WO2023169291A1 - 一种摄像模组及电子设备 - Google Patents

一种摄像模组及电子设备 Download PDF

Info

Publication number
WO2023169291A1
WO2023169291A1 PCT/CN2023/079225 CN2023079225W WO2023169291A1 WO 2023169291 A1 WO2023169291 A1 WO 2023169291A1 CN 2023079225 W CN2023079225 W CN 2023079225W WO 2023169291 A1 WO2023169291 A1 WO 2023169291A1
Authority
WO
WIPO (PCT)
Prior art keywords
claw
wire
fixed
camera module
moving part
Prior art date
Application number
PCT/CN2023/079225
Other languages
English (en)
French (fr)
Inventor
李邓峰
孙战立
刘洪明
代仁军
缪伟亮
刘彬
边心秀
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023169291A1 publication Critical patent/WO2023169291A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular, to a camera module and electronic equipment.
  • the driving method used in chip anti-shake solutions is mainly electromagnetic driving, which uses the Lorentz force generated between the magnet and the coil after the voice coil motor is energized to drive the mover movement.
  • electromagnetic driving uses the Lorentz force generated between the magnet and the coil after the voice coil motor is energized to drive the mover movement.
  • the driving force provided by the voice coil motor is relatively small, the anti-shake angle of the camera module will be limited.
  • it is necessary to increase the size of the magnet and coil which in turn will increase the overall size of the camera module, which is not conducive to the miniaturization of electronic equipment.
  • This application provides a camera module and electronic equipment to reduce the size of the camera module while improving the anti-shake performance of the camera module.
  • this application provides a camera module, which may include an optical lens, a module circuit board, a photosensitive chip and a driving component.
  • the module circuit board is arranged on the light exit side of the optical lens.
  • the module circuit board can include a fixed part, a moving part and an elastic part.
  • the moving part can be elastically connected to the fixed part through the elastic part, so that when the elastic part is elastically deformed,
  • the movable part can move relative to the fixed part.
  • the photosensitive chip can be disposed on a side of the moving part facing the optical lens.
  • the driving assembly may include a fixed claw, a movable claw and a wire.
  • the fixed claw When specifically set, the fixed claw can be fixedly connected to the fixed part, the movable claw can be fixedly connected to the moving part, and the wire is connected to the fixed claw and the movable claw respectively.
  • the claws are connected, and the length of the wire is retractable.
  • the driving component can drive the moving part to move relative to the fixed part, thereby driving the photosensitive chip arranged on the moving part to move synchronously.
  • the driving component of the camera module uses the length change of the wire to drive the movement of the moving part, which in turn drives the photosensitive chip to move to achieve the anti-shake function.
  • the camera module can achieve Under the premise of large-angle anti-shake, the stacking height of the camera module can be effectively reduced, thereby reducing the overall volume of the camera module.
  • magnetic interference to other devices inside the electronic device can be avoided and the reliability of the electronic device can be improved.
  • the photosensitive chip may be disposed on a side surface of the moving part facing the optical lens.
  • a mounting groove can be provided on the moving part, and the moving part is disposed in the mounting groove, so that the moving part and the photosensitive chip are aligned in the thickness direction. Having an overlapping area helps reduce the stacking height of the camera module.
  • the photosensitive chip and the moving part can be electrically connected to the moving part through a wire bonding process.
  • the elastic part may be electrically conductive, so that the elastic part can not only mechanically connect the moving part and the fixed part, but also perform signal transmission between the moving part and the fixed part.
  • the fixed part, the moving part and the elastic part may have the same laminate structure.
  • the fixed part, the moving part and the elastic part can be integrally formed from the integral circuit board through the cutting process, which helps to simplify the manufacturing and assembly process of the camera module.
  • the camera module may also include a flexible circuit board.
  • the flexible circuit board may be provided with a connector for connecting to external devices.
  • the flexible circuit board and the module circuit board may be of an integrated structure of soft and hard components. Combined boards. Using this design, on the one hand, it can simplify the assembly process of the camera module, and on the other hand, it can also avoid the complex process and reliability problems caused by welding.
  • the fixed part can be a frame-shaped structure
  • the movable part can be arranged inside the frame of the fixed part
  • the elastic part is arranged in the gap between the fixed part and the movable part
  • the elastic part It can be arranged in an annular shape around the moving part, thereby improving the force uniformity of the moving part.
  • the fixed part may have a first protrusion and a second protrusion disposed toward the inner moving part
  • the moving part may have a third protrusion and a fourth protrusion disposed toward the outer fixing part
  • the elastic part may include four groups of elastic components, and the four groups of elastic components may be respectively connected between the first protrusion and the third protrusion, between the third protrusion and the second protrusion, and between the second protrusion and the fourth protrusion. between them, and between the fourth protrusion and the first protrusion, thereby using the four sets of elastic components to establish a stable elastic connection relationship between the moving part and the fixed part.
  • the elastic component can include at least one elastic arm, and the at least one elastic arm is arranged in parallel and spaced apart. At this time, the two ends of each elastic arm can be connected to the corresponding two protrusions on the fixed part and the moving part respectively, so as to On the premise of ensuring reliable connection between the fixed part and the moving part, the overall elastic performance of the elastic component is improved.
  • the elastic arm may include a substrate and at least one sub-board disposed on the substrate, where the substrate may be a rigid material and the sub-board may be provided with conductive circuits.
  • the elastic arm can have a relatively large elastic coefficient in the thickness direction, which can not only reliably support the moving part and the photosensitive chip arranged on the moving part, but also make the elastic arm have a relatively large elastic coefficient. Good elastic recovery ability, so that after the external force that caused the elastic arm to deform disappears, the elastic arm can return to the initial state relatively quickly, effectively overcoming the problem of poor posture of the moving part.
  • the material of the substrate may be titanium copper.
  • the number of layers of the elastic arm neutron board can be three.
  • the first layer of sub-boards can be used to set power lines and signal lines
  • the second layer of sub-boards can be used to set the shielding layer
  • the second layer of sub-boards can be used to set the shielding layer.
  • a three-layer daughter board can be used to set up signal lines.
  • the number of fixed claws and movable claws may be two respectively, namely a first fixed claw, a second fixed claw, a first movable claw and a second movable claw.
  • the first fixed claw, the first movable claw, the second fixed claw and the second movable claw are arranged in sequence.
  • the number of wires can be four, which are the first wire, the second wire, the third wire and the fourth wire. The two ends of the first wire are respectively connected with the first fixed claw.
  • the first wire, the second wire, the third wire and the fourth wire can be connected in sequence through two movable claws and two fixed claws to form a ring structure.
  • the first certain claw may include a first claw part and a second claw part, the first claw part and the second claw part are insulated, and the first claw part may be used to connect with the first wire,
  • the second claw portion can be used to connect with the second wire.
  • the second fixed claw may include a third claw part and a fourth claw part.
  • the third claw part and the fourth claw part may be insulated.
  • the third claw part may be used to connect with the third wire material.
  • the fourth claw part may be used to connect with the third claw part.
  • the first movable claw may include a fifth claw part and a sixth claw part, the fifth claw part and the sixth claw part are insulated, and the fifth claw part may be used to connect with the first wire.
  • the sixth claw part can be used to connect with the fourth wire.
  • the second movable claw may include a seventh claw part and an eighth claw part, the seventh claw part and the eighth claw part are insulated, the seventh claw part may be used to connect with the second wire, and the eighth claw part may be used to connect with the second wire material.
  • the first movable claw may have a strip structure, the orthographic projection of the first end of the first movable claw on the module circuit board falls within the fixed part, and the first end of the first movable claw The second end of the first movable claw can be used for fixed connection with the moving part.
  • the second movable claw can also have a bar-shaped structure.
  • the orthogonal projection of the first end of the second movable claw on the module circuit board falls within the fixed part.
  • the first end of the second movable claw can be used with
  • the second wire material is connected to the third wire material, and the second end of the second movable claw can be used for fixed connection with the moving part.
  • the fixing part may be provided with a first opening, the first opening is disposed close to the first certain claw, and the extension line of one end of the first wire connected to the first certain claw is in the module
  • the front projection on the circuit board can at least partially fall within the first opening, and the front projection on the module circuit board of the extension line at one end of the second wire connected to the first fixed claw can also fall at least partially on the first opening. inside the opening.
  • the fixing part may also be provided with a second opening, a third opening and a fourth opening.
  • the second opening can be disposed close to the second fixed claw, and the orthographic projection of the end of the third wire and the fourth wire connected to the second fixed claw on the module circuit board at least partially falls on the second fixed claw.
  • the third opening can be disposed close to the first movable claw, and the orthographic projection of the end of the first wire and the fourth wire connected to the first movable claw on the module circuit board at least partially falls on the third opening. inside the hole.
  • the fourth opening can be provided close to the second movable claw, and the orthographic projection of the end of the second wire and the third wire connected to the second movable claw on the module circuit board at least partially falls on the fourth opening. inside the hole.
  • the first end of the first movable claw and the fixed part can be connected through damping glue, and the first end of the second movable claw and the fixed part can also be connected through damping glue.
  • Damping glue can be used to provide damping force for the movement of the first movable claw and the second movable claw, and the damping force can be further transmitted to the moving part, so that the moving part can move smoothly.
  • the first wire material and the third wire material are arranged in parallel and extend along the first direction respectively, and the second wire material and the fourth wire material are arranged in parallel and extend along the second direction respectively, wherein the first wire material The direction is set at an angle with the second direction.
  • the driving component can drive the moving part to move in the first direction and the second direction.
  • first direction and the second direction may be arranged orthogonally.
  • the fixed part may be provided with an annular shielding structure, which may be located on the same side of the fixed part as the wires, and the shielding structure may be located inside the annular area formed by the four wires.
  • the shielding structure can shield each wire to prevent the wire from being embedded in the gap between the fixed part and the moving part, thereby improving the working reliability of the drive assembly.
  • the inner side of the shielding structure and the moving part may partially overlap, and there may be a first gap between the shielding structure and the moving part along the thickness direction of the module circuit board.
  • the module circuit board may also include a first support column, The first support column may be disposed between the shielding structure and the moving part. One end of the first support column is fixedly connected to the shielding structure, and the other end is in contact with the moving part. The height of the first support column is greater than the above-mentioned first gap. Based on the supporting function of the first support column, a vertical step will be generated between the moving part and the fixed part, and the elastic part will undergo vertical deformation. Therefore, the elastic part will exert a pre-pressure on the moving part. This pre-pressure can make the moving part and the first support The end of the column can always be in close contact, thereby reducing the risk of vertical displacement of the moving part and overcoming the problem of poor posture of the moving part.
  • the number of first support columns may be at least three, and these first support columns may be evenly distributed around the circumference of the moving part to improve the force uniformity of the moving part.
  • the shielding structure can also be provided with a first arched portion at a position corresponding to the first movable claw, and the first movable claw can pass between the first arched portion and the fixed portion to facilitate Connect with the Athletic Department.
  • the shielding structure can also be provided with a second arched portion corresponding to the position of the second movable claw, and the second movable claw can pass between the second arched portion and the fixed portion to facilitate connection of the movable portion.
  • the damping force of the damping glue It can be transmitted to the moving part through the first moving claw, ensuring the smooth movement of the moving part.
  • damping glue can also be provided in the gap between the second movable claw and the second arched portion, so that the second movable claw and the second arched portion are connected through the damping glue. At this time, the damping of the damping glue The force can also be transmitted to the moving part through the second movable claw.
  • the camera module may also include a carrying substrate, which may be disposed on a side of the module circuit board facing away from the optical lens to support and reinforce the module circuit board. Grooves may be provided in the area of the bearing base plate opposite to the moving part and the elastic part to avoid frictional obstruction to the movement of the bearing base plate due to direct contact with the moving part and the elastic part.
  • the side of the moving part away from the optical lens and the bottom wall of the groove can be connected through damping glue, so that the damping glue can be used to provide a damping force that makes the moving part fast and stable, ensuring the smooth movement of the moving part.
  • the camera module may also include a second support column.
  • the second support column may be disposed between the moving part and the bottom wall of the groove. One end of the second support column is fixed to the bottom wall of the groove. connection, the other end can be arranged in contact with the moving part, and the height of the second support column is greater than the gap between the moving part and the bottom wall of the groove.
  • a vertical step will be generated between the moving part and the fixed part, and the elastic part will be vertically deformed. Therefore, the elastic part will exert a pre-pressure on the moving part. This pre-pressure can make the moving part and the second support
  • the end of the column can always be in close contact, thereby reducing the risk of vertical displacement of the moving part and overcoming the problem of poor posture of the moving part.
  • the number of second support columns may be at least three, and these second support columns may be evenly distributed around the circumference of the moving part to improve the force uniformity of the moving part.
  • the wire of the driving component can be a shape memory alloy wire.
  • a power circuit can be provided on the module circuit board, and the wire can be electrically connected to the power circuit.
  • the wire can be When electricity is applied to a material, it is heated, causing it to shrink and deform.
  • the camera module may also include a chip carrying substrate, the photosensitive chip may be disposed on the chip carrying substrate, and the chip carrying substrate is fixed on the moving part.
  • the photosensitive chip and the moving part can be electrically connected to the chip carrying substrate through a wire bonding process.
  • the camera module may also include a reflective component, which may be disposed on the light entrance side of the optical lens for redirecting ambient light and emitting it into the light entrance side of the optical lens.
  • a reflective component which may be disposed on the light entrance side of the optical lens for redirecting ambient light and emitting it into the light entrance side of the optical lens.
  • this application also provides an electronic device.
  • the electronic device includes a housing and the camera module in the aforementioned embodiment, and the camera module is disposed in the housing.
  • the camera module of the electronic device has better anti-shake performance, and the camera module occupies less space in the electronic device, thus helping to reduce the overall volume of the electronic device.
  • Figure 1 is a schematic structural diagram of an electronic device 1 provided by an embodiment of the present application.
  • Figure 2 is a partially exploded schematic view of the electronic device in Figure 1;
  • Figure 3 is a schematic cross-sectional structural diagram of the electronic device shown in Figure 1 at A-A;
  • Figure 4 is another schematic cross-sectional structural diagram of the electronic device shown in Figure 1 at A-A;
  • Figure 5 is a schematic structural diagram of a module circuit board provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • Figure 7 is a partial enlarged view of the module circuit board shown in Figure 5 at position A;
  • Figure 8 is a schematic cross-sectional structural diagram of the elastic arm shown in Figure 7;
  • FIG. 9 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • FIG 11 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • Figure 12 is a schematic cross-sectional structural diagram of the module circuit board shown in Figure 11 at B-B;
  • FIG 13 is a simplified structural schematic diagram of the module circuit board shown in Figure 11;
  • Figure 14 is a schematic cross-sectional structural diagram of the module circuit board shown in Figure 11 at C-C;
  • FIG. 15 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • Figure 16 is a schematic cross-sectional structural diagram of the module circuit board shown in Figure 15 at D-D;
  • FIG 17 is a simplified structural schematic diagram of the module circuit board shown in Figure 15;
  • FIG. 18 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • Figure 19 is a schematic cross-sectional structural diagram of the module circuit board shown in Figure 18 at E-E.
  • FIG. 1 is a schematic structural diagram of an electronic device 1 provided by an embodiment of the present application.
  • the electronic device 1 may be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a camera, a personal computer, a notebook computer, a vehicle-mounted device, or a wearable device. , augmented reality (AR) glasses, AR helmets, virtual reality (VR) glasses or VR helmets, or other forms of equipment with photo and video functions.
  • AR augmented reality
  • VR virtual reality
  • the electronic device 1 of the embodiment shown in FIG. 1 is explained by taking a mobile phone as an example.
  • FIG. 2 is a partially exploded schematic view of the electronic device shown in FIG. 1 .
  • the electronic device 1 may include a housing 100 , a screen 200 , a host circuit board 300 and a camera module 400 .
  • FIG. 1 , FIG. 2 and the relevant drawings below only schematically show some components included in the electronic device 1 , and the actual shape, actual size, actual position and actual structure of these components are not affected by FIG. 1 , FIG. 2 and the following figures.
  • the electronic device 1 when the electronic device 1 is a device of some other form, the electronic device 1 may not include the screen 200 and the host circuit board 300 .
  • the width direction of the electronic device 1 is defined as the first direction (x-axis)
  • the length direction of the electronic device 1 is the second direction (y-axis)
  • the thickness direction of the electronic device 1 is defined as the third direction (z-axis). It can be understood that the coordinate system setting of the electronic device 1 can be flexibly set according to specific actual needs.
  • the housing 100 includes a middle frame 110 and a back cover 120 .
  • the back cover 120 is fixed on one side of the middle frame 110 .
  • the back cover 120 is fixedly connected to the middle frame 110 through adhesive.
  • the back cover 120 and the middle frame 110 form an integral structure, that is, the back cover 120 and the middle frame 110 are an integral structure.
  • the housing 100 may also include a middle plate (not shown in the figure).
  • the middle plate is connected to the inner surface of the middle frame 110 .
  • the middle panel is opposite to and spaced apart from the back cover 120 .
  • the screen 200 is fixed on the other side of the middle frame 110 .
  • the screen 200 and the back cover 120 are arranged oppositely.
  • the screen 200 , the middle frame 110 and the back cover 120 together surround the interior of the electronic device 1 .
  • the interior of the electronic device 1 can be used to place components of the electronic device 1 , such as batteries, receivers, and microphones.
  • the screen 200 can be used to display images, text, etc.
  • the screen 200 may be a flat screen or a curved screen.
  • the screen 200 includes a first cover 210 and a display screen 220 .
  • the first cover 210 is stacked on the side of the display screen 220 away from the middle frame 110 .
  • the first cover 210 can be disposed close to the display screen 220 and can be mainly used to protect the display screen 220 and prevent dust.
  • the material of the first cover 210 may be, but is not limited to, glass.
  • the display screen 220 may be an organic light-emitting diode (OLED) display, an active matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED) display. , Quantum dot light emitting diodes (QLED) displays, etc.
  • OLED organic light-emitting diode
  • AMOLED active matrix organic light-emitting diode
  • QLED Quantum dot light
  • FIG. 3 is a schematic cross-sectional structural diagram of the electronic device shown in FIG. 1 at AA.
  • the host circuit board 300 is fixed inside the electronic device 1 .
  • the host circuit board 300 can be fixed on the screen 200 The side facing the rear cover 120 .
  • the host circuit board 300 may be fixed on a surface of the mid-plate facing the rear cover 120 .
  • the host circuit board 300 can be a rigid circuit board, a flexible circuit board, or a combination of soft and hard circuit boards.
  • the host circuit board 300 may use an FR-4 media board, a Rogers media board, or a mixed media board of FR-4 and Rogers, etc.
  • FR-4 is the code name for a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • the host circuit board 300 can be used to set up chips, which can be central processing units (CPU), graphics processing units (GPU), universal flash storage (UFS), etc.
  • the camera module 400 is fixed inside the electronic device 1 . Specifically, the camera module 400 is fixed on the side of the screen 200 facing the back cover 120 . In other embodiments, when the casing 100 includes a middle plate, the camera module 400 may be fixed on the surface of the middle plate facing the rear cover 120 .
  • the host circuit board 300 is provided with an avoidance space 310 .
  • the shape of the escape space 310 is not limited to the rectangular shape shown in FIGS. 1 and 2 .
  • the shape of the host circuit board 300 is not limited to the “ ⁇ ” shape shown in FIGS. 1 and 2 .
  • the camera module 400 is located in the avoidance space 310. In this way, the camera module 400 and the host circuit board 300 have an overlapping area in the Z-axis direction, thereby avoiding an increase in the thickness of the electronic device 1 due to the camera module 400 being stacked on the host circuit board 300 .
  • the host circuit board 300 may not be provided with the avoidance space 310 . In this case, the camera module 400 may be stacked on the host circuit board 300 , or may be spaced apart from the host circuit board 300 .
  • the camera module 400 is electrically connected to the host circuit board 300 .
  • the camera module 400 is electrically connected to the CPU through the host circuit board 300 .
  • the CPU receives the user's instruction, the CPU can send a signal to the camera module 400 through the host circuit board 300 to control the camera module 400 to capture images or record videos.
  • the camera module 400 can also directly receive the user's instructions and capture images or record videos according to the user's instructions.
  • the back cover 120 is provided with a light inlet 121 .
  • the light inlet 121 can connect the inside of the electronic device 1 to the outside of the electronic device 1 .
  • the electronic device 1 also includes a camera decoration 122 and a second cover 123 .
  • Part of the camera decoration part 122 may be fixed on the inner surface of the back cover 120 , and part of the camera decoration part 122 contacts the wall of the light inlet 121 .
  • the second cover 123 is fixedly connected to the inner wall of the camera decoration 122 .
  • the camera decoration 122 and the second cover 123 separate the inside of the electronic device 1 from the outside of the electronic device 1 , thereby preventing external water or dust from entering the inside of the electronic device 1 through the light inlet hole 121 .
  • the material of the second cover 123 is a transparent material, such as glass or plastic. At this time, the ambient light outside the electronic device 1 can enter the inside of the electronic device 1 through the second cover 123 .
  • the camera module 400 collects ambient light entering the electronic device 1 .
  • the shape of the light entrance hole 121 is not limited to the circular shape shown in FIGS. 1 and 2 .
  • the shape of the light entrance hole 121 may also be an ellipse or other irregular shape.
  • the camera module 400 can also collect ambient light passing through the back cover 120 .
  • the back cover 120 is made of transparent material. For example, glass or plastic.
  • the surface of the back cover 120 facing the inside of the electronic device 1 is partially coated with ink and partially uncoated with ink. At this time, the area not coated with ink can form a light-transmitting area.
  • the camera module 400 can collect the ambient light. That is to say, the electronic device 1 of this embodiment does not need to open the light inlet 121 , nor does it need to provide the camera decoration 122 and the second cover 123 .
  • the electronic device 1 has better integrity and lower cost.
  • the camera module 400 may include an optical lens 410 , a module circuit board 420 and a photosensitive chip 430 .
  • the light emitting direction of the optical lens 410 is the same as the optical axis direction of the camera module 400 .
