WO2023164908A1 - 一种信号复用方法/装置/设备及存储介质 - Google Patents

一种信号复用方法/装置/设备及存储介质 Download PDF

Info

Publication number
WO2023164908A1
WO2023164908A1 PCT/CN2022/079152 CN2022079152W WO2023164908A1 WO 2023164908 A1 WO2023164908 A1 WO 2023164908A1 CN 2022079152 W CN2022079152 W CN 2022079152W WO 2023164908 A1 WO2023164908 A1 WO 2023164908A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
relay device
time
base station
resources
Prior art date
Application number
PCT/CN2022/079152
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000506.5A priority Critical patent/CN114731572A/zh
Priority to PCT/CN2022/079152 priority patent/WO2023164908A1/zh
Publication of WO2023164908A1 publication Critical patent/WO2023164908A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a signal multiplexing method/apparatus/equipment and a storage medium.
  • Smart repeater can be the key device used by R18 to expand the coverage of the cell.
  • the Smart repeater can amplify the signal sent by the UE (User Equipment, user equipment) and forward it to the base station, or can amplify the signal sent by the base station and forward it to the UE.
  • Smart repeater can also communicate directly with the base station.
  • uplink signals when the Smart repeater communicates with the base station, namely: the UE signal forwarded by the Smart repeater, and the uplink signal generated by the Smart repeater itself (that is, the direct communication between the Smart repeater and the base station signal); and, when the Smart repeater communicates with the base station, there will also be two types of downlink signals, which are: the downlink signal of the base station that needs to be forwarded by the Smart repeater, and the downlink signal that the base station sends to the Smart repeater for control (that is, the Smart repeater Signals for direct communication with base stations).
  • the signal multiplexing method/apparatus/equipment and storage medium proposed in the present disclosure can distinguish the signal forwarded by the relay device and the signal directly interacted between the relay device and the base station, and send and receive the two types of signals respectively.
  • the signal multiplexing method proposed in an embodiment of the present disclosure is applied to a relay device, including:
  • the first signal is the uplink signal and/or the downlink signal forwarded by the relay device;
  • the second signal is the relay device and the base station Uplink signals and/or downlink signals that directly interact with each other;
  • the first signal and the second signal are respectively sent and received based on the sending and receiving resources of the first signal and the second signal.
  • the signal multiplexing method proposed in another embodiment of the present disclosure is applied to a base station, including:
  • the first signal is the uplink signal and/or the downlink signal forwarded by the relay device;
  • the second signal is the relay device and the base station Uplink signals and/or downlink signals that directly interact with each other;
  • the first signal and the second signal are respectively sent and received based on the sending and receiving resources of the first signal and the second signal.
  • the signal multiplexing device proposed by the embodiment includes:
  • a determining module configured to determine corresponding transceiving resources of a first signal and a second signal;
  • the first signal is an uplink signal and/or a forwarded downlink signal forwarded by the relay device;
  • the second signal is the The uplink signal and/or downlink signal directly interacted between the relay device and the base station;
  • the transceiving module is configured to respectively transmit and receive the first signal and the second signal based on the transceiving resources of the first signal and the second signal.
  • the signal multiplexing device proposed by the embodiment includes:
  • a determining module configured to determine corresponding transceiving resources of a first signal and a second signal;
  • the first signal is an uplink signal and/or a forwarded downlink signal forwarded by the relay device;
  • the second signal is the The uplink signal and/or downlink signal directly interacted between the relay device and the base station;
  • the transceiving module is configured to respectively transmit and receive the first signal and the second signal based on the transceiving resources of the first signal and the second signal.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode , wherein the first signal may be an uplink signal and/or a forwarded downlink signal forwarded by the relay device, and the second signal may be an uplink signal and/or a downlink signal directly interacted between the relay device and the base station, and then The relay device will respectively send and receive the first signal and the second signal based on the multiplexing mode and the sending and receiving resources of the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 1 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure
  • Fig. 3a is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • Fig. 3b is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • Fig. 5a is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • Fig. 5b is a schematic diagram of time slot allocation of a first time and a second time according to an embodiment of the present disclosure
  • Fig. 6a is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • FIG. 6b is a schematic diagram of time slot allocation of a first frequency and a second frequency provided by an embodiment of the present disclosure
  • Fig. 7a is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • FIG. 7b is a schematic diagram of time slot allocation of a first antenna port and a second antenna port according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of a signal multiplexing method provided by another embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a signal multiplexing device provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a signal multiplexing device provided by another embodiment of the present disclosure.
  • Fig. 16 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 17 is a block diagram of a network side device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a relay device. As shown in FIG. 1, the signal multiplexing method may include the following steps:
  • Step 101 Determine corresponding transceiving resources of the first signal and the second signal.
  • the relay device can be, for example, a Smart repeater (intelligent relay device), or it can be any network device that can at least directional amplify signals, or has a directional amplified signal Specifically, it can be called “relay device controlled by the network”, “relay device capable of directional amplifying signal”, “intelligent relay device”, “network-assisted relay device”, “controllable Relay device” and so on, hereinafter referred to as “intelligent relay device”.
  • RIS Intelligent metasurface
  • RIS reconfigurable intelligent surface
  • reconfigurable intelligent surface also known as "reconfigurable intelligent surface” or “intelligent reflective surface”.
  • RIS is a flat sheet.
  • RIS can be flexibly deployed in the wireless communication propagation environment, and realize the manipulation of the frequency, phase, polarization and other characteristics of reflected or refracted electromagnetic waves, so as to achieve the purpose of reshaping the wireless channel.
  • RIS can reflect the signal incident on its surface to a specific direction through precoding technology, thereby enhancing the signal strength at the receiving end and realizing channel control.
  • the intelligent relay device refers to the intelligent relay device and the RIS.
  • the first signal may be the uplink signal and/or the downlink signal forwarded by the relay device;
  • the second signal may be the uplink signal directly interacted between the relay device and the base station Signals (such as the uplink signal generated by the relay device itself, or the feedback signal sent by the relay device to the information sent by the base station to the relay device, etc.) and/or downlink signals (such as the downlink signal sent by the base station to the relay device for control) ).
  • the above-mentioned transceiving resource may be the transceiving resource corresponding to the multiplexing mode adopted by the relay device, wherein the multiplexing mode may include: TDM (Time Division Multiplexing, Time Division Multiplexing ) mode, FDM (Frequency Division Multiplexing, frequency division multiplexing) mode, SDM (Spatial Division Multiplexing, space division multiplexing) mode.
  • TDM Time Division Multiplexing, Time Division Multiplexing
  • FDM Frequency Division Multiplexing, frequency division multiplexing
  • SDM Spatial Division Multiplexing, space division multiplexing
  • the above-mentioned transceiving resource is specifically resource information used when the relay device transmits and receives the first signal and the second signal. Wherein, when the multiplexing mode used by the relay device is different, the transceiving resource will also be different.
  • the transceiving resource when the multiplexing mode is TDM, the transceiving resource may be the time domain information for transmitting and receiving the first signal and/or the time domain information for transmitting and receiving the second signal; when the multiplexing mode is FDM, the transceiving resource may be The frequency domain information of the first signal and/or the frequency domain information of the second signal sent and received; when the multiplexing mode is SDM, the transceiving resource may be beam information or polarization direction information or antenna port information of the first signal sent and received and/or Or transmit and receive beam information or polarization direction information or antenna port information of the second signal.
  • the transceiving resource corresponding to the first signal is different from the transceiving resource corresponding to the second signal at the same moment.
  • determining the multiplexing mode of the first signal and the second signal and the transceiving resource corresponding to the multiplexing mode may include multiple types, and the content of this aspect will be introduced in detail in subsequent embodiments.
  • Step 102 Transmit and receive the first signal and the second signal based on the transceiving resources of the first signal and the second signal, respectively.
  • the first signal can be sent and received based on the sending and receiving resources corresponding to the first signal
  • the second signal can be sent and received based on the sending and receiving resources corresponding to the second signal, so as to implement the first signal and the second signal
  • the two signals are sent and received separately.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 2 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a relay device. As shown in FIG. 2, the signal multiplexing method may include the following steps:
  • Step 201 Determine the multiplexing mode of the first signal and the second signal and/or corresponding transceiving resources of the first signal and the second signal based on the agreement.
  • Step 202 Transmit and receive the first signal and the second signal based on the multiplexing mode and the transceiving resource of the first signal and the second signal.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • Fig. 3a is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a relay device. As shown in Fig. 3a, the signal multiplexing method may include the following steps:
  • Step 301a acquire the multiplexing mode of the first signal and the second signal sent by the base station.
  • the acquisition of corresponding transceiving resources of the first signal and the second signal sent by the base station may include:
  • the base station may update and send the first signal to the relay device subsequently.
  • the multiplexing mode of the signal and the second signal may be updated and send the first signal to the relay device subsequently.
  • Step 302a Determine corresponding transceiving resources of the first signal and the second signal based on the protocol agreement.
  • the relay device after the relay device determines the multiplexing mode by obtaining the multiplexing mode of the first signal and the second signal sent by the base station, the relay device can directly determine the first signal and the second signal based on the agreement. The corresponding sending and receiving resources of the two signals.
  • Step 303a Transmit and receive the first signal and the second signal respectively based on the multiplexing mode and the transceiving resource of the first signal and the second signal.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 3b is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a relay device. As shown in FIG. 3b, the signal multiplexing method may include the following steps:
  • Step 301b acquiring the multiplexing mode of the first signal and the second signal explicitly sent by the base station.
  • Step 302b Determine corresponding transceiving resources of the first signal and the second signal based on the indication of the base station.
  • the relay device may also The corresponding transceiving resources of the first signal and the second signal are determined based on the indication of the base station.
  • the relay device may specifically determine the transceiving resource based on the RRC indication (such as RRC semi-static configuration) of the base station.
  • the relay device may be based on the RRC configuration based on the base station's MAC-CE (Media Access Control-Control Element, Media Access Control Element) indication (such as MAC-CE dynamic activated) to determine the sending and receiving resources.
  • the relay device may specifically determine the transceiving resource based on the DCI (Downlink Control Information, downlink control information) indication (such as DCI dynamic indication) of the base station on the basis of the RRC configuration.
  • DCI Downlink Control Information, downlink control information
  • Step 303b Transmit and receive the first signal and the second signal respectively based on the multiplexing mode and the transceiving resource of the first signal and the second signal.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the sending and receiving resources corresponding to the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 4 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a relay device. As shown in FIG. 4, the signal multiplexing method may include the following steps:
  • Step 401 Determine corresponding transceiving resources of the first signal and the second signal based on the indication of the base station.
  • step 401 for the detailed introduction of step 401, reference may be made to the description of the above-mentioned embodiments, and the present disclosure does not repeat them here.
  • the base station may not indicate the multiplexing mode to the relay device, but directly indicate the transmitting and receiving resources corresponding to the multiplexing mode to the relay device, and the relay device determines that the base station After receiving and sending resources corresponding to the indicated multiplexing mode, the corresponding multiplexing mode may be determined implicitly based on the transmitting and receiving resources.
  • the transceiving resource is information in the time domain, it can be determined that the multiplexing method adopted should be TDM; if the transceiving resource is information in the frequency domain, it can be determined that the multiplexing method adopted should The multiplexing method should be FDM; if the sending and receiving resources are beam information or polarization direction information or antenna port information, it can be determined that the multiplexing method adopted should be SDM.
  • Step 402 Transmit and receive the first signal and the second signal based on the transceiving resources of the first signal and the second signal, respectively.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • Fig. 5a is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a relay device. As shown in Fig. 5a, the signal multiplexing method may include the following steps:
  • Step 501 Determine that the corresponding transceiving resources of the first signal and the second signal are the first time and/or the second time.
