set pressure when a set pressure different from the current set pressure is input after activation of the electromagnetic relief valve 90, and detects a different set pressure. When a predetermined period of time has elapsed after completion of the input, the end of adjustment of the set pressure is detected.
  • a switch (not shown) that is pressed when adjusting the set pressure may be provided near the input section 95, and when the switch is turned on, the detection section 92b may detect the start of adjusting the set pressure. In this case, the detection unit 92b detects the end of adjustment of the set pressure when the switch is turned off or when a predetermined period of time has elapsed since the switch was turned on. In this case, a lamp or the like may be used to notify the operator that the switch is on.
  • variations in the set pressure of the electromagnetic relief valve 90 can be reduced in adjusting the set pressure of the electromagnetic relief valve 90, similarly to the above embodiment.
  • it can be applied when replacing an actuator or when changing the relief pressure of an actuator depending on the content of work.
  • the second dither signal has a smaller amplitude than the first dither signal, and even if the second dither signal dithers the current supplied to the coil 75, the plunger 72 is not displaced.
  • the present invention is not limited to this, and the second dither signal may have a higher frequency than the first dither signal.
  • the frequency of the second dither signal is increased, the responsiveness of the plunger 72 to periodic changes in the current supplied to the coil 75 is reduced. Therefore, similarly to the above embodiment, even if the current supplied to the coil 75 is dithered by the second dither signal, the plunger 72 can be configured not to be displaced. This produces the same effects as the above embodiment.
  • the detection unit 92b detects that a predetermined time has elapsed after detecting the start of the engine (after starting adjustment of the set pressure), or that the input unit 95 is not operated after detecting the start of adjusting the set pressure. When a predetermined period of time has elapsed, the end of the adjustment of the set pressure is detected.
  • the detection unit 92b is not limited to this, and may include a switch (not shown) that is pressed when the adjustment of the set pressure is completed near the input unit 95, and detects the end of the adjustment of the set pressure when the switch is operated. good. Even with this configuration, the same effects as in the above embodiment can be achieved.
  • the detection unit 92b detects the end of the adjustment of the set pressure when a predetermined period of time has elapsed after detecting the start of the adjustment of the set pressure. Even if the operator forgets to do this, the first dither signal is prevented from being applied to the current supplied to the plunger 72 while the electromagnetic relief valve 90 is operating.
  • the current control section 92a and the dither generation section 92c are electronic circuits using capacitors, transistors, etc., that is, hardware, and generate control signals and dither signals using the electronic circuits.
  • the present invention is not limited to this, and the current control section 92a and dither generation section 92c may generate the control signal and dither signal using software as in the above embodiment.
  • the electronic circuit may be replaced with a software program, and the control signal may be generated by processing the program. Even with this configuration, the same effects as in the above embodiment can be achieved.
  • the drive control section 92 includes a current control section 92a, a detection section 92b, and a dither generation section 92c.
  • the detection section 92b and the dither generation section 92c may be provided separately from the drive control section 92, or may be provided separately from the power shovel vehicle. That is, the electromagnetic relief valve system 100 may have a configuration in which the control section 91 includes at least the drive control section 92, the detection section 92b, and the dither generation section 92c.
  • the detection section 92b detects the start and end of adjustment of the set pressure. In other words, the detection section 92b is not an essential component of the electromagnetic relief valve system 100.
  • the electromagnetic relief valve system 100 is an electromagnetic relief valve having a solenoid section 70 that adjusts a set pressure at which the pilot poppet 9 opens by changing the urging force of a spring 74 as an urging member acting on a pilot poppet 9 as a valve body.
  • the solenoid section 70 includes a valve 90 and a control section 91 that controls the electromagnetic relief valve 90.
  • the solenoid section 70 is slidably housed in a solenoid housing 71, and a coil 75 that forms a magnetic field by supplying current.
  • the control section 91 includes a drive control section 92 that supplies current to the coil 75 of the solenoid section 70 , and a plunger 72 that applies a thrust that resists the biasing force of the spring 74 due to the magnetic field formed.
  • a dither generating section 92c generates dither in the plunger 72 by applying a first dither signal to the supplied current and a second dither signal having a different amplitude or frequency from the first dither signal, and generates dither.
  • the section 92c applies a first dither signal to the current supplied from the drive control section 92 to the coil 75 during adjustment of the set pressure that changes the current supplied from the drive control section 92 to the coil 75, and changes the set pressure.
  • a second dither signal is applied to the current supplied from the drive control section 92 to the coil 75.
  • the dither generator 92c applies dither to the current supplied to the coil 75 using the first dither signal.
  • the plunger 72 is in a state of dynamic friction, so that the frictional force acting on the sliding surface is smaller than when the plunger 72 is stationary. Therefore, variations in the set pressure actually set when adjusting the set pressure in the electromagnetic relief valve 90 can be reduced.
  • the dither generating section 92c applies dither to the current supplied to the coil 75 using the second dither signal. Thereby, variations in the set pressure in the electromagnetic relief valve 90 can be reduced and the operation can be stabilized.
  • the second dither signal has a smaller amplitude than the first dither signal.
  • the second dither signal has a higher frequency than the first dither signal.
  • control section 91 further includes a detection section 92b that detects the start and end of adjustment of the set pressure.
  • the detection section 92b detects the start or end of adjustment of the set pressure, and the dither generation section 92c controls the application of the first dither signal or the second dither signal, thereby reducing the variation in the set pressure in the electromagnetic relief valve 90. It is possible to make the operation smaller and stabilize the operation.
  • the detection unit 92b detects the end of the adjustment of the set pressure when a predetermined time has elapsed after the start of the adjustment of the set pressure.
  • the first dither signal is applied to the current supplied to the plunger 72 while the electromagnetic relief valve 90 is operating. This will be prevented.
  • the control method for the relief valve 90 includes a command signal generation step (step S101, step S203) in which the control unit 91 generates a command signal that is a current value to be supplied to the coil 75 based on a desired set pressure input by the operator.
  • the current is supplied to the coil 75 at a current value based on the first dither signal and the command signal (steps S102 to S105, step S202, step S204 to S206), a current supply step of supplying a current to the coil 75 at a current value based on a second dither signal and a command signal having a different amplitude or frequency from the first dither signal when the set pressure is not adjusted; (Steps S107 to S109, Steps S208 to S210).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

電磁リリーフバルブシステム(100)は、電磁リリーフバルブ(90)と、電磁リリーフバルブ(90)を制御する制御部(91)と、を備え、制御部(90)は、コイル(75)に供給される電流に第一ディザ信号と、第一ディザ信号とは振幅または周波数が異なる第二ディザ信号と、のいずれかを付与しプランジャ(72)にディザを発生させるディザ発生部(93)を有し、ディザ発生部(93)は、駆動制御部(91)からコイル(75)に供給される電流を変化させる設定圧の調整中には駆動制御部(91)からコイル(75)に供給される電流に第一ディザ信号を付与し、設定圧の調整が行われない状態では駆動制御部(91)からコイル(75)に供給される電流に第二ディザ信号を付与する。

