WO2023168634A1 - 动力电池电压调节***及其控制方法和控制装置 - Google Patents

动力电池电压调节***及其控制方法和控制装置 Download PDF

Info

Publication number
WO2023168634A1
WO2023168634A1 PCT/CN2022/080004 CN2022080004W WO2023168634A1 WO 2023168634 A1 WO2023168634 A1 WO 2023168634A1 CN 2022080004 W CN2022080004 W CN 2022080004W WO 2023168634 A1 WO2023168634 A1 WO 2023168634A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge arm
switch
voltage
power battery
group
Prior art date
Application number
PCT/CN2022/080004
Other languages
English (en)
French (fr)
Inventor
赵元淼
李占良
颜昱
陈新伟
高锦凤
但志敏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020247004820A priority Critical patent/KR20240033022A/ko
Priority to CN202280028553.0A priority patent/CN117157849A/zh
Priority to PCT/CN2022/080004 priority patent/WO2023168634A1/zh
Priority to PCT/CN2022/087183 priority patent/WO2023168787A1/zh
Priority to CN202280004712.3A priority patent/CN115835978A/zh
Publication of WO2023168634A1 publication Critical patent/WO2023168634A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the field of battery technology, and in particular to a power battery voltage regulation system and its control method and control device.
  • power batteries Due to its advantages such as high energy density, rechargeability, safety and environmental protection, power batteries are widely used in new energy vehicles, consumer electronics, energy storage systems and other fields. With the development of battery technology, the various performances of power batteries are constantly improving, especially the voltage of power batteries, which has generally been greatly improved.
  • Embodiments of the present application provide a power battery voltage adjustment system and its control method and control device, which can flexibly adjust the charge and discharge voltage of the power battery to meet the charging voltage or discharge voltage requirements of the power battery in different scenarios.
  • this application provides a control method for a power battery voltage regulation system.
  • the power battery voltage regulation system includes a power battery, a switch module, a charge and discharge interface, and a motor;
  • the switch module includes a first switch, a second switch, and a second switch.
  • the connection points of the upper bridge arm and the lower bridge arm of each bridge arm in the first bridge arm group are connected to all the inductors in the motor in a one-to-one correspondence.
  • the connection point of the upper bridge arm and the lower bridge arm is connected to the three-phase center point of the motor; one end of the first switch is connected to the positive electrode of the power battery, and the other end of the first switch is connected to the One end of the third switch is connected to and connected to all the inductors in the motor through the upper bridge arm of the first bridge arm group.
  • the other end of the third switch is connected to one end of the fourth switch and connected to all the inductors in the motor through the upper bridge arm of the first bridge arm group.
  • the upper bridge arm of the second bridge arm is connected to the three-phase center point of the motor, the other end of the fourth switch is connected to the positive electrode of the charge and discharge interface; one end of the second switch is connected to the negative electrode of the power battery connected, the other end of the second switch is connected to one end of the fifth switch, and is connected to all the inductors in the motor through the lower bridge arm of the first bridge arm group, and through the lower bridge arm of the second bridge arm
  • the arm is connected to the three-phase center point of the motor, and the other end of the fifth switch is connected to the negative pole of the charge and discharge interface;
  • the control method includes: obtaining a first voltage and a second voltage, the first voltage is the voltage of the power battery, the second voltage is the maximum output voltage of the charging equipment, and the charging equipment is used to connect the charging and discharging interface; when the first voltage is less than the second voltage, all the The first switch, the second switch, the third switch, the fourth switch and the fifth switch are turned on, and all bridge arms in the first bridge arm
  • the control method of the power battery voltage regulation system can control the conduction and disconnection of different switches in the circuit structure under different circumstances, so that the charging equipment can be used without changing the existing charging facilities. It can charge a power battery with a voltage lower than the maximum output voltage of the charging device, and can also charge a power battery with a higher voltage than the maximum output voltage of the charging device.
  • This control method can flexibly adjust the charging voltage of the power battery in different scenarios, which can not only solve the compatibility problem of external charging equipment, but also make the charging process of the power battery not limited by the maximum output voltage of the charging equipment.
  • the control method when the first voltage is greater than or equal to the second voltage, the control method further includes: controlling the fourth switch, the fifth switch, the first switch during a first period.
  • the lower bridge arm of the bridge arm group and the upper bridge arm of the second bridge arm are connected, and the third switch, the upper bridge arm of the first bridge arm group, and the lower bridge arm of the second bridge arm are disconnected.
  • the control of the first switch, the second switch, the fourth switch, the fifth switch, the upper bridge arm of the first bridge arm group and the upper bridge of the second bridge arm arm is turned on, and the third switch, the lower bridge arm of the first bridge arm group, and the lower bridge arm of the second bridge arm are disconnected, including: controlling the first switch, the second switch, The fourth switch, the fifth switch, the upper arm of the first bridge arm group and the upper bridge arm of the second bridge arm are conductive, and the third switch, the lower bridge arm of the first bridge arm group are conductive.
  • the bridge arm and the lower bridge arm of the second bridge arm are disconnected; wherein, the first period and the second period are a first period, and in the first period, the first period is in the second period. before the period.
  • the embodiments provided by this application can flexibly adjust the charging voltage of the power battery according to the relationship between the charging equipment and the voltage of the power battery without changing the circuit structure.
  • the circuit structure of the power battery voltage adjustment system itself is used for the motor. Providing energy, the power battery can be boosted and charged by turning on and off different switches in the same circuit.
  • the first time period and the second time period are alternately distributed.
  • this application provides a control method for a power battery voltage regulation system.
  • the power battery voltage regulation system includes a power battery, a switch module, a charge and discharge interface and a motor;
  • the switch module includes a first switch, a second switch, third switch, fourth switch, fifth switch, first bridge arm group and second bridge arm; each bridge arm in the first bridge arm group and the second bridge arm respectively includes an upper bridge arm and the lower bridge arm.
  • the connection points of the upper bridge arm and the lower bridge arm of each bridge arm in the first bridge arm group are connected to all the inductors in the motor in a one-to-one correspondence.
  • the connection point of the upper bridge arm and the lower bridge arm is connected to the three-phase center point of the motor; one end of the first switch is connected to the positive electrode of the power battery, and the other end of the first switch is connected to the One end of the third switch is connected to and connected to all the inductors in the motor through the upper bridge arm of the first bridge arm group.
  • the other end of the third switch is connected to one end of the fourth switch and connected to all the inductors in the motor through the upper bridge arm of the first bridge arm group.
  • the upper bridge arm of the second bridge arm is connected to the three-phase center point of the motor, the other end of the fourth switch is connected to the positive electrode of the charge and discharge interface; one end of the second switch is connected to the negative electrode of the power battery connected, the other end of the second switch is connected to one end of the fifth switch, and is connected to all the inductors in the motor through the lower bridge arm of the first bridge arm group, and through the lower bridge arm of the second bridge arm
  • the arm is connected to the three-phase center point of the motor, and the other end of the fifth switch is connected to the negative pole of the charge and discharge interface;
  • the control method includes: obtaining a first voltage and a third voltage, the first voltage is the voltage of the power battery, the third voltage is the request voltage of the load device, and the load device is used to connect the charge and discharge interface; when the first voltage is greater than the third voltage, the The fourth switch, the fifth switch, the lower arm of the first bridge arm group and the upper bridge arm of the second bridge arm are conductive, and the third switch,
  • the bridge arm is disconnected from the lower bridge arm of the second bridge arm; or, when the first voltage is less than the third voltage, the first switch, the second switch, and the fourth switch are controlled. , the fifth switch, the upper bridge arm of the first bridge arm group and the upper bridge arm of the second bridge arm are connected, the third switch, the lower bridge arm of the first bridge arm group and The lower bridge arm of the second bridge arm is disconnected.
  • the control method of the power battery voltage regulation system provided by the embodiment of the present application can adapt to various requirements of different voltages without changing the circuit structure by controlling the on and off of different switches in the circuit structure under different circumstances.
  • load equipment so that the power battery voltage regulation system can not only provide electric energy for load equipment with a demand voltage higher than the power battery voltage, but also provide electric energy for load equipment with a demand voltage lower than the power battery voltage, thereby enabling flexible adjustment of power in different scenarios.
  • the discharge voltage of the battery provides power for a variety of load devices.
  • the control method further includes: controlling the first switch, the second switch, the upper arm of the first bridge arm group and the lower arm of the second bridge arm in a third period.
  • the bridge arm is turned on, and the third switch, the lower bridge arm of the first bridge arm group, and the upper bridge arm of the second bridge arm are disconnected; when the first voltage is greater than the third voltage
  • the fourth switch, the fifth switch, the lower bridge arm of the first bridge arm group and the upper bridge arm of the second bridge arm are controlled to be conductive
  • the third switch, the first bridge arm Disconnecting the upper bridge arm of the bridge arm group and the lower bridge arm of the second bridge arm includes: when the first voltage is greater than the third voltage, controlling the fourth switch, the The fifth switch, the lower arm of the first bridge arm group, and the upper bridge arm of the second bridge arm are connected, and the third switch, the upper bridge arm of the first bridge arm group, and the third bridge arm are connected.
  • the lower bridge arm of the two bridge arms is disconnected; wherein the third period and the fourth period are a second period,
  • the embodiments provided by this application can flexibly adjust the output voltage according to the needs of the load device without changing the circuit structure.
  • the circuit structure of the power battery voltage regulation system itself is used to provide energy to the motor, and different switches can be used in the same circuit.
  • the conduction and disconnection realize the voltage reduction and discharge of the power battery.
  • control method further includes: controlling the first switch, the second switch, the upper arm of the first bridge arm group and the lower arm of the second bridge arm in a third period.
  • the bridge arm is turned on, and the third switch, the lower bridge arm of the first bridge arm group, and the upper bridge arm of the second bridge arm are disconnected; when the first voltage is less than the third voltage
  • control the first switch, the second switch, the fourth switch, the fifth switch, the upper arm of the first bridge arm group and the upper arm conductor of the second bridge arm when, control the first switch, the second switch, the fourth switch, the fifth switch, the upper arm of the first bridge arm group and the upper arm conductor of the second bridge arm.
  • the third switch, the lower bridge arm of the first bridge arm group and the lower bridge arm of the second bridge arm are disconnected, including: when the first voltage is less than the third voltage,
  • the fifth period controls the first switch, the second switch, the fourth switch, the fifth switch, the upper bridge arm of the first bridge arm group and the upper bridge arm of the second bridge arm.
  • the third switch, the lower bridge arm of the first bridge arm group and the lower bridge arm of the second bridge arm are disconnected; wherein, the third period and the fifth period are the third period, in the third period, the third period is before the fifth period.
  • the embodiments provided by this application can flexibly adjust the output voltage according to the needs of the load device without changing the circuit structure.
  • the circuit structure of the power battery voltage regulation system itself is used to provide energy to the motor, and different switches can be used in the same circuit.
  • the conduction and disconnection realize the boost discharge of the power battery.
  • the third time period and the fourth time period are alternately distributed.
  • the third time period and the fifth time period are distributed alternately.
  • the application provides a power battery voltage regulation system.
  • the power battery voltage regulation system includes a power battery, a switch module, a charge and discharge interface, and a motor; the switch module includes a first switch, a second switch, and a third switch. Three switches, a fourth switch, a fifth switch, a first bridge arm group and a second bridge arm; each of the first bridge arm group and the second bridge arm includes an upper bridge arm and a lower bridge respectively. arms, the connection points of the upper bridge arm and the lower bridge arm of each bridge arm in the first bridge arm group are connected to all the inductors in the motor in one-to-one correspondence, and the upper bridge arm in the second bridge arm is connected in a one-to-one correspondence.
  • connection point between the bridge arm and the lower bridge arm is connected to the three-phase center point of the motor; one end of the first switch is connected to the positive electrode of the power battery, and the other end of the first switch is connected to the third switch
  • One end of the third switch is connected to one end of the fourth switch and connected to all the inductors in the motor through the upper arm of the first bridge arm group.
  • the other end of the third switch is connected to one end of the fourth switch and connected to the second bridge arm through the second bridge arm.
  • the upper bridge arm is connected to the three-phase center point of the motor, the other end of the fourth switch is connected to the positive electrode of the charge and discharge interface; one end of the second switch is connected to the negative electrode of the power battery, so The other end of the second switch is connected to one end of the fifth switch, and is connected to all inductors in the motor through the lower bridge arm of the first bridge arm group, and is connected to all the inductors through the lower bridge arm of the second bridge arm.
  • the three-phase center points of the motor are connected, and the other end of the fifth switch is connected to the negative pole of the charge and discharge interface.
  • the power battery voltage regulation system provided by the embodiment of the present application fully considers the demand for voltage regulation during charging and discharging of the power battery under different circumstances.
  • Switches are set at key points in the charging and discharging circuit of the power battery, and the conduction of different switches is controlled by and disconnected, forming loops of direct charging, boost charging, boost discharge and buck discharge in the same circuit structure, so that the charge and discharge voltage of the power battery can be flexibly adjusted without changing the circuit structure to meet different scenarios.
  • the charging voltage or discharge voltage requirements of the power battery is not limited to be used.
  • the present application provides a control device for a power battery voltage regulation system, including: a processor, the processor being configured to execute the control method as described in any embodiment of the first aspect, or to execute the above The control method according to any embodiment of the second aspect.
  • the present application provides a power device, including the power battery voltage regulation system as described in the third aspect, the power battery voltage regulation system being used to charge the power battery or for the power battery. Discharge, the power battery is used to provide electrical energy for the power device.
  • Figure 1 is a schematic diagram of an application architecture of the charging method provided by an embodiment of the present application.
  • Figure 2 is a schematic block diagram of a power battery voltage regulation system provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a control method for a power battery voltage regulation system provided by an embodiment of the present application
  • Figure 4 is a schematic diagram of a charging circuit of the power battery voltage regulation system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another charging circuit of the power battery voltage regulation system provided by the embodiment of the present application.
  • Figure 6 is a schematic flow chart of another control method of a power battery voltage regulation system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another charging circuit of the power battery voltage regulation system provided by the embodiment of the present application.
