WO2023035116A1 - 一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质 - Google Patents

一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质 Download PDF

Info

Publication number
WO2023035116A1
WO2023035116A1 PCT/CN2021/117008 CN2021117008W WO2023035116A1 WO 2023035116 A1 WO2023035116 A1 WO 2023035116A1 CN 2021117008 W CN2021117008 W CN 2021117008W WO 2023035116 A1 WO2023035116 A1 WO 2023035116A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrc state
service
indication information
rrc
satellite
Prior art date
Application number
PCT/CN2021/117008
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/117008 priority Critical patent/WO2023035116A1/zh
Priority to CN202180002833.XA priority patent/CN116097772A/zh
Publication of WO2023035116A1 publication Critical patent/WO2023035116A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the disclosure proposes a radio resource control RRC state switching method, device, user equipment, base station, and storage medium to solve the technical problem that existing measurement methods easily lead to power consumption and increase power consumption.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in another embodiment.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • FIG. 1 is a schematic flowchart of a method for switching RRC states provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a radio resource control RRC state switching method provided by another embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a radio resource control RRC state switching method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a radio resource control RRC state switching method provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a radio resource control RRC state switching method provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a radio resource control RRC state switching method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an apparatus for radio resource control RRC state switching provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an apparatus for radio resource control RRC state switching provided by another embodiment of the present disclosure.
  • Fig. 11 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 12 is a block diagram of a base station provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • radio resource control RRC Radio Resource Control, wireless resource control
  • FIG. 1 is a schematic flowchart of a radio resource control RRC state switching method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 1 , the radio resource control RRC state switching method may include the following steps:
  • Step 101 receiving RRC state indication information sent by the base station, the RRC state indication information includes the target RRC state and/or the start time of the satellite's next service to the UE.
  • a UE may be a device that provides voice and/or data connectivity to a user.
  • UE can communicate with one or more core networks via RAN (Radio Access Network, wireless access network).
  • RAN Radio Access Network, wireless access network
  • UE can be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the computer of the terminal for example, may be a fixed, portable, pocket, hand-held, computer-built-in or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the method for receiving the RRC state indication information sent by the base station may include at least one of the following:
  • the RRC state indication information sent by the base station through physical layer signaling is received.
  • the above-mentioned high-level signaling may include at least one of the following:
  • MAC CE Media Access Control Address Control Element, media access control layer control unit
  • the above physical layer signaling may include DCI (Downlink Control Information, downlink control information) signaling.
  • DCI Downlink Control Information, downlink control information
  • the RRC status indication information may be carried in Send on a certain information field of the DCI signaling.
  • the information field carrying RRC state indication information may be a fixed information field in DCI signaling.
  • the information field carrying the RRC state indication information may be a configurable information field, for example, may be an information field configured by the base station.
  • the length of the information field carrying the RRC state indication information may be fixed.
  • the length of the information field carrying the RRC state indication information may be configurable (for example, may be configured by the base station).
  • the service start time of the satellite's next service to the UE may include at least one of the following:
  • the service start time of the next service of the current serving satellite to the UE
  • the service start time of the next service for the UE by other serving satellites is not limited.
  • the RRC state indication information may be specifically sent to the UE when the base station determines that the service end time of the current serving satellite is about to arrive.
  • the above RRC state indication information may only include the target RRC state.
  • the target RRC state may be an RRC disconnected state.
  • the aforementioned target RRC state may be the first predefined RRC state or the second predefined RRC state.
  • whether the target RRC state in the RRC state indication information received by the UE is the first predefined RRC state or the second predefined RRC state is determined by the base station based on the service end time of the current serving satellite and the service start time of the next service. The interval value between is determined.
  • the base station will first determine the service end time of the UE's current serving satellite, and the service start time of the satellite's next service to the UE; after that, if the current time reaches the service end time, and the interval between the service end time and the service start time of the next service is greater than the first threshold value (that is, the time when the satellite does not provide services for the UE is longer), the RRC status indication sent by the base station to the UE
  • the target RRC state in the information may be the first predefined RRC state, wherein, in the first predefined RRC state, the UE may not send and receive signaling with the base station for a relatively long time.
  • the target RRC state in the RRC state indication information sent to the UE may be a second predefined RRC state, wherein, in the second predefined RRC state, the UE may not perform signaling with the base station for a relatively short period of time.
  • the base station may specifically determine the service end time of the current serving satellite and the service start time of the next service based on the ephemeris information of the satellite.
  • the above-mentioned first threshold may be greater than or equal to the second threshold.
  • the above RRC status indication information may only include the service start time of the satellite's next service to the UE. Based on this, after receiving the RRC state indication information, the UE can determine the target RRC state to be switched based on the interval value between the current time and the service start time of the UE's next service.
  • the UE may determine that the target RRC state to be handed over to is the first predefined RRC state, wherein, in the first predefined RRC state, the UE may not send and receive signaling with the base station for a relatively long time.
  • the UE can determine the target RRC state to be switched is the second predefined RRC state, wherein, in the second predefined RRC state, the UE may not perform signaling transmission and reception with the base station within a relatively short period of time.
  • the above RRC state indication information may include a target RRC state and a service start time of the satellite's next service to the UE.
  • Step 102 switch to the target RRC state based on the RRC state indication information.
  • the UE after the UE determines the target RRC state based on the RRC state indication information (the process of determining the target RRC state can refer to the above description), it can switch to the target RRC state, and in the target RRC The operation corresponding to the target RRC state is performed on the state.
  • the UE when the UE switches to the first predefined RRC state, it may specifically perform at least one of the following operations:
  • the UE turns off all hardware modules used for cellular communication (for example, turns off all cellular modules);
  • the UE does not perform DRX (Discontinuous Reception, discontinuous reception);
  • the UE stops detecting paging information
  • the UE stops acquiring system information
  • the UE does not perform neighbor cell measurement operations.
  • the UE may not communicate with the base station for a long time in the first predefined RRC state.
  • the target RRC state is the first predefined RRC state
  • the interval value between the service end time of the current serving satellite and the service start time of the next service is described is greater than the first threshold value (that is, the satellite does not provide services for the UE for a long time)
  • the UE can switch to the first predefined RRC state to achieve no communication with the base station for a long time, thereby avoiding invalid operation of the UE , saving UE power consumption.
  • the UE when the target RRC state is the second predefined RRC state, the UE may specifically perform the following operations when switching to the second predefined RRC state: the UE performs DRX.
  • the method for the UE to perform DRX may include: receiving first configuration information sent by the base station, where the first configuration information includes indication information of parameters when the UE performs DRX; wherein, the The first configuration information is specifically determined by the base station based on the service start time of the next service; after that, the UE executes the DRX operation according to the indication of the first configuration information.
  • the UE may not communicate with the base station for a short time in the second predefined RRC state.
  • the target RRC state is the second predefined RRC state
  • the interval value between the service end time of the current serving satellite and the service start time of the next service is less than or equal to the second threshold value (that is, the time during which the satellite does not provide services to the UE is relatively short)
  • the UE can switch to the second predefined RRC state so as not to communicate with the base station for a short period of time, and the UE can be avoided Perform invalid operations and save UE power consumption.
  • the UE will receive the RRC state indication information sent by the base station, and the RRC state indication information includes the target RRC state and/or the satellite's next service for the UE After the service starts, the UE will switch to the target RRC state based on the RRC state indication information.
  • the target RRC state in the RRC state indication information is specifically the base station based on the interval between the service end time of the UE's current serving satellite and the service start time of the satellite's next service to the UE The value is determined, and in the embodiments of the present disclosure, the above-mentioned target RRC state is specifically an RRC disconnected state.
  • the UE is mainly based on the interval value between the service end time of the current serving satellite and the service start time of the next service to determine to switch the UE to the RRC non-connected state, so as to avoid When the UE receives and receives data transmission when the satellite is not providing service (that is, when the satellite is not covered), invalid operation of the UE is avoided and power consumption is saved.
  • FIG. 2 is a schematic flowchart of a radio resource control RRC state switching method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 2 , the radio resource control RRC state switching method may include the following steps:
  • Step 201 receiving RRC state indication information sent by the base station, the RRC state indication information includes the first predefined RRC state and/or the start time of the satellite's next service to the UE.
  • the RRC state indication information in step 201 may only include the first predefined RRC state.
  • the RRC status indication information in step 201 may only include the service start time of the satellite's next service to the UE.
  • the interval value between the current moment and the service start moment of the satellite's next service to the UE should be greater than the first threshold value.
  • the RRC state indication information in step 201 may include the first predefined RRC state and the service start time of the satellite's next service to the UE.
  • Step 202 switch to a first predefined RRC state based on the RRC state indication information.