  • Module circuit board 420 It can be fixed on the light exit side of the optical lens 410, that is, the module circuit board 420 is located on the image side of the optical lens 410.
  • the module circuit board 420 may be electrically connected to the host circuit board 300 so that signals can be transmitted between the host circuit board 300 and the module circuit board 420 .
  • the photosensitive chip 430 is fixed on the side of the module circuit board 420 facing the optical lens 410 and can be used to collect ambient light on the light exit side of the optical lens 410 and generate a signal.
  • the photosensitive chip 430 is electrically connected to the module circuit board 420 so that the signal generated by the photosensitive chip 430 can be transmitted to the host circuit board 300 through the module circuit board 420 .
  • the photosensitive chip 430 may be an image sensor such as a metal-oxide-semiconductor (CMOS) or a charge-coupled device (CCD).
  • CMOS metal-oxide-semiconductor
  • CCD charge-coupled device
  • the camera module 400 may further include a filter 440 , and the filter 440 may be located on a side of the photosensitive chip 430 facing the optical lens 410 .
  • the filter 440 can be used to filter stray light from ambient light that passes through the optical lens 410, and spread the filtered ambient light to the photosensitive chip 430, thereby ensuring better clarity of images captured by the electronic device.
  • the filter 440 may be, but is not limited to, a blue glass filter.
  • the filter 440 can also be a reflective infrared filter, or a double-pass filter (a double-pass filter can transmit visible light and infrared light in ambient light at the same time, or can allow visible light in ambient light to pass through. and other specific wavelengths of light (such as ultraviolet light) are transmitted simultaneously, or infrared light and other specific wavelengths of light (such as ultraviolet light) are transmitted simultaneously).
  • the camera module 400 may also include a support member 450 disposed between the optical lens 410 and the module circuit board 420. Both sides of the support member 450 are respectively connected to the optical lens 410 and the module.
  • the circuit board 420 is fixedly connected, and the specific fixing method may be bonding.
  • the optical filter 440 can be disposed on one side of the support 450 .
  • a through hole 451 is provided on the support member 450 in an area corresponding to the photosensitive chip 430, so that ambient light can smoothly enter the photosensitive chip 430.
  • a counterbore 452 may be provided on the side of the support 450 facing the optical lens 410.
  • the diameter of the counterbore 452 may be slightly larger than the through hole. 451 in diameter, in this way, a step structure can be formed between the counterbore 452 and the through hole 451, and the filter 440 can be specifically arranged on the step structure to reduce the stress after the filter 440 and the support 450 are assembled. thickness, thus helping to reduce the size of the camera module 400 in the z-axis direction.
  • the optical filter 440 can also be disposed on the side of the support member 450 facing the module circuit board 420 .
  • the filter 440 can be disposed on the side of the support member 450 facing the module circuit board 420 A countersunk hole is provided on one side, and a step structure for supporting the filter 440 is formed on this side.
  • FIG. 4 is another schematic cross-sectional structural diagram of the electronic device shown in FIG. 1 at line A-A.
  • the camera module 400 can also adopt a periscope structure design. This structure can reduce the components distributed in the thickness direction of the mobile phone, thereby making the camera more convenient.
  • the module 400 can be applied to the electronic device 1 with ultra-thin design.
  • the camera module 400 may also include a reflective component 490 , which is fixed on the light incident side of the optical lens 410 .
  • the reflective component 490 is used to reflect ambient light so that the ambient light is transmitted to the optical lens 410 .
  • the reflective component 490 may be used to reflect ambient light propagating along the z-axis direction to ambient light propagating along the x-axis direction.
  • the reflective component 490 may also be used to reflect ambient light propagating along the z-axis direction to ambient light propagating along other directions.
  • the reflective assembly 490 may include a mounting base 491 and a reflective member 492.
  • the reflective member 492 is disposed on the mounting base 491.
  • the reflecting member 492 may be a triangular prism or a reflecting mirror.
  • the reflecting member 492 in this embodiment will be described taking a triangular prism as an example.
  • the reflective member 492 may include a light incident surface 4921, a reflective surface 4922 and a light exit surface 4923.
  • the reflective surface 4922 is connected to the incident light surface. Between surface 4921 and light emitting surface 4923.
  • the light incident surface 4921 is arranged opposite to the light entrance hole, and the light output surface 4923 is arranged opposite to the light incident side of the optical lens 410 .
  • the ambient light enters the interior of the electronic device through the light inlet hole 121, the ambient light enters the reflective member 492 through the light incident surface 4921, and is reflected at the reflective surface 4922 of the reflective member 492. At this time, the ambient light propagating along the z-axis direction is reflected to propagating along the x-axis direction. Finally, the ambient light passes out of the reflective component 492 through the light exit surface 4923 of the reflective component 492 and enters the optical lens 410 .
  • the reflective component 490 is used to reflect the ambient light propagating along the z-axis direction to propagating along the x-axis direction.
  • the components of the camera module 400 that receive ambient light propagating along the x-axis direction can be arranged along the x-axis direction. Since the size of the electronic device in the x-axis direction is larger, the arrangement of the devices in the camera module 400 in the x-axis direction is more flexible and simple.
  • the optical axis direction of the camera module 400 is the x-axis direction. In other embodiments, the optical axis direction of the camera module 400 may also be the y-axis direction.
  • FIG. 5 is a schematic structural diagram of a module circuit board provided by an embodiment of the present application.
  • the module circuit board 420 may have a generally rectangular structure.
  • the camera module may also include a flexible circuit board 460.
  • the flexible circuit board 460 may be disposed at one end of the module circuit board 420 and be electrically connected to the module circuit board 420. .
  • the end of the flexible circuit board 460 away from the module circuit board 420 may be provided with a board to board (BTB) connector 461.
  • the host circuit board may be provided with a mating connection corresponding to the board to board connector.
  • the electrical connection between the flexible circuit board 460 and the host circuit board can be realized by using the mating connection between the board-to-board connector 461 and the mating connector, thereby realizing the electrical connection between the camera module and the host circuit board.
  • the module circuit board 420 and the flexible circuit board 460 can be a rigid-flex board with an integrated structure, that is, they can be integrally formed through a manufacturing process of a rigid-flex board.
  • the integrated design adopted in the embodiment of the present application can not only simplify the subsequent assembly process, but also avoid reliability problems caused by the complex welding process and the large number of solder points.
  • the entire module circuit board 420 may adopt a laminated structure design, which may include a substrate and a daughter board disposed on the substrate.
  • the number of daughter boards can be one layer or multiple layers, which can be set according to the number of traces in the camera module.
  • the module circuit board 420 may include a three-layer daughter board.
  • the substrate can be made of a high-strength rigid material to reliably support each device provided on the module circuit board 420 in the z-direction.
  • the material of the substrate may be titanium copper.
  • the substrate thickness can be set between 5um and 300um.
  • the thickness of the substrate may be 5um, 50um, 100um, 250um, 300um, etc.
  • the base material of each layer sub-board can be polyimide (Pi).
  • the thickness of the base material of each layer sub-board can be set between 15um and 25um, for example, it can be specifically 15um, 20um, 25um, etc. It should be noted that when the module circuit board 420 includes three-layer sub-boards, in the direction away from the substrate, the first-layer sub-board can be used to provide power lines and signal lines, and the second-layer sub-board can be used to provide shielding layers.
  • the third layer daughter board can be used to set up signal lines.
  • the module circuit board 420 can be divided into a fixed part 421 , a moving part 422 and an elastic part 423 .
  • the elastic part 423 can be connected to the fixed part 421 and the moving part 422 respectively, and its elastic characteristics are used to form an elastic connection between the moving part 422 and the fixed part 421, so that the moving part 422 can be relative to the fixed part 421 when they are deformed.
  • the aforementioned flexible circuit board 460 may be connected to the fixing part 421 .
  • the photosensitive chip 430 can be disposed on the moving part 422, so that when the moving part 422 moves relative to the fixed part 421, the photosensitive chip 430 can also move synchronously, so that the imaging position on the surface of the photosensitive chip 430 can be changed. Based on this principle, when using an electronic device to shoot, if the electronic device shakes, the jitter direction and amplitude of the electronic device and other parameters are detected in real time, and the position of the photosensitive chip 430 is reversely adjusted according to the detection results to compensate for the vibration caused by the electronic device.
  • the optical image stabilization effect can be achieved by changing the imaging position on the photosensitive chip 430 caused by the jitter of the device.
  • the fixed part 421, the moving part 422 and the elastic part 423 may have the same laminated structure in the z direction.
  • the fixed part 421, the moving part 422 and the elastic part 423 can be an integrally formed structure.
  • the fixed part 421, the moving part 422 and the elastic part 423 can be formed by laser cutting from an integral circuit board, which helps to simplify The production and assembly process of camera modules.
  • the fixing part 421 may have a generally frame-shaped structure.
  • the moving part 422 may be a rectangular frame.
  • the fixing part 421 may include a first frame 4211, a second frame 4212, a third frame 4213 and a fourth frame 4214 connected in sequence, wherein the first frame 4211 and the third frame 4213 are opposite in position, and the second frame 4212 is opposite to the third frame 4213.
  • the fourth frame 4214 is in a relative position.
  • the moving part 422 can be disposed inside the fixed part 421, and there is a certain distance between the moving part 422 and the fixed part 421.
  • the moving part 422 may include a first side wall 4221, a second side wall 4222, a third side wall 4223 and a fourth side wall 4224 connected in sequence.
  • the first side wall 4221, the second side wall 4222, the third side wall 4223 and The fourth side wall 4224 may be provided on the same side as the first frame 4211, the second frame 4212, the third frame 4213 and the fourth frame 4214 of the fixing part 421 respectively.
  • the photosensitive chip 430 may be disposed on a side surface of the moving part 422 facing the optical lens.
  • the photosensitive chip 430 can be electrically connected to the moving part 422 through a wire bonding (WB) process.
  • WB wire bonding
  • the photosensitive chip 430 can also be mounted on the moving part 422 through chip on board (COB) technology, or can also be mounted on the moving part 422 through ball grid array (BGA) technology or land grid packaging (land grid). array, LGA) technology is packaged on the motion part.
  • COB chip on board
  • BGA ball grid array
  • LGA land grid packaging
  • FIG. 6 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • the moving part 422 may be partially provided with a mounting groove 4225 , and at this time, the photosensitive chip 430 may be disposed in the mounting groove 4225 .
  • the photosensitive chip 430 and the moving part 422 can have an overlapping area in the z-axis direction, which helps to reduce the size of the camera module in the z-axis direction.
  • a reinforcing plate can be fixed on the side of the moving part 422 away from the optical lens.
  • the reinforcing plate can be disposed at the mounting groove 4225 to support the photosensitive chip 430, so that the moving part 422 and the photosensitive chip 430 are relatively fixed. , improve the structural reliability of the camera module.
  • the reinforcing plate may be a steel plate.
  • electronic components or other chips can also be installed on the module circuit board 420 .
  • Electronic components or other chips can be used to assist the photosensitive chip 430 in collecting ambient light, and in assisting the photosensitive chip 430 in performing signal processing on the collected ambient light.
  • These electronic components or chips can be disposed on either the fixed part 421 or the movable part 422, which is not limited in this application. It is worth mentioning that when the electronic components or chips are disposed on the moving part 422 , they can be specifically disposed around the photosensitive chip 430 .
  • the elastic part 423 can be disposed in the gap between the moving part 422 and the fixed part 421 to connect the moving part 422 and the fixed part 421 .
  • conductive lines can also be provided on each sub-board on the elastic part 423 to electrically connect the moving part 422 and the fixed part 421. That is to say, the elastic part 423 can not only mechanically connect the moving part 422 and the fixed part 421 , but also transmit signals between the moving part 422 and the fixed part 421 .
  • a first protrusion 4215 may be provided on the side of the first frame 4211 of the fixed part 421 facing the moving part 422, and a third protrusion 4215 may be provided on the side of the third frame 4213 facing the moving part 422.
  • the second side wall 4222 of the moving part 422 has a third protrusion 4226 disposed toward the fixed part 421
  • the fourth side wall 4224 has a fourth protrusion 4227 disposed toward the fixed part 421 .
  • the elastic part 423 may include four groups of elastic components, namely the first elastic component 4231, the second elastic component 4232, the third elastic component 4233 and the fourth elastic component 4234, wherein the first elastic component
  • the elastic component 4231 is connected to the first protrusion 4215 and the third protrusion 4226 respectively
  • the second elastic component 4232 is connected to the third protrusion 4226 and the second protrusion 4216 respectively
  • the third elastic component 4233 is connected to the second protrusion 4216 respectively.
  • the fourth elastic component 4234 is connected to the fourth protrusion 4227 and the first protrusion 4215 respectively, thereby using four groups of elastic components to establish a stable elastic connection relationship between the moving part 422 and the fixed part 421 .
  • the first protrusion 4215 can be approximately located at the center of the first frame 4211
  • the second protrusion 4216 can be approximately located at the third frame. 4213
  • the first protrusion 4215 and the second protrusion 4216 can be arranged oppositely.
  • the third protrusion 4226 may be located approximately at the center of the second side wall 4222
  • the fourth protrusion 4227 may be approximately located at the center of the fourth side wall 4224
  • the third protrusion 4226 and the fourth protrusion 4227 may Relative settings.
  • each group of elastic components may have an angular structure to better fit the gap between the fixed part 421 and the moving part 422 .
  • Each set of elastic components may include one or more elastic arms 4235, and the elastic arms 4235 may also be corresponding angular structures.
  • the corners of the elastic arm 4235 can also be designed as a chamfered structure.
  • Each elastic arm 4235 can be arranged in parallel, and adjacent elastic arms 4235 are spaced apart.
  • each elastic arm 4235 The two ends of each elastic arm 4235 are respectively connected to the corresponding two protrusions on the fixed part 421 and the moving part 422 to ensure fixation. On the premise that the part 421 and the moving part 422 are reliably connected, the overall elastic performance of the elastic component is improved. Conductive lines can be provided on each elastic arm 4235 to establish an electrical connection between the fixed part 421 and the moving part 422 .
  • the number of elastic arms 4235 in each group of elastic components is not limited, for example, it can be five, six, seven or more. In actual applications, it can be set according to the number of signal transmissions in the camera module. The details are not here. Elaborate.
  • each elastic component can also include a connecting piece 4236.
  • the connecting piece 4236 can be disposed between two ends of the elastic component, for example, can be disposed at a corner of the elastic component.
  • the connecting piece 4236 can be fixedly connected to each elastic arm 4235. , so that each elastic arm 4235 is relatively fixed to ensure the structural stability of the elastic component.
  • each elastic component may include two connecting pieces 4236 that are spaced apart in the extending direction of the elastic arm 4235. For example, they may be respectively provided on both sides of the chamfer of each elastic arm 4235 to further improve elasticity. Structural stability of components.
  • each elastic arm 4235 also includes a substrate 42351 and is disposed on the substrate 42351 three-layer sub-board.
  • the width of the substrate 42351 of the elastic arm 4235 can be set between 30um and 200um.
  • the width of the substrate 42351 can be specifically 30um, 50um, 100um, 200um, etc.
  • each sub-board of the elastic arm 4235 can be set between 5um and 200um, for example, it can be specifically 5um, 70um, 100um, 200um, etc.
  • the thickness of the power line (or signal line) 423521 can be set between 5um and 50um, and the width can be set between 5um and 200um.
  • the thickness of the power line 423521 may be 5um, 30um, 50um, etc.
  • the width may be 5um, 70um, 100um, 200um, etc.
  • the thickness of the shielding layer 423531 can be set between 5um and 50um, and the width can be set between 5um and 200um.
  • the thickness of the shielding layer 423531 can be specifically 5um, 30um, and 50um. Wait, the width can be 5um, 70um, 100um, 200um, etc.
  • the thickness of the signal line 423541 can be set between 5um and 50um, and the width can also be set between 5um and 200um.
  • the thickness of the signal line 423541 may be 5um, 30um, 50um, etc., and the width may be It can be 5um, 70um, 100um, 200um, etc.
  • the elastic arm 4235 can have a relatively large elastic coefficient in the z direction, so that on the one hand, the moving part and the photosensitive chip provided on the moving part can be reliably supported, and on the other hand, it can ensure The elastic arm 4235 has good elastic recovery ability, so that after the external force causing the deformation of the elastic arm 4235 disappears, the elastic arm 4235 can return to the initial state relatively quickly, effectively overcoming the problem of poor posture of the moving part. Through simulation verification, the posture difference of the moving part can be controlled within 5um.
  • the elastic coefficients of the elastic arm 4235 in the x-direction and the y-direction can also satisfy the normal operating times of the driving assembly for more than 200,000 times.
  • FIG. 9 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • the camera module may also include a driving component 424 .
  • the driving component 424 may be used to drive the moving part 422 to move or rotate relative to the fixed part 421 , thereby driving the moving part 422 .
  • the photosensitive chip 430 moves synchronously, thereby adjusting the imaging position on the surface of the photosensitive chip 430 to achieve the purpose of optical image stabilization.
  • the driving assembly 424 may include a fixed claw, a movable claw and a retractable wire, wherein the fixed claw is fixedly connected to the fixed part 421, the movable claw is fixedly connected to the moving part 422, and the two ends of the wire are fixedly connected to the fixed part 421.
  • the ends are fixedly connected to the fixed claw and the movable claw respectively, so that the force state of the movable claw can be adjusted by controlling the expansion and contraction state of the wire, so that the movable claw produces corresponding movement under the action of external force, thereby driving the moving part 422 Synchronized movement.
  • the number of fixed claws may be two, and the two fixed claws are defined as a first fixed claw 4241 and a second fixed claw 4242 respectively.
  • the first fixed claw 4241 and the second fixed claw 4242 can be respectively disposed on the side of the fixing portion 421 facing the optical lens, and they can be disposed diagonally.
  • the first fixed claw 4241 may be located approximately at the corner position formed by the first frame and the second frame
  • the second fixed claw 4242 may be located approximately at the corner position formed by the third frame and the fourth frame.
  • the number of movable claws may also be two, namely the first movable claw 4243 and the second movable claw 4244.
  • the first movable claw 4243 and the second movable claw 4244 can also be located on the side of the module circuit board 420 facing the optical lens, and they can also be arranged diagonally.
  • the two movable claws can respectively have a strip structure.
  • the orthographic projection of the first end 42431 of the first movable claw 4243 on the module circuit board 420 can fall within the fixed portion 421 and can be approximately located at the corner position formed by the first frame and the fourth frame.
  • the second end 42432 of the claw 4243 can extend above the moving part 422 and be fixedly connected with the moving part 422 .
  • the orthographic projection of the first end 42441 of the second movable claw 4244 on the module circuit board 420 can also fall within the fixed portion 421, and can be approximately located at the corner position formed by the second frame and the third frame.
  • the second end 42442 of the claw 4244 can extend above the moving part 422 and be fixedly connected with the moving part 422 .
  • the four wires can be respectively the first wire 4245, the second wire 4246, and the third wire. 4247 and the fourth wire 4248.
  • the two ends of the first wire 4245 are respectively fixedly connected to the first fixed claw 4241 and the first end 42431 of the first movable claw 4243, and the two ends of the second wire 4246 are respectively connected to the first fixed claw.
  • 4241 is fixedly connected to the first end 42441 of the second movable claw 4244
  • the two ends of the third wire 4247 are fixedly connected to the first end 42441 of the second movable claw 4244 and the second fixed claw 4242 respectively.
  • the material 4248 is fixedly connected to the first end 42431 of the second fixed claw 4242 and the first movable claw 4243 respectively. At this time, the first wire 4245, the second wire 4246, the third wire 4247 and the fourth wire 4248 can be connected in sequence through two movable claws and two fixed claws to form a ring structure.
  • first wire 4245 and the third wire 4247 can be arranged in parallel, and the second wire 4246 and the fourth wire 4248 can be arranged in parallel.
  • the first wire 4245 and the third wire 4247 can be arranged along the x direction respectively, and the second wire 4246 and the fourth wire 4248 can be arranged along the y direction respectively.
  • the fixed claw and the movable claw (or each claw part) can also be provided with fixed clips 42443 respectively. Both ends of each wire material can be fixed in the fixing clips 42443 of the corresponding fixed claws and movable claws respectively.
  • both the fixed claw and the movable claw can be made of metal materials.
  • a whole piece of metal material strip can be used to form two fixed claws and two fixed claws respectively through cutting or etching.
  • Two movable jaws, and during the cutting or etching process, part of the material strip connecting the two fixed jaws and the two movable jaws can be retained, such as the strip located on the outer periphery of the four jaws, and the strip located on the four four jaws.
  • the material belt located around the claws can stretch the four claws outward respectively, and the material belt located inside the claws can stretch the four claws inward, thereby positioning the four claws, and there are It is beneficial to ensure the flatness of the overall structure.
  • the four wires can be fixed between the adjacent fixed claws and the movable claws respectively through the wire hanging equipment, and the two fixed claws and the two movable claws can be fixed on the module circuit board through welding. Afterwards, the excess connecting material can be removed to obtain the complete drive assembly.
  • a first opening 4217 may be provided on the fixing part.
  • the first opening 4217 may be disposed close to the first certain claw 4241. For example, it may be located behind the first certain claw 4241.
  • the projection of the extension line of one end of the first wire 4245 connected to the first fixed claw 4241 on the module circuit board 420 can be at least partially located in the first opening 4217. In this way, when the cutting equipment is used to cut the first wire When the end of 4245 is cut to adjust the length of the first wire 4245, the first opening 4217 can avoid the cutting equipment, thereby preventing the cutting equipment from causing damage to the module circuit board 420 and ensuring the feasibility of the cutting operation.
  • the projection of the extension line of one end of the second wire 4246 connected to the first fixed claw 4241 on the module circuit board 420 can also be at least partially located in the first opening 4217, thereby also facilitating the cutting equipment to the second The length of wire 4246 is adjusted.
  • the fixing part may also be provided with a second opening (not shown in the figure), a third opening 4218 and a fourth opening (not shown in the figure).
  • the second opening may be disposed close to the second fixed claw 4242 , for example, may be located on a side of the second fixed claw 4242 facing away from the moving part 422 .
  • the projection of the extension line of one end of the third wire 4247 connected to the second fixed claw 4242 on the module circuit board 420 can be at least partially located in the second opening, and the fourth wire 4248 is connected to the second fixed claw 4242 .
  • the projection of the extension line at one end connected to the claw 4242 on the module circuit board 420 can also be at least partially located in the second opening, so that the second opening is used to avoid the cutting equipment and facilitate the cutting equipment to cut the third wire. 4247 and the length of the fourth wire 4248 are adjusted.
  • the third opening 4218 can be disposed close to the first movable claw 4243 , for example, it can be located on a side of the first movable claw 4243 facing away from the moving part 422 .
  • the projection of the extension line of one end of the first wire 4245 connected to the first movable claw 4243 on the module circuit board 420 can be at least partially located in the third opening 4218.
  • the fourth wire 4248 is connected to the first movable claw 4243.
  • the projection of the extension line at one end of the connection 4243 on the module circuit board 420 can also be at least partially located in the third opening 4218, so that the third opening 4218 is used to avoid the cutting equipment and facilitate the cutting equipment to cut the first wire.