  • the determined transceiving resource when the determined transceiving resource is the first time and/or the second time, it may be determined that the multiplexing mode adopted by the relay device is TDM. And, for the method of determining TDM and the transceiving resource corresponding to the TDM mode, reference may be made to the description in the above embodiments, and the embodiments of the present disclosure will not repeat them here.
  • the first time and the second time may specifically be time slot information, or other time units, and the first time and the second time do not overlap.
  • the TDM method may be: send and receive the first signal on the time slot/time unit corresponding to the first time, and send and receive the first signal on the time slot/time unit corresponding to the second time. Two signals.
  • the method for determining the transceiving resource corresponding to the TDM mode may specifically be determined based on a protocol agreement or based on an instruction from a base station.
  • the method for determining the first time and the second time in TDM based on the indication of the base station may include at least one of the following:
  • Method 1 determine the first time and the second time based on the base station indication (that is, the base station indicates the first time and the second time).
  • Method 2 Determine the first time based on the indication of the base station (that is, the base station only indicates the first time), and determine the time other than the first time during the power-on time/activation time of the relay device as the second time.
  • Method 3 Determine the second time based on the indication of the base station (that is, the base station only indicates the second time), and determine a time other than the first time within the power-on time/activation time of the relay device as the first time.
  • the above-mentioned method for determining the first time and/or the second time based on the indication of the base station may include at least one of the following:
  • Method a determining the first time and/or the second time based on the RRC semi-static configuration of the base station.
  • determining the first time based on the RRC semi-static configuration of the base station may include: the base station indicates to the relay device the first time and the second time within a period of time through RRC signaling, and at the same time The base station configures the use cycle and cycle offset of the first time and the second time to the relay device, so that the relay device uses the first time and the second time in the TDM transceiver mode based on the configured use cycle and cycle offset Transceiving the first signal and the second signal.
  • Method b on the basis of the RRC configuration of the base station, the first time and/or the second time are determined based on the dynamic activation of the MAC-CE of the base station.
  • determining the first time based on the MAC-CE dynamic activation of the base station may include: the base station configures a time information resource set to the relay device through RRC signaling, and, when the relay device or Each time the base station transmits and receives the first signal and/or the second signal, the base station may dynamically indicate to the relay device through MAC-CE signaling in advance the first time and/or The second time for sending and receiving the second signal, so that the relay device can use the corresponding first time to send and receive the first signal and use the second time to send and receive the second signal based on the dynamic activation of the MAC-CE of the base station.
  • Method c on the basis of the RRC configuration of the base station, determine the first time and/or the second time based on the DCI dynamic indication of the base station.
  • determining the first time based on the DCI dynamic activation of the base station may include: the base station configures a time information resource set to the relay device through RRC signaling, and, when the relay device or the base station When sending and receiving the first signal and/or the second signal for the first time, the base station may dynamically indicate to the relay device through DCI signaling that the time information resource set is specifically the same as the first time for sending and receiving the first signal and/or for sending and receiving the second signal.
  • the second time of the signal so that the relay device can use the corresponding first time to send and receive the first signal and use the second time to send and receive the second signal based on the DCI dynamic indication of the base station.
  • Fig. 5b is a schematic diagram of time slot allocation of a first time and a second time provided by an embodiment of the present disclosure.
  • the first time may be: the 2nd to 6th time slots and the 8th time slot ⁇ 16 time slots
  • the second time can be the 1st and 7th time slots.
  • the first signal (that is, the forwarded signal) can be sent and received in the 2nd to 6th time slots and the 8th to 16th time slots
  • the second signal can be sent and received in the 1st and 7th time slots (such as ( PDCCH (Physical Downlink Control Channel, physical downlink control channel) signal or ACK (Acknowledgemen, confirmation) signal or NACK (Negative Acknowledgment, unacknowledged) signal).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • ACK Acknowledgemen, confirmation
  • NACK Negative Acknowledgment, unacknowledged
  • the relay device may also receive TDD (Time Division Duplexing, Time Division Duplexing) configuration information sent by the base station.
  • TDD configuration information specifically indicates which time slots are used for uplink transmission, which time slots are used for downlink reception, and which time slots are used as flexible time slots.
  • the D time slot can be used for downlink reception
  • the U time slot can be used for uplink transmission
  • the F time slot can be used as a flexible time slot, which may be used for uplink transmission or downlink reception.
  • the relay device may also receive FDD (Frequency Division Duplexing, time division duplexing) configuration information sent by the base station. This disclosure does not limit it.
  • FDD Frequency Division Duplexing, time division duplexing
  • Step 502 Transmit and receive the first signal and the second signal respectively based on the TDM transceiving mode and transceiving resource of the first signal and the second signal.
  • the relay device can receive the second signal sent by the base station (such as receiving the PDCCH signal sent by the base station) in the first time slot, and send the second signal to the base station in the seventh time slot (such as sending an ACK signal or NACK signal to the base station), and receiving the first signal sent by the base station on the 2nd to 3rd time slots and the 8th to 16th time slots, and receiving the first signal sent by the base station on the 5th and 6th time slots Send the first signal to the base station.
  • the base station such as receiving the PDCCH signal sent by the base station
  • the seventh time slot Such as sending an ACK signal or NACK signal to the base station
  • receiving the first signal sent by the base station on the 2nd to 3rd time slots and the 8th to 16th time slots and receiving the first signal sent by the base station on the 5th and 6th time slots Send the first signal to the base station.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • Fig. 6a is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a relay device. As shown in Fig. 6a, the signal multiplexing method may include the following steps:
  • Step 601. Determine that corresponding transceiving resources of the first signal and the second signal are the first frequency and the second frequency.
  • the determined transceiving resources are the first frequency and the second frequency
  • it may be determined that the multiplexing mode adopted by the relay device is FDM.
  • the method of determining the sending and receiving resources corresponding to the FDM and the FDM mode reference may be made to the description of the above embodiments, and the embodiments of the present disclosure will not repeat them here.
  • the FDM method may be: transmit and receive the first signal at the first frequency, and transmit and receive the second signal at the second frequency, and the first frequency and the second frequency are different at least in the center frequency point.
  • the first frequency and the second frequency may be different CCs (Carrier Component, carrier component); in another embodiment of the present disclosure, the first frequency and the second frequency It can be BWP (Bandwidth Part, bandwidth part).
  • the duplex configuration (such as TDD configuration and/or FDD configuration) on the first frequency and the duplex configuration (such as TDD configuration and/or FDD configuration) on the second frequency may be same or different. Specifically, if the relay device only receives one duplex configuration sent by the base station, by default, the duplex configuration on the first frequency is the same as the duplex configuration on the second frequency.
  • the method for determining the transceiving resource corresponding to the FDM mode may specifically be determined based on a protocol agreement or based on an instruction from a base station.
  • the method for determining the first frequency and/or the second frequency based on the indication of the base station may include at least one of the following:
  • Method a determining the first frequency and/or the second frequency based on the RRC semi-static configuration of the base station.
  • Method b On the basis of the RRC configuration of the base station, the first frequency and/or the second frequency are determined based on the dynamic activation of the MAC-CE of the base station.
  • Method c On the basis of the RRC configuration of the base station, the first frequency and/or the second frequency are determined based on the DCI dynamic indication of the base station.
  • FIG. 6b is a schematic diagram of time slot allocation of a first frequency and a second frequency provided by an embodiment of the present disclosure.
  • the first frequency may be CC#2, which is used to send and receive the first signal
  • the second frequency may be CC#1, which is used for sending and receiving the second signal.
  • Step 602 Transmit and receive the first signal and the second signal based on the FDM transceiving manner and transceiving resource of the first signal and the second signal, respectively.
  • the relay device can receive the first signal sent by the base station on the D time slot of the first frequency CC#2, and receive the first signal sent by the base station on the U time slot of the first frequency CC#2. Signal. And, the relay device may receive the second signal sent by the base station on the D time slot of the second frequency CC#1, and receive the second signal sent by the base station on the U time slot of the second frequency CC#1.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 7a is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a relay device. As shown in FIG. 7a, the signal multiplexing method may include the following steps:
  • Step 701 determine that the corresponding transceiving resources of the first signal and the second signal are the first beam and the second beam, or the first polarization direction and the second polarization direction, or the first antenna port and the second antenna port .
  • the determined transceiving resources are the first beam and the second beam, or the first polarization direction and the second polarization direction, or the first antenna port and the second antenna port, it can be determined that the multiplexing mode used by the relay device is SDM.
  • the method of determining the SDM and the sending and receiving resources corresponding to the SDM mode reference may be made to the description in the above embodiments, and the embodiments of the present disclosure will not repeat them here.
  • the first beam is different from the second beam
  • the first polarization direction is different from the second polarization direction
  • the first antenna port is different from the second antenna port.
  • the SDM method is: sending and receiving the first signal on the first beam, and sending and receiving the second signal on the second beam;
  • the first signal is sent and received at the first antenna port
  • the second signal is sent and received at the second antenna port.
  • the duplex configuration (such as TDD configuration and/or FDD configuration) on the first beam or the first polarization direction or the first antenna port is compatible with the second beam or the second polarization
  • the direction or duplex configuration (eg TDD configuration and/or FDD configuration) on the second antenna port may be the same or different. Specifically, if the relay device only receives one duplex configuration sent by the base station, it defaults to the first beam or the first polarization direction or the duplex configuration on the first antenna port and the second beam or the second polarization direction Or the same duplex configuration on the second antenna port.
  • the method for determining the transceiving resource corresponding to the SDM mode may specifically be determined based on a protocol agreement or based on an instruction from a base station.
  • the corresponding sending and receiving resource corresponding to the way of determining the SDM based on the base station instruction may include at least one of the following:
  • the first antenna port and the second antenna port are determined based on the base station indication.
  • the above-mentioned method for determining the first beam/polarization direction/antenna port and the second beam/polarization direction/antenna port based on the indication of the base station may include:
  • Method a Determine the first beam/polarization direction/antenna port and the second beam/polarization direction/antenna port based on the RRC semi-static configuration of the base station.
  • Method b Determine the first beam/polarization direction/antenna port and the second beam/polarization direction/antenna port based on the dynamic activation of MAC CE of the base station.
  • Method c Determine the first beam/polarization direction/antenna port and the second beam/polarization direction/antenna port based on the DCI dynamic indication of the base station.
  • FIG. 7b is a schematic diagram of time slot allocation of a first antenna port and a second antenna port provided by an embodiment of the present disclosure.
  • the first antenna port Port#2 can be used to send and receive the first signal
  • the second antenna port Port#1 can be used to send and receive a second signal.
  • Step 702 Transmit and receive the first signal and the second signal respectively based on the SDM transceiving manner and transceiving resource of the first signal and the second signal.
  • the relay device can receive the first signal sent by the base station on the D time slot of the first antenna port Port#2, and receive the first signal sent by the base station on the U time slot of the first antenna port Port#2. first signal. And, the relay device may receive the second signal sent by the base station on the D time slot of the second antenna port information Port#1, and receive the second signal sent by the base station on the U time slot of the second antenna port information Port#1.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 8 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 8, the signal multiplexing method may include the following steps:
  • Step 801. Determine corresponding transceiving resources of the first signal and the second signal.
  • the first signal is the uplink signal and/or the downlink signal forwarded by the relay device;
  • the second signal is the uplink signal and the uplink signal directly interacted between the relay device and the base station / or downlink signal.
  • Step 802 Transmit and receive the first signal and the second signal based on the transceiving resources of the first signal and the second signal, respectively.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 9 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 9, the signal multiplexing method may include the following steps:
  • Step 901. Determine corresponding transceiving resources of the first signal and the second signal.
  • Step 902 Send the multiplexing mode of the first signal and the second signal to the relay device.