  • the UE will receive the RRC state indication information sent by the base station, and the RRC state indication information includes the target RRC state and/or the satellite's next service for the UE After the service starts, the UE will switch to the target RRC state based on the RRC state indication information.
  • the target RRC state in the RRC state indication information is specifically the base station based on the interval between the service end time of the UE's current serving satellite and the service start time of the satellite's next service to the UE The value is determined, and in the embodiments of the present disclosure, the above-mentioned target RRC state is specifically an RRC disconnected state.
  • FIG. 3 is a schematic flowchart of a radio resource control RRC state switching method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 3 , the radio resource control RRC state switching method may include the following steps:
  • Step 301 Receive RRC state indication information sent by the base station, the RRC state indication information includes the second predefined RRC state and/or the start time of the satellite's next service to the UE.
  • the RRC state indication information in step 301 may only include the second predefined RRC state.
  • the RRC status indication information in step 301 may only include the service start time of the satellite's next service to the UE.
  • the interval between the current time and the start time of the satellite's next service to the UE should be less than or equal to the second threshold.
  • the RRC state indication information in step 301 may include the second predefined RRC state and the service start time of the satellite's next service to the UE.
  • Step 302 switch to a second predefined RRC state based on the RRC state indication information.
  • the UE will receive the RRC status indication information sent by the base station.
  • the RRC status indication information includes the target RRC status and/or the service start time of the next satellite service to the UE, and then the UE will switch to the RRC status indication information based on the RRC status indication information.
  • Target RRC state is specifically the base station based on the interval between the service end time of the UE's current serving satellite and the service start time of the satellite's next service to the UE The value is determined, and in the embodiments of the present disclosure, the above-mentioned target RRC state is specifically an RRC disconnected state.
  • the UE is mainly based on the interval value between the service end time of the current serving satellite and the service start time of the next service to determine to switch the UE to the RRC non-connected state, so as to avoid When the UE receives and receives data transmission when the satellite is not providing service (that is, when the satellite is not covered), invalid operation of the UE is avoided and power consumption is saved.
  • FIG. 4 is a schematic flowchart of a radio resource control RRC state switching provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 4 , the radio resource control RRC state switching method may include the following steps:
  • Step 401 receiving RRC state indication information sent by the base station, the RRC state indication information includes target RRC state and/or service start time of the satellite's next service to the UE.
  • Step 402 switch to the target RRC state based on the RRC state indication information.
  • Step 403 receiving second configuration information sent by the base station.
  • the second configuration information may specifically be used to instruct the UE to switch from the target RRC state (that is, the RRC non-connected state) back to the RRC connected state, so as to normally communicate with the base station.
  • the method for the base station to send the second configuration information is mainly as follows: if the current time reaches the service start time of the next service (that is, when the satellite is about to provide services for the UE), the base station can send the second configuration information to the UE to Instruct the UE to switch back to the RRC connection state, so as to ensure the normal communication between the UE and the base station during the period when the satellite provides services for the UE.
  • the second configuration information may include at least one of the following:
  • the service beam information of the target service satellite that will provide service next time
  • Resource configuration information when performing random access (for example, it may be the characteristics of the random access signal and/or the time-frequency resource position where the random access signal is located);
  • the time-frequency resource corresponding to the UE is the time-frequency resource corresponding to the UE.
  • Step 404 Perform random access based on the configuration information to switch to the RRC connected state.
  • the UE will receive the RRC state indication information sent by the base station, and the RRC state indication information includes the target RRC state and/or the satellite's next service for the UE After the service starts, the UE will switch to the target RRC state based on the RRC state indication information.
  • the target RRC state in the RRC state indication information is specifically the base station based on the interval between the service end time of the UE's current serving satellite and the service start time of the satellite's next service to the UE The value is determined, and in the embodiments of the present disclosure, the above-mentioned target RRC state is specifically an RRC disconnected state.
  • FIG. 5 is a schematic flowchart of a radio resource control RRC state switching method provided by an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 5 , the radio resource control RRC state switching method may include the following steps:
  • Step 501 Determine the service end time of the UE's current serving satellite, and the service start time of the satellite's next service to the UE.
  • the base station may specifically determine the service end time of the currently serving satellite and the service start time of the satellite's next service to the UE based on the ephemeris information.
  • the method for the base station to send RRC status indication information to the UE may include at least one of the following:
  • the service start time of the next service for the UE by other serving satellites is not limited.
  • Step 502 Send RRC state indication information to the UE, the RRC state indication information includes the target RRC state and/or the service start time of the next service, and the RRC state indication information is used to instruct the UE to switch to the target RRC state.
  • the base station when the RRC state indication information includes the service start time of the satellite's next service to the UE, the base station specifically sends the The UE sends the RRC state indication information including only the service start time of the next satellite service to the UE, so that the UE can determine the target RRC state to be switched based on the service start time of the next satellite service to the UE.
  • the UE turns off all hardware modules used for cellular communication (for example, turns off all cellular modules);
  • the UE stops detecting paging information
  • the UE stops acquiring system information
  • the UE may not communicate with the base station for a long time in the first predefined RRC state.
  • the UE when the target RRC state is the second predefined RRC state, the UE may specifically perform the following operations in the second predefined RRC state:
  • the UE may not communicate with the base station for a short time in the second predefined RRC state.
  • the UE is mainly based on the interval value between the service end time of the current serving satellite and the service start time of the next service to determine to switch the UE to the RRC non-connected state, so as to avoid When the UE receives and receives data transmission when the satellite is not providing service (that is, when the satellite is not covered), invalid operation of the UE is avoided and power consumption is saved.
  • FIG. 6 is a schematic flowchart of a radio resource control RRC state switching method provided by an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 6 , the radio resource control RRC state switching method may include the following steps:
  • Step 602 Send RRC state indication information to the UE, the RRC state indication information includes the first predefined RRC state and/or the service start time of the next service, and the RRC state indication information is used to instruct the UE to switch to the first predefined RRC state.
  • the RRC state indication information in step 602 may only include the first predefined RRC state.
  • the RRC status indication information in step 602 may only include the service start time of the satellite's next service to the UE.
  • the interval value between the current moment and the service start moment of the satellite's next service to the UE should be greater than the first threshold value.
  • the RRC state indication information in step 602 may include the first predefined RRC state and the service start time of the satellite's next service to the UE.
  • step 601 and step 602 reference may be made to the foregoing description, and details are not described here in this embodiment of the present disclosure.
  • the UE will receive the RRC state indication information sent by the base station, and the RRC state indication information includes the target RRC state and/or the satellite's next service for the UE After the service starts, the UE will switch to the target RRC state based on the RRC state indication information.
  • the target RRC state in the RRC state indication information is specifically the base station based on the interval between the service end time of the UE's current serving satellite and the service start time of the satellite's next service to the UE The value is determined, and in the embodiments of the present disclosure, the above-mentioned target RRC state is specifically an RRC disconnected state.
  • the UE is mainly based on the interval value between the service end time of the current serving satellite and the service start time of the next service to determine to switch the UE to the RRC non-connected state, so as to avoid When the UE receives and receives data transmission when the satellite is not providing service (that is, when the satellite is not covered), invalid operation of the UE is avoided and power consumption is saved.
  • FIG. 7 is a schematic flowchart of a radio resource control RRC state switching method provided by an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 7 , the radio resource control RRC state switching method may include the following steps:
  • Step 701 determine the service end time of the current serving satellite of the user equipment UE, and the service start time of the satellite's next service to the UE;
  • Step 702 Send RRC state indication information to the UE, the RRC state indication information includes the second predefined RRC state and/or the service start time of the next service, and the RRC state indication information is used to instruct the UE to switch to the second predefined RRC state.
  • the RRC status indication information in step 701 may only include the service start time of the satellite's next service to the UE.
  • the interval between the current time and the start time of the satellite's next service to the UE should be less than or equal to the second threshold.
  • the RRC state indication information in step 701 may include the second predefined RRC state and the service start time of the satellite's next service to the UE.
  • step 701 and step 702 reference may be made to the foregoing description, and details are not described here in this embodiment of the present disclosure.
  • the UE will receive the RRC state indication information sent by the base station, and the RRC state indication information includes the target RRC state and/or the satellite's next service for the UE After the service starts, the UE will switch to the target RRC state based on the RRC state indication information.
  • the target RRC state in the RRC state indication information is specifically the base station based on the interval between the service end time of the UE's current serving satellite and the service start time of the satellite's next service to the UE The value is determined, and in the embodiments of the present disclosure, the above-mentioned target RRC state is specifically an RRC disconnected state.