  • the lengths of the wire 4245 and the fourth wire 4248 are adjusted.
  • the fourth opening may be provided close to the second movable claw 4244 , for example, it may be located on a side of the second movable claw 4244 facing away from the moving part 422 .
  • the projection of the extension line of one end connecting the second wire 4246 and the second movable claw 4244 on the module circuit board 420 can be at least partially located in the fourth opening.
  • the third wire 4247 and the second movable claw 4244 The projection of the extension line at one end of the connection on the module circuit board 420 can also be at least partially located in the fourth opening, so that the fourth opening is used to avoid the cutting equipment and facilitate the cutting equipment to cut the second wire 4246 and The length of the third wire 4247 is adjusted.
  • the four wires can be made of shape memory alloys (SMA) respectively.
  • SMA shape memory alloy
  • Shape memory alloy is a general term for a type of metal with shape memory effect. Its shape memory effect is specifically: when the shape memory alloy is below the memory temperature, it can show a structural form. When it is above the memory temperature, its internal crystal structure Changes will occur, causing the shape memory alloy to deform. At this time, the shape memory alloy can show a structural form.
  • the wire material is When the memory temperature is below the memory temperature, it is in a relatively relaxed state. When the memory temperature is above the memory temperature, the length is shortened and the material is in a shrinkage deformation state.
  • the wire material in a relatively relaxed state can also be stretched and deformed when subjected to a certain external force, so that the length of the wire material increases. Therefore, the wire material in the embodiment of the present application can also have tensile strength. Stretch deformation state.
  • each wire can be connected to the power circuit of the module circuit board 420 .
  • via holes can be provided on the fixed part 421 and the moving part 422, and each fixed claw and the movable claw are connected to the first through the via holes.
  • the power lines of the laminate are electrically connected, and each wire is electrically connected to the power circuit. In this way, the wire can be heated by energizing it, causing it to shrink and deform.
  • the first fixed claw 4241 may also include a first claw part 42411 and a second claw part 42412, wherein the first claw part 42411 may be used to connect with the first wire 4245, and the second claw part 42411 may be connected to the first wire 4245.
  • the claw portion 42412 can be used to connect with the second wire 4246.
  • the first claw part 42411 and the second claw part 42412 are insulated from each other, and the first claw part 42411 and the second claw part 42412 can be connected to the power line through corresponding via holes.
  • the second fixed claw 4242 may also include a third claw part 42421 and a fourth claw part 42422, wherein the third claw part 42421 may be used to connect the third wire 4247, and the fourth claw part 42422 may be used to connect with the fourth wire material 4247. Wire 4248 connection.
  • the third claw portion 42421 and the fourth claw portion 42422 are insulated from each other, and the third claw portion 42421 and the fourth claw portion 42422 can also be connected to the power line through corresponding via holes.
  • the first movable claw 4243 and the second movable claw 4244 can be connected to the positive end of the power cord respectively, and the two claws of the first fixed claw 4241 and the two claws of the second fixed claw 4242 can be connected respectively.
  • the wires are connected to different negative terminals through each claw, so that the four wires can be connected to different power circuits, thereby achieving individual control of the energization state of each wire.
  • the two fixed claws can also be connected to the positive terminal of the power cord, and the two movable claws can be separated into two insulated parts to be connected to the negative terminal of the power cord.
  • the first movable claw may include a fifth claw part and a sixth claw part, wherein the fifth claw part may be used to connect with the first wire material, and the sixth claw part may be used to connect with the fourth wire material.
  • the fifth claw part and the sixth claw part are insulated from each other, and the fifth claw part and the sixth claw part can be connected to different negative terminals of the power line through corresponding via holes.
  • the second movable claw may include a seventh claw part and an eighth claw part, the seventh claw part may be used to connect with the second wire, and the eighth claw part may be used to connect with the third wire.
  • the seventh claw part and the eighth claw part are insulated from each other, and the seventh claw part and the eighth claw part can be connected to different negative terminals of the power line through corresponding via holes.
  • the first wire material and the second wire material can share the positive electrode through the first fixed claw
  • the third wire material and the fourth wire material can share the positive electrode through the second fixed claw
  • the four wire materials pass through each
  • the claws are connected to different negative terminals, so the four wires can be connected to different power circuits to achieve individual control of the energization status of each wire.
  • the two fixed claws and the two movable claws can also be designed as two claw parts that are insulated from each other.
  • the two claw parts connected to the two ends of each wire are respectively Connect it to the positive and negative ends of the power cord, so that the energization status of each wire can be controlled individually, which will not be described again here.
  • the driving component 424 can drive the moving part 422 to move through four wires, and then drive the photosensitive chip 430 provided on the moving part 422 to move to achieve the optical anti-shake function.
  • the following is a detailed description of the driving component 424 Driving principle.
  • the first wire 4245 When the first wire 4245 is energized, the first wire 4245 shrinks and deforms, exerting a pulling force in the negative direction of the x-axis on the first movable claw 4243. This pulling force can be transmitted from the second end 42432 of the first movable claw 4243 to The moving part 422 drives the moving part 422 to move in the negative direction of the x-axis;
  • the third wire 4247 When the third wire 4247 is energized, the third wire 4247 shrinks and deforms, causing an x-axis movement of the second movable claw 4244.
  • the pulling force in the positive direction can be transmitted from the second end 42442 of the second movable claw 4244 to the moving part 422, thereby driving the moving part 422 to move in the positive direction of the x-axis.
  • the driving component 424 can drive the photosensitive chip 430 to move along the positive and negative directions of the x-axis respectively, thereby adjusting the imaging position of the surface of the photosensitive chip 430 in the x-axis direction to achieve optical anti-shake in the x-axis direction.
  • the second wire 4246 When the second wire 4246 is energized, the second wire 4246 shrinks and deforms, exerting a pulling force in the negative direction of the y-axis on the second movable claw 4244.
  • This pulling force can be transmitted from the second end 42442 of the second movable claw 4244 to The moving part 422 drives the moving part 422 to move in the negative direction of the y-axis;
  • the fourth wire 4248 When the fourth wire 4248 is energized, the fourth wire 4248 shrinks and deforms, exerting a pulling force in the positive direction of the y-axis on the first movable claw 4243. This pulling force can be transmitted from the second end 42432 of the first movable claw 4243 to The moving part 422 drives the moving part 422 to move in the positive direction of the y-axis.
  • the driving component 424 can drive the photosensitive chip 430 to move along the positive and negative directions of the y-axis respectively, thereby adjusting the imaging position of the surface of the photosensitive chip 430 in the y-axis direction to achieve optical anti-shake in the y-axis direction.
  • the first wire 4245 and the fourth wire 4248 When the first wire 4245 and the fourth wire 4248 are energized respectively, the first wire 4245 and the fourth wire 4248 shrink and deform, and the direction of the resultant pulling force on the first moving claw 4243 is directed by the module circuit board 420 The lower right corner points in the diagonal direction of the upper left corner, and the pulling force can be transmitted to the moving part 422 by the first movable claw 4243, thereby driving the moving part 422 to move in the direction where the lower right corner points to the upper left corner;
  • the second wire 4246 and the third wire 4247 When the second wire 4246 and the third wire 4247 are energized respectively, the second wire 4246 and the third wire 4247 shrink and deform, and the direction of the resultant pulling force on the second movable claw 4244 is directed by the module circuit board 420 The upper left corner points in the diagonal direction of its lower right corner, and the pulling force can be transmitted to the moving part 422 by the second movable claw 4244, thereby driving the moving part 422 to move in the direction where the upper left corner points to the lower right corner.
  • the terms “upper”, “lower”, “left” and “right” used for the module circuit board 420 in the embodiment of the present application are mainly based on the display orientation of the module circuit board 420 in Figure 8 The description does not limit the orientation of the module circuit board 420 in actual application scenarios.
  • the driving component 424 can drive the photosensitive chip 430 to move in both positive and negative directions along a diagonal line of the module circuit board 420, so that the surface of the photosensitive chip 430 can be adjusted in the diagonal direction. imaging position to achieve optical image stabilization in that direction.
  • first wire 4245 and the second wire 4246 When the first wire 4245 and the second wire 4246 are energized respectively, the first wire 4245 and the second wire 4246 shrink and deform, and the first wire 4245 generates a pulling force in the negative direction of the x-axis on the first movable claw 4243.
  • the second wire 4246 exerts a pulling force in the negative direction of the y-axis on the second movable claw 4244.
  • the pulling force exerted by the first movable claw 4243 and the second movable claw 4244 can be transmitted by their respective second ends.
  • the third wire 4247 and the fourth wire 4248 When the third wire 4247 and the fourth wire 4248 are energized respectively, the third wire 4247 and the fourth wire 4248 shrink and deform, and the third wire 4247 generates a pulling force in the positive direction of the x-axis to the second movable claw 4244.
  • the fourth wire 4248 exerts a pulling force in the positive direction of the y-axis on the first movable claw 4243.
  • the pulling force exerted by the first movable claw 4243 and the second movable claw 4244 can be transmitted by their respective second ends.
  • the driving component 424 can respectively drive the photosensitive chip 430 to move in the forward and reverse directions along the other diagonal line of the module circuit board 420, so that the surface of the photosensitive chip 430 can be adjusted in the diagonal direction. imaging position to achieve optical image stabilization in that direction.
  • the first wire 4245 and the third wire 4247 When the first wire 4245 and the third wire 4247 are energized respectively, the first wire 4245 and the third wire 4247 shrink and deform, and the first wire 4245 generates a pulling force in the negative direction of the x-axis on the first movable claw 4243.
  • the third wire 4247 exerts a pulling force in the positive direction of the x-axis on the second movable claw 4244.
  • the pulling force exerted by the first movable claw 4243 and the second movable claw 4244 can be transmitted by their respective second ends. to the moving part 422, the combined force of the two can form a clockwise moment on the moving part 422, thereby driving the moving part 422 to rotate clockwise;
  • the second wire 4246 and the fourth wire 4248 When the second wire 4246 and the fourth wire 4248 are energized respectively, the second wire 4246 and the fourth wire 4248 shrink and deform, and the second wire 4246 generates a pulling force in the negative direction of the y-axis on the second movable claw 4244.
  • the fourth wire 4248 exerts a pulling force in the positive direction of the y-axis on the first movable claw 4243.
  • the pulling force exerted by the first movable claw 4243 and the second movable claw 4244 can be transmitted by their respective second ends.
  • the combined force of the two can form a counterclockwise torque on the moving part 422, thereby driving the moving part 422 to rotate counterclockwise.
  • the driving component 424 can drive the photosensitive chip 430 to rotate clockwise or counterclockwise respectively, thereby adjusting the imaging position on the surface of the photosensitive chip 430, and achieving optical anti-shake in the xy plane through the rotational motion.
  • the moving part 422 can achieve translation in the x-axis direction, translation in the y-axis direction, translation in the two diagonal directions, and rotation in the xy plane. and other forms of movement, thereby realizing the optical anti-shake function of the camera module.
  • This driving method can not only provide a larger driving force, enabling the camera module to achieve a larger anti-shake angle, but also requires relatively little installation space for the driving assembly.
  • the driving assembly in this embodiment has The z-direction height is only about 0.85mm. Compared with traditional voice coil motors, the height of the driving component can be reduced by more than 0.3mm.
  • the camera module may also include a shielding structure 425.
  • the shielding structure 425 may be disposed on the same side of the module circuit board 420 as the fixed claw and the movable claw.
  • the fixed claw and the movable claw are located on the side of the module circuit board 420 facing the optical lens, and the four wires connected between each movable claw and the fixed claw are also located on the module circuit board 420 facing the optical lens.
  • the shielding structure 425 is also located on this side.
  • the shielding structure 425 can be fixed on the fixing part 421.
  • the shielding structure 425 is arranged in an annular shape, and during specific implementation, the shielding structure 425 can be located inside the annular structure formed by four wires. In this way, the shielding structure 425 can shield each wire, preventing the wire from being embedded in the gap between the fixed part 421 and the moving part 422 and causing wire clamping problems, thereby improving the working reliability of the driving assembly.
  • the shielding structure 425 may be a Mylar sheet.
  • the shielding structure 425 can be provided with a first arched portion 4251 at a position corresponding to the first movable claw 4243, and the second end of the first movable claw 4243 can pass through the first arched portion 4251 and the fixed portion 421 The gap extends above the moving part 422 to realize connection with the moving part 422 .
  • the shielding structure 425 can be provided with a second arched portion 4252 at a position corresponding to the second movable claw 4244, and the second end of the second movable claw 4244 can pass between the second arched portion 4252 and the fixed portion 421. The gap extends above the moving part 422 to realize connection with the moving part 422.
  • first movable claw 4243 and the first arched portion 4251 there may be a certain gap between the first movable claw 4243 and the first arched portion 4251 to ensure the movement space of the first movable claw 4243 in the z direction.
  • second movable claw 4244 and the second arched portion 4252 there may also be a certain gap between the second movable claw 4244 and the second arched portion 4252 to ensure the movement space of the second movable claw 4244 in the z direction.
  • FIG. 11 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • FIG. 12 is a schematic cross-sectional structural diagram of the module circuit board shown in FIG. 11 at BB.
  • the inner side of the shielding structure 425 can also extend above the moving part 422. That is to say, the inner side of the shielding structure 425 and the moving part 422 can partially overlap.
  • the shielding structure 425 can It partially overlaps with the third protrusion 4226 and the fourth protrusion 4227 of the moving part 422 .
  • the shielding structure 425 is spaced apart from the moving part 422. For example, there may be a first gap between the shielding structure 425 and the moving part 422.
  • the camera module may also include a first support column 426.
  • the first support column 426 may be disposed between the shielding structure 425 and the moving part 422 along the z direction. One end of the first support column 426 is fixedly connected to the shielding structure 425. The other end is provided in contact with the moving part 422 .
  • FIG. 13 is a simplified structural diagram of the module circuit board shown in FIG. 11 .
  • the height of the first support column 426 may be greater than the first gap.
  • the height of the moving part 422 in the z direction will be smaller than the height of the fixed part 421 in the z direction, so a vertical step difference z 1 will be generated between the moving part 422 and the fixed part 421, also That is to say, the deformation of the elastic part 423 in the z direction is z 1 .
  • the elastic part 423 will exert an upward pre-pressure F 1 on the moving part 422 .
  • the number of the first support pillars 426 may be multiple, such as three, four, five or more.
  • the first support posts may also be provided at other positions of the moving part.
  • FIG. 14 is a schematic cross-sectional structural diagram of the module circuit board shown in FIG. 11 at C-C.
  • the inner side of the shielding structure 425 may also include a first extension part 4253 and a second extension part 4254, wherein the first extension part 4253 may extend to the first side wall and the third side wall of the moving part 422.
  • the second extension part 4254 may extend to above the corner part formed by the third side wall and the fourth side wall of the moving part.
  • first support posts 426 may also be respectively provided between the first extension part 4253 and the moving part 422 and between the second extension part 4254 and the moving part 422 .
  • the above-mentioned four first support columns 426 can be provided between the shielding structure 425 and the moving part 422, thereby forming stable support on the peripheral side of the moving part 422 and improving the force uniformity of the moving part 422.
  • the first support column 426 can also be disposed between the aforementioned support member for supporting the filter and the moving part 422.
  • one end of the first support column 426 can be fixedly connected to the support member. The other end is arranged in contact with the moving part 422, so that the elastic part can preload the moving part 422, thereby overcoming the problem of posture difference of the moving part 422.
  • Figure 15 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • Figure 16 is a cross-sectional structure of the module circuit board shown in Figure 15 at D-D. Schematic diagram.
  • the camera module may also include a carrying substrate 470.
  • the carrying substrate 470 may be disposed on a side of the module circuit board 420 away from the optical lens, thereby supporting the module circuit board 420. and reinforcing effect.
  • the bearing substrate 470 can be provided with a groove 471 corresponding to the area where the moving part 422 and the elastic part 423 of the module circuit board 420 are located, so that the moving part 422 and the elastic part 423 have a certain distance from the bottom wall of the groove 471 spacing to avoid frictional obstruction to the moving part 422 due to direct contact and affecting the movement reliability of the moving part 422.
  • the camera module may also include a second support column 427 .
  • the second support column 427 may be disposed between the bottom wall of the groove 471 and the moving part 422 . One end of the second support column 427 is connected to the groove 471 The bottom wall is fixedly connected, and the other end is in contact with the moving part 422.
  • FIG. 17 is a simplified structural schematic diagram of the module circuit board shown in FIG. 15 .
  • the height of the second support column 427 can be greater than the distance between the bottom wall of the groove 471 and the moving part 422.
  • the height of the moving part 422 in the z direction will be greater than the height of the fixed part 421 in the z direction, so there will be a vertical step difference z 2 between the moving part 422 and the fixed part 421, That is to say, the deformation of the elastic part 423 in the z direction is z 2 .
  • the elastic part 423 will exert a downward pre-pressure F 2 on the moving part 422 .
  • the number of the second supporting pillars may also be multiple, such as three, four, five or more. Multiple support columns can be evenly disposed between the bottom wall of the groove 471 and the moving part 422 to improve the force uniformity of the moving part 422 .
  • the second support pillar 427 supports the moving part 422 from below, while the aforementioned first support pillar supports the moving part 422 from above.
  • the preload force exerted by the elastic part on the moving part is in the opposite direction.
  • either one of the above two preloading schemes can be selected for implementation according to the specific design of the camera module, and this application does not limit this.
  • the groove 471 is The bottom wall can limit the position of the moving part 422 to avoid damage to the elastic part 423 due to excessive vertical displacement of the moving part 422, thereby improving the reliability of the elastic part 423.
  • the first extension part 4253 of the shielding structure 425 can also limit the position of the moving part 422, thereby improving the reliability of the elastic part 423.
  • the side of the moving part 422 away from the optical lens can also be connected to the carrying substrate 470 through damping glue, that is, connected to the bottom wall of the groove 471.
  • damping glue can be evenly coated at multiple locations on the side of the moving part 422 away from the optical lens to improve the force uniformity of the moving part 422 and further improve the smoothness of the movement of the moving part.
  • the damping glue can be silicone, rubber or other adhesive with better damping properties, and is formed in the groove 471 and the moving part 422 by dispensing glue, spraying glue, etc.
  • the elastic part 423 and the bottom wall of the groove 471 can also be connected through damping glue.
  • the damping force of the damping glue can be applied to the elastic part 423 and transmitted to the elastic part 423 through the elastic part 423 .
  • the moving part 422 can also ensure the smooth movement of the moving part 422.
  • each elastic component of the elastic part 423 can be connected to the bottom wall of the groove 471 through damping glue to improve the force uniformity of the moving part 422 .
  • damping can also be provided between the first end of the first movable claw 4243 and the fixed part 421, and between the first end of the second movable claw 4244 and the fixed part 421. glue, so that the two movable claws and the fixed part 421 are connected through the damping glue. At this time, the damping force of the damping glue can be transmitted to the moving part 422 through the first movable claw 4243 and the second movable claw 4244, so that the moving part 422 can move smoothly.
  • damping glue can be respectively provided between the first movable claw 4243 and the first arched portion 4251, and between the second movable claw 4244 and the second arched portion 4252. , thus connecting the two movable claws and the shielding structure 425 through damping glue. Similar to the previous solution, the damping force of the damping glue can also be transmitted to the moving part 422 through the first movable claw 4243 and the second movable claw 4244. The moving part 422 is allowed to move smoothly.
  • damping glue setting methods can be all applied to the design of the camera module, or some of them can be selectively applied. Specifically, it can be determined according to the layout and volume of the relevant structure of the module circuit board. Weight, etc. are set, and this application does not impose restrictions on this.
  • FIG. 18 is a schematic structural diagram of another module circuit board provided by an embodiment of the present application.
  • the camera may also include a chip carrying substrate 480.
  • the photosensitive chip 430 may be pre-installed on the chip carrying substrate 480, and then the chip carrying substrate 480 with the photosensitive chip 430 installed thereon will be welded and fixed on the module circuit board 420.
  • the photosensitive chip 430 may be electrically connected to the chip carrying substrate 480 through a wire bonding process.
  • the photosensitive chip 430 can also be mounted on the chip carrier substrate 480 through chip packaging technology, or can also be packaged on the chip carrier substrate 480 through solder ball array packaging technology or grid array packaging technology.
  • FIG 19 is a schematic cross-sectional structural diagram of the module circuit board shown in Figure 18 at E-E.
  • a chip mounting slot 481 may be partially provided on the chip carrying substrate 480 , and the photosensitive chip may be disposed in the chip mounting slot 481 .
  • the photosensitive chip 430 and the chip carrying substrate 480 can have an overlapping area in the z-axis direction, which helps to reduce the size of the camera module in the z-axis direction.
  • a reinforcing plate 482 can be fixed on the side of the chip carrying substrate 480 away from the optical lens.
  • the reinforcing plate 482 can be disposed at the chip mounting groove 481 to support the photosensitive chip 430, so that the chip carrying substrate 480 can be in contact with the photosensitive chip.
  • the chip 430 is relatively fixed, thereby improving the structural reliability of the camera module.
  • the reinforcing plate 482 may be a steel plate.
  • the chip carrying substrate 480 can be specifically disposed on the moving part 422 of the module circuit board 420, and an escape groove 4228 can be provided on the moving part 422 in an area corresponding to the reinforcing plate 482, so that the chip carrying substrate 480 and After the module circuit board 420 is assembled, the reinforcing plate 482 can be accommodated in the avoidance groove 4228, thereby helping to further reduce the size of the camera module in the z-axis direction.
  • the chip carrying substrate 480 covers the moving part 422, in order to realize the connection between the moving part 422 and the driving component, when setting the driving component, the second end 42432 of the first movable claw 4243 and the second end 42432 of the first moving claw 4243 can be connected.
  • the second ends 42442 of the two moving claws 4244 are respectively fixed on the chip carrying substrate 480. Based on the fixed connection relationship between the chip carrying substrate 480 and the moving part 422, the chip carrying substrate 480 and the moving part 422 can be driven by the driving assembly as a whole. , thereby adjusting the position of the photosensitive chip 430.
  • the driving component of the camera module uses the length change of the wire to drive the movement of the moving part, and then drives the photosensitive chip to move to achieve the anti-shake function.
  • the coil motor solution can effectively reduce the z-direction stacking height of the camera module while ensuring that the camera module can achieve large-angle anti-shake, thereby reducing the space occupied by the camera module inside the electronic device.
  • magnetic interference to other devices inside the electronic device can be avoided and the reliability of the electronic device can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