  • Figure 8 is a schematic flow chart of another control method of a power battery voltage regulation system provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another charging circuit of the power battery voltage regulation system provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another charging circuit of the power battery voltage regulation system provided by the embodiment of the present application.
  • Figure 11 is a schematic flow chart of another control method of a power battery voltage regulation system provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of another charging circuit of the power battery voltage regulation system provided by the embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a control device of a power battery voltage regulation system 10 provided by an embodiment of the present application.
  • the power battery voltage regulation system includes a power battery, a switch module, a charge and discharge interface and a motor.
  • a switch module By controlling different switches in the switch module On and off, direct charging or boost charging can be achieved in different scenarios, or boost discharge or buck discharge can be achieved in different scenarios.
  • the power battery in the embodiment of the present application can be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery, a sodium-ion battery, etc., which are not limited here.
  • the battery in the embodiment of the present application can be a single cell, a battery module or a battery pack, which is not limited here.
  • batteries can be used in power devices such as cars and ships. For example, it can be used in power vehicles to power the motors of power vehicles and serve as the power source of electric vehicles.
  • the battery can also power other electrical devices in electric vehicles, such as in-car air conditioners, car players, etc.
  • the drive motor and its control system are one of the core components of new energy vehicles, and their driving characteristics determine the main performance indicators of the vehicle.
  • the motor drive system of new energy vehicles is mainly composed of an electric motor (i.e., motor), a power converter, a motor controller (such as an inverter), various detection sensors, and a power supply.
  • An electric motor is a rotating electromagnetic machine that operates on the principle of electromagnetic induction and is used to convert electrical energy into mechanical energy. During operation, it absorbs electrical power from the electrical system and outputs mechanical power to the mechanical system.
  • FIG. 1 is a schematic diagram of an application architecture applicable to the charging method according to the embodiment of the present application.
  • the application architecture includes a battery management system (Battery Management System, BMS) 100 and a charging pile 200.
  • BMS Battery Management System
  • the BMS 100 can be connected to the charging pile 200 through a communication line. , to interact with the charging pile 200.
  • the communication line can be a Controller Area Network (Controller Area Network, CAN) communication line or a daisy chain communication line.
  • CAN Controller Area Network
  • the BMS 100 is the BMS of the power battery, which is a battery that provides power source for electrical devices.
  • the power battery may be a power storage battery.
  • the power battery can be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery or a sodium-ion battery.
  • the power battery in the embodiment of the present application can be a cell/battery cell, or a battery module or a battery pack, which is not specifically limited in the embodiment of the present application.
  • the electrical device may be a vehicle, a ship, a spacecraft, etc., which is not limited in the embodiments of the present application.
  • BMS is a control system that protects the safety of power batteries and implements functions such as charge and discharge management, high-voltage control, battery protection, battery data collection, and battery status evaluation.
  • the BMS can be integrated with the power battery and installed in the same equipment/device, or the BMS can also be installed outside the power battery as an independent equipment/device.
  • the charging pile 200 also called a charger, is a device for charging the power battery.
  • the charging pile can output charging power according to the charging requirements of BMS100 to charge the power battery.
  • the charging pile 200 can output the voltage and current according to the demand voltage and demand current sent by the BMS 100 .
  • the power battery voltage regulation system 10 includes a power battery 11, a switch module 12, a charge and discharge interface 13 and a motor 14; the switch module 12 includes a first switch K1, a second switch K2, a third switch K3, and a third switch K3.
  • each bridge arm in the first bridge arm group 121 and the second bridge arm 122 includes an upper bridge arm and a lower bridge arm respectively,
  • the connection points of the upper bridge arm and the lower bridge arm of each bridge arm in the first bridge arm group 121 are connected to all the inductors in the motor 14 in a one-to-one correspondence.
  • the upper bridge arm and the lower bridge arm in the second bridge arm 122 are connected in a one-to-one correspondence.
  • connection point of the arm is connected to the three-phase center point of the motor 14; one end of the first switch K1 is connected to the positive electrode of the power battery 11, the other end of the first switch K1 is connected to one end of the third switch K3, and through the first bridge arm
  • the upper bridge arm of the group 121 is connected to all the inductors in the motor 14 respectively, the other end of the third switch K3 is connected to one end of the fourth switch K4, and the upper bridge arm of the second bridge arm 122 is connected to the three-phase center of the motor 14 point connection, the other end of the fourth switch K4 is connected to the positive electrode of the charge and discharge interface 13; one end of the second switch K2 is connected to the negative electrode of the power battery 11, the other end of the second switch K2 is connected to one end of the fifth switch K5, and
  • the lower bridge arm of the first bridge arm group 121 is connected to all the inductors in the motor 14 respectively, and the lower bridge arm of the second bridge arm 122 is connected to the three-phase center point of the motor 14.
  • the first switch K1, the second switch K2, the third switch K3, the fourth switch K4 and the fifth switch K5 in the switch module 12 may be relay switches, and the control module controls the conduction or disconnection of these switches to form Different circuits.
  • the first switch K1 is used to connect or disconnect the parts of the power battery voltage regulation system 10 except the power battery 11 and the positive electrode of the battery;
  • the second switch K2 is used to connect or disconnect the parts of the power battery voltage regulation system 10 except the power battery 11 .
  • the connection between other parts other than the power battery 11 and the negative electrode of the battery; the third switch K3 is used to connect or disconnect the second bridge arm 122 and the charge and discharge interface 13, and the connection between the first bridge arm group 121 and the power battery 11 ;
  • the fourth switch K4 is used to turn on or off the connection between the parts of the power battery voltage regulation system 10 except the charge and discharge interface 13 and the positive electrode of the charge and discharge interface 13;
  • the fifth switch K5 is used to turn on or off. Open the connection between the parts of the power battery voltage regulation system 10 except the charge and discharge interface 13 and the negative electrode of the charge and discharge interface 13 .
  • the first bridge arm group 121 and the second bridge arm 122 can be implemented by an inverter in the motor 14 drive system, where the inverter can use the bridge arm of an insulated gate bipolar transistor (IGBT). switch implementation.
  • the number of bridge arms in the first bridge arm group 121 is the same as the number of inductors in the motor 14 .
  • the inverter includes a three-phase bridge arm, that is, a U-phase bridge arm, a V-phase bridge arm, and a W-phase bridge arm.
  • each phase bridge arm in the three-phase bridge arm has an upper bridge arm and a lower bridge arm, and the upper bridge arm and the lower bridge arm are respectively provided with switch units, that is, the first bridge arm group 121 respectively includes U-phase bridge arms.
  • the second bridge arm 122 also has an upper bridge arm and a lower bridge arm, and the upper bridge arm and the lower bridge arm are respectively provided with switch units. That is, the second bridge arm 122 includes an upper bridge arm switch 1221 and a lower bridge arm switch 1222 .
  • the motor 14 may include multiple inductors. Taking the three-phase motor 14 as an example, it may include three inductors. Specifically, it may include: an inductor 141 connected to the U-phase bridge arm, an inductor 142 connected to the V-phase bridge arm, and an inductor connected to the W-phase bridge arm. The inductor 143 is connected to the phase bridge arm.
  • one end of the inductor 141 is connected to the connection point of the upper bridge arm and the lower bridge arm of the U-phase bridge arm
  • one end of the inductor 142 is connected to the connection point of the upper bridge arm and the lower bridge arm of the V-phase bridge arm
  • one end of the inductor 143 Connected to the connection point of the upper bridge arm and the lower bridge arm in the W-phase bridge arm.
  • the other end of the inductor 141 , the other end of the inductor 142 and the other end of the inductor 143 are connected together, and this connection point is the three-phase center point of the motor 14 .
  • the motor 14 is not limited to a three-phase motor 14, but may also be a six-phase motor 14, etc.
  • the six-phase motor 14 may include a six-phase bridge arm.
  • the power battery voltage regulation system 10 may also be provided with a sixth switch K6, a seventh switch K7, a first capacitor C1, a second capacitor C2 and a resistor R.
  • the sixth switch K6 is disposed between the three-phase center point of the motor 14 and the connection point of the upper bridge arm and the lower bridge arm of the second bridge arm 122, and is used to cut off or connect the three-phase center point of the motor 14 and the second bridge arm. A high voltage connection between the connection points of the upper and lower arms of arm 122. In this embodiment of the present application, the sixth switch K6 may always be in a closed state.
  • the seventh switch K7 is connected in series with the resistor R and then in parallel with both ends of the second switch K2.
  • One end of the first capacitor C1 is connected to the positive electrode of the power battery 11 through the first switch K1, and the other end is connected to the power battery 11 through the second switch K2.
  • the negative electrode of the second capacitor C2 is connected to the positive electrode of the charge and discharge interface 13 through the fourth switch K4, and the other end is connected to the negative electrode of the charge and discharge interface 13 through the fifth switch K5.
  • the first switch K1 and the seventh switch K7 can be turned on first to precharge the first capacitor C1 and the second capacitor C2 to avoid higher voltages from causing damage to the circuit.
  • a preset time can be set for the conduction of the seventh switch K7. After the preset time expires, the second switch K2 is turned on and the seventh switch K7 is turned off.
  • the seventh switch K7 before turning on the second switch K2, the seventh switch K7 may be turned on within a preset time. After the preset time is over, the second switch K2 is turned on and the seventh switch K7 is turned off.
  • the second capacitor C2 is used to stabilize the input voltage of the charge and discharge interface 13 and absorb the peak voltage when the second bridge arm 122 is disconnected to avoid damage to the second bridge arm 122 .
  • the first capacitor C1 and the second capacitor C2 can both stabilize voltage and filter out noise.
  • the power battery voltage regulation system 10 provided by the embodiment of the present application fully considers the voltage regulation requirements of the power battery 11 when charging and discharging under different circumstances. Switches are set at key points in the charge and discharge circuit of the power battery 11, and by controlling different switches On and off, direct charging, boost charging, boost discharge and buck discharge loops are formed in the same circuit structure, so that the charge and discharge voltage of the power battery 11 can be flexibly adjusted without changing the circuit structure. Meet the charging voltage or discharging voltage requirements of the power battery 11 in different scenarios.
  • the present application also provides a control method for the power battery voltage regulation system 10, as shown in Figures 3 to 7.
  • FIG. 3 is a schematic flow chart of a control method of the power battery voltage regulation system 10 provided by the embodiment of the present application, showing the schematic flow of the power battery voltage regulation system 10 during the charging process.
  • the power battery voltage regulation system The control method of 10 includes the following steps.
  • the first voltage is the voltage of the power battery 11
  • the second voltage is the maximum output voltage of the charging equipment.
  • the charging equipment is used to connect to the charging and discharging interface 13.
  • the above steps may be performed by the control module.
  • the control module obtains the first voltage and the second voltage, that is, the control module obtains the voltage of the power battery 11 and the maximum output voltage of the charging device, and compares the two to determine a charging method for the power battery 11 .
  • the charging device is a device that provides electric energy to the power battery 11.
  • the charging device may be a charging pile.
  • the charging device can provide sufficient voltage for the charging process of the power battery 11, so the power battery 11 can be charged directly without adjusting the charging voltage.
  • the control module controls the first switch K1, the second switch K2, the third switch K3, the fourth switch K4 and the fifth switch K5 in the power battery voltage regulation system 10 to conduct, so that the first bridge arm group 121 and the All of the two bridge arms 122 are disconnected to form a direct charging loop as shown in FIG. 4 .
  • the charging equipment cannot provide sufficient voltage for the charging process of the power battery 11, so the charging voltage of the power battery 11 needs to be increased.
  • the first switch K1, the second switch K2, the fourth switch K4, the fifth switch K5, the upper arm of the first bridge arm group 121 and the upper bridge arm of the second bridge arm 122 are controlled to be conductive, and the third The switch K3, the lower bridge arm of the first bridge arm group 121 and the lower bridge arm of the second bridge arm 122 are disconnected to form a boost charging circuit as shown in FIG. 5 .
  • the charging equipment and the motor 14 with pre-stored energy jointly provide electric energy for the power battery 11.
  • the voltage provided by the charging equipment and the voltage provided by the motor 14 are superimposed, and the superimposed voltage is greater than the power battery 11 voltage, the power battery 11 can be charged.
  • the motor 14 can store energy in advance through the circuit in the power battery voltage regulation system 10 , or an external device can provide energy to the motor 14 .
  • the device for obtaining the first voltage and the second voltage may be a BMS in the control module, and the device for controlling the conduction or disconnection of the switch in the switch module 12 may be a micro control unit (micro control unit) in the control module. MCU).
  • the BMS can compare the obtained first voltage and the second voltage, determine the charging method, and communicate with the MCU. For example, when the first voltage is less than the second voltage, the BMS sends the first information to the MCU. The first information is used to instruct charging by direct charging. Then the MCU can control the corresponding switch to turn on or off according to the first information. , forming a charging circuit for direct charging.
  • the BMS sends second information to the MCU.
  • the second information is used to instruct charging by boost charging, and the MCU can control the corresponding switch according to the second information. Turn on or off to form a charging circuit for boost charging.
  • the charging voltage required by the power battery may also be different. Therefore, when the BMS sends the second information to the MCU, it can also send the target voltage of the power battery to the MCU at the same time.
  • the target voltage is the power battery.
  • the voltage required in the current charging stage may be the same as the first voltage obtained by the BMS in step S1, or may be different.
  • the control method of the power battery voltage regulation system 10 can control the conduction and disconnection of different switches in the circuit structure under different circumstances, so that the charging equipment can be adjusted without changing the existing charging facilities. It is possible to charge the power battery 11 whose voltage is lower than the maximum output voltage of the charging device, or to charge the power battery 11 whose voltage is higher than the maximum output voltage of the charging device.
  • This control method can flexibly adjust the charging voltage of the power battery 11 in different scenarios, which can not only solve the compatibility problem of external charging equipment, but also make the charging process of the power battery 11 not limited by the maximum output voltage of the charging equipment.
  • the control method further includes: S121, controlling the fourth switch K4, the fifth switch K5, and the first bridge arm in the first period
  • the lower bridge arm of the group 121 and the upper bridge arm of the second bridge arm 122 are connected, and the third switch K3 and the upper bridge arm of the first bridge arm group 121 and the lower bridge arm of the second bridge arm 122 are disconnected.
  • Step S12 may be specifically: S122. Control the first switch K1, the second switch K2, the fourth switch K4, the fifth switch K5, the upper arm of the first bridge arm group 121 and the second bridge arm 122 in the second period. The upper bridge arm is turned on, and the third switch K3, the lower bridge arm of the first bridge arm group 121, and the lower bridge arm of the second bridge arm 122 are disconnected.
  • the first period and the second period are the first period, and in the first period, the first period is before the second period.