  • the UE is mainly based on the interval value between the service end time of the current serving satellite and the service start time of the next service to determine to switch the UE to the RRC non-connected state, so as to avoid When the UE receives and receives data transmission when the satellite is not providing service (that is, when the satellite is not covered), invalid operation of the UE is avoided and power consumption is saved.
  • FIG. 8 is a schematic flowchart of a radio resource control RRC state switching method provided by an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 8 , the radio resource control RRC state switching method may include the following steps:
  • Step 801 Determine the service end time of the UE's current serving satellite and the service start time of the satellite's next service to the UE.
  • Step 802 Send RRC state indication information to the UE based on the service end time and the service start time of the next service, the RRC state indication information includes the target RRC state and/or the service start time of the next service, and the RRC state indication information is used to indicate the UE switch to the target RRC state.
  • step 801 and step 802 reference may be made to the foregoing description, and details are not described here in this embodiment of the present disclosure.
  • Step 803 Send second configuration information to the UE based on the current time reaching the service start time of the next service, where the second configuration information is used to instruct the UE to randomly access to the RRC connected state.
  • the second configuration information may specifically be used to instruct the UE to switch from the target RRC state (that is, the RRC non-connected state) back to the RRC connected state, so as to normally communicate with the base station.
  • the second configuration information may include at least one of the following:
  • the service beam information of the target service satellite that will provide service next time
  • Resource configuration information when performing random access (for example, it may be the characteristics of the random access signal and/or the time-frequency resource position where the random access signal is located);
  • the time-frequency resource corresponding to the UE is the time-frequency resource corresponding to the UE.
  • the UE will receive the RRC state indication information sent by the base station, and the RRC state indication information includes the target RRC state and/or the satellite's next service for the UE After the service starts, the UE will switch to the target RRC state based on the RRC state indication information.
  • the target RRC state in the RRC state indication information is specifically the base station based on the interval between the service end time of the UE's current serving satellite and the service start time of the satellite's next service to the UE The value is determined, and in the embodiments of the present disclosure, the above-mentioned target RRC state is specifically an RRC disconnected state.
  • the UE is mainly based on the interval value between the service end time of the current serving satellite and the service start time of the next service to determine to switch the UE to the RRC non-connected state, so as to avoid When the UE receives and receives data transmission when the satellite is not providing service (that is, when the satellite is not covered), invalid operation of the UE is avoided and power consumption is saved.
  • the receiving module 901 is configured to receive the RRC state indication information sent by the base station, the RRC state indication information including the target RRC state and/or the service start time of the satellite's next service to the UE;
  • a switching module 902 configured to switch to the target RRC state.
  • the UE turns off all hardware modules used for cellular communication
  • the UE does not perform discontinuous reception DRX
  • the UE stops acquiring system information
  • the UE does not perform neighbor cell measurement operations.
  • the target RRC state included in the RRC state indication information is the second predefined RRC state
  • the switching module is also used for:
  • the UE receives first configuration information, where the first configuration information includes indication information of parameters when the UE performs DRX;
  • the UE performs a DRX operation according to the indication of the first configuration information.
  • the receiving module is also used for:
  • the service start time of the satellite's next service to the UE includes at least one of the following:
  • the service start time of the next service of the UE by the current serving satellite
  • the next service start time for the UE by other serving satellites is not limited.
  • the device is also used for:
  • the second configuration information includes at least one of the following:
  • the time-frequency resource corresponding to the UE is the time-frequency resource corresponding to the UE.
  • Fig. 10 is a schematic structural diagram of an apparatus for radio resource control RRC state switching provided by an embodiment of the present disclosure; as shown in Fig. 10 , the apparatus 1000 may include:
  • a determination module 1001 configured to determine the service end time of the UE's current serving satellite, and the service start time of the satellite's next service to the UE;
  • the sending module 1002 is configured to send RRC state indication information to the UE, the RRC state indication information includes the target RRC state and/or the service start time of the next service, and the RRC state indication information is used to instruct the UE to switch to the target RRC state.
  • the UE will receive the RRC state indication information sent by the base station, and the RRC state indication information includes the target RRC state and/or the satellite's next service for the UE After the service starts, the UE will switch to the target RRC state based on the RRC state indication information.
  • the target RRC state in the RRC state indication information is specifically the base station based on the interval between the service end time of the UE's current serving satellite and the service start time of the satellite's next service to the UE The value is determined, and in the embodiments of the present disclosure, the above-mentioned target RRC state is specifically an RRC disconnected state.
  • the UE is mainly based on the interval value between the service end time of the current serving satellite and the service start time of the next service to determine to switch the UE to the RRC non-connected state, so as to avoid When the UE receives and receives data transmission when the satellite is not providing service (that is, when the satellite is not covered), invalid operation of the UE is avoided and power consumption is saved.
  • the sending module is also used for:
  • the sending module is also used for:
  • the target RRC state in the RRC state indication information is the second predefined RRC state.
  • the device is also used for:
  • the first configuration information includes indication information of parameters when the UE executes DRX.
  • the sending module is also used for:
  • the determination module is also used for:
  • the service end time of the current serving satellite and the service start time of the next service are determined based on the ephemeris information.
  • the service start time of the satellite's next service to the UE includes at least one of the following:
  • the service start time of the next service of the UE by the current serving satellite
  • the next service start time for the UE by other serving satellites is not limited.
  • the device is also used for:
  • the second configuration information includes at least one of the following:
  • the time-frequency resource corresponding to the UE is the time-frequency resource corresponding to the UE.
  • Fig. 11 is a block diagram of a user equipment UE 1100 provided by an embodiment of the present disclosure.
  • the UE 1100 may be a mobile phone, a computer, a digital broadcast terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1100 may include at least one of the following components: a processing component 1102, a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1110, an input/output (I/O) interface 1112, a sensor component 1113, and a communication component 1116.
  • a processing component 1102 a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1110, an input/output (I/O) interface 1112, a sensor component 1113, and a communication component 1116.
  • a processing component 1102 may include at least one of the following components: a processing component 1102, a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1110, an input/output (I/O) interface 1112, a sensor component 1113, and a communication component 1116.
  • I/O input/output
  • Processing component 1102 generally controls the overall operations of UE 1100, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1102 may include at least one processor 1120 to execute instructions, so as to complete all or part of the steps of the above method.
  • processing component 1102 can include at least one module to facilitate interaction between processing component 1102 and other components.
  • processing component 1102 may include a multimedia module to facilitate interaction between multimedia component 1108 and processing component 1102 .
  • the memory 1104 is configured to store various types of data to support operations at the UE 1100 . Examples of such data include instructions for any application or method operating on UE 1100, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1104 can be implemented by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1106 provides power to various components of the UE 1100.
  • Power component 1106 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1100 .
  • the multimedia component 1108 includes a screen providing an output interface between the UE 1100 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1108 includes a front camera and/or a rear camera. When the UE1100 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1110 is configured to output and/or input audio signals.
  • the audio component 1110 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1100 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1104 or sent via communication component 1116 .
  • the audio component 1110 also includes a speaker for outputting audio signals.
  • the I/O interface 1112 provides an interface between the processing component 1102 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1113 includes at least one sensor, and is used to provide various aspects of state assessment for the UE 1100 .
  • the sensor component 1113 can detect the open/closed state of the device 1100, the relative positioning of components, such as the display and the keypad of the UE1100, the sensor component 1113 can also detect the position change of the UE1100 or a component of the UE1100, and the user and Presence or absence of UE1100 contact, UE1100 orientation or acceleration/deceleration and temperature change of UE1100.
  • the sensor assembly 1113 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1113 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1113 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1116 is configured to facilitate wired or wireless communications between UE 1100 and other devices.
  • UE1100 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1116 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1116 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • UE 1100 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • Fig. 12 is a block diagram of a base station 1200 provided by an embodiment of the present disclosure.
  • base station 1200 may be provided as a base station.
  • the base station 1200 includes a processing component 1211, which further includes at least one processor, and a memory resource represented by a memory 1232 for storing instructions executable by the processing component 1222, such as application programs.
  • the application program stored in memory 1232 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1210 is configured to execute instructions, so as to execute any of the aforementioned methods applied to the base station, for example, the method shown in FIG. 1 .
  • Base station 1200 may also include a power component 1226 configured to perform power management of base station 1200, a wired or wireless network interface 1250 configured to connect base station 1200 to a network, and an input-output (I/O) interface 1258.
  • the base station 1200 can operate based on an operating system stored in the memory 1232, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the base station and the UE respectively.
  • the base station and the UE may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the base station and the UE respectively.
  • the base station and the UE may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the aforementioned method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as network-side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.), execute A computer program that processes data for a computer program.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the foregoing method embodiments): the processor is configured to execute any of the methods shown in FIGS. 1-4 .