Description

電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法
 本発明は、電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法に関する。
 JPH2-256984Aには、電気信号の入力により発生する磁力でスプリングによるポペットの弁口閉鎖力を減じて設定圧力を低下させる設定圧力調整用ソレノイドを備える電磁圧力制御弁が開示されている。設定圧力調整用ソレノイドは、電気信号の入力により磁力を発生するコイルを有する固定子と、固定子にロッドを介して軸方向に摺動自在に支持されたプランジャと、を有し、ロッドがポペットに当接する。ポペットに作用する作動流体の圧力が設定圧を超えると、ポペットが開弁し作動流体がリリーフされる。
 JPH2-256984Aに記載のような電磁圧力制御弁では、プランジャの摺動面に作用する静摩擦力等の影響により、電磁圧力制御弁の設定圧の調整時に実際にセットされるセット圧にばらつきが生じることが考えられる。これに対して、JP2001-173556Aに記載のように、コイルに供給する電流にディザを付与し、プランジャを振動させ、プランジャの摺動面に動摩擦力が作用する状態にすることも考えられる。しかしながら、この場合は、プランジャの振動はロッドを介してポペットに伝達されるため、電磁圧力制御弁の動作が不安定となるおそれがある。
 本発明は、電磁リリーフバルブシステムにより、電磁リリーフバルブにおけるセット圧のばらつきを小さくするとともに動作を安定とすることを目的とする。
 本発明のある態様によれば、電磁リリーフバルブシステムであって、弁体に作用する付勢部材の付勢力を変化させて前記弁体が開弁する設定圧を調整するソレノイド部を有する電磁リリーフバルブと、前記電磁リリーフバルブを制御する制御部と、を備え、前記ソレノイド部は、電流の供給によって磁界を形成するコイルと、ハウジングに摺動自在に収容され、前記コイルが形成する磁界により前記付勢部材の前記付勢力に抗する推力が付与されるプランジャと、を有し、前記制御部は、前記ソレノイド部の前記コイルに電流を供給する駆動制御部と、前記コイルに供給される前記電流に第一ディザ信号と、前記第一ディザ信号とは振幅または周波数が異なる第二ディザ信号と、のいずれかを付与し前記プランジャにディザを発生させるディザ発生部と、を有し、前記ディザ発生部は、前記駆動制御部から前記コイルに供給される前記電流を変化させる前記設定圧の調整中には前記駆動制御部から前記コイルに供給される前記電流に前記第一ディザ信号を付与し、前記設定圧の調整が行われない状態では前記駆動制御部から前記コイルに供給される前記電流に前記第二ディザ信号を付与する。
 本発明の別の態様によれば、弁体に作用する付勢部材の付勢力を変化させて前記弁体が開弁する設定圧を調整するソレノイド部を有する電磁リリーフバルブの制御方法であって、前記ソレノイド部は、電流の供給によって磁界を形成するコイルと、ハウジングに摺動自在に収容され、前記コイルが形成する磁界により前記付勢部材の前記付勢力に抗する推力が付与されるプランジャと、を有し、前記電磁リリーフバルブの制御方法は、操作者により入力された所望の設定圧に基づいて前記コイルに供給する電流値である指令信号を生成する指令信号生成ステップと、前記コイルに供給される前記電流を変化させる前記設定圧の調整中には第一ディザ信号と前記指令信号に基づいた電流値で前記コイルに電流を供給し、前記設定圧の調整が行われない状態で前記第一ディザ信号とは振幅または周波数が異なる第二ディザ信号とは前記指令信号に基づいた電流値で前記コイルに電流を供給する電流供給ステップと、を備える。
図1は本発明の実施形態に係る電磁リリーフバルブシステムの概略図である。 図2は本発明の実施形態に係る電磁リリーフバルブの断面図である。 図3は電磁リリーフバルブの起動時において、制御部がコイルに電流を供給する処理手順を示すフローチャートである。 図4は電磁リリーフバルブの起動後において、制御部がコイルに電流を供給する処理手順を示すフローチャートである。 図5はソレノイド部のプランジャにディザを発生させない状態においてコイルに供給される電流と電磁リリーフバルブの設定圧との関係を示す図である。
 図面を参照して、本発明の実施形態に係る電磁リリーフバルブシステム100について説明する。
 図1,2に示すように、電磁リリーフバルブシステム100は、弁体としてのパイロットポペット9(図2参照)に作用する付勢部材としてのスプリング74(図2参照)の付勢力を変化させてパイロットポペット9が開弁する設定圧を調整するソレノイド部70(図2参照)を有する電磁リリーフバルブ90と、電磁リリーフバルブ90を制御する制御部91(図1参照)と、を備える。電磁リリーフバルブシステム100は、例えばパワーショベル等の作業機に用いられる。本実施形態では、作業機がパワーショベルである場合について説明するが、電磁リリーフバルブシステム100は、他の作業機にも適用可能である。
 図示しないが、パワーショベルは、クローラ式の走行部と、走行部の上部に旋回可能に設けられる旋回部と、旋回部に設けられる掘削部と、を備える。走行部は、左右一対のクローラを有する。走行部の左右一対のクローラが駆動されることにより、パワーショベルが走行する。掘削部は、旋回部に回動可能に取り付けられるブームと、ブームに回動可能に取り付けられるアームと、アームに回動可能に取り付けられるバケットと、を備える。本実施形態における電磁リリーフバルブ90は、ブームを駆動するブームシリンダに取り付けられ、ブームシリンダのリリーフ圧を規定する。なお、電磁リリーフバルブ90は、ブームシリンダ以外の他のシリンダ等のリリーフ圧を規定するものであってもよい。また、本実施形態では、作動流体として作動油が用いられるが、作動水や圧縮空気などの他の流体を用いてもよい。
 まず、図2を参照して、電磁リリーフバルブ90について説明する。
 電磁リリーフバルブ90は、ブームシリンダ等の駆動を制御する機器本体1に連通する高圧通路H内の作動油の圧力が設定圧に達すると開弁し、高圧通路Hから低圧通路Lへ作動油を逃がすことにより、高圧通路H内の作動油の圧力が異常に高圧となることを防止する。また、電磁リリーフバルブ90は、後述するようにソレノイド部70が駆動されることによって、開弁する設定圧を変更することが可能である。
 電磁リリーフバルブ90は、スプリング74により付勢されるパイロットポペット9と、パイロットポペット9に作用するスプリング74の付勢力を変化させるソレノイド部70と、パイロットポペット9を収容するバルブハウジング2と、ソレノイド部70を収容しソレノイド部70のプランジャ72が挿入される開口部71bを有するソレノイドハウジング71と、バルブハウジング2とソレノイドハウジング71とを連結する連結部材80と、を備える。
 バルブハウジング2には有底円筒状のサクションポペット3が収容され、サクションポペット3には、メインポペット5と、パイロットポペット9が収容されるスリーブ7と、が収容される。サクションポペット3は高圧通路Hと低圧通路Lの間に着座し、メインポペット5はサクションポペット3に着座する。これにより、機器本体1とサクションポペット3との間及びサクションポペット3とメインポペット5との間を通じた高圧通路Hと低圧通路Lとの連通が遮断される。メインポペット5には、高圧通路Hと背圧室8とを連通するパイロット通路10が設けられる。スリーブ7内には、サクションポペット3の外周面とバルブハウジング2の内周面との間の隙間2dを通じて低圧通路Lに連通するドレン室12が形成される。ドレン室12は、スリーブ7内に形成される通路11を通じて背圧室8に連通する。スリーブ7内には、通路11を開閉するパイロットポペット9が収容され、摺動支持される。
 パイロットポペット9は、略円柱状に形成された部材であり、円錐状に形成された弁部9aを一端に有し、径方向外側へと環状に突出して形成されたフランジ部9bを他端に有している。通路11には、パイロットポペット9の弁部9aが着座する。パイロットポペット9のフランジ部9bとスリーブ7との間には、後述するソレノイド部70のロッド73にパイロットポペット9の他端を当接させるようにパイロットポペット9を付勢するスプリング83が設けられる。