  • Step 903 Indicate corresponding transceiving resources of the first signal and the second signal to the relay device.
  • Step 904 Transmit and receive the first signal and the second signal respectively based on the multiplexing mode and the transceiving resource of the first signal and the second signal.
  • the multiplexing manner of sending the first signal and the second signal to the relay device may include:
  • a multiplexing manner of sending the first signal and the second signal to the relay device through an RRC message A multiplexing manner of sending the first signal and the second signal to the relay device through an RRC message.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 10 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 10, the signal multiplexing method may include the following steps:
  • Step 1001. Determine corresponding transceiving resources of the first signal and the second signal.
  • Step 1002 Indicate only the corresponding transceiving resources of the first signal and the second signal to the relay device.
  • Step 1003 Transmit and receive the first signal and the second signal based on the transceiving resources of the first signal and the second signal, respectively.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 11 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 11 , the signal multiplexing method may include the following steps:
  • Step 1101 determine that the corresponding transceiving resources of the first signal and the second signal are the first time and/or the second time.
  • the TDM method is as follows: the first signal is sent and received at the first time, and the second signal is sent and received at the second time, and the first time and the second time do not overlap.
  • the method for indicating the first time and the second time in TDM may include at least one of the following:
  • Method 1 Indicate the first time and the second time to the relay device.
  • Method 2 Indicate the first time to the relay device, and determine a time other than the first time within the power-on time of the relay device as the second time.
  • Method 3 Indicate the second time to the relay device, and determine a time other than the first time within the power-on time of the relay device as the first time.
  • the method for indicating the first time to the relay device may include at least one of the following:
  • Method a indicate the first time based on the RRC of the base station.
  • Method b indicating the first time based on the MAC-CE of the base station.
  • Method c dynamically indicate the first time based on the DCI of the base station.
  • Step 1102 Transmit and receive the first signal and the second signal based on the TDM transceiving mode and transceiving resource of the first signal and the second signal, respectively.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 12 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 12, the signal multiplexing method may include the following steps:
  • Step 1201 determine that corresponding transceiving resources of the first signal and the second signal are the first frequency and the second frequency.
  • the FDM method when the corresponding transceiving resources of the first signal and the second signal are the first frequency and the second frequency, it is determined that the multiplexing method adopted by the base station is the FDM method, and , the FDM method is: transmitting and receiving a first signal at a first frequency, and transmitting and receiving a second signal at a second frequency, and the first frequency is different from the second frequency at least in a central frequency point.
  • the duplex configuration on the first frequency may be the same as or different from the duplex configuration on the second frequency.
  • the method for indicating the first frequency to the relay device may include at least one of the following:
  • Method 1 indicate the first frequency through RRC.
  • Method 2 indicate the first frequency through MAC-CE.
  • Method 3 Determine the first frequency based on the DCI dynamic indication of the base station.
  • the method for indicating the second frequency to the relay device may include at least one of the following:
  • Method a indicate the second frequency through RRC.
  • Method b indicating the second frequency through MAC-CE.
  • Method c dynamically indicate the second frequency through DCI.
  • Step 1202 Transmit and receive the first signal and the second signal based on the FDM transceiving manner and transceiving resource of the first signal and the second signal.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • FIG. 13 is a schematic flowchart of a signal multiplexing method provided by an embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 13, the signal multiplexing method may include the following steps:
  • Step 1301 determine that the corresponding transceiving resources of the first signal and the second signal are the first beam and the second beam, or the first polarization direction and the second polarization direction, or the first antenna port and the second antenna port .
  • the corresponding transceiving resources of the first signal and the second signal are the first beam and the second beam, or are the first polarization direction and the second polarization direction, or are For the first antenna port and the second antenna port, it is determined that the multiplexing mode adopted by the base station is the SDM mode.
  • the SDM method is as follows: the first signal is sent and received in the first beam, and the second signal is sent and received in the second beam, and the first beam is different from the second beam;
  • the first signal is sent and received at the first antenna port
  • the second signal is sent and received at the second antenna port
  • the first antenna port is different from the second antenna port
  • instructing to determine the first beam/polarization direction/antenna port and the second beam/polarization direction/antenna port in the SDM may include the following methods:
  • Method 1 Indicating the first beam and the second beam to the relay device.
  • Method 2 Indicating the first polarization direction and the second polarization direction to the relay device.
  • Method 3 Indicate the first antenna port and the second antenna port to the relay device.
  • indicating the first beam or the first polarization direction or the first antenna port to the relay device may include:
  • Method a indicate the first beam or the first polarization direction or the first antenna port through the RRC.
  • Method b indicate the first beam or the first polarization direction or the first antenna port through the MAC-CE.
  • Method c dynamically indicate the first beam or the first polarization direction or the first antenna port through DCI.
  • indicating the second beam or the second polarization direction or the second antenna port to the relay device may include:
  • Method d indicate the second beam or the second polarization direction or the second antenna port through RRC.
  • Method e indicate the second beam or the second polarization direction or the second antenna port through the MAC-CE.
  • Method f dynamically indicate the second beam or the second polarization direction or the second antenna port through DCI.
  • Step 1302 Transmit and receive the first signal and the second signal respectively based on the SDM transceiving mode and transceiving resource of the first signal and the second signal.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the uplink signal and/or the downlink signal forwarded by the relay device
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in an embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • Fig. 14 is a schematic structural diagram of a signal multiplexing device provided by an embodiment of the present disclosure. As shown in Fig. 14, the device may include:
  • the determination module is configured to determine the corresponding transceiving resources of the first signal and the second signal; the first signal is an uplink signal and/or a forwarded downlink signal forwarded by the relay device; the second signal is the direct communication between the relay device and the base station alternating uplink and/or downlink signals;
  • the transceiving module is configured to respectively transmit and receive the first signal and the second signal based on the transceiving resources of the first signal and the second signal.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the uplink signal and/or the downlink signal forwarded by the relay device
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in an embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • the determination module is also used to:
  • the multiplexing mode of the first signal and the second signal and the transceiving resource corresponding to the multiplexing mode are determined based on the agreement.
  • the determination module is also used to:
  • the determination module is also used to:
  • the multiplexing mode of the first signal and the second signal sent by the base station through a radio resource control RRC message is acquired.
  • the determination module is also used to:
  • the multiplexing mode used is determined based on the transceiving resources.
  • the multiplexing mode of the first signal and the second signal is a time division multiplexing mode TDM; the transceiving resource corresponding to the TDM mode is the first time and/or the second time ;
  • the TDM method is: sending and receiving the first signal at a first time, and sending and receiving the second signal at a second time, and the first time and the second time do not overlap.
  • the device is also used for:
  • the second time is determined based on the indication of the base station, and the time other than the first time is determined as the first time during the power-on time of the relay device.
  • the device is also used for:
  • the first time is determined based on the dynamic indication of downlink control information DCI of the base station.
  • the device is also used for:
  • the second time is determined based on a DCI dynamic indication of the base station.
  • the multiplexing mode of the first signal and the second signal is frequency division multiplexing (FDM);
  • the FDM method is: transmitting and receiving the first signal at a first frequency, and transmitting and receiving the second signal at a second frequency, and the first frequency is different from the second frequency at least in a central frequency point.
  • the device is also used for:
  • the first frequency and the second frequency are determined based on a base station indication.
  • the device is also used for:
  • the first frequency is determined based on a DCI dynamic indication of the base station.
  • the device is also used for:
  • the second frequency is determined based on a DCI dynamic indication of the base station.
  • the duplex configuration on the first frequency is the same as or different from the duplex configuration on the second frequency.
  • the multiplexing mode of the first signal and the second signal is a space division multiplexing SDM mode;
  • the sending and receiving resources corresponding to the FDM mode are the first beam and the second beam, or
  • the transceiving resources corresponding to the FDM mode are the first polarization direction and the second polarization direction, or the transceiving resources corresponding to the FDM mode are the first antenna port and the second antenna port;
  • the method of the SDM is: transmitting and receiving the first signal on a first beam, and transmitting and receiving the second signal on a second beam, and the first beam is different from the second beam; or
  • the first signal is transceived at a first antenna port
  • the second signal is transceived at a second antenna port, where the first antenna port is different from the second antenna port.
  • the device is also used for:
  • the device is also used for:
  • the first beam or the first polarization direction or the first antenna port is determined based on the DCI dynamic indication of the base station.
  • the device is also used for:
  • the second beam or the second polarization direction or the second antenna port is determined based on the DCI dynamic indication of the base station.
  • the duplex configuration on the first beam or the first polarization direction or the first antenna port is the same as the duplex configuration on the second beam or the second polarization direction or the second antenna port. configurations are the same or different.
  • Fig. 15 is a schematic structural diagram of a signal multiplexing device provided by an embodiment of the present disclosure. As shown in Fig. 15, the device may include:
  • a determining module configured to determine corresponding transceiving resources of the first signal and the second signal;
  • the first signal is an uplink signal and/or a forwarded downlink signal forwarded by the relay device;
  • the second signal is a link between the relay device and the base station Uplink signals and/or downlink signals that directly interact with each other;
  • the transceiving module is configured to respectively transmit and receive the first signal and the second signal based on the transceiving resources of the first signal and the second signal.
  • the relay device will determine the multiplexing mode of the first signal and the second signal and the corresponding sending and receiving resources of the multiplexing mode, wherein the first signal
  • the uplink signal and/or the downlink signal forwarded by the relay device may be the second signal
  • the second signal may be the uplink signal and/or downlink signal directly interacted between the relay device and the base station
  • the relay device will base on the first The multiplexing mode of the signal and the second signal and the sending and receiving resources respectively send and receive the first signal and the second signal. Therefore, in one embodiment of the present disclosure, a signal multiplexing method is provided, which can distinguish the first signal forwarded by the relay device from the second signal directly interacted between the relay device and the base station, and combine These two types of signals are sent and received separately.
  • the determination module is also used to:
  • the base station determines independently or based on a protocol agreement the multiplexing mode of the first signal and the second signal and the transceiving resource corresponding to the multiplexing mode.
  • the device is also used for:
  • the device is also used for:
  • the device is also used for:
  • the multiplexing mode of the first signal and the second signal is a TDM mode;
  • the transceiving resource corresponding to the TDM mode is the first time and/or the second time;
  • the TDM method is: sending and receiving the first signal at a first time, and sending and receiving the second signal at a second time, and the first time and the second time do not overlap.
  • the device is also used for:
  • the device is also used for:
  • the first time is dynamically indicated by DCI.
  • the device is also used for:
  • the second time is dynamically indicated by DCI.
  • the multiplexing mode of the first signal and the second signal is an FDM mode; the sending and receiving resources corresponding to the FDM mode are the first frequency and the second frequency;
  • the FDM method is: transmitting and receiving the first signal at a first frequency, and transmitting and receiving the second signal at a second frequency, and the first frequency is different from the second frequency at least in a central frequency point.
  • the device is also used for:
  • the device is also used for:
  • the first frequency is dynamically indicated through DCI.
  • the device is also used for:
  • the second frequency is dynamically indicated through DCI.
  • the duplex configuration on the first frequency is the same as or different from the duplex configuration on the second frequency.
  • the multiplexing method of the first signal and the second signal is the SDM method;
  • the sending and receiving resources corresponding to the SDM method are the first beam and the second beam, or the SDM
  • the transceiving resources corresponding to the mode are the first polarization direction and the second polarization direction, or the transceiving resources corresponding to the SDM mode are the first antenna port and the second antenna port;
  • the method of the SDM is: transmitting and receiving the first signal on a first beam, and transmitting and receiving the second signal on a second beam, and the first beam is different from the second beam; or
  • the first signal is transceived at a first antenna port
  • the second signal is transceived at a second antenna port, where the first antenna port is different from the second antenna port.