  • the communication device is a network device: the transceiver is used to execute the method shown in any one of Fig. 5-Fig. 7 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the foregoing embodiments and a communication device as a network device, Alternatively, the system includes the communication device as the terminal device in the foregoing embodiments (such as the first terminal device in the foregoing method embodiment) and the communication device as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种无线资源控制RRC状态切换方法、装置、用户设备、基站及存储介质,属于通信领域。该方法包括:接收基站发送的RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态和/或卫星对于所述UE的下一次服务的服务开始时刻;基于所述RRC状态指示信息切换至所述目标RRC状态。本公开提供的方法,在卫星通信中,有效的使UE在没有卫星提供服务的情况下,避免了无效的操作,以节省电量消耗。

Description

一种无线资源控制RRC状态切换方法、装置、用户设备、基站及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种无线资源控制RRC状态切换测量方法、装置、用户设备、基站及存储介质。
背景技术
在5G通信***中,卫星通信技术是未来发展的一个重要方面,但是,受限于卫星数量或卫星行动轨迹,卫星无法做到全天候的覆盖。基于此,为了节省UE(User Equipment,用户设备)的电量消耗,当UE不处于卫星覆盖范围时,通常配置UE不进行下行信令的接收或上行信令的发送。
相关技术中,基站通常会为UE周期性配置DRX(Discontinuous Reception,非连续性接收)以使得UE在短时间内不进行下行信令的接收或上行信令的发送。但是,相关技术中的DRX的周期较短(例如一般为几十毫秒),而卫星通信中UE不处于卫星覆盖范围的时间较长(例如一般为几个小时),从而使得相关技术中的配置DRX的方式无法适用于卫星通信***中,因此亟需一种适用于卫星通信***的UE省电方法。
发明内容
本公开提出的一种无线资源控制RRC状态切换方法、装置、用户设备、基站及存储介质,以解决现有的测量方法易导致耗电,增加功耗的技术问题。
本公开一方面实施例提出的一种无线资源控制RRC状态切换方法,应用于基站,包括:
确定用户设备UE的当前服务卫星的服务结束时刻,以及卫星对于所述UE的下一次服务的服务开始时刻;
基于所述服务结束时刻与所述下一次服务的服务开始时刻向所述UE发送RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态和/或所述下一次服务的服务开始时刻,所述RRC状态指示信息用于指示所述UE切换至所述目标RRC状态。
本公开另一方面实施例提出的无线资源控制RRC状态切换方法,应用于UE,包括:
接收基站发送的RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态和/或卫星对于所述UE的下一次服务的服务开始时刻;
基于所述RRC状态指示信息切换至所述目标RRC状态。
本公开又一方面实施例提出的无线资源控制RRC状态切换装置,包括:
确定模块,用于确定用户设备UE的当前服务卫星的服务结束时刻,以及卫星对于所述UE的下一次服务的服务开始时刻;
发送模块,用于向所述UE发送RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态和/或所述下一次服务的服务开始时刻,所述RRC状态指示信息用于指示所述UE切换至所述目标RRC状态。
本公开又一方面实施例提出的无线资源控制RRC状态切换装置,包括:
接收模块,用于接收基站发送的RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态和/或卫星对于所述UE的下一次服务的服务开始时刻;
处理模块,用于基于所述RRC状态指示信息切换至所述目标RRC状态。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
综上所述,本公开提出的无线资源控制RRC状态切换方法之中,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的无线资源控制RRC状态切换方法的流程示意图;
图2为本公开另一个实施例所提供的无线资源控制RRC状态切换方法的流程示意图;
图3为本公开再一个实施例所提供的无线资源控制RRC状态切换方法的流程示意图;
图4为本公开又一个实施例所提供的无线资源控制RRC状态切换方法的流程示意图;
图5为本公开又一个实施例所提供的无线资源控制RRC状态切换方法的流程示意图;
图6为本公开又一个实施例所提供的无线资源控制RRC状态切换方法的流程示意图;
图7为本公开又一个实施例所提供的无线资源控制RRC状态切换方法的流程示意图;
图8为本公开又一个实施例所提供的无线资源控制RRC状态切换方法的流程示意图;
图9为本公开一个实施例所提供的无线资源控制RRC状态切换装置的结构示意图;
图10为本公开另一个实施例所提供的无线资源控制RRC状态切换装置的结构示意图;
图11是本公开一个实施例所提供的一种用户设备的框图;
图12为本公开一个实施例所提供的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不 应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面参考附图对本公开实施例所提供的无线资源控制RRC(Radio Resource Control,无限资源控制)状态切换方法、装置、用户设备、基站及存储介质进行详细描述。
图1为本公开实施例所提供的一种无线资源控制RRC状态切换的流程示意图,该方法由UE执行,如图1所示,该无线资源控制RRC状态切换方法可以包括以下步骤:
步骤101、接收基站发送的RRC状态指示信息,RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻。
需要说明的是,本公开实施例的RRC状态切换方法可以应用在任意的UE中。UE可以是指向用户提供语音和/或数据连通性的设备。UE可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
在本公开的一个实施例之中,接收基站发送的RRC状态指示信息的方法可以包括以下的至少一种:
接收基站通过高层信令发送的RRC状态指示信息;
接收基站通过物理层信令发送的RRC状态指示信息。
其中,在本公开的一个实施例之中,上述的高层信令可以包括以下的至少一种:
RRC信令;
MAC CE(Media Access Control Address Control Element,媒体接入控制层控制单元)信令。
以及,在本公开的一个实施例之中,上述的物理层信令可以包括DCI(Downlink Control Information,下行控制信息)信令。进一步地,在本公开的一个实施例之中,当通过物理层信令通知终端的状态和/或相应的时间信息时,利用DCI信令发送上述信息时,该RRC状态指示信息可以是承载于DCI信令的某一信息域上进行发送。其中,在本公开的一个实施例之中,该承载RRC状态指示信息的信息域可以是DCI信令中的一个固定信息域。在本公开的另一个实施例之中,该承载RRC状态指示信息的信息域可以是一可配置的信息域,示例的,可以是由基站配置的一个信息域。以及,在本公开的一个实施例之中,该承载RRC状态指示信息的信息域的长度可以是固定的。在本公开的一个实施例之中,该承载RRC状态指示信息的信息域的长度可以是可配置的(例如可以是由基站配置的)。
在本公开的一个实施例之中,卫星对于UE的下一次服务的服务开始时刻可以包括以下的至少一种:
当前服务卫星对于UE的下一次服务的服务开始时刻;
其他服务卫星对于UE的下一次服务的服务开始时刻。
其中,需要说明的是,在本公开的一个实施例之中,RRC状态指示信息具体可以是基站在确定当前服务卫星的服务结束时刻即将到达时发送至UE的。
以及,在本公开的一个实施例之中,上述的RRC状态指示信息可以仅包括目标RRC状态。其中,目标RRC状态可以是RRC非连接态。具体的,在本公开的一个实施例之中,上述的目标RRC状态可以为第一预定义RRC状态或第二预定义RRC状态。以及,该UE接收的RRC状态指示信息中的目标RRC状态具体是第一预定义RRC状态还是第二预定义RRC状态是由基站基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值确定的。
具体而言,在本公开的一个实施例之中,基站会先确定出UE的当前服务卫星的服务结束时刻,以及卫星对于UE的下一次服务的服务开始时刻;之后,若当前时刻到达服务结束时刻,且服务结束时刻 与下一次服务的服务开始时刻之间的间隔值大于第一门限值(也即是卫星不为UE提供服务的时间较长),则基站向UE发送的RRC状态指示信息中的目标RRC状态可以为第一预定义RRC状态,其中,在该第一预定义RRC状态下,UE可以较长时间不与基站进行信令的收发。若当前时刻到达服务结束时刻,且服务结束时刻与下一次服务的服务开始时刻之间的间隔值小于等于第二门限值(也即是卫星不为UE提供服务的时间较短),则基站向UE发送的RRC状态指示信息中的目标RRC状态可以为第二预定义RRC状态,其中,在该第二预定义RRC状态下,UE可以在较短时间不与基站进行信令的收发。
其中,在本公开的一个实施例之中,基站具体可以是基于卫星的星历信息来确定当前服务卫星的服务结束时刻和下一次服务的服务开始时刻。
以及,在本公开的一个实施例之中,上述的第一门限值可以大于或等于第二门限值。
进一步地,在本公开的另一个实施例之中,上述的RRC状态指示信息可以仅包括卫星对于UE的下一次服务的服务开始时刻。基于此,UE在接收到RRC状态指示信息后,可以基于当前时刻与UE的下一次服务的服务开始时刻之间的间隔值来确定其将要切换的目标RRC状态。