本申请涉及电子设备技术领域,提供了一种摄像模组及电子设备,用以在提高摄像模组的防抖性能的前提下,减小摄像模组的体积。摄像模组包括光学镜头、模组电路板、感光芯片以及驱动组件,其中:模组电路板设置于光学镜头的出光侧,包括固定部、运动部和弹性部,运动部通过弹性部与固定部弹性连接;感光芯片设置于运动部朝向光学镜头的一侧;驱动组件包括定卡爪、动卡爪和丝材,定卡爪与固定部固定连接,动卡爪与运动部固定连接,丝材连接于定卡爪与动卡爪之间,且丝材的长度可伸缩,驱动组件用于在丝材的长度伸缩时驱动运动部相对固定部运动。

Description

一种摄像模组及电子设备
相关申请的交叉引用
本申请要求在2022年03月07日提交中国专利局、申请号为202210216789.9、申请名称为“一种摄像模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及到一种摄像模组及电子设备。
背景技术
为了提升手机、平板电脑等电子设备的竞争力,集成防抖功能的摄像模组已成为当前电子设备的标配。常见的防抖技术有镜头防抖和芯片防抖两种,芯片防抖技术相较于传统的镜头防抖技术,由于动子重量相对较小,因此在驱动力上更有优势,而且可以实现更大的防抖角度。
目前,芯片防抖方案所采用的驱动方式主要为电磁驱动,利用音圈马达通电后磁石和线圈之间产生的洛伦兹力带动动子运动。然而,由于音圈马达所能提供的驱动力相对较小,会导致摄像模组的防抖角度受限。若要提高音圈马达的驱动力,就需增大磁石和线圈的体积,而这样又会导致摄像模组的整体体积变大,不利于实现电子设备的小型化设计。
发明内容
本申请提供了一种摄像模组及电子设备,用以在提高摄像模组的防抖性能的前提下,减小摄像模组的体积。
第一方面,本申请提供了一种摄像模组,该摄像模组可包括光学镜头、模组电路板、感光芯片和驱动组件。其中,模组电路板设置在光学镜头的出光侧,模组电路板可包括固定部、运动部和弹性部,运动部可通过弹性部与固定部弹性连接,从而在弹性部发生弹性变形时,运动部能够相对固定部运动。感光芯片可设置在运动部朝向光学镜头的一侧。驱动组件可包括定卡爪、动卡爪和丝材,具体设置时,定卡爪可与固定部固定连接,动卡爪可与运动部固定连接,丝材则分别与定卡爪和动卡爪连接,且丝材的长度可伸缩,这样,当丝材的长度伸缩时,驱动组件就可以驱动运动部相对固定部运动,进而带动设置于运动部上的感光芯片同步运动。
上述方案中,摄像模组的驱动组件利用丝材的长度变化驱动运动部运动,进而带动感光芯片运动而实现防抖功能,相较于传统的音圈马达的方案,在保证摄像模组能够实现大角度防抖的前提下,可以有效减小摄像模组的堆叠高度,从而可以减小摄像模组的整体体积。另外,由于驱动组件内不存在磁石等磁性器件,因此可以避免对电子设备内部的其它器件造成磁干扰,提高电子设备的使用可靠性。
在一些可能的实施方案中,感光芯片可以设置于运动部朝向光学镜头的一侧表面。或者,运动部上可设置安装槽,运动部设置于安装槽内,以使运动部与感光芯片在厚度方向 具有重叠区域,从而有助于减小摄像模组的堆叠高度。示例性地,感光芯片与运动部可以通过引线键合工艺与运动部电连接。
在一些可能的实施方案中,弹性部可具有导电性,因此弹性部不仅能够将运动部与固定部机械连接,还可以在运动部与固定部之间进行信号传输。
在一些可能的实施方案中,固定部、运动部和弹性部可以具有相同的叠层结构。这时,固定部、运动部和弹性部可由整体的电路板通过切割工艺一体成型,从而有助于简化摄像模组的制作及组装工艺。
在一些可能的实施方案中,摄像模组还可以包括柔性电路板,柔性电路板上可设置有用于与外部器件连接的连接器,该柔性电路板与模组电路板可以为一体结构的软硬结合板。采用这种设计,一方面可以简化摄像模组的组装工艺,另一方面也可以避免采用焊接方式所产生的复杂工艺以及可靠性问题。
在具体设置模组电路板的各部分时,固定部可以为框形结构,运动部可设置于固定部的框形内侧,弹性部设置于固定部与运动部之间的间隙内,且弹性部可围绕运动部呈环形设置,从而提高运动部的受力均匀性。
在一些可能的实施方案中,固定部可具有朝向内侧的运动部设置的第一凸起和第二凸起,运动部可具有朝向外侧的固定部设置的第三凸起和第四凸起,沿运动部的周侧方向,第一凸起、第三凸起、第二凸起和第四凸起依次排布。弹性部可包括四组弹性组件,四组弹性组件可分别连接于第一凸起与第三凸起之间、第三凸起与第二凸起之间、第二凸起与第四凸起之间、以及第四凸起与第一凸起之间,从而利用该四组弹性组件使运动部和固定部之间建立稳定的弹性连接关系。
具体设置时,弹性组件可包括至少一个弹性臂,至少一个弹性臂平行且间隔设置,这时,每个弹性臂的两端可分别与固定部以及运动部上相应的两个凸起连接,以在保证固定部与运动部可靠连接的前提下,提高弹性组件整体的弹性性能。
沿模组电路板的厚度方向,弹性臂可包括衬底和设置在衬底上的至少一层子板,其中,衬底可以为刚性材料,子板上可设置有导电线路。采用这种叠层结构,可以使弹性臂在厚度方向具有相对较大的弹性系数,这样不仅可以对运动部及设置于运动部之上的感光芯片进行可靠支撑,而且还可以使弹性臂具有较好的弹性恢复能力,从而在导致弹性臂变形的外力消失后,弹性臂能够相对较快地恢复初始状态,有效克服运动部的姿势差问题。
示例性地,衬底的材质具体可以为钛铜。
示例性地,弹性臂中子板的层数可以为三层,沿远离衬底的方向,第一层子板可用于设置电源线和信号线,第二层子板可用于设置屏蔽层,第三层子板可用于设置信号线。
在一些可能的实施方案中,定卡爪和动卡爪的数量可分别为两个,分别为第一定卡爪、第二定卡爪、第一动卡爪和第二动卡爪。沿运动部的周侧方向,第一定卡爪、第一动卡爪、第二定卡爪和第二动卡爪依次排布。此时,丝材的数量可以为四根,分别为第一丝材、第二丝材、第三丝材和第四丝材,其中,第一丝材的两端分别与第一定卡爪和第一动卡爪连接,第二丝材的两端分别与第一定卡爪和第二动卡爪连接,第三丝材的两端分别与第二动卡爪和第二定卡爪连接,第四丝材的两端分别与第二定卡爪和第一动卡爪连接。第一丝材、第二丝材、第三丝材及第四丝材可通过两个动卡爪和两个定卡爪依次连接形成为一个环形结构,通过控制各根丝材的伸缩,即可以使运动部相对固定部移动或转动,从而带动感光芯片同步运动,实现摄像模组的光学防抖功能。
在一些可能的实施方案中,第一定卡爪可包括第一爪部和第二爪部,第一爪部与第二爪部绝缘设置,第一爪部可用于与第一丝材连接,第二爪部可用于与第二丝材连接。第二定卡爪可包括第三爪部和第四爪部,第三爪部与第四爪部绝缘设置,第三爪部可用于与第三丝材连接,第四爪部可用于与第四丝材连接。通过这种设置,可以实现对四根丝材的伸缩状态的单独控制。
在另外一些可能的实施方案中,第一动卡爪可包括第五爪部和第六爪部,第五爪部与第六爪部绝缘设置,第五爪部可用于与第一丝材连接,第六爪部可用于与第四丝材连接。第二动卡爪可包括第七爪部和第八爪部,第七爪部与第八爪部绝缘设置,第七爪部可用于与第二丝材连接,第八爪部可用于与第三丝材连接。与前述方案类似,通过该方案也可以实现对四根丝材的伸缩状态的单独控制。
在一些可能的实施方案中,第一动卡爪可以为条形结构,第一动卡爪的第一端在模组电路板上的正投影落在固定部内,第一动卡爪的第一端可用于与第一丝材和第四丝材连接,第一动卡爪的第二端可用于与运动部固定连接。
类似地,第二动卡爪也可以为条形结构,第二动卡爪的第一端在模组电路板上的正投影落在固定部内,第二动卡爪的第一端可用于与第二丝材和第三丝材连接,第二动卡爪的第二端可用于与运动部固定连接。
在一些可能的实施方案中,固定部上可设置有第一开孔,第一开孔靠近第一定卡爪设置,第一丝材与第一定卡爪连接的一端的延长线在模组电路板上的正投影可至少部分落在第一开孔内,第二丝材与第一定卡爪连接的一端的延长线在模组电路板上的正投影也可至少部分落在第一开孔内。在利用切割设备对第一丝材和第二丝材的长度进行切割调整时,第一开孔可以对切割设备进行避让,从而避免切割设备对模组电路板造成损伤。
类似地,固定部上还可以设置有第二开孔、第三开孔和第四开孔。其中,第二开孔可靠近第二定卡爪设置,第三丝材和第四丝材与第二定卡爪连接的一端的延长线在模组电路板上的正投影至少部分落在第二开孔内。第三开孔可靠近第一动卡爪设置,第一丝材和第四丝材与第一动卡爪连接的一端的延长线在模组电路板上的正投影至少部分落在第三开孔内。第四开孔可靠近第二动卡爪设置,第二丝材和第三丝材与第二动卡爪连接的一端的延长线在模组电路板上的正投影至少部分落在第四开孔内。
在一些可能的实施方案中,第一动卡爪的第一端与固定部可通过阻尼胶连接,第二动卡爪的第一端与固定部也可通过阻尼胶连接。利用阻尼胶可以对第一动卡爪和第二动卡爪的运动提供阻尼力,该阻尼力可进一步传递给运动部,从而使运动部能够平稳运动。
在一些可能的实施方案中,第一丝材和第三丝材平行设置且分别沿第一方向延伸,第二丝材和第四丝材平行设置且分别沿第二方向延伸,其中,第一方向与第二方向呈夹角设置。此时,驱动组件可以驱动运动部产生第一方向和第二方向的移动。
示例性地,第一方向与第二方向可正交设置。
在一些可能的实施方案中,固定部上可设置有环形的遮挡结构,该遮挡结构可与丝材位于固定部的同一侧,且遮挡结构位于四根丝材所形成的环形区域的内侧。遮挡结构可以对各根丝材进行遮挡,避免丝材嵌入到固定部与运动部之间的缝隙内,提高驱动组件的工作可靠性。
在一些可能的实施方案中,遮挡结构内侧与运动部可部分重叠,沿模组电路板的厚度方向,遮挡结构与运动部之间可具有第一间隙。此时,模组电路板还可以包括第一支撑柱, 第一支撑柱可设置于遮挡结构与运动部之间,第一支撑柱的一端与遮挡结构固定连接,另一端与运动部接触设置,且第一支撑柱的高度大于上述第一间隙。基于第一支撑柱的支撑作用,运动部与固定部之间会产生一个垂直段差,弹性部发生垂直变形,因此弹性部会施加给运动部一个预压力,该预压力可以使运动部与第一支撑柱的端部能够始终紧贴,从而可以减小运动部出现垂直移位的风险,克服运动部的姿势差问题。
示例性地,第一支撑柱的数量可以为至少三个,这些第一支撑柱可均匀分布在运动部的周侧,以提高运动部的受力均匀性。
在一些可能的实施方案中,遮挡结构对应第一动卡爪的位置还可以设置有第一拱起部,第一动卡爪可在第一拱起部与固定部之间穿过,以便于与运动部连接。类似地,遮挡结构对应第二动卡爪的位置还可以设置有第二拱起部,第二动卡爪可在第二拱起部与固定部之间穿过,以便于运动部连接。
在一些可能的实施方案中,第一动卡爪与第一拱起部之间具有间隙,第一动卡爪与第一拱起部之间可通过阻尼胶连接,此时阻尼胶的阻尼力可通过第一动卡爪传递给运动部,对运动部的平稳运动提供保障。
可以理解的,第二动卡爪与第二拱起部之间的间隙内也可设置阻尼胶,从而将第二动卡爪与第二拱起部通过阻尼胶连接,此时阻尼胶的阻尼力也可通过第二动卡爪传递给运动部。
在一些可能的实施方案中,摄像模组还可以包括承载基板,承载基板可设置于模组电路板背向光学镜头的一侧,从而对模组电路板进行支撑以及补强。承载基板与运动部和弹性部相对的区域可设置有凹槽,以避免由于承载基板与运动部和弹性部直接接触对其运动造成摩擦阻碍。
在一些可能的实施方案中,运动部背离光学镜头的一侧与凹槽的底壁可通过阻尼胶连接,从而利用阻尼胶提供使运动部快速稳定的阻尼力,保障运动部的运动平稳性。
在一些可能的实施方案中,摄像模组还可以包括第二支撑柱,第二支撑柱可设置于运动部与凹槽的底壁之间,第二支撑柱的一端与凹槽的底壁固定连接,另一端可与运动部接触设置,且第二支撑柱的高度大于运动部与凹槽的底壁之间的间隙。基于第二支撑柱的支撑作用,运动部与固定部之间会产生一个垂直段差,弹性部发生垂直变形,因此弹性部会施加给运动部一个预压力,该预压力可以使运动部与第二支撑柱的端部能够始终紧贴,从而可以减小运动部出现垂直移位的风险,克服运动部的姿势差问题。
示例性地,第二支撑柱的数量可以为至少三个,这些第二支撑柱可均匀分布在运动部的周侧,以提高运动部的受力均匀性。
在一些可能的实施方案中,驱动组件的丝材可以为形状记忆合金丝材,这时,模组电路板上可设置有电源回路,丝材可电连接于电源回路中,这样,通过向丝材通电即可对其加热,从而使其发生收缩变形。
在一些可能的实施方案中,摄像模组还可以包括芯片承载基板,感光芯片可设置于芯片承载基板,芯片承载基板则固定在运动部上。示例性地,感光芯片与运动部可以通过引线键合工艺与芯片承载基板电连接。
在一些可能的实施方案中,摄像模组还可以包括反射组件,该反射组件可设置于光学镜头的进光侧,用于将环境光线转向并射入光学镜头的进光侧。采用这种结构,摄像模组在电子设备厚度方向分布的元器件,从而使摄像模组可应用于采用超薄设计的电子设备上。
第二方面,本申请还提供了一种电子设备,该电子设备包括壳体以及前述实施方案中的摄像模组,摄像模组设置于壳体内。该电子设备的摄像模组具有较佳的防抖性能,并且摄像模组在电子设备中的占用空间较小,因此有助于减小电子设备的整体体积。
附图说明
图1为本申请实施例提供的电子设备1的结构示意图;
图2为图1中的电子设备的局部分解示意图;
图3为图1中所示的电子设备在A-A处的一种截面结构示意图;
图4为图1中所示的电子设备在A-A处的另一种截面结构示意图;
图5为本申请实施例提供的一种模组电路板的结构示意图;
图6为本申请实施例提供的另一种模组电路板的结构示意图;
图7为图5中所示的模组电路板在A处的局部放大图;
图8为图7中所示的弹性臂的截面结构示意图;
图9为本申请实施例提供的另一种模组电路板的结构示意图;
图10为本申请实施例提供的另一种模组电路板的结构示意图;
图11为本申请实施例提供的另一种模组电路板的结构示意图;
图12为图11中所示的模组电路板在B-B处的截面结构示意图;
图13为图11中所示的模组电路板的简化结构示意图;
图14为图11中所示的模组电路板在C-C处的截面结构示意图;
图15为本申请实施例提供的另一种模组电路板的结构示意图;
图16为图15中所示的模组电路板在D-D处的截面结构示意图;
图17为图15中所示的模组电路板的简化结构示意图;
图18为本申请实施例提供的另一种模组电路板的结构示意图;
图19为图18中所示的模组电路板在E-E处的截面结构示意图。
附图标记:
1-电子设备;100-壳体;200-屏幕;300-主机电路板;400-摄像模组;110-中框;
120-后盖;210-第一盖板;220-显示屏;310-避让空间;121-进光孔;
122-摄像头装饰件;123-第二盖板;410-光学镜头;420-模组电路板;430-感光芯片;
440-滤光片;450-支撑件;451-通孔;452-沉孔;490-反射组件;491-安装座;
492-反射件;4921-入光面;4922-反射面;4923-出光面;460-柔性电路板;
461-板对板连接器;421-固定部;422-运动部;423-弹性部;4211-第一边框;
4212-第二边框;4213-第三边框;4214-第四边框;4221-第一侧壁;4222-第二侧壁;
4223-第三侧壁;4224-第四侧壁;4225-安装槽;4215-第一凸起;4216-第二凸起;
4226-第三凸起;4227-第四凸起;4231-第一弹性组件;4232-第二弹性组件;
4233-第三弹性组件;4234-第四弹性组件;4235-弹性臂;4236-连接件;42351-衬底;
42352-第一层子板;423521-电源线;42353-第二层子板;423531-屏蔽层;
42354-第三层子板;423541-信号线;424-驱动组件;4241-第一定卡爪;
4242-第二定卡爪;4243-第一动卡爪;4244-第二动卡爪;42431-第一动卡爪的第一端;
42432-第一动卡爪的第二端;42441-第二动卡爪的第一端;
42442-第二动卡爪的第二端;4245-第一丝材;4246-第二丝材;4247-第三丝材;
4248-第四丝材;42443-固定夹;4217-第一开孔;4218-第二开孔;42411-第一爪部;
42412-第二爪部;42421-第三爪部;42422-第四爪部;425-遮挡结构;
4251-第一拱起部;4252-第二拱起部;426-第一支撑柱;4253-第一延伸部;
4254-第二延伸部;427-第二支撑柱;470-承载基板;471-凹槽;480-芯片承载基板;
481-芯片安装槽;482-补强板;4228-避让槽。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。
请参考图1,图1为本申请实施例提供的电子设备1的结构示意图。电子设备1可以为手机、平板电脑(tablet personal computer)、膝上型电脑(laptop computer)、个人数码助理(personal digital assistant,简称PDA)、照相机、个人计算机、笔记本电脑、车载设备、可穿戴设备、增强现实(augmented reality,简称AR)眼镜、AR头盔、虚拟现实(virtual reality,简称VR)眼镜或者VR头盔、或者具有拍照及摄像功能的其它形态的设备。图1所示实施例的电子设备1以手机为例进行阐述。
图2为图1中所示的电子设备的局部分解示意图。请一并参考图1和图2,电子设备1可包括壳体100、屏幕200、主机电路板300及摄像模组400。需要说明的是,图1、图2以及下文相关附图仅示意性的示出了电子设备1包括的一些部件,这些部件的实际形状、实际大小、实际位置和实际构造不受图1、图2以及下文各附图限定。此外,当电子设备1为一些其它形态的设备时,电子设备1也可以不包括屏幕200以及主机电路板300。
为了便于描述,定义电子设备1的宽度方向为第一方向(x轴),电子设备1的长度方向为第二方向(y轴),电子设备1的厚度方向为第三方向(z轴)。可以理解的是,电子设备1的坐标系设置可以根据具体实际需要灵活设置。
其中,壳体100包括中框110以及后盖120。后盖120固定于中框110的一侧。一种实施方式中,后盖120通过粘胶固定连接于中框110。在另一种实施方式中,后盖120与中框110形成一体成型结构,即后盖120与中框110为一个整体结构。
在其它实施例中,壳体100也可以包括中板(图中未示出)。中板连接于中框110的内表面。中板与后盖120相对且间隔设置。
请再次参考图2,屏幕200固定于中框110的另一侧。此时,屏幕200与后盖120相对设置。屏幕200、中框110与后盖120共同围出电子设备1的内部。电子设备1的内部可用于放置电子设备1的器件,例如电池、受话器以及麦克风等。
在本实施例中,屏幕200可用于显示图像、文字等。屏幕200可以为平面屏,也可以为曲面屏。屏幕200包括第一盖板210和显示屏220。第一盖板210叠置于显示屏220背离中框110的一侧。第一盖板210可以紧贴显示屏220设置,可主要用于对显示屏220起到保护以及防尘作用。第一盖板210的材质可以为但不仅限于为玻璃。显示屏220可以采用有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏等。
图3为图1中所示的电子设备在A-A处的一种截面结构示意图。一并参考图2和图3,主机电路板300固定于电子设备1的内部。具体的,主机电路板300可以固定于屏幕200 朝向后盖120的一侧。在其它实施例中,当壳体100包括中板时,主机电路板300可以固定于中板朝向后盖120的表面。
可以理解的是,主机电路板300可以为硬质电路板,也可以为柔性电路板,也可以为软硬结合电路板。主机电路板300可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用FR-4和Rogers的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板为一种高频板。另外,主机电路板300可以用于设置芯片,芯片可以为中央处理器(central processing unit,CPU)、图形处理器(graphics processing unit,GPU)以及通用存储器(universal flash storage,UFS)等。
请继续参考图2和图3,摄像模组400固定于电子设备1的内部。具体的,摄像模组400固定于屏幕200朝向后盖120的一侧。在其它实施例中,当壳体100包括中板时,摄像模组400可以固定于中板朝向后盖120的表面。
另外,主机电路板300设置有避让空间310。避让空间310的形状不仅限于图1与图2所示意的矩形状。此时,主机电路板300的形状也不限于图1与图2所示意的“┘”型。摄像模组400位于避让空间310内。这样,在Z轴方向上,摄像模组400与主机电路板300具有重叠区域,从而避免了因摄像模组400堆叠于主机电路板300而导致电子设备1的厚度增大。在其它实施例中,主机电路板300也可以未设置避让空间310,此时,摄像模组400可以堆叠于主机电路板300,或者与主机电路板300间隔设置。
在本实施例中,摄像模组400电连接于主机电路板300。具体的,摄像模组400通过主机电路板300电连接于CPU。当CPU接收到用户的指令时,CPU能够通过主机电路板300向摄像模组400发送信号,以控制摄像模组400拍摄图像或者录像。在其它实施例中,当电子设备1未设置主机电路板300时,摄像模组400也可以直接接收用户的指令,并根据用户的指令进行拍摄图像或者录像。
请再次参考图3,后盖120开设有进光孔121,进光孔121可将电子设备1的内部连通至电子设备1的外部。电子设备1还包括摄像头装饰件122和第二盖板123。部分摄像头装饰件122可以固定于后盖120的内表面,部分摄像头装饰件122接触于进光孔121的孔壁。第二盖板123固定连接在摄像头装饰件122的内壁。摄像头装饰件122与第二盖板123将电子设备1的内部与电子设备1的外部隔开,从而避免外界的水或者灰尘经进光孔121进入电子设备1的内部。第二盖板123的材质为透明材料,例如,可以为玻璃或者塑料。此时,电子设备1外部的环境光线能够穿过第二盖板123进入电子设备1的内部。摄像模组400采集进入电子设备1内部的环境光线。