  • the device is also used for:
  • the device is also used for:
  • the first beam or the first polarization direction or the first antenna port is dynamically indicated through DCI.
  • the device is also used for:
  • the second beam or the second polarization direction or the second antenna port is dynamically indicated through DCI.
  • the duplex configuration on the first beam or the first polarization direction or the first antenna port is the same as the duplex configuration on the second beam or the second polarization direction or the second antenna port. configurations are the same or different.
  • Fig. 16 is a block diagram of a user equipment UE1600 provided by an embodiment of the present disclosure.
  • the UE 1600 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1600 may include at least one of the following components: a processing component 1602, a memory 1604, a power supply component 1606, a multimedia component 1608, an audio component 1610, an input/output (I/O) interface 1612, a sensor component 1613, and a communication component 1616.
  • Processing component 1602 generally controls the overall operations of UE 1600, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1602 may include at least one processor 1620 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • processing component 1602 can include at least one module that facilitates interaction between processing component 1602 and other components.
  • processing component 1602 may include a multimedia module to facilitate interaction between multimedia component 1608 and processing component 1602 .
  • the memory 1604 is configured to store various types of data to support operations at the UE 1600 . Examples of such data include instructions for any application or method operating on UE1600, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1604 can be realized by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1606 provides power to various components of the UE 1600.
  • Power components 1606 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1600.
  • the multimedia component 1608 includes a screen providing an output interface between the UE 1600 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1608 includes a front camera and/or a rear camera. When UE1600 is in operation mode, such as shooting mode or video mode, the front camera and/or rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1610 is configured to output and/or input audio signals.
  • the audio component 1610 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1600 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1604 or sent via communication component 1616 .
  • the audio component 1610 also includes a speaker for outputting audio signals.
  • the I/O interface 1612 provides an interface between the processing component 1602 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1613 includes at least one sensor for providing various aspects of status assessment for the UE 1600 .
  • the sensor component 1613 can detect the open/close state of the device 1600, the relative positioning of components, such as the display and the keypad of the UE1600, the sensor component 1613 can also detect the position change of the UE1600 or a component of the UE1600, and the user and Presence or absence of UE1600 contact, UE1600 orientation or acceleration/deceleration and temperature change of UE1600.
  • the sensor assembly 1613 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1613 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1613 may also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1616 is configured to facilitate wired or wireless communications between UE 1600 and other devices.
  • UE1600 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or their combination.
  • the communication component 1616 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1616 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • UE 1600 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • Fig. 17 is a block diagram of a network side device 1700 provided by an embodiment of the present disclosure.
  • the network side device 1700 may be provided as a network side device.
  • the network side device 1700 includes a processing component 1711, which further includes at least one processor, and a memory resource represented by a memory 1732 for storing instructions executable by the processing component 1722, such as application programs.
  • the application programs stored in memory 1732 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1710 is configured to execute instructions, so as to execute any method of the foregoing method applied to the network side device, for example, the method shown in FIG. 1 .
  • the network side device 1700 may also include a power supply component 1726 configured to perform power management of the network side device 1700, a wired or wireless network interface 1750 configured to connect the network side device 1700 to the network, and an input/output (I/O ) interface 1758.
  • the network side device 1700 can operate based on the operating system stored in the memory 1732, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device and the UE respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device and the UE respectively.
  • the network side device and the UE may include a hardware structure and a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the foregoing method embodiments), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program that processes data for a computer program.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the foregoing method embodiments): the processor is configured to execute any of the methods shown in FIGS. 1-4 .
  • the communication device is a network device: the transceiver is used to execute the method shown in any one of Fig. 5-Fig. 7 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the foregoing embodiments and a communication device as a network device, Alternatively, the system includes the communication device as the terminal device in the foregoing embodiments (such as the first terminal device in the foregoing method embodiment) and the communication device as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种信号复用方法/装置/设备及存储介质,属于通信技术领域。中继设备可以确定第一信号和第二信号的对应的收发资源,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后基于第一信号和第二信号的收发资源分别收发第一信号和第二信号。在本公开提供的方法可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。

Description

一种信号复用方法/装置/设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种信号复用方法/装置/设备及存储介质。
背景技术
通信***中,Smart repeater(智能中继设备)可以成为R18用来扩大小区覆盖范围的关键设备。具体的,Smart repeater可以将UE(User Equipment,用户设备)发送的信号放大后转发至基站,也可以将基站发送的信号放大后转发至UE。此外,Smart repeater还可以与基站之间进行直接通信。