  • FIG. 6 shows a schematic flowchart of another control method of the power battery voltage regulation system 10 provided by the embodiment of the present application, that is, a control method in the case of boost charging the power battery 11 .
  • the charging device and the motor 14 with pre-stored energy jointly provide electric energy for the power battery 11 .
  • the energy pre-stored in the motor 14 can be used by the power battery voltage regulation system 10 itself. circuit to provide.
  • control module can control the fourth switch K4, the fifth switch K5, the lower arm of the first bridge arm group 121 and the upper arm of the second bridge arm 122 to conduct, and the first switch K1 and the second switch K2 , the third switch K3, the upper bridge arm of the first bridge arm group 121 and the lower bridge arm of the second bridge arm 122 are disconnected to form a loop as shown in FIG. 7 .
  • the charging device only provides electric energy to the motor 14, and the motor 14 stores energy through its own inductance.
  • step S122 is to implement the control of turning on or off the switch in step S12 during the second period.
  • the first period and the second period may constitute a first period. In a first period, the energy of the motor 14 is first stored in the first period, and then the increased charging voltage is provided to the power battery 11 in the second period.
  • the embodiments provided by this application can flexibly adjust the charging voltage of the power battery 11 according to the relationship between the charging equipment and the voltage of the power battery 11 without changing the circuit structure, and at the same time utilize the circuit of the power battery voltage regulation system 10 itself
  • the structure provides energy to the motor 14 and can achieve boost charging of the power battery 11 through the on and off of different switches in the same circuit.
  • the first time period and the second time period are alternately distributed.
  • the loops formed in the first period and the second period can be quickly and alternately conducted multiple times within a period of time, so that after the charging voltage of the power battery 11 rises to a predetermined value, it can continue to Charge the power battery 11.
  • the first switches K1 and K1 can be retained during the time distributed in the first period.
  • the second switch K2 is turned on, and only the upper bridge arm and the lower bridge arm of the first bridge arm group 121 are controlled to be alternately conductive to realize the alternate conduction of the current loop formed in the first period and the second period. In the loop shown in FIG. 7 , keeping the first switch K1 and the second switch K2 turned on will not affect the direction of the current in the loop.
  • the present application also provides another control method for the power battery voltage regulation system 10, as shown in Figures 8 to 12. Based on the above-mentioned power battery voltage regulation system 10, this control method include the following steps.
  • the first voltage is the voltage of the power battery 11
  • the third voltage is the request voltage of the load device.
  • the load device is used to connect to the charge and discharge interface 13.
  • FIG. 8 is a schematic flow chart of another control method of the power battery voltage regulation system 10 provided by the embodiment of the present application, showing a schematic flow chart of the power battery voltage regulation system 10 during the discharge process.
  • the control module obtains the first voltage and the third voltage, that is, obtains the voltage of the power battery 11 and the request voltage of the load device, and compares the two to determine the discharge mode of the power battery 11 .
  • the load device is a device that consumes electric energy to operate.
  • the load device may be a vehicle-mounted device.
  • the fourth switch K4, the fifth switch K5, the lower bridge arm of the first bridge arm group 121 and the upper bridge arm of the second bridge arm 122 are controlled to be conductive, and the first switch K1, the second switch K2, the third switch K2 are controlled to be conductive.
  • the switch K3, the upper bridge arm of the first bridge arm group 121, and the lower bridge arm of the second bridge arm 122 are disconnected to form a buck discharge circuit as shown in FIG. 9 .
  • FIG. 9 only the motor 14 with energy stored in advance provides electric energy to the load device, and the energy stored in the motor 14 is controlled to provide a voltage that matches the requested voltage of the load device.
  • the voltage of the power battery 11 is lower than the requested voltage of the load device, and the output voltage of the circuit needs to be increased to match the requested voltage of the load device.
  • the first switch K1, the second switch K2, the fourth switch K4, the fifth switch K5, the upper arm of the first bridge arm group 121 and the upper bridge arm of the second bridge arm 122 are controlled to be conductive, and the third The switch K3, the lower bridge arm of the first bridge arm group 121 and the lower bridge arm of the second bridge arm 122 are disconnected to form a boost and discharge circuit as shown in FIG. 10 .
  • the power battery 11 and the motor 14 with pre-stored energy jointly provide electric energy for the load device. That is to say, the voltage provided by the power battery 11 and the voltage provided by the motor 14 are superimposed, and the superimposed voltage can be compared with the load. When the requested voltage of the device matches, power can be provided to the load device.
  • the motor 14 can store energy in advance through the circuit in the power battery voltage regulation system 10 , or an external device can provide energy to the motor 14 .
  • the control module can first turn on the switches that do not affect the current loop, and only change the on or off of some switches to achieve changes in the current loop. Specifically, when the power battery 11 needs to be discharged, the control module first controls the first switch K1, the second switch K2, the fourth switch K4 and the fifth switch K5 to be turned on, and the other switches are turned off, and then according to the first voltage and the third voltage is determined. When the first voltage is greater than the third voltage, the lower arm of the first bridge arm group 121 and the upper bridge arm of the second bridge arm 122 are further controlled to be turned on, and the upper bridge arm of the first bridge arm group 121 is turned on.
  • the bridge arm and the lower bridge arm of the second bridge arm 122 are disconnected to form a buck discharge loop; or, when the first voltage is less than the third voltage, the upper bridge arm and the second bridge arm of the first bridge arm group 121 are further controlled.
  • the upper bridge arm of the bridge arm 122 is turned on, and the lower bridge arm of the first bridge arm group 121 and the lower bridge arm of the second bridge arm 122 are disconnected to form a boosting and discharging circuit. That is to say, the steps of controlling the first voltage and the third voltage by the control module and the steps of controlling the conduction of the first switch K1, the second switch K2, the fourth switch K4 and the fifth switch K5 are not distinguished in order.
  • the device for obtaining the first voltage and the third voltage may be a BMS in the control module, and the device for controlling the on or off of the switch in the switch module 12 may be an MCU in the control module.
  • the BMS compares the obtained first voltage and the third voltage, determines the discharge mode, and communicates with the MCU. For example, when the first voltage is greater than the third voltage, the BMS sends third information to the MCU. The third information is used to instruct the discharge to be performed in a step-down discharge manner. The MCU can control the corresponding switch to be turned on or off based on the third information. Open, forming a discharge circuit for buck discharge. Similarly, when the first voltage is less than the third voltage, the BMS sends the fourth information to the MCU. The fourth information is used to instruct the discharge by boost discharge, and the MCU can control the corresponding switch to turn on according to the fourth information. Or disconnected to form a discharge circuit for boost discharge.
  • the BMS acquires the first voltage and the third voltage and communicates with the MCU.
  • the BMS can send fifth information to the MCU, and the fifth information is used to instruct the formation of a discharge loop.
  • the MCU receives the fifth information and controls the switches that do not affect the current loop to be turned on, that is, it controls the first switch K1, the second switch K2, the fourth switch K4, and the fifth switch K5 to be turned on, and the other switches are turned off.
  • the BMS determines the discharge mode according to the first voltage and the third voltage, and instructs the MCU to control the corresponding switch to turn on or off through the third information or the fourth information to form a corresponding discharge circuit.
  • the control method of the power battery voltage regulation system 10 can adapt to various demand voltages without changing the circuit structure by controlling the on and off of different switches in the circuit structure under different circumstances.
  • load equipment so that the power battery voltage regulation system 10 can not only provide electric energy for the load equipment whose demand voltage is higher than the voltage of the power battery 11, but also can provide electric energy for the load equipment whose demand voltage is lower than the voltage of the power battery 11, thereby realizing the application in different scenarios.
  • the discharge voltage of the power battery 11 can be flexibly adjusted to provide electric energy for a variety of load equipment.
  • control method provided by the embodiment of the present application further includes: S23. Controlling the first switch K1, the second switch K2, and the upper arm of the first bridge arm group 121 in the third period. and the lower bridge arm of the second bridge arm 122 are connected, and the third switch K3, the lower bridge arm of the first bridge arm group 121, and the upper bridge arm of the second bridge arm 122 are disconnected.
  • Step S21 may be specifically: S211.
  • the upper bridge arm is turned on, and the third switch K3, the upper bridge arm of the first bridge arm group 121, and the lower bridge arm of the second bridge arm 122 are disconnected.
  • the third period and the fourth period are the second period, and in the second period, the third period is before the fourth period.
  • FIG. 11 shows a schematic flowchart of another control method of the power battery voltage regulation system 10 provided by the embodiment of the present application, that is, a control method of the power battery 11 under reduced voltage charging.
  • the motor 14 with pre-stored energy provides electrical energy to the load device.
  • the energy pre-stored in the motor 14 can be provided by the circuit of the power battery voltage regulation system 10 itself.
  • control module can control the first switch K1, the second switch K2, the upper arm of the first bridge arm group 121 and the lower bridge arm of the second bridge arm 122 to conduct, and the third switch K3 and the fourth switch K4. , the fifth switch K5, the lower bridge arm of the first bridge arm group 121 and the upper bridge arm of the second bridge arm 122 are disconnected to form a loop as shown in FIG. 12 .
  • the power battery 11 only provides electric energy to the motor 14, and the motor 14 stores energy through its own inductance.
  • step S211 is to realize the control of turning on or off the switch in step S21 in the fourth period.
  • the third period and the fourth period may form a second period. In a second period, the energy of the motor 14 is first stored in the third period, and then the reduced discharge voltage is provided to the load device in the fourth period.
  • the embodiments provided by this application can flexibly adjust the output voltage according to the needs of the load device without changing the circuit structure.
  • the circuit structure of the power battery voltage regulation system 10 itself is used to provide energy for the motor 14, which can be passed in the same circuit.
  • the on and off of different switches realize the voltage reduction and discharge of the power battery 11 .
  • control method provided by the embodiment of the present application further includes: S23. Controlling the first switch K1, the second switch K2, and the upper arm of the first bridge arm group 121 in the third period. and the lower bridge arm of the second bridge arm 122 are connected, and the third switch K3, the lower bridge arm of the first bridge arm group 121, and the upper bridge arm of the second bridge arm 122 are disconnected.
  • Step S22 may be specifically: S221.
  • the upper bridge arm and the upper bridge arm of the second bridge arm 122 are connected, and the third switch K3 and the lower bridge arm of the first bridge arm group 121 and the lower bridge arm of the second bridge arm 122 are disconnected.
  • the third period and the fifth period are the third period, and in the third period, the third period is before the fifth period.
  • Step S23 has been introduced in detail above and will not be described again here.
  • a boost and discharge circuit can be formed in the fifth period, and the power battery 11 and the motor 14 with pre-stored energy jointly provide electric energy to the load device.
  • step S221 is to implement the control of turning on or off the switch in step S22 in the fifth period.
  • the third period and the fifth period may form a third period. In a third period, the energy of the motor 14 is first stored in the third period, and then the increased discharge voltage is provided to the load device in the fifth period.
  • the embodiments provided by this application can flexibly adjust the output voltage according to the needs of the load device without changing the circuit structure.
  • the circuit structure of the power battery voltage regulation system 10 itself is used to provide energy for the motor 14, which can be passed in the same circuit.
  • the on and off of different switches realize the voltage boost and discharge of the power battery 11 .
  • the third period and the fourth period are alternately distributed.
  • the motor 14 stores energy in the third period and provides electric energy to the load device in the fourth period.
  • the loops formed in the third period and the fourth period can be quickly alternately conducted multiple times within a period of time, so that the motor 14 can provide After the output voltage reaches a predetermined value, it can continue to provide power to the load device.
  • the first switch K1, the second switch K2, and the fourth switch can be maintained during the alternating distribution of the third period and the fourth period.
  • the conduction state of K4 and the fifth switch K5 is controlled only in the time distributed in the third period.
  • the upper arm of the first bridge arm 121 and the lower bridge arm of the second bridge arm 122 are controlled to be conductive.
  • the lower bridge arm of 121 and the upper bridge arm of the second bridge arm 122 are disconnected, and the lower bridge arm of the first bridge arm group 121 and the upper bridge arm of the second bridge arm 122 are controlled to be connected during the time distributed in the fourth period.
  • the upper bridge arm of the first bridge arm group 121 and the lower bridge arm of the second bridge arm 122 are disconnected. In the loop formed in the third period or the fourth period, maintaining the conductive state of the first switch K1, the second switch K2, the fourth switch K4, and the fifth switch K5 will not affect the direction of the current in the loop.
  • the third period and the fifth period are alternately distributed.
  • the motor 14 stores energy in the third period and provides electric energy to the load device in the fifth period.
  • the loops formed in the third period and the fifth period can be quickly alternately conducted multiple times within a period of time, so that the power battery 11 and the motor 14 After the output voltage provided together reaches a predetermined value, it can continue to provide power to the load device.
  • the first switch K1, the second switch K2, and the fourth switch can be maintained during the alternating distribution of the third period and the fifth period.
  • the conduction state of K4 and the fifth switch K5 is controlled only in the time distributed in the third period.
  • the upper arm of the first bridge arm 121 and the lower bridge arm of the second bridge arm 122 are controlled to be conductive.
  • the lower bridge arm of 121 and the upper bridge arm of the second bridge arm 122 are disconnected, and the upper bridge arm of the first bridge arm group 121 and the upper bridge arm of the second bridge arm 122 are controlled to be connected during the time distributed in the fifth period.
  • the lower bridge arm of the first bridge arm group 121 and the lower bridge arm of the second bridge arm 122 are disconnected.
  • maintaining the conductive state of the first switch K1, the second switch K2, the fourth switch K4, and the fifth switch K5 will not affect the direction of the current in the loop.
  • the present application also provides a control device for the power battery voltage regulation system 10, including: a processor, and the processor is configured to execute the methods of the various embodiments of the present application.
  • Figure 13 shows a schematic block diagram of the control device 1300 of the power battery voltage regulation system 10 according to the embodiment of the present application.
  • the control device 1300 includes a processor 1301.
  • the control device 1300 also includes a memory 1302, where the memory 1302 is used to store instructions, and the processor 1301 is used to read the instructions and execute based on the instructions.
  • the processor 1301 can be the control module in any of the above embodiments.
  • the present application also provides a power device.
  • the power device includes the power battery voltage regulation system 10 provided in the embodiment of the present application.
  • the power battery voltage regulation system 10 is used to charge the power battery 11 or use it. After the power battery 11 is discharged, the power battery 11 is used to provide electric energy for the power device.
  • the power device may be a powered vehicle.
  • Embodiments of the present application also provide a readable storage medium for storing a computer program, and the computer program is used to execute the foregoing methods of various embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种动力电池电压调节***及其控制方法和控制装置,该控制方法包括:获取第一电压和第二电压,第一电压为动力电池的电压,第二电压为充电设备的最大输出电压,充电设备用于连接充放电接口;当第一电压小于第二电压时,控制第一开关、第二开关、第三开关、第四开关和第五开关导通,第一桥臂组和第二桥臂中的所有桥臂断开;或者,当第一电压大于或等于第二电压时,控制第一开关、第二开关、第四开关、第五开关、第一桥臂组的上桥臂和第二桥臂的上桥臂导通,第三开关、第一桥臂组的下桥臂和第二桥臂的下桥臂断开。