 ソレノイド部70は、電流の供給によって磁界を形成するコイル75と、コイル75の内側に設けられソレノイドハウジング71に摺動自在に収容され、コイル75が形成する磁界によりスプリング74の付勢力に抗する推力が付与されるプランジャ72と、プランジャ72に一端部側が連結され他端部がパイロットポペット9に当接するロッド73と、ソレノイドハウジング71内に係止されプランジャ72を介してパイロットポペット9を付勢するスプリング74と、を有する。なお、コイル75を覆うハウジングもソレノイドハウジング71に含まれる。
 ソレノイドハウジング71には、開口部71bと軸方向に連続してスプリング室77が形成される。スプリング室77内には、一端がプランジャ72に係止され他端がソレノイドハウジング71内に係止されるスプリング74が配置される。スプリング74の付勢力は、プランジャ72及びプランジャ72の軸心に連結されるロッド73を介してパイロットポペット9に作用する。つまり、スプリング74は、パイロットポペット9の弁部9aが通路11に着座するようにパイロットポペット9を付勢している。
 ソレノイド部70のコイル75には、制御部91から電流が供給される。コイル75に電流が供給されると、プランジャ72には、スプリング74の付勢力に抗する推力が作用する。このため、プランジャ72及びロッド73を介してパイロットポペット9に作用するスプリング74の付勢力が小さくなり、結果として、パイロットポペット9の弁部9aを通路11から離座させるために必要となる圧力、いわゆるクラッキング圧は小さくなる。このように、コイル75への通電を制御しパイロットポペット9に作用するスプリング74の付勢力を変化させることによって、電磁リリーフバルブ90の設定圧、具体的には、パイロットポペット9が開弁する設定圧を調整することができる。以下では、電磁リリーフバルブ90の設定圧を単に「設定圧」とも称する。
 このような電磁リリーフバルブ90では、高圧通路H内の圧力が設定圧に達すると、パイロットポペット9が開く。パイロットポペット9が開くことにより、背圧室8内の作動油は、通路11を通じてドレン室12に流れ、サクションポペット3の外周面とバルブハウジング2の内周面との間の隙間2dを通じて低圧通路Lに排出される。
 次に、図1を参照して、電磁リリーフバルブ90を制御する制御部91について説明する。
 制御部91は、コイル75に電流を供給する駆動制御部92と、操作者により設定圧の調整操作がされる入力部95と、を有する。
 駆動制御部92は、パワーショベルの制御を行うものであり、CPU(中央演算処理装置)、ROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、及びI/Oインターフェース(入出力インターフェース)などを備えたマイクロコンピュータで構成される。RAMはCPUの処理におけるデータを記憶し、ROMはCPUの制御プログラムなどを予め記憶し、I/Oインターフェースは接続された機器との情報の入出力に使用される。CPUやRAMなどをROMに格納されたプログラムに従って動作させることによってパワーショベルの制御が実現される。駆動制御部92は、パワーショベルの車両に設けられ、土木作業等の作動中及び設定圧の調整中においてソレノイド部70の駆動を制御する。
 入力部95には、操作者により所望の設定圧が入力される。入力部95は、例えば、ダイヤルつまみ型の部材であり、周方向に回転されることで所望の設定圧が入力される。入力部95は、所望の設定圧が入力可能なタッチパネル等であってもよい。入力部95は、駆動制御部92に接続される。駆動制御部92は、後述するように、コイル75に電流を供給して設定圧が入力部95に入力されたものとなるように制御する。
 駆動制御部92は、コイル75に供給する電流を制御する電流制御部92aと、設定圧の調整の開始及び終了を検知する検知部92bと、コイル75に供給される電流にディザ信号を付与しプランジャ72にディザ(小さい振れ幅の振動)を発生させるディザ発生部92cと、を有する。
 電流制御部92aは、コンデンサやトランジスタ等を用いた電子回路で構成される。電流制御部92aは、入力部95に接続され、入力部95が示す圧力、言い換えれば、入力部95に入力された所望の設定圧に基づいて指令信号を生成する。具体的には、例えば、駆動制御部92には設定圧と当該設定圧とするためにコイル75に供給する電流値との関係が予め記憶される。電流制御部92aは、入力部95に入力された所望の設定圧と駆動制御部92に予め記憶された設定圧と電流値との関係からコイル75に供給する電流値である指令信号を生成する。電流制御部92aは、後述するように指令信号に基づいて制御信号を生成し、制御信号によりコイル75に電流を供給して設定圧が入力部95に入力されたものとなるように制御する。
 検知部92bは、コンデンサ、トランジスタやタイマー等を用いた電子回路で構成される。検知部92bは、イグニッションスイッチ(図示せず)のオンへの切り換えを検知する。これにより、検知部92bは、パワーショベルのエンジン(図示せず)の始動を検知する。検知部92bがエンジンの始動を検知すると、後述するように、コイル75に電流が供給されていない状態から、設定圧が入力部95の示す圧力になるように電流制御部92aによりコイル75に電流が供給される。これにより、電磁リリーフバルブ90の起動がされる。なお、検知部92bは、回転数センサ等でエンジンの始動を検知してもよい。
 本実施形態では、検知部92bは、電磁リリーフバルブ90の起動後においては、設定圧の調整の開始及び終了を検知する。ここで、「設定圧の調整の開始及び終了」とは、コイル75に供給する電流が実際に変化している時間だけでなく、コイル75に供給する電流を変化させるために予め設定された時間も含む。つまり、設定圧を調整するために設定される所定の時間内であれば、電流が実際には変化していなくても設定圧の調整中である。検知部92bは、電磁リリーフバルブ90の起動後に、駆動制御部92の入力部95に所定の操作がされたことを検知する。具体的には、入力部95の周方向の変位量が所定値を超えたことを検知する。これにより、検知部92bは、設定圧の調整の開始を検知する。ここで、「所定値」とは、操作者が誤って入力部95に触れる等の意図しない操作により想定される入力部95の変位量よりも大きく設定される。加えて、検知部92bは、設定圧の調整の開始を検知後に入力部95の操作がされずに所定時間が経過すると、設定圧の調整の終了を検知する。ここで、「所定時間」は、設定圧の調整の開始から、パワーショベルの作業開始までの時間よりも短く設定される。つまり、パワーショベルの土木作業等の作業中は、検知部92bにより既に設定圧の調整の終了が検知された後の状態や、電磁リリーフバルブ90の起動後に設定圧が変更されずに検知部92bにより設定圧の調整の開始が検知される前の状態となる。検知部92bの検知結果は、ディザ発生部92cに出力される。このように、電磁リリーフバルブ90の起動後に入力部95に所定の操作がされてから所定時間の経過までの時間が、設定圧を調整するために設定された時間である。
 また、上記のように、電磁リリーフバルブ90の起動時には、コイル75に電流が供給されていない状態から、設定圧が入力部95の示す圧力になるように電流制御部92aによりコイル75に電流が供給される。よって、電磁リリーフバルブ90の起動は、駆動制御部92の入力部95は操作されないものの、コイル75に供給する電流が変化するため、「設定圧の調整」に含まれる。電磁リリーフバルブ90の起動時には、検知部92bは、設定圧の調整の終了を検知する。具体的には、検知部92bは、エンジンの始動を検知後(言い換えれば、設定圧の調整の開始後)に所定時間が経過すると、設定圧の調整の終了を検知する。なお、本実施形態においては、検知部92bがエンジンの始動を検知することは、検知部92bが設定圧の調整の開始を検知することとは異なる。また、「所定時間」は、設定圧の調整の開始からパワーショベルの作業開始までの時間よりも短く設定されればよく、電磁リリーフバルブ90の起動後の設定圧の調整における「所定時間」とは異なってもよい。