基于此,相关技术中,Smart repeater与基站通信时的上行信号会有两种,分别为:Smart repeater转发的UE的信号,以及Smart repeater自身产生的上行信号(即Smart repeater与基站之间直接通信的信号);以及,Smart repeater与基站通信时的下行信号也会有两种,分别为:需要Smart repeater转发的基站的下行信号,以及基站发送给Smart repeater用于控制的下行信号(即Smart repeater与基站之间直接通信的信号)。
但是,相关技术中,Smart repeater无法分辨哪些信号是需要转发,哪些信号是其与基站之间直接通信的信号,因此,亟需“一种信号复用方法”。
发明内容
本公开提出的信号复用方法/装置/设备及存储介质,以分辨出中继设备转发的信号和中继设备与基站之间直接交互的信号,并分别收发这两种类型的信号。
本公开一方面实施例提出的信号复用方法方法,应用于中继设备,包括:
确定第一信号和第二信号的对应的收发资源;所述第一信号为所述中继设备转发的上行信号和/或转发的下行信号;所述第二信号为所述中继设备与基站之间直接交互的上行信号和/或下行信号;
基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号。
本公开另一方面实施例提出的信号复用方法方法,应用于基站,包括:
确定第一信号和第二信号的对应的收发资源;所述第一信号为所述中继设备转发的上行信号和/或转发的下行信号;所述第二信号为所述中继设备与基站之间直接交互的上行信号和/或下行信号;
基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号。
本公开又一方面实施例提出的信号复用装置,包括:
确定模块,用于确定第一信号和第二信号的对应的收发资源;所述第一信号为所述中继设备转发的上行信号和/或转发的下行信号;所述第二信号为所述中继设备与基站之间直接交互的上行信号和/或下行信号;
收发模块,用于基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号。
本公开又一方面实施例提出的信号复用装置,包括:
确定模块,用于确定第一信号和第二信号的对应的收发资源;所述第一信号为所述中继设备转发的上行信号和/或转发的下行信号;所述第二信号为所述中继设备与基站之间直接交互的上行信号和/或下行信号;
收发模块,用于基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
综上所述,在本公开实施例提供的信号复用方法及设备/存储介质/装置之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的信号复用方法的流程示意图;
图2为本公开另一个实施例所提供的信号复用方法的流程示意图;
图3a为本公开另一个实施例所提供的信号复用方法的流程示意图;
图3b为本公开再一个实施例所提供的信号复用方法的流程示意图;
图4为本公开又一个实施例所提供的信号复用方法的流程示意图;
图5a为本公开另一个实施例所提供的信号复用方法的流程示意图;
图5b为本公开实施例提供的一种第一时间和第二时间的时隙分配示意图;
图6a为本公开又一个实施例所提供的信号复用方法的流程示意图;
图6b为本公开实施例提供的一种第一频率和第二频率的时隙分配示意图;
图7a为本公开又一个实施例所提供的信号复用方法的流程示意图;
图7b为本公开实施例提供的一种第一天线端口和第二天线端口的时隙分配示意图;
图8为本公开又一个实施例所提供的信号复用方法的流程示意图;
图9为本公开又一个实施例所提供的信号复用方法的流程示意图;
图10为本公开又一个实施例所提供的信号复用方法的流程示意图;
图11为本公开又一个实施例所提供的信号复用方法的流程示意图;
图12为本公开又一个实施例所提供的信号复用方法的流程示意图;
图13为本公开又一个实施例所提供的信号复用方法的流程示意图;
图14为本公开一个实施例所提供的信号复用装置的结构示意图;
图15为本公开另一个实施例所提供的信号复用装置的结构示意图;
图16是本公开一个实施例所提供的一种用户设备的框图;
图17为本公开一个实施例所提供的一种网络侧设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施 例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面参考附图对本公开实施例所提供的信号复用方法/装置/设备及存储介质进行详细描述。
图1为本公开实施例所提供的一种信号复用方法的流程示意图,应用于中继设备,如图1所示,该信号复用方法可以包括以下步骤:
步骤101、确定第一信号和第二信号的对应的收发资源。
其中,在本公开的一个实施例之中,该中继设备例如可以为Smart repeater(智能中继设备),或者,可以为任意一种至少能定向放大信号的网络设备,或者,具有定向放大信号功能的终端设备,具体可以称之为“受网络控制的中继设备”、“能定向放大信号的中继设备”、“智能中继设备”、“网络辅助的中继设备”、“可控制的中继设备”等等,以下以“智能中继设备”代指。
智能超表面(RIS,reconfigurable intelligent surface),也被称为“可重构智能表面”或者“智能反射表面”。从外表上看,RIS是一张平平无奇的薄板。但是,它可以灵活部署在无线通信传播环境中,并实现对反射或者折射电磁波的频率、相位、极化等特征的操控,从而达到重塑无线信道的目的。具体地说,RIS可以通过预编码技术,将入射到其表面的信号反射到特定的方向,从而增强接收端信号强度,实现对信道的控制。
由于智能中继设备和RIS在网络交互时具有类似的特性,因此,本公开中,智能中继设备,代指智能中继设备和RIS。
以及,在本公开的一个实施例之中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号;该第二信号可以为中继设备与基站之间直接交互的上行信号(如中继设备自身产生的上行信号,或者中继设备对基站发送至中继设备的信息的反馈信号等)和/或下行信号(如基站发送给中继设备的用于控制的下行信号)。
以及,在本公开的一个实施例之中,上述的收发资源可以是中继设备所采用的复用方式对应的收发资源,其中,该复用方式可以包括:TDM(Time Division Multiplexing,时分复用)方式、FDM(Frequency Division Multiplexing,频分复用)方式、SDM(Spatial Division Multiplexing,空分复用)方式。
进一步地,在本公开的一个实施例之中,上述收发资源具体为中继设备收发第一信号和第二信号时所使用的资源信息。其中,当中继设备所使用的复用方式不同时,该收发资源也会有所不同。具体的,当复用方式为TDM时,该收发资源可以为收发第一信号的时域信息和/或收发第二信号的时域信息;当复用方式为FDM时,该收发资源可以为收发第一信号的频域信息和/或收发第二信号的频域信息;当复用方式为SDM时,该收发资源可以为收发第一信号的波束信息或极化方向信息或天线端口信息和/或收发第二信号的波束信息或极化方向信息或天线端口信息。其中,在本公开的一个实施例之中,第一信号对应的收发资源与第二信号对应的收发资源在同一时刻是不同的。
此外,上述的“确定第一信号和第二信号的复用方式及复用方式对应的收发资源”可以包括多种,以及关于该方面的内容会在后续实施例进行详细介绍。
步骤102、基于第一信号和第二信号的收发资源分别收发第一信号和第二信号。
具体的,在本公开的一个实施例之中,可以基于第一信号对应的收发资源来收发第一信号,基于第二信号对应的收发资源来收发第二信号,从而实现对第一信号和第二信号的分别收发。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图2为本公开实施例所提供的一种信号复用方法的流程示意图,应用于中继设备,如图2所示,该信号复用方法可以包括以下步骤:
步骤201、基于协议约定确定第一信号和第二信号的复用方式和/或第一信号和第二信号的对应的收发资源。
其中,关于第一信号、第二信号、复用方式、收发资源的详细详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤202、基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图3a为本公开实施例所提供的一种信号复用方法的流程示意图,应用于中继设备,如图3a所示,该信号复用方法可以包括以下步骤:
步骤301a、获取基站发送的第一信号和第二信号的复用方式。
其中,在本公开的一个实施例之中,该获取基站发送的第一信号和第二信号的对应的收发资源可以包括:
获取基站通过RRC(Ratio Resource Control,无线资源控制)消息发送的第一信号和第二信号的复用方式。
需要说明的是,在本公开的一个实施例之中,基站在通过RRC消息向中继设备发送了第一信号和第二信号的复用方式之后,后续还可以向中继设备更新发送第一信号和第二信号的复用方式。
步骤302a、基于协议约定确定第一信号和第二信号的对应的收发资源。
在本公开的一个实施例之中,当中继设备通过获取基站发送的第一信号和第二信号的复用方式确定了复用方式后,中继设备可以基于协议约定直接确定第一信号和第二信号的对应的收发资源。
其中,关于第一信号、第二信号、复用方式、复用方式对应的收发资源的详细详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤303a、基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图3b为本公开实施例所提供的一种信号复用方法的流程示意图,应用于中继设备,如图3b所示,该信号复用方法可以包括以下步骤:
步骤301b、获取基站显式发送的第一信号和第二信号的复用方式。
步骤302b、基于基站指示确定第一信号和第二信号的对应的收发资源。
在本公开的一个实施例之中,当中继设备通过获取基站发送的第一信号和第二信号的复用方式确定 了第一信号和第二信号的复用方式后,中继设备后续还可以基于基站指示确定第一信号和第二信号的对应的收发资源。
其中,在本公开的一个实施例之中,中继设备具体可以基于基站的RRC指示(如RRC半静态配置)确定收发资源。在本公开的另一个实施例之中,中继设备具体可以在RRC配置的基础上基于基站的MAC-CE(Media Access Control-Control Element,媒体接入控制控制单元)指示(如MAC-CE动态激活)确定收发资源。在本公开的又一个实施例之中,中继设备具体可以在RRC配置的基础上基于基站的DCI(Downlink Control Information,下行控制信息)指示(如DCI动态指示)确定收发资源。
以及,关于第一信号、第二信号、复用方式、复用方式对应的收发资源的详细详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤303b、基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图4为本公开实施例所提供的一种信号复用方法的流程示意图,应用于中继设备,如图4所示,该信号复用方法可以包括以下步骤:
步骤401、基于基站指示确定第一信号和第二信号的对应的收发资源。
其中,关于步骤401的详细介绍可以参考上述实施例描述,本公开在此不做赘述。
进一步地的,在本公开的一个实施例之中,基站可以不向中继设备指示复用方式,而直接向中继设备指示复用方式对应的收发资源,以及,中继设备在确定出基站指示的复用方式对应的收发资源之后,可以基于收发资源隐式确定出对应的复用方式。
具体而言,在本公开的一个实施例之中,若收发资源为时域信息时,则可以确定所采用的复用方式应当为TDM;若收发资源为频域信息时,则可以确定所采用的复用方式应当为FDM;若收发资源为波束信息或极化方向信息或天线端口信息时,则可以确定所采用的复用方式应当为SDM。
步骤402、基于第一信号和第二信号的收发资源分别收发第一信号和第二信号。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图5a为本公开实施例所提供的一种信号复用方法的流程示意图,应用于中继设备,如图5a所示,该信号复用方法可以包括以下步骤:
步骤501、确定第一信号和第二信号的对应的收发资源为第一时间和/或第二时间。
其中,在本公开的一个实施例之中,当确定的收发资源为第一时间和/或第二时间时,则可以确定中继设备采用的是复用方式为TDM。以及,关于确定TDM及TDM的方式对应的收发资源的方法可以参考上述实施例描述,本公开实施例在此不做赘述。
以及,在本公开的一个实施例之中,该第一时间和第二时间具体可以为时隙信息,或者其他时间单位,第一时间和第二时间不重叠。以及,在本公开的一个实施例之中,该TDM的方式可以为:在第一时间对应的时隙/时间单位上收发第一信号,在第二时间对应的时隙/时间单位上收发第二信号。
进一步地,参考上述实施例内容可知,确定TDM的方式对应的收发资源的方法具体可以是基于协议约定确定的或者是基于基站指示确定的。
以下对基于基站指示确定TDM的方式对应的第一时间和第二时间的具体方法进行详细介绍。
具体的,在本公开的一个实施例之中,基于基站指示确定TDM中的第一时间和第二时间的方法可以包括以下至少一种:
方法一:基于基站指示确定第一时间和第二时间(也即是基站指示第一时间和第二时间)。
方法二:基于基站指示确定第一时间(也即是基站仅指示第一时间),并将中继设备的开机时间/激活时间内除第一时间之外的其他时间确定为第二时间。
方法三:基于基站指示确定第二时间(也即是基站仅指示第二时间),并将中继设备的开机时间/激活时间内除第一时间之外的其他时间确定为第一时间。
其中,在本公开的一个实施例之中,上述的基于基站指示确定第一时间和/或第二时间的方法可以包括以下至少一种:
方法a:基于基站的RRC半静态配置确定第一时间和/或第二时间。
具体的,在本公开的一个实施例之中,基于基站的RRC半静态配置确定第一时间可以包括:基站通过RRC信令向中继设备指示一段时间内的第一时间和第二时间,同时基站向中继设备配置该第一时间和第二时间的使用周期和周期偏移,以便中继设备基于所配置的使用周期和周期偏移来利用第一时间和第二时间在TDM收发方式中收发第一信号和第二信号。
方法b:在基站的RRC配置的基础上,基于基站的MAC-CE动态激活确定第一时间和/或第二时间。
具体的,在本公开的一个实施例之中,基于基站的MAC-CE动态激活确定第一时间可以包括:基站通过RRC信令向中继设备配置一时间信息资源集合,以及,当中继设备或基站每次收发第一信号和/或第二信号时,基站可以预先通过MAC-CE信令向中继设备动态指示该时间信息资源集合中具体同于收发第一信号的第一时间和/或用于收发第二信号的第二时间,从而中继设备可以基于基站的MAC-CE动态激活,来利用对应的第一时间收发第一信号和利用第二时间收发第二信号。
方法c:在基站的RRC配置的基础上,基于基站的DCI动态指示确定第一时间和/或第二时间。
具体的,在本公开的一个实施例之中,基于基站的DCI动态激活确定第一时间可以包括:基站通过RRC信令向中继设备配置一时间信息资源集合,以及,当中继设备或基站每次收发第一信号和/或第二信号时,基站可以通过DCI信令向中继设备动态指示该时间信息资源集合中具体同于收发第一信号的第一时间和/或用于收发第二信号的第二时间,从而中继设备可以基于基站的DCI动态指示,来利用对应的第一时间收发第一信号和利用第二时间收发第二信号。
示例的,图5b为本公开实施例提供的一种第一时间和第二时间的时隙分配示意图,如图5b所示,该第一时间可以为:第2~6个时隙和第8~16个时隙,第二时间可以为第1个和第7个时隙。也即是,可以在第2~6个时隙和第8~16个时隙上收发第一信号(即转发的信号),在第1个和第7个时隙收发第二信号(如(PDCCH(Physical Downlink Control Channel,物理下行控制信道)信号或ACK(Acknowledgemen,确认)信号或NACK(Negative Acknowledgement,未确认)信号)。
