JPH01242749A - Heat-resistant aluminum alloy - Google Patents

Heat-resistant aluminum alloy

Info

Publication number
JPH01242749A
JPH01242749A JP7095288A JP7095288A JPH01242749A JP H01242749 A JPH01242749 A JP H01242749A JP 7095288 A JP7095288 A JP 7095288A JP 7095288 A JP7095288 A JP 7095288A JP H01242749 A JPH01242749 A JP H01242749A
Authority
JP
Japan
Prior art keywords
alloy
heat
strength
weight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7095288A
Other languages
Japanese (ja)
Other versions
JP2711296B2 (en
Inventor
Pii Soodaguren Andaasu
アンダース ピー ソーダグレン
Jun Shimizu
清水 遵
Osamu Iwao
岩尾 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP7095288A priority Critical patent/JP2711296B2/en
Publication of JPH01242749A publication Critical patent/JPH01242749A/en
Application granted granted Critical
Publication of JP2711296B2 publication Critical patent/JP2711296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the heat resistance, hot moldability and fatigue-resistant characteristics by specifying Mg, Si, Zr, Fe, Cr, Cu and Al. CONSTITUTION:The Al alloy is formed with an alloy consisting of, by weight, 0.5-5% Mg, <1% Si, 0.2-3% Zr, 0.5-5% Fe and/or Cr, <0.4% Cu and the balance constituted of Al. The desired manufactures can be obtd. by molding the powder of the alloy with a prescribed method, and, if required, by subjecting it to machine working.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、粉末冶金用低密度アルミニウム合金に関し、
より詳しくは、常温から200°Cに至る温度範囲にお
いて、(憂れた機械的特性(引張り強度、疲労強度、延
性、靭性など)を発揮する低密度耐熱性アルミニウム粉
末合金に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a low density aluminum alloy for powder metallurgy.
More specifically, it relates to a low-density heat-resistant aluminum powder alloy that exhibits poor mechanical properties (tensile strength, fatigue strength, ductility, toughness, etc.) in a temperature range from room temperature to 200°C.

従来技術とその問題点 近年、アトマイズ法、スプラット クエンチング法、リ
ボン キャスト法などの急冷凝固法の急速な発展により
、高強度耐熱性アルミニウム粉末(AΩ−PM)合金の
耐用温度は、300〜350℃程度にまで改善されてい
る。この耐熱性改善のためには、ARに対する溶解性お
よび分散性の低い合金元素が大量に使用されている。F
e、Cr5Zr、Ti、VSMo、w、Mn、Niなど
を代表例とするこれらの合金元素は、溶湯からの急速凝
固により、AΩマトリックス中に過飽和に溶解し、引続
く熱的および機械的処理によって、A[マトリックス中
に所望の状態で析出する。かくして得られたAfl−P
M合金中では、微細な均一に分散した粒子(通常0.1
〜0.5μm程度)が形成されており、これが転位障害
となって、Al1−PM合金の微細構造を安定化させ、
A!2=PM合金の特性を改善する。Aρ−8Fe−2
Mo、Aff−8Fe−4Crなどの合金が、350℃
までの温度域で優れた熱安定性と強度を備えていること
は、よく知られている。しかしながら、高強度耐熱性へ
Ω−PM合金の多くは、硬く且つ脆い金属間化合物相を
大量に含むので、成形性および延性に劣っている。これ
らの欠点のために、公知の高強度耐熱性AR−PM合金
は、高度の成形性と延性とが最も必要とされる中間温度
域(150〜250°C)での使用が不可能であった。
Prior art and its problems In recent years, with the rapid development of rapid solidification methods such as atomization, splat quenching, and ribbon casting, the service temperature of high-strength, heat-resistant aluminum powder (AΩ-PM) alloy has increased from 300 to 350. It has been improved to about ℃. In order to improve this heat resistance, alloying elements with low solubility and dispersibility in AR are used in large quantities. F
These alloying elements, of which typical examples include e, Cr5Zr, Ti, VSMo, w, Mn, and Ni, dissolve into the AΩ matrix in a supersaturated state by rapid solidification from the molten metal, and are dissolved in the AΩ matrix by subsequent thermal and mechanical treatments. , A [precipitates in the matrix in the desired state. The thus obtained Afl-P
In M alloys, fine, uniformly dispersed particles (usually 0.1
~0.5 μm) are formed, which act as dislocation obstacles and stabilize the microstructure of the Al1-PM alloy.
A! 2=Improve the properties of PM alloy. Aρ-8Fe-2
Alloys such as Mo, Aff-8Fe-4Cr, etc.
It is well known that it has excellent thermal stability and strength in the temperature range up to However, many of the high-strength, heat-resistant Ω-PM alloys contain a large amount of hard and brittle intermetallic compound phases, resulting in poor formability and ductility. These drawbacks make known high-strength, heat-resistant AR-PM alloys impossible to use in the intermediate temperature range (150-250°C), where high formability and ductility are most needed. Ta.