 このように、検知部92bは、エンジンの始動と、エンジンの始動から所定時間が経過したこと(設定圧の調整の終了)と、入力部95に所定の操作がされたこと(設定圧の調整の開始)と、入力部95に所定の操作がされてから入力部95の操作がされずに所定時間が経過したこと(設定圧の調整の終了)と、を検知する。電磁リリーフバルブ90の起動時においては、検知部92bがエンジンの始動を検知してから、所定時間が経過したことを検知するまでの間が「設定圧の調整」となる。また、電磁リリーフバルブ90の起動後においては、検知部92bが入力部95に所定の操作がされたことを検知してから、入力部95の操作がされずに所定時間が経過したことを検知するまでの間が「設定圧の調整」となる。
 ディザ発生部92cは、コンデンサやトランジスタ等を用いた電子回路である。ディザ発生部92cは、一定の周波数及び振幅をパラメータとして有する第一ディザ信号と第二ディザ信号のいずれかを駆動制御部92の電流制御部92aに出力する。言い換えれば、ディザ発生部92cは、コイル75に供給される電流に第一ディザ信号と第二ディザ信号のいずれかを付与する。第一ディザ信号及び第二ディザ信号は、コイル75に供給する電流にディザを付与するためのものである。第一ディザ信号の振幅及び周波数は、後述するように電流制御部92aが第一制御信号に基づいた電流値でコイル75に電流を供給した状態で、プランジャ72が軸方向に振動するように設定される。また、第二ディザ信号の振幅及び周波数は、後述するように電流制御部92aが第二制御信号に基づいた電流値でコイル75に電流を供給した状態で、プランジャ72が変位しないように設定される。本実施形態では、第二ディザ信号は、第一ディザ信号よりも振幅が小さく、第一ディザ信号と周波数が同じである。
 ディザ発生部92cは、設定圧の調整中には電流制御部92aからコイル75に供給される電流に第一ディザ信号を付与する。具体的には、ディザ発生部92cは、検知部92bがエンジンの始動を検知してから所定時間が経過して設定圧の調整の終了を検知するまでの間と、電磁リリーフバルブ90の起動後に入力部95に所定の操作がされて検知部92bが設定圧の調整の開始を検知してから所定時間が経過して設定圧の調整の終了を検知するまでの間では、電流制御部92aに第一ディザ信号を出力する。
 また、ディザ発生部92cは、設定圧の調整が行われない状態では電流制御部92aからコイル75に供給される電流に第二ディザ信号を付与する。具体的には、ディザ発生部92cは、検知部92bが設定圧の調整の終了を検知した後と、検知部92bが設定圧の調整の終了を検知してから設定圧の調整の開始を検知するまでの間では、電流制御部92aに第二ディザ信号を出力する。つまり、パワーショベルの土木作業等の作業中では、ディザ発生部92cは電流制御部92aに第二ディザ信号を出力する。
 電流制御部92aは、ディザ発生部92cから第一ディザ信号が出力されると、指令信号と第一ディザ信号を合成して第一合成信号を生成する。電流制御部92aは、第一合成信号と実際の電流値の直流成分とを比較しながら第一制御信号を生成し、第一制御信号によりコイル75に電流を供給する。この場合、生成された第一制御信号は第一ディザ信号に基づく周波数及び振幅をパラメータとして有し、周期的に数値が変動する。そのため、コイル75に供給される電流は、周波数に応じて電流値が変化するものとなる。コイル75に供給する電流に第一ディザ信号によりディザが付与されると、プランジャ72は、軸方向に振動しながら設定圧の調整のために移動する。電磁リリーフバルブ90の起動時には、ディザ発生部92cから電流制御部92aに第一ディザ信号が出力され、電流制御部92aは第一制御信号によりコイル75に電流を供給する。
 電流制御部92aは、ディザ発生部92cから第二ディザ信号が出力されると、指令信号と第二ディザ信号を合成して第二合成信号を生成する。電流制御部92aは、第二合成信号と実際の電流値の直流成分とを比較しながら第二制御信号を生成し、第二制御信号によりコイル75に電流を供給する。この場合、生成された第二制御信号は、第一制御信号と同様に周期的に数値が変動する。そのため、コイル75に供給される電流は、周波数に応じて電流値が変化するものとなる。第二ディザ信号は、第一ディザ信号よりも振幅が小さく、コイル75に供給する電流に第二ディザ信号によりディザが付与されても、プランジャ72は変位しない。言い換えれば、第二制御信号によりコイル75に電流が供給される状態(設定圧の調整が行われない状態)では、プランジャ72は変位しない。なお、本実施形態の電流制御部92aは、コンデンサやトランジスタ等を用いたハードウェアによる電子回路により、上記のように制御信号を生成する。
 図3,4は、制御部91がコイル75に電流を供給する上記の処理手順、言い換えれば、電磁リリーフバルブ90の制御方法をフローチャートにまとめたものである。図3は、電磁リリーフバルブ90の起動時の電磁リリーフバルブ90の制御方法をまとめたものである。図4は、電磁リリーフバルブ90の起動後の電磁リリーフバルブ90の制御方法をまとめたものである。制御部91は、エンジンの始動を検知後にまず図3に示す処理を実行して電磁リリーフバルブ90を起動し、その後、図4に示す処理を所定の時間間隔ごとに繰り返して実行する。
 図3に示すように、制御部91は、まず、ステップS101において、電流制御部92aが入力部95の示す設定圧に基づいてコイル75に供給する電流値である指令信号を生成する。続いて、ステップS102へと進み、ディザ発生部92cが電流制御部92aに第一ディザ信号を出力する。なお、ステップS102の後にステップS101が行われてもよく、ステップS101とステップS102が並列して行われてもよい。そして、ステップS103へと進み、電流制御部92aが、生成された指令信号とディザ発生部92cから出力された第一ディザ信号を合成して第一合成信号を生成する。続いて、ステップS104へと進み、電流制御部92aが第一合成信号に基づいて第一制御信号を生成する。そして、ステップS105へと進み、電流制御部92aが第一制御信号に基づいた電流値でコイル75に電流を供給する。コイル75に電流を供給すると、ステップS106へと進む。
 ステップS106では、検知部92bが、エンジンの始動を検知後に所定時間が経過したかを判定する。ここで、エンジンの始動を検知後に所定時間が経過するまでの間は、設定圧の調整中の状態であり、検知部92bが設定圧の調整の終了を検知する前の状態である。エンジンの始動を検知後に所定時間が経過した後は、設定圧の調整が終了した状態であり、検知部92bが設定圧の調整の終了を検知した後の状態である。
 ステップS106において、検知部92bがエンジンの始動を検知後に所定時間が経過していないと判定すると、ステップS101へと戻り、入力部95の示す設定圧に基づいて再度指令信号を生成し、処理を継続する。つまり、電磁リリーフバルブ90の起動時には、入力部95の示す設定圧が変更されると、変更後の設定圧に基づいた指令信号が生成される。ステップS106において、検知部92bがエンジンの始動を検知後に所定時間が経過した(言い換えれば、設定圧の調整が終了した)と判定すると、ステップS107へと進み、ディザ発生部92cが電流制御部92aに第一ディザ信号に代えて第二ディザ信号を出力してステップS108へと進む。ステップS108では、電流制御部92aがステップS103,ステップS104と同様にして、指令信号と第二ディザ信号を合成した第二合成信号に基づく第二制御信号を生成する。そして、ステップS109へと進み、電流制御部92aが第二制御信号に基づいた電流値でコイル75に電流を供給して、電磁リリーフバルブ90の起動を終了する。その後、図4に示す電磁リリーフバルブ90の起動後の電磁リリーフバルブ90の制御を所定時間ごとに実行する。図4に示す電磁リリーフバルブ90の起動後の電磁リリーフバルブ90の制御は、電流制御部92aが第二制御信号に基づいた電流値でコイル75に電流を供給する状態で開始される。