Description

动力电池电压调节***及其控制方法和控制装置 技术领域
本申请涉及电池技术领域,特别是涉及一种动力电池电压调节***及其控制方法和控制装置。
背景技术
由于具有能量密度高、可循环充电、安全环保等优点,动力电池被广泛应用于新能源汽车、消费电子、储能***等领域中。随着电池技术的发展,动力电池的各种性能都在不断提高,尤其是动力电池的电压,普遍都有大幅度的提升。
然而,目前使用的充电设备的最大输出电压仍然低于具有较高电压的新型动力电池所需求的充电电压,动力电池也难以根据不同负载设备的需求调整输出电压。因此,如何在不同场景下灵活调整动力电池的充放电电压,是一项亟待解决的问题。
发明内容
本申请实施例提供了一种动力电池电压调节***及其控制方法和控制装置,能够灵活调整动力电池的充放电电压,以满足不同场景下动力电池对充电电压或放电电压的需求。
第一方面,本申请提供了一种动力电池电压调节***的控制方法,所述动力电池电压调节***包括动力电池、开关模块、充放电接口和电机;所述开关模块包括第一开关、第二开关、第三开关、第四开关、第五开关、第一桥臂组和第二桥臂;所述第一桥臂组和所述第二桥臂中的每个桥臂分别包括上桥臂和下桥臂,所述第一桥臂组中的每个桥臂的上桥臂和下桥臂的连接点一一对应地与所述电机的中的全部电感连接,所述第二桥臂中的上桥臂和下桥臂的连接点与所述电机的三相中心点连接;所述第一开关的一端与所述动力电池的正极连接,所述第一开关的另一端与所述第三开关的一端连接,且通过第一桥臂组的上桥臂分别与所述电机中的全部电感连接,所述第三开关的另一端与所述第四开关的一端连接,且通过第二桥臂的上桥臂与所述电机的三相 中心点连接,所述第四开关的另一端与所述充放电接口的正极连接;所述第二开关的一端与所述动力电池的负极相连,所述第二开关的另一端与所述第五开关的一端连接,且通过第一桥臂组的下桥臂分别与所述电机中的全部电感连接,通过第二桥臂的下桥臂与所述电机的三相中心点连接,所述第五开关的另一端与所述充放电接口的负极连接;所述控制方法包括:获取第一电压和第二电压,所述第一电压为所述动力电池的电压,所述第二电压为充电设备的最大输出电压,所述充电设备用于连接所述充放电接口;当所述第一电压小于所述第二电压时,控制所述第一开关、所述第二开关、所述第三开关、所述第四开关和所述第五开关导通,第一桥臂组和第二桥臂中的所有桥臂断开;或者,当所述第一电压大于或等于所述第二电压时,控制所述第一开关、所述第二开关、所述第四开关、所述第五开关、所述第一桥臂组的上桥臂和所述第二桥臂的上桥臂导通,所述第三开关、第一桥臂组的下桥臂和第二桥臂的下桥臂断开。
本申请实施例提供的动力电池电压调节***的控制方法能够在不同情况下,通过控制电路结构中不同开关的导通与断开,能够在不改变现有充电设施的基础上,使得充电设备既能够对电压低于充电设备的最大输出电压的动力电池进行充电,也能够对相较于充电设备的最大输出电压具有较高电压的动力电池进行充电。该控制方法可以在不同场景下灵活调整动力电池的充电电压,既能够解决外部充电设备的兼容问题,也能够使得动力电池的充电过程不受充电设备的最大输出电压的限制。
在一些实施例中,当所述第一电压大于或等于所述第二电压时,所述控制方法还包括:在第一时段控制所述第四开关、所述第五开关、所述第一桥臂组的下桥臂和所述第二桥臂的上桥臂导通,所述第三开关、所述第一桥臂组的上桥臂和所述第二桥臂的下桥臂断开;所述控制所述第一开关、所述第二开关、所述第四开关、所述第五开关、所述第一桥臂组的上桥臂和所述第二桥臂的上桥臂导通,所述第三开关、第一桥臂组的下桥臂和第二桥臂的下桥臂断开,包括:在第二时段控制所述第一开关、所述第二开关、所述第四开关、所述第五开关、所述第一桥臂组的上桥臂和所述第二桥臂的上桥臂导通,所述第三开关、第一桥臂组的下桥臂和第二桥臂的下桥臂断开;其中,所述第一时段与所述第二时段为第一周期,在所述第一周期内,所述第一时段在所述第二时段之前。
本申请提供的实施例可以在不改变电路结构的情况下,根据充电设备与动力电池的电压之间的关系,灵活调节动力电池的充电电压,同时利用动力电池电压调节系 统本身的电路结构为电机提供能量,能够在同一电路中通过不同开关的导通与断开实现动力电池的升压充电。
在一些实施例中,所述第一时段和所述第二时段交替分布。
在动力电池的充电过程中,通过第一时段和第二时段交替分布,能够实现升压后的持续充电,保证充电过程的持续进行。
第二方面,本申请提供了一种动力电池电压调节***的控制方法,所述动力电池电压调节***包括动力电池、开关模块、充放电接口和电机;所述开关模块包括第一开关、第二开关、第三开关、第四开关、第五开关、第一桥臂组和第二桥臂;所述第一桥臂组和所述第二桥臂中的每个桥臂分别包括上桥臂和下桥臂,所述第一桥臂组中的每个桥臂的上桥臂和下桥臂的连接点一一对应地与所述电机的中的全部电感连接,所述第二桥臂中的上桥臂和下桥臂的连接点与所述电机的三相中心点连接;所述第一开关的一端与所述动力电池的正极连接,所述第一开关的另一端与所述第三开关的一端连接,且通过第一桥臂组的上桥臂分别与所述电机中的全部电感连接,所述第三开关的另一端与所述第四开关的一端连接,且通过第二桥臂的上桥臂与所述电机的三相中心点连接,所述第四开关的另一端与所述充放电接口的正极连接;所述第二开关的一端与所述动力电池的负极相连,所述第二开关的另一端与所述第五开关的一端连接,且通过第一桥臂组的下桥臂分别与所述电机中的全部电感连接,通过第二桥臂的下桥臂与所述电机的三相中心点连接,所述第五开关的另一端与所述充放电接口的负极连接;所述控制方法包括:获取第一电压和第三电压,所述第一电压为所述动力电池的电压,所述第三电压为负载设备的请求电压,所述负载设备用于连接所述充放电接口;当所述第一电压大于所述第三电压时,控制所述第四开关、所述第五开关、所述第一桥臂组的下桥臂和所述第二桥臂的上桥臂导通,所述第三开关、所述第一桥臂组的上桥臂和所述第二桥臂的下桥臂断开;或者,当所述第一电压小于所述第三电压时,控制所述第一开关、所述第二开关、所述第四开关、所述第五开关、所述第一桥臂组的上桥臂和所述第二桥臂的上桥臂导通,所述第三开关、所述第一桥臂组的下桥臂和所述第二桥臂的下桥臂断开。
本申请实施例提供的动力电池电压调节***的控制方法能够在不同情况下,通过控制电路结构中不同开关的导通与断开,在不改变电路结构的情况下适配各种需求电压不同的负载设备,使得动力电池电压调节***既能为需求电压高于动力电池电压 的负载设备提供电能,也能为需求电压低于动力电池电压的负载设备提供电能,从而实现在不同场景下灵活调整动力电池的放电电压,为多种负载设备提供电能。
在一些实施例中,所述控制方法还包括:在第三时段控制所述第一开关、所述第二开关、所述第一桥臂组的上桥臂和所述第二桥臂的下桥臂导通,所述第三开关、所述第一桥臂组的下桥臂和所述第二桥臂的上桥臂断开;所述当所述第一电压大于所述第三电压时,控制所述第四开关、所述第五开关、所述第一桥臂组的下桥臂和所述第二桥臂的上桥臂导通,所述第三开关、所述第一桥臂组的上桥臂和所述第二桥臂的下桥臂断开,包括:当所述第一电压大于所述第三电压时,在第四时段控制所述第四开关、所述第五开关、所述第一桥臂组的下桥臂和所述第二桥臂的上桥臂导通,所述第三开关、所述第一桥臂组的上桥臂和所述第二桥臂的下桥臂断开;其中,所述第三时段与所述第四时段为第二周期,在所述第二周期内,所述第三时段在所述第四时段之前。
本申请提供的实施例可以在不改变电路结构的情况下,根据负载设备的需求灵活调节输出电压,同时利用动力电池电压调节***本身的电路结构为电机提供能量,能够在同一电路中通过不同开关的导通与断开实现动力电池的降压放电。
在一些实施例中,所述控制方法还包括:在第三时段控制所述第一开关、所述第二开关、所述第一桥臂组的上桥臂和所述第二桥臂的下桥臂导通,所述第三开关、所述第一桥臂组的下桥臂和所述第二桥臂的上桥臂断开;所述当所述第一电压小于所述第三电压时,控制所述第一开关、所述第二开关、所述第四开关、所述第五开关、所述第一桥臂组的上桥臂和所述第二桥臂的上桥臂导通,所述第三开关、所述第一桥臂组的下桥臂和所述第二桥臂的下桥臂断开,包括:当所述第一电压小于所述第三电压时,在第五时段控制所述第一开关、所述第二开关、所述第四开关、所述第五开关、所述第一桥臂组的上桥臂和所述第二桥臂的上桥臂导通,所述第三开关、所述第一桥臂组的下桥臂和所述第二桥臂的下桥臂断开;其中,所述第三时段与所述第五时段为第三周期,在所述第三周期内,所述第三时段在所述第五时段之前。
本申请提供的实施例可以在不改变电路结构的情况下,根据负载设备的需求灵活调节输出电压,同时利用动力电池电压调节***本身的电路结构为电机提供能量,能够在同一电路中通过不同开关的导通与断开实现动力电池的升压放电。
在一些实施例中,所述第三时段与所述第四时段交替分布。
在动力电池的降压放电的过程中,通过第三时段和第四时段交替分布,能够实现降压后的持续放电,保证放电过程的持续进行。
在一些实施例中,所述第三时段与所述第五时段交替分布。
在动力电池的升压放电的过程中,通过第三时段和第五时段交替分布,能够实现升压后的持续放电,保证放电过程的持续进行。
第三方面,本申请提供了一种动力电池电压调节***,所述动力电池电压调节***包括动力电池、开关模块、充放电接口和电机;所述开关模块包括第一开关、第二开关、第三开关、第四开关、第五开关、第一桥臂组和第二桥臂;所述第一桥臂组和所述第二桥臂中的每个桥臂分别包括上桥臂和下桥臂,所述第一桥臂组中的每个桥臂的上桥臂和下桥臂的连接点一一对应地与所述电机的中的全部电感连接,所述第二桥臂中的上桥臂和下桥臂的连接点与所述电机的三相中心点连接;所述第一开关的一端与所述动力电池的正极连接,所述第一开关的另一端与所述第三开关的一端连接,且通过第一桥臂组的上桥臂分别与所述电机中的全部电感连接,所述第三开关的另一端与所述第四开关的一端连接,且通过第二桥臂的上桥臂与所述电机的三相中心点连接,所述第四开关的另一端与所述充放电接口的正极连接;所述第二开关的一端与所述动力电池的负极相连,所述第二开关的另一端与所述第五开关的一端连接,且通过第一桥臂组的下桥臂分别与所述电机中的全部电感连接,通过第二桥臂的下桥臂与所述电机的三相中心点连接,所述第五开关的另一端与所述充放电接口的负极连接。
本申请实施例提供的动力电池电压调节***充分考虑了不同情况下动力电池充放电时对电压调节的需求,在动力电池的充放电回路中的关键处设置开关,并通过控制不同开关的导通与断开,在同一个电路结构中分别形成直接充电、升压充电、升压放电和降压放电的回路,从而无需更换电路结构即可灵活调整动力电池的充放电电压,以满足不同场景下动力电池的充电电压或放电电压的需求。
第四方面,本申请提供了一种动力电池电压调节***的控制装置,包括:处理器,所述处理器用于执行如上述第一方面中任一实施例所述的控制方法,或者,执行上述第二方面中任一实施例所述的控制方法。
第五方面,本申请提供了一种动力装置,包括如上述第三方面所述的动力电池电压调节***,所述动力电池电压调节***用于为所述动力电池充电或用于所述动力电池放电,所述动力电池用于为所述动力装置提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例提供的充电方法的一种应用架构示意图;
图2是本申请实施例提供的动力电池电压调节***的示意性框图;
图3是本申请实施例提供的一种动力电池电压调节***的控制方法的示意性流程图;
图4是本申请实施例提供的动力电池电压调节***的一种充电回路的示意图;
图5是本申请实施例提供的动力电池电压调节***的另一种充电回路的示意图;
图6是本申请实施例提供的另一种动力电池电压调节***的控制方法的示意性流程图;
图7是本申请实施例提供的动力电池电压调节***的另一种充电回路的示意图;
图8是本申请实施例提供的另一种动力电池电压调节***的控制方法的示意性流程图;
图9是本申请实施例提供的动力电池电压调节***的另一种充电回路的示意图;
图10是本申请实施例提供的动力电池电压调节***的另一种充电回路的示意图;
图11是本申请实施例提供的另一种动力电池电压调节***的控制方法的示意性流程图;
图12是本申请实施例提供的动力电池电压调节***的另一种充电回路的示意图;
图13是本申请实施例提供的一种动力电池电压调节***10的控制装置的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
随着电池技术的发展,动力电池的各种性能都在不断提高,尤其是动力电池的电压,普遍都有大幅度的提升。对于这种具有较高电压的新型动力电池,只有能输出相应地较高电压的充电设备才可以为其充电。然而,目前使用的充电设备大部分只能为具有较低电压的传统动力电池充电,其最大输出电压无法达到新型动力电池所要求的电压。如果为了适配新型动力电池而对充电设备全部进行更换,则会导致原有充电设备的浪费,同时也会增加不必要的成本。
另外,随着各种各样的负载设备(例如车载设备)的研发,不同负载设备所需的动力电池的输出电压也不尽相同,因此需要一种方法,使得动力电池在放电过程中,能够更加灵活地调整输出电压,以满足不同负载设备的需求。
鉴于此,本申请实施例提供了一种动力电池电压调节***及其控制方法和控制装置,该动力电池电压调节***包括动力电池、开关模块、充放电接口和电机,通过控制开关模块中不同开关的导通和断开,在不同场景下实现直接充电或升压充电,或者,在不同场景下实现升压放电或降压放电。