したがって、上記の如き高強度耐熱性Aρ−P M合金
の使用分野は、未だ限られている。
Therefore, the field of use of the above-mentioned high-strength, heat-resistant Aρ-PM alloy is still limited.

問題点を解決するための手段 本発明者は、上記の如き従来技術の問題点に鑑みて鋭意
研究を市ねた結果、Fe及び/又はCrとZrの含G量
を適度に抑え且つ特定量のMgを配合したA2合金が、
A!Q−PM合金として極めて優れた性能を発揮するこ
とを見出した。すなわち、本発明は、下記に示す組成を
有するAQ金合金提供するものである: r (i ) Mg0. 5〜5重量%、(1i) S
 i 1重量%未満、 (1ii)Z r 0. 2〜3重量96、(iv)F
e及び/又はCr0.5〜5重量26、(v)Cu0.
4重量%未満、および (vl)残余が実質的にAΩ からなることを特徴とする耐熱性アルミニウム粉末合金
。」 以下、本発明A[粉末合金の各添加成分について説明す
る。これらの各添加成分は、一般の合金における添加成
分と同様に、相互に関連しつつ合金全体の物性に影響す
るものであり、それぞれの限定理由を個別に論すること
は、必ずしも妥当であるとはいえないが、一応の限定理
由を示せば、以下の通りである。
Means for Solving the Problems As a result of extensive research in view of the problems of the prior art as described above, the inventors of the present invention have found that the G content of Fe and/or Cr and Zr can be suppressed to an appropriate level and a specific amount can be obtained. A2 alloy containing Mg of
A! It has been found that this alloy exhibits extremely excellent performance as a Q-PM alloy. That is, the present invention provides an AQ gold alloy having the composition shown below: r (i) Mg0. 5-5% by weight, (1i)S
i less than 1% by weight, (1ii) Z r 0. 2-3 weight 96, (iv)F
e and/or Cr0.5-5 weight 26, (v) Cu0.
A heat-resistant aluminum powder alloy, characterized in that less than 4% by weight, and the remainder (vl) consists essentially of AΩ. ” Hereinafter, each additive component of the present invention A [powder alloy] will be explained. Each of these additive components, like the additive components in general alloys, are interrelated and affect the physical properties of the alloy as a whole, and it is not necessarily appropriate to discuss the reasons for each limitation individually. No, but the reason for the limitation is as follows.

1、 Mg 0.5〜5%の範囲内のMgは、A2合金に固溶体硬化
を与えるのみならず、加工硬化率を高め、合金密度を低
下させる。Mgの量が、0,5重量%(以下単に%とす
る)未満の場合には、添加による効果が十分に発揮され
ず、一方5%を上回る場合には、A2合金が応力腐蝕を
生じやすくなる。
1. Mg Mg in the range of 0.5 to 5% not only imparts solid solution hardening to the A2 alloy, but also increases the work hardening rate and lowers the alloy density. If the amount of Mg is less than 0.5% by weight (hereinafter simply referred to as %), the effect of addition will not be sufficiently exhibited, while if it exceeds 5%, the A2 alloy will easily suffer from stress corrosion. Become.