 図4に示すように、ステップS201では、制御部91は、コイル75に供給される電流を変化させる設定圧の調整中かどうかを判定する。具体的には、検知部92bが、設定圧の調整中であるか設定圧の調整中ではないかを判定する。ステップS201においては、「設定圧の調整中である」とは、検知部92bが設定圧の調整の開始を検知してから設定圧の調整の終了を検知するまでの状態である。「設定圧の調整中ではない」とは、電磁リリーフバルブ90の起動後から検知部92bが設定圧の調整の開始を検知するまでの状態や、検知部92bが設定圧の調整の終了を検知してから再度設定圧の調整の開始を検知するまでの状態である。ステップS201において、検知部92bが設定圧の調整中ではないと判定すると、電流制御部92aが第二制御信号に基づいた電流値でコイル75に電流を供給する状態を維持して、処理を終了する。
 ステップS201において、検知部92bが設定圧の調整中であると判定すると、ステップS202へと進み、ディザ発生部92cが電流制御部92aに第二ディザ信号に代えて第一ディザ信号を出力してステップS203へと進む。ステップS203では、ステップS101と同様に、電流制御部92aが入力部95の示す設定圧に基づいて指令信号を生成し、ステップS204へと進む。ステップS204では、生成された指令信号とディザ発生部92cから出力された第一ディザ信号を合成して第一合成信号を生成する。続いて、ステップS205へと進み、電流制御部92aが第一合成信号に基づいて第一制御信号を生成する。そして、ステップS206へと進み、電流制御部92aが第一制御信号に基づいた電流値でコイル75に電流を供給する。コイル75に電流を供給すると、ステップS207へと進む。
 ステップS207では、検知部92bが、設定圧の調整の開始を検知してから所定時間が経過して設定圧の調整の終了を検知したかどうかを判定する。言い換えれば、検知部92bが、設定圧の調整が終了したかどうかを判定する。ステップS207において、検知部92bが、設定圧の調整の開始を検知してから所定時間が経過していないと判定すると、ステップS204へと戻り、ステップS204~ステップS207を繰り返す。言い換えれば、ステップS207において設定圧の調整の開始を検知してから所定時間が経過したと判定するまで、第一制御信号に基づいてコイル75に電流を供給する状態を維持する。この際、ステップS204において、入力部95の示す設定圧に基づいて再度指令信号が生成される。つまり、電磁リリーフバルブ90の起動後には、入力部95の示す設定圧が変更されると、変更後の設定圧に基づいた指令信号が生成される。
 ステップS207において、検知部92bが、設定圧の調整の開始を検知してから所定時間が経過したと判定すると、ステップS208へと進み、ディザ発生部92cが電流制御部92aに第一ディザ信号に代えて第二ディザ信号を出力してステップS209へと進む。ステップS209では、電流制御部92aがステップS204,ステップS205と同様にして、指令信号と第二ディザ信号を合成した第二合成信号に基づく第二制御信号を生成する。そして、ステップS210へと進み、電流制御部92aが第二制御信号に基づいた電流値でコイル75に電流を供給して、処理を終了する。
 このように、本実施形態の電磁リリーフバルブシステム100では、操作者により入力された所望の設定圧に基づいてコイル75に供給する電流値である指令信号を制御部91が生成する指令信号生成ステップ(ステップS101、ステップS203)と、コイル75に供給される電流を変化させる設定圧の調整中には第一ディザ信号と指令信号に基づいた電流値でコイル75に電流を供給し(ステップS102~ステップS105、ステップS202、ステップS204~ステップS206)、設定圧の調整が行われない状態(言い換えれば、設定圧の調整が終了した状態)では第二ディザ信号と指令信号に基づいた電流値でコイル75に電流を供給する電流供給ステップ(ステップS107~ステップS109、ステップS208~ステップS210)と、により電磁リリーフバルブ90を制御する。
 電磁リリーフバルブシステムでは、図5に示すように、コイルに供給する電流にディザを付与せずに電磁リリーフバルブの設定圧を調整すると、プランジャの摺動面に作用する静止摩擦力により、設定圧の調整時にヒステリシスが発生するおそれがある。これにより、設定圧の調整時に実際にセットされる電磁リリーフバルブの設定圧にばらつきが生じる。具体的には、電磁リリーフバルブの設定圧は、図5に矢印で示すようにソレノイド部に供給する電流を大きくしていく場合と電流を小さくしていく場合とで、同じ電流値であっても異なる。
 さらに、電磁リリーフバルブシステムでは、コイルに供給する電流にディザを付与せずに電磁リリーフバルブの設定圧を調整すると、コイルへの電流の供給により生じる磁界の強さと、当該磁界により生じスプリングの付勢力に抗するプランジャの推力と、の関係にばらつきが生じ、設定圧の調整時にヒステリシスが発生するおそれがある。
 これに対して、本実施形態の電磁リリーフバルブシステム100では、設定圧を調整中であると、ディザ発生部92cが第一ディザ信号によりコイル75に供給する電流にディザを付与する。これにより、設定圧の調整中において、プランジャ72が軸方向に振動し動摩擦の状態になるため、プランジャ72が静止している場合と比較して摺動面に作用する摩擦力が小さくなる。そのため、設定圧の調整時にヒステリシスが発生することが抑制される。さらに、プランジャ72にディザを発生させることで、コイル75への電流の供給により生じる磁界の強さと、当該磁界により生じスプリング74の付勢力に抗するプランジャ72の推力と、の関係のばらつきが低減される。これにより、設定圧の調整時にヒステリシス(磁気ヒステリシス)が発生することがより抑制される。よって、電磁リリーフバルブ90におけるセット圧のばらつきを小さくすることができる。さらに、設定圧の調整時に磁気ヒステリシスが発生することが抑制されるため、設定圧の調整時の電流の大きさを小さくすることができる。
 また、プランジャ72の振動はロッド73を介してパイロットポペット9に伝達されるため、仮にパワーショベルの土木作業中にプランジャ72が振動していると、電磁リリーフバルブ90の動作が不安定となるおそれがある。しかしながら、本実施形態の電磁リリーフバルブシステム100では、設定圧の調整が行われない状態では、第一ディザ信号よりも振幅が小さい第二ディザ信号によりコイル75に供給する電流にディザを付与する。よって、コイル75に供給する電流に小さなディザ(具体的には、プランジャ72が変位しない程度のディザ)を付与することで、電磁リリーフバルブ90の動作を安定とするとともに、コイル75への電流の供給量と、スプリング74の付勢力に抗するプランジャ72の推力と、の関係のばらつきが低減され、設定圧の調整時にヒステリシスが発生することが抑制される。このように、電磁リリーフバルブシステム100では、電磁リリーフバルブ90におけるセット圧のばらつきを小さくするとともに動作を安定とすることができる。
 上述した実施形態によれば、次の作用効果を奏する。
 電磁リリーフバルブシステム100では、設定圧を調整中であると、ディザ発生部92cが第一ディザ信号によりコイル75に供給する電流にディザを付与する。これにより、設定圧の調整中において、プランジャ72が動摩擦の状態になるため、電磁リリーフバルブ90におけるセット圧のばらつきを小さくすることができる。さらに、電磁リリーフバルブシステム100では、設定圧の調整が行われない状態では、ディザ発生部92cが第一ディザ信号よりも振幅が小さい第二ディザ信号よりコイル75に供給する電流にディザを付与する。コイル75に供給する電流に小さなディザを付与することで、電磁リリーフバルブ90におけるセット圧のばらつきを小さくするとともに動作を安定とすることができる。
 なお、次のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。
 <変形例1>
 上記実施形態では、入力部95がダイヤルつまみ型の部材であり、検知部92bは、電磁リリーフバルブ90の起動後に入力部95の周方向の変位量が所定値を超えた場合に設定圧の調整の開始を検知する。これに限らず、入力部95は、タッチパネル等であってもよい。入力部95がタッチパネルである場合は、検知部92bは、電磁リリーフバルブ90の起動後に現状の設定圧とは異なる設定圧が入力された場合に設定圧の調整の開始を検知し、異なる設定圧の入力完了後に所定時間が経過すると設定圧の調整の終了を検知する。また、入力部95の近くに設定圧調整時に押下するスイッチ(図示せず)を設け、スイッチがオンになると検知部92bが設定圧の調整の開始を検知してもよい。この場合では、検知部92bは、スイッチがオフになる、または、スイッチがオンになってから所定時間が経過すると設定圧の調整の終了を検知する。この場合は、スイッチがオンになっていることを操作者にランプ等で知らせてもよい。