可以理解的是,进光孔121的形状不仅限于附图1及附图2所示意的圆形。例如,进光孔121的形状也可以为椭圆形或者其它不规则形状等。
在其它实施例中,摄像模组400也可以采集穿过后盖120的环境光线。具体的,后盖120的材质为透明材料。例如,玻璃或者塑料。后盖120朝向电子设备1内部的表面部分涂覆油墨,部分未涂覆油墨。此时,未涂覆油墨的区域可形成透光区域。当环境光线经该透光区域进入电子设备1的内部时,摄像模组400即可采集到环境光线。也就是说,本实施例的电子设备1可以无需开设进光孔121,也无需设置摄像头装饰件122和第二盖板123,电子设备1的整体性较佳,成本较低。
请继续参考图3,摄像模组400可包括光学镜头410、模组电路板420以及感光芯片430,其中,光学镜头410的出光方向与摄像模组400的光轴方向相同。模组电路板420 可固定于光学镜头410的出光侧,也即模组电路板420位于光学镜头410的像侧。模组电路板420可以电连接于主机电路板300,以使信号能够在主机电路板300与模组电路板420之间传输。感光芯片430固定于模组电路板420朝向光学镜头410的一侧,可用于采集光学镜头410出光侧的环境光线并产生信号。感光芯片430与模组电路板420之间电连接,以使感光芯片430产生的信号能够经模组电路板420传输至主机电路板300。具体实施时,感光芯片430可以是金属氧化物半导体元件(complementary metal-oxide-semiconductor,CMOS)或者电荷耦合元件(charge coupled device,CCD)等图像传感器。
在一些实施例中,摄像模组400还可以包括滤光片440,滤光片440可位于感光芯片430朝向光学镜头410的一侧。滤光片440可以用于过滤穿过光学镜头410的环境光线的杂光,并使过滤后的环境光线传播至感光芯片430,从而保证电子设备拍摄图像具有较佳的清晰度。滤光片440可以为但不仅限于为蓝色玻璃滤光片。例如,滤光片440还可以为反射式红外滤光片,或者是双通滤光片(双通滤光片可使环境光线中的可见光和红外光同时透过,或者使环境光线中的可见光和其它特定波长的光线(例如紫外光)同时透过,或者使红外光和其它特定波长的光线(例如紫外光)同时透过)。
为了将滤光片440的位置进行固定,摄像模组400还可包括设置于光学镜头410与模组电路板420之间的支撑件450,支撑件450的两侧分别与光学镜头410和模组电路板420固定连接,具体固定方式可以为粘接。滤光片440可设置于支撑件450的其中一侧。支撑件450上对应感光芯片430的区域开设有通孔451,以使环境光线能够顺利射入感光芯片430。此外,当滤光片440设置于支撑件450朝向光学镜头410的一侧时,支撑件450朝向光学镜头410的一侧还可开设有沉孔452,该沉孔452的直径可略大于通孔451的直径,这样,在沉孔452与通孔451之间就可形成一个台阶结构,滤光片440具体可设置在该台阶结构上,以减小滤光片440与支撑件450组装之后的厚度,从而有助于减小摄像模组400在z轴方向的尺寸。
可以理解的,在本申请的其它实施例中,滤光片440也可设置在支撑件450朝向模组电路板420的一侧,这时则可在支撑件450朝向模组电路板420的一侧开设沉孔,以该侧形成用于支撑滤光片440的台阶结构。
图4为图1中所示的电子设备在A-A处的另一种截面结构示意图。一并参考图2和图4,在本申请实施例中,摄像模组400还可以采用潜望式结构设计,这种结构可以减少摄像模组400在手机厚度方向分布的元器件,从而使摄像模组400可应用于采用超薄设计的电子设备1上。
具体实施时,摄像模组400的光学镜头410、模组电路板、感光芯片、滤光片等部件的相对位置关系可参阅上述实施例的设置方式,这里不再赘述。除上述部件以外,摄像模组400还可以包括反射组件490,反射组件490固定于光学镜头410的入光侧。反射组件490用于反射环境光线,以使环境光线传输至光学镜头410内。在本实施例中,反射组件490可以用于将沿z轴方向传播的环境光线反射至沿x轴方向传播的环境光线。在其它实施例中,反射组件490也可以用于将沿z轴方向传播的环境光线反射至沿其它方向传播的环境光线。
反射组件490可包括安装座491和反射件492,反射件492设置于安装座491上。反射件492可以为三棱镜,也可以为反射镜,本实施例的反射件492以三棱镜为例进行描述。反射件492可包括入光面4921、反射面4922以及出光面4923,反射面4922连接于入光 面4921与出光面4923之间。入光面4921与进光孔相对设置,出光面4923与光学镜头410的入光侧相对设置。此时,当环境光线经进光孔121进入电子设备的内部时,环境光线经入光面4921进入反射件492内,并在反射件492的反射面4922处进行反射。此时,沿z轴方向传播的环境光线被反射至沿x轴方向传播。最后,环境光线再经反射件492的出光面4923传出反射件492的外部,并射入光学镜头410内。
可以理解的是,通过设置反射组件490,利用反射组件490将沿z轴方向传播的环境光线反射至沿x轴方向传播。这样,接收沿x轴方向传播的环境光线的摄像模组400的器件可以沿x轴方向排布。由于电子设备在x轴方向的尺寸较大,摄像模组400内的器件在x轴方向的排布更加的灵活、简单。在本实施例中,摄像模组400的光轴方向为x轴方向。在其它实施例中,摄像模组400的光轴方向也可以为y轴方向。
图5为本申请实施例提供的一种模组电路板的结构示意图。参考图5所示,在本申请实施例中,模组电路板420可大致为矩形结构。在将模组电路板420与主机电路板电连接时,摄像模组还可以包括柔性电路板460,柔性电路板460可设置于模组电路板420的一端,并与模组电路板420电连接。柔性电路板460远离模组电路板420的一端可设置有板对板(board to board,BTB)连接器461,相应地,主机电路板上可设置有与该板对板连接器对应的配对连接器,利用板对板连接器461与配对连接器之间的配合插接即可实现柔性电路板460与主机电路板的电连接,进而实现摄像模组与主机电路板的电连接。
在一个具体的实施方案中,模组电路板420与柔性电路板460可以为一体结构的软硬结合板,也即两者可以通过软硬结合板的制作工艺一体化成型。相较于传统的焊接方式,本申请实施例所采用的一体化设计不仅可以简化后续的组装工艺,还可以避免由于焊接工艺复杂以及焊点数量多而造成的可靠性问题。
模组电路板420整体可采用叠层结构设计,其可包括衬底和设置于衬底的子板。子板的数量可以为一层或多层,具体可以根据摄像模组内的走线数量进行设置。示例性地,本实施例中模组电路板420可包括三层子板。
其中,衬底可以采用强度较高的刚性材料进行制作,以对设置于模组电路板420上的各器件在z向起到可靠地支撑作用。示例性地,衬底的材质具体可以为钛铜。衬底厚度可设置在5um~300um之间。示例性地,衬底的厚度具体可以为5um,50um,100um,250um,300um,等等。
各层子板的基材可以采用聚酰亚胺(polyimide,Pi)。各层子板的基材的厚度可设置在15um~25um之间,例如具体可以为15um,20um,25um,等等。需要说明的是,当模组电路板420包括三层子板时,沿远离衬底的方向,第一层子板可用于设置电源线和信号线,第二层子板可用于设置屏蔽层,第三层子板可用于设置信号线。
请继续参考图5所示,在空间结构上,模组电路板420又可划分为固定部421、运动部422和弹性部423。其中,弹性部423可分别与固定部421和运动部422连接,利用其弹性特性使运动部422和固定部421之间形成弹性连接,从而在其发生变形时使运动部422能够相对固定部421运动。具体实施时,前述柔性电路板460可连接于固定部421上。感光芯片430则可以设置在运动部422上,从而当运动部422相对固定部421运动时,感光芯片430也可以产生同步运动,这样就可以改变感光芯片430表面的成像位置。基于该原理,在利用电子设备进行拍摄时,若电子设备发生抖动,通过对电子设备的抖动方向及幅度等参数进行实时检测,并根据检测结果反向调整感光芯片430的位置,补偿由于电子设 备的抖动引起的感光芯片430上成像位置的变化,即可以实现光学防抖的效果。
需要说明的是,在本实施例中,固定部421、运动部422和弹性部423三者在z向可具有相同的叠层结构。这时,固定部421、运动部422和弹性部423可以为一体成型结构,具体实施时,固定部421、运动部422和弹性部423可由整体的电路板通过激光切割形成,从而有助于简化摄像模组的制作及组装工艺。
在一些实施例中,固定部421可大致为框形结构。例如,当模组电路板420为矩形结构时,运动部422可以具体可以为矩形框。这时,固定部421可包括依次连接的第一边框4211、第二边框4212、第三边框4213和第四边框4214,其中,第一边框4211与第三边框4213位置相对,第二边框4212与第四边框4214位置相对。
运动部422可设置于固定部421的内侧,且运动部422与固定部421之间具有一定的间隔。运动部422可包括依次连接的第一侧壁4221、第二侧壁4222、第三侧壁4223和第四侧壁4224,第一侧壁4221、第二侧壁4222、第三侧壁4223和第四侧壁4224可分别与固定部421的第一边框4211、第二边框4212、第三边框4213和第四边框4214同侧设置。
在一些实施方式中,感光芯片430可以设置于运动部422朝向光学镜头的一侧表面。感光芯片430可以通过引线键合(wire bonding,WB)工艺与运动部422电连接。当然,感光芯片430也可以通过芯片封装(chif on board,COB)技术贴装在运动部422上,或者也可以通过焊球阵列封装(ball grid array,BGA)技术或栅格阵列封装(land grid array,LGA)技术封装在运动部上。
参考图6所示,图6为本申请实施例提供的另一种模组电路板的结构示意图。在图6所示的实施方式中,运动部422可以在局部设置安装槽4225,此时,感光芯片430可设置于安装槽4225内。这样,感光芯片430与运动部422在z轴方向上可具有重叠区域,有助于减小摄像模组在z轴方向的尺寸。另外,运动部422背离光学镜头的一侧可固定有补强板,该补强板可设置于安装槽4225处,以对感光芯片430进行支撑,从而使运动部422与感光芯片430实现相对固定,提高摄像模组的结构可靠性。示例性地,补强板可以为钢板。
另外,模组电路板420上还可安装有电子元器件或者其它芯片(例如驱动芯片)。电子元器件或者其它芯片可用于实现辅助感光芯片430采集环境光线,以及辅助感光芯片430对所采集的环境光线进行信号处理等功能。这些电子元器件或芯片既可以设置在固定部421上,也可以设置在运动部422上,本申请对此不作限制。值得一提的是,当电子元器件或芯片设置在运动部上422时,具体可设于感光芯片430的周边。
继续参考图6所示,弹性部423可设置于运动部422与固定部421之间的缝隙内,将运动部422与固定部421连接。另外,基于弹性部423的z向叠层结构设置,弹性部423上同样可在各层子板上设置导电线路,从而将运动部422与固定部421之间电连接。也就是说,弹性部423不仅可以使运动部422与固定部421之间机械连接,还可以在运动部422与固定部421之间实现信号传递的作用。
一并参考图5和图6所示,固定部421的第一边框4211朝向运动部422的一侧可设置有第一凸起4215,第三边框4213朝向运动部422的一侧可设置有第二凸起4216。运动部422的第二侧壁4222具有朝向固定部421设置的第三凸起4226,第四侧壁4224具有朝向固定部421设置的第四凸起4227。这时,弹性部423可包括四组弹性组件,分别为第一弹性组件4231、第二弹性组件4232、第三弹性组件4233和第四弹性组件4234,其中,第一 弹性组件4231分别与第一凸起4215和第三凸起4226连接,第二弹性组件4232分别与第三凸起4226和第二凸起4216连接,第三弹性组件4233分别与第二凸起4216和第四凸起4227连接,第四弹性组件4234分别与第四凸起4227和第一凸起4215连接,从而利用四组弹性组件使运动部422和固定部421之间建立稳定的弹性连接关系。
为了保证运动部422的受力均匀性,进而提高其运动可靠性,在具体实施时,第一凸起4215可大致位于第一边框4211的中心位置,第二凸起4216可大致位于第三边框4213的中心位置,且第一凸起4215与第二凸起4216可相对设置。类似地,第三凸起4226可大致位于第二侧壁4222的中心位置,第四凸起4227可大致位于第四侧壁4224的中心位置,且第三凸起4226与第四凸起4227可相对设置。
图7为图6中所示的模组电路板在A处的局部放大图。一并参考图6和图7所示,在一些实施方式中,各组弹性组件可分别为角形结构,以与固定部421和运动部422之间的间隙能够更好地契合。每组弹性组件可包括一个或多个弹性臂4235,弹性臂4235也可以为相对应的角形结构。另外,为了降低加工难度,以及提高弹性臂4235的结构强度,在具体实施时,还可将弹性臂4235的角部设计为倒角结构。各个弹性臂4235可分别平行设置,且相邻的弹性臂4235之间相间隔,各个弹性臂4235的两端分别与固定部421及运动部422上相应的两个凸起连接,以在保证固定部421与运动部422可靠连接的前提下,提高弹性组件整体的弹性性能。各个弹性臂4235上可分别设置导电线路,从而在固定部421与运动部422之间建立电性连接关系。每组弹性组件中弹性臂4235的数量不限,例如可以为五个、六个、七个或者更多个,在实际应用中可以根据摄像模组中的信号传输数量进行设置,具体此处不在进行赘述。
另外,各个弹性组件还可以分别包括连接件4236,连接件4236可设置在弹性组件的两端之间,例如可以设置在弹性组件的角部位置,连接件4236可分别与各个弹性臂4235固定连接,从而使各个弹性臂4235之间实现相对固定,保证弹性组件的结构稳定性。示例性地,每个弹性组件可包括两个连接件4236,两个连接件4236在弹性臂4235的延伸方向相间隔,例如可分别设置在各个弹性臂4235的倒角两侧,以进一步提高弹性组件的结构稳定性。
参考图8所示,图8为图7中所示的弹性臂的截面结构示意图。如前所述,沿z轴方向,模组电路板的固定部、运动部、弹性部可具有相同的叠层结构,因此每个弹性臂4235也同样包括衬底42351和设置在衬底42351上的三层子板。具体实施时,弹性臂4235的衬底42351的宽度可设置在30um~200um之间。示例性地,衬底42351的宽度可具体可以为30um,50um,100um,200um,等等。
弹性臂4235的各层子板的宽度可设置在5um~200um之间,例如具体可以为5um,70um,100um,200um,等等。另外,在弹性臂4235的第一层子板42352中,电源线(或信号线)423521的厚度可设置为5um~50um之间,宽度可设置为5um~200um之间。示例性地,电源线423521的厚度具体可以为5um,30um,50um,等等,宽度具体可以为5um,70um,100um,200um,等等。第二层子板42353中,屏蔽层423531的厚度可设置为5um~50um之间,宽度可设置为5um~200um之间,示例性地,屏蔽层423531的厚度具体可以为5um,30um,50um,等等,宽度具体可以为5um,70um,100um,200um,等等。第三层子板42354中,信号线423541的厚度可设置为5um~50um之间,宽度也可设置为5um~200um之间。示例性地,信号线423541的厚度具体可以为5um,30um,50um,等等,宽度具体 可以为5um,70um,100um,200um,等等。
通过此种叠层结构设置,可以使弹性臂4235在z向具有相对较大的弹性系数,这样一方面可以对运动部及设置于运动部之上的感光芯片进行可靠支撑,另一方面可以保证弹性臂4235具有较好的弹性恢复能力,从而在导致弹性臂4235变形的外力消失后,弹性臂4235能够相对较快地恢复初始状态,有效克服运动部的姿势差问题。通过仿真验证,运动部的姿势差可控制在5um以内。另外,采用上述的叠层结构时,还可以使弹性臂4235在x向和y向的弹性系数能够满足驱动组件正常工作次数在20万次以上。
图9为本申请实施例提供的另一种模组电路板的结构示意图。参考图9所示,在本申请实施例中,摄像模组还可以包括驱动组件424,该驱动组件424可用于驱动运动部422相对固定部421移动或转动,从而带动设置于运动部422上的感光芯片430同步运动,进而调整感光芯片430表面的成像位置,实现光学防抖的目的。具体实施时,驱动组件424可包括定卡爪、动卡爪以及长度可伸缩的丝材,其中,定卡爪与固定部421固定连接,动卡爪与运动部422固定连接,丝材的两端分别与定卡爪和动卡爪固定连接,这样通过控制丝材的伸缩状态就可以调整动卡爪的受力状态,使得动卡爪在外力作用下产生相应的运动,进而带动运动部422同步运动。
在一些实施例中,定卡爪数量可以为两个,定义该两个定卡爪分别为第一定卡爪4241和第二定卡爪4242。具体实施时,第一定卡爪4241和第二定卡爪4242可分别设置于固定部421朝向光学镜头的一侧,且两者可呈对角设置。示例性地,第一定卡爪4241可近似位于第一边框与第二边框形成的角部位置,第二定卡爪4242可近似位于第三边框与第四边框形成的角部位置。
类似地,动卡爪的数量也可以为两个,分别为第一动卡爪4243和第二动卡爪4244。第一动卡爪4243和第二动卡爪4244同样可位于模组电路板420朝向光学镜头的一侧,且两者也可呈对角设置。具体设置时,两个动卡爪可分别为条形结构。第一动卡爪4243的第一端42431在模组电路板420上的正投影可落在固定部421内,并可近似位于第一边框与第四边框的形成的角部位置,第一动卡爪4243的第二端42432可延伸至运动部422上方并与运动部422固定连接。第二动卡爪4244的第一端42441在模组电路板420上的正投影也可落在固定部421内,并可近似位于第二边框与第三边框形成的角部位置,第二动卡爪4244的第二端42442可延伸至运动部422上方并与运动部422固定连接。
在将上述两个定卡爪和两个动卡爪连接时,可相应地设置四根丝材,该四根丝材可分别为第一丝材4245、第二丝材4246、第三丝材4247和第四丝材4248。具体设置时,第一丝材4245的两端分别与第一定卡爪4241和第一动卡爪4243的第一端42431固定连接,第二丝材4246的两端分别与第一定卡爪4241和第二动卡爪4244的第一端42441固定连接,第三丝材4247的两端分别与第二动卡爪4244的第一端42441和第二定卡爪4242固定连接,第四丝材4248分别与第二定卡爪4242和第一动卡爪4243的第一端42431固定连接。这时,第一丝材4245、第二丝材4246、第三丝材4247及第四丝材4248可通过两个动卡爪和两个定卡爪依次连接形成为一个环形结构。
在本实施例中,第一丝材4245与第三丝材4247可平行设置,第二丝材4246与第四丝材4248可平行设置。示例性地。第一丝材4245与第三丝材4247可分别沿x方向设置,第二丝材4246与第四丝材4248可分别沿y方向设置。另外,为了提高各丝材与定卡爪和动卡爪之间的连接可靠性,定卡爪和动卡爪(或各个爪部)还可分别设置有固定夹42443, 各丝材的两端可分别固定于对应的定卡爪和动卡爪的固定夹42443内。
值得一提的是,定卡爪和动卡爪均可采用金属材料制备,示例性地,在进行制备时,可选用整片的金属料带通过切割或刻蚀分别形成两个定卡爪和两个动卡爪,且在切割或刻蚀的过程中可保留将两个定卡爪和两个动卡爪连接的部分料带,例如位于四个卡爪外周的料带,以及将位于四个卡爪内侧并将四个卡爪交叉连接的料带。其中,位于卡爪四周的料带可将四个卡爪分别向外侧拉伸,位于卡爪内侧的料带可将四个卡爪向内侧拉伸,从而将四个卡爪进行定位,且有利于保证整体结构的平面度。之后可通过挂线设备将四根丝材分别固定在相邻的定卡爪与动卡爪之间,并通过焊接将两个定卡爪和两个动卡爪固定在模组电路板上。再之后可将多余的连接料带去除,即可得到完整的驱动组件。
请继续参考图9,在本实施例中,固定部上可以设置有第一开孔4217,第一开孔4217可靠近第一定卡爪4241设置,例如具体可位于第一定卡爪4241背向运动部422的一侧。第一丝材4245与第一定卡爪4241连接的一端的延长线在模组电路板420上的投影可至少部分位于该第一开孔4217内,这样,在利用切割设备对第一丝材4245的端部进行切割以调整第一丝材4245的长度时,第一开孔4217可以对切割设备进行避让,从而避免切割设备对模组电路板420造成损伤,保证切割操作的可实施性。另外,第二丝材4246与第一定卡爪4241连接的一端的延长线在模组电路板420上的投影也可至少部分位于该第一开孔4217内,从而也便于切割设备对第二丝材4246的长度进行调整。
类似地,固定部上还可设置有第二开孔(图中未示出)、第三开孔4218和第四开孔(图中未示出)。其中,第二开孔可靠近第二定卡爪4242设置,例如具体可位于第二定卡爪4242背向运动部422的一侧。第三丝材4247与第二定卡爪4242连接的一端的延长线在模组电路板420上的投影可至少部分位于该第二开孔内,以及,第四丝材4248与第二定卡爪4242连接的一端的延长线在模组电路板420上的投影也可至少部分位于该第二开孔内,从而利用该第二开孔对切割设备进行避让,便于切割设备对第三丝材4247和第四丝材4248的长度进行调整。