本申请实施例中的动力电池可以为锂离子电池、锂金属电池、铅酸电池、镍隔 电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从规模而言,本申请实施例中的电池可以为电芯单体,也可以是电池模组或电池包,在此不做限定。从应用场景而言,电池可应用于汽车、轮船等动力装置内。比如,可以应用于动力汽车内,为动力汽车的电机供电,作为电动汽车的动力源。电池还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。
为了便于描述,以下将以动力电池应用于新能源汽车(动力汽车)作为实施例进行阐述。
驱动电机及其控制***是新能源汽车的核心部件之一,其驱动特性决定了汽车行驶的主要性能指标。新能源汽车的电机驱动***主要由电动机(即电机)、功率转换器、电机控制器(例如,逆变器)、各种检测传感器以及电源等部分构成。电机是应用电磁感应原理运行的旋转电磁机械,用于实现电能向机械能的转换。运行时从电***吸收电功率,向机械***输出机械功率。
图1为本申请实施例充电的方法可应用的一种应用架构示意图,该应用架构包括电池管理***(Battery Management System,BMS)100和充电桩200,BMS 100可以通过通信线与充电桩200连接,以与充电桩200进行信息交互。例如,通信线可以为控制器局域网络(Controller Area Network,CAN)通信线或菊花链通信线。
BMS 100为动力电池的BMS,动力电池为给用电装置提供动力来源的电池。可选地,动力电池可以为动力蓄电池。从电池的种类而言,该动力电池可以是锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,本申请实施例中的动力电池可以是电芯/电池单体,也可以是电池模组或电池包,在本申请实施例中不做具体限定。可选地,用电装置可以为车辆、船舶或航天器等,本申请实施例对此并不限定。BMS为保护动力电池使用安全的控制***,实施充放电管理、高压控制、保护电池、采集电池数据、评估电池状态等功能。其中,BMS可以与动力电池集成设置于同一设备/装置中,或者,BMS也可作为独立的设备/装置设置于动力电池之外。
充电桩200,也称为充电机,为给动力电池充电的装置。充电桩可以按照BMS100的充电需求输出充电功率,以给动力电池充电。例如,充电桩200可以按照BMS100发送的需求电压和需求电流输出电压和电流。
为了满足不同场景下动力电池对充电电压的需求,本申请提供了一种动力电池 电压调节***。如图2所示,该动力电池电压调节***10包括动力电池11、开关模块12、充放电接口13和电机14;开关模块12包括第一开关K1、第二开关K2、第三开关K3、第四开关K4、第五开关K5、第一桥臂组121和第二桥臂122;第一桥臂组121和第二桥臂122中的每个桥臂分别包括上桥臂和下桥臂,第一桥臂组121中的每个桥臂的上桥臂和下桥臂的连接点一一对应地与电机14的中的全部电感连接,第二桥臂122中的上桥臂和下桥臂的连接点与电机14的三相中心点连接;第一开关K1的一端与动力电池11的正极连接,第一开关K1的另一端与第三开关K3的一端连接,且通过第一桥臂组121的上桥臂分别与电机14中的全部电感连接,第三开关K3的另一端与第四开关K4的一端连接,且通过第二桥臂122的上桥臂与电机14的三相中心点连接,第四开关K4的另一端与充放电接口13的正极连接;第二开关K2的一端与动力电池11的负极相连,第二开关K2的另一端与第五开关K5的一端连接,且通过第一桥臂组121的下桥臂分别与电机14中的全部电感连接,通过第二桥臂122的下桥臂与电机14的三相中心点连接,第五开关K5的另一端与充放电接口13的负极连接。
开关模块12中的第一开关K1、第二开关K2、第三开关K3、第四开关K4和第五开关K5可以为继电器开关,由控制模块来控制这些开关的导通或断开,以形成不同的回路。第一开关K1用于导通或断开动力电池电压调节***10的除动力电池11以外的部分与电池正极的连接;第二开关K2用于导通或断开动力电池电压调节***10的除动力电池11以外的其他部分与电池负极的连接;第三开关K3用于导通或断开第二桥臂122和充放电接口13、与第一桥臂组121和动力电池11之间的连接;第四开关K4用于导通或断开动力电池电压调节***10的除充放电接口13之外的部分与充放电接口13的正极之间的连接;第五开关K5用于导通或断开动力电池电压调节***10的除充放电接口13之外的部分与充放电接口13的负极之间的连接。
第一桥臂组121和第二桥臂122可以由电机14驱动***中的逆变器实现,其中该逆变器可以采用绝缘栅双极型功率管(Insulated Gate Bipolar Transistor,IGBT)的桥臂开关实现。第一桥臂组121中的桥臂数量与电机14中的电感数量相同。例如,该电机14为三相电机14,则该逆变器包括三相桥臂,即包括U相桥臂、V相桥臂和W相桥臂。其中,该三相桥臂中每相桥臂均具有上桥臂和下桥臂,其上桥臂和下桥臂各自设置有开关单元,即第一桥臂组121分别包括U相桥臂中的上桥臂开关1211和下桥臂开关1212,V相桥臂中的上桥臂开关1213和下桥臂开关1214,以及W相桥臂中的上 桥臂开关1215和下桥臂开关1216。第二桥臂122也具有上桥臂下桥臂,其上桥臂和下桥臂各自设置有开关单元,即第二桥臂122包括上桥臂开关1221和下桥臂开关1222。
对于电机14,可以包括多个电感,以三相电机14为例,可以包括三个电感,具体可以包括:与U相桥臂相连的电感141,与V相桥臂相连的电感142以及与W相桥臂相连的电感143。其中,电感141的一端与U相桥臂中上桥臂和下桥臂的连接点相连,电感142的一端与V相桥臂中上桥臂和下桥臂的连接点相连,电感143的一端与W相桥臂中上桥臂和下桥臂的连接点相连。电感141的另一端、电感142的另一端和电感143另一端连接在一起,该连接点为电机14的三相中心点。
需要说明的是,该电机14不限于是三相电机14,还可以是六相电机14等,对应地,六相电机14可以包括六相桥臂。
可选地,动力电池电压调节***10还可以设置第六开关K6、第七开关K7、第一电容C1、第二电容C2和电阻R。
第六开关K6设置于电机14的三相中心点与第二桥臂122的上桥臂和下桥臂的连接点之间,用于切断或导通电机14的三相中心点与第二桥臂122的上桥臂和下桥臂的连接点之间的高压连接。在本申请实施例中,第六开关K6可以始终处于闭合状态。
第七开关K7与电阻R串联后并联于第二开关K2的两端,第一电容C1的一端通过第一开关K1连接于动力电池11的正极,另一端通过第二开关K2连接于动力电池11的负极,第二电容C2的一端通过第四开关K4连接于充放电接口13的正极,另一端通过第五开关K5连接于充放电接口13的负极。在对动力电池电压调节***10进行高压连接时,可以先导通第一开关K1和第七开关K7,对第一电容C1和第二电容C2进行预先充电,避免较高的电压对电路造成损害。具体地,可以对第七开关K7的导通设置预设时间,在预设时间结束后,导通第二开关K2并断开第七开关K7。在本申请实施例中,导通第二开关K2之前均可以在预设时间内先导通第七开关K7,在预设时间结束后,导通第二开关K2并断开第七开关K7。
第二电容C2用于稳定充放电接口13的输入电压,以及吸收第二桥臂122在断开时的尖峰电压,避免第二桥臂122的损坏。第一电容C1和第二电容C2均可以起到稳压和滤除杂波等作用。
本申请实施例提供的动力电池电压调节***10充分考虑了不同情况下动力电池11充放电时对电压调节的需求,在动力电池11的充放电回路中的关键处设置开关, 并通过控制不同开关的导通与断开,在同一个电路结构中分别形成直接充电、升压充电、升压放电和降压放电的回路,从而无需更换电路结构即可灵活调整动力电池11的充放电电压,以满足不同场景下动力电池11的充电电压或放电电压的需求。
在上述动力电池电压调节***10的基础上,根据本申请的一些实施例,本申请还提供了一种动力电池电压调节***10的控制方法,如图3至图7所示。
图3是本申请实施例提供的动力电池电压调节***10的一种控制方法的示意性流程图,示出了动力电池电压调节***10在充电过程中的示意性流程,该动力电池电压调节***10的控制方法包括以下步骤。
S1、获取第一电压和第二电压,第一电压为动力电池11的电压,第二电压为充电设备的最大输出电压,充电设备用于连接充放电接口13。
S11、当第一电压小于第二电压时,控制第一开关K1、第二开关K2、第三开关K3、第四开关K4和第五开关K5导通,第一桥臂组121和第二桥臂122中的所有桥臂断开;或者,S12、当第一电压大于或等于第二电压时,控制第一开关K1、第二开关K2、第四开关K4、第五开关K5、第一桥臂组121的上桥臂和第二桥臂122的上桥臂导通,第三开关K3、第一桥臂组121的下桥臂和第二桥臂122的下桥臂断开。
在本申请实施例中,上述步骤可以由控制模块执行。控制模块获取第一电压和第二电压,即控制模块获取动力电池11的电压和充电设备的最大输出电压,比较两者的大小,来确定为动力电池11充电的方式。其中,充电设备是为动力电池11提供电能的设备,例如,充电设备可以为充电桩。
当第一电压小于第二电压时,充电设备能够为动力电池11的充电过程提供足够的电压,因此可以直接为动力电池11进行充电,无需对充电电压进行调节。具体来说,控制模块控制动力电池电压调节***10中的第一开关K1、第二开关K2、第三开关K3、第四开关K4和第五开关K5导通,第一桥臂组121和第二桥臂122中的所有桥臂断开,以形成如图4所示的直接充电的回路。
当第一电压大于或等于第二电压时,充电设备无法为动力电池11的充电过程提供足够的电压,因此需要升高动力电池11的充电电压。具体来说,控制第一开关K1、第二开关K2、第四开关K4、第五开关K5、第一桥臂组121的上桥臂和第二桥臂122的上桥臂导通,第三开关K3、第一桥臂组121的下桥臂和第二桥臂122的下桥臂断开,以形成如图5所示的升压充电的回路。在图5中,充电设备与预先储存有能量的电机14 共同为动力电池11提供电能,也就是说,充电设备提供的电压与电机14提供的电压进行叠加,且叠加后的电压大于动力电池11的电压,即可为动力电池11进行充电。电机14可以预先通过动力电池电压调节***10中的电路来储存能量,也可以由外部设备为电机14提供能量。
可选地,获取第一电压和第二电压的装置可以是控制模块中的BMS,控制开关模块12中开关的导通或断开的装置可以是控制模块中的微控制单元(micro control unit,MCU)。BMS可以将获取到的第一电压和第二电压进行比较,确定充电方式,并与MCU通信。例如当第一电压小于第二电压时,BMS向MCU发送第一信息,第一信息用于指示采用直接充电的方式进行充电,则MCU可以根据第一信息,控制相应的开关导通或断开,形成直接充电的充电回路。
类似地,当第一电压大于或等于第二电压时,BMS向MCU发送第二信息,第二信息用于指示采用升压充电的方式进行充电,则MCU可以根据第二信息,控制相应的开关导通或断开,形成升压充电的充电回路。在充电过程的不同阶段,动力电池所需的充电电压也可能有所不同,因此,BMS向MCU发送第二信息时,也可以同时向MCU发送动力电池的目标电压,该目标电压即为动力电池在当前充电阶段所需的电压,可能与BMS在步骤S1获取的第一电压相同,也可能不同。
本申请实施例提供的动力电池电压调节***10的控制方法能够在不同情况下,通过控制电路结构中不同开关的导通与断开,能够在不改变现有充电设施的基础上,使得充电设备既能够对电压低于充电设备的最大输出电压的动力电池11进行充电,也能够对相较于充电设备的最大输出电压具有较高电压的动力电池11进行充电。该控制方法可以在不同场景下灵活调整动力电池11的充电电压,既能够解决外部充电设备的兼容问题,也能够使得动力电池11的充电过程不受充电设备的最大输出电压的限制。
根据本申请的一些实施例,可选地,第一电压大于或等于第二电压时,该控制方法还包括:S121、在第一时段控制第四开关K4、第五开关K5、第一桥臂组121的下桥臂和第二桥臂122的上桥臂导通,第三开关K3、第一桥臂组121的上桥臂和第二桥臂122的下桥臂断开。
步骤S12可以具体为:S122、在第二时段控制第一开关K1、第二开关K2、第四开关K4、第五开关K5、第一桥臂组121的上桥臂和第二桥臂122的上桥臂导通,第三开关K3、第一桥臂组121的下桥臂和第二桥臂122的下桥臂断开。
其中,第一时段与第二时段为第一周期,在第一周期内,第一时段在第二时段之前。
图6示出了本申请实施例提供的另一种动力电池电压调节***10的控制方法的示意性流程图,即在对动力电池11进行升压充电情况下的一种控制方法。
在第一电压大于或等于第二电压的情况下,充电设备与预先储存有能量的电机14共同为动力电池11提供电能,其中,电机14中预先储存的能量可以由动力电池电压调节***10自身的电路来提供。
具体来说,控制模块可以控制第四开关K4、第五开关K5、第一桥臂组121的下桥臂和第二桥臂122的上桥臂导通,第一开关K1、第二开关K2、第三开关K3、第一桥臂组121的上桥臂和第二桥臂122的下桥臂断开,以形成如图7所示的回路。在图7中,充电设备仅为电机14提供电能,电机14通过自身的电感储存能量。