さらに、Mgが5%を上回る場合には、Mgが他の添加
元素と反応して粗大な二次相粒子を形成し、疲労抵抗を
阻害することがある。Mgが0.5〜5%の範囲内にあ
る本発明合金は、Mgを含まない対応する組成のA℃金
合金比して、室温と200℃との間でより高い強度を示
し、且つ熱間鍛造温度のような高温下での延性にも優れ
ている。
Furthermore, if Mg exceeds 5%, Mg may react with other additive elements to form coarse secondary phase particles, which may impair fatigue resistance. The alloy of the present invention with Mg in the range of 0.5-5% exhibits higher strength between room temperature and 200°C than a corresponding A°C gold alloy without Mg, and has higher thermal resistance. It also has excellent ductility at high temperatures such as inter-forging temperatures.

Mgの含=fffffiは、1〜3%とすることがより
好ましい。
The Mg content = fffffi is more preferably 1 to 3%.

II、5i Siの含量は、出来るだけ少ないことが好ましく、実用
上の観点からは、1%以下、より好ましくは0.5%以
下とする。Stの曾が1%を上回る場合には、A!2F
eSi、初晶Si。
The content of II,5i Si is preferably as small as possible, and from a practical standpoint, it is 1% or less, more preferably 0.5% or less. If the value of St exceeds 1%, then A! 2F
eSi, primary Si.

Mg2Siなどの種々の粒子が形成されて、12合金の
延性及び疲労強度を低下させる。
Various particles such as Mg2Si are formed and reduce the ductility and fatigue strength of the 12 alloy.

m、Zr A!Q中のZrは、分散性及び溶解性が低く、凝固時及
び過飽和A℃粉末合金の350〜500℃での熱処理時
にマトリックスにコヒーレントな微細な球状析出物分散
相(準安定ZrAL3立法品)を形成する。これらの分
散相は、微小構造を安定化させ、熱的安定性を改善し、
強度を増大させる。
m, Zr A! Zr in Q has low dispersibility and solubility, and forms a coherent fine spherical precipitate dispersed phase (metastable ZrAL3 cubic product) in the matrix during solidification and heat treatment at 350-500°C of supersaturated A°C powder alloy. Form. These dispersed phases stabilize the microstructure, improve thermal stability,
Increase strength.

Zrの含有口は、0.2〜3%、より好ましくは0、.
5〜2.0%とする。Zrの量が、0.2%未満の場合
には、添加による効果が十分に発揮されず、一方3%を
上回る場合には、A2合金の溶融温度が急激に」二昇し
、製造が困難となる。
The Zr content is 0.2 to 3%, more preferably 0.
5 to 2.0%. If the amount of Zr is less than 0.2%, the effect of addition will not be fully exhibited, while if it exceeds 3%, the melting temperature of the A2 alloy will rise rapidly, making it difficult to manufacture. becomes.

TV、Fe及び/又はCr これら元素は、12粉末合金の強度及び熱的安定性を改
善するための基本的成分である。Fe及び/又はCrは
、他の添加元素と結合して比較的粒径の小さい、均一に
分散した金属間化合物を形成する。これらの分散相は、
転位及び粒界移動を阻止し、その結果、熱的安定性を改
善する。Fe及び/又はCrの量が、0.5〜5%の範
囲内では、高い疲労強度及び延性並びに低密度を維持し
つつ、必要な強度と熱安定性が確保される。Crの量は
、1〜3%とすることがより好ましい。
TV, Fe and/or Cr These elements are the basic components for improving the strength and thermal stability of the 12 powder alloy. Fe and/or Cr combine with other additive elements to form uniformly dispersed intermetallic compounds with relatively small particle sizes. These dispersed phases are
Prevents dislocations and grain boundary migration, thus improving thermal stability. When the amount of Fe and/or Cr is within the range of 0.5 to 5%, the necessary strength and thermal stability are ensured while maintaining high fatigue strength and ductility as well as low density. The amount of Cr is more preferably 1 to 3%.

