WO2023092602A1 - 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质 - Google Patents

一种预编码方法、装置、用户设备、ris阵列、基站及存储介质 Download PDF

Info

Publication number
WO2023092602A1
WO2023092602A1 PCT/CN2021/134161 CN2021134161W WO2023092602A1 WO 2023092602 A1 WO2023092602 A1 WO 2023092602A1 CN 2021134161 W CN2021134161 W CN 2021134161W WO 2023092602 A1 WO2023092602 A1 WO 2023092602A1
Authority
WO
WIPO (PCT)
Prior art keywords
ris
array
pmi
incident angle
angle
Prior art date
Application number
PCT/CN2021/134161
Other languages
English (en)
French (fr)
Inventor
池连刚
杨立
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180103648.XA priority Critical patent/CN118160237A/zh
Priority to PCT/CN2021/134161 priority patent/WO2023092602A1/zh
Publication of WO2023092602A1 publication Critical patent/WO2023092602A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a precoding method, device, user equipment, RIS array, base station and storage medium.
  • RIS Reconfigurable Intelligent Surface, reconfigurable intelligent surface
  • the incident signal transmitted from the base station to the RIS is reflected or transmitted to the UE (User Equipment) in a specific direction to build an intelligent programmable
  • the signal strength of the signal received by the UE is enhanced to realize the control of the channel.
  • the joint design of the RIS and the precoding at the base station is mainly performed through alternate optimization technology.
  • the precoding method based on alternate optimization technology is too complex and poor in applicability.
  • the precoding method, device, user equipment, RIS array, base station and storage medium proposed in the present disclosure are used to solve the technical problems of high complexity and poor applicability of the precoding method in the related art.
  • the precoding method proposed in an embodiment of the present disclosure is applied to a RIS array, including:
  • the incident angle information is the incident angle information of the incident beam sent by the base station to the RIS array
  • the precoding method proposed in another embodiment of the present disclosure is applied to a base station, including:
  • the PMI is forwarded to the RIS array.
  • the precoding method proposed by the embodiment is applied to the UE, including:
  • the PMI is sent to the base station and/or RIS array.
  • the first determining module is configured to determine incident angle information, where the incident angle information is the incident angle information of the incident beam sent by the base station to the RIS array;
  • An acquiring module configured to acquire a precoding index PMI, where the PMI is determined based on channel information between the RIS array and the user equipment UE;
  • the second determination module determines reflection angle information corresponding to the RIS array based on the PMI
  • a precoding module configured to determine a target deflection phase angle of each RIS array element in the RIS array based on the incident angle information and the reflection angle information, so as to precode the RIS array.
  • An acquisition module configured to acquire the PMI sent by the UE
  • a sending module configured to forward the PMI to the RIS array.
  • a determining module configured to determine PMI based on channel information between the RIS array and the UE;
  • a sending module configured to send the PMI to the base station and/or the RIS array.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the above embodiment of another aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the above yet another aspect.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in another embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in the embodiment according to another aspect.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the RIS array can determine the incident angle information of the incident beam, and then obtain the PMI, wherein the PMI It is determined based on the channel information between the RIS array and the UE. After that, the reflection angle information corresponding to the RIS array will be determined based on the PMI, and then the target deflection of each RIS element in the RIS array will be determined based on the incident angle information and reflection angle information. Phase angle to precode the RIS array. It can be seen that in the embodiment of the present disclosure, the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • FIG. 1 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a precoding device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a precoding device provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a precoding device provided by another embodiment of the present disclosure.
  • Fig. 12 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 13 is a block diagram of a base station provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure, which is applied to a RIS array. As shown in FIG. 1, the precoding method may include the following steps:
  • Step 101 determine incident angle information.
  • the incident angle information may be incident angle information of incident beams sent by the base station to the RIS array.
  • the method for determining incident angle information may include the following steps:
  • Step a obtaining the horizontal-dimensional incident angle and the vertical-dimensional incident angle of the incident beam sent by the base station, and/or obtaining the sum of the horizontal-dimensional incident angle and the vertical-dimensional incident angle of the incident beam sent by the base station;
  • the incident angle in the horizontal dimension is specifically the angle between the incident beam and the antenna array surface of the RIS array on the horizontal dimension
  • the incident angle in the vertical dimension is specifically the angle between the incident beam and the antenna array surface of the RIS array The included angle in the vertical dimension.
  • the base station may only send the incident beam's incident angle in the horizontal dimension and the incident angle in the vertical dimension to the RIS array.
  • the base station may directly send the sum of the horizontal-dimensional incident angle and the vertical-dimensional incident angle of the incident beam to the RIS array.
  • the base station may send the horizontal-dimensional incident angle and the vertical-dimensional incident angle of the incident beam, and the sum of the horizontal-dimensional incident angle and the vertical-dimensional incident angle to the RIS array.
  • Step b Determine the sum of the incident angle in the horizontal dimension and the incident angle in the vertical dimension as incident angle information.
  • Step 102 Acquire PMI (Precoding Matrix Index, precoding matrix indication).
  • the PMI may be determined by a UE (User Equipment, user equipment) based on channel information between the RIS array and the UE.
  • the UE can determine the most suitable precoding matrix for the channel based on the channel information between the RIS array and the UE, and send the PMI corresponding to the precoding matrix to the RIS array, when the subsequent RIS array reflects the incident beam sent by the base station to the UE, it can perform adaptive precoding on the RIS array based on the PMI, ensuring communication quality.
  • a UE may be a device that provides voice and/or data connectivity to a user.
  • Terminal equipment can communicate with one or more core networks via RAN (Radio Access Network, wireless access network), and UE can be an IoT terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a
  • the computer of the networked terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the method for the UE to send the PMI to the RIS array may include at least one of the following:
  • the UE sends the PMI directly to the RIS array
  • the UE sends the PMI to the base station, and the base station forwards it to the RIS array.
  • Step 103 determine reflection angle information corresponding to the RIS array based on the PMI.
  • the method for determining the reflection angle information corresponding to the RIS array based on the PMI may include the following steps:
  • Step 1 Determine the precoding matrix corresponding to the PMI.
  • Step 2 Determine the horizontal dimension precoding vector and the vertical dimension precoding vector corresponding to the precoding matrix.
  • Step 3 Determine the horizontal dimension reflection angle and the vertical dimension reflection angle corresponding to the RIS array based on the horizontal dimension precoding vector and the vertical dimension precoding vector.
  • the horizontal dimension reflection angle is specifically the angle between the reflection beam corresponding to the RIS array and the surface of the RIS array antenna array on the horizontal dimension
  • the vertical dimension reflection angle is specifically the angle between the reflection beam corresponding to the RIS array and the surface of the RIS array antenna array. The included angle of the RIS array antenna array surface in the vertical dimension.
  • the relevant introductions of determining the horizontal-dimensional reflection angle and the vertical-dimensional reflection angle based on the horizontal-dimensional precoding vector and the vertical-dimensional precoding vector can refer to the description of the prior art, and this disclosure does not discuss here repeat.
  • Step 4. Determine the sum of the reflection angle in the horizontal dimension and the reflection angle in the vertical dimension as the reflection angle information.
  • Step 104 based on the incident angle information and reflection angle information, determine the target deflection phase angle of each RIS array element in the RIS array, so as to precode the RIS array.
  • each RIS array element after determining the target deflection phase angle of each RIS array element, when using the RIS array to reflect the incident beam sent by the base station to the UE, each RIS array element can be The deflection angle is adjusted to the target deflection phase angle, and then the adjusted RIS elements are used to reflect the incident beam to the UE.
  • the target deflection phase angle is determined based on the reflection angle information
  • the reflection angle information is determined based on the PMI
  • the PMI is determined based on the channel information between the RIS array and the UE. Therefore, when the determined target deflection angle of each RIS array element is used to reflect the incident beam, the reflected beam obtained can be the beam most suitable for the channel between the RIS array and the UE, thereby ensuring communication quality.
  • the RIS array can determine the incident angle information of the incident beam, and then obtain the PMI, wherein the PMI is determined based on the channel information between the RIS array and the UE , after that, the reflection angle information corresponding to the RIS array will be determined based on the PMI, and then based on the incident angle information and reflection angle information, the target deflection phase angle of each RIS element in the RIS array will be determined to precode the RIS array.
  • the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • FIG. 2 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure, which is applied to a RIS array. As shown in FIG. 2, the precoding method may include the following steps:
  • Step 201 determine incident angle information.
  • Step 202 acquire PMI.
  • Step 203 determine reflection angle information corresponding to the RIS array based on the PMI.
  • Step 204 determining the deflection phase angle supported by each RIS array element.
  • each RIS array element may support at least one deflection phase angle.
  • the deflection phase angles supported by a certain RIS array element may be: 0°, 45°, 90°, 120°.
  • Step 205 Determine the target deflection phase angle of each RIS array element from the deflection phase angles supported by each RIS array element.
  • the target deflection phase angle of each RIS array element may be determined from deflection phase angles supported by each RIS array element based on incident angle information and reflection angle information.
  • the UE when determining the target deflection phase angle of each RIS array element in the RIS array, it is specifically determined based on the expected received power of the UE, and the UE may provide RIS array sends PMI to UE.
  • the expected received power of the UE may include at least one of the expected maximum received power of the UE, the minimum expected received power of the UE, and the expected scaling of the received power of the UE.
  • the method for determining the target deflection phase angle of each RIS array element is also different. The method for determining the target deflection phase angle will be described in detail in subsequent embodiments.
  • the RIS array can determine the incident angle information of the incident beam, and then obtain the PMI, wherein the PMI is determined based on the channel information between the RIS array and the UE , after that, the reflection angle information corresponding to the RIS array will be determined based on the PMI, and then based on the incident angle information and reflection angle information, the target deflection phase angle of each RIS element in the RIS array will be determined to precode the RIS array.
  • the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • FIG. 3 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure, which is applied to a RIS array. As shown in FIG. 3 , the precoding method may include the following steps:
  • Step 301 Determine incident angle information.
  • Step 302 acquire the PMI.
  • Step 303 Determine reflection angle information corresponding to the RIS array based on the PMI.
  • Step 304 determining the deflection phase angle supported by each RIS array element.
  • Step 305 among the deflection phase angles supported by each RIS array element, the deflection phase angle that minimizes the value of Formula 1 is determined as the target deflection phase angle of each RIS array element.
  • the method of this embodiment is used to determine the target deflection phase angle of each RIS element based on the above formula 1.
  • the above formula 1 is:
  • the deflection phase angle supported by a certain RIS array element can be: 0°, 45°, 90°, 120°, and 0°, 45°, 90° , 120° are substituted into the above formula 1, the value after substituting 45° in formula 1 > the value after substituting 90° in formula 1 > the value after substituting 0° in formula 1 > the value after substituting 120° in formula 1 , then 120° can be determined as the target deflection phase angle of the RIS array element at this time, and the target deflection phase angles corresponding to all RIS array elements can be determined by analogy.
  • the RIS array can determine the incident angle information of the incident beam, and then obtain the PMI, wherein the PMI is determined based on the channel information between the RIS array and the UE , after that, the reflection angle information corresponding to the RIS array will be determined based on the PMI, and then based on the incident angle information and reflection angle information, the target deflection phase angle of each RIS element in the RIS array will be determined to precode the RIS array.
  • the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • FIG. 4 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure, which is applied to a RIS array. As shown in FIG. 4, the precoding method may include the following steps:
  • Step 401 determine incident angle information.
  • Step 402 acquiring the PMI.
  • Step 403 Determine reflection angle information corresponding to the RIS array based on the PMI.
  • Step 404 determining the deflection phase angle supported by each RIS array element.
  • Step 405 Divide all RIS array elements in the RIS array into the first part and the second part, and determine the deflection phase angle that makes the value of formula 1 the smallest among the deflection phase angles supported by each RIS array element in the first part as the second
  • the target deflection phase angle of each RIS array element in a part, and the deflection phase angle that makes the value of formula 2 minimum among the deflection phase angles supported by each RIS array element in the second part is determined as each RIS array in the second part Element's target deflection phase angle.
  • the method of this embodiment will be adopted based on the above formula 1 and Equation 2 determines the target deflection phase angle for each RIS element.
  • the above formula 1 is:
  • the above-mentioned equal split method may be random equal split.
  • the RIS array includes six RIS array elements, and after being divided equally, both the first part and the second part include three RIS array elements, and it is assumed that a certain RIS array element in the first part supports
  • the deflection phase angles are: 0°, 45°, 90°, 120°, and after substituting 0°, 45°, 90°, 120° into the above formula 1, the value after substituting 45° in formula 1>
  • the deflection phase angle supported by a certain RIS array element in the second part is: 0°, 30°, 60°, 90°, and after substituting 0°, 30°, 60°, 90° into the above formula 1 Afterwards, it is obtained that the value after substituting 30° in formula 2 > the value after substituting 90° in formula 2 > the value after substituting 0° in formula 2 > the value after substituting 60° in formula 2, then 60 ° is determined as the target deflection phase angle of the RIS array element in the second part, and the target deflection phase angles of all RIS array elements in the second part are determined by analogy.
  • the RIS array can determine the incident angle information of the incident beam, and then obtain the PMI, wherein the PMI is determined based on the channel information between the RIS array and the UE , after that, the reflection angle information corresponding to the RIS array will be determined based on the PMI, and then based on the incident angle information and reflection angle information, the target deflection phase angle of each RIS element in the RIS array will be determined to precode the RIS array.
  • the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • FIG. 5 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure, which is applied to a RIS array. As shown in FIG. 5, the precoding method may include the following steps:
  • Step 501 determine incident angle information.
  • Step 502 acquire the PMI.
  • Step 503 Determine reflection angle information corresponding to the RIS array based on the PMI.
  • Step 504 determining the deflection phase angle supported by each RIS array element.
  • Step 505 Divide all RIS elements in the RIS array into a third part and a fourth part based on the ratio p, and deflect the deflection phase angle supported by each RIS element in the third part that minimizes the value of Formula 1 Determine the phase angle as the target deflection phase angle of each RIS array element in the third part, and determine the deflection phase angle that makes the value of formula 2 the smallest among the deflection phase angles supported by each RIS array element in the fourth part as the fourth Part of the target deflection phase angle for each RIS element.
  • the method of this embodiment will be used to determine each RIS array element based on the ratio p and the above formulas 1 and 2 The target deflection phase angle of .
  • Formula 1 is:
  • 0 ⁇ p ⁇ 1, p can be dynamically configured to the RIS array by the base station.
  • the above-mentioned division of all RIS array elements in the RIS array into the third part and the fourth part based on the ratio p may be randomly divided.
  • the product of the number of all RIS elements in the RIS array and the ratio p may be determined as the first value, and the first value RIS is randomly selected among all RIS elements
  • the array elements are identified as the third section, and the remaining RIS array elements are identified as the fourth section.
  • the scaling degree of the received power of the UE is related to the p value.
  • the ratio p should satisfy: after dividing all RIS elements based on the ratio p to obtain the third part and the fourth part, the more RIS elements in the third part;
  • the ratio p should satisfy: after dividing all RIS array elements based on the ratio p to obtain the third part and the fourth part, the number of RIS array elements in the third part is smaller.
  • the RIS array can determine the incident angle information of the incident beam, and then obtain the PMI, wherein the PMI is determined based on the channel information between the RIS array and the UE , after that, the reflection angle information corresponding to the RIS array will be determined based on the PMI, and then based on the incident angle information and reflection angle information, the target deflection phase angle of each RIS element in the RIS array will be determined to precode the RIS array.
  • the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • FIG. 6 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 6, the precoding method may include the following steps:
  • Step 601 acquire the PMI sent by the UE.
  • the PMI may be determined by the UE based on channel information between the RIS array and the UE.
  • Step 602 forward the PMI to the RIS array.
  • the base station can obtain the PMI sent by the UE, and then forward the PMI to the RIS array. It can be seen that in the embodiment of the present disclosure, the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • FIG. 7 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 7, the precoding method may include the following steps:
  • Step 701 acquire the PMI sent by the UE.
  • Step 702 forward the PMI to the RIS array.
  • Step 703 Send the horizontal-dimensional incident angle and the vertical-dimensional incident angle of the incident beam sent by the base station to the RIS array to the RIS array, and/or send the sum of the horizontal-dimensional incident angle and the vertical-dimensional incident angle of the incident beam to the RIS array.
  • the base station may determine the incident angle of the incident beam in the horizontal dimension and the incident angle in the vertical dimension according to the incident beam sent to the RIS array.
  • the incident angle in the horizontal dimension is the included angle in the horizontal dimension between the incident beam sent by the base station and the surface of the antenna array.
  • the incident angle in the vertical dimension is the included angle in the vertical dimension between the incident beam sent by the base station and the surface of the antenna array.
  • the base station may only send the incident beam's incident angle in the horizontal dimension and the incident angle in the vertical dimension to the RIS array. In another embodiment of the present disclosure, the base station may directly send the sum of the horizontal-dimensional incident angle and the vertical-dimensional incident angle of the incident beam to the RIS array. In yet another embodiment of the present disclosure, the base station may send the horizontal-dimensional incident angle and the vertical-dimensional incident angle of the incident beam, and the sum of the horizontal-dimensional incident angle and the vertical-dimensional incident angle to the RIS array.
  • the base station can obtain the PMI sent by the UE, and then forward the PMI to the RIS array. It can be seen that in the embodiment of the present disclosure, the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • FIG. 8 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 8, the precoding method may include the following steps:
  • Step 801. Determine PMI based on channel information between the RIS array and the UE.
  • the UE may determine the most suitable precoding matrix for the channel based on the channel information between the RIS array and the UE, and determine the corresponding PMI according to the precoding matrix.
  • Step 802 sending the PMI to the base station and/or the RIS array.
  • the UE may only send the PMI to the base station, and the base station forwards the PMI to the RIS array, so that the RIS array may perform precoding on the RIS array based on the PMI.
  • the UE may directly send the PMI to the RIS array.
  • the UE may send the PMI to the base station and the UE at the same time.
  • the UE does not need to send the PMI to the base station and/or the UE, but directly determines the corresponding precoding matrix based on the PMI after determining the PMI, and determines The horizontal dimension precoding vector and vertical dimension precoding vector corresponding to the precoding matrix, and then the determined horizontal dimension precoding vector and vertical dimension precoding vector are directly sent to the base station and/or RIS array, so that the RIS array can receive The obtained horizontal dimension precoding vector and vertical dimension precoding vector determine the corresponding horizontal dimension reflection angle and vertical dimension reflection angle of the RIS array, and then determine the reflection angle information, and precode the RIS array based on the reflection angle information and incident angle information.
  • the UE can determine the PMI based on the channel information between the RIS array and the UE, and send the PMI to the base station and/or the RIS array. It can be seen that in the embodiment of the present disclosure, the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • FIG. 9 is a schematic structural diagram of a precoding device provided by an embodiment of the present disclosure. As shown in FIG. 9 , the device 900 may include:
  • the first determining module 901 is configured to determine incident angle information, where the incident angle information is the incident angle information of the incident beam sent by the base station to the RIS array;
  • An acquisition module 902 configured to acquire a PMI, where the PMI is determined based on channel information between the RIS array and the UE;
  • the second determination module 903 determines the reflection angle information corresponding to the RIS array based on the PMI;
  • the precoding module 904 is configured to determine the target deflection phase angle of each RIS element in the RIS array based on the incident angle information and the reflection angle information, so as to precode the RIS array.
  • the RIS array can determine the incident angle information of the incident beam, and then obtain the PMI, wherein the PMI is determined based on the channel information between the RIS array and the UE , after that, the reflection angle information corresponding to the RIS array will be determined based on the PMI, and then based on the incident angle information and reflection angle information, the target deflection phase angle of each RIS element in the RIS array will be determined to precode the RIS array.
  • the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • the first determination module 901 is also used to:
  • the sum of the incident angle in the horizontal dimension and the incident angle in the vertical dimension is determined as the incident angle information.
  • the incident angle in the horizontal dimension is the angle between the incident beam sent by the base station and the surface of the antenna array in the horizontal dimension
  • the incident angle in the vertical dimension is the angle between the incident beam sent by the base station and the surface of the antenna array. The included angle in the vertical dimension.
  • the method for obtaining PMI includes at least one of the following:
  • the above-mentioned second determination module 903 is also used to:
  • the sum of the horizontal dimension reflection angle and the vertical dimension reflection angle is determined as reflection angle information.
  • the horizontal-dimensional reflection angle corresponding to the RIS array is the angle between the reflected beam corresponding to the RIS array and the surface of the antenna array on the horizontal dimension
  • the vertical-dimensional reflection angle corresponding to the RIS array is RIS The angle between the reflected beam corresponding to the array and the surface of the antenna array in the vertical dimension.
  • the precoding module 904 is also used to:
  • the target deflection phase angle of each RIS array element is determined from the deflection phase angle supported by each RIS array element.
  • the precoding module 904 is also used to:
  • the deflection phase angle that minimizes the value of formula 1 is determined as the target deflection phase angle of each RIS array element;
  • the incident angle information is the sum of the horizontal dimension incident angle and vertical dimension incident angle of the incident beam.
  • is the reflection angle information.
  • the reflection angle information is the horizontal dimension reflection angle and the vertical dimension corresponding to the RIS array determined based on PMI. sum of reflection angles.
  • the precoding module 904 is also used to:
  • the precoding module 904 is also used to:
  • the deflection phase angle that minimizes the value of formula 1 is determined as the target deflection phase angle of each RIS array element in the third part.
  • the deflection phase angle that makes the value of formula 2 the smallest among the deflection phase angles supported by each RIS array element in the fourth part is determined as each The target deflection phase angle of a RIS array element, wherein, 0 ⁇ p ⁇ 1, p is configured by the base station to the RIS array;
  • FIG. 10 is a schematic structural diagram of a precoding device provided by another embodiment of the present disclosure. As shown in FIG. 10 , the device 1000 may include:
  • An acquisition module 1001 configured to acquire the PMI sent by the UE
  • the sending module 1002 is configured to forward the PMI to the RIS array.
  • the base station can obtain the PMI sent by the UE, and then forward the PMI to the RIS array. It can be seen that in the embodiment of the present disclosure, the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • the above-mentioned device is also used for:
  • FIG. 11 is a schematic structural diagram of a precoding device provided by another embodiment of the present disclosure. As shown in FIG. 11 , the device 1100 may include:
  • the sending module 1102 is configured to send the PMI to the base station and/or the RIS array.
  • the UE can determine the PMI based on the channel information between the RIS array and the UE, and send the PMI to the base station and/or the RIS array. It can be seen that in the embodiment of the present disclosure, the RIS array will determine the reflection angle information based on the acquired PMI, and then precode the RIS array based on the incident angle information and reflection angle information, the complexity is low, and the applicability higher.
  • Fig. 12 is a block diagram of a user equipment UE1200 provided by an embodiment of the present disclosure.
  • the UE 1200 may be a mobile phone, a computer, a digital broadcast terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1200 may include at least one of the following components: a processing component 1202, a memory 1204, a power supply component 1206, a multimedia component 1208, an audio component 1210, an input/output (I/O) interface 1212, a sensor component 1213, and a communication component 1216.
  • the processing component 1202 generally controls the overall operations of the UE 1200, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1202 may include at least one processor 1220 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • processing component 1202 can include at least one module that facilitates interaction between processing component 1202 and other components.
  • processing component 1202 may include a multimedia module to facilitate interaction between multimedia component 1208 and processing component 1202 .
  • the memory 1204 is configured to store various types of data to support operations at the UE 1200 . Examples of such data include instructions for any application or method operating on UE1200, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1204 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1206 provides power to various components of the UE 1200.
  • Power component 1206 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1200 .
  • the multimedia component 1208 includes a screen providing an output interface between the UE 1200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1208 includes a front camera and/or a rear camera. When the UE1200 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1210 is configured to output and/or input audio signals.
  • the audio component 1210 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1200 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1204 or sent via communication component 1216 .
  • the audio component 1210 also includes a speaker for outputting audio signals.
  • the I/O interface 1212 provides an interface between the processing component 1202 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1213 includes at least one sensor for providing various aspects of state assessment for the UE 1200 .
  • the sensor component 1213 can detect the open/closed state of the device 1200, the relative positioning of components, such as the display and the keypad of the UE1200, the sensor component 1213 can also detect the position change of the UE1200 or a component of the UE1200, and the user and Presence or absence of UE1200 contact, UE1200 orientation or acceleration/deceleration and temperature change of UE1200.
  • the sensor assembly 1213 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1213 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1213 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1216 is configured to facilitate wired or wireless communications between UE 1200 and other devices.
  • UE1200 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1216 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1216 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • UE 1200 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • Fig. 13 is a block diagram of a base station 1300 provided by an embodiment of the present application.
  • base station 1300 may be provided as a base station.
  • the base station 1300 includes a processing component 1311 , which further includes at least one processor, and a memory resource represented by a memory 1332 for storing instructions executable by the processing component 1322 , such as application programs.
  • the application programs stored in memory 1332 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1315 is configured to execute instructions, so as to execute any of the aforementioned methods applied to the base station, for example, the method shown in FIG. 1 .
  • Base station 1300 may also include a power component 1326 configured to perform power management of base station 1300, a wired or wireless network interface 1350 configured to connect base station 1300 to a network, and an input-output (I/O) interface 1358.
  • the base station 1300 can operate based on an operating system stored in the memory 1332, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the base station, UE, and RIS array respectively.
  • the base station and the UE may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the base station, UE, and RIS array respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the above method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program that processes data for a computer program.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the above method embodiment): the processor is configured to execute the method shown in FIG. 8 .
  • the communication device is a network device: the transceiver is used to execute the method shown in any one of Fig. 6-Fig. 7 .
  • the communication device is an RIS array: the transceiver is used to execute the method shown in any one of Fig. 1-Fig. 5 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (Gas), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar CMOS
  • SiGe silicon germanium
  • Gas gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the above method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be affected by limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the above embodiment and a communication device as a network device, Alternatively, the system includes a communication device serving as a terminal device in the above embodiment (such as the first terminal device in the above method embodiment) and a communication device serving as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “First”, “Second”, “Third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提出一种预编码方法、装置、用户设备、RIS阵列、基站及存储介质,属于通信技术领域。其中,该方法包括:RIS阵列可以确定入射波束的入射角信息,然后获取PMI,其中,该PMI是基于RIS阵列与UE之间的信道信息确定的,之后,会基于PMI确定RIS阵列对应的反射角信息,再基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对RIS阵列进行预编码。本公开提供的预编码方法的复杂性较低,且适用范围较广。

Description

一种预编码方法、装置、用户设备、RIS阵列、基站及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种预编码方法、装置、用户设备、RIS阵列、基站及存储介质。
背景技术
在通信***中,通过引入RIS(Reconfigurable Intelligent Surface,可重构智能表面)预编码技术,来将基站传输至RIS的入射信号按照特定方向反射或透射至UE(User Equipment),以构建智能可编程无线环境,增强UE端接收信号的信号强度,实现对信道的控制。
相关技术中,主要通过交替优化技术对RIS和基站处的预编码进行联合设计。但是,基于交替优化技术实现的预编码方法的复杂度过高,适用性较差。
发明内容
本公开提出的预编码方法、装置、用户设备、RIS阵列、基站及存储介质,以解决相关技术中的预编码方法的复杂度过高,适用性较差的技术问题。
本公开一方面实施例提出的预编码方法,应用于RIS阵列,包括:
确定入射角信息,所述入射角信息为基站发送至RIS阵列的入射波束的入射角信息;
获取预编码索引PMI,所述PMI是基于所述RIS阵列与用户设备UE之间的信道信息确定的;
基于所述PMI确定所述RIS阵列对应的反射角信息;
基于所述入射角信息和所述反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对所述RIS阵列进行预编码。
本公开另一方面实施例提出的预编码方法,应用于基站,包括:
获取UE发送的PMI;
将所述PMI转发至RIS阵列。
本公开又一方面实施例提出的预编码方法,应用于UE,包括:
基于RIS阵列与所述UE之间的信道信息确定PMI;
向基站和/或RIS阵列发送所述PMI。
本公开又一方面实施例提出的预编码装置,包括:
第一确定模块,用于确定入射角信息,所述入射角信息为基站发送至RIS阵列的入射波束的入射角信息;
获取模块,用于获取预编码索引PMI,所述PMI是基于所述RIS阵列与用户设备UE之间的信道信息确定的;
第二确定模块,基于所述PMI确定所述RIS阵列对应的反射角信息;
预编码模块,用于基于所述入射角信息和所述反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对所述RIS阵列进行预编码。
本公开又一方面实施例提出的预编码装置,包括:
获取模块,用于获取UE发送的PMI;
发送模块,用于将所述PMI转发至RIS阵列。
本公开又一方面实施例提出的预编码装置,包括:
确定模块,用于基于RIS阵列与所述UE之间的信道信息确定PMI;
发送模块,用于向基站和/或RIS阵列发送所述PMI。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上又一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如又一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如又一方面实施例提出的方法被实现。
综上所述,在本公开实施例提供的预编码方法、装置、用户设备、RIS阵列、基站及存储介质之中,RIS阵列可以确定入射波束的入射角信息,然后获取PMI,其中,该PMI是基于RIS阵列与UE之间的信道信息确定的,之后,会基于PMI确定RIS阵列对应的反射角信息,再基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对RIS阵列进行预编码。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的预编码方法的流程示意图;
图2为本公开另一个实施例所提供的预编码方法的流程示意图;
图3为本公开再一个实施例所提供的预编码方法的流程示意图;
图4为本公开又一个实施例所提供的预编码方法的流程示意图;
图5为本公开又一个实施例所提供的预编码方法的流程示意图;
图6为本公开又一个实施例所提供的预编码方法的流程示意图;
图7为本公开又一个实施例所提供的预编码方法的流程示意图;
图8为本公开又一个实施例所提供的预编码方法的流程示意图;
图9为本公开一个实施例所提供的预编码装置的结构示意图;
图10为本公开另一个实施例所提供的预编码装置的结构示意图;
图11为本公开又一个实施例所提供的预编码装置的结构示意图;
图12是本公开一个实施例所提供的一种用户设备的框图;
图13为本公开一个实施例所提供的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图对本公开提供的预编码方法、装置、用户设备、RIS阵列、基站及存储介质进行详细描述。
图1为本公开实施例所提供的一种预编码方法的流程示意图,应用于RIS阵列,如图1所示,该预编码方法可以包括以下步骤:
步骤101、确定入射角信息。
其中,在本公开的一个实施例之中,该入射角信息可以为基站发送至RIS阵列的入射波束的入射角信息。
以及,在本公开的一个实施例之中,确定入射角信息的方法可以包括以下步骤:
步骤a、获取基站发送的入射波束的水平维入射角和垂直维入射角,和/或,获取基站发送的入射波束的水平维入射角和垂直维入射角的和值;
其中,在本公开的一个实施例之中,水平维入射角具体是入射波束与RIS阵列的天线阵列表面在水平维上的夹角,垂直维入射角具体是入射波束与RIS阵列的天线阵列表面在垂直维上的夹角。
以及,在本公开的一个实施例之中,基站可以仅将入射波束的水平维入射角和垂直维入射角发送至RIS阵列。在本公开的另一个实施例之中,基站可以直接将入射波束的水平维入射角和垂直维入射角的和值发送至RIS阵列。在本公开的又一个实施例之中,基站可以将入射波束的水平维入射角和垂直维入射角,以及该水平维入射角和该垂直维入射角的和值发送至RIS阵列。
步骤b、将水平维入射角和垂直维入射角的和值确定为入射角信息。
步骤102、获取PMI(Precoding Matrix Index,预编码矩阵指示)。
其中,在本公开的一个实施例之中,该PMI可以是由UE(User Equipment,用户设备)基于RIS阵列与UE之间的信道信息确定的。具体而言,在本公开的一个实施例之中,UE可以基于RIS阵列与UE之间的信道信息确定出最适于该信道的预编码矩阵,并将该预编码矩阵对应的PMI发送至RIS阵列,则后续RIS阵列在将基站所发送的入射波束反射至UE时,可以基于该PMI对RIS阵列进行自适应预编码,确保了通信质量。
其中,在本公开的一个实施例之中,UE可以是指向用户提供语音和/或数据连通性的设备。终端设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber  unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
以及,进一步地,在本公开的一个实施例之中,UE将PMI发送至RIS阵列的方法可以包括以下至少一种:
UE将PMI直接发送至RIS阵列;
UE将PMI发送至基站,由基站转发至RIS阵列。
步骤103、基于PMI确定RIS阵列对应的反射角信息。
其中,在本公开的一个实施例之中,基于PMI确定RIS阵列对应的反射角信息的方法可以包括以下步骤:
步骤1、确定PMI对应的预编码矩阵。
步骤2、确定预编码矩阵对应的水平维预编码向量和垂直维预编码向量。
步骤3、基于水平维预编码向量和垂直维预编码向量确定RIS阵列对应的水平维反射角和垂直维反射角。
其中,本公开的一个实施例之中,水平维反射角具体是RIS阵列对应的反射波束与RIS阵列天线阵列表面在水平维上的夹角,垂直维反射角具体是RIS阵列对应的反射波束与RIS阵列天线阵列表面在垂直维上的夹角。
其中,在本公开的一个实施例之中,基于水平维预编码向量和垂直维预编码向量确定水平维反射角和垂直维反射角的相关介绍可以参考现有技术描述,本公开在此不做赘述。
步骤4、将水平维反射角和垂直维反射角的和值确定为反射角信息。
步骤104、基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对RIS阵列进行预编码。
其中,基于入射角信息和反射角信息确定每个RIS阵元的目标偏转相角的详细介绍可以参考后续实施例描述。
以及,在本公开的一个实施例之中,在确定出每个RIS阵元的目标偏转相角之后,当利用该RIS阵列将基站发送的入射波束反射至UE时,可以将每个RIS阵元的偏转角调整为目标偏转相角,再利用调整之后的各个RIS阵元反射入射波束至UE。其中,由于目标偏转相角是基于反射角信息确定的,反射角信息是基于PMI确定的,而PMI是基于RIS阵列与UE之间的信道信息确定的。由此当利用所确定的各个RIS阵元的目标偏转角反射入射波束时,可以使得得到的反射波束是最适于RIS阵列与UE之间的信道的波束,从而可以确保通信质量。
综上所述,在本公开实施例提供的预编码方法之中,RIS阵列可以确定入射波束的入射角信息,然后获取PMI,其中,该PMI是基于RIS阵列与UE之间的信道信息确定的,之后,会基于PMI确定RIS阵列对应的反射角信息,再基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对RIS阵列进行预编码。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
图2为本公开另一个实施例所提供的一种预编码方法的流程示意图,应用于RIS阵列,如图2所示,该预编码方法可以包括以下步骤:
步骤201、确定入射角信息。
步骤202、获取PMI。
步骤203、基于PMI确定RIS阵列对应的反射角信息。
其中,在本公开的一个实施例之中,关于步骤201~203的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤204、确定每个RIS阵元支持的偏转相角。
其中,在本公开的一个实施例之中,每个RIS阵元可能会支持至少一个偏转相角。示例的,在本公开的一个实施例之中,某一RIS阵元支持的偏转相角可以为:0°、45°、90°、120°。
步骤205、从每个RIS阵元支持的偏转相角中确定每个RIS阵元的目标偏转相角。
其中,在本公开的一个实施例之中,具体可以是基于入射角信息和反射角信息从每个RIS阵元支持的偏转相角中确定每个RIS阵元的目标偏转相角。
并且,在本公开的一个实施例之中,在确定RIS阵列中每个RIS阵元的目标偏转相角时,具体是基于对UE的期望接收功率来确定的,该UE可以为上述步骤中向RIS阵列发送PMI的UE。其中,在本公开的一个实施例之中,对于UE的期望接收功率可以包括期望UE接收功率最大化、期望UE接收功率最小化、期望对UE接收功率进行缩放中的至少一种。以及,当对于UE的期望接收功率不同时,确定每个RIS阵元的目标偏转相角的方法也不相同。关于目标偏转相角的确定方法在后续的实施例中会详细介绍。
综上所述,在本公开实施例提供的预编码方法之中,RIS阵列可以确定入射波束的入射角信息,然后获取PMI,其中,该PMI是基于RIS阵列与UE之间的信道信息确定的,之后,会基于PMI确定RIS阵列对应的反射角信息,再基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对RIS阵列进行预编码。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
图3为本公开再一个实施例所提供的一种预编码方法的流程示意图,应用于RIS阵列,如图3所示,该预编码方法可以包括以下步骤:
步骤301、确定入射角信息。
步骤302、获取PMI。
步骤303、基于PMI确定RIS阵列对应的反射角信息。
步骤304、确定每个RIS阵元支持的偏转相角。
其中,在本公开的一个实施例之中,关于步骤301~304的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤305、将每个RIS阵元支持的偏转相角中使得公式一的值最小的偏转相角确定为每个RIS阵元的目标偏转相角。
需要说明的是,在本公开的一个实施例之中,具体是当期望UE的接收功率最大化时,会采用本实施例的方式基于上述公式一确定每个RIS阵元的目标偏转相角。以及,在本公开的一个实施例之中,上述公式一为:
Figure PCTCN2021134161-appb-000001
其中,ω i为第i个RIS阵元支持的偏转相角,i=0,1,…,N-1,N,N为RIS阵元数,d为RIS阵元间距,λ为入射波束的波长,α为入射角信息,入射角信息为入射波束的水平维入射角和垂直维入射角的和值,β为反射角信息,反射角信息为基于PMI确定的RIS阵列对应的水平维反射角和垂直维反射角的和值。
示例的,在本公开的一个实施例之中,假设某一RIS阵元支持的偏转相角可以为:0°、45°、90°、120°,以及在将0°、45°、90°、120°代入上述公式一之后,得出公式一中代入45°后的值>公式一中代入90°后的值>公式一中代入0°后的值>公式一中代入120°后的值,则此时可以将120°确定为该RIS阵元的目标偏转相角,以此类推确定出所有RIS阵元对应的目标偏转相角。
综上所述,在本公开实施例提供的预编码方法之中,RIS阵列可以确定入射波束的入射角信息,然后获取PMI,其中,该PMI是基于RIS阵列与UE之间的信道信息确定的,之后,会基于PMI确定RIS阵列对应的反射角信息,再基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对RIS阵列进行预编码。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定 出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
图4为本公开又一个实施例所提供的一种预编码方法的流程示意图,应用于RIS阵列,如图4所示,该预编码方法可以包括以下步骤:
步骤401、确定入射角信息。
步骤402、获取PMI。
步骤403、基于PMI确定RIS阵列对应的反射角信息。
步骤404、确定每个RIS阵元支持的偏转相角。
其中,在本公开的一个实施例之中,关于步骤401~404的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤405、将RIS阵列中的所有RIS阵元平分为第一部分和第二部分,将第一部分中的每个RIS阵元支持的偏转相角中使得公式一的值最小的偏转相角确定为第一部分的每个RIS阵元的目标偏转相角,将第二部分中的每个RIS阵元支持的偏转相角中使得公式二的值最小的偏转相角确定为第二部分的每个RIS阵元的目标偏转相角。
需要说明的是,在本公开的一个实施例之中,具体可以是当期望UE的接收功率最小化(即该UE视为被干扰用户)时,会采用本实施例的方式基于上述公式一和公式二确定每个RIS阵元的目标偏转相角。以及,在本公开的一个实施例之中,上述公式一为:
Figure PCTCN2021134161-appb-000002
公式二为:
Figure PCTCN2021134161-appb-000003
其中,ω i为第i个RIS阵元支持的偏转相角,i=0,1,…,N-1,N,N为RIS阵元数,d为RIS阵元间距,λ为入射波束的波长,α为入射角信息,入射角信息为入射波束的水平维入射角和垂直维入射角的和值,β为反射角信息,反射角信息为基于PMI确定的RIS阵列对应的水平维反射角和垂直维反射角的和值。
其中,在本公开的一个实施例之中,上述的平分方式可以为随机平分。
示例的,在本公开的一个实施例之中,假设RIS阵列包括六个RIS阵元,平分之后第一部分和第二部分均包括三个RIS阵元,假设第一部分中的某一RIS阵元支持的偏转相角为:0°、45°、90°、120°,以及在将0°、45°、90°、120°代入上述公式一之后,得出公式一中代入45°后的值>公式一中代入90°后的值>公式一中代入0°后的值>公式一中代入120°后的值,则此时可以将120°确定为第一部分中的该RIS阵元的目标偏转相角,以此类推确定出第一部分中的所有RIS阵元的目标偏转相角。以及,假设第二部分中的某一RIS阵元支持的偏转相角为:0°、30°、60°、90°,以及在将0°、30°、60°、90°代入上述公式一之后,得出公式二中代入30°后的值>公式二中代入90°后的值>公式二中代入0°后的值>公式二中代入60°后的值,则此时可以将60°确定为第二部分中的该RIS阵元的目标偏转相角,以此类推确定出第二部分中的所有RIS阵元的目标偏转相角。
综上所述,在本公开实施例提供的预编码方法之中,RIS阵列可以确定入射波束的入射角信息,然后获取PMI,其中,该PMI是基于RIS阵列与UE之间的信道信息确定的,之后,会基于PMI确定RIS阵列对应的反射角信息,再基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对RIS阵列进行预编码。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
图5为本公开又一个实施例所提供的一种预编码方法的流程示意图,应用于RIS阵列,如图5所示,该预编码方法可以包括以下步骤:
步骤501、确定入射角信息。
步骤502、获取PMI。
步骤503、基于PMI确定RIS阵列对应的反射角信息。
步骤504、确定每个RIS阵元支持的偏转相角。
其中,在本公开的一个实施例之中,关于步骤501~504的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤505、基于比例p将RIS阵列中的所有RIS阵元划分为第三部分和第四部分,将第三部分中的每个RIS阵元支持的偏转相角中使得公式一的值最小的偏转相角确定为第三部分的每个RIS阵元的目标偏转相角,将第四部分中的每个RIS阵元支持的偏转相角中使得公式二的值最小的偏转相角确定为第四部分的每个RIS阵元的目标偏转相角。
需要说明的是,在本公开的一个实施例之中,具体是当期望UE的接收功率进行缩放时,会采用本实施例的方式基于比例p和上述公式一和公式二确定每个RIS阵元的目标偏转相角。
以及,本公开的一个实施例之中,公式一为:
Figure PCTCN2021134161-appb-000004
公式二为:
Figure PCTCN2021134161-appb-000005
其中,ω i为第i个RIS阵元支持的偏转相角,i=0,1,…,N-1,N,N为RIS阵元数,N为RIS阵元间距,λ为入射波束的波长,α为入射角信息,入射角信息为入射波束的水平维入射角和垂直维入射角的和值,β为反射角信息,反射角信息为基于PMI确定的RIS阵列对应的水平维反射角和垂直维反射角的和值。
以及,在本公开的一个实施例之中,0<p<1,p可以由基站动态配置至RIS阵列。
以及,在本公开的一个实施例之中,上述的基于比例p将RIS阵列中的所有RIS阵元划分为第三部分和第四部分可以是随机划分的。示例的,在本公开的一个实施例之中,可以将RIS阵列中的所有RIS阵元数与比例p的乘积确定为第一数值,以及,在所有RIS阵元中随机选择第一数值个RIS阵元确定为第三部分,并将剩余的RIS阵元确定为第四部分。
进一步地,在本公开的一个实施例之中,UE的接收功率的缩放程度与p值相关。其中,当期望UE的接收功率增大时,比例p应当满足:基于比例p划分所有RIS阵元得到第三部分和第四部分后,该第三部分中的RIS阵元数越多;当期望UE的接收功率缩小时,比例p应当满足:基于比例p划分所有RIS阵元得到第三部分和第四部分后,该第三部分中的RIS阵元数越少。
综上所述,在本公开实施例提供的预编码方法之中,RIS阵列可以确定入射波束的入射角信息,然后获取PMI,其中,该PMI是基于RIS阵列与UE之间的信道信息确定的,之后,会基于PMI确定RIS阵列对应的反射角信息,再基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对RIS阵列进行预编码。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
图6为本公开又一个实施例所提供的一种预编码方法的流程示意图,应用于基站,如图6所示,该预编码方法可以包括以下步骤:
步骤601、获取UE发送的PMI。
其中,在本公开的一个实施例之中,PMI可以是UE基于RIS阵列与UE之间的信道信息确定的。
步骤602、将PMI转发至RIS阵列。
综上所述,在本公开实施例提供的预编码方法之中,基站可以获取UE发送的PMI,然后将PMI转发至RIS阵列。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
图7为本公开又一个实施例所提供的一种预编码方法的流程示意图,应用于基站,如图7所示,该 预编码方法可以包括以下步骤:
步骤701、获取UE发送的PMI。
步骤702、将PMI转发至RIS阵列。
其中,在本公开的一个实施例之中,关于步骤701~702的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤703、向RIS阵列发送基站发送至RIS阵列的入射波束的水平维入射角和垂直维入射角,和/或,向RIS阵列发送入射波束的水平维入射角和垂直维入射角的和值。
其中,在本公开的一个实施例之中,基站可以根据发送至RIS阵列的入射波束确定该入射波束的水平维入射角和垂直维入射角。
以及,在本公开的一个实施例之中,水平维入射角是基站发送的入射波束与天线阵列表面在水平维上的夹角。以及,在本公开的一个实施例之中,垂直维入射角是基站发送的入射波束与天线阵列表面在垂直维上的夹角。
在本公开的一个实施例之中,基站可以仅将入射波束的水平维入射角和垂直维入射角发送至RIS阵列。在本公开的另一个实施例之中,基站可以直接将入射波束的水平维入射角和垂直维入射角的和值发送至RIS阵列。在本公开的又一个实施例之中,基站可以将入射波束的水平维入射角和垂直维入射角,以及该水平维入射角和该垂直维入射角的和值发送至RIS阵列。
综上所述,在本公开实施例提供的预编码方法之中,基站可以获取UE发送的PMI,然后将PMI转发至RIS阵列。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
图8为本公开又一个实施例所提供的一种预编码方法的流程示意图,应用于UE,如图8所示,该预编码方法可以包括以下步骤:
步骤801、基于RIS阵列与UE之间的信道信息确定PMI。
其中,在本公开的一个实施例之中,UE可以基于RIS阵列与UE之间的信道信息确定出最适于该信道的预编码矩阵,并根据该预编码矩阵确定对应的PMI。
步骤802、向基站和/或RIS阵列发送PMI。
其中,在本公开的一个实施例之中,UE可以仅向基站发送该PMI,由基站将该PMI转发至RIS阵列,以便RIS阵列可以基于该PMI来对RIS阵列进行预编码。
在本公开的另一个实施例之中,UE可以直接向RIS阵列发送PMI。
在本公开的另一个实施例之中,UE可以同时向基站和UE发送该PMI。
此外,需要说明的是,在本公开的一个实施例之中,UE可以无需向基站和/或UE发送PMI,而是在确定出PMI后,直接基于PMI确定出对应的预编码矩阵,并确定该预编码矩阵对应的水平维预编码向量和垂直维预编码向量,然后将确定的该水平维预编码向量和垂直维预编码向量直接发送给基站和/或RIS阵列,以便RIS阵列可以根据接收到的水平维预编码向量和垂直维预编码向量确定RIS阵列对应的水平维反射角和垂直维反射角,进而确定反射角信息,并基于反射角信息和入射角信息对RIS阵列进行预编码。
综上所述,在本公开实施例提供的预编码方法之中,UE可以基于RIS阵列与UE之间的信道信息确定PMI,并向基站和/或RIS阵列发送PMI。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
图9本公开一个实施例所提供的一种预编码装置的结构示意图,如图9所示,装置900可以包括:
第一确定模块901,用于确定入射角信息,入射角信息为基站发送至RIS阵列的入射波束的入射角信息;
获取模块902,用于获取PMI,PMI是基于RIS阵列与UE之间的信道信息确定的;
第二确定模块903,基于PMI确定RIS阵列对应的反射角信息;
预编码模块904,用于基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相 角,以对RIS阵列进行预编码。
综上所述,在本公开实施例提供的预编码装置之中,RIS阵列可以确定入射波束的入射角信息,然后获取PMI,其中,该PMI是基于RIS阵列与UE之间的信道信息确定的,之后,会基于PMI确定RIS阵列对应的反射角信息,再基于入射角信息和反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对RIS阵列进行预编码。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
在本公开一个实施例之中,第一确定模块901还用于:
获取基站发送的入射波束的水平维入射角和垂直维入射角,和/或,获取基站发送的入射波束的水平维入射角和垂直维入射角的和值;
将水平维入射角和垂直维入射角的和值确定为入射角信息。
进一步地,在本公开另一个实施例之中,水平维入射角是基站发送的入射波束与天线阵列表面在水平维上的夹角,垂直维入射角是基站发送的入射波束与天线阵列表面在垂直维上的夹角。
进一步地,在本公开另一个实施例之中,获取PMI的方法包括以下至少一种:
获取UE发送的PMI;
获取基站转发的PMI。
进一步地,在本公开另一个实施例之中,上述第二确定模块903还用于:
确定PMI对应的预编码矩阵;
确定预编码矩阵对应的水平维预编码向量和垂直维预编码向量;
基于水平维预编码向量和垂直维预编码向量确定RIS阵列对应的水平维反射角和垂直维反射角;
将水平维反射角和垂直维反射角的和值确定为反射角信息。
进一步地,在本公开另一个实施例之中,RIS阵列对应的水平维反射角是RIS阵列对应的反射波束与天线阵列表面在水平维上的夹角,RIS阵列对应的垂直维反射角是RIS阵列对应的反射波束与天线阵列表面在垂直维上的夹角。
进一步地,在本公开另一个实施例之中,预编码模块904还用于:
确定每个RIS阵元支持的偏转相角;
从每个RIS阵元支持的偏转相角中确定每个RIS阵元的目标偏转相角。
进一步地,在本公开另一个实施例之中,预编码模块904还用于:
将每个RIS阵元支持的偏转相角中使得公式一的值最小的偏转相角确定为每个RIS阵元的目标偏转相角;
其中,公式一为:
Figure PCTCN2021134161-appb-000006
ω i为第i个RIS阵元支持的偏转相角,i=0,1,…,N-1,N,N为RIS阵元数,d为RIS阵元间距,λ为入射波束的波长,α为入射角信息入射角信息为入射波束的水平维入射角和垂直维入射角的和值,β为反射角信息,反射角信息为基于PMI确定的RIS阵列对应的水平维反射角和垂直维反射角的和值。
进一步地,在本公开另一个实施例之中,预编码模块904还用于:
将RIS阵列中的所有RIS阵元平分为第一部分和第二部分,将第一部分中的每个RIS阵元支持的偏转相角中使得公式一的值最小的偏转相角确定为第一部分的每个RIS阵元的目标偏转相角,将第二部分中的每个RIS阵元支持的偏转相角中使得公式二的值最小的偏转相角确定为第二部分的每个RIS阵元的目标偏转相角;
其中,公式一为:
Figure PCTCN2021134161-appb-000007
公式二为:
Figure PCTCN2021134161-appb-000008
ω i为第i个RIS阵元支持的偏转相角,i=0,1,…,N-1,N,N为RIS阵元数,d为RIS阵元间距,λ为入射波束的波长,α为入射角信息,入射角信息为入射波束的水平维入射角和垂直维入射角的和值,β为反射角信息,反射角信息为基于PMI确定的RIS阵列对应的水平维反射角和垂直维反射角的和值。
进一步地,在本公开另一个实施例之中,预编码模块904还用于:
基于比例p将RIS阵列中的所有RIS阵元划分为第三部分和第四部分,将第三部分中的每个RIS阵元支持的偏转相角中使得公式一的值最小的偏转相角确定为第三部分的每个RIS阵元的目标偏转相角,将第四部分中的每个RIS阵元支持的偏转相角中使得公式二的值最小的偏转相角确定为第四部分的每个RIS阵元的目标偏转相角,其中,0<p<1,p由基站配置至RIS阵列;
其中,公式一为:
Figure PCTCN2021134161-appb-000009
公式二为:
Figure PCTCN2021134161-appb-000010
ω i为第i个RIS阵元支持的偏转相角,i=0,1,…,N-1,N,N为RIS阵元数,d为RIS阵元间距,λ为入射波束的波长,α为入射角信息,入射角信息为入射波束的水平维入射角和垂直维入射角的和值,β为反射角信息,反射角信息为基于PMI确定的RIS阵列对应的水平维反射角和垂直维反射角的和值。
图10为本公开另一个实施例所提供的一种预编码装置的结构示意图,如图10所示,装置1000可以包括:
获取模块1001,用于获取UE发送的PMI;
发送模块1002,用于将PMI转发至RIS阵列。
综上所述,在本公开实施例提供的预编码装置之中,基站可以获取UE发送的PMI,然后将PMI转发至RIS阵列。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
在本公开一个实施例之中,上述装置还用于:
向RIS阵列发送基站发送至RIS阵列的入射波束的水平维入射角和垂直维入射角,和/或,向RIS阵列发送入射波束的水平维入射角和垂直维入射角的和值。
图11为本公开又一个实施例所提供的一种预编码装置的结构示意图,如图11所示,装置1100可以包括:
确定模块1101,用于基于RIS阵列与UE之间的信道信息确定PMI;
发送模块1102,用于向基站和/或RIS阵列发送PMI。
综上所述,在本公开实施例提供的预编码装置之中,UE可以基于RIS阵列与UE之间的信道信息确定PMI,并向基站和/或RIS阵列发送PMI。由此可知,在本公开实施例中,RIS阵列会基于获取到的PMI确定出反射角信息,之后基于入射角信息和反射角信息来对RIS阵列进行预编码,则复杂性较低,适用性较高。
图12是本公开一个实施例所提供的一种用户设备UE1200的框图。例如,UE1200可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,UE1200可以包括以下至少一个组件:处理组件1202,存储器1204,电源组件1206,多媒体组件1208,音频组件1210,输入/输出(I/O)的接口1212,传感器组件1213,以及通信组件1216。
处理组件1202通常控制UE1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1202可以包括至少一个处理器1220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1202可以包括至少一个模块,便于处理组件1202和其他组件之间的 交互。例如,处理组件1202可以包括多媒体模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在UE1200的操作。这些数据的示例包括用于在UE1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1206为UE1200的各种组件提供电力。电源组件1206可以包括电源管理***,至少一个电源,及其他与为UE1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在所述UE1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当UE1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当UE1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
I/O接口1212为处理组件1202和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1213包括至少一个传感器,用于为UE1200提供各个方面的状态评估。例如,传感器组件1213可以检测到设备1200的打开/关闭状态,组件的相对定位,例如所述组件为UE1200的显示器和小键盘,传感器组件1213还可以检测UE1200或UE1200一个组件的位置改变,用户与UE1200接触的存在或不存在,UE1200方位或加速/减速和UE1200的温度变化。传感器组件1213可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1213还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1213还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1216被配置为便于UE1200和其他设备之间有线或无线方式的通信。UE1200可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1216经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1200可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图13是本申请实施例所提供的一种基站1300的框图。例如,基站1300可以被提供为一基站。参照图13,基站1300包括处理组件1311,其进一步包括至少一个处理器,以及由存储器1332所代表的存储器资源,用于存储可由处理组件1322的执行的指令,例如应用程序。存储器1332中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1315被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图1所示方法。
基站1300还可以包括一个电源组件1326被配置为执行基站1300的电源管理,一个有线或无线网络接口1350被配置为将基站1300连接到网络,和一个输入输出(I/O)接口1358。基站1300可以操作基于存储在存储器1332的操作***,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free  BSDTM或类似。
上述本公开提供的实施例中,分别从基站、UE、RIS阵列的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,基站和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从基站、UE、RIS阵列的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如上述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如上述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如上述方法实施例中的终端设备):处理器用于执行图8所示的方法。
通信装置为网络设备:收发器用于执行图6-图7任一所示的方法。
通信装置为RIS阵列:收发器用于执行图1-图5任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现上述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来 制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(Gas)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如上述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的***,该***包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该***包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、 “C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (25)

  1. 一种预编码方法,其特征在于,应用于可重构智能表面RIS阵列,包括:
    确定入射角信息,所述入射角信息为基站发送至RIS阵列的入射波束的入射角信息;
    获取预编码矩阵指示PMI,所述PMI是基于所述RIS阵列与用户设备UE之间的信道信息确定的;
    基于所述PMI确定所述RIS阵列对应的反射角信息;
    基于所述入射角信息和所述反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对所述RIS阵列进行预编码。
  2. 如权利要求1所述的方法,其特征在于,所述确定入射角信息,包括:
    获取所述基站发送的所述入射波束的水平维入射角和垂直维入射角,和/或,获取所述基站发送的所述入射波束的水平维入射角和垂直维入射角的和值;
    将所述水平维入射角和垂直维入射角的和值确定为所述入射角信息。
  3. 如权利要求2所述的方法,其特征在于,所述水平维入射角为:所述入射波束与RIS阵列的天线阵列表面在水平维上的夹角,所述垂直维入射角为:所述入射波束与RIS阵列的天线阵列表面在垂直维上的夹角。
  4. 如权利要求1所述的方法,其特征在于,所述获取PMI的方法包括以下至少一种:
    获取UE发送的PMI;
    获取基站转发的PMI。
  5. 如权利要求1所述的方法,其特征在于,所述基于所述PMI确定所述RIS阵列对应的反射角信息,包括:
    确定所述PMI对应的预编码矩阵;
    确定所述预编码矩阵对应的水平维预编码向量和垂直维预编码向量;
    基于所述水平维预编码向量和垂直维预编码向量确定所述RIS阵列对应的水平维反射角和垂直维反射角;
    将所述水平维反射角和垂直维反射角的和值确定为所述反射角信息。
  6. 如权利要求5所述的方法,其特征在于,所述水平维反射角为:反射波束与RIS阵列的天线阵列表面在水平维上的夹角,所述垂直维反射角为:反射波束与RIS阵列的天线阵列表面在垂直维上的夹角。
  7. 如权利要求1所述的方法,其特征在于,所述基于所述入射角信息和所述反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,包括:
    确定每个RIS阵元支持的偏转相角;
    从每个RIS阵元支持的偏转相角中确定每个RIS阵元的目标偏转相角。
  8. 如权利要求7所述的方法,其特征在于,所述从每个RIS阵元支持的偏转相角中确定每个RIS阵元的目标偏转相角,包括:
    将所述每个RIS阵元支持的偏转相角中使得公式一的值最小的偏转相角确定为所述每个RIS阵元的目标偏转相角;
    其中,所述公式一为:
    Figure PCTCN2021134161-appb-100001
    ω i为第i个RIS阵元支持的偏转相角,i=0,1,…,N-1,N,N为RIS阵元数,d为RIS阵元间距,λ为入射波束的波长,α为入射角信息,所述入射角信息为入射波束的水平维入射角和垂直维入射角的和值,β为反射角信息,所述反射角信息为基于所述PMI确定的所述RIS阵列对应的水平维反射角和垂直维反射角的和值。
  9. 如权利要求7所述的方法,其特征在于,所述从每个RIS阵元支持的偏转相角中确定每个RIS阵元的目标偏转相角,包括:
    将所述RIS阵列中的所有RIS阵元平分为第一部分和第二部分,将所述第一部分中的每个RIS阵 元支持的偏转相角中使得公式一的值最小的偏转相角确定为所述第一部分的每个RIS阵元的目标偏转相角,将所述第二部分中的每个RIS阵元支持的偏转相角中使得公式二的值最小的偏转相角确定为所述第二部分的每个RIS阵元的目标偏转相角;
    其中,所述公式一为:
    Figure PCTCN2021134161-appb-100002
    公式二为:
    Figure PCTCN2021134161-appb-100003
    ω i为第i个RIS阵元支持的偏转相角,i=0,1,…,N-1,N,N为RIS阵元数,d为RIS阵元间距,λ为入射波束的波长,α为入射角信息,所述入射角信息为入射波束的水平维入射角和垂直维入射角的和值,β为反射角信息,所述反射角信息为基于所述PMI确定的所述RIS阵列对应的水平维反射角和垂直维反射角的和值。
  10. 如权利要求7所述的方法,其特征在于,所述从每个RIS阵元支持的偏转相角中确定每个RIS阵元的目标偏转相角,包括:
    基于比例p将所述RIS阵列中的所有RIS阵元划分为第三部分和第四部分,将所述第三部分中的每个RIS阵元支持的偏转相角中使得公式一的值最小的偏转相角确定为所述第三部分的每个RIS阵元的目标偏转相角,将所述第四部分中的每个RIS阵元支持的偏转相角中使得公式二的值最小的偏转相角确定为所述第四部分的每个RIS阵元的目标偏转相角,其中,0<p<1,所述p由所述基站配置至所述RIS阵列;
    其中,所述公式一为:
    Figure PCTCN2021134161-appb-100004
    公式二为:
    Figure PCTCN2021134161-appb-100005
    ω i为第i个RIS阵元支持的偏转相角,i=0,1,…,N-1,N,N为RIS阵元数,d为RIS阵元间距,λ为入射波束的波长,α为入射角信息,所述入射角信息为入射波束的水平维入射角和垂直维入射角的和值,β为反射角信息,所述反射角信息为基于所述PMI确定的所述RIS阵列对应的水平维反射角和垂直维反射角的和值。
  11. 一种预编码方法,其特征在于,应用于基站,包括:
    获取UE发送的PMI;
    将所述PMI转发至RIS阵列。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    向所述RIS阵列发送所述基站发送至RIS阵列的入射波束的水平维入射角和垂直维入射角,和/或,向所述RIS阵列发送所述入射波束的水平维入射角和垂直维入射角的和值。
  13. 一种预编码方法,其特征在于,应用于UE,包括:
    基于RIS阵列与所述UE之间的信道信息确定PMI;
    向基站和/或RIS阵列发送所述PMI。
  14. 一种预编码装置,其特征在于,包括:
    第一确定模块,用于确定入射角信息,所述入射角信息为基站发送至RIS阵列的入射波束的入射角信息;
    获取模块,用于获取预编码索引PMI,所述PMI是基于所述RIS阵列与用户设备UE之间的信道信息确定的;
    第二确定模块,基于所述PMI确定所述RIS阵列对应的反射角信息;
    预编码模块,用于基于所述入射角信息和所述反射角信息,确定RIS阵列中每个RIS阵元的目标偏转相角,以对所述RIS阵列进行预编码。
  15. 一种预编码装置,其特征在于,包括:
    获取模块,用于获取UE发送的PMI;
    发送模块,用于将所述PMI转发至RIS阵列。
  16. 一种预编码装置,其特征在于,包括:
    确定模块,用于基于RIS阵列与所述UE之间的信道信息确定PMI;
    发送模块,用于向基站和/或RIS阵列发送所述PMI。
  17. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至10中任一项所述的方法。
  18. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求11至12中任一项所述的方法。
  19. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13中所述的方法。
  20. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至10中任一项所述的方法。
  21. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求11至12任一所述的方法。
  22. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13所述的方法。
  23. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至10中任一项所述的方法被实现。
  24. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求11至12中任一项所述的方法被实现。
  25. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13中所述的方法被实现。
PCT/CN2021/134161 2021-11-29 2021-11-29 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质 WO2023092602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180103648.XA CN118160237A (zh) 2021-11-29 2021-11-29 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质
PCT/CN2021/134161 WO2023092602A1 (zh) 2021-11-29 2021-11-29 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134161 WO2023092602A1 (zh) 2021-11-29 2021-11-29 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质

Publications (1)

Publication Number Publication Date
WO2023092602A1 true WO2023092602A1 (zh) 2023-06-01

Family

ID=86538792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134161 WO2023092602A1 (zh) 2021-11-29 2021-11-29 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质

Country Status (2)

Country Link
CN (1) CN118160237A (zh)
WO (1) WO2023092602A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150381254A1 (en) * 2013-04-04 2015-12-31 Nec Corporation Communication system
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法
CN112887002A (zh) * 2021-01-13 2021-06-01 之江实验室 一种智能反射面辅助通信的波束域信道角度估计方法
CN113078932A (zh) * 2021-03-29 2021-07-06 东南大学 一种智能反射表面辅助的下行传输预编码设计方法
CN113193894A (zh) * 2021-04-27 2021-07-30 东南大学 可重构智能表面辅助的多用户miso下行无线通信谱效能效联合优化方法
CN113300747A (zh) * 2021-05-28 2021-08-24 东南大学 一种智能反射表面辅助的毫米波***中的波束训练方法
CN113645171A (zh) * 2021-07-13 2021-11-12 清华大学 可重构智能表面多用户mimo***调制解调方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150381254A1 (en) * 2013-04-04 2015-12-31 Nec Corporation Communication system
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法
CN112887002A (zh) * 2021-01-13 2021-06-01 之江实验室 一种智能反射面辅助通信的波束域信道角度估计方法
CN113078932A (zh) * 2021-03-29 2021-07-06 东南大学 一种智能反射表面辅助的下行传输预编码设计方法
CN113193894A (zh) * 2021-04-27 2021-07-30 东南大学 可重构智能表面辅助的多用户miso下行无线通信谱效能效联合优化方法
CN113300747A (zh) * 2021-05-28 2021-08-24 东南大学 一种智能反射表面辅助的毫米波***中的波束训练方法
CN113645171A (zh) * 2021-07-13 2021-11-12 清华大学 可重构智能表面多用户mimo***调制解调方法及装置

Also Published As

Publication number Publication date
CN118160237A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
WO2023193278A1 (zh) 一种阈值确定方法/装置/设备及存储介质
WO2023133686A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023092602A1 (zh) 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质
WO2023164850A1 (zh) 一种功率确定方法/装置/用户设备/网络侧设备及存储介质
WO2023070407A1 (zh) 一种预编码方法、装置、用户设备、可重构智能表面ris阵列及存储介质
WO2023155053A1 (zh) 一种辅助通信设备的发送方法及设备/存储介质/装置
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2023130397A1 (zh) 一种预编码方法/装置/设备及存储介质
WO2023130283A1 (zh) 一种映射方式确定方法/装置/设备及存储介质
WO2023108435A1 (zh) 一种预编码方法及设备/存储介质/装置
WO2023082194A1 (zh) 一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置
WO2023077472A1 (zh) 一种信息更新方法、装置、用户设备、基站及存储介质
WO2023206176A1 (zh) 测量报告发送方法、测量报告接收方法、装置
WO2023108374A1 (zh) 一种测量方法/装置/用户设备/网络侧设备及存储介质
WO2023050153A1 (zh) 一种上报方法、装置、用户设备、网路侧设备及存储介质
WO2023065339A1 (zh) 一种按需定位参考信号prs请求方法、装置、用户设备、网络侧设备及存储介质
WO2023206177A1 (zh) Ai波束模型确定方法、装置
WO2023102944A1 (zh) 一种非竞争随机接入cfra中阈值确定方法及设备/存储介质/装置
WO2023133694A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023178567A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023150990A1 (zh) 一种定位方法/装置/设备及存储介质
WO2023077525A1 (zh) 一种信号发送方法、装置、用户设备、ris阵列及存储介质
WO2023236161A1 (zh) 波束管理方法、装置
WO2023173254A1 (zh) 一种定时调整方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021965331

Country of ref document: EP

Effective date: 20240701