电机14在第一时段通过图7示出的回路储存能量后,在第二时段就可以形成升压充电的回路,与充电设备共同为动力电池11充电。具体来说,步骤S122为在第二时段实现步骤S12中对开关的导通或断开的控制。第一时段和第二时段可以组成第一周期,在一个第一周期内,先在第一时段储存电机14能量,再在第二时段为动力电池11提供升高后的充电电压。
本申请提供的实施例可以在不改变电路结构的情况下,根据充电设备与动力电池11的电压之间的关系,灵活调节动力电池11的充电电压,同时利用动力电池电压调节***10本身的电路结构为电机14提供能量,能够在同一电路中通过不同开关的导通与断开实现动力电池11的升压充电。
根据本申请的一些实施例,可选地,第一时段和第二时段交替分布。
在动力电池11的升压充电过程中,第一时段和第二时段分别形成的回路可以在一段时间内快速交替导通多次,使得动力电池11的充电电压升高到预定值后,能够持续为动力电池11充电。
为了控制尽可能少的控制开关的导通与断开,延长开关的使用寿命,在第一时段和第二时段交替分布的时间里,可以在第一时段分布的时间中保留第一开关K1和第二开关K2的导通,而仅控制第一桥臂组121的上桥臂和下桥臂交替导通来实现第一时段和第二时段中形成的电流回路交替导通。在图7所示的回路中,保留第一开关K1和第二开关K2的导通不会影响该回路中电流的方向。
在动力电池11的充电过程中,通过第一时段和第二时段交替分布,能够实现升压后的持续充电,保证充电过程的持续进行。
根据本申请的一些实施例,本申请还提供了另一种动力电池电压调节***10的控制方法,如图8至图12所示,在上述动力电池电压调节***10的基础上,该控制方法包括以下步骤。
S2、获取第一电压和第三电压,第一电压为动力电池11的电压,第三电压为负载设备的请求电压,负载设备用于连接充放电接口13。
S21、当第一电压大于第三电压时,控制第四开关K4、第五开关K5、第一桥臂组121的下桥臂和第二桥臂122的上桥臂导通,第三开关K3、第一桥臂组121的上桥臂和第二桥臂122的下桥臂断开;或者,S22、当第一电压小于第三电压时,控制第一开关K1、第二开关K2、第四开关K4、第五开关K5、第一桥臂组121的上桥臂和第二桥臂122的上桥臂导通,第三开关K3、第一桥臂组121的下桥臂和第二桥臂122的下桥臂断开。
图8是本申请实施例提供的另一种动力电池电压调节***10的控制方法的示意性流程图,示出了动力电池电压调节***10在放电过程中的示意性流程图。控制模块获取第一电压和第三电压,即获取动力电池11的电压和负载设备的请求电压,比较两者的大小,来确定动力电池11放电的方式。其中,负载设备是消耗电能来运行的设备,例如,负载设备可以为车载设备。
当第一电压大于第三电压时,动力电池11的电压大于负载设备的请求电压,需要将电路的输出电压降低,使其与该负载设备的请求电压相匹配。具体来说,控制第四开关K4、第五开关K5、第一桥臂组121的下桥臂和第二桥臂122的上桥臂导通,第一开关K1、第二开关K2、第三开关K3、第一桥臂组121的上桥臂和第二桥臂122的下桥臂断开,以形成图9所示的降压放电的回路。在图9中,仅由预先储存有能量的电机14为负载设备提供电能,通过控制电机14中储存的能量,来提供与负载设备的请求电压相匹配的电压。
当第一电压小于第三电压时,动力电池11的电压小于负载设备的请求电压,需要将电路的输出电压升高,使其与该负载设备的请求电压相匹配。具体来说,控制第一开关K1、第二开关K2、第四开关K4、第五开关K5、第一桥臂组121的上桥臂和第二桥臂122的上桥臂导通,第三开关K3、第一桥臂组121的下桥臂和第二桥臂122 的下桥臂断开,以形成图10所示升压放电的回路。在图10中,动力电池11与预先储存有能量的电机14共同为负载设备提供电能,也就是说,动力电池11提供的电压与电机14提供的电压进行叠加,且叠加后的电压能够与负载设备的请求电压相匹配,即可为负载设备提供电能。
在本申请实施例提供的动力电池电压调节***10中,电机14可以预先通过动力电池电压调节***10中的电路来储存能量,也可以由外部设备为电机14提供能量。
在另一种可能的实施方式中,控制模块可以先将不影响电流回路的开关导通,而仅改变部分开关的导通或断开来实现电流回路的变化。具体来说,在动力电池11需要进行放电时,控制模块先控制第一开关K1、第二开关K2、第四开关K4和第五开关K5导通,其他开关断开,再根据对第一电压和第三电压的判断,在第一电压大于第三电压时,进一步控制第一桥臂组121的下桥臂和第二桥臂122的上桥臂导通、第一桥臂组121的上桥臂和第二桥臂122的下桥臂断开,以形成降压放电的回路;或者,在第一电压小于第三电压时,进一步控制第一桥臂组121的上桥臂和第二桥臂122的上桥臂导通、第一桥臂组121的下桥臂和第二桥臂122的下桥臂断开,以形成升压放电的回路。也就是说,控制模块对第一电压和第三电压的判断的步骤与控制第一开关K1、第二开关K2、第四开关K4和第五开关K5导通的步骤不区分先后顺序。
可选地,获取第一电压和第三电压的装置可以是控制模块中的BMS,控制开关模块12中开关的导通或断开的装置可以是控制模块中的MCU。
在一种可能的实施方式中,BMS将获取到的第一电压和第三电压进行比较,确定放电方式,并与MCU通信。例如当第一电压大于第三电压时,BMS向MCU发送第三信息,第三信息用于指示采用降压放电的方式进行放电,则MCU可以根据第三信息,控制相应的开关导通或断开,形成降压放电的放电回路。类似地,当第一电压小于第三电压时,BMS向MCU发送第四信息,第四信息用于指示采用升压放电的方式进行放电,则MCU可以根据第四信息,控制相应的开关导通或断开,形成升压放电的放电回路。
在另一种可能的实施方式中,BMS获取第一电压和第三电压,与MCU进行通信,例如BMS可以向MCU发送第五信息,第五信息用于指示形成放电回路。MCU接收第五信息,控制不影响电流回路的开关导通,即控制第一开关K1、第二开关K2、第四开关K4和第五开关K5导通,其他开关断开。另外,BMS根据第一电压和第三电压, 确定放电方式,并通过第三信息或第四信息指示MCU控制相应开关导通或断开,形成相应的放电回路。
本申请实施例提供的动力电池电压调节***10的控制方法能够在不同情况下,通过控制电路结构中不同开关的导通与断开,在不改变电路结构的情况下适配各种需求电压不同的负载设备,使得动力电池电压调节***10既能为需求电压高于动力电池11电压的负载设备提供电能,也能为需求电压低于动力电池11电压的负载设备提供电能,从而实现在不同场景下灵活调整动力电池11的放电电压,为多种负载设备提供电能。
根据本申请的一些实施例,可选地,本申请实施例提供的控制方法还包括:S23、在第三时段控制第一开关K1、第二开关K2、第一桥臂组121的上桥臂和第二桥臂122的下桥臂导通,第三开关K3、第一桥臂组121的下桥臂和第二桥臂122的上桥臂断开。
步骤S21可以具体为:S211、当第一电压大于第三电压时,在第四时段控制第四开关K4、第五开关K5、第一桥臂组121的下桥臂和第二桥臂122的上桥臂导通,第三开关K3、第一桥臂组121的上桥臂和第二桥臂122的下桥臂断开。
其中,第三时段与第四时段为第二周期,在第二周期内,第三时段在第四时段之前。
图11示出了本申请实施例提供的另一种动力电池电压调节***10的控制方法的示意性流程图,即动力电池11在降压充电情况下的一种控制方法。
在降压充电形成的回路中,仅由预先储存有能量的电机14为负载设备提供电能,其中,电机14中预先储存的能量可以由动力电池电压调节***10自身的电路来提供。
具体来说,控制模块可以控制第一开关K1、第二开关K2、第一桥臂组121的上桥臂和第二桥臂122的下桥臂导通,第三开关K3、第四开关K4、第五开关K5、第一桥臂组121的下桥臂和第二桥臂122的上桥臂断开,以形成如图12所示的回路。在图12中,动力电池11仅电机14提供电能,电机14通过自身的电感储存能量。
电机14在第三时段通过图12示出的回路储存能量后,在第四时段就可以形成降压放电的回路,由预先储存有能量的电机14为负载设备提供电能。具体来说,步骤S211为在第四时段实现步骤S21中对开关的导通或断开的控制。第三时段和第四时段 可以组成第二周期,在一个第二周期内,先在第三时段储存电机14能量,再在第四时段为负载设备提供降低后的放电电压。
本申请提供的实施例可以在不改变电路结构的情况下,根据负载设备的需求灵活调节输出电压,同时利用动力电池电压调节***10本身的电路结构为电机14提供能量,能够在同一电路中通过不同开关的导通与断开实现动力电池11的降压放电。
根据本申请的一些实施例,可选地,本申请实施例提供的控制方法还包括:S23、在第三时段控制第一开关K1、第二开关K2、第一桥臂组121的上桥臂和第二桥臂122的下桥臂导通,第三开关K3、第一桥臂组121的下桥臂和第二桥臂122的上桥臂断开。
步骤S22可以具体为:S221、当第一电压小于第三电压时,在第五时段控制第一开关K1、第二开关K2、第四开关K4、第五开关K5、第一桥臂组121的上桥臂和第二桥臂122的上桥臂导通,第三开关K3、第一桥臂组121的下桥臂和第二桥臂122的下桥臂断开。
其中,第三时段与第五时段为第三周期,在第三周期内,第三时段在第五时段之前。
步骤S23在上文中已进行详细介绍,在此不再赘述。电机14在第三时段通过图12示出的回路储存能量后,在第五时段就可以形成升压放电的回路,由动力电池11和预先储存有能量的电机14共同为负载设备提供电能。具体来说,步骤S221为在第五时段实现步骤S22中对开关的导通或断开的控制。第三时段和第五时段可以组成第三周期,在一个第三周期内,先在第三时段储存电机14能量,再在第五时段为负载设备提供升高后的放电电压。
本申请提供的实施例可以在不改变电路结构的情况下,根据负载设备的需求灵活调节输出电压,同时利用动力电池电压调节***10本身的电路结构为电机14提供能量,能够在同一电路中通过不同开关的导通与断开实现动力电池11的升压放电。
根据本申请的一些实施例,可选地,第三时段与第四时段交替分布。
电机14在第三时段储存能量,在第四时段为负载设备提供电能,其中,第三时段和第四时段分别形成的回路可以在一段时间内快速交替导通多次,使得电机14能够提供的输出电压达到预定值后,能够持续为负载设备提供电能。
为了控制尽可能少的控制开关的导通与断开,延长开关的使用寿命,在第三时 段和第四时段交替分布的时间里,可以保持第一开关K1、第二开关K2、第四开关K4和第五开关K5的导通状态,而仅在第三时段分布的时间中控制第一桥臂组121的上桥臂和第二桥臂122的下桥臂导通、第一桥臂组121的下桥臂和第二桥臂122的上桥臂断开,在第四时段分布的时间中控制第一桥臂组121的下桥臂和第二桥臂122的上桥臂导通、第一桥臂组121的上桥臂和第二桥臂122的下桥臂断开。在第三时段或第四时段形成的回路中,保持第一开关K1、第二开关K2、第四开关K4和第五开关K5的导通状态不会影响回路中电流的方向。
在动力电池11的降压放电的过程中,通过第三时段和第四时段交替分布,能够实现降压后的持续放电,保证放电过程的持续进行。
根据本申请的一些实施例,可选地,第三时段与第五时段交替分布。
电机14在第三时段储存能量,在第五时段为负载设备提供电能,其中,第三时段和第五时段分别形成的回路可以在一段时间内快速交替导通多次,使得动力电池11和电机14共同提供的输出电压达到预定值后,能够持续为负载设备提供电能。
为了控制尽可能少的控制开关的导通与断开,延长开关的使用寿命,在第三时段和第五时段交替分布的时间里,可以保持第一开关K1、第二开关K2、第四开关K4和第五开关K5的导通状态,而仅在第三时段分布的时间中控制第一桥臂组121的上桥臂和第二桥臂122的下桥臂导通、第一桥臂组121的下桥臂和第二桥臂122的上桥臂断开,在第五时段分布的时间中控制第一桥臂组121的上桥臂和第二桥臂122的上桥臂导通、第一桥臂组121的下桥臂和第二桥臂122的下桥臂断开。在第三时段或第五时段形成的回路中,保持第一开关K1、第二开关K2、第四开关K4和第五开关K5的导通状态不会影响回路中电流的方向。
在动力电池11的升压放电的过程中,通过第三时段和第五时段交替分布,能够实现升压后的持续放电,保证放电过程的持续进行。
根据本申请的一些实施例,本申请还提供了一种动力电池电压调节***10的控制装置,包括:处理器,处理器用于执行本申请前述各种实施例的方法。
图13示出了本申请实施例的动力电池电压调节***10的控制装置1300的示意性框图。如图13所示,控制装置1300包括处理器1301,可选地,该控制装置1300还包括存储器1302,其中,存储器1302用于存储指令,处理器1301用于读取该指令并基于该指令执行前述本申请各种实施例的方法。
可选地,该处理器1301可以为上述任一实施例中的控制模块。
根据本申请的一些实施例,本申请还提供了一种动力装置,该动力装置包括本申请实施例提供的动力电池电压调节***10,动力电池电压调节***10用于为动力电池11充电或用于动力电池11放电,动力电池11用于为动力装置提供电能。
可选地,该动力装置可以为动力汽车。
本申请实施例还提供了一种可读存储介质,用于存储计算机程序,该计算机程序用于执行前述本申请各种实施例的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上 或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (11)