V、Cu Cuの量は、0.4%未満とする。Cuを添加する場合
には、AR金合金マトリックスに固溶して、常温におけ
る機械的強度を向上させるが、延性を著るしく低下させ
る。また、約200℃以上の高温における強度を低下さ
せるため、本発明においては、Cuの量はできるだけ低
いことが好ましい。
V, Cu The amount of Cu is less than 0.4%. When Cu is added, it forms a solid solution in the AR gold alloy matrix and improves mechanical strength at room temperature, but significantly reduces ductility. Furthermore, in order to reduce the strength at high temperatures of about 200° C. or higher, in the present invention, the amount of Cu is preferably as low as possible.

本発明の、1−PM合金は、常法にしたがって、谷成分
を溶解し、エアアトマイズ法、単ロール法、双ロール法
、スプラット クエンチ法などの急冷凝固法により粉末
化し、あるいは機械的な粉砕法を組み合わせて粉末化し
、必要ならばふるい分けすることにより得られる。得ら
れた粉末は、やはり常法にしたがって、冷間予備成形し
、適切な温度で押出・鍛造加工により成形し、必要なら
ば、機械加工することによって所望の製品とされる。
The 1-PM alloy of the present invention is produced by melting the valley components and pulverizing it by a rapid solidification method such as air atomization, single roll method, twin roll method, or splat quench method, or by mechanically pulverizing it. It is obtained by powdering by a combination of methods and, if necessary, by sieving. The obtained powder is then cold preformed, shaped by extrusion/forging at an appropriate temperature, and, if necessary, machined to form the desired product, again according to conventional methods.

発明の効果 本発明によれば、以下の様な効果が達成される。Effect of the invention According to the present invention, the following effects are achieved.

(イ)従来の耐熱AΩ−PM合金に比して、軽量のAジ
ーPM合金が得られる。
(a) Compared to the conventional heat-resistant AΩ-PM alloy, a lightweight A-G PM alloy can be obtained.

(ロ)得られたAρ−PM合金は、機械的性質、熱間成
形加工性及び耐疲労特性に優れている。
(b) The obtained Aρ-PM alloy has excellent mechanical properties, hot formability, and fatigue resistance.

(ハ)得られたAΩ−PM合金は、常温から200℃ま
での温度域において、熱的安定性に優れている。
(c) The obtained AΩ-PM alloy has excellent thermal stability in the temperature range from room temperature to 200°C.

(ニ)したがって、本発明Aρ−PM合金は、高温での
成形、例えば鍛造により製造され、200°C近傍の高
温で使用される機械部品(、例えば自動車用エンジンの
コンロッドなど)の材料として有用である。
(d) Therefore, the Aρ-PM alloy of the present invention is useful as a material for mechanical parts (such as connecting rods for automobile engines) that are produced by forming at high temperatures, such as forging, and are used at high temperatures around 200°C. It is.

(ホ)また、本発明AΩ−PM合金は、その優れた性能
の故に、既存のA!2−PM合金が使用できなかった種
々の分野で使用可能であり、Al1−PM合金の利用分
野を大きく拡大するものである。
(e) Furthermore, the AΩ-PM alloy of the present invention is superior to the existing AΩ-PM alloy due to its excellent performance. It can be used in various fields where 2-PM alloy could not be used, and greatly expands the field of application of Al1-PM alloy.

実施例 以下に実施例を示し、本発明の特徴とするところをより
一層明確にする。
EXAMPLES Examples will be shown below to further clarify the features of the present invention.