具体而言,在本公开的一个实施例之中,若当前时刻与下一次服务的服务开始时刻之间的间隔值大于第一门限值(也即是卫星不为UE提供服务的时间较长),则UE可以确定其将要切换的目标RRC状态为第一预定义RRC状态,其中,在该第一预定义RRC状态下,UE可以较长时间不与基站进行信令的收发。若当前时刻与下一次服务的服务开始时刻之间的间隔值小于等于第二门限值(也即是卫星不为UE提供服务的时间较短),则UE可以确定其将要切换的目标RRC状态为第二预定义RRC状态,其中,在该第二预定义RRC状态下,UE可以在较短时间不与基站进行信令的收发。
在本公开的又一个实施例之中,上述的RRC状态指示信息可以包括目标RRC状态和卫星对于UE的下一次服务的服务开始时刻。
步骤102、基于RRC状态指示信息切换至目标RRC状态。
其中,在本公开的一个实施例之中,UE在基于RRC状态指示信息确定出目标RRC状态(确定目标RRC状态的过程可以参考上述描述)之后,可以切换至目标RRC状态,并在该目标RRC状态上执行与该目标RRC状态对应的操作。
其中,在本公开的一个实施例之中,UE切换至第一预定义RRC状态时具体可以执行以下的至少一种操作:
UE关闭所有用于蜂窝通信的硬件模块(例如关闭所有的cellular模块);
UE不执行DRX(Discontinuous Reception,非连续接收);
UE停止检测寻呼信息;
UE停止获取***信息;
UE不执行邻区测量操作。
也即是,在本公开的一个实施例之中,在第一预定义RRC状态下UE可以长时间不与基站进行通信。
则结合上述内容可知,在本公开的一个实施例之中,当目标RRC状态为第一预定义RRC状态时,说明当前服务卫星的服务结束时刻与下一次服务的服务开始时刻之间的间隔值大于第一门限值(即卫星不为UE提供服务的时间较长),此时,UE可以通过切换至第一预定义RRC状态以实现长时间不与基站进行通信,从而避免UE进行无效操作,节省UE耗电。
在本公开的另一个实施例之中,当目标RRC状态为第二预定义RRC状态时,UE切换至第二预定义RRC状态时具体可以执行以下的操作:UE执行DRX。
具体的,在本公开的一个实施例之中,UE执行DRX的方法可以包括:接收基站发送的第一配置信息,该第一配置信息中包含UE执行DRX时的参数的指示信息;其中,该第一配置信息具体是基站基于下一次服务的服务开始时刻所确定的;之后,UE按照该第一配置信息的指示执行DRX操作。
由此可知,在本公开的一个实施例之中,在第二预定义RRC状态下UE可以短时间不与基站进行通信。
则结合上述内容可知,在本公开的一个实施例之中,当目标RRC状态为第二预定义RRC状态时, 说明当前服务卫星的服务结束时刻与下一次服务的服务开始时刻之间的间隔值小于等于第二门限值(即卫星不为UE提供服务的时间较短),此时,UE可以通过切换至第二预定义RRC状态以实现短时间内不与基站进行通信,则可以避免UE进行无效操作,且节省UE耗电。
综上所述,本公开提出的无线资源控制RRC状态切换方法之中,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
图2为本公开实施例所提供的一种无线资源控制RRC状态切换的流程示意图,该方法由UE执行,如图2所示,该无线资源控制RRC状态切换方法可以包括以下步骤:
步骤201、接收基站发送的RRC状态指示信息,RRC状态指示信息包括第一预定义RRC状态和/或卫星对于UE的下一次服务的服务开始时刻。
其中,在本公开的一个实施例之中,步骤201中的RRC状态指示信息可以仅包括第一预定义RRC状态。
在本公开的另一个实施例之中,步骤201中的RRC状态指示信息可以仅包括卫星对于UE的下一次服务的服务开始时刻。其中,在本公开的一个实施例之中,当前时刻与卫星对于UE的下一次服务的服务开始时刻之间的间隔值应当大于第一门限值。
在本公开的又一个实施例之中,步骤201中RRC状态指示信息可以包括第一预定义RRC状态和卫星对于UE的下一次服务的服务开始时刻。
步骤202、基于RRC状态指示信息切换至第一预定义RRC状态。
其中,关于步骤201-202的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,本公开提出的无线资源控制RRC状态切换方法之中,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
图3为本公开实施例所提供的一种无线资源控制RRC状态切换的流程示意图,该方法由UE执行,如图3所示,该无线资源控制RRC状态切换方法可以包括以下步骤:
步骤301、接收基站发送的RRC状态指示信息,RRC状态指示信息包括第二预定义RRC状态和/或卫星对于UE的下一次服务的服务开始时刻。
其中,在本公开的一个实施例之中,步骤301中的RRC状态指示信息可以仅包括第二预定义RRC状态。
在本公开的另一个实施例之中,步骤301中的RRC状态指示信息可以仅包括卫星对于UE的下一次服务的服务开始时刻。其中,在本公开的一个实施例之中,当前时刻与卫星对于UE的下一次服务的服务开始时刻之间的间隔值应当小于等于第二门限值。
在本公开的又一个实施例之中,步骤301中RRC状态指示信息可以包括第二预定义RRC状态和卫星对于UE的下一次服务的服务开始时刻。
步骤302、基于RRC状态指示信息切换至第二预定义RRC状态。
综上所述,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态 和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
图4为本公开实施例所提供的一种无线资源控制RRC状态切换的流程示意图,该方法由UE执行,如图4所示,该无线资源控制RRC状态切换方法可以包括以下步骤:
步骤401、接收基站发送的RRC状态指示信息,RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻。
步骤402、基于RRC状态指示信息切换至目标RRC状态。
其中,关于步骤401-402的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤403、接收基站发送的第二配置信息。
其中,在本公开的一个实施例之中,该第二配置信息具体可以是用于指示UE从目标RRC状态(即RRC非连接态)切换回RRC连接态,以正常与基站进行通信。
具体而言,基站发送第二配置信息的方法主要为:若当前时刻到达下一次服务的服务开始时刻(即,卫星即将为UE提供服务时),则基站可以向UE发送第二配置信息,以指示UE切换回RRC连接态,从而在卫星为UE提供服务的期间,确保UE与基站的正常通信。
其中,在本公开的一个实施例之中,第二配置信息可以包括以下的至少一种:
下一次提供服务的目标服务卫星的服务波束信息;
执行随机接入时的资源配置信息(例如可以是随机接入信号特征和/或随机接入信号所在的时频资源位置);
UE对应的时频资源。
步骤404、基于配置信息执行随机接入以切换至RRC连接态。
综上所述,本公开提出的无线资源控制RRC状态切换方法之中,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
图5为本公开实施例所提供的一种无线资源控制RRC状态切换的流程示意图,该方法由基站执行,如图5所示,该无线资源控制RRC状态切换方法可以包括以下步骤:
步骤501、确定UE的当前服务卫星的服务结束时刻,以及卫星对于UE的下一次服务的服务开始时刻。
在本公开的一个实施例之中,基站具体可以基于星历信息确定当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻。
以及,在本公开的一个实施例之中,基站向UE发送RRC状态指示信息的方法可以包括以下的至少一种:
通过高层信令向UE发送RRC状态指示信息;
通过物理层信令向UE发送RRC状态指示信息。
其中,在本公开的一个实施例之中,上述的高层信令可以包括以下的至少一种:
RRC信令,
MAC CE信令
以及,在本公开的一个实施例之中,上述的物理层信令可以包括DCI信令。进一步地,在本公开的一个实施例之中,当利用DCI信令发送上述RRC状态指示信息时,该RRC状态指示信息可以是承载于DCI信令的某一信息域上进行发送。其中,在本公开的一个实施例之中,该承载RRC状态指示信息的信息域可以是DCI信令中的一个固定信息域。在本公开的另一个实施例之中,该承载RRC状态指示信息的信息域可以是一可配置的信息域,示例的,可以是由基站配置的一个信息域。以及,在本公开的一个实施例之中,该承载RRC状态指示信息的信息域的长度可以是固定的。在本公开的一个实施例之中,该承载RRC状态指示信息的信息域的长度可以是可配置的(例如可以是由基站配置的)。
在本公开的一个实施例之中,卫星对于UE的下一次服务的服务开始时刻包括以下的至少一种:
当前服务卫星对于UE的下一次服务的服务开始时刻;
其他服务卫星对于UE的下一次服务的服务开始时刻。
步骤502、向UE发送RRC状态指示信息,RRC状态指示信息包括目标RRC状态和/或下一次服务的服务开始时刻,RRC状态指示信息用于指示所述UE切换至目标RRC状态。
其中,在本公开的一个实施例之中,RRC状态指示信息可以仅包括目标RRC状态。
以及,在本公开的一个实施例之中,当RRC状态指示信息可以包括有目标RRC状态时,基站具体是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来向UE发送状态指示信息的。
具体而言,在本公开的一个实施例之中,若当前时刻到达服务结束时刻(例如当前时刻与服务结束时刻之间的间隔值小于第一阈值),且服务结束时刻与下一次服务的服务开始时刻之间的间隔值大于第一门限值(也即是卫星不为UE提供服务的时间较长),则基站向UE发送的RRC状态指示信息中的目标RRC状态可以为第一预定义RRC状态,其中,在该第一预定义RRC状态下,UE可以较长时间不与基站进行信令的收发。
在本公开的另一个实施例之中,若当前时刻到达服务结束时刻,且服务结束时刻与下一次服务的服务开始时刻之间的间隔值小于等于第二门限值(也即是卫星不为UE提供服务的时间较短),则基站向UE发送的RRC状态指示信息中的目标RRC状态可以为第二预定义RRC状态,其中,在该第二预定义RRC状态下,UE可以较短时间不与基站进行信令的收发。
以及,在本公开的一个实施例之中,上述的第一门限值可以大于或等于第二门限值。
在本公开的另一个实施例之中,RRC状态指示信息可以仅包括卫星对于UE的下一次服务的服务开始时刻。