  1. 一种动力电池电压调节***(10)的控制方法,其特征在于,
    所述动力电池电压调节***(10)包括动力电池(11)、开关模块(12)、充放电接口(13)和电机(14);
    所述开关模块(12)包括第一开关(K1)、第二开关(K2)、第三开关(K3)、第四开关(K4)、第五开关(K5)、第一桥臂组(121)和第二桥臂(122);
    所述第一桥臂组(121)和所述第二桥臂(122)中的每个桥臂分别包括上桥臂和下桥臂,所述第一桥臂组(121)中的每个桥臂的上桥臂和下桥臂的连接点一一对应地与所述电机(14)的中的全部电感连接,所述第二桥臂(122)中的上桥臂和下桥臂的连接点与所述电机(14)的三相中心点连接;
    所述第一开关(K1)的一端与所述动力电池(11)的正极连接,所述第一开关(K1)的另一端与所述第三开关(K3)的一端连接,且通过第一桥臂组(121)的上桥臂分别与所述电机(14)中的全部电感连接,所述第三开关(K3)的另一端与所述第四开关(K4)的一端连接,且通过第二桥臂(122)的上桥臂与所述电机(14)的三相中心点连接,所述第四开关(K4)的另一端与所述充放电接口(13)的正极连接;
    所述第二开关(K2)的一端与所述动力电池(11)的负极相连,所述第二开关(K2)的另一端与所述第五开关(K5)的一端连接,且通过第一桥臂组(121)的下桥臂分别与所述电机(14)中的全部电感连接,通过第二桥臂(122)的下桥臂与所述电机(14)的三相中心点连接,所述第五开关(K5)的另一端与所述充放电接口(13)的负极连接;
    所述控制方法包括:
    获取第一电压和第二电压,所述第一电压为所述动力电池(11)的电压,所述第二电压为充电设备的最大输出电压,所述充电设备用于连接所述充放电接口(13);
    当所述第一电压小于所述第二电压时,控制所述第一开关(K1)、所述第二开关(K2)、所述第三开关(K3)、所述第四开关(K4)和所述第五开关(K5)导通,第一桥臂组(121)和第二桥臂(122)中的所有桥臂断开;或者,
    当所述第一电压大于或等于所述第二电压时,控制所述第一开关(K1)、所述第二开关(K2)、所述第四开关(K4)、所述第五开关(K5)、所述第一桥臂组(121) 的上桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、第一桥臂组(121)的下桥臂和第二桥臂(122)的下桥臂断开。
  2. 根据权利要求1所述的控制方法,其特征在于,当所述第一电压大于或等于所述第二电压时,所述控制方法还包括:
    在第一时段控制所述第四开关(K4)、所述第五开关(K5)、所述第一桥臂组(121)的下桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的下桥臂断开;
    所述控制所述第一开关(K1)、所述第二开关(K2)、所述第四开关(K4)、所述第五开关(K5)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、第一桥臂组(121)的下桥臂和第二桥臂(122)的下桥臂断开,包括:
    在第二时段控制所述第一开关(K1)、所述第二开关(K2)、所述第四开关(K4)、所述第五开关(K5)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、第一桥臂组(121)的下桥臂和第二桥臂(122)的下桥臂断开;
    其中,所述第一时段与所述第二时段为第一周期,在所述第一周期内,所述第一时段在所述第二时段之前。
  3. 根据权利要求2所述的控制方法,其特征在于,所述第一时段和所述第二时段交替分布。
  4. 一种动力电池电压调节***(10)的控制方法,其特征在于,
    所述动力电池电压调节***(10)包括动力电池(11)、开关模块(12)、充放电接口(13)和电机(14);
    所述开关模块(12)包括第一开关(K1)、第二开关(K2)、第三开关(K3)、第四开关(K4)、第五开关(K5)、第一桥臂组(121)和第二桥臂(122);
    所述第一桥臂组(121)和所述第二桥臂(122)中的每个桥臂分别包括上桥臂和下桥臂,所述第一桥臂组(121)中的每个桥臂的上桥臂和下桥臂的连接点一一对应地与所述电机(14)的中的全部电感连接,所述第二桥臂(122)中的上桥臂和下桥臂的连接点与所述电机(14)的三相中心点连接;
    所述第一开关(K1)的一端与所述动力电池(11)的正极连接,所述第一开关 (K1)的另一端与所述第三开关(K3)的一端连接,且通过第一桥臂组(121)的上桥臂分别与所述电机(14)中的全部电感连接,所述第三开关(K3)的另一端与所述第四开关(K4)的一端连接,且通过第二桥臂(122)的上桥臂与所述电机(14)的三相中心点连接,所述第四开关(K4)的另一端与所述充放电接口(13)的正极连接;
    所述第二开关(K2)的一端与所述动力电池(11)的负极相连,所述第二开关(K2)的另一端与所述第五开关(K5)的一端连接,且通过第一桥臂组(121)的下桥臂分别与所述电机(14)中的全部电感连接,通过第二桥臂(122)的下桥臂与所述电机(14)的三相中心点连接,所述第五开关(K5)的另一端与所述充放电接口(13)的负极连接;
    所述控制方法包括:
    获取第一电压和第三电压,所述第一电压为所述动力电池(11)的电压,所述第三电压为负载设备的请求电压,所述负载设备用于连接所述充放电接口(13);
    当所述第一电压大于所述第三电压时,控制所述第四开关(K4)、所述第五开关(K5)、所述第一桥臂组(121)的下桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的下桥臂断开;或者,
    当所述第一电压小于所述第三电压时,控制所述第一开关(K1)、所述第二开关(K2)、所述第四开关(K4)、所述第五开关(K5)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、所述第一桥臂组(121)的下桥臂和所述第二桥臂(122)的下桥臂断开。
  5. 根据权利要求4所述的控制方法,其特征在于,所述控制方法还包括:
    在第三时段控制所述第一开关(K1)、所述第二开关(K2)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的下桥臂导通,所述第三开关(K3)、所述第一桥臂组(121)的下桥臂和所述第二桥臂(122)的上桥臂断开;
    所述当所述第一电压大于所述第三电压时,控制所述第四开关(K4)、所述第五开关(K5)、所述第一桥臂组(121)的下桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的下桥臂断开,包括:
    当所述第一电压大于所述第三电压时,在第四时段控制所述第四开关(K4)、所 述第五开关(K5)、所述第一桥臂组(121)的下桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的下桥臂断开;
    其中,所述第三时段与所述第四时段为第二周期,在所述第二周期内,所述第三时段在所述第四时段之前。
  6. 根据权利要求4所述的控制方法,其特征在于,所述控制方法还包括:
    在第三时段控制所述第一开关(K1)、所述第二开关(K2)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的下桥臂导通,所述第三开关(K3)、所述第一桥臂组(121)的下桥臂和所述第二桥臂(122)的上桥臂断开;
    所述当所述第一电压小于所述第三电压时,控制所述第一开关(K1)、所述第二开关(K2)、所述第四开关(K4)、所述第五开关(K5)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、所述第一桥臂组(121)的下桥臂和所述第二桥臂(122)的下桥臂断开,包括:
    当所述第一电压小于所述第三电压时,在第五时段控制所述第一开关(K1)、所述第二开关(K2)、所述第四开关(K4)、所述第五开关(K5)、所述第一桥臂组(121)的上桥臂和所述第二桥臂(122)的上桥臂导通,所述第三开关(K3)、所述第一桥臂组(121)的下桥臂和所述第二桥臂(122)的下桥臂断开;
    其中,所述第三时段与所述第五时段为第三周期,在所述第三周期内,所述第三时段在所述第五时段之前。
  7. 根据权利要求5所述的控制方法,其特征在于,所述第三时段与所述第四时段交替分布。
  8. 根据权利要求6所述的控制方法,其特征在于,所述第三时段与所述第五时段交替分布。
  9. 一种动力电池电压调节***(10),其特征在于,
    所述动力电池电压调节***(10)包括动力电池(11)、开关模块(12)、充放电接口(13)和电机(14);
    所述开关模块(12)包括第一开关(K1)、第二开关(K2)、第三开关(K3)、第四开关(K4)、第五开关(K5)、第一桥臂组(121)和第二桥臂(122);
    所述第一桥臂组(121)和所述第二桥臂(122)中的每个桥臂分别包括上桥臂和 下桥臂,所述第一桥臂组(121)中的每个桥臂的上桥臂和下桥臂的连接点一一对应地与所述电机(14)的中的全部电感连接,所述第二桥臂(122)中的上桥臂和下桥臂的连接点与所述电机(14)的三相中心点连接;
    所述第一开关(K1)的一端与所述动力电池(11)的正极连接,所述第一开关(K1)的另一端与所述第三开关(K3)的一端连接,且通过第一桥臂组(121)的上桥臂分别与所述电机(14)中的全部电感连接,所述第三开关(K3)的另一端与所述第四开关(K4)的一端连接,且通过第二桥臂(122)的上桥臂与所述电机(14)的三相中心点连接,所述第四开关(K4)的另一端与所述充放电接口(13)的正极连接;
    所述第二开关(K2)的一端与所述动力电池(11)的负极相连,所述第二开关(K2)的另一端与所述第五开关(K5)的一端连接,且通过第一桥臂组(121)的下桥臂分别与所述电机(14)中的全部电感连接,通过第二桥臂(122)的下桥臂与所述电机(14)的三相中心点连接,所述第五开关(K5)的另一端与所述充放电接口(13)的负极连接。
  10. 一种动力电池电压调节***(10)的控制装置,其特征在于,包括:
    处理器,所述处理器用于执行如权利要求1至3中任一项所述的控制方法,或者,执行如权利要求4至8中任一项所述的控制方法。
  11. 一种动力装置,其特征在于,包括如权利要求9所述的动力电池电压调节***(10),所述动力电池电压调节***(10)用于为所述动力电池(11)充电或用于所述动力电池(11)放电,所述动力电池(11)用于为所述动力装置提供电能。
PCT/CN2022/080004 2022-03-09 2022-03-09 动力电池电压调节***及其控制方法和控制装置 WO2023168634A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020247004820A KR20240033022A (ko) 2022-03-09 2022-03-09 동력 배터리 전압 조절 시스템 및 이의 제어 방법 및 제어 장치
CN202280028553.0A CN117157849A (zh) 2022-03-09 2022-03-09 动力电池电压调节***及其控制方法和控制装置
PCT/CN2022/080004 WO2023168634A1 (zh) 2022-03-09 2022-03-09 动力电池电压调节***及其控制方法和控制装置
PCT/CN2022/087183 WO2023168787A1 (zh) 2022-03-09 2022-04-15 动力电池电压调节电路、***及其控制方法和控制装置
CN202280004712.3A CN115835978A (zh) 2022-03-09 2022-04-15 动力电池电压调节电路、***及其控制方法和控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080004 WO2023168634A1 (zh) 2022-03-09 2022-03-09 动力电池电压调节***及其控制方法和控制装置