実施例1 第1表に示す組成のAI2−PM合金をそれぞれ調製し
た後、平均凝固速度I X 103℃/秒でエアアトマ
イズ法により粉末化し、ふるい分けして100メツシュ
通過粉体(150μm以下)を得た。第2表に各合金粉
体の粒度分布を示す。
Example 1 After preparing AI2-PM alloys having the compositions shown in Table 1, they were pulverized by air atomization at an average solidification rate of I x 103°C/sec, and sieved to obtain powder (150 μm or less) that passed through 100 meshes. Obtained. Table 2 shows the particle size distribution of each alloy powder.

1−記で得られた各合金粉体をコールド アイソスタテ
ィック プレス(CI P)法により円筒型試料(直径
30mmx高さ80mm、相対密度70〜8096 )
にに成形し、空気中400°Cで30分間子熱した後、
押出し比10:1、ラム速度2.5mm/秒で直径10
mmのロッドに押出成形した。該ロッドを機械加工して
、平行部長さ40mmx直径4.4mmの試験片を製造
し、引張り試験及び疲労試験に供した。これらの試験結
果をロッドの密度ともに第3表に示す。
Each alloy powder obtained in 1- was made into a cylindrical sample (diameter 30 mm x height 80 mm, relative density 70-8096) by cold isostatic pressing (CIP) method.
After molding into cubes and incubating in air at 400°C for 30 minutes,
diameter 10 at an extrusion ratio of 10:1 and a ram speed of 2.5 mm/s.
It was extruded into a mm rod. The rod was machined to produce a test piece with a parallel length of 40 mm and a diameter of 4.4 mm, which was subjected to a tensile test and a fatigue test. The results of these tests are shown in Table 3 together with the density of the rods.

第1表乃至第3表に示す結果から、本発明のAρ−PM
金合金、AA2618に匹敵する延性と密度を有してお
り、疲労強度の点では、AA2618を大きく上回って
いる。
From the results shown in Tables 1 to 3, it can be seen that Aρ-PM of the present invention
It has ductility and density comparable to the gold alloy AA2618, and greatly exceeds AA2618 in terms of fatigue strength.

また、比較合金Gとの対比では、本発明Aρ−PM合金
は、引張り強度及び疲労強度においては同等であるが、
延性に優れ、密度も小さい。
In addition, in comparison with Comparative Alloy G, the Aρ-PM alloy of the present invention has the same tensile strength and fatigue strength, but
It has excellent ductility and low density.

(以上) 手続十市正書(自発) 昭和63年4月27日  1 特許庁長官 小 川 ノ、ト 夫 殿 1 事件の表示 昭和63年特許願第70952号 2 発明の名称 m−+−へ 事件との関係  特許出願人 東洋アルミニウム株式会社 4代理人 自  発 別紙添付の通り        ゛・ ・−・・・′−
・′ 補正の内容 明細書第11頁第2表を下記の通りに訂正すジ。
(Above) Procedural Ten City Authorization (Spontaneous) April 27, 1988 1 Director General of the Patent Office Tono Ogawa 1 Indication of the Case 1988 Patent Application No. 70952 2 Name of the Invention m-+- Relationship to the case: Patent applicant Toyo Aluminum Co., Ltd. (4 agents) As attached: ゛・ ・−・・・′−
・' Table 2 on page 11 of the detailed description of amendments shall be corrected as follows.

明細書第12頁第4行「にに成形し」とあるつを「に成
形し」と訂正する。
In the fourth line of page 12 of the specification, the phrase ``Ni-molashi'' is corrected to ``Ni-molashi''.