此外,在本公开的一个实施例之中,中继设备还可以接收基站发送的TDD(Time Division Duplexing,时分双工)配置信息。该TDD配置信息具体同于指示哪些时隙用于上行发送、哪些时隙用于下行接收以及哪些时隙用于作为灵活时隙。示例的,参考图5b可知,其中,D时隙可以用于下行接收,U时隙可以用于上行发送,以及F时隙可以作为灵活时隙,可能进行上行发送也可能进行下行接收。
在本公开的一个实施例中,中继设备还可以接收基站发送的FDD(Frequency Division Duplexing,时分双工)配置信息。本公开对此不进行限定。
步骤502、基于第一信号和第二信号的TDM收发方式及收发资源分别收发第一信号和第二信号。
具体的,参考图5b可知,中继设备可以在第1个时隙上接收基站发送的第二信号(如接收基站发送的PDCCH信号),在第7个时隙上向基站发送第二信号(如向基站发送ACK信号或NACK信号),以及,在第2~3个时隙和第8~16个时隙上接收基站发送的第一信号,在第5个时隙和第6个时隙上向基站发送第一信号。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备 会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图6a为本公开实施例所提供的一种信号复用方法的流程示意图,应用于中继设备,如图6a所示,该信号复用方法可以包括以下步骤:
步骤601、确定第一信号和第二信号的对应的收发资源为第一频率和第二频率。
其中,在本公开的一个实施例之中,当确定的收发资源为第一频率和第二频率时,则可以确定中继设备采用的是复用方式为FDM。以及,关于确定FDM及FDM的方式对应的收发资源的方法可以参考上述实施例描述,本公开实施例在此不做赘述。
以及,该FDM的方式可以为:在第一频率收发第一信号,在第二频率收发第二信号,第一频率与第二频率至少中心频点不同。具体的,在本公开的一个实施例之中,第一频率和第二频率可以是不同的CC(CarrierComponent,载波分量);在本公开的另一个实施例之中,第一频率和第二频率可以是BWP(Bandwidth Part,带宽部分)。
以及,在本公开的一个实施例之中,第一频率上的双工配置(如TDD配置和/或FDD配置)与第二频率上的双工配置(如TDD配置和/或FDD配置)可以相同或者不同。具体的,若中继设备仅接收到基站发送的一种双工配置,则默认第一频率上的双工配置与第二频率上的双工配置相同。
需要说明的是,在本公开的一个实施例之中,通过使得第一频率上的双工配置与第二频率上的双工配置相同,可以降低自干扰。
进一步地,参考上述实施例内容可知,确定FDM的方式对应的收发资源的方法具体可以是基于协议约定确定的或者是基于基站指示确定的。
以下对基于基站指示确定FDM的方式对应的第一频率和第二频率的具体方法进行详细介绍。
其中,在本公开的一个实施例之中,基于基站指示确定第一频率和/或第二频率的方法可以包括以下至少一种:
方法a:基于基站的RRC半静态配置确定第一频率和/或第二频率。
方法b:在基站的RRC配置的基础上,基于基站的MAC-CE动态激活确定第一频率和/或第二频率。
方法c:在基站的RRC配置的基础上,基于基站的DCI动态指示确定第一频率和/或第二频率。
其中,关于RRC半静态配置、MAC-CE动态激活、DCI动态指示的方法可以参考上述实施例描述,本公开实施例在此不做赘述。
示例的,图6b为本公开实施例提供的一种第一频率和第二频率的时隙分配示意图,如图6b所示,第一频率可以为CC#2,用于收发第一信号,第二频率可以是CC#1,用于收发第二信号。
步骤602、基于第一信号和第二信号的FDM收发方式及收发资源分别收发第一信号和第二信号。
具体的,参考图6b可知,中继设备可以在第一频率CC#2的D时隙上接收基站发送的第一信号,在第一频率CC#2的U时隙上接收基站发送的第一信号。以及,中继设备可以在第二频率CC#1的D时隙上接收基站发送的第二信号,在第二频率CC#1的U时隙上接收基站发送的第二信号。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图7a为本公开实施例所提供的一种信号复用方法的流程示意图,应用于中继设备,如图7a所示,该信号复用方法可以包括以下步骤:
步骤701、确定第一信号和第二信号的对应的收发资源为第一波束和第二波束,或者为第一极化方向和第二极化方向,或者为第一天线端口和第二天线端口。
其中,在本公开的一个实施例之中,当确定的收发资源为第一波束和第二波束,或者为第一极化方 向和第二极化方向,或者为第一天线端口和第二天线端口时,则可以确定中继设备采用的是复用方式为SDM。以及,关于确定SDM及SDM的方式对应的收发资源的方法可以参考上述实施例描述,本公开实施例在此不做赘述。
以及,在本公开的一个实施例之中,第一波束与第二波束不同、第一极化方向与第二极化方向不同、第一天线端口与第二天线端口不同。
以及,在本公开的一个实施例之中,该SDM的方式为:在第一波束收发第一信号,在第二波束收发第二信号;
或者在第一极化方向收发第一信号,在第二极化方向收发第二信号;
或者在第一天线端口收发第一信号,在第二天线端口收发第二信号。
以及,在本公开的一个实施例之中,第一波束或第一极化方向或第一天线端口上的双工配置(如TDD配置和/或FDD配置)与第二波束或第二极化方向或第二天线端口上的双工配置(如TDD配置和/或FDD配置)可以相同或者不同。具体的,若中继设备仅接收到基站发送的一种双工配置,则默认第一波束或第一极化方向或第一天线端口上的双工配置与第二波束或第二极化方向或第二天线端口上的双工配置相同。
进一步地,参考上述实施例内容可知,确定SDM的方式对应的收发资源的方法具体可以是基于协议约定确定的或者是基于基站指示确定的。
以下对基于基站指示确定SDM的方式对应的对应的收发资源的具体方法进行详细介绍。
具体的,在本公开的一个实施例之中,基于基站指示确定SDM的方式对应的对应的收发资源可以包括以下至少一种:
基于基站指示确定第一波束和第二波束;或者
基于基站指示确定第一极化方向和第二极化方向;或者
基于基站指示确定第一天线端口和第二天线端口。
其中,在本公开的一个实施例之中,上述的基于基站指示确定第一波束/极化方向/天线端口和第二波束/极化方向/天线端口的方法可以包括:
方法a:基于基站的RRC半静态配置确定第一波束/极化方向/天线端口和第二波束/极化方向/天线端口。
方法b:基于基站的MAC CE动态激活确定第一波束/极化方向/天线端口和第二波束/极化方向/天线端口。
方法c:基于基站的DCI动态指示确定第一波束/极化方向/天线端口和第二波束/极化方向/天线端口。
其中,关于RRC半静态配置、MAC-CE动态激活、DCI动态指示的方法可以参考上述实施例描述,本公开实施例在此不做赘述。
以及,示例的,图7b为本公开实施例提供的一种第一天线端口和第二天线端口的时隙分配示意图,如图7b所示,第一天线端口Port#2可以用于收发第一信号,第二天线端口Port#1可以用于收发第二信号。
步骤702、基于第一信号和第二信号的SDM收发方式及收发资源分别收发第一信号和第二信号。
具体的,参考图7b可知,中继设备可以在第一天线端口Port#2的D时隙上接收基站发送的第一信号,在第一天线端口Port#2的U时隙上接收基站发送的第一信号。以及,中继设备可以在第二天线端口信息Port#1的D时隙上接收基站发送的第二信号,在第二天线端口信息Port#1的U时隙上接收基站发送的第二信号。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
由上可知,本公开实施例中介绍了三种复用方式,分别为TDM方式、FDM方式、SDM方式,以及上述的三种复用方式各有优缺点,比较如下表:
Figure PCTCN2022079152-appb-000001
图8为本公开实施例所提供的一种信号复用方法的流程示意图,应用于基站,如图8所示,该信号复用方法可以包括以下步骤:
步骤801、确定第一信号和第二信号的对应的收发资源。
其中,在本公开的一个实施例之中,该第一信号为中继设备转发的上行信号和/或转发的下行信号;该第二信号为中继设备与基站之间直接交互的上行信号和/或下行信号。
以及,关于第一信号、第二信号、复用方式、收发资源的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤802、基于第一信号和第二信号的收发资源分别收发第一信号和第二信号。
其中,关于步骤801-802的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图9为本公开实施例所提供的一种信号复用方法的流程示意图,应用于基站,如图9所示,该信号复用方法可以包括以下步骤:
步骤901、确定第一信号和第二信号的对应的收发资源。
步骤902、向中继设备发送第一信号和第二信号的复用方式。
步骤903、向中继设备指示第一信号和第二信号的对应的收发资源。
步骤904、基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。
其中,在本公开的一个实施例之中,该向中继设备发送第一信号和第二信号的复用方式可以包括:
通过RRC消息向中继设备发送第一信号和第二信号的复用方式。
以及,关于步骤901-904的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图10为本公开实施例所提供的一种信号复用方法的流程示意图,应用于基站,如图10所示,该信号复用方法可以包括以下步骤:
步骤1001、确定第一信号和第二信号的对应的收发资源。
步骤1002、仅向中继设备指示第一信号和第二信号的对应的收发资源。
步骤1003、基于第一信号和第二信号的收发资源分别收发第一信号和第二信号。
其中,关于步骤1001-1003的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图11为本公开实施例所提供的一种信号复用方法的流程示意图,应用于基站,如图11所示,该信号复用方法可以包括以下步骤:
步骤1101、确定第一信号和第二信号的对应的收发资源为第一时间和/或第二时间。
其中,在本公开的一个实施例之中,当第一信号和第二信号的对应的收发资源为第一时间和/或第二时间时,则确定基站所采用的复用方式为TDM的方式,以及,该TDM的方式为:在第一时间收发第一信号,在第二时间收发第二信号,第一时间和第二时间不重叠。
进一步的,在本公开的一个实施例之中,指示TDM中的第一时间和第二时间的方法可以包括以下至少一种:
方法一:向中继设备指示第一时间和第二时间。
方法二:向中继设备指示第一时间,并将中继设备的开机时间内除第一时间之外的其他时间确定为第二时间。
方法三:向中继设备指示第二时间,并将中继设备的开机时间内除第一时间之外的其他时间确定为第一时间。
以及,在本公开的一个实施例之中,向中继设备指示第一时间的方法可以包括以下至少一种:
方法a:基于基站的RRC指示第一时间。
方法b:基于基站的MAC-CE指示第一时间。
方法c:基于基站的DCI动态指示第一时间。
步骤1102、基于第一信号和第二信号的TDM收发方式及收发资源分别收发第一信号和第二信号。
其中,关于步骤1101-1102的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图12为本公开实施例所提供的一种信号复用方法的流程示意图,应用于基站,如图12所示,该信号复用方法可以包括以下步骤:
步骤1201、确定第一信号和第二信号的对应的收发资源为第一频率和第二频率。
其中,在本公开的一个实施例之中,当第一信号和第二信号的对应的收发资源为第一频率和第二频率时,则确定基站所采用的复用方式为FDM的方式,以及,该FDM的方式为:在第一频率收发第一信号,在第二频率收发第二信号,第一频率与第二频率至少中心频点不同。
进一步的,在本公开的一个实施例之中,该第一频率上的双工配置与第二频率上的双工配置可以相同或者不同。
其中,在本公开的一个实施例之中,向中继设备指示第一频率的方法可以包括以下至少一种:
方法一:通过RRC指示第一频率。
方法二:通过MAC-CE指示第一频率。
方法三:基于基站的DCI动态指示确定第一频率。
以及,在本公开的一个实施例之中,向中继设备指示第二频率的方法可以包括以下至少一种:
方法a:通过RRC指示第二频率。
方法b:通过MAC-CE指示第二频率。
方法c:通过DCI动态指示第二频率。
步骤1202、基于第一信号和第二信号的FDM收发方式及收发资源分别收发第一信号和第二信号。
其中,关于步骤1201-1202的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图13为本公开实施例所提供的一种信号复用方法的流程示意图,应用于基站,如图13所示,该信号复用方法可以包括以下步骤:
步骤1301、确定第一信号和第二信号的对应的收发资源为第一波束和第二波束,或者为第一极化方向和第二极化方向,或者为第一天线端口和第二天线端口。
其中,在本公开的一个实施例之中,当第一信号和第二信号的对应的收发资源为第一波束和第二波束,或者为第一极化方向和第二极化方向,或者为第一天线端口和第二天线端口时,则确定基站所采用的复用方式为SDM的方式。
以及,在本公开的一个实施例之中,该SDM的方式为:在第一波束收发第一信号,在第二波束收发第二信号,第一波束与第二波束不同;
或者在第一极化方向收发第一信号,在第二极化方向收发第二信号,第一极化方向与第二极化方向不同;
或者在第一天线端口收发第一信号,在第二天线端口收发第二信号,第一天线端口与第二天线端口不同。
进一步的,在本公开的一个实施例之中,指示确定SDM中的第一波束/极化方向/天线端口和第二波束/极化方向/天线端口可以包括以下方法:
方法一:向中继设备指示第一波束和第二波束。
方法二:向中继设备指示第一极化方向和第二极化方向。
方法三:向中继设备指示第一天线端口和第二天线端口。
其中,在本公开的一个实施例之中,向中继设备指示第一波束或第一极化方向或第一天线端口可以包括:
方法a:通过RRC指示第一波束或第一极化方向或第一天线端口。
方法b:通过MAC-CE指示第一波束或第一极化方向或第一天线端口。
方法c:通过DCI动态指示第一波束或第一极化方向或第一天线端口。
以及,在本公开的一个实施例之中,向中继设备指示第二波束或第二极化方向或第二天线端口可以包括:
方法d:通过RRC指示第二波束或第二极化方向或第二天线端口。
方法e:通过MAC-CE指示第二波束或第二极化方向或第二天线端口。
方法f:通过DCI动态指示第二波束或第二极化方向或第二天线端口。
步骤1302、基于第一信号和第二信号的SDM收发方式及收发资源分别收发第一信号和第二信号。
其中,关于步骤1301-1302的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号复用方法之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
图14为本公开实施例所提供的一种信号复用装置的结构示意图,如图14所示,装置可以包括:
确定模块,用于确定第一信号和第二信号的对应的收发资源;第一信号为中继设备转发的上行信号和/或转发的下行信号;第二信号为中继设备与基站之间直接交互的上行信号和/或下行信号;
收发模块,用于基于第一信号和第二信号的收发资源分别收发第一信号和第二信号。
综上所述,在本公开实施例提供的信号复用装置之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
在本公开一个实施例之中,所述确定模块,还用于:
基于协议约定确定所述第一信号和第二信号的复用方式及所述复用方式对应的收发资源。
在本公开一个实施例之中,所述确定模块,还用于:
获取基站发送的所述第一信号和第二信号的复用方式;
基于协议约定或基站指示确定所述第一信号和第二信号的对应的收发资源。