Publications (1)

Publication Number Publication Date
WO2023168634A1 true WO2023168634A1 (zh) 2023-09-14

Family

ID=87937023

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/080004 WO2023168634A1 (zh) 2022-03-09 2022-03-09 动力电池电压调节***及其控制方法和控制装置
PCT/CN2022/087183 WO2023168787A1 (zh) 2022-03-09 2022-04-15 动力电池电压调节电路、***及其控制方法和控制装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087183 WO2023168787A1 (zh) 2022-03-09 2022-04-15 动力电池电压调节电路、***及其控制方法和控制装置

Country Status (3)

Country Link
KR (1) KR20240033022A (zh)
CN (1) CN117157849A (zh)
WO (2) WO2023168634A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654028B1 (en) * 2016-03-24 2017-05-16 Eaton Corporation System and method for maximizing efficiency of three-phase inverter-based power systems
CN112389269A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 一种汽车、能量转换装置及能量转换方法
CN112810467A (zh) * 2019-10-31 2021-05-18 比亚迪股份有限公司 能量转换装置及车辆
CN113043870A (zh) * 2021-04-30 2021-06-29 重庆长安新能源汽车科技有限公司 一种动力电池充电***及电动汽车

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834977A3 (de) * 1996-08-08 1999-04-14 Schmidhauser AG Einrichtung zum Laden mindestens eines Akkumulators, insbesondere eines Akkumulators für ein elektrisch angetriebenes Fahrzeug sowie ein Verfahren zum Betrieb dieser Einrichtung
JP3692993B2 (ja) * 2001-10-04 2005-09-07 トヨタ自動車株式会社 駆動装置および動力出力装置
JP3677541B2 (ja) * 2002-02-20 2005-08-03 株式会社日立製作所 充電装置
US7932633B2 (en) * 2008-10-22 2011-04-26 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
DE102010042328A1 (de) * 2010-10-12 2012-04-12 Robert Bosch Gmbh Verfahren zum Überwachen des Ladebetriebs eines Energiespeichers in einem Fahrzeug und Ladesystem zum Laden eines Energiespeichers in einem Fahrzeug
CN111347924B (zh) * 2018-12-21 2022-09-09 比亚迪股份有限公司 电机控制电路、车辆、加热方法及充放电方法
CN111347926B (zh) * 2018-12-21 2022-04-15 比亚迪股份有限公司 动力电池充放电装置、车辆及加热装置
CN111347853B (zh) * 2018-12-21 2022-01-07 比亚迪股份有限公司 电机控制电路、充放电方法、加热方法及车辆
CN112440766B (zh) * 2019-08-29 2022-07-15 比亚迪股份有限公司 电动汽车及其充电***
CN212587580U (zh) * 2020-05-29 2021-02-23 比亚迪股份有限公司 电池能量处理装置和车辆
CN112428840B (zh) * 2020-11-27 2023-05-12 广州橙行智动汽车科技有限公司 充放电***及电动汽车
CN113071346B (zh) * 2021-04-30 2022-11-22 重庆长安新能源汽车科技有限公司 一种动力电池的充电装置及车辆
CN215621422U (zh) * 2021-07-19 2022-01-25 蜂巢传动***(江苏)有限公司保定研发分公司 车辆的驱动电机控制器及具有其的车辆
CN113715648A (zh) * 2021-10-14 2021-11-30 蔚来汽车科技(安徽)有限公司 车辆充电***以及车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654028B1 (en) * 2016-03-24 2017-05-16 Eaton Corporation System and method for maximizing efficiency of three-phase inverter-based power systems
CN112389269A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 一种汽车、能量转换装置及能量转换方法
CN112810467A (zh) * 2019-10-31 2021-05-18 比亚迪股份有限公司 能量转换装置及车辆
CN113043870A (zh) * 2021-04-30 2021-06-29 重庆长安新能源汽车科技有限公司 一种动力电池充电***及电动汽车

Also Published As

Publication number Publication date
KR20240033022A (ko) 2024-03-12
WO2023168787A1 (zh) 2023-09-14
CN117157849A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US11021067B2 (en) Electrically powered vehicle and control method for electrically powered vehicle
CN102904324B (zh) 蓄电***
JP2014143817A (ja) 車両の電源システム
WO2013129231A1 (ja) 電源装置
JP7178892B2 (ja) 車両のバッテリ充電制御装置
CN110588380A (zh) 可充放电的储能装置、无线充电***及电动汽车
WO2023226567A1 (zh) 动力电池充放电电路、***及其控制方法和控制装置
US20240154440A1 (en) Charge-and-discharge circuit, charge-and-discharge system and charge-and-discharge control method
JP2020162291A (ja) 電源システム
CN103227487A (zh) 电动自行车用燃料电池/锂离子电池混合动力能量管理***
WO2023216733A1 (zh) 动力电池控制电路、***及其控制方法
WO2023216488A1 (zh) 动力电池电压调节电路、***及其控制方法
WO2023168634A1 (zh) 动力电池电压调节***及其控制方法和控制装置
EP4379998A1 (en) Power battery voltage regulation circuit and system, control method therefor and control apparatus thereof
WO2023168788A1 (zh) 动力电池电压调节电路、***及其控制方法和控制装置
US20240208362A1 (en) Power battery voltage regulation circuit and system, and control method and control apparatus therefor
WO2023029047A1 (zh) 电池加热装置及其控制方法、控制电路和动力装置
EP4228057A1 (en) Battery heating device, and control method, control circuit and power device therefor
WO2023206410A1 (zh) 电池的加热***的控制方法和加热***
US11791638B2 (en) Power supply system
US11784492B2 (en) Power supply system
WO2023010373A1 (zh) 动力电池加热***及其控制方法和控制电路
CN115835978A (zh) 动力电池电压调节电路、***及其控制方法和控制装置
EP3905501A1 (en) Storage battery device
CN116923119A (zh) 双电机驱动***、控制方法及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247004820

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004820

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022930275

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022930275

Country of ref document: EP

Effective date: 20240506