第三开孔4218可靠近第一动卡爪4243设置,例如具体可位于第一动卡爪4243背向运动部422的一侧。第一丝材4245与第一动卡爪4243连接的一端的延长线在模组电路板420上的投影可至少部分位于该第三开孔4218内,第四丝材4248与第一动卡爪4243连接的一端的延长线在模组电路板420上的投影也可至少部分位于该第三开孔4218内,从而利用该第三开孔4218对切割设备进行避让,便于切割设备对第一丝材4245和第四丝材4248的长度进行调整。
第四开孔可靠近第二动卡爪4244设置,例如具体可位于第二动卡爪4244背向运动部422的一侧。第二丝材4246与第二动卡爪4244连接的一端的延长线在模组电路板420上的投影可至少部分位于该第四开孔内,第三丝材4247与第二动卡爪4244连接的一端的延长线在模组电路板420上的投影也可至少部分位于该第四开孔内,从而利用该第四开孔对切割设备进行避让,便于切割设备对第二丝材4246和第三丝材4247的长度进行调整。
在一些实施方式中,为了降低丝材可伸缩性能的实现难度,上述四根丝材可分别由形状记忆合金(shape memory alloys,SMA)制备形成。形状记忆合金是一类具有形状记忆效应的金属的总称,其形状记忆效应具体为:形状记忆合金在记忆温度以下时,可表现为一种结构形态,在记忆温度以上时,其内部的晶体结构会发生变化,促使形状记忆合金发生形变,此时形状记忆合金可表现为一种结构形态。具体应用到本申请实施例中,丝材在 其记忆温度以下时表现为相对松弛状态,在其记忆温度以上时长度缩短,表现为收缩变形状态。此外,应当理解的是,丝材在相对松弛状态下,在受到一定的外力作用时,也可以被拉伸变形,使丝材的长度增长,因此本申请实施例中的丝材还可具有拉伸变形状态。
为了便于控制丝材的温度,可以将各丝材连接于模组电路板420的电源回路中。例如,当模组电路板420的第一层子板用于设置电源线时,可以在固定部421和运动部422上设置过孔,通过过孔将各个定卡爪和动卡爪与第一层子板的电源线电连接,进而将各丝材电连接在电源回路中,这样,通过向丝材通电即可对其加热,从而使其发生收缩变形。
需要说明的是,本实施例中,第一定卡爪4241还可包括第一爪部42411和第二爪部42412,其中,第一爪部42411可用于与第一丝材4245连接,第二爪部42412可用于与第二丝材4246连接。第一爪部42411与第二爪部42412相互绝缘,且第一爪部42411和第二爪部42412可分别通过对应的过孔与电源线连接。类似地,第二定卡爪4242还可包括第三爪部42421和第四爪部42422,其中,第三爪部42421可用于第三丝材4247连接,第四爪部42422可用于与第四丝材4248连接。第三爪部42421与第四爪部42422相互绝缘,且第三爪部42421和第四爪部42422也可分别通过对应的过孔与电源线连接。
这时,第一动卡爪4243和第二动卡爪4244可分别与电源线正极端连接,第一定卡爪4241的两个爪部与第二定卡爪4242的两个爪部可分别与电源线的负极端连接。也就是说,第一丝材4245和第四丝材4248可以通过第一动卡爪4243共用正极,第二丝材4246和第三丝材4247可以通过第二动卡爪4244共用正极,而四根丝材又分别通过各个爪部连接至不同的负极端,这样就可以将四根丝材连接至不同的电源回路中,从而实现对各根丝材的通电状态的单独控制。
在其它一些实施方式中,也可以将两个定卡爪与电源线的正极端连接,两个动卡爪则可分别拆分成绝缘的两个部分来与电源线的负极端连接。具体实施时,第一动卡爪可包括第五爪部和第六爪部,其中,第五爪部可用于与第一丝材连接,第六爪部可用于与第四丝材连接。第五爪部和第六爪部相互绝缘,且第五爪部和第六爪部可分别通过对应的过孔与电源线不同的负极端连接。类似地,第二动卡爪可包括第七爪部和第八爪部,第七爪部可用于与第二丝材连接,第八爪部可用于与第三丝材连接。第七爪部和第八爪部相互绝缘,且第七爪部和第八爪部可分别通过对应的过孔与电源线不同的负极端连接。这时,第一丝材和第二丝材可通过第一定卡爪共用正极,第三丝材和第四丝材可通过第二定卡爪共用正极,而四根丝材又分别通过各个爪部连接至不同的负极端,因此可以使四根丝材连接至不同的电源回路中,实现对各根丝材的通电状态的单独控制。
当然,在另外一些实施方式中,两个定卡爪和两个动卡爪也可以均设计为相互绝缘的两个爪部,这时,每根丝材的两端连接的两个爪部分别与电源线的正极端和负极端连接,这样也可以实现对各根丝材的通电状态的单独控制,具体此处不再进行赘述。
如前所述,驱动组件424可通过四根丝材来驱动运动部422运动,进而驱动设置于运动部422上的感光芯片430运动,以实现光学防抖功能,下面具体说明该驱动组件424的驱动原理。
当向第一丝材4245通电时,第一丝材4245收缩变形,对第一动卡爪4243产生x轴负方向的拉力作用,该拉力可由第一动卡爪4243的第二端42432传递至运动部422,从而带动运动部422向x轴负方向移动;
当向第三丝材4247通电时,第三丝材4247收缩变形,对第二动卡爪4244产生x轴 正方向的拉力作用,该拉力可由第二动卡爪4244的第二端42442传递至运动部422,从而带动运动部422向x轴正方向移动。
在上述两种工作模式下,驱动组件424可分别驱动感光芯片430沿x轴正负方向移动,从而可在x轴方向调整感光芯片430表面的成像位置,实现x轴方向的光学防抖。
当向第二丝材4246通电时,第二丝材4246收缩变形,对第二动卡爪4244产生y轴负方向的拉力作用,该拉力可由第二动卡爪4244的第二端42442传递至运动部422,从而带动运动部422向y轴负方向移动;
当向第四丝材4248通电时,第四丝材4248收缩变形,对第一动卡爪4243产生y轴正方向的拉力作用,该拉力可由第一动卡爪4243的第二端42432传递至运动部422,从而带动运动部422向y轴正方向移动。
在上述两种工作模式下,驱动组件424可分别驱动感光芯片430沿y轴正负方向移动,从而可在y轴方向调整感光芯片430表面的成像位置,实现y轴方向的光学防抖。
当分别向第一丝材4245和第四丝材4248通电时,第一丝材4245和第四丝材4248收缩变形,对第一动卡爪4243产生的拉力合力方向为由模组电路板420的右下角指向其左上角的对角线方向,该拉力可由第一动卡爪4243传递至运动部422,从而带动运动部422向右下角指向其左上角的方向移动;
当分别向第二丝材4246和第三丝材4247通电时,第二丝材4246和第三丝材4247收缩变形,对第二动卡爪4244产生的拉力合力方向为由模组电路板420的左上角指向其右下角的对角线方向,该拉力可由第二动卡爪4244传递至运动部422,从而带动运动部422向左上角指向右下角的方向移动。需要说明的是,本申请实施例的模组电路板420所采用的“上”“下”“左”“右”等方位用词主要依据模组电路板420于附图8中的展示方位进行阐述,并不形成对模组电路板420于实际应用场景中的方位的限定。
在上述两种工作模式下,驱动组件424可分别驱动感光芯片430沿模组电路板420的一个对角线的正反两个方向移动,从而可在该对角线方向调整感光芯片430表面的成像位置,实现该方向的光学防抖。
当分别向第一丝材4245和第二丝材4246通电时,第一丝材4245和第二丝材4246收缩变形,第一丝材4245对第一动卡爪4243产生x轴负方向的拉力作用,第二丝材4246对第二动卡爪4244产生y轴负方向的拉力作用,第一动卡爪4243和第二动卡爪4244所受到的拉力可分别由其各自的第二端传递至运动部422,并对运动部422形成由模组电路板420的右上角指向其左下角的对角线方向的合力,从而带动运动部422由右上角指向左下角的方向移动;
当分别向第三丝材4247和第四丝材4248通电时,第三丝材4247和第四丝材4248收缩变形,第三丝材4247对第二动卡爪4244产生x轴正方向的拉力作用,第四丝材4248对第一动卡爪4243产生y轴正方向的拉力作用,第一动卡爪4243和第二动卡爪4244所受到的拉力可分别由其各自的第二端传递至运动部422,并对运动部422形成由模组电路板420的左下角指向其右上角的对角线方向的合力,从而带动运动部422由左下角指向右上角的方向移动。
在上述两种工作模式下,驱动组件424可分别驱动感光芯片430沿模组电路板420的另一个对角线的正反两个方向移动,从而可在该对角线方向调整感光芯片430表面的成像位置,实现该方向的光学防抖。
当分别向第一丝材4245和第三丝材4247通电时,第一丝材4245和第三丝材4247收缩变形,第一丝材4245对第一动卡爪4243产生x轴负方向的拉力作用,第三丝材4247对第二动卡爪4244产生x轴正方向的拉力作用,第一动卡爪4243和第二动卡爪4244所受到的拉力可分别由其各自的第二端传递至运动部422,两者的合力可对运动部422形成顺时针方向的力矩作用,从而带动运动部422顺时针转动;
当分别向第二丝材4246和第四丝材4248通电时,第二丝材4246和第四丝材4248收缩变形,第二丝材4246对第二动卡爪4244产生y轴负方向的拉力作用,第四丝材4248对第一动卡爪4243产生y轴正方向的拉力作用,第一动卡爪4243和第二动卡爪4244所受到的拉力可分别由其各自的第二端传递至运动部422,两者的合力可对运动部422形成逆时针方向的力矩作用,从而带动运动部422逆时针转动。
在上述两种工作模式下,驱动组件424可分别驱动感光芯片430顺时针或逆时针转动,从而调整感光芯片430表面的成像位置,通过转动的运动形式实现xy平面内的光学防抖。
综合以上分析可以看出,通过向驱动组件424的相应的丝材通电,可分别使运动部422实现x轴方向平移、y轴方向平移、两条对角线方向平移、以及xy平面内的转动等多种运动形式,进而实现摄像模组的光学防抖功能。这种驱动方式不仅可以提供较大的驱动力,使摄像模组能够实现较大的防抖角度,并且驱动组件对安装空间的需求相对较小,经设计验证,本实施例中的驱动组件的z向高度仅为0.85mm左右,相较于传统的音圈马达,驱动组件的高度可降低0.3mm以上。
参考图10所示,图10为本申请实施例提供的另一种模组电路板的结构示意图。在本实施例中,摄像模组还可以包括遮挡结构425,该遮挡结构425可与前述定卡爪和动卡爪设置于模组电路板420的同一侧,例如在图9所示的实施例中,定卡爪和动卡爪均位于模组电路板420朝向光学镜头的一侧,连接于各个动卡爪和定卡爪之间的四根丝材也位于模组电路板420朝向光学镜头的一侧,这时遮挡结构425也位于该侧。
在一些实施方式中,遮挡结构425可以固定于固定部421上。遮挡结构425呈环形设置,且在具体实施时,遮挡结构425可位于四根丝材所形成的环形结构的内侧。这样,遮挡结构425就可以对各根丝材进行遮挡,避免丝材嵌入到固定部421与运动部422之间的缝隙内造成夹线问题,从而可以提高驱动组件的工作可靠性。示例性地,遮挡结构425具体可以为麦拉片。
需要说明的是,遮挡结构425对应第一动卡爪4243的位置可设置有第一拱起部4251,第一动卡爪4243的第二端可穿过第一拱起部4251与固定部421之间的间隙延伸到运动部422上方,实现与运动部422的连接。类似地,遮挡结构425对应第二动卡爪4244的位置可设置有第二拱起部4252,第二动卡爪4244的第二端可穿过第二拱起部4252与固定部421之间的间隙延伸到运动部422上方,实现与运动部422的连接。应当理解的是,第一动卡爪4243与第一拱起部4251之间可具有一定的间隙,以保证第一动卡爪4243在z向的运动空间。同理,第二动卡爪4244与第二拱起部4252之间也可具有一定的间隙,以保证第二动卡爪4244在z向的运动空间。
图11为本申请实施例提供的另一种模组电路板的结构示意图,图12为图11中所示的模组电路板在B-B处的截面结构示意图。一并参考图11和图12所示,遮挡结构425的内侧还可以延伸至运动部422的上方,也就是说,遮挡结构425的内侧与运动部422之间可部分重叠,例如遮挡结构425可与运动部422的第三凸起4226和第四凸起4227部分重叠。 遮挡结构425与运动部422之间相间隔,示例性地,遮挡结构425与运动部422之间可具有第一间隙。这时,摄像模组还可以包括第一支撑柱426,第一支撑柱426可沿z向设置在遮挡结构425与运动部422之间,第一支撑柱426的一端与遮挡结构425固定连接,另一端与运动部422接触设置。
图13为图11中所示的模组电路板的简化结构示意图。一并参考图11至图13所示,具体设计时,第一支撑柱426的高度可大于第一间隙。这样,基于第一支撑柱426的支撑作用,运动部422在z向的高度会小于固定部421在z向的高度,因此运动部422与固定部421之间会产生一个垂直段差z1,也就是说,弹性部423在z向的变形为z1,此时弹性部423会施加给运动部422一个向上的预压力F1,该预压力F1的大小为F1=Kz*z1,其中,Kz为弹性部423在z向的弹性系数。利用该预压力F1,可以使运动部422与第一支撑柱426的端部能够始终紧贴,从而可以减小运动部422出现z向移位的风险,克服运动部的姿势差问题。
第一支撑柱426的数量可以为多个,例如三个,四个,五个或者更多个。除图11中所示出的第三凸起4226和第四凸起4227处所设置的两个第一支撑柱426外,运动部的其它位置也可设置该第一支撑柱。一并参考图14所示,图14为图11中所示的模组电路板在C-C处的截面结构示意图。该实施例中,遮挡结构425的内侧还可包括第一延伸部4253和第二延伸部4254,其中,第一延伸部4253可延伸至运动部422的第一侧壁和第三侧壁所形成的角部的上方,第二延伸部4254可延伸至运动部的第三侧壁和第四侧壁所形成的角部的上方。具体实施时,第一延伸部4253与运动部422之间、第二延伸部4254与运动部422之间也可以分别设置第一支撑柱426。这时,遮挡结构425与运动部422之间可设置上述四个第一支撑柱426,从而在运动部422的周侧形成稳定的支撑,提高运动部422的受力均匀性。
在其它一些实施方式中,第一支撑柱426还可以设置在前述用于支撑滤光片的支撑件与运动部422之间,这时,第一支撑柱426的一端可与支撑件固定连接,另一端与运动部422接触设置,如此也可使弹性部对运动部422进行预压作用,克服运动部422的姿势差问题。
一并参考图15和图16所示,图15为本申请实施例提供的另一种模组电路板的结构示意图,图16为图15中所示的模组电路板在D-D处的截面结构示意图。为了提高模组电路板420的结构可靠性,摄像模组还可以包括承载基板470,承载基板470可设置于模组电路板420背离光学镜头的一侧,从而实现对模组电路板420的支撑及补强作用。具体设置时,承载基板470对应模组电路板420的运动部422和弹性部423所在的区域可设置有凹槽471,以使运动部422和弹性部423与凹槽471的底壁具有一定的间隔,避免由于直接接触对运动部422造成摩擦阻碍,影响运动部422的运动可靠性。
在一些实施例中,摄像模组还可以包括第二支撑柱427,第二支撑柱427可设置于凹槽471的底壁与运动部422之间,第二支撑柱427的一端与凹槽471的底壁固定连接,另一端与运动部422接触设置。
图17为图15中所示的模组电路板的简化结构示意图。一并参考图15至图17所示,与第一支撑柱类似,具体设计时,第二支撑柱427的高度可大于凹槽471的底壁与运动部422之间的间隔,这样,基于第二支撑柱427的支撑作用,运动部422在z向的高度会大于固定部421在z向的高度,因此运动部422与固定部421之间会产生一个垂直段差z2, 也就是说,弹性部423在z向的变形为z2,此时弹性部423会施加给运动部422一个向下的预压力F2,该预压力F2的大小为F2=Kz*z2。利用该预压力F2,可以使运动部422与第二支撑柱427的端部能够始终紧贴,从而可以减小运动部422出现z向移位的风险,克服运动部的姿势差问题。第二支撑柱的数量也可以为多个,例如三个、四个、五个或者更多个。多个支撑柱可以均匀设置在凹槽471的底壁与运动部422之间,以提高运动部422的受力均匀性。
应当说明的是,本实施例中第二支撑柱427为从运动部422的下方对运动部422进行支撑,而前述第一支撑柱为从运动部422的上方对运动部422进行支撑,两种方案下弹性部对运动部实现的预压力方向相反。在实际应用中,可根据摄像模组的具体设计选取上述两种预压方案中的任一种进行实施,本申请对此不做限制。
另外,值得一提的是,在采用第一支撑柱使弹性部423对运动部422向上预压的方案中,当运动部422受到较大冲击而产生向下的移位时,凹槽471的底壁可以对运动部422进行限位,避免由于运动部422垂直位移过大而对弹性部423造成损坏,提高弹性部423的可靠性。相反,在采用第二支撑柱427使弹性部423对运动部422向下预压的方案中,当运动部422受到较大冲击而产生向上的移位时,遮挡结构425的第一延伸部4253和第二延伸部4254也可以对运动部422进行限位,从而提高弹性部423的可靠性。
在一些实施方式中,运动部422背离光学镜头的一侧还可通过阻尼胶与承载基板470连接,也即与凹槽471的底壁连接,这样,当运动部422发生移动或转动时,阻尼胶会随着运动部422的运动而发生形变,从而提供使运动部422快速稳定的阻尼力,保障运动部422的运动平稳性。在具体设置时,可以在运动部422背离光学镜头的一侧的多个位置均匀涂布阻尼胶,以提高运动部422的受力均匀性,进而可以进一步提高运动部的运动平稳性。示例性地,阻尼胶可选用硅胶、橡胶等阻尼性较佳的粘胶,通过点胶、喷胶等方式形成于凹槽471与运动部422内。
当然,在另外一些实施方式中,也可以将弹性部423与凹槽471的底壁之间通过阻尼胶连接,这时阻尼胶的阻尼力可施加于弹性部423,并通过弹性部423传递给运动部422,如此也可对运动部422的平稳运动提供保障。示例性地,弹性部423的各个弹性组件均可通过阻尼胶与凹槽471的底壁连接,以提高运动部422的受力均匀性。
或者,在其它的一些实施方式中,还可以在第一动卡爪4243的第一端与固定部421之间、以及第二动卡爪4244的第一端与固定部421之间分别设置阻尼胶,从而将两个动卡爪与固定部421通过阻尼胶进行连接,这时阻尼胶的阻尼力可通过第一动卡爪4243和第二动卡爪4244传递给运动部422,使运动部422能够平稳运动。
又或者,在其它的一些实施方式中,还可以在第一动卡爪4243与第一拱起部4251之间、以及第二动卡爪4244与第二拱起部4252之间分别设置阻尼胶,从而将两个动卡爪与遮挡结构425通过阻尼胶连接,与前述方案类似,此时阻尼胶的阻尼力也可通过第一动卡爪4243和第二动卡爪4244传递给运动部422,使运动部422能够平稳运动。
应当理解的是,上述几种阻尼胶的设置方式既可以全部应用到摄像模组的设计中,也可以选择性地应用其中部分设置方式,具体可根据模组电路板相关结构的布局以及体积、重量等进行设置,本申请对此不做限制。
参考图18所示,图18为本申请实施例提供的另一种模组电路板的结构示意图。区别上述实施例中将感光芯片430直接设置在模组电路板420上的方式,在本实施例中,摄像 模组还可以包括芯片承载基板480,感光芯片430可预先安装于芯片承载基板480,然后将再将安装有感光芯片430的芯片承载基板480焊接固定在模组电路板420上。
示例性地,感光芯片430可以通过引线键合工艺与芯片承载基板480电连接。当然,感光芯片430也可以通过芯片封装技术贴装在芯片承载基板480上,或者也可以通过过焊球阵列封装技术或栅格阵列封装技术封装在芯片承载基板480上。
图19为图18中所示的模组电路板在E-E处的截面结构示意图。一并参考图18和图19所示,芯片承载基板480上可在局部设置芯片安装槽481,感光芯片可设置于芯片安装槽481内。这样,感光芯片430与芯片承载基板480在z轴方向上可具有重叠区域,有助于减小摄像模组在z轴方向的尺寸。另外,芯片承载基板480背离光学镜头的一侧可固定有补强板482,该补强板482可设置于芯片安装槽481处,以对感光芯片430进行支撑,从而使芯片承载基板480与感光芯片430实现相对固定,提高摄像模组的结构可靠性。示例性地,补强板482可以为钢板。
本实施例中,芯片承载基板480具体可设置在模组电路板420的运动部422上,运动部422上对应上述补强板482的区域可设置避让槽4228,这样在将芯片承载基板480与模组电路板420组装之后,补强板482可容置于该避让槽4228内,从而有助于进一步减小摄像模组在z轴方向的尺寸。
此外,由于芯片承载基板480覆盖在运动部422之上,为了实现运动部422与驱动组件之间的连接,在设置驱动组件时,具体可将第一动卡爪4243的第二端42432和第二动卡爪4244的第二端42442分别固定在芯片承载基板480上,基于芯片承载基板480与运动部422的固定连接关系,芯片承载基板480与运动部422可作为一个整体被驱动组件所驱动,从而实现对感光芯片430的位置的调整。
综上所述,本申请实施例所提供的摄像模组,摄像模组的驱动组件利用丝材的长度变化驱动运动部运动,进而带动感光芯片运动而实现防抖功能,相较于传统的音圈马达的方案,在保证摄像模组能够实现大角度防抖的前提下,可以有效减小摄像模组的z向堆叠高度,从而可以减小摄像模组在电子设备内部的占用空间。另外,由于驱动组件内不存在磁石等磁性器件,因此可以避免对电子设备内部的其它器件造成磁干扰,提高电子设备的使用可靠性。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (27)