需要说明的是,在本公开的一个实施例之中,当RRC状态指示信息包括有卫星对于UE的下一次服务的服务开始时刻时,基站具体是当确定出当前时刻到达服务结束时刻时,向UE发送仅包括有卫星对于UE的下一次服务的服务开始时刻的RRC状态指示信息,以便UE可以基于卫星对于UE的下一次服务的服务开始时刻确定出其将要切换目标RRC状态。
以及,在本公开的又一个实施例之中,RRC状态指示信息可以包括目标RRC状态和卫星对于UE的下一次服务的服务开始时刻,则UE基于该RRC状态信息可以确定出其将要切换目标RRC状态。
进一步地,在本公开的一个实施例之中,当RRC状态指示信息中的目标RRC状态不同时,UE在该目标RRC状态执行的操作也不相同。
其中,在本公开的一个实施例之中,UE在第一预定义RRC状态上具体可以执行以下的至少一种操作:
UE关闭所有用于蜂窝通信的硬件模块(例如关闭所有的cellular模块);
UE不执行DRX;
UE停止检测寻呼信息;
UE停止获取***信息;
UE不执行邻区测量操作。
也即是,在本公开的一个实施例之中,在第一预定义RRC状态下UE可以长时间不与基站进行通 信。
则结合上述内容可知,在本公开的一个实施例之中,当目标RRC状态为第一预定义RRC状态时,说明当前服务卫星的服务结束时刻与下一次服务的服务开始时刻之间的间隔值大于第一门限值(即卫星不为UE提供服务的时间较长),此时,UE可以通过RRC状态指示信息切换至第一预定义RRC状态以实现长时间不与基站进行通信,从而避免UE进行无效操作,节省UE耗电。
在本公开的另一个实施例之中,当目标RRC状态为第二预定义RRC状态时,UE在第二预定义RRC状态上具体可以执行以下的操作:
UE执行DRX。
具体的,在本公开的一个实施例之中,UE执行DRX的方法可以包括:接收基站发送的第一配置信息,该第一配置信息中包含UE执行DRX时的参数的指示信息;其中,该第一配置信息具体是基站基于下一次服务的服务开始时刻所确定的;之后,UE按照该第一配置信息的指示执行DRX操作。
由此可知,在本公开的一个实施例之中,在第二预定义RRC状态下UE可以短时间不与基站进行通信。
则结合上述内容可知,在本公开的一个实施例之中,当目标RRC状态为第二预定义RRC状态时,说明当前服务卫星的服务结束时刻与下一次服务的服务开始时刻之间的间隔值小于等于第二门限值(即卫星不为UE提供服务的时间较短),此时,UE可以通过切换至第二预定义RRC状态以实现短时间内不与基站进行通信,则可以避免UE进行无效操作,且节省UE耗电。
综上所述,本公开提出的无线资源控制RRC状态切换方法之中,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
图6为本公开实施例所提供的一种无线资源控制RRC状态切换的流程示意图,该方法由基站执行,如图6所示,该无线资源控制RRC状态切换方法可以包括以下步骤:
步骤601、确定用户设备UE的当前服务卫星的服务结束时刻,以及卫星对于UE的下一次服务的服务开始时刻;
步骤602、向UE发送RRC状态指示信息,RRC状态指示信息包括第一预定义RRC状态和/或下一次服务的服务开始时刻,RRC状态指示信息用于指示UE切换至第一预定义RRC状态。
其中,在本公开的一个实施例之中,步骤602中的RRC状态指示信息可以仅包括第一预定义RRC状态。
在本公开的另一个实施例之中,步骤602中的RRC状态指示信息可以仅包括卫星对于UE的下一次服务的服务开始时刻。其中,在本公开的一个实施例之中,当前时刻与卫星对于UE的下一次服务的服务开始时刻之间的间隔值应当大于第一门限值。
在本公开的又一个实施例之中,步骤602中RRC状态指示信息可以包括第一预定义RRC状态和卫星对于UE的下一次服务的服务开始时刻。
以及,关于步骤601和步骤602的相关详细介绍可以参见上述描述,本公开实施例在此不做赘述。
综上所述,本公开提出的无线资源控制RRC状态切换方法之中,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下 一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
图7为本公开实施例所提供的一种无线资源控制RRC状态切换的流程示意图,该方法由基站执行,如图7所示,该无线资源控制RRC状态切换方法可以包括以下步骤:
步骤701、确定用户设备UE的当前服务卫星的服务结束时刻,以及卫星对于UE的下一次服务的服务开始时刻;
步骤702、向UE发送RRC状态指示信息,RRC状态指示信息包括第二预定义RRC状态和/或下一次服务的服务开始时刻,RRC状态指示信息用于指示UE切换至第二预定义RRC状态。
其中,在本公开的一个实施例之中,步骤701中的RRC状态指示信息可以仅包括第二预定义RRC状态。
在本公开的另一个实施例之中,步骤701中的RRC状态指示信息可以仅包括卫星对于UE的下一次服务的服务开始时刻。其中,在本公开的一个实施例之中,当前时刻与卫星对于UE的下一次服务的服务开始时刻之间的间隔值应当小于等于第二门限值。
在本公开的又一个实施例之中,步骤701中RRC状态指示信息可以包括第二预定义RRC状态和卫星对于UE的下一次服务的服务开始时刻。
关于步骤701和步骤702的相关详细介绍可以参见上述描述,本公开实施例在此不做赘述。
综上所述,本公开提出的无线资源控制RRC状态切换方法之中,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
图8为本公开实施例所提供的一种无线资源控制RRC状态切换的流程示意图,该方法由基站执行,如图8所示,该无线资源控制RRC状态切换方法可以包括以下步骤:
步骤801、确定UE的当前服务卫星的服务结束时刻,以及卫星对于UE的下一次服务的服务开始时刻。
步骤802、基于服务结束时刻与下一次服务的服务开始时刻向UE发送RRC状态指示信息,RRC状态指示信息包括目标RRC状态和/或下一次服务的服务开始时刻,RRC状态指示信息用于指示UE切换至所述目标RRC状态。
关于步骤801和步骤802的相关详细介绍可以参见上述描述,本公开实施例在此不做赘述。
步骤803、基于当前时刻到达下一次服务的服务开始时刻,向UE发送第二配置信息,第二配置信息用于指示UE随机接入至RRC连接态。
其中,在本公开的一个实施例之中,该第二配置信息具体可以是用于指示UE从目标RRC状态(即RRC非连接态)切换回RRC连接态,以正常与基站进行通信。
具体而言,基站发送第二配置信息的方法主要为:若当前时刻到达下一次服务的服务开始时刻(即,卫星即将为UE提供服务时),则基站可以向UE发送第二配置信息,以指示UE切换回RRC连接态,从而在卫星为UE提供服务的期间,确保UE与基站的正常通信。
其中,在本公开的一个实施例之中,第二配置信息可以包括以下的至少一种:
下一次提供服务的目标服务卫星的服务波束信息;
执行随机接入时的资源配置信息(例如可以是随机接入信号特征和/或随机接入信号所在的时频资源位置);
UE对应的时频资源。
综上所述,本公开提出的无线资源控制RRC状态切换方法之中,UE会接收基站发送的RRC状态 指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
图9为本公开一个实施例所提供的无线资源控制RRC状态切换装置的结构示意图;如图9所示,装置900可以包括:
接收模块901,用于接收基站发送的RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态和/或卫星对于所述UE的下一次服务的服务开始时刻;
切换模块902,用于切换至所述目标RRC状态。
综上所述,本公开提出的无线资源控制RRC状态切换装置之中,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
可选的,在本公开的一个实施例之中,所述RRC状态指示信息包括的目标RRC状态为第一预定义RRC状态;
以及,在所述目标RRC状态上,所述UE执行以下的至少一种操作:
所述UE关闭所有用于蜂窝通信的硬件模块;
所述UE不执行非连续接收DRX;
所述UE停止检测寻呼信息;
所述UE停止获取***信息;
所述UE不执行邻区测量操作。
可选的,在本公开的一个实施例之中,所述RRC状态指示信息包括的目标RRC状态为第二预定义RRC状态;
所述切换模块还用于:
所述UE接收第一配置信息,所述第一配置信息中包含所述UE执行DRX时的参数的指示信息;
所述UE按照所述第一配置信息的指示执行DRX操作。
可选的,在本公开的一个实施例之中,所述接收模块还用于:
接收所述基站通过高层信令发送的RRC状态指示信息;
接收所述基站通过物理层信令发送的RRC状态指示信息。
可选的,在本公开的一个实施例之中,所述卫星对于所述UE的下一次服务的服务开始时刻包括以下的至少一种:
所述当前服务卫星对于所述UE的下一次服务的服务开始时刻;
其他服务卫星对于所述UE的下一次服务的服务开始时刻。
可选的,在本公开的一个实施例之中,所述装置还用于:
接收所述基站发送的第二配置信息;
基于所述第二配置信息执行随机接入以切换至RRC连接态。
可选的,在本公开的一个实施例之中,所述第二配置信息包括以下的至少一种:
提供下一次服务的目标服务卫星的服务波束信息;
执行随机接入时的资源配置资源;
所述UE对应的时频资源。
图10为本公开一个实施例所提供的无线资源控制RRC状态切换装置的结构示意图;如图10所示,装置1000可以包括:
确定模块1001,用于确定UE的当前服务卫星的服务结束时刻,以及卫星对于UE的下一次服务的服务开始时刻;
发送模块1002,用于向UE发送RRC状态指示信息,RRC状态指示信息包括目标RRC状态和/或下一次服务的服务开始时刻,RRC状态指示信息用于指示UE切换至目标RRC状态。
综上所述,本公开提出的无线资源控制RRC状态切换装置之中,UE会接收基站发送的RRC状态指示信息,该RRC状态指示信息包括目标RRC状态和/或卫星对于UE的下一次服务的服务开始时刻,之后UE会基于RRC状态指示信息切换至目标RRC状态。其中,在本公开的实施例之中,该RRC状态指示信息中的目标RRC状态具体是基站基于UE的当前服务卫星的服务结束时刻和卫星对于UE的下一次服务的服务开始时刻之间的间隔值确定的,且在本公开的实施例之中,上述的目标RRC状态具体为RRC非连接态。由此可知,本公开的实施例之中,主要是基于当前服务卫星的服务结束时刻和下一次服务的服务开始时刻之间的间隔值来确定将UE切换至RRC非连接态,以此来避免UE在卫星未提供服务时(即卫星未覆盖时)进行收发数据传输的情况,避免了UE的无效操作,节省了电量消耗。
可选的,在本公开的一个实施例之中,所述发送模块还用于:
若当前时刻到达所述服务结束时刻,且所述服务结束时刻与所述下一次服务的服务开始时刻之间的间隔值大于第一门限值,向所述UE发送RRC状态指示信息,所述RRC状态指示信息中的目标RRC状态为第一预定义RRC状态。