 この構成であっても、上記実施形態と同様に、電磁リリーフバルブ90の設定圧の調整においてセット圧のばらつきを小さくすることができる。例えば、アクチュエータを交換する場合や、作業内容に応じてアクチュエータのリリーフ圧を変更する場合にも適用することができる。
 <変形例2>
 上記実施形態では、第二ディザ信号は、第一ディザ信号よりも振幅が小さく、コイル75に供給する電流に第二ディザ信号によりディザが付与されても、プランジャ72は変位しない。これに限らず、第二ディザ信号は、第一ディザ信号よりも周波数が大きくてもよい。第二ディザ信号の周波数を大きくすると、コイル75に供給する電流の周期的な変化に対するプランジャ72の応答性が低下する。そのため、上記実施形態と同様に、コイル75に供給する電流に第二ディザ信号によりディザが付与されても、プランジャ72が変位しない構成とすることができる。これにより、上記実施形態と同様の効果を奏する。
 <変形例3>
 上記実施形態では、検知部92bは、エンジンの始動を検知後(設定圧の調整の開始後)に所定時間が経過することや、設定圧の調整の開始を検知後に入力部95の操作がされずに所定時間が経過することで、設定圧の調整の終了を検知する。これに限らず、検知部92bは、入力部95の近くに設定圧の調整終了時に押下するスイッチ(図示せず)を設け、スイッチが操作されると設定圧の調整の終了を検知してもよい。この構成であっても、上記実施形態と同様の効果を奏する。なお、検知部92bは、設定圧の調整の開始の検知後に所定時間が経過すると、設定圧の調整の終了を検知するようにすることで、設定圧の調整の終了を検知するスイッチの操作等を操作者がし忘れても、電磁リリーフバルブ90の動作中においてプランジャ72に供給される電流に第一ディザ信号が付与されることが防止される。
 <変形例4>
 上記実施形態では、電流制御部92a及びディザ発生部92cは、コンデンサやトランジスタ等を用いた電子回路、つまりハードウェアであり、当該電子回路により制御信号及びディザ信号を生成する。これに限らず、電流制御部92a及びディザ発生部92cは、ソフトウェアにより上記実施形態のように制御信号及びディザ信号を生成してもよい。具体的には、電子回路をソフトウェアのプログラムに置き換え、プログラムの処理により制御信号を生成してもよい。この構成であっても、上記実施形態と同様の効果を奏する。
 <変形例5>
 上記実施形態では、駆動制御部92は、電流制御部92aと、検知部92bと、ディザ発生部92cと、を有する。これに限らず、検知部92b及びディザ発生部92cは、駆動制御部92とは別体に設けられてもよく、パワーショベルの車両とは別体に設けられてもよい。つまり、電磁リリーフバルブシステム100は、少なくとも、制御部91が駆動制御部92と検知部92bとディザ発生部92cとを有する構成であればよい。さらに、ディザ発生部92cが、設定圧の調整中に電流に第一ディザ信号を付与し、設定圧の調整を行っていない状態では電流に第二ディザ信号を付与する構成であれば、検知部92bが設定圧の調整の開始及び終了を検知することは必須ではない。言い換えれば、検知部92bは電磁リリーフバルブシステム100に必須の構成ではない。
 以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。
 電磁リリーフバルブシステム100は、弁体としてのパイロットポペット9に作用する付勢部材としてのスプリング74の付勢力を変化させてパイロットポペット9が開弁する設定圧を調整するソレノイド部70を有する電磁リリーフバルブ90と、電磁リリーフバルブ90を制御する制御部91と、を備え、ソレノイド部70は、電流の供給によって磁界を形成するコイル75と、ソレノイドハウジング71に摺動自在に収容され、コイル75が形成する磁界によりスプリング74の付勢力に抗する推力が付与されるプランジャ72と、を有し、制御部91は、ソレノイド部70のコイル75に電流を供給する駆動制御部92と、コイル75に供給される電流に第一ディザ信号と、第一ディザ信号とは振幅または周波数が異なる第二ディザ信号と、を付与しプランジャ72にディザを発生させるディザ発生部92cと、を有し、ディザ発生部92cは、駆動制御部92からコイル75に供給される電流を変化させる設定圧の調整中には駆動制御部92からコイル75に供給される電流に第一ディザ信号を付与し、設定圧の調整が行われない状態では駆動制御部92からコイル75に供給される電流に第二ディザ信号を付与する。
 この構成では、パイロットポペット9が開弁する設定圧を調整中であると、ディザ発生部92cが第一ディザ信号によりコイル75に供給する電流にディザを付与する。これにより、設定圧の調整中において、プランジャ72が動摩擦の状態になるため、プランジャ72が静止している場合と比較して摺動面に作用する摩擦力が小さくなる。よって、電磁リリーフバルブ90における設定圧の調整時に実際にセットされるセット圧のばらつきを小さくすることができる。さらに、電磁リリーフバルブシステム100では、設定圧の調整が行われない状態では、ディザ発生部92cが第二ディザ信号によりコイル75に供給する電流にディザを付与する。これにより、電磁リリーフバルブ90におけるセット圧のばらつきを小さくするとともに動作を安定とすることができる。
 電磁リリーフバルブシステム100では、第二ディザ信号は、第一ディザ信号よりも振幅が小さい。
 電磁リリーフバルブシステム100では、第二ディザ信号は、第一ディザ信号よりも周波数が大きい。
 これらの構成では、電磁リリーフバルブ90におけるセット圧のばらつきを小さくするとともに動作を安定とすることができる。
 電磁リリーフバルブシステム100では、制御部91は、設定圧の調整の開始及び終了を検知する検知部92bをさらに有する。
 この構成では、検知部92bにより設定圧の調整の開始や終了を検知しディザ発生部92cによる第一ディザ信号または第二ディザ信号の付与を制御することで、電磁リリーフバルブ90におけるセット圧のばらつきを小さくするとともに動作を安定とすることができる。
 電磁リリーフバルブシステム100では、検知部92bは、設定圧の調整の開始後に所定時間が経過すると、設定圧の調整の終了を検知する。
 この構成では、設定圧の調整の終了を検知するスイッチの操作等を操作者がし忘れても、電磁リリーフバルブ90の動作中においてプランジャ72に供給される電流に第一ディザ信号が付与されることが防止される。
 パイロットポペット9に作用するスプリング74の付勢力を変化させてパイロットポペット9が開弁する設定圧を調整するソレノイド部70を有する電磁リリーフバルブ90の制御方法であって、ソレノイド部70は、電流の供給によって磁界を形成するコイル75と、ソレノイドハウジング71に摺動自在に収容され、コイル75が形成する磁界によりスプリング74の付勢力に抗する推力が付与されるプランジャ72と、を有し、電磁リリーフバルブ90の制御方法は、操作者により入力された所望の設定圧に基づいてコイル75に供給する電流値である指令信号を制御部91が生成する指令信号生成ステップ(ステップS101、ステップS203)と、コイル75に供給される電流を変化させる設定圧の調整中には第一ディザ信号と指令信号に基づいた電流値でコイル75に電流を供給し(ステップS102~ステップS105、ステップS202、ステップS204~ステップS206)、設定圧の調整が行われない状態では第一ディザ信号とは振幅または周波数が異なる第二ディザ信号と指令信号に基づいた電流値でコイル75に電流を供給する電流供給ステップ(ステップS107~ステップS109、ステップS208~ステップS210)と、を備える。
 この構成では、電磁リリーフバルブ90における設定圧の調整時に実際にセットされるセット圧のばらつきを小さくすることができるとともに、電磁リリーフバルブ90における動作を安定とすることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (6)

  1.  電磁リリーフバルブシステムであって、
     弁体に作用する付勢部材の付勢力を変化させて前記弁体が開弁する設定圧を調整するソレノイド部を有する電磁リリーフバルブと、
     前記電磁リリーフバルブを制御する制御部と、を備え、
     前記ソレノイド部は、
     電流の供給によって磁界を形成するコイルと、
     ハウジングに摺動自在に収容され、前記コイルが形成する磁界により前記付勢部材の前記付勢力に抗する推力が付与されるプランジャと、を有し、
     前記制御部は、
     前記ソレノイド部の前記コイルに電流を供給する駆動制御部と、
     前記コイルに供給される前記電流に第一ディザ信号と、前記第一ディザ信号とは振幅または周波数が異なる第二ディザ信号と、のいずれかを付与し前記プランジャにディザを発生させるディザ発生部と、を有し、
     前記ディザ発生部は、前記駆動制御部から前記コイルに供給される前記電流を変化させる前記設定圧の調整中には前記駆動制御部から前記コイルに供給される前記電流に前記第一ディザ信号を付与し、前記設定圧の調整が行われない状態では前記駆動制御部から前記コイルに供給される前記電流に前記第二ディザ信号を付与する電磁リリーフバルブシステム。
  2.  請求項1に記載の電磁リリーフバルブシステムであって、
     前記第二ディザ信号は、前記第一ディザ信号よりも振幅が小さい電磁リリーフバルブシステム。
  3.  請求項1に記載の電磁リリーフバルブシステムであって、
     前記第二ディザ信号は、前記第一ディザ信号よりも周波数が大きい電磁リリーフバルブシステム。
  4.  請求項1に記載の電磁リリーフバルブシステムであって、
     前記制御部は、前記設定圧の調整の開始及び終了を検知する検知部をさらに有する電磁リリーフバルブシステム。
  5.  請求項4に記載の電磁リリーフバルブシステムであって、
     前記検知部は、前記設定圧の調整の開始後に所定時間が経過すると、前記設定圧の調整の終了を検知する電磁リリーフバルブシステム。
  6.  弁体に作用する付勢部材の付勢力を変化させて前記弁体が開弁する設定圧を調整するソレノイド部を有する電磁リリーフバルブの制御方法であって、
     前記ソレノイド部は、電流の供給によって磁界を形成するコイルと、ハウジングに摺動自在に収容され、前記コイルが形成する磁界により前記付勢部材の前記付勢力に抗する推力が付与されるプランジャと、を有し、
     前記電磁リリーフバルブの制御方法は、
     操作者により入力された所望の設定圧に基づいて前記コイルに供給する電流値である指令信号を生成する指令信号生成ステップと、
     前記コイルに供給される前記電流を変化させる前記設定圧の調整中には第一ディザ信号と前記指令信号に基づいた電流値で前記コイルに電流を供給し、前記設定圧の調整が行われない状態では前記第一ディザ信号とは振幅または周波数が異なる第二ディザ信号と前記指令信号に基づいた電流値で前記コイルに電流を供給する電流供給ステップと、を備える電磁リリーフバルブの制御方法。
PCT/JP2022/012451 2022-03-17 2022-03-17 電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法 WO2023175869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2024507377A JP7498877B2 (ja) 2022-03-17 2022-03-17 電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法
CN202280059872.8A CN117940697A (zh) 2022-03-17 2022-03-17 电磁溢流阀***以及电磁溢流阀的控制方法
PCT/JP2022/012451 WO2023175869A1 (ja) 2022-03-17 2022-03-17 電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012451 WO2023175869A1 (ja) 2022-03-17 2022-03-17 電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法

Publications (1)

Publication Number Publication Date
WO2023175869A1 true WO2023175869A1 (ja) 2023-09-21

Family

ID=88022660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012451 WO2023175869A1 (ja) 2022-03-17 2022-03-17 電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法

Country Status (3)

Country Link
JP (1) JP7498877B2 (ja)
CN (1) CN117940697A (ja)
WO (1) WO2023175869A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198431A (ja) * 1997-01-10 1998-07-31 Mitsubishi Heavy Ind Ltd 比例電磁弁の制御方法及び装置
JP2001165055A (ja) * 1999-12-09 2001-06-19 Toyota Autom Loom Works Ltd 制御弁及び容量可変型圧縮機
JP2001173556A (ja) 1999-10-04 2001-06-26 Toyota Autom Loom Works Ltd 容量可変型圧縮機の制御弁
JP2017101695A (ja) * 2015-11-30 2017-06-08 川崎重工業株式会社 リリーフ弁

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198431A (ja) * 1997-01-10 1998-07-31 Mitsubishi Heavy Ind Ltd 比例電磁弁の制御方法及び装置
JP2001173556A (ja) 1999-10-04 2001-06-26 Toyota Autom Loom Works Ltd 容量可変型圧縮機の制御弁
JP2001165055A (ja) * 1999-12-09 2001-06-19 Toyota Autom Loom Works Ltd 制御弁及び容量可変型圧縮機
JP2017101695A (ja) * 2015-11-30 2017-06-08 川崎重工業株式会社 リリーフ弁

Also Published As

Publication number Publication date
JPWO2023175869A1 (ja) 2023-09-21
JP7498877B2 (ja) 2024-06-12
CN117940697A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
JP5124243B2 (ja) 掘削機のブーム衝撃緩和装置及び該制御方法
US7299112B2 (en) Electrically controlled pressure relief valve and system and method for controlling same
JP6641152B2 (ja) バルブ装置
JP2000337305A (ja) 油圧シリンダの作動制御装置および方法
JP2010156134A (ja) 作業車両および作業車両の制御方法
WO2023175869A1 (ja) 電磁リリーフバルブシステム及び電磁リリーフバルブの制御方法
JP2005170178A (ja) 車両のステアリング制御装置
US20110289911A1 (en) Hydraulic system and method of actively damping oscillations during operation thereof
CN108699813B (zh) 作业机械
KR101480745B1 (ko) 솔레노이드 밸브 구동을 위한 pwm 전류제어방법 및 그 장치
CN108137011B (zh) 车辆的液压控制装置
JP4384541B2 (ja) アクチュエータ駆動装置
JPH06330535A (ja) 油圧作業機械の振動抑制装置
JP2020037948A (ja) 油圧回路及びコントロール弁の製造方法
JPH11190305A (ja) 油圧制御回路、および油圧制御回路用の遠隔制御弁
JP2001317442A (ja) 可変容量型油圧モータの容量制御装置
US11726611B2 (en) Method and control unit for generating a control command to at least one actuator of an electrohydraulic machine
JP2000250636A (ja) 油圧システム及び油圧システム起動方法
JP2868746B2 (ja) 可変容量形油圧モータの油圧駆動装置
JP4150348B2 (ja) 建設機械の油圧回路
JPH0750617Y2 (ja) 電磁制御弁
JPH06307404A (ja) 油圧作業機械における作業装置の振動抑制制御装置
JP2002119917A (ja) 振動発生装置の振動制御装置
JP2004301312A (ja) 建設機械のエンジンラグダウン防止装置
KR100636422B1 (ko) 전자기력 및 스프링력을 이용한 속도 감응형 파워스티어링 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024507377

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280059872.8

Country of ref document: CN