  1. 一种摄像模组,其特征在于,包括光学镜头、模组电路板、感光芯片以及驱动组件,其中:
    所述模组电路板设置于所述光学镜头的出光侧,包括固定部、运动部和弹性部,所述运动部通过所述弹性部与所述固定部弹性连接;
    所述感光芯片设置于所述运动部朝向所述光学镜头的一侧;
    所述驱动组件包括定卡爪、动卡爪和丝材,所述定卡爪与所述固定部固定连接,所述动卡爪与所述运动部固定连接,所述丝材连接于所述定卡爪与所述动卡爪之间,且所述丝材的长度可伸缩,所述驱动组件用于在所述丝材的长度伸缩时驱动所述运动部相对所述固定部运动。
  2. 如权利要求1所述的摄像模组,其特征在于,所述弹性部具有导电性。
  3. 如权利要求1或2所述的摄像模组,其特征在于,所述固定部、所述运动部和所述弹性部具有相同的叠层结构。
  4. 如权利要求3所述的摄像模组,其特征在于,所述固定部、所述运动部和所述弹性部为一体切割成型结构。
  5. 如权利要求1~4任一项所述的摄像模组,其特征在于,所述摄像模组还包括柔性电路板,所述柔性电路板上设置有连接器,所述柔性电路板与所述模组电路板为一体结构的软硬结合板。
  6. 如权利要求1~5任一项所述的摄像模组,其特征在于,所述固定部为框形结构,所述运动部设置于所述固定部的内侧,所述弹性部设置于所述固定部与所述运动部之间的间隙内,且所述弹性部围绕所述运动部呈环形设置。
  7. 如权利要求6所述的摄像模组,其特征在于,所述固定部具有朝向所述运动部设置的第一凸起和第二凸起,所述运动部具有朝向所述固定部设置的第三凸起和第四凸起,沿所述运动部的周侧方向,所述第一凸起、所述第三凸起、所述第二凸起和所述第四凸起依次排布;
    所述弹性部包括四组弹性组件,四组所述弹性组件分别连接于所述第一凸起与所述第三凸起之间、所述第三凸起与所述第二凸起之间、所述第二凸起与所述第四凸起之间、所述第四凸起与所述第一凸起之间。
  8. 如权利要求7所述的摄像模组,其特征在于,所述弹性组件包括至少一个弹性臂,至少一个所述弹性臂平行且间隔设置。
  9. 如权利要求8所述的摄像模组,其特征在于,所述弹性臂包括衬底和设置于所述衬底上的至少一层子板,所述衬底为刚性材料,所述子板设置有导电线路。
  10. 如权利要求6~9任一项所述的摄像模组,其特征在于,所述定卡爪和所述动卡爪的数量分别为两个,分别为第一定卡爪、第二定卡爪以及第一动卡爪和第二动卡爪;沿所述运动部的周侧方向,所述第一定卡爪、所述第一动卡爪、所述第二定卡爪和所述第二动卡爪依次排布;
    所述丝材的数量为四根,分别为第一丝材、第二丝材、第三丝材和第四丝材,所述第一丝材的两端分别与所述第一定卡爪和第一动卡爪连接,所述第二丝材的两端分别与所述第一定卡爪和第二动卡爪连接,所述第三丝材的两端分别与所述第二定卡爪和第二动卡爪 连接,所述第四丝材的两端分别与所述第二定卡爪和第一动卡爪连接。
  11. 如权利要求10所述的摄像模组,其特征在于,所述第一定卡爪包括第一爪部和第二爪部,所述第一爪部与所述第二爪部绝缘设置,所述第一爪部用于与所述第一丝材连接,所述第二爪部用于与所述第二丝材连接;
    所述第二定卡爪包括第三爪部和第四爪部,所述第三爪部与所述第四爪部绝缘设置,所述第三爪部用于与所述第三丝材连接,所述第四爪部用于与所述第四丝材连接。
  12. 如权利要求10或11所述的摄像模组,其特征在于,所述第一动卡爪包括第五爪部和第六爪部,所述第五爪部与所述第六爪部绝缘设置,所述第五爪部用于与所述第一丝材连接,所述第六爪部用于与所述第四丝材连接;
    所述第二动卡爪包括第七爪部和第八爪部,所述第七爪部与第八爪部绝缘设置,所述第七爪部用于与所述第二丝材连接,所述第八爪部用于与所述第三丝材连接。
  13. 如权利要求10~12任一项所述的摄像模组,其特征在于,所述第一动卡爪和第二动卡爪分别为条形结构,所述第一动卡爪的第一端在所述模组电路板上的正投影落在所述固定部内,所述第一动卡爪的第一端用于与第一丝材和所述第四丝材连接,所述第一动卡爪的第二端与所述运动部固定连接;
    所述第二动卡爪的第一端在所述模组电路板上的正投影落在所述固定部内,所述第二动卡爪的第一端用于与所述第二丝材和所述第三丝材连接,所述第二动卡爪的第二端与所述运动部固定连接。
  14. 如权利要求13所述的摄像模组,其特征在于,所述固定部设置有第一开孔、第二开孔、第三开孔和第四开孔;
    所述第一开孔靠近所述第一定卡爪设置,所述第一丝材和所述第二丝材与所述第一定卡爪连接的一端的延长线在所述模组电路板上的正投影至少部分落在所述第一开孔内;
    所述第二开孔靠近所述第二定卡爪设置,所述第三丝材和所述第四丝材与所述第二定卡爪连接的一端的延长线在所述模组电路板上的正投影至少部分落在所述第二开孔内;
    所述第三开孔靠近所述第一动卡爪设置,所述第一丝材和所述第四丝材与所述第一动卡爪连接的一端的延长线在所述模组电路板上的正投影至少部分落在所述第三开孔内;
    所述第四开孔靠近所述第二动卡爪设置,所述第二丝材和所述第三丝材与所述第二动卡爪连接的一端的延长线在所述模组电路板上的正投影至少部分落在所述第四开孔内。
  15. 如权利要求13或14所述的摄像模组,其特征在于,所述第一动卡爪的第一端与所述固定部通过阻尼胶连接,所述第二动卡爪的第一端与所述固定部通过阻尼胶连接。
  16. 如权利要求10~15任一项所述的摄像模组,其特征在于,所述第一丝材和所述第三丝材分别沿第一方向延伸,所述第二丝材和所述第四丝材分别沿第二方向延伸,所述第一方向与所述第二方向呈夹角设置。
  17. 如权利要求10~16任一项所述的摄像模组,其特征在于,所述固定部上设置有环形的遮挡结构,所述遮挡结构与所述丝材位于所述固定部的同一侧,且所述遮挡结构位于四根所述丝材围成的环形区域的内侧。
  18. 如权利要求17所述的摄像模组,其特征在于,所述遮挡结构的内侧与所述运动部部分重叠,且沿所述模组电路板的厚度方向,所述遮挡结构与所述运动部之间具有第一间隙;
    所述摄像模组还包括设置于所述遮挡结构与所述运动部之间的第一支撑柱,所述第一 支撑柱的一端与所述遮挡结构固定连接,另一端与所述运动部接触设置,所述第一支撑柱的高度大于所述第一间隙。
  19. 如权利要求17或18所述的摄像模组,其特征在于,所述遮挡结构对应所述第一动卡爪的位置设置有第一拱起部,所述第一动卡爪在所述第一拱起部与所述固定部之间穿过;
    所述遮挡结构对应所述第一动卡爪的位置设置有第二拱起部,所述第二动卡爪在所述第二拱起部与所述固定部之间穿过。
  20. 如权利要求19所述的摄像模组,其特征在于,所述第一动卡爪与所述第一拱起部之间具有间隙,所述第一动卡爪与所述第一拱起部之间通过阻尼胶连接;
    所述第二动卡爪与所述第二拱起部之间具有间隙,所述第二动卡爪与所述第二拱起部之间通过阻尼胶连接。
  21. 如权利要求1~20任一项所述的摄像模组,其特征在于,所述摄像模组还包括承载基板,所述承载基板设置于所述模组电路板背向所述光学镜头的一侧,且所述承载基板与所述运动部和所述弹性部相对的区域设置有凹槽。
  22. 如权利要求21所述的摄像模组,其特征在于,所述运动部背离所述光学镜头的一侧与所述凹槽的底壁通过阻尼胶连接。
  23. 如权利要求21或22所述的摄像模组,其特征在于,所述摄像模组还包括第二支撑柱,所述第二支撑柱设置于所述运动部与所述凹槽的底壁之间,所述第二支撑柱的一端与所述凹槽的底壁固定连接,另一端与所述运动部接触设置,且所述第二支撑柱的高度大于所述运动部与所述凹槽的底壁之间的间隙。
  24. 如权利要求1~23任一项所述的摄像模组,其特征在于,所述模组电路板设置有电源回路;
    所述丝材为形状记忆合金丝材,所述丝材电连接于所述电源回路中。
  25. 如权利要求1~24任一项所述的摄像模组,其特征在于,所述摄像模组还包括芯片承载基板,所述感光芯片设置于所述芯片承载基板,所述芯片承载基板固定于所述运动部。
  26. 如权利要求1~25任一项所述的摄像模组,其特征在于,所述摄像模组还包括反射组件,所述反射组件设置于所述光学镜头的进光侧,用于将环境光线转向并射入所述光学镜头的进光侧。
  27. 一种电子设备,其特征在于,包括壳体以及如权利要求1~26任一项所述的摄像模组,所述摄像模组设置于所述壳体内。
PCT/CN2023/079225 2022-03-07 2023-03-02 一种摄像模组及电子设备 WO2023169291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210216789.9 2022-03-07
CN202210216789.9A CN116782030A (zh) 2022-03-07 2022-03-07 一种摄像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2023169291A1 true WO2023169291A1 (zh) 2023-09-14