在本公开一个实施例之中,所述确定模块,还用于:
获取基站通过无线资源控制RRC消息发送的所述第一信号和第二信号的复用方式。
在本公开一个实施例之中,所述确定模块,还用于:
基于基站指示确定所述第一信号和第二信号的对应的收发资源;
基于所述收发资源确定所使用的复用方式。
在本公开一个实施例之中,所述第一信号和第二信号的复用方式为时分复用模式TDM的方式;所述TDM的方式对应的收发资源为第一时间和/或第二时间;
所述TDM的方式为:在第一时间收发所述第一信号,在第二时间收发所述第二信号,所述第一时间和所述第二时间不重叠。
在本公开一个实施例之中,所述装置,还用于:
基于基站指示确定所述第一时间和所述第二时间;
基于基站指示确定第一时间,并将所述中继设备的开机时间内除所述第一时间之外的其他时间确定为第二时间;
基于基站指示确定第二时间,并将所述中继设备的开机时间内除所述第一时间之外的其他时间确定为第一时间。
在本公开一个实施例之中,所述装置,还用于:
基于基站的RRC指示确定所述第一时间;
基于基站的媒体介入控制-控制单元MAC-CE指示确定所述第一时间;
基于基站的下行控制信息DCI动态指示确定所述第一时间。
在本公开一个实施例之中,所述装置,还用于:
基于基站的RRC指示确定所述第二时间;
基于基站的MAC CE指示确定所述第二时间;
基于基站的DCI动态指示确定所述第二时间。
在本公开一个实施例之中,所述第一信号和第二信号的复用方式为频分多路复用FDM的方式;
所述FDM的方式为:在第一频率收发所述第一信号,在第二频率收发所述第二信号,所述第一频率与所述第二频率至少中心频点不同。
在本公开一个实施例之中,所述装置,还用于:
基于基站指示确定所述第一频率和所述第二频率。
在本公开一个实施例之中,所述装置,还用于:
基于基站的RRC指示确定所述第一频率;
基于基站的MAC CE指示确定所述第一频率;
基于基站的DCI动态指示确定所述第一频率。
在本公开一个实施例之中,所述装置,还用于:
基于基站的RRC指示确定所述第二频率;
基于基站的MAC CE指示确定所述第二频率;
基于基站的DCI动态指示确定所述第二频率。
在本公开一个实施例之中,所述第一频率上的双工配置与所述第二频率上的双工配置相同或者不同。
在本公开一个实施例之中,所述第一信号和第二信号的复用方式为空分复用SDM的方式;所述FDM的方式对应的收发资源为第一波束和第二波束,或者所述FDM的方式对应的收发资源为第一极化方向和第二极化方向,或者所述FDM的方式对应的收发资源为第一天线端口和第二天线端口;
所述SDM的方式为:在第一波束收发所述第一信号,在第二波束收发所述第二信号,所述第一波束与所述第二波束不同;或者
在第一极化方向收发所述第一信号,在第二极化方向收发所述第二信号,所述第一极化方向与所述第二极化方向不同;或者
在第一天线端口收发所述第一信号,在第二天线端口收发所述第二信号,所述第一天线端口与所述第二天线端口不同。
在本公开一个实施例之中,所述装置,还用于:
基于基站指示确定所述第一波束和所述第二波束;或者
基于基站指示确定所述第一极化方向和所述第二极化方向;或者
基于基站指示确定所述第一天线端口和所述第二天线端口。
在本公开一个实施例之中,所述装置,还用于:
基于基站的RRC指示确定所述第一波束或第一极化方向或第一天线端口;
基于基站的MAC CE指示确定所述第一波束或第一极化方向或第一天线端口;
基于基站的DCI动态指示确定所述第一波束或第一极化方向或第一天线端口。
在本公开一个实施例之中,所述装置,还用于:
基于基站的RRC指示确定所述第二波束或第二极化方向或第二天线端口;
基于基站的MAC CE指示确定所述第二波束或第二极化方向或第二天线端口;
基于基站的DCI动态指示确定所述第二波束或第二极化方向或第二天线端口。
在本公开一个实施例之中,所述第一波束或第一极化方向或第一天线端口上的双工配置与所述第二波束或第二极化方向或第二天线端口上的双工配置相同或者不同。
图15为本公开实施例所提供的一种信号复用装置的结构示意图,如图15所示,装置可以包括:
确定模块,用于确定第一信号和第二信号的对应的收发资源;第一信号为中继设备转发的上行信号 和/或转发的下行信号;第二信号为所述中继设备与基站之间直接交互的上行信号和/或下行信号;
收发模块,用于基于第一信号和第二信号的收发资源分别收发第一信号和第二信号。
综上所述,在本公开实施例提供的信号复用装置之中,中继设备会确定第一信号和第二信号的复用方式及复用方式对应的收发资源,其中,该第一信号可以为中继设备转发的上行信号和/或转发的下行信号,以及该第二信号可以为中继设备与基站之间直接交互的上行信号和/或下行信号,之后中继设备会基于第一信号和第二信号的复用方式及收发资源分别收发第一信号和第二信号。由此,在本公开的一个实施例之中,提供了一种信号复用方法,可以分辨中继设备转发的第一信号和中继设备与基站之间直接交互的第二信号,并会将这两类信号进行分别收发。
在本公开一个实施例之中,所述确定模块,还用于:
所述基站自主确定或者基于协议约定确定所述第一信号和第二信号的复用方式及所述复用方式对应的收发资源。
在本公开一个实施例之中,所述装置,还用于:
向所述中继设备发送所述第一信号和第二信号的复用方式;以及
向所述中继设备指示所述复用方式对应的收发资源。
在本公开一个实施例之中,所述装置,还用于:
向所述中继设备指示所述复用方式对应的收发资源。
在本公开的一个实施例之中,所述装置,还用于:
通过RRC消息向所述中继设备发送所述第一信号和第二信号的复用方式。
在本公开一个实施例之中,所述第一信号和第二信号的复用方式为TDM的方式;所述TDM的方式对应的收发资源为第一时间和/或第二时间;
所述TDM的方式为:在第一时间收发所述第一信号,在第二时间收发所述第二信号,所述第一时间和所述第二时间不重叠。
在本公开一个实施例之中,所述装置,还用于:
向所述中继设备指示所述第一时间和所述第二时间;
向所述中继设备指示第一时间,并将所述中继设备的开机时间内除所述第一时间之外的其他时间确定为第二时间;
向所述中继设备指示第二时间,并将所述中继设备的开机时间内除所述第一时间之外的其他时间确定为第一时间。
在本公开一个实施例之中,所述装置,还用于:
通过RRC指示所述第一时间;
通过MAC-CE指示所述第一时间;
通过DCI动态指示所述第一时间。
在本公开一个实施例之中,所述装置,还用于:
通过RRC指示所述第二时间;
通过MAC-CE指示所述第二时间;
通过DCI动态指示所述第二时间。
在本公开一个实施例之中,所述第一信号和第二信号的复用方式为FDM的方式;所述FDM的方式对应的收发资源为第一频率和第二频率;
所述FDM的方式为:在第一频率收发所述第一信号,在第二频率收发所述第二信号,所述第一频率与所述第二频率至少中心频点不同。
在本公开一个实施例之中,所述装置,还用于:
向所述中继设备指示所述第一频率和所述第二频率。
在本公开一个实施例之中,所述装置,还用于:
通过RRC指示所述第一频率;
通过MAC-CE指示所述第一频率;
通过DCI动态指示所述第一频率。
在本公开一个实施例之中,所述装置,还用于:
通过RRC指示所述第二频率;
通过MAC-CE指示所述第二频率;
通过DCI动态指示所述第二频率。
在本公开一个实施例之中,所述第一频率上的双工配置与所述第二频率上的双工配置相同或者不同。
在本公开一个实施例之中,所述第一信号和第二信号的复用方式为SDM的方式;所述SDM的方式对应的收发资源为第一波束和第二波束,或者所述SDM的方式对应的收发资源为第一极化方向和第二极化方向,或者所述SDM的方式对应的收发资源为第一天线端口和第二天线端口;
所述SDM的方式为:在第一波束收发所述第一信号,在第二波束收发所述第二信号,所述第一波束与所述第二波束不同;或者
在第一极化方向收发所述第一信号,在第二极化方向收发所述第二信号,所述第一极化方向与所述第二极化方向不同;或者
在第一天线端口收发所述第一信号,在第二天线端口收发所述第二信号,所述第一天线端口与所述第二天线端口不同。
在本公开一个实施例之中,所述装置,还用于:
向所述中继设备指示所述第一波束和所述第二波束;或者
向所述中继设备指示所述第一极化方向和所述第二极化方向;或者
向所述中继设备指示所述第一天线端口和所述第二天线端口。
在本公开一个实施例之中,所述装置,还用于:
通过RRC指示所述第一波束或第一极化方向或第一天线端口;
通过MAC-CE指示所述第一波束或第一极化方向或第一天线端口;
通过DCI动态指示所述第一波束或第一极化方向或第一天线端口。
在本公开一个实施例之中,所述装置,还用于:
通过RRC指示所述第二波束或第二极化方向或第二天线端口;
通过MAC-CE指示所述第二波束或第二极化方向或第二天线端口;
通过DCI动态指示所述第二波束或第二极化方向或第二天线端口。
在本公开一个实施例之中,所述第一波束或第一极化方向或第一天线端口上的双工配置与所述第二波束或第二极化方向或第二天线端口上的双工配置相同或者不同。
图16是本公开一个实施例所提供的一种用户设备UE1600的框图。例如,UE1600可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图16,UE1600可以包括以下至少一个组件:处理组件1602,存储器1604,电源组件1606,多媒体组件1608,音频组件1610,输入/输出(I/O)的接口1612,传感器组件1613,以及通信组件1616。
处理组件1602通常控制UE1600的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1602可以包括至少一个处理器1620来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1602可以包括至少一个模块,便于处理组件1602和其他组件之间的交互。例如,处理组件1602可以包括多媒体模块,以方便多媒体组件1608和处理组件1602之间的交互。
存储器1604被配置为存储各种类型的数据以支持在UE1600的操作。这些数据的示例包括用于在UE1600上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1606为UE1600的各种组件提供电力。电源组件1606可以包括电源管理***,至少一个 电源,及其他与为UE1600生成、管理和分配电力相关联的组件。
多媒体组件1608包括在所述UE1600和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1608包括一个前置摄像头和/或后置摄像头。当UE1600处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件1610被配置为输出和/或输入音频信号。例如,音频组件1610包括一个麦克风(MIC),当UE1600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1604或经由通信组件1616发送。在一些实施例中,音频组件1610还包括一个扬声器,用于输出音频信号。
I/O接口1612为处理组件1602和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1613包括至少一个传感器,用于为UE1600提供各个方面的状态评估。例如,传感器组件1613可以检测到设备1600的打开/关闭状态,组件的相对定位,例如所述组件为UE1600的显示器和小键盘,传感器组件1613还可以检测UE1600或UE1600一个组件的位置改变,用户与UE1600接触的存在或不存在,UE1600方位或加速/减速和UE1600的温度变化。传感器组件1613可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1613还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1613还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1616被配置为便于UE1600和其他设备之间有线或无线方式的通信。UE1600可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1616经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1600可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图17是本公开实施例所提供的一种网络侧设备1700的框图。例如,网络侧设备1700可以被提供为一网络侧设备。参照图17,网络侧设备1700包括处理组件1711,其进一步包括至少一个处理器,以及由存储器1732所代表的存储器资源,用于存储可由处理组件1722的执行的指令,例如应用程序。存储器1732中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1710被配置为执行指令,以执行上述方法前述应用在所述网络侧设备的任意方法,例如,如图1所示方法。
网络侧设备1700还可以包括一个电源组件1726被配置为执行网络侧设备1700的电源管理,一个有线或无线网络接口1750被配置为将网络侧设备1700连接到网络,和一个输入输出(I/O)接口1758。网络侧设备1700可以操作基于存储在存储器1732的操作***,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模 块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如前述方法实施例中的终端设备):处理器用于执行图1-图4任一所示的方法。
通信装置为网络设备:收发器用于执行图5-图7任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的***,该***包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该***包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种信号复用方法,其特征在于,应用于中继设备,包括:
    确定第一信号和第二信号的对应的收发资源;所述第一信号为所述中继设备转发的上行信号和/或转发的下行信号;所述第二信号为所述中继设备与基站之间直接交互的上行信号和/或下行信号;
    基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号。
  2. 如权利要求1所述的方法,其特征在于,所述确定第一信号和第二信号的对应的收发资源,包括:
    基于协议约定确定所述第一信号和第二信号的复用方式和/或所述第一信号和第二信号的对应的收发资源。
  3. 如权利要求1所述的方法,其特征在于,所述确定第一信号和第二信号的对应的收发资源,包括:
    获取基站发送的所述第一信号和第二信号的复用方式;
    基于协议约定或基站指示确定所述第一信号和第二信号的对应的收发资源。
  4. 如权利要求1所述的方法,其特征在于,所述确定第一信号和第二信号的对应的收发资源,包括:
    基于基站指示确定所述第一信号和第二信号的对应的收发资源。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述第一信号和第二信号的对应的收发资源为第一时间和/或第二时间;
    所述基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号,包括:
    在第一时间收发所述第一信号,在第二时间收发所述第二信号,所述第一时间和所述第二时间不重叠。
  6. 如权利要求5所述的方法,其特征在于,基于基站指示确定所述第一信号和第二信号的对应的收发资源的方法包括以下至少一种:
    基于基站指示确定所述第一时间和所述第二时间;
    基于基站指示确定第一时间,并将所述中继设备的开机时间内除所述第一时间之外的其他时间确定为第二时间;
    基于基站指示确定第二时间,并将所述中继设备的开机时间内除所述第一时间之外的其他时间确定为第一时间。
  7. 如权利要求1-4任一所述的方法,其特征在于,所述第一信号和第二信号的收发资源为第一频率和第二频率;
    所述基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号,包括:
    在第一频率收发所述第一信号,在第二频率收发所述第二信号,所述第一频率与所述第二频率至少中心频点不同。
  8. 如权利要求7所述的方法,其特征在于,基于基站指示确定所述第一信号和第二信号的对应的收发资源,包括:
    基于基站指示确定所述第一频率和所述第二频率。
  9. 如权利要求7所述的方法,其特征在于,所述第一频率上的双工配置与所述第二频率上的双工配置相同或者不同。
  10. 如权利要求1-4任一所述的方法,其特征在于,第一信号和第二信号的对应的收发资源为第一波束和第二波束,或者所述第一信号和第二信号的对应的收发资源为第一极化方向和第二极化方向,或者所述第一信号和第二信号的对应的收发资源为第一天线端口和第二天线端口;
    所述基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号,包括:
    在第一波束收发所述第一信号,在第二波束收发所述第二信号,所述第一波束与所述第二波束不同;或者
    在第一极化方向收发所述第一信号,在第二极化方向收发所述第二信号,所述第一极化方向与所述 第二极化方向不同;或者
    在第一天线端口收发所述第一信号,在第二天线端口收发所述第二信号,所述第一天线端口与所述第二天线端口不同。
  11. 如权利要求10所述的方法,其特征在于,基于基站指示确定所述第一信号和第二信号的对应的收发资源,包括:
    基于基站指示确定所述第一波束和所述第二波束;或者
    基于基站指示确定所述第一极化方向和所述第二极化方向;或者
    基于基站指示确定所述第一天线端口和所述第二天线端口。
  12. 如权利要求10所述的方法,其特征在于,所述第一波束或第一极化方向或第一天线端口上的双工配置与所述第二波束或第二极化方向或第二天线端口上的双工配置相同或者不同。
  13. 一种信号复用方法,其特征在于,应用于基站,包括:
    确定第一信号和第二信号的对应的收发资源;所述第一信号为所述中继设备转发的上行信号和/或转发的下行信号;所述第二信号为所述中继设备与基站之间直接交互的上行信号和/或下行信号;
    基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号。
  14. 如权利要求13所述的方法,其特征在于,所述确定第一信号和第二信号的对应的收发资源,包括:
    所述基站自主确定或者基于协议约定确定所述第一信号和第二信号的复用方式和/或所述第一信号和第二信号的对应的收发资源。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    向所述中继设备发送所述第一信号和第二信号的复用方式;以及
    向所述中继设备指示所述第一信号和第二信号的对应的收发资源。
  16. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    向所述中继设备指示所述第一信号和第二信号的对应的收发资源。
  17. 如权利要求13-16任一所述的方法,其特征在于,所述第一信号和第二信号的对应的收发资源为第一时间和/或第二时间;
    所述基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号,包括:
    在第一时间收发所述第一信号,在第二时间收发所述第二信号,所述第一时间和所述第二时间不重叠。
  18. 如权利要求17所述的方法,其特征在于,向所述中继设备指示所述第一信号的第二信号的对应的收发资源的包括以下至少一种:
    向所述中继设备指示所述第一时间和所述第二时间;
    向所述中继设备指示第一时间,并将所述中继设备的开机时间内除所述第一时间之外的其他时间确定为第二时间;
    向所述中继设备指示第二时间,并将所述中继设备的开机时间内除所述第一时间之外的其他时间确定为第一时间。
  19. 如权利要求13-16任一所述的方法,其特征在于,所述第一信号和第二信号的对应的收发资源为第一频率和第二频率;
    所述基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号,包括:
    在第一频率收发所述第一信号,在第二频率收发所述第二信号,所述第一频率与所述第二频率至少中心频点不同。
  20. 如权利要求19所述的方法,其特征在于,向所述中继设备指示所述第一信号的第二信号的对应的收发资源,包括:
    向所述中继设备指示所述第一频率和所述第二频率。
  21. 如权利要求19所述的方法,其特征在于,所述第一频率上的双工配置与所述第二频率上的双工配置相同或者不同。
  22. 如权利要求13-16任一所述的方法,其特征在于,所述第一信号和第二信号的对应的收发资源为第一波束和第二波束,或者所述第一信号和第二信号的对应的收发资源为第一极化方向和第二极化方向,或者所述第一信号和第二信号的对应的收发资源为第一天线端口和第二天线端口;
    所述基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号,包括:
    在第一波束收发所述第一信号,在第二波束收发所述第二信号,所述第一波束与所述第二波束不同;或者
    在第一极化方向收发所述第一信号,在第二极化方向收发所述第二信号,所述第一极化方向与所述第二极化方向不同;或者
    在第一天线端口收发所述第一信号,在第二天线端口收发所述第二信号,所述第一天线端口与所述第二天线端口不同。
  23. 如权利要求22所述的方法,其特征在于,向所述中继设备指示所述第一信号和第二信号的对应的收发资源,包括:
    向所述中继设备指示所述第一波束和所述第二波束;或者
    向所述中继设备指示所述第一极化方向和所述第二极化方向;或者
    向所述中继设备指示所述第一天线端口和所述第二天线端口。
  24. 如权利要求23所述的方法,其特征在于,所述第一波束或第一极化方向或第一天线端口上的双工配置与所述第二波束或第二极化方向或第二天线端口上的双工配置相同或者不同。
  25. 一种信号复用装置,其特征在于,包括:
    确定模块,用于确定第一信号和第二信号的对应的收发资源;所述第一信号为所述中继设备转发的上行信号和/或转发的下行信号;所述第二信号为所述中继设备与基站之间直接交互的上行信号和/或下行信号;
    收发模块,用于基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号。
  26. 一种信号复用装置,其特征在于,包括:
    确定模块,用于确定第一信号和第二信号的对应的收发资源;所述第一信号为所述中继设备转发的上行信号和/或转发的下行信号;所述第二信号为所述中继设备与基站之间直接交互的上行信号和/或下行信号;
    收发模块,基于所述第一信号和第二信号的收发资源分别收发第一信号和第二信号。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法。
  28. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至24中任一项所述的方法。
  29. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13至24中任一项所述的方法。
  31. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中任一项所述的方法被实现。
  32. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求19至24中任一项所述的方法被实现。
PCT/CN2022/079152 2022-03-03 2022-03-03 一种信号复用方法/装置/设备及存储介质 WO2023164908A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000506.5A CN114731572A (zh) 2022-03-03 2022-03-03 一种信号复用方法/装置/设备及存储介质
PCT/CN2022/079152 WO2023164908A1 (zh) 2022-03-03 2022-03-03 一种信号复用方法/装置/设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079152 WO2023164908A1 (zh) 2022-03-03 2022-03-03 一种信号复用方法/装置/设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023164908A1 true WO2023164908A1 (zh) 2023-09-07

Family

ID=82232964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079152 WO2023164908A1 (zh) 2022-03-03 2022-03-03 一种信号复用方法/装置/设备及存储介质

Country Status (2)

Country Link
CN (1) CN114731572A (zh)
WO (1) WO2023164908A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117676888A (zh) * 2022-08-12 2024-03-08 华为技术有限公司 中继通信方法、通信***及通信装置
WO2024092718A1 (en) * 2022-11-04 2024-05-10 Zte Corporation Systems and methods for tdd configurations for smart nodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329216A1 (en) * 2009-06-29 2010-12-30 Yu-Chih Jen Method of Handling Mobile Device Mobility and Related Communication Device
CN107612604A (zh) * 2017-08-01 2018-01-19 浙江工业大学 一种基于ofdm中继解码转发的无线携能通信方法
CN110768759A (zh) * 2018-07-26 2020-02-07 深圳市白麓嵩天科技有限责任公司 一种混合双工中继辅助的d2d通信方法
CN112994759A (zh) * 2021-02-04 2021-06-18 南京邮电大学 一种基于ofdm的协作中继d2d通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329216A1 (en) * 2009-06-29 2010-12-30 Yu-Chih Jen Method of Handling Mobile Device Mobility and Related Communication Device
CN107612604A (zh) * 2017-08-01 2018-01-19 浙江工业大学 一种基于ofdm中继解码转发的无线携能通信方法
CN110768759A (zh) * 2018-07-26 2020-02-07 深圳市白麓嵩天科技有限责任公司 一种混合双工中继辅助的d2d通信方法
CN112994759A (zh) * 2021-02-04 2021-06-18 南京邮电大学 一种基于ofdm的协作中继d2d通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "On the structure of smart repeaters", 3GPP TSG RAN MEETING #94-E RP-213071, 29 November 2021 (2021-11-29), XP052097181 *

Also Published As

Publication number Publication date
CN114731572A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023164908A1 (zh) 一种信号复用方法/装置/设备及存储介质
WO2022246711A1 (zh) 盲重传时隙资源的确定方法、装置及通信设备
WO2022257127A1 (zh) 时域窗口确定方法、装置、用户设备、基站及存储介质
WO2023122986A1 (zh) 一种重复传输的终止方法及设备/存储介质/装置
WO2023108374A1 (zh) 一种测量方法/装置/用户设备/网络侧设备及存储介质
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2023004554A1 (zh) 一种业务控制方法、装置、用户设备、基站及存储介质
WO2023050153A1 (zh) 一种上报方法、装置、用户设备、网路侧设备及存储介质
WO2023102944A1 (zh) 一种非竞争随机接入cfra中阈值确定方法及设备/存储介质/装置
WO2022266862A1 (zh) 联合信道估计方法及其装置
WO2023077472A1 (zh) 一种信息更新方法、装置、用户设备、基站及存储介质
WO2023283792A1 (zh) 通信方法及其装置
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置
WO2023092602A1 (zh) 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质
WO2023065339A1 (zh) 一种按需定位参考信号prs请求方法、装置、用户设备、网络侧设备及存储介质
WO2023155054A1 (zh) 一种上报方法及设备/存储介质/装置
WO2023039838A1 (zh) 终端设备的天线切换能力的上报方法及其装置
WO2023155053A1 (zh) 一种辅助通信设备的发送方法及设备/存储介质/装置
WO2023108658A1 (zh) 一种数据重传方法及设备/存储介质/装置
WO2023201586A1 (zh) 一种物理信道重复传输的指示方法及设备/存储介质/装置
WO2023039910A1 (zh) 一种临时参考信号传输方法、装置及存储介质
WO2022213378A1 (zh) 确定harq码本的方法、harq反馈信息的接收方法、及其装置
WO2023123481A1 (zh) 一种传输方式的切换方法及设备/存储介质/装置
WO2023035116A1 (zh) 一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质
WO2023184260A1 (zh) 一种信号传输方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929357

Country of ref document: EP

Kind code of ref document: A1