(以 上)(that's all)

Claims (1)

【特許請求の範囲】[Claims] (1) (i)Mg0.5〜5重量%、 (ii)Si1重量%未満、 (iii)Zr0.2〜3重量%、 (iv)Fe及び/又はCr0.5〜5重量%、(v)
Cu0.4重量%未満、および (vi)残余が実質的にAl からなることを特徴とする耐熱性アルミニウム粉末合金
(1) (i) Mg0.5-5% by weight, (ii) Si less than 1% by weight, (iii) Zr0.2-3% by weight, (iv) Fe and/or Cr0.5-5% by weight, (v )
A heat-resistant aluminum powder alloy characterized in that it contains less than 0.4% by weight of Cu, and (vi) the remainder consists essentially of Al.
JP7095288A 1988-03-24 1988-03-24 Heat resistant aluminum alloy Expired - Lifetime JP2711296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7095288A JP2711296B2 (en) 1988-03-24 1988-03-24 Heat resistant aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7095288A JP2711296B2 (en) 1988-03-24 1988-03-24 Heat resistant aluminum alloy

Publications (2)

Publication Number Publication Date
JPH01242749A true JPH01242749A (en) 1989-09-27
JP2711296B2 JP2711296B2 (en) 1998-02-10

Family

ID=13446352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7095288A Expired - Lifetime JP2711296B2 (en) 1988-03-24 1988-03-24 Heat resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JP2711296B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234738A (en) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture
US7177384B2 (en) 1999-09-09 2007-02-13 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, manufacturing method therefor, and basket and cask using the same
JP2007092117A (en) * 2005-09-28 2007-04-12 Toyota Central Res & Dev Lab Inc Aluminum alloy with high strength and low specific gravity
CN113330132A (en) * 2019-01-24 2021-08-31 肯联铝业技术中心 Method for manufacturing an aluminium alloy part comprising at least zirconium and magnesium
WO2023162540A1 (en) * 2022-02-24 2023-08-31 株式会社神戸製鋼所 Aluminum alloy material and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234738A (en) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture
US7177384B2 (en) 1999-09-09 2007-02-13 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, manufacturing method therefor, and basket and cask using the same
JP2007092117A (en) * 2005-09-28 2007-04-12 Toyota Central Res & Dev Lab Inc Aluminum alloy with high strength and low specific gravity
CN113330132A (en) * 2019-01-24 2021-08-31 肯联铝业技术中心 Method for manufacturing an aluminium alloy part comprising at least zirconium and magnesium
WO2023162540A1 (en) * 2022-02-24 2023-08-31 株式会社神戸製鋼所 Aluminum alloy material and method for producing same
JP2023123344A (en) * 2022-02-24 2023-09-05 株式会社神戸製鋼所 Aluminum alloy material and method for producing the same

Also Published As

Publication number Publication date
JP2711296B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JPS63157831A (en) Heat-resisting aluminum alloy
US20130240095A1 (en) Heat treatable l12 aluminum alloys
JP5463795B2 (en) Aluminum alloy and heat-resistant aluminum alloy material and method for producing the same
JP2008520826A (en) Alloy based on titanium aluminum
EP0587186B1 (en) Aluminum-based alloy with high strength and heat resistance
JPH05345945A (en) Aluminum alloy
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JPS63241148A (en) Production of semi-manufactured product from aluminum base alloy
JPS6342344A (en) Al alloy for powder metallurgy excellent in high temperature strength characteristic
JP2019108579A (en) Aluminum alloy material, and method for producing aluminum alloy product
JPH01242749A (en) Heat-resistant aluminum alloy
JPH01149936A (en) Heat-resistant al alloy for powder metallurgy
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
JPS6318034A (en) Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance
JPH02194142A (en) Al-base alloy powder for sintering
EP0137180B1 (en) Heat-resisting aluminium alloy
JP2004269982A (en) High-strength low-alloyed titanium alloy and its production method
JP2006274311A (en) Aluminum based alloy
JPH03264639A (en) Al alloy product having high strength at high temperature
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JPH05302138A (en) Aluminum base alloy laminated and compacted material and its manufacture
JPS6173855A (en) Heat resisting alminium alloy
JPH05140685A (en) Aluminum base alloy laminated and compacted material and its manufacture
JPH01290738A (en) Aluminum alloy having excellent heat resistance