Family

ID=87937224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079225 WO2023169291A1 (zh) 2022-03-07 2023-03-02 一种摄像模组及电子设备

Country Status (2)

Country Link
CN (1) CN116782030A (zh)
WO (1) WO2023169291A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110103782A1 (en) * 2008-04-30 2011-05-05 Nidec Sankyo Corporation Optical unit with shake correcting function and photographic optical device
CN113472978A (zh) * 2021-05-31 2021-10-01 荣耀终端有限公司 摄像模组及其组装方法、电子设备
CN214756610U (zh) * 2021-06-25 2021-11-16 成都易迅光电科技有限公司 一种防抖摄像装置马达结构
CN114079712A (zh) * 2020-08-11 2022-02-22 宁波舜宇光电信息有限公司 防抖摄像模组及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110103782A1 (en) * 2008-04-30 2011-05-05 Nidec Sankyo Corporation Optical unit with shake correcting function and photographic optical device
CN114079712A (zh) * 2020-08-11 2022-02-22 宁波舜宇光电信息有限公司 防抖摄像模组及其制备方法
CN113472978A (zh) * 2021-05-31 2021-10-01 荣耀终端有限公司 摄像模组及其组装方法、电子设备
CN214756610U (zh) * 2021-06-25 2021-11-16 成都易迅光电科技有限公司 一种防抖摄像装置马达结构

Also Published As

Publication number Publication date
CN116782030A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
CN108196388B (zh) 一种显示装置及其制造方法
US11892749B2 (en) Imaging module and electronic apparatus
EP2496988B1 (en) Camera module with fold-over flexible circuit and cavity substrate
CN113489886A (zh) 摄像模组以及电子设备
CN112351123B (zh) 音圈马达、摄像头模组及电子设备
US20240061317A1 (en) Camera module and electronic device
US11081510B2 (en) Photosensitive module having transparent plate and image sensor
WO2021104402A1 (zh) 一种摄像头模组及电子设备
WO2021180033A1 (zh) 变焦镜头、摄像模组、电子设备及其调焦方法
WO2023142721A1 (zh) 防抖组件、摄像模组及电子设备
US20240040257A1 (en) Camera apparatus and electronic device
WO2024082846A1 (zh) 防抖组件、摄像模组及电子设备
WO2023169291A1 (zh) 一种摄像模组及电子设备
US11994701B2 (en) Photosensitive module having transparent plate and image sensor
CN116033267B (zh) 防抖机构、摄像模组及电子设备
US20230379582A1 (en) Camera Module and Electronic Device
CN115695971A (zh) 电路板、摄像模组及电子设备
CN115277990B (zh) 防抖马达、摄像模组及电子设备
US20230371170A1 (en) Camera module
CN117376687B (zh) 镜头模组、摄像头模组和电子设备
TWI797006B (zh) 潛望式攝像模組及電子裝置
WO2023072133A1 (zh) 光学防抖装置、摄像头模组及电子设备
CN221127399U (zh) 一种感光组件、摄像头模组及电子设备
WO2024104119A1 (zh) 镜头马达、摄像模组以及电子设备
CN112788165B (zh) 显示面板以及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765869

Country of ref document: EP

Kind code of ref document: A1