可选的,在本公开的一个实施例之中,所述向发送模块还用于:
若当前时刻到达所述服务结束时刻,且所述服务结束时刻与所述下一次服务的服务开始时刻之间的间隔值小于等于第二门限值,向所述UE发送RRC状态指示信息,所述RRC状态指示信息中的目标RRC状态为第二预定义RRC状态。
可选的,在本公开的一个实施例之中,所述装置还用于:
向所述UE发送第一配置信息,所述第一配置信息中包含所述UE执行DRX时的参数的指示信息。
可选的,在本公开的一个实施例之中,所述发送模块还用于:
通过高层信令向所述UE发送RRC状态指示信息;
通过物理层信令向所述UE发送RRC状态指示信息。
可选的,在本公开的一个实施例之中,所述确定模块还用于:
基于星历信息确定所述当前服务卫星的服务结束时刻和所述下一次服务的服务开始时刻。
可选的,在本公开的一个实施例之中,所述卫星对于所述UE的下一次服务的服务开始时刻包括以下的至少一种:
所述当前服务卫星对于所述UE的下一次服务的服务开始时刻;
其他服务卫星对于所述UE的下一次服务的服务开始时刻。
可选的,在本公开的一个实施例之中,所述装置还用于:
若当前时刻到达所述下一次服务的服务开始时刻,向所述UE发送第二配置信息,所述第二配置信息用于指示所述UE随机接入至RRC连接态。
可选的,在本公开的一个实施例之中,所述第二配置信息包括以下的至少一种:
提供下一次服务的目标服务卫星的服务波束信息;
执行随机接入时的资源配置信息
所述UE对应的时频资源。
图11是本公开一个实施例所提供的一种用户设备UE1100的框图。例如,UE1100可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字 助理等。
参照图11,UE1100可以包括以下至少一个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1110,输入/输出(I/O)的接口1112,传感器组件1113,以及通信组件1116。
处理组件1102通常控制UE1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1102可以包括至少一个处理器1120来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1102可以包括至少一个模块,便于处理组件1102和其他组件之间的交互。例如,处理组件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在UE1100的操作。这些数据的示例包括用于在UE1100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1106为UE1100的各种组件提供电力。电源组件1106可以包括电源管理***,至少一个电源,及其他与为UE1100生成、管理和分配电力相关联的组件。
多媒体组件1108包括在所述UE1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头和/或后置摄像头。当UE1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件1110被配置为输出和/或输入音频信号。例如,音频组件1110包括一个麦克风(MIC),当UE1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1104或经由通信组件1116发送。在一些实施例中,音频组件1110还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1113包括至少一个传感器,用于为UE1100提供各个方面的状态评估。例如,传感器组件1113可以检测到设备1100的打开/关闭状态,组件的相对定位,例如所述组件为UE1100的显示器和小键盘,传感器组件1113还可以检测UE1100或UE1100一个组件的位置改变,用户与UE1100接触的存在或不存在,UE1100方位或加速/减速和UE1100的温度变化。传感器组件1113可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1113还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1113还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1116被配置为便于UE1100和其他设备之间有线或无线方式的通信。UE1100可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1116经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1100可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图12是本公开实施例所提供的一种基站1200的框图。例如,基站1200可以被提供为一基站。参照图12,基站1200包括处理组件1211,其进一步包括至少一个处理器,以及由存储器1232所代表的 存储器资源,用于存储可由处理组件1222的执行的指令,例如应用程序。存储器1232中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1210被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图1所示方法。
基站1200还可以包括一个电源组件1226被配置为执行基站1200的电源管理,一个有线或无线网络接口1250被配置为将基站1200连接到网络,和一个输入输出(I/O)接口1258。基站1200可以操作基于存储在存储器1232的操作***,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从基站、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,基站和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从基站、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,基站和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如前述方法实施例中的终端设备):处理器用于执行图1-图4任一所示的方法。
通信装置为网络设备:收发器用于执行图5-图7任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执 行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的***,该***包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该***包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、 或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种无线资源控制RRC状态切换方法,其特征在于,应用于用户设备UE,包括:
    接收基站发送的RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态和/或卫星对于所述UE的下一次服务的服务开始时刻;
    切换至所述目标RRC状态。
  2. 如权利要求1所述的方法,其特征在于,所述RRC状态指示信息包括的目标RRC状态为第一预定义RRC状态;
    以及,在所述目标RRC状态上,所述UE执行以下的至少一种操作:
    所述UE关闭所有用于蜂窝通信的硬件模块;
    所述UE不执行非连续接收DRX;
    所述UE停止检测寻呼信息;
    所述UE停止获取***信息;
    所述UE不执行邻区测量操作。
  3. 如权利要求1所述的方法,其特征在于,所述RRC状态指示信息包括的目标RRC状态为第二预定义RRC状态;
    所述切换至所述目标RRC状态,包括:
    所述UE接收第一配置信息,所述第一配置信息中包含所述UE执行DRX时的参数的指示信息;
    所述UE按照所述第一配置信息的指示执行DRX操作。
  4. 如权利要求1所述的方法,其特征在于,所述接收基站发送的RRC状态指示信息的方法包括以下的至少一种:
    接收所述基站通过高层信令发送的RRC状态指示信息;
    接收所述基站通过物理层信令发送的RRC状态指示信息。
  5. 如权利要求1所述的方法,其特征在于,所述卫星对于所述UE的下一次服务的服务开始时刻包括以下的至少一种:
    所述当前服务卫星对于所述UE的下一次服务的服务开始时刻;
    其他服务卫星对于所述UE的下一次服务的服务开始时刻。
  6. 如权利要求1-3任一所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的第二配置信息;
    基于所述第二配置信息执行随机接入以切换至RRC连接态。
  7. 如权利要求6所述的方法,其特征在于,所述第二配置信息包括以下的至少一种:
    提供下一次服务的目标服务卫星的服务波束信息;
    执行随机接入时的资源配置资源;
    所述UE对应的时频资源。
  8. 一种RRC状态切换方法,其特征在于,应用于基站,包括:
    确定UE的当前服务卫星的服务结束时刻,以及卫星对于所述UE的下一次服务的服务开始时刻;
    向所述UE发送RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态和/或所述下一次服务的服务开始时刻,所述RRC状态指示信息用于指示所述UE切换至所述目标RRC状态。
  9. 如权利要求8所述的方法,其特征在于,所述向所述UE发送RRC状态指示信息,包括:
    若当前时刻到达所述服务结束时刻,且所述服务结束时刻与所述下一次服务的服务开始时刻之间的间隔值大于第一门限值,向所述UE发送RRC状态指示信息,所述RRC状态指示信息中的目标RRC状态为第一预定义RRC状态。
  10. 如权利要求8所述的方法,其特征在于,所述向所述UE发送RRC状态指示信息,包括:
    若当前时刻到达所述服务结束时刻,且所述服务结束时刻与所述下一次服务的服务开始时刻之间的间隔值小于等于第二门限值,向所述UE发送RRC状态指示信息,所述RRC状态指示信息中的目标RRC状态为第二预定义RRC状态。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    向所述UE发送第一配置信息,所述第一配置信息中包含所述UE执行DRX时的参数的指示信息。
  12. 如权利要求8所述的方法,其特征在于,所述向所述UE发送RRC状态指示信息的方法包括以下的至少一种:
    通过高层信令向所述UE发送RRC状态指示信息;
    通过物理层信令向所述UE发送RRC状态指示信息。
  13. 如权利要求8所述的方法,其特征在于,所述确定UE的当前服务卫星的服务结束时刻,以及卫星对于所述UE的下一次服务的服务开始时刻,包括:
    基于星历信息确定所述当前服务卫星的服务结束时刻和所述下一次服务的服务开始时刻。
  14. 如权利要求8所述的方法,其特征在于,所述卫星对于所述UE的下一次服务的服务开始时刻包括以下的至少一种:
    所述当前服务卫星对于所述UE的下一次服务的服务开始时刻;
    其他服务卫星对于所述UE的下一次服务的服务开始时刻。
  15. 如权利要求8-10任一所述的方法,其特征在于,所述方法还包括:
    若当前时刻到达所述下一次服务的服务开始时刻,向所述UE发送第二配置信息,所述第二配置信息用于指示所述UE随机接入至RRC连接态。
  16. 如权利要求16所述的方法,其特征在于,所述第二配置信息包括以下的至少一种:
    提供下一次服务的目标服务卫星的服务波束信息;
    执行随机接入时的资源配置信息
    所述UE对应的时频资源。
  17. 一种RRC状态切换装置,其特征在于,包括:
    确定模块,用于确定UE的当前服务卫星的服务结束时刻,以及卫星对于所述UE的下一次服务的服务开始时刻;
    发送模块,用于向所述UE发送RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态和/或所述下一次服务的服务开始时刻,所述RRC状态指示信息用于指示所述UE切换至所述目标RRC状态。
  18. 一种RRC状态切换装置,其特征在于,包括:
    接收模块,用于接收基站发送的RRC状态指示信息,所述RRC状态指示信息包括目标RRC状态 和/或卫星对于所述UE的下一次服务的服务开始时刻;
    处理模块,用于基于所述RRC状态指示信息切换至所述目标RRC状态。
  19. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至7中任一项所述的方法。
  20. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求8至16中任一项所述的方法。
  21. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至7中任一项所述的方法。
  22. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求8至16任一所述的方法。
  23. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至7中任一项所述的方法被实现。
  24. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求8至16中任一项所述的方法被实现。
PCT/CN2021/117008 2021-09-07 2021-09-07 一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质 WO2023035116A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/117008 WO2023035116A1 (zh) 2021-09-07 2021-09-07 一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质
CN202180002833.XA CN116097772A (zh) 2021-09-07 2021-09-07 一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117008 WO2023035116A1 (zh) 2021-09-07 2021-09-07 一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质

Publications (1)

Publication Number Publication Date
WO2023035116A1 true WO2023035116A1 (zh) 2023-03-16

Family

ID=85506122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117008 WO2023035116A1 (zh) 2021-09-07 2021-09-07 一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质

Country Status (2)

Country Link
CN (1) CN116097772A (zh)
WO (1) WO2023035116A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889274A (zh) * 2016-09-29 2018-04-06 宏碁股份有限公司 状态转换方法及用户设备
CN108307543A (zh) * 2016-09-23 2018-07-20 株式会社Kt 用于改变ue连接状态的方法和装置
WO2020043211A1 (zh) * 2018-08-31 2020-03-05 华为技术有限公司 Rrc连接释放方法、相关设备及***
CN112953623A (zh) * 2021-03-17 2021-06-11 中科院计算技术研究所南京移动通信与计算创新研究院 基于多点协同的低轨卫星的预切换路径确定方法及装置
CN113038387A (zh) * 2021-03-12 2021-06-25 重庆邮电大学 低轨卫星网络中基于q学习的切换判决方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307543A (zh) * 2016-09-23 2018-07-20 株式会社Kt 用于改变ue连接状态的方法和装置
CN107889274A (zh) * 2016-09-29 2018-04-06 宏碁股份有限公司 状态转换方法及用户设备
WO2020043211A1 (zh) * 2018-08-31 2020-03-05 华为技术有限公司 Rrc连接释放方法、相关设备及***
CN113038387A (zh) * 2021-03-12 2021-06-25 重庆邮电大学 低轨卫星网络中基于q学习的切换判决方法
CN112953623A (zh) * 2021-03-17 2021-06-11 中科院计算技术研究所南京移动通信与计算创新研究院 基于多点协同的低轨卫星的预切换路径确定方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS: "Further discussion on essential parts of IoT NTN", 3GPP DRAFT; R2-2105364, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20210519 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006999 *

Also Published As

Publication number Publication date
CN116097772A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2023184116A1 (zh) 侧行链路sidelink通信方法及装置
WO2023000150A1 (zh) 一种中继确定方法及装置
WO2023206182A1 (zh) 成功PScell添加或更换报告的位置信息记录方法、装置
WO2023201760A1 (zh) PScell添加或改变的成功报告的记录方法、装置
WO2023151044A1 (zh) 路径切换方法及装置
WO2023004652A1 (zh) 节能配置方法及其装置
WO2023201759A1 (zh) 成功PScell添加或更换报告的上报方法、装置
WO2023000178A1 (zh) 一种信号接收方法、装置、用户设备、基站及存储介质
CN113728723B (zh) 辅助配置方法及其装置
WO2023028849A1 (zh) 参考信号测量方法、装置、用户设备、网络侧设备及存储介质
CN115769644A (zh) 定位辅助终端设备的重新选择方法、装置
WO2023035116A1 (zh) 一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质
WO2023122986A1 (zh) 一种重复传输的终止方法及设备/存储介质/装置
WO2023108574A1 (zh) 一种定位方法及设备/存储介质/装置
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置
WO2023010432A1 (zh) 一种带宽配置方法、装置、用户设备、基站及存储介质
WO2023077472A1 (zh) 一种信息更新方法、装置、用户设备、基站及存储介质
WO2023133694A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2023108374A1 (zh) 一种测量方法/装置/用户设备/网络侧设备及存储介质
WO2023197331A1 (zh) 数据传输方法/装置/设备及存储介质
WO2023082279A1 (zh) 一种波束测量方法、装置、用户设备、网络侧设备及存储介质
WO2023065075A1 (zh) 一种上报方法、装置、用户设备、网络侧设备及存储介质
WO2023130398A1 (zh) 一种测量放松方法及设备/存储介质/装置
WO2023060442A1 (zh) 一种有效信息指示方法、装置、用户设备、网络侧设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE