WO2023162540A1 - Aluminum alloy material and method for producing same - Google Patents

Aluminum alloy material and method for producing same Download PDF

Info

Publication number
WO2023162540A1
WO2023162540A1 PCT/JP2023/001983 JP2023001983W WO2023162540A1 WO 2023162540 A1 WO2023162540 A1 WO 2023162540A1 JP 2023001983 W JP2023001983 W JP 2023001983W WO 2023162540 A1 WO2023162540 A1 WO 2023162540A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
alloy material
content
present
Prior art date
Application number
PCT/JP2023/001983
Other languages
French (fr)
Japanese (ja)
Inventor
剛夫 宮村
敏行 田中
尚大 小磯
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2023162540A1 publication Critical patent/WO2023162540A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to an aluminum alloy material and a manufacturing method thereof.
  • aluminum is also simply referred to as Al.
  • Al alloy parts such as impellers for automotive turbochargers and pump rotors for industrial machinery (e.g., turbomolecular pumps, vacuum pumps, diffusion pumps), which are used in high-temperature environments exceeding 100°C, have excellent high-temperature characteristics.
  • An alloy material is used.
  • the heat resistance required for heat-resistant Al alloys is also increasing as the performance of automobiles and industrial machines is improved, and excellent high-temperature creep strength is required.
  • Patent Document 1 discloses a technique for improving the creep strength by adding Mn and Cr in addition to Ag to an Al--Cu--Mg alloy corresponding to a 2000 series aluminum alloy to form a solid solution.
  • Patent document 2 is a technique for obtaining excellent creep strength by controlling the crystallized substances of an Al--Cu--Mg alloy by controlling the cooling rate during casting.
  • Patent document 3 is a technique for improving the creep strength by finely dispersing crystallized intermetallic compounds by adding Zr or Ti on subgrain boundaries.
  • Patent document 4 is a technique for improving the high-temperature creep strength by adding an additive element to an Al--Cu alloy and increasing the crystal grain size.
  • Patent Document 2 Many of the conventional techniques for improving the high temperature creep strength of 2000 series aluminum alloys use noble metals such as Ag, and although the heat resistance increases, there is a problem that the alloy cost increases significantly (Patent Document 2, 5). In addition, sufficient creep strength cannot be obtained with the conventional technology in which the addition amount of elements such as Fe and Ni that form crystallized substances is specified (Patent Document 2). In addition, the technique of adding transition metals with a high tendency to oxidize, such as Zr and Ti, improves high-temperature strength, but there is a problem that the effect is not sufficiently exhibited when casting large parts with a slow solidification rate. There is (Patent Document 5). In other words, there is a need for a technology that significantly improves the creep strength at high temperatures compared to conventional products, even when aluminum alloys are applied to large parts without using high-grade precious metals such as Ag as additive elements. there is
  • the present inventors have conducted intensive research and development in order to impart excellent high-temperature creep strength to an aluminum alloy material having an Al--Cu--Mg composition represented by, for example, 2618 alloy. can be solved, and the present invention has been completed. That is, the present invention is as follows. [1] Cu: 1.5 to 6.0% by mass, Mg: 1.0 to 4.0% by mass, Fe: 0.5 to 2.0% by mass, Ni: 0.5 to 2.0% by mass, Si: 0.1 to 3.0% by mass, Mo: 0.05 to 0.7% by mass, Ti: 0.01 to 0.3% by mass, and the balance being an alloy composition of Al and unavoidable impurities.
  • the aluminum alloy material according to the present embodiment has a predetermined alloy composition as an aluminum alloy, and is used to manufacture an aluminum alloy material (aluminum alloy part) having excellent high-temperature creep strength.
  • the aluminum alloy material according to the first embodiment of the present invention is Cu: 1.5 to 6.0% by mass, Mg: 1.0 to 4.0% by mass, Fe: 0.5 to 2.0% by mass, Ni: 0.5 to 2.0% by mass, Si: 0.1 to 3.0% by mass, Mo: 0.05 to 0.7% by mass, Ti: 0.01 to 0.3% by mass, and the balance consists of an alloy composition of Al and unavoidable impurities.
  • the aluminum alloy material according to the second embodiment of the present invention is Cu: 1.9 to 3.0% by mass, Mg: 1.3 to 3.0% by mass, Fe: 0.9 to 1.3% by mass, Ni: 0.9 to 1.3% by mass, Si: 0.25 to 0.8% by mass, Mo: 0.05 to 0.5% by mass, Ti: 0.04 to 0.09% by mass, and the balance consists of an alloy composition of Al and unavoidable impurities.
  • the content of Si and Mo in the aluminum alloy material according to the first embodiment or the second embodiment is Si: 0.1 to 0.6% by mass, Mo: 0.3 to 0.7% by mass, is preferred.
  • the alloy composition of the aluminum alloy material according to the embodiment of the present invention may be made within the above range by adding Si and Mo to the Al--Cu--Mg composition represented by the AA2618 aluminum alloy.
  • the aluminum alloy material according to the embodiment of the present invention can introduce a new precipitation phase called ⁇ phase (Al 5 Cu 6 Mg 2 ) by containing specific amounts of Si and Mo, and can greatly improve creep strength at high temperatures. This is what I found.
  • Cu is one of the essential elements for the aluminum alloy material according to the embodiment of the present invention to exhibit high-temperature creep strength.
  • Cu forms fine precipitates composed of the S phase (Al CuMg ) during aging after solution treatment in the production of aluminum alloy materials. improve.
  • the Cu content is set in the range of 1.5 to 6.0% by mass. If the Cu content is less than 1.5% by mass, the effect of improving the high-temperature creep strength cannot be sufficiently obtained. If the Cu content exceeds 6.0% by mass, Al—Cu-based coarse crystallized substances are formed in the casting stage, and solution treatment takes a long time.
  • the lower limit of the Cu content is preferably 1.9% by mass or more, more preferably 2.2% by mass or more.
  • the upper limit of the Cu content is preferably 4.5% by mass or less, more preferably 3.0% by mass or less.
  • Mg is one of the essential elements for developing high-temperature creep strength in the aluminum alloy material according to the embodiment of the present invention.
  • Mg when added together with Cu, forms fine precipitates of S phase (Al 2 CuMg) during aging after solution treatment in the production of aluminum alloy materials, improving high-temperature creep strength.
  • the Mg content is set in the range of 1.0 to 4.0% by mass. If the Mg content is less than 1.0% by mass, the effect of improving the high-temperature creep strength cannot be sufficiently obtained. If the Mg content exceeds 4.0% by mass, coarse Mg 2 Si increases and the toughness decreases.
  • the lower limit of the Mg content is preferably 1.2% by mass or more, more preferably 1.3% by mass or more.
  • the upper limit of the Mg content is preferably 3.5% by mass or less, more preferably 3.0% by mass or less.
  • Fe forms an Al-Fe-Ni compound such as Al 9 FeNi together with Ni to suppress excessive coarsening of the crystal grain size, and to suppress deformation in the vicinity of the grain boundary to increase the high-temperature creep strength. It has a slightly enhancing effect. From the viewpoint of obtaining such effects, the Fe content is set in the range of 0.5 to 2.0% by mass. If the Fe content is less than 0.5% by mass, the effect of suppressing coarsening of grain size cannot be sufficiently obtained. If the Fe content exceeds 2.0% by mass, crystallized substances excessively increase, and properties other than strength such as ductility and toughness are impaired.
  • the lower limit of the Fe content is preferably 0.7% by mass or more, and more preferably 0.9% by mass or more.
  • the upper limit of the Fe content is preferably 1.6% by mass or less, more preferably 1.3% by mass or less.
  • Ni forms an Al-Fe-Ni-based compound such as Al 9 FeNi together with Fe, and has the effect of suppressing excessive coarsening of the crystal grain size and suppressing deformation in the vicinity of the crystal grain boundary to increase high-temperature creep strength. It has a slightly enhancing effect.
  • the Ni content is in the range of 0.5-2.0% by mass. If the Ni content is less than 0.5% by mass, the above effects cannot be sufficiently obtained. When the Ni content exceeds 2.0% by mass, crystallized substances excessively increase, and properties other than strength such as ductility and toughness are impaired.
  • the lower limit of the Ni content is preferably 0.7% by mass or more, more preferably 0.9% by mass or more.
  • the upper limit of the Ni content is preferably 1.6% by mass or less, more preferably 1.3% by mass or less.
  • Si is one of the important elements essential for improving the high-temperature creep strength of the aluminum alloy material according to the embodiment of the present invention over the high-temperature creep strength of conventional Al-Cu-Mg-based aluminum alloys. . Si forms clusters at the initial stage of aging, attracts Cu with compressive stress formed around the clusters as a driving force, and has the effect of promoting the nucleation of the ⁇ phase (Al 5 Cu 6 Mg 2 ).
  • the lower limit of the Si content is preferably 0.25% by mass or more, 0.3% by mass or more, 0.35% by mass or more, and 0.4% by mass or more.
  • the upper limit of the Si content is preferably 1.5% by mass or less, more preferably 0.8% by mass or less, more preferably 0.75% by mass or less, and even more preferably 0.6% by mass. It is below.
  • the lower limit of the Mo content is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, more preferably 0.15% by mass or more, and still more preferably 0.2% by mass or more. . 0.3 mass % or more may be sufficient as the lower limit of Mo content.
  • the upper limit of the Mo content is preferably 0.6% by mass or less, 0.55% by mass or less, 0.5% by mass or less, and 0.4% by mass or less.
  • the aluminum alloy material according to another embodiment of the present invention preferably has a Si content of 0.1 to 0.6% by mass and a Mo content of 0.3 to 0.7% by mass. Further, the aluminum alloy material according to still another embodiment of the present invention has a Si content of 0.35 to 0.8% by mass and a Mo content of 0.05 to 0.55% by mass. is preferred. By setting the Si content and the Mo content within the above ranges, it becomes easier to obtain the effect of improving the high-temperature creep strength.
  • Ti 0.01 to 0.3% by mass
  • Ti is an element effective for refining crystal grains.
  • the Ti content should be in the range of 0.01 to 0.3% by mass. If the Ti content is less than 0.01% by mass, the effect of stabilizing the fine grain structure cannot be sufficiently obtained. If the Ti content exceeds 0.1% by mass, coarse Ti-based compounds are formed and the high-temperature creep strength is lowered.
  • the lower limit of the Ti content is preferably 0.02% by mass or more, more preferably 0.04% by mass or more.
  • the upper limit of the Ti content is preferably 0.15% by mass or less, more preferably 0.09% by mass or less.
  • the balance of the aluminum alloy material according to the embodiment of the present invention is Al and unavoidable impurities.
  • the unavoidable impurities are impurities derived from the raw materials used in actual operation or unavoidably mixed in when the raw materials are dissolved. Examples of unavoidable impurities include Zn, Mn, Cr, Zr, V and the like. These may be contained alone or in combination of two or more as long as the effects of the present invention are not impaired.
  • the contents of Zn, Mn, Cr, Zr, and V exemplified above are each preferably 0.15% by mass or less, and the aluminum alloy material according to the embodiment of the present invention contains Zn, Mn, Cr, Zr, Even if each V is contained in an amount of 0.15% by mass or less, the effect of the present invention is not affected.
  • the aluminum alloy material according to the embodiment of the present invention preferably has a minimum creep rate of 8.5 ⁇ 10 ⁇ 10 /sec or less at 160° C. and 250 MPa.
  • the minimum creep rate can be determined by a uniaxial tensile high temperature creep rate test according to JIS Z 2271:2010.
  • the test conditions are set to a temperature of 160° C. and a stress of 250 MPa, and after the test temperature is maintained for 1.5 hours or more, the test stress is applied and the test is performed.
  • the creep rate corresponding to the test time and creep elongation "slope" obtained in the high temperature creep rate test can be calculated and the lowest creep rate can be taken as the minimum creep rate. The smaller the minimum creep rate, the better the high temperature creep strength.
  • the method for producing an aluminum alloy material includes: Cu: 1.5 to 6.0% by mass, Mg: 1.0 to 4.0% by mass, Fe: 0.5 to 2.0% by mass, Ni: 0.5 to 2.0% by mass, Si: 0.1 to 3.0% by mass, Mo: 0.05 to 0.7% by mass, Ti: 0.01 to 0.3% by mass, A method for producing an aluminum alloy material, the balance being an alloy composition of Al and unavoidable impurities, A method for producing an aluminum alloy material, in which melt adjustment, casting, homogenization treatment, hot working (plastic working), solution treatment, quenching, and aging treatment of the molten metal having the alloy composition are performed in this order.
  • the method for producing an aluminum alloy according to the present invention that is, the melting adjustment, casting, homogenization treatment, hot working, solution treatment, quenching and aging treatment of the molten metal is performed on an aluminum alloy material made of, for example, AA2618 aluminum alloy. It can be done under common conditions.
  • hot working is forging, but hot working may be forging, extrusion, rolling, rolling, press forming, or the like.
  • melt adjustment of molten metal can be performed at 700 to 900°C.
  • Homogenization can be performed at 450-550°C.
  • the Cu concentration is about 2.7% or more, eutectic melting may occur, so it is desirable to set the temperature of the homogenization treatment low within the above range.
  • Forging can be done at 200-500°C.
  • Solution treatment can be performed at 500-550°C.
  • Quenching can be performed using water or oil at a temperature of 90 to 100° C., but it can also be performed using water at room temperature (about 25° C.) or general heat-treated oil.
  • Aging treatment can be performed at 170 to 220°C.
  • this production method can be performed by T6 treatment or T61 treatment, preferably by T61 treatment.
  • the present manufacturing method can manufacture the aluminum alloy material according to the present embodiment.
  • this manufacturing method is not limited to the general conditions illustrated here.
  • the aluminum alloy material according to the present embodiment is hot-worked to obtain a near-net shape, and then cut to produce rotary parts and linear parts (aluminum alloy parts) such as impellers for engines, compressors, and turbochargers. can be manufactured.
  • the content of the Si and the Mo is Si: 0.1 to 0.6% by mass, Mo: 0.3 to 0.7% by mass, The aluminum alloy material according to [1] or [2], wherein [4] The content of the Si and the Mo is Si: 0.35 to 0.8% by mass, Mo: 0.05 to 0.55% by mass, The aluminum alloy material according to [1] or [2], wherein [5] The aluminum alloy material according to any one of [1] to [4], wherein the aluminum alloy material has a minimum creep rate of 8.5 ⁇ 10 ⁇ 10 /sec or less at 160° C. and 250 MPa.
  • the test was carried out using a single type creep tester, and the creep elongation during the test was also measured by using a dial gauge type extensometer together.
  • a test piece was cut from the square bar and had a round bar shape with a total length of 80 mm, a gauge portion with a flange of ⁇ 6 mm ⁇ length of 30 mm, and a grip portion with an M12 screw shape.
  • the test conditions were a temperature of 160° C. and a stress of 250 MPa, and after holding the test temperature for 1.5 hours or more, the test stress was applied and the test was started.
  • the test time obtained in the creep rate test and the creep rate corresponding to the "slope" of the creep elongation were calculated, and the lowest creep rate was obtained as the minimum creep rate.
  • this pass/fail criterion corresponds to a threshold that means that the life of the material is about 1.7 times longer than that of the conventional material when used under the same conditions.
  • No. 1 corresponding to the embodiment of the present invention.
  • the aluminum alloy materials of Nos. 1 to 4 were excellent in high temperature creep strength.
  • the aluminum alloy materials Nos. 5 to 7 are comparative examples in which the Mo content is out of the range defined by the present invention.
  • No. 1 corresponding to the embodiment of the present invention.
  • the aluminum alloy materials Nos. 8 and 9 were excellent in high-temperature creep strength.
  • No. No. 10 aluminum alloy material is a comparative example in which the Mo content is out of the range defined by the present invention.
  • No. No. 11 aluminum alloy material is a comparative example in which the Si content is out of the range defined by the present invention. No. In the aluminum alloy material No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

The present invention provides an aluminum alloy material having excellent high-temperature creep strength and a method for producing the aluminum alloy material. The present invention relates to: an aluminum alloy material having an alloy composition that includes 1.5-6.0 mass% of Cu, 1.0-4.0 mass% of Mg, 0.5-2.0 mass% of Fe, 0.5-2.0 mass% of Ni, 0.1-3.0 mass% of Si, 0.05-0.7 mass% of Mo, 0.01-0.3 mass% of Ti, and a remainder of Al and unavoidable impurities; and a method for producing the aluminum alloy material.

Description

アルミニウム合金材、及びその製造方法Aluminum alloy material and its manufacturing method
 本発明は、アルミニウム合金材、及びその製造方法に関する。以下、アルミニウムを単にAlとも言う。 The present invention relates to an aluminum alloy material and a manufacturing method thereof. Hereinafter, aluminum is also simply referred to as Al.
 自動車のターボチャージャー用インペラーや産業機械(例えば、ターボ分子ポンプ、真空ポンプ、拡散ポンプ)用ポンプローターなどの100℃を超える高温の使用環境となるAl合金製部品には、高温特性に優れたAl合金材が用いられる。また、自動車や産業機械などの高性能化に伴い耐熱Al合金に求められる耐熱強度も上昇しており、優れた高温クリープ強度が求められている。 Al alloy parts, such as impellers for automotive turbochargers and pump rotors for industrial machinery (e.g., turbomolecular pumps, vacuum pumps, diffusion pumps), which are used in high-temperature environments exceeding 100°C, have excellent high-temperature characteristics. An alloy material is used. In addition, the heat resistance required for heat-resistant Al alloys is also increasing as the performance of automobiles and industrial machines is improved, and excellent high-temperature creep strength is required.
 従来、これらの所謂耐熱性Al合金材には、AA規格乃至JIS規格の2000系(以下、単に2000系と言う)Al合金が用いられている。この種のAl合金としては、2219、2618合金などのAl-Cu(-Mg)系の2000系アルミ合金などがある。しかし、これらの2000系Al合金は、120℃を越える高温では、長時間使用すると強度の低下が著しい。 Conventionally, 2000 series (hereinafter simply referred to as 2000 series) Al alloys of AA to JIS standards have been used for these so-called heat-resistant Al alloy materials. Al alloys of this type include 2000 series aluminum alloys such as 2219 and 2618 alloys, which are Al--Cu(--Mg). However, these 2000-series Al alloys show a significant decrease in strength when used for a long time at a high temperature exceeding 120°C.
 このため、アルミニウム合金の耐熱強度を向上させる従来技術が検討されている。
 例えば、特許文献1は2000系アルミ合金に相当するAl-Cu-Mg系合金にAgに加え、さらにMn、Crを添加して固溶させることによりクリープ強度を向上させる技術である。
 特許文献2はAl-Cu-Mg系合金の晶出物を鋳造時の冷却速度で制御し、優れたクリープ強度を得る技術である。
 特許文献3はZrやTiを添加して晶出した金属間化合物を亜結晶粒界上に微細に分散させてクリープ強度を向上させる技術である。
 特許文献4はAl-Cu系合金の添加元素と結晶粒径を粗大にすることによって高温クリープ強度を向上させた技術である。
 特許文献5は、高温特性(耐熱性、高温疲労強度、高温下での耐クリープ特性および高温耐力)に優れたAl合金を提供する技術であり、Si、Cu、Mn、Mg、Ti、Agを所定量含有すると共に、Zrを所定量未満に規制し、残部がAlおよび不可避的不純物からなるAl合金を開示している。
Therefore, conventional techniques for improving the heat resistance strength of aluminum alloys have been studied.
For example, Patent Document 1 discloses a technique for improving the creep strength by adding Mn and Cr in addition to Ag to an Al--Cu--Mg alloy corresponding to a 2000 series aluminum alloy to form a solid solution.
Patent document 2 is a technique for obtaining excellent creep strength by controlling the crystallized substances of an Al--Cu--Mg alloy by controlling the cooling rate during casting.
Patent document 3 is a technique for improving the creep strength by finely dispersing crystallized intermetallic compounds by adding Zr or Ti on subgrain boundaries.
Patent document 4 is a technique for improving the high-temperature creep strength by adding an additive element to an Al--Cu alloy and increasing the crystal grain size.
Patent document 5 is a technique for providing an Al alloy having excellent high-temperature properties (heat resistance, high-temperature fatigue strength, creep resistance at high temperatures, and high-temperature yield strength), and Si, Cu, Mn, Mg, Ti, and Ag are provided. This document discloses an Al alloy containing a predetermined amount of Zr, regulated to less than a predetermined amount of Zr, and the balance being Al and unavoidable impurities.
日本国特開2013-142168号公報Japanese Patent Application Laid-Open No. 2013-142168 日本国特開2021-134414号公報Japanese Patent Application Laid-Open No. 2021-134414 日本国特開2017-043802号公報Japanese Patent Application Laid-Open No. 2017-043802 日本国特開2020-066785号公報Japanese Patent Application Laid-Open No. 2020-066785 日本国特開2013-014835号公報Japanese Patent Application Laid-Open No. 2013-014835
 従来の2000系アルミ合金の高温クリープ強度を向上させる技術は、多くがAgなどの貴金属を使用するものであり、耐熱強度は上昇するものの合金コストの増加が著しいという問題がある(特許文献2、5)。
 また、FeやNiなどの晶出物を形成する元素の添加量を規定した従来技術では十分なクリープ強度が得られない(特許文献2)。また、ZrやTiなどの酸化傾向の高い遷移金属を添加する技術は、高温強度を向上させるが、大型部品向けの凝固速度の遅い鋳造で作られる場合には効果が十分に発揮されないという問題がある(特許文献5)。
 つまり、Agなどの高級な貴金属を添加元素として用いずに、アルミニウム合金を大型部品に適用した場合であっても、高温におけるクリープ強度を従来のものに比べ大幅に向上させる技術が必要とされている。
Many of the conventional techniques for improving the high temperature creep strength of 2000 series aluminum alloys use noble metals such as Ag, and although the heat resistance increases, there is a problem that the alloy cost increases significantly (Patent Document 2, 5).
In addition, sufficient creep strength cannot be obtained with the conventional technology in which the addition amount of elements such as Fe and Ni that form crystallized substances is specified (Patent Document 2). In addition, the technique of adding transition metals with a high tendency to oxidize, such as Zr and Ti, improves high-temperature strength, but there is a problem that the effect is not sufficiently exhibited when casting large parts with a slow solidification rate. There is (Patent Document 5).
In other words, there is a need for a technology that significantly improves the creep strength at high temperatures compared to conventional products, even when aluminum alloys are applied to large parts without using high-grade precious metals such as Ag as additive elements. there is
 そこで本発明は、優れた高温クリープ強度を備えたアルミニウム合金材、及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an aluminum alloy material having excellent high-temperature creep strength, and a method for producing the same.
 本発明者らは、例えば2618合金に代表されるAl-Cu-Mg組成からなるアルミニウム合金材に優れた高温クリープ強度を付与するため鋭意研究開発した結果、SiとMoを添加することによって前記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
〔1〕
 Cu:1.5~6.0質量%、
 Mg:1.0~4.0質量%、
 Fe:0.5~2.0質量%、
 Ni:0.5~2.0質量%、
 Si:0.1~3.0質量%、
 Mo:0.05~0.7質量%、
 Ti:0.01~0.3質量%、
を含み、残部がAl及び不可避的不純物の合金組成からなる、アルミニウム合金材。
〔2〕
 Cu:1.9~3.0質量%、
 Mg:1.3~3.0質量%、
 Fe:0.9~1.3質量%、
 Ni:0.9~1.3質量%、
 Si:0.25~0.8質量%、
 Mo:0.05~0.5質量%、
 Ti:0.04~0.09質量%、
を含み、残部がAl及び不可避的不純物の合金組成からなる、アルミニウム合金材。
〔3〕
 前記Si及び前記Moの含有量が、
 Si:0.1~0.6質量%、
 Mo:0.3~0.7質量%、
である、〔1〕又は〔2〕に記載のアルミニウム合金材。
〔4〕
 前記Si及び前記Moの含有量が、
 Si:0.35~0.8質量%、
 Mo:0.05~0.55質量%、
である、〔1〕又は〔2〕に記載のアルミニウム合金材。
〔5〕
 前記アルミニウム合金材は、160℃、250MPaにおける最小クリープ速度が8.5×10-10/sec以下である、〔1〕又は〔2〕に記載のアルミニウム合金材。
〔6〕
 〔1〕又は〔2〕に記載の合金組成からなるアルミニウム合金材の製造方法であって、前記合金組成からなる溶湯の溶解調整、鋳造、均質化処理、熱間加工、溶体化処理、焼入れ、時効処理をこの順に行うアルミニウム合金材の製造方法。
The present inventors have conducted intensive research and development in order to impart excellent high-temperature creep strength to an aluminum alloy material having an Al--Cu--Mg composition represented by, for example, 2618 alloy. can be solved, and the present invention has been completed.
That is, the present invention is as follows.
[1]
Cu: 1.5 to 6.0% by mass,
Mg: 1.0 to 4.0% by mass,
Fe: 0.5 to 2.0% by mass,
Ni: 0.5 to 2.0% by mass,
Si: 0.1 to 3.0% by mass,
Mo: 0.05 to 0.7% by mass,
Ti: 0.01 to 0.3% by mass,
and the balance being an alloy composition of Al and unavoidable impurities.
[2]
Cu: 1.9 to 3.0% by mass,
Mg: 1.3 to 3.0% by mass,
Fe: 0.9 to 1.3% by mass,
Ni: 0.9 to 1.3% by mass,
Si: 0.25 to 0.8% by mass,
Mo: 0.05 to 0.5% by mass,
Ti: 0.04 to 0.09% by mass,
and the balance being an alloy composition of Al and unavoidable impurities.
[3]
The content of the Si and the Mo is
Si: 0.1 to 0.6% by mass,
Mo: 0.3 to 0.7% by mass,
The aluminum alloy material according to [1] or [2], wherein
[4]
The content of the Si and the Mo is
Si: 0.35 to 0.8% by mass,
Mo: 0.05 to 0.55% by mass,
The aluminum alloy material according to [1] or [2], wherein
[5]
The aluminum alloy material according to [1] or [2], wherein the aluminum alloy material has a minimum creep rate of 8.5×10 −10 /sec or less at 160° C. and 250 MPa.
[6]
A method for producing an aluminum alloy material having the alloy composition according to [1] or [2], comprising the steps of: melting adjustment of the molten metal having the alloy composition; casting; A method for producing an aluminum alloy material in which aging treatments are performed in this order.
 本発明によれば、優れた高温クリープ強度を備えたアルミニウム合金材を提供できる。
 また、本発明に係るアルミニウム合金材の製造方法によって、優れた高温クリープ強度を備えたアルミニウム合金材を製造できる。
According to the present invention, an aluminum alloy material having excellent high-temperature creep strength can be provided.
Also, by the method for producing an aluminum alloy material according to the present invention, an aluminum alloy material having excellent high-temperature creep strength can be produced.
 以下、本発明の実施形態に係るアルミニウム合金材を実施するための形態について、詳細に説明する。なお、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。  Hereinafter, the form for carrying out the aluminum alloy material according to the embodiment of the present invention will be described in detail. In addition, "-" indicating a numerical range is used in the sense that the numerical values described before and after it are included as a lower limit and an upper limit.
<アルミニウム合金材>
 本実施形態に係るアルミニウム合金材は、アルミニウム合金として所定の合金組成を備えており、優れた高温クリープ強度を備えたアルミニウム合金材(アルミニウム合金部品)を製造するために用いられる。
 本発明の第一の実施形態に係るアルミニウム合金材は、
 Cu:1.5~6.0質量%、
 Mg:1.0~4.0質量%、
 Fe:0.5~2.0質量%、
 Ni:0.5~2.0質量%、
 Si:0.1~3.0質量%、
 Mo:0.05~0.7質量%、
 Ti:0.01~0.3質量%、
を含み、残部がAl及び不可避的不純物の合金組成からなる。
<Aluminum alloy material>
The aluminum alloy material according to the present embodiment has a predetermined alloy composition as an aluminum alloy, and is used to manufacture an aluminum alloy material (aluminum alloy part) having excellent high-temperature creep strength.
The aluminum alloy material according to the first embodiment of the present invention is
Cu: 1.5 to 6.0% by mass,
Mg: 1.0 to 4.0% by mass,
Fe: 0.5 to 2.0% by mass,
Ni: 0.5 to 2.0% by mass,
Si: 0.1 to 3.0% by mass,
Mo: 0.05 to 0.7% by mass,
Ti: 0.01 to 0.3% by mass,
and the balance consists of an alloy composition of Al and unavoidable impurities.
 また、本発明の第二の実施形態に係るアルミニウム合金材は、
 Cu:1.9~3.0質量%、
 Mg:1.3~3.0質量%、
 Fe:0.9~1.3質量%、
 Ni:0.9~1.3質量%、
 Si:0.25~0.8質量%、
 Mo:0.05~0.5質量%、
 Ti:0.04~0.09質量%、
を含み、残部がAl及び不可避的不純物の合金組成からなる。
Further, the aluminum alloy material according to the second embodiment of the present invention is
Cu: 1.9 to 3.0% by mass,
Mg: 1.3 to 3.0% by mass,
Fe: 0.9 to 1.3% by mass,
Ni: 0.9 to 1.3% by mass,
Si: 0.25 to 0.8% by mass,
Mo: 0.05 to 0.5% by mass,
Ti: 0.04 to 0.09% by mass,
and the balance consists of an alloy composition of Al and unavoidable impurities.
 本発明の第三の実施形態に係るアルミニウム合金材は、上記第一の実施形態又は第二の実施形態に係るアルミニウム合金材におけるSi及び上記Moの含有量が、
 Si:0.1~0.6質量%、
 Mo:0.3~0.7質量%、
であることが好ましい。
In the aluminum alloy material according to the third embodiment of the present invention, the content of Si and Mo in the aluminum alloy material according to the first embodiment or the second embodiment is
Si: 0.1 to 0.6% by mass,
Mo: 0.3 to 0.7% by mass,
is preferred.
 また、本発明の第四の実施形態に係るアルミニウム合金材は、上記第一の実施形態又は第二の実施形態に係るアルミニウム合金材におけるSi及び上記Moの含有量が、
 Si:0.35~0.8質量%、
 Mo:0.05~0.55質量%、
であることが好ましい。
Further, in the aluminum alloy material according to the fourth embodiment of the present invention, the content of Si and Mo in the aluminum alloy material according to the first embodiment or the second embodiment is
Si: 0.35 to 0.8% by mass,
Mo: 0.05 to 0.55% by mass,
is preferred.
 本発明の実施形態に係るアルミニウム合金材の合金組成は、AA2618アルミニウム合金に代表されるAl-Cu-Mg組成に、SiとMoを添加することによって上記の範囲としてもよい。
 本発明の実施形態に係るアルミニウム合金材は、SiとMoを特定量含むことによって、σ相(AlCuMg)という新たな析出相が導入でき、高温でのクリープ強度を大きく向上できることを見出したものである。
The alloy composition of the aluminum alloy material according to the embodiment of the present invention may be made within the above range by adding Si and Mo to the Al--Cu--Mg composition represented by the AA2618 aluminum alloy.
The aluminum alloy material according to the embodiment of the present invention can introduce a new precipitation phase called σ phase (Al 5 Cu 6 Mg 2 ) by containing specific amounts of Si and Mo, and can greatly improve creep strength at high temperatures. This is what I found.
〔合金組成〕
 以下、前記合金組成について説明する。
[Alloy composition]
The alloy composition will be described below.
(Cu:1.5~6質量%)
 Cuは、本発明の実施形態に係るアルミニウム合金材が高温クリープ強度を発現するために必須な元素の1つである。
 Cuは、Mgと共に添加することで、アルミニウム合金材を製造する際の溶体化後の時効中にS相(AlCuMg)からなる微細析出物を形成し、S相の析出強化によって高温クリープ強度を向上させる。
 かかる効果を得る観点から、Cu含有量は1.5~6.0質量%の範囲とする。Cu含有量が1.5質量%未満の場合には、高温クリープ強度向上の効果が十分に得られない。Cu含有量が6.0質量%を超える場合には、鋳造段階でAl-Cu系の粗大晶出物を形成し、溶体化に多大な時間を要してしまう。Cu含有量の下限値は、好ましくは1.9質量%以上、より好ましくは2.2質量%以上である。また、Cu含有量の上限値は、好ましくは4.5質量%以下、より好ましくは3.0質量%以下である。
(Cu: 1.5 to 6% by mass)
Cu is one of the essential elements for the aluminum alloy material according to the embodiment of the present invention to exhibit high-temperature creep strength.
By adding Cu together with Mg, Cu forms fine precipitates composed of the S phase (Al CuMg ) during aging after solution treatment in the production of aluminum alloy materials. improve.
From the viewpoint of obtaining such effects, the Cu content is set in the range of 1.5 to 6.0% by mass. If the Cu content is less than 1.5% by mass, the effect of improving the high-temperature creep strength cannot be sufficiently obtained. If the Cu content exceeds 6.0% by mass, Al—Cu-based coarse crystallized substances are formed in the casting stage, and solution treatment takes a long time. The lower limit of the Cu content is preferably 1.9% by mass or more, more preferably 2.2% by mass or more. Also, the upper limit of the Cu content is preferably 4.5% by mass or less, more preferably 3.0% by mass or less.
(Mg:1.0~4.0質量%)
 Mgは、本発明の実施形態に係るアルミニウム合金材における高温クリープ強度を発現するために必須な元素の1つである。
 Mgは、Cuと共に添加することで、アルミニウム合金材を製造する際の溶体化後の時効中にS相(AlCuMg)からなる微細析出物を形成して、高温クリープ強度を向上させる。
 かかる効果を得る観点から、Mg含有量は1.0~4.0質量%の範囲とする。Mg含有量が1.0質量%未満の場合には、高温クリープ強度向上の効果が十分に得られない。Mg含有量が4.0質量%を超える場合には、粗大なMgSiが増加して靭性が低下する。Mg含有量の下限値は、好ましくは1.2質量%以上、より好ましくは1.3質量%以上である。また、Mg含有量の上限値は、好ましくは3.5質量%以下、より好ましくは3.0質量%以下である。
(Mg: 1.0 to 4.0% by mass)
Mg is one of the essential elements for developing high-temperature creep strength in the aluminum alloy material according to the embodiment of the present invention.
Mg, when added together with Cu, forms fine precipitates of S phase (Al 2 CuMg) during aging after solution treatment in the production of aluminum alloy materials, improving high-temperature creep strength.
From the viewpoint of obtaining such effects, the Mg content is set in the range of 1.0 to 4.0% by mass. If the Mg content is less than 1.0% by mass, the effect of improving the high-temperature creep strength cannot be sufficiently obtained. If the Mg content exceeds 4.0% by mass, coarse Mg 2 Si increases and the toughness decreases. The lower limit of the Mg content is preferably 1.2% by mass or more, more preferably 1.3% by mass or more. Also, the upper limit of the Mg content is preferably 3.5% by mass or less, more preferably 3.0% by mass or less.
(Fe:0.5~2.0質量%)
 Feは、Niと共にAlFeNiなどのAl-Fe-Ni系化合物を形成し、結晶粒径の過度な粗大化を抑制する作用と、結晶粒界近傍での変形を抑制して高温クリープ強度をやや高める作用がある。
 かかる効果を得る観点から、Fe含有量は、0.5~2.0質量%の範囲とする。Fe含有量が0.5質量%未満の場合には、結晶粒径の粗大化を抑制する効果を十分に得ることができない。Fe含有量が2.0質量%を超える場合には、晶出物が過度に増加して、延性や靭性などの強度以外の特性を損なってしまう。なお、Fe含有量の下限値は、好ましくは0.7質量%以上であり、より好ましくは0.9質量%以上である。また、Fe含有量の上限値は、好ましくは1.6質量%以下、より好ましくは1.3質量%以下である。
(Fe: 0.5 to 2.0% by mass)
Fe forms an Al-Fe-Ni compound such as Al 9 FeNi together with Ni to suppress excessive coarsening of the crystal grain size, and to suppress deformation in the vicinity of the grain boundary to increase the high-temperature creep strength. It has a slightly enhancing effect.
From the viewpoint of obtaining such effects, the Fe content is set in the range of 0.5 to 2.0% by mass. If the Fe content is less than 0.5% by mass, the effect of suppressing coarsening of grain size cannot be sufficiently obtained. If the Fe content exceeds 2.0% by mass, crystallized substances excessively increase, and properties other than strength such as ductility and toughness are impaired. In addition, the lower limit of the Fe content is preferably 0.7% by mass or more, and more preferably 0.9% by mass or more. Also, the upper limit of the Fe content is preferably 1.6% by mass or less, more preferably 1.3% by mass or less.
(Ni:0.5~2.0質量%)
 Niは、Feと共にAlFeNiなどのAl-Fe-Ni系化合物を形成し、結晶粒径の過度な粗大化を抑制する作用と、結晶粒界近傍での変形を抑制して高温クリープ強度をやや高める作用がある。
 Ni含有量は、0.5~2.0質量%の範囲とする。Ni含有量が0.5質量%未満の場合には、前記効果を十分に得ることができない。Ni含有量が2.0質量%を超える場合には、晶出物が過度に増加して、延性や靭性などの強度以外の特性を損なってしまう。なお、Ni含有量の下限値は、好ましくは0.7質量%以上であり、より好ましくは0.9質量%以上である。また、Ni含有量の上限値は、好ましくは1.6質量%以下、より好ましくは1.3質量%以下である。
(Ni: 0.5 to 2.0% by mass)
Ni forms an Al-Fe-Ni-based compound such as Al 9 FeNi together with Fe, and has the effect of suppressing excessive coarsening of the crystal grain size and suppressing deformation in the vicinity of the crystal grain boundary to increase high-temperature creep strength. It has a slightly enhancing effect.
The Ni content is in the range of 0.5-2.0% by mass. If the Ni content is less than 0.5% by mass, the above effects cannot be sufficiently obtained. When the Ni content exceeds 2.0% by mass, crystallized substances excessively increase, and properties other than strength such as ductility and toughness are impaired. The lower limit of the Ni content is preferably 0.7% by mass or more, more preferably 0.9% by mass or more. Also, the upper limit of the Ni content is preferably 1.6% by mass or less, more preferably 1.3% by mass or less.
(Si:0.1~3.0質量%)
 Siは、本発明の実施形態に係るアルミニウム合金材の高温クリープ強度を、従来のAl-Cu-Mg系アルミニウム合金の高温クリープ強度よりも向上させるために必須となる重要な元素の1つである。
 Siは、時効初期にクラスターを形成し、クラスターの周囲に形成される圧縮応力を駆動力としてCuを引き寄せ、σ相(AlCuMg)の核生成を促進させる作用がある。
 本発明者らの検討により、本発明の実施形態に係るアルミニウム合金材は、Siを特定量含有することにより、Si単独の作用によって高温クリープ強度の向上作用を得ることができるが、SiとMoとを共に特定量含有することで、σ相の形成量を増加させ、高温クリープ強度を更に向上し得ることを見出した。
 Si含有量は、0.1~3.0質量%の範囲とする。Si含有量が0.1質量%未満の場合には、σ相が十分に安定化されず、σ相析出の効果は十分に得られない。Si含有量が3.0質量%を超える場合には、極めて脆いダイヤモンド構造のSi相が形成されてしまい、延性・靭性を損なう問題が生じる。なお、Si含有量の下限値は、好ましくは、0.25質量%以上、0.3質量%以上、0.35質量%以上、0.4質量%以上である。また、Si含有量の上限値は、好ましくは1.5質量%以下であり、さらに好ましくは0.8質量%以下、より好ましくは0.75質量%以下、よりさらに好ましくは0.6質量%以下である。
(Si: 0.1 to 3.0% by mass)
Si is one of the important elements essential for improving the high-temperature creep strength of the aluminum alloy material according to the embodiment of the present invention over the high-temperature creep strength of conventional Al-Cu-Mg-based aluminum alloys. .
Si forms clusters at the initial stage of aging, attracts Cu with compressive stress formed around the clusters as a driving force, and has the effect of promoting the nucleation of the σ phase (Al 5 Cu 6 Mg 2 ).
According to the study of the present inventors, the aluminum alloy material according to the embodiment of the present invention can obtain the effect of improving the high-temperature creep strength by the action of Si alone by containing a specific amount of Si, but Si and Mo It was found that the amount of the σ phase formed can be increased and the high-temperature creep strength can be further improved by containing both and in specific amounts.
The Si content should be in the range of 0.1 to 3.0% by mass. If the Si content is less than 0.1% by mass, the σ phase is not sufficiently stabilized, and the effect of σ phase precipitation cannot be obtained sufficiently. If the Si content exceeds 3.0% by mass, a very brittle diamond-structured Si phase is formed, which impairs ductility and toughness. In addition, the lower limit of the Si content is preferably 0.25% by mass or more, 0.3% by mass or more, 0.35% by mass or more, and 0.4% by mass or more. In addition, the upper limit of the Si content is preferably 1.5% by mass or less, more preferably 0.8% by mass or less, more preferably 0.75% by mass or less, and even more preferably 0.6% by mass. It is below.
(Mo:0.05~0.7質量%)
 Moは、本発明の実施形態に係るアルミニウム合金材の高温クリープ強度を、従来のAl-Cu-Mg系アルミニウム合金の高温クリープ強度よりも向上させるために必須となる重要な元素である。
 Moは極めて拡散係数の遅い元素であり、且つ、Siとの親和性が高い(化合物やクラスターを作りやすい)元素である。このため、安定して固溶状態にあるMoは、Siクラスターの形成を促進させ、σ相の形成量を増加させることで、Si添加によって得られるσ相の析出強化作用を最大化し、高温クリープ強度を大きく向上させる。
 Mo含有量は0.05~0.7質量%とする。Mo含有量が0.05質量%未満の場合には、σ相が十分に形成されず、σ相析出の効果は十分に得られない。Mo含有量が0.7質量%を超える場合には、粗大なAl-Mo-Mg系の晶出物が増加するため、高温クリープ強度を低下させる問題が生じる。なお、Mo含有量の下限値は、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、より好ましくは0.15質量%以上、更に好ましくは0.2質量%以上である。Mo含有量の下限値は、0.3質量%以上であってもよい。また、Mo含有量の上限値は、好ましくは、0.6質量%以下、0.55質量%以下、0.5質量%以下、0.4質量%以下である。
(Mo: 0.05 to 0.7% by mass)
Mo is an essential and important element for improving the high-temperature creep strength of the aluminum alloy material according to the embodiment of the present invention over the high-temperature creep strength of conventional Al--Cu--Mg-based aluminum alloys.
Mo is an element with an extremely slow diffusion coefficient and has a high affinity with Si (easily forms compounds and clusters). Therefore, Mo, which is stably in a solid solution state, promotes the formation of Si clusters and increases the amount of σ phase formation, thereby maximizing the precipitation strengthening effect of the σ phase obtained by adding Si, and high-temperature creep Greatly improves strength.
Mo content is 0.05 to 0.7% by mass. If the Mo content is less than 0.05% by mass, the σ phase is not sufficiently formed, and the effect of σ phase precipitation cannot be sufficiently obtained. If the Mo content exceeds 0.7% by mass, coarse Al--Mo--Mg-based crystallized substances increase, resulting in a problem of reduced high-temperature creep strength. The lower limit of the Mo content is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, more preferably 0.15% by mass or more, and still more preferably 0.2% by mass or more. . 0.3 mass % or more may be sufficient as the lower limit of Mo content. Moreover, the upper limit of the Mo content is preferably 0.6% by mass or less, 0.55% by mass or less, 0.5% by mass or less, and 0.4% by mass or less.
 本発明の他の実施形態に係るアルミニウム合金材は、Si含有量が0.1~0.6質量%であって、Mo含有量が0.3~0.7質量%であることが好ましい。
 また、本発明のさらに他の実施形態に係るアルミニウム合金材は、Si含有量が0.35~0.8質量%であって、Mo含有量が0.05~0.55質量%、であることが好ましい。
 Si含有量及びMo含有量を上記の範囲とすることにより、高温クリープ強度向上の効果がより得やすくなる。
The aluminum alloy material according to another embodiment of the present invention preferably has a Si content of 0.1 to 0.6% by mass and a Mo content of 0.3 to 0.7% by mass.
Further, the aluminum alloy material according to still another embodiment of the present invention has a Si content of 0.35 to 0.8% by mass and a Mo content of 0.05 to 0.55% by mass. is preferred.
By setting the Si content and the Mo content within the above ranges, it becomes easier to obtain the effect of improving the high-temperature creep strength.
(Ti:0.01~0.3質量%)
 Tiは結晶粒の微細化に有効な元素である。
 Ti含有量は0.01~0.3質量%の範囲とする。Ti含有量が0.01質量%未満の場合には、微細結晶粒組織を安定させる効果が十分に得られない。Ti含有量が0.1質量%を超える場合には、粗大なTi系化合物などが形成され、高温クリープ強度が低下する。Ti含有量の下限値は、好ましくは0.02質量%以上であり、より好ましくは0.04質量%以上である。Ti含有量の上限値は、好ましくは0.15質量%以下であり、より好ましくは0.09質量%以下である。
(Ti: 0.01 to 0.3% by mass)
Ti is an element effective for refining crystal grains.
The Ti content should be in the range of 0.01 to 0.3% by mass. If the Ti content is less than 0.01% by mass, the effect of stabilizing the fine grain structure cannot be sufficiently obtained. If the Ti content exceeds 0.1% by mass, coarse Ti-based compounds are formed and the high-temperature creep strength is lowered. The lower limit of the Ti content is preferably 0.02% by mass or more, more preferably 0.04% by mass or more. The upper limit of the Ti content is preferably 0.15% by mass or less, more preferably 0.09% by mass or less.
(残部:Al及び不可避的不純物)
 本発明の実施形態に係るアルミニウム合金材の残部は、Al及び不可避的不純物である。不可避的不純物は、実操業上、使用する原料等に由来したり、原料の溶解時に不可避的に混入する不純物である。不可避的不純物としては、例えば、Zn、Mn、Cr、Zr、V等が挙げられる。
 これらは、本発明の効果を妨げない範囲で1種又は2種以上含有されていてもよい。上記に例示したZn、Mn、Cr、Zr、Vの含有量は、それぞれ0.15質量%以下であることが好ましく、本発明の実施形態に係るアルミニウム合金材がZn、Mn、Cr、Zr、Vをそれぞれ0.15質量%以下含有していても本発明の効果に影響は生じない。
(Remainder: Al and unavoidable impurities)
The balance of the aluminum alloy material according to the embodiment of the present invention is Al and unavoidable impurities. The unavoidable impurities are impurities derived from the raw materials used in actual operation or unavoidably mixed in when the raw materials are dissolved. Examples of unavoidable impurities include Zn, Mn, Cr, Zr, V and the like.
These may be contained alone or in combination of two or more as long as the effects of the present invention are not impaired. The contents of Zn, Mn, Cr, Zr, and V exemplified above are each preferably 0.15% by mass or less, and the aluminum alloy material according to the embodiment of the present invention contains Zn, Mn, Cr, Zr, Even if each V is contained in an amount of 0.15% by mass or less, the effect of the present invention is not affected.
〔最小クリープ速度〕
 本発明の実施形態に係るアルミニウム合金材は、160℃、250MPaにおける最小クリープ速度が8.5×10-10/sec以下であることが好ましい。
[Minimum creep speed]
The aluminum alloy material according to the embodiment of the present invention preferably has a minimum creep rate of 8.5×10 −10 /sec or less at 160° C. and 250 MPa.
 最小クリープ速度は、JIS Z 2271:2010に準じて1軸引張の高温クリープレート試験により求めることができる。高温クリープレート試験は、試験条件を温度が160℃、応力が250MPaとし、試験温度に1.5時間以上保持した後、試験応力を負荷して試験を行う。
 高温クリープレート試験で得られた試験時間とクリープ伸びの「傾き」に相当するクリープ速度を算出して、最も小さなクリープ速度を最小クリープ速度とすることができる。最小クリープ速度は値が小さいものほど優れた高温クリープ強度を意味している。
The minimum creep rate can be determined by a uniaxial tensile high temperature creep rate test according to JIS Z 2271:2010. In the high-temperature creep rate test, the test conditions are set to a temperature of 160° C. and a stress of 250 MPa, and after the test temperature is maintained for 1.5 hours or more, the test stress is applied and the test is performed.
The creep rate corresponding to the test time and creep elongation "slope" obtained in the high temperature creep rate test can be calculated and the lowest creep rate can be taken as the minimum creep rate. The smaller the minimum creep rate, the better the high temperature creep strength.
 以上に説明したように、本発明の実施形態に係るアルミニウム合金材は、所定の合金組成としたことにより、優れた高温クリープ強度を得ることができる。 As described above, the aluminum alloy material according to the embodiment of the present invention can obtain excellent high-temperature creep strength by using a predetermined alloy composition.
<アルミニウム合金材の製造方法>
 次に、本発明の実施形態に係るアルミニウム合金材の製造方法の一実施形態について説明する。なお、以下の製造方法に関する説明において、既に説明した事項については詳細な説明を省略する。
 本実施形態に係るアルミニウム合金材の製造方法は、前記した合金組成からなるアルミニウム合金材の製造方法であって、前記合金組成からなる溶湯の溶解調整、鋳造、均質化処理、熱間加工、溶体化処理、焼入れ、時効処理をこの順に行う。
 すなわち、本実施形態に係るアルミニウム合金材の製造方法は、
 Cu:1.5~6.0質量%、
 Mg:1.0~4.0質量%、
 Fe:0.5~2.0質量%、
 Ni:0.5~2.0質量%、
 Si:0.1~3.0質量%、
 Mo:0.05~0.7質量%、
 Ti:0.01~0.3質量%、
を含み、残部がAl及び不可避的不純物の合金組成からなるアルミニウム合金材の製造方法であって、
 前記合金組成からなる溶湯の溶解調整、鋳造、均質化処理、熱間加工(塑性加工)、溶体化処理、焼入れ、時効処理をこの順に行う、アルミニウム合金材の製造方法である。
<Method for producing aluminum alloy material>
Next, an embodiment of a method for manufacturing an aluminum alloy material according to an embodiment of the present invention will be described. In addition, in the following description of the manufacturing method, detailed description of the matters that have already been described will be omitted.
The method for producing an aluminum alloy material according to the present embodiment is a method for producing an aluminum alloy material having the alloy composition described above, and includes melting and adjustment of molten metal having the alloy composition, casting, homogenization treatment, hot working, solution Hardening treatment, quenching treatment, and aging treatment are performed in this order.
That is, the method for producing an aluminum alloy material according to this embodiment includes:
Cu: 1.5 to 6.0% by mass,
Mg: 1.0 to 4.0% by mass,
Fe: 0.5 to 2.0% by mass,
Ni: 0.5 to 2.0% by mass,
Si: 0.1 to 3.0% by mass,
Mo: 0.05 to 0.7% by mass,
Ti: 0.01 to 0.3% by mass,
A method for producing an aluminum alloy material, the balance being an alloy composition of Al and unavoidable impurities,
A method for producing an aluminum alloy material, in which melt adjustment, casting, homogenization treatment, hot working (plastic working), solution treatment, quenching, and aging treatment of the molten metal having the alloy composition are performed in this order.
 本発明に係るアルミニウム合金の製造方法、つまり、上記溶湯の溶解調整、鋳造、均質化処理、熱間加工、溶体化処理、焼入れ及び時効処理は、例えば、AA2618アルミニウム合金からなるアルミニウム合金材に対して行われている一般的な条件で行うことができる。
 また、以下では、熱間加工として鍛造の場合を例に説明するが、熱間加工としては、鍛造、押出し、圧延、転造、プレス成形等のいずれでもよい。
 例えば、溶湯の溶解調整は、700~900℃で行える。
 均質化処理は450~550℃で行える。ただし、Cu濃度が概ね2.7%以上の場合は共晶融解を生ずるおそれあるため、均質化処理の温度は前記範囲の中で低く設定することが望ましい。
 鍛造は200~500℃で行える。溶体化処理は500~550℃で行える。
 焼入れは温度90~100℃の水又は油を用いて行うことができるが、常温(25℃程度)の水又は一般熱処理油で行うこともできる。
 時効処理は170~220℃で行える。
The method for producing an aluminum alloy according to the present invention, that is, the melting adjustment, casting, homogenization treatment, hot working, solution treatment, quenching and aging treatment of the molten metal is performed on an aluminum alloy material made of, for example, AA2618 aluminum alloy. It can be done under common conditions.
In the following description, hot working is forging, but hot working may be forging, extrusion, rolling, rolling, press forming, or the like.
For example, melt adjustment of molten metal can be performed at 700 to 900°C.
Homogenization can be performed at 450-550°C. However, when the Cu concentration is about 2.7% or more, eutectic melting may occur, so it is desirable to set the temperature of the homogenization treatment low within the above range.
Forging can be done at 200-500°C. Solution treatment can be performed at 500-550°C.
Quenching can be performed using water or oil at a temperature of 90 to 100° C., but it can also be performed using water at room temperature (about 25° C.) or general heat-treated oil.
Aging treatment can be performed at 170 to 220°C.
 つまり、本製造方法は、T6処理又はT61処理で行えるが、好ましくはT61処理で行う。本製造方法はこのような製造条件とすることにより、本実施形態に係るアルミニウム合金材を製造できる。なお、本製造方法はここで例示した一般的な条件に限定されない。 In other words, this production method can be performed by T6 treatment or T61 treatment, preferably by T61 treatment. Under such manufacturing conditions, the present manufacturing method can manufacture the aluminum alloy material according to the present embodiment. In addition, this manufacturing method is not limited to the general conditions illustrated here.
 本実施形態に係るアルミニウム合金材の製造方法は、以上説明したとおりであるが、上記各工程において、明示していない条件については、従来公知の条件を用いればよく、各工程での処理によって得られる効果を奏する限りにおいて、その条件を適宜変更できる。 The method for producing an aluminum alloy material according to the present embodiment is as described above, but in each of the above steps, for conditions not specified, conventionally known conditions may be used. The conditions can be changed as appropriate as long as the desired effect is exhibited.
[アルミニウム合金部品]
 本実施形態に係るアルミニウム合金材は、熱間加工してニアネット形状を得た後、切削加工することにより、エンジン、コンプレッサー、ターボチャージャー用インペラーなどの回転部品や直動部品(アルミニウム合金部品)を製造することができる。
[Aluminum alloy parts]
The aluminum alloy material according to the present embodiment is hot-worked to obtain a near-net shape, and then cut to produce rotary parts and linear parts (aluminum alloy parts) such as impellers for engines, compressors, and turbochargers. can be manufactured.
 以上説明したように、本明細書には次の事項が開示されている。 As explained above, the following matters are disclosed in this specification.
〔1〕
 Cu:1.5~6.0質量%、
 Mg:1.0~4.0質量%、
 Fe:0.5~2.0質量%、
 Ni:0.5~2.0質量%、
 Si:0.1~3.0質量%、
 Mo:0.05~0.7質量%、
 Ti:0.01~0.3質量%、
を含み、残部がAl及び不可避的不純物の合金組成からなる、アルミニウム合金材。
〔2〕
 Cu:1.9~3.0質量%、
 Mg:1.3~3.0質量%、
 Fe:0.9~1.3質量%、
 Ni:0.9~1.3質量%、
 Si:0.25~0.8質量%、
 Mo:0.05~0.5質量%、
 Ti:0.04~0.09質量%、
を含み、残部がAl及び不可避的不純物の合金組成からなる、アルミニウム合金材。
〔3〕
 前記Si及び前記Moの含有量が、
 Si:0.1~0.6質量%、
 Mo:0.3~0.7質量%、
である、〔1〕又は〔2〕に記載のアルミニウム合金材。
〔4〕
 前記Si及び前記Moの含有量が、
 Si:0.35~0.8質量%、
 Mo:0.05~0.55質量%、
である、〔1〕又は〔2〕に記載のアルミニウム合金材。
〔5〕
 前記アルミニウム合金材は、160℃、250MPaにおける最小クリープ速度が8.5×10-10/sec以下である、〔1〕~〔4〕のいずれかに記載のアルミニウム合金材。
〔6〕
 〔1〕~〔5〕のいずれかに記載の合金組成からなるアルミニウム合金材の製造方法であって、前記合金組成からなる溶湯の溶解調整、鋳造、均質化処理、熱間加工、溶体化処理、焼入れ、時効処理をこの順に行うアルミニウム合金材の製造方法。
[1]
Cu: 1.5 to 6.0% by mass,
Mg: 1.0 to 4.0% by mass,
Fe: 0.5 to 2.0% by mass,
Ni: 0.5 to 2.0% by mass,
Si: 0.1 to 3.0% by mass,
Mo: 0.05 to 0.7% by mass,
Ti: 0.01 to 0.3% by mass,
and the balance being an alloy composition of Al and unavoidable impurities.
[2]
Cu: 1.9 to 3.0% by mass,
Mg: 1.3 to 3.0% by mass,
Fe: 0.9 to 1.3% by mass,
Ni: 0.9 to 1.3% by mass,
Si: 0.25 to 0.8% by mass,
Mo: 0.05 to 0.5% by mass,
Ti: 0.04 to 0.09% by mass,
and the balance being an alloy composition of Al and unavoidable impurities.
[3]
The content of the Si and the Mo is
Si: 0.1 to 0.6% by mass,
Mo: 0.3 to 0.7% by mass,
The aluminum alloy material according to [1] or [2], wherein
[4]
The content of the Si and the Mo is
Si: 0.35 to 0.8% by mass,
Mo: 0.05 to 0.55% by mass,
The aluminum alloy material according to [1] or [2], wherein
[5]
The aluminum alloy material according to any one of [1] to [4], wherein the aluminum alloy material has a minimum creep rate of 8.5×10 −10 /sec or less at 160° C. and 250 MPa.
[6]
A method for producing an aluminum alloy material having the alloy composition according to any one of [1] to [5], comprising melting adjustment, casting, homogenization treatment, hot working, and solution treatment of molten metal having the alloy composition. , quenching, and aging treatment in this order.
 以下に、実施例、比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、その趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples, and can be modified within the scope of the gist of the invention. It is also possible to implement it, and all of them are included in the technical scope of the present invention.
(実施例及び比較例)
 アルミニウム合金からなる溶湯を寸法170mm×110mm×28mmの鋳型に流し込み鋳造する「造塊法」により、表1及び表2の組成(残部:Alおよび不可避的不純物)からなる質量約1.6kgの小型鋳塊を作製した。
 各元素の濃度はプラズマ発光分光分析法を用いて分析した。
 鋳塊は、均質化処理として500℃に12時間保持した後、そのままリヒート1回を含むハンマー鍛造によって寸法40mm×40mmの角材に成形し、T61処理として530℃×6時間保持後の90℃浸漬水冷、200℃×22時間の時効処理からの自然冷却を経てNo.1~11のアルミニウム合金材を作製し供試材とした。
(Examples and Comparative Examples)
By the "ingot casting method" in which molten metal made of an aluminum alloy is poured into a mold with dimensions of 170 mm × 110 mm × 28 mm and cast, a small size of about 1.6 kg in mass with the composition shown in Tables 1 and 2 (the balance: Al and unavoidable impurities) An ingot was produced.
The concentration of each element was analyzed using plasma emission spectroscopy.
After holding the ingot at 500°C for 12 hours as a homogenization treatment, it is formed into a rectangular bar with a size of 40 mm x 40 mm by hammer forging including one reheat, and is immersed in 90°C after being held at 530°C for 6 hours as a T61 treatment. After natural cooling from water cooling and aging treatment at 200°C for 22 hours, No. Aluminum alloy materials Nos. 1 to 11 were produced and used as test materials.
(最小クリープ速度の測定)
 機械特性の評価として、JIS Z 2271:2010に準じて1軸引張の高温クリープレート試験を実施した。
(Measurement of minimum creep rate)
As evaluation of mechanical properties, a uniaxial tensile high-temperature creep rate test was carried out according to JIS Z 2271:2010.
 試験はシングル式クリープ試験機を用いて実施し、ダイヤルゲージ式の伸び計を併用することで試験中のクリープ伸びも測定した。
 試験片は、前記角材から切り出した全長80mmの丸棒形状であり、ゲージ部がφ6mm×長さ30mmの鍔付き、掴み部はM12のネジ形状である。
 試験条件は温度が160℃、応力が250MPaとし、試験温度に1.5時間以上保持した後、試験応力を負荷して試験を開始した。
 クリープレート試験で得られた試験時間とクリープ伸びの「傾き」に相当するクリープ速度を算出して、最も小さなクリープ速度を最小クリープ速度として求めた。最小クリープ速度は値が小さいものほど優れた高温クリープ強度を意味しており、最小クリープ速度が8.5×10-10/sec以下を合格(〇)とし、それを超えるものを不合格(×)とした。尚、この合否基準は同一条件で使用した場合、従来材よりもおよそ1.7倍の寿命を意味する閾値に相当する。
The test was carried out using a single type creep tester, and the creep elongation during the test was also measured by using a dial gauge type extensometer together.
A test piece was cut from the square bar and had a round bar shape with a total length of 80 mm, a gauge portion with a flange of φ6 mm×length of 30 mm, and a grip portion with an M12 screw shape.
The test conditions were a temperature of 160° C. and a stress of 250 MPa, and after holding the test temperature for 1.5 hours or more, the test stress was applied and the test was started.
The test time obtained in the creep rate test and the creep rate corresponding to the "slope" of the creep elongation were calculated, and the lowest creep rate was obtained as the minimum creep rate. The smaller the value of the minimum creep rate, the better the high-temperature creep strength . ). It should be noted that this pass/fail criterion corresponds to a threshold that means that the life of the material is about 1.7 times longer than that of the conventional material when used under the same conditions.
 上記の結果を表1及び表2に示す。 The above results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の実施例に該当するNo.1~4のアルミニウム合金材は、高温クリープ強度が優れていた。No.5~7のアルミニウム合金材は、Moの含有量が本発明の規定する範囲を外れた比較例である。No.5~7のアルミニウム合金材は、σ相の形成が促進されずに析出強化が十分に作用せず、最小クリープ速度が高くなった、すなわち高温クリープ強度が劣る結果になったと推察される。 As shown in Table 1, No. 1 corresponding to the embodiment of the present invention. The aluminum alloy materials of Nos. 1 to 4 were excellent in high temperature creep strength. No. The aluminum alloy materials Nos. 5 to 7 are comparative examples in which the Mo content is out of the range defined by the present invention. No. In the aluminum alloy materials Nos. 5 to 7, the formation of the σ phase was not promoted and precipitation strengthening did not work sufficiently, resulting in a high minimum creep rate, ie, poor high-temperature creep strength.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の実施例に該当するNo.8~9のアルミニウム合金材は、高温クリープ強度が優れていた。No.10のアルミニウム合金材は、Moの含有量が本発明の規定する範囲を外れた比較例である。No.10のアルミニウム合金材は、Mo濃度が不足したため、σ相の十分な析出に至らず、最小クリープ速度が高くなった、すなわち高温クリープ強度が劣る結果になったと推察される。No.11のアルミニウム合金材は、Siの含有量が本発明の規定する範囲を外れた比較例である。No.11のアルミニウム合金材は、Si濃度が過剰であったことにより、Al-Cu-Mg組成からなるアルミニウム合金材が元来有するS相などの微細析出組織が阻害され、ベースとなる強化機構が損なわれたことにより、最小クリープ速度が高くなった、すなわち高温クリープ強度が劣る結果になったと推察される。 As shown in Table 2, No. 1 corresponding to the embodiment of the present invention. The aluminum alloy materials Nos. 8 and 9 were excellent in high-temperature creep strength. No. No. 10 aluminum alloy material is a comparative example in which the Mo content is out of the range defined by the present invention. No. It is presumed that the aluminum alloy material No. 10 had insufficient Mo concentration, resulting in insufficient precipitation of the σ phase, resulting in a high minimum creep rate, that is, poor high-temperature creep strength. No. No. 11 aluminum alloy material is a comparative example in which the Si content is out of the range defined by the present invention. No. In the aluminum alloy material No. 11, due to the excessive Si concentration, the fine precipitated structure such as the S phase inherent in the aluminum alloy material composed of Al-Cu-Mg composition is inhibited, and the strengthening mechanism that is the base is impaired. It is presumed that the minimum creep rate was increased due to the increase in temperature, that is, the high-temperature creep strength was inferior.
 本発明の実施形態に係るアルミニウム合金材は、所定の合金組成を備えることにより、優れた高温クリープ強度を備えたアルミニウム合金材を提供できることが明らかとなった。 It has been found that the aluminum alloy material according to the embodiment of the present invention can provide an aluminum alloy material having excellent high-temperature creep strength by providing a predetermined alloy composition.
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above, it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the spirit of the invention.
 なお、本出願は、2022年2月24日出願の日本特許出願(特願2022-027200)及び2022年11月15日出願の日本特許出願(特願2022-182576)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2022-027200) filed on February 24, 2022 and a Japanese patent application (Japanese Patent Application No. 2022-182576) filed on November 15, 2022. The contents are incorporated into this application by reference.

Claims (6)

  1.  Cu:1.5~6.0質量%、
     Mg:1.0~4.0質量%、
     Fe:0.5~2.0質量%、
     Ni:0.5~2.0質量%、
     Si:0.1~3.0質量%、
     Mo:0.05~0.7質量%、
     Ti:0.01~0.3質量%、
    を含み、残部がAl及び不可避的不純物の合金組成からなる、アルミニウム合金材。
    Cu: 1.5 to 6.0% by mass,
    Mg: 1.0 to 4.0% by mass,
    Fe: 0.5 to 2.0% by mass,
    Ni: 0.5 to 2.0% by mass,
    Si: 0.1 to 3.0% by mass,
    Mo: 0.05 to 0.7% by mass,
    Ti: 0.01 to 0.3% by mass,
    and the balance being an alloy composition of Al and unavoidable impurities.
  2.  Cu:1.9~3.0質量%、
     Mg:1.3~3.0質量%、
     Fe:0.9~1.3質量%、
     Ni:0.9~1.3質量%、
     Si:0.25~0.8質量%、
     Mo:0.05~0.5質量%、
     Ti:0.04~0.09質量%、
    を含み、残部がAl及び不可避的不純物の合金組成からなる、アルミニウム合金材。
    Cu: 1.9 to 3.0% by mass,
    Mg: 1.3 to 3.0% by mass,
    Fe: 0.9 to 1.3% by mass,
    Ni: 0.9 to 1.3% by mass,
    Si: 0.25 to 0.8% by mass,
    Mo: 0.05 to 0.5% by mass,
    Ti: 0.04 to 0.09% by mass,
    and the balance being an alloy composition of Al and unavoidable impurities.
  3.  前記Si及び前記Moの含有量が、
     Si:0.1~0.6質量%、
     Mo:0.3~0.7質量%、
    である、請求項1又は2に記載のアルミニウム合金材。
    The content of the Si and the Mo is
    Si: 0.1 to 0.6% by mass,
    Mo: 0.3 to 0.7% by mass,
    The aluminum alloy material according to claim 1 or 2, wherein
  4.  前記Si及び前記Moの含有量が、
     Si:0.35~0.8質量%、
     Mo:0.05~0.55質量%、
    である、請求項1又は2に記載のアルミニウム合金材。
    The content of the Si and the Mo is
    Si: 0.35 to 0.8% by mass,
    Mo: 0.05 to 0.55% by mass,
    The aluminum alloy material according to claim 1 or 2, wherein
  5.  前記アルミニウム合金材は、160℃、250MPaにおける最小クリープ速度が8.5×10-10/sec以下である、請求項1又は2に記載のアルミニウム合金材。 3. The aluminum alloy material according to claim 1, wherein said aluminum alloy material has a minimum creep rate of 8.5×10 −10 /sec or less at 160° C. and 250 MPa.
  6.  請求項1又は2に記載の合金組成からなるアルミニウム合金材の製造方法であって、前記合金組成からなる溶湯の溶解調整、鋳造、均質化処理、熱間加工、溶体化処理、焼入れ、時効処理をこの順に行うアルミニウム合金材の製造方法。 3. A method for producing an aluminum alloy material having the alloy composition according to claim 1 or 2, comprising melting adjustment, casting, homogenization treatment, hot working, solution treatment, quenching, and aging treatment of molten metal having the alloy composition. A method of manufacturing an aluminum alloy material by performing in this order.
PCT/JP2023/001983 2022-02-24 2023-01-23 Aluminum alloy material and method for producing same WO2023162540A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-027200 2022-02-24
JP2022027200 2022-02-24
JP2022182576A JP7319447B1 (en) 2022-02-24 2022-11-15 Aluminum alloy material and its manufacturing method
JP2022-182576 2022-11-15

Publications (1)

Publication Number Publication Date
WO2023162540A1 true WO2023162540A1 (en) 2023-08-31

Family

ID=87469725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001983 WO2023162540A1 (en) 2022-02-24 2023-01-23 Aluminum alloy material and method for producing same

Country Status (2)

Country Link
JP (1) JP7319447B1 (en)
WO (1) WO2023162540A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242749A (en) * 1988-03-24 1989-09-27 Toyo Alum Kk Heat-resistant aluminum alloy
JPH03264639A (en) * 1990-03-12 1991-11-25 Kubota Corp Al alloy product having high strength at high temperature
JP2007092117A (en) * 2005-09-28 2007-04-12 Toyota Central Res & Dev Lab Inc Aluminum alloy with high strength and low specific gravity
CN102296215A (en) * 2011-08-24 2011-12-28 吴江市精工铝字制造厂 Heat-resistant wrought aluminum alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242749A (en) * 1988-03-24 1989-09-27 Toyo Alum Kk Heat-resistant aluminum alloy
JPH03264639A (en) * 1990-03-12 1991-11-25 Kubota Corp Al alloy product having high strength at high temperature
JP2007092117A (en) * 2005-09-28 2007-04-12 Toyota Central Res & Dev Lab Inc Aluminum alloy with high strength and low specific gravity
CN102296215A (en) * 2011-08-24 2011-12-28 吴江市精工铝字制造厂 Heat-resistant wrought aluminum alloy

Also Published As

Publication number Publication date
JP2023123344A (en) 2023-09-05
JP7319447B1 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP5582532B2 (en) Co-based alloy
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP5201334B2 (en) Co-based alloy
JP5879181B2 (en) Aluminum alloy with excellent high temperature characteristics
JP6057855B2 (en) Aluminum alloy extruded material for cutting
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP2017128789A (en) Heat resistant aluminum alloy shape material and aluminum alloy member
US20040261916A1 (en) Dispersion hardenable Al-Ni-Mn casting alloys for automotive and aerospace structural components
JP2011122180A (en) Extruded material of heat-resistant aluminum alloy superior in high-temperature strength and high-temperature fatigue characteristic
JP2019108579A (en) Aluminum alloy material, and method for producing aluminum alloy product
JP2021025085A (en) Al-Cu-Mg-BASED ALUMINUM ALLOY EXTRUSION MATERIAL EXCELLENT IN HIGH-TEMPERATURE FATIGUE CHARACTERISTICS
JP7319447B1 (en) Aluminum alloy material and its manufacturing method
JPH09209069A (en) Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP7318284B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
JP5522692B2 (en) High strength copper alloy forging
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
JP2010031301A (en) Nickel-chromium-aluminum alloy base material
JP2008179864A (en) METHOD FOR MANUFACTURING Ni-BASE ALLOY
JP2686140B2 (en) Alloy for high temperature bolt and method for producing the same
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
JP2005281742A (en) Aluminum alloy, scroll part for fluid apparatus made of the aluminum alloy and production method therefor
WO2022211062A1 (en) Aluminum alloy material, production method therefor, and machine component
KR100497053B1 (en) High strength aluminum casting alloy with improved age-hardenability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759546

Country of ref document: EP

Kind code of ref document: A1