WO2023159796A1 - 锂金属电池用添加剂、电解液及其锂金属电池 - Google Patents

锂金属电池用添加剂、电解液及其锂金属电池 Download PDF

Info

Publication number
WO2023159796A1
WO2023159796A1 PCT/CN2022/097318 CN2022097318W WO2023159796A1 WO 2023159796 A1 WO2023159796 A1 WO 2023159796A1 CN 2022097318 W CN2022097318 W CN 2022097318W WO 2023159796 A1 WO2023159796 A1 WO 2023159796A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium metal
lithium
additive
group
metal battery
Prior art date
Application number
PCT/CN2022/097318
Other languages
English (en)
French (fr)
Inventor
黄秋洁
王霹霹
毛冲
欧霜辉
王晓强
张元青
冯慧敏
戴晓兵
Original Assignee
珠海市赛纬电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市赛纬电子材料股份有限公司 filed Critical 珠海市赛纬电子材料股份有限公司
Publication of WO2023159796A1 publication Critical patent/WO2023159796A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the application belongs to the technical field of lithium batteries, specifically relates to an electrolyte, and more particularly relates to an additive for a lithium metal battery, an electrolyte and a lithium metal battery thereof.
  • a lithium secondary battery has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode is laminated or wound, and by embedding the electrode assembly in a battery case and injecting a non-aqueous electrolyte into it
  • the interior constitutes a lithium secondary battery.
  • the capacity of the lithium secondary battery differs depending on the type of electrode active material, and the capacity at the time of practical driving cannot be ensured by a sufficient capacity as much as the theoretical capacity, so such a battery has not been commercialized.
  • metal materials such as silicon (4200mAh/g) and tin (990mAh/g), which have high storage capacity characteristics by alloying with lithium, are used as negative electrode active materials.
  • silicon 4200mAh/g
  • tin 990mAh/g
  • its volume expands to about 4 times during charge during alloying with lithium, and shrinks again during discharge. Since a large volume change of the electrode assembly repeatedly occurs during charging/discharging, the active material is gradually micronized and detached from the electrode, so the capacity rapidly decreases, making it difficult to ensure stability and reliability, and thus leading to commercial Failed.
  • lithium metal has an excellent theoretical capacity of 3860mAh/g and a low potential of -3.045V relative to a standard hydrogen electrode (SHE) compared to the above-mentioned negative electrode active materials, a battery with high capacity and high energy density can thus be obtained, Therefore, there are many studies on lithium metal batteries (LMB) using lithium metal as the negative electrode active material of lithium secondary batteries.
  • SHE standard hydrogen electrode
  • lithium metal in the case of lithium metal batteries, lithium metal easily reacts with electrolytes, impurities, and lithium salts due to its high chemical/electrochemical reactivity, and forms a solid electrolyte interphase (SEI) on the electrode surface, and such solid
  • SEI solid electrolyte interphase
  • the electrolyte interphase induces local current density differences to form dendrites on the surface of Li metal.
  • Lithium dendrites not only shorten the life of lithium secondary batteries, but also cause short circuits and dead lithium in the battery, thereby increasing the physical and chemical instability of lithium secondary batteries, reducing the capacity of the battery, shortening the cycle life, and disadvantageously affect the stability of the battery.
  • the solid electrolyte interphase is thermally unstable, so that the charging/discharging process of the battery can be continuously performed, or especially during high-temperature storage in a fully charged state, the solid electrolyte interphase can gradually collapse due to the increased electrochemical and thermal energy . Due to the collapse of the solid electrolyte interphase, a side reaction in which the exposed surface of lithium metal is decomposed due to direct reaction with the electrolyte solvent continuously occurs, and thus the resistance of the negative electrode increases, and the charge/discharge efficiency of the battery decreases. In addition, there is a problem that during the formation of the solid electrolyte interphase, the solvent of the electrolyte is consumed, and due to by-products, gas, etc. generated during various side reactions such as the formation and collapse of the solid electrolyte interphase and the decomposition of the electrolyte, the battery shortened lifespan.
  • Korean Patent No. KR2016-106169610A discloses that the cycle characteristics of 4.4V lithium cobaltate materials can be improved by combining fluorine-substituted ethers and non-fluorine-substituted ether additives.
  • the Chinese patent CN202010965195 discloses that the cyclic phosphoramidite lithium salt has high stability when applied to the electrolyte, and the SEI film formed during the charge-discharge cycle is more conducive to the passage of lithium ions, thereby improving the performance of the 4.5V NCM523 battery. electrical properties.
  • the effect of the improvement described above is not sufficient, and therefore, the development of a novel electrolyte solution for stabilizing the lithium metal interface as the negative electrode in the 4.55V lithium metal battery needs to be developed.
  • the purpose of this application is to provide a lithium metal battery additive, electrolyte and lithium metal battery thereof, this additive can improve the electrochemical performance of lithium metal battery, especially can improve the capacity and capacity of high voltage lithium metal battery cycle life.
  • the first aspect of the present application provides an additive for lithium metal batteries, which is a phosphoramide compound containing -P-F groups.
  • the lithium metal battery additive of the present application includes the phosphoramide compound containing -PF group, and this compound can form a bond with lithium metal to form a stable protective film on the surface of lithium metal negative electrode, and this film is rich in LiF, Li 3 N, LiN x O y , LiP x O y and other components, in which many heteroatoms such as phosphorus, nitrogen, fluorine, and oxygen are charged negatively and are attractive to lithium ions.
  • the decomposition products are deposited on the surface of the positive and negative electrodes to form
  • the SEI film is conducive to the passage of lithium ions, effectively improving the DCR (resistance) of the SEI film, thereby improving the rate performance of lithium metal batteries, thereby weakening the electrochemical adverse reactions caused by lithium dendrites in lithium metal batteries.
  • the compound contains a -PF group, which has a high oxidation potential. After the introduction, the oxidation resistance of the additive can be improved, which helps to inhibit the oxidative decomposition of the electrolyte under the 4.55V high-voltage system, thereby improving the lithium metal battery. cycle performance.
  • the second aspect of the present application provides an electrolyte solution for a lithium metal battery, including a lithium salt, a non-aqueous organic solvent and an additive, and the additive includes the aforementioned additive for a lithium metal battery.
  • the lithium metal battery electrolyte of the present application includes phosphoramide compounds containing -P-F groups, which can improve the DCR (resistance) of the SEI film, thereby improving the rate performance of the battery, and the oxidation potential is higher, which can improve Cycling performance of lithium metal batteries.
  • the third aspect of the present application provides a lithium metal battery, including a positive electrode material, a negative electrode material and an electrolyte, the electrolyte is the aforementioned electrolyte, the negative electrode material is lithium metal or lithium alloy, and the maximum charging voltage is 4.55 V.
  • the negative electrode material of the present application is lithium metal or lithium alloy, so the capacity of the battery is relatively high, and the electrolyte contains phosphoramide compounds containing -P-F groups, which can further improve the rate and cycle performance of the battery.
  • the additive for lithium metal batteries of the present application is a phosphoramide compound containing -PF group.
  • This phosphoramide compound containing -PF group is shown in structural formula I or structural formula II, wherein, R 1 is a fluorine atom or a fluorinated hydrocarbon, R 2 and R 3 are each independently selected from hydrocarbon groups, phenyl groups, ester groups, At least one of silicon-based and fluorohydrocarbons.
  • R 1 is a fluorine atom or a C 1 -C 3 fluorohydrocarbon
  • R 2 and R 3 are each independently selected from a C 1 -C 3 hydrocarbon group, a phenyl group, a C 2 -C 3 ester group, At least one of trimethylsilyl and C 1 -C 3 fluorohydrocarbons. More preferably, R 1 is a fluorine atom, R 2 and R 3 are each independently selected from at least one of methyl, ethyl, phenyl, methyl formate, trimethylsilyl and fluoromethyl.
  • the phosphoramide compound containing -PF group is preferably at least one of compounds 1-6, preferably compound 4 and compound 5.
  • the electrolyte solution for lithium metal batteries of the present application includes lithium salts, non-aqueous organic solvents and additives, and the additives include the aforementioned additives for lithium metal batteries.
  • the phosphoramide compound containing -P-F group accounts for 0.1-5% of the sum of lithium salt, non-aqueous organic solvent and additive mass, preferably 0.05%-1%.
  • the content of phosphoramide compounds containing -P-F groups can be specifically but not limited to 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5% .
  • the lithium salt is selected from LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 Cli and lithium chloroborane at least one.
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • SO 2 F lithium bisfluorosulfonyl imide
  • the anion-SO 2 F groups of F 3 and LiFSI have high reactivity to lithium, and the decomposition products are mainly LiF.
  • the high surface energy of LiF and lithium metal is beneficial to inhibit the growth of lithium dendrites.
  • LiF has low electronic conductivity and high electrochemical stability, which can effectively passivate the surface of lithium metal anode, thereby protecting the lithium metal anode.
  • LiTFSI and LiFSI have better film-forming properties on the surface of the lithium metal anode, which can more effectively protect the lithium metal anode and inhibit the growth of lithium dendrites.
  • the lithium salt accounts for 6.5-15.5% of the total mass of the lithium salt, non-aqueous organic solvent and additives, specifically, but not limited to, 6.5%, 7%, 7.5%, 8% %, 8.5%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 15.5%. Its concentration may be 0.1-4.0M, preferably 0.5-2.0M.
  • the concentration of the lithium salt is lower than 0.1M, it is difficult to secure ion conductivity suitable for battery driving. On the contrary, when the concentration exceeds 4.0M, the viscosity of the electrolyte increases to reduce the mobility of lithium ions, and the decomposition reaction of the lithium salt itself may increase to cause deterioration of battery performance.
  • the organic solvent is at least one of chain carbonate, cyclic carbonate, carboxylate, lactone and ether compounds.
  • the chain carbonate can be dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), propyl methyl carbonate (PMC) and ethyl carbonate At least one of propyl esters (PEC).
  • the cyclic carbonate may be at least one of ethylene carbonate (EC), propylene carbonate (PC), fluoroethylene carbonate (FEC), butylene carbonate, and pentylene carbonate.
  • the carboxylic acid ester may be at least one of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and propyl propionate.
  • the lactone may be at least one of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • Ether compounds can be dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether, ethyl propyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether At least one of tetraethylene glycol methyl ether, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol methyl ethyl ether, 1,3-dioxolane, tetrahydrofuran and 2-methyltetrahydrofuran .
  • N-methylpyrrolidone dimethyl
  • the additives of the present application can also include vinyl sulfite (ES), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), 1,3 propanesulfonic acid in addition to phosphoramide compounds containing -PF group At least one of lactone (PS) and vinyl sulfate (DTD), and the total content of the latter accounts for 0.1-10% of the total mass of lithium salt, non-aqueous organic solvent and additives. In addition, it may also include nitric acid compounds accounting for 0.01-1% of the total mass of lithium salt, non-aqueous organic solvent and additives.
  • ES vinyl sulfite
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • 1,3 propanesulfonic acid in addition to phosphoramide compounds containing -PF group
  • PS lactone
  • DTD vinyl sulfate
  • nitric acid compounds accounting for 0.01-1% of the total mass of lithium salt, non-aqueous organic solvent and additives.
  • the nitric acid compounds may be lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), magnesium nitrate (Mg(NO 3 ) 2 ), barium nitrate (Ba(NO 3 ) 2 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ).
  • the third aspect of the present application provides a lithium metal battery, including a positive electrode material, a negative electrode material and an electrolyte, the electrolyte is the aforementioned electrolyte, the negative electrode material is lithium metal or lithium alloy, and the maximum charging voltage is 4.55V .
  • the positive electrode material is lithium cobaltate material, nickel cobalt manganese oxide or nickel cobalt aluminum oxide.
  • the lithium cobalt oxide material is doped and coated lithium cobalt oxide
  • the chemical formula of nickel cobalt manganese oxide is LiNi x Co y Mn z M (1-xyz) O 2
  • nickel cobalt aluminum oxide The chemical formula is LiNix Co y Al z N (1-xyz) O 2 , where M is at least one of Mg, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V and Ti, and N At least one of Mn, Mg, Cu, Zn, Sn, B, Ga, Cr, Sr, V and Ti, 0.6 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, x+y+ z ⁇ 1.
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • LiNi 0.8 Mn 0.1 Co 0.1 O 2 , binder PVDF and conductive agent SuperP are uniformly mixed at a mass ratio of 95:1:4 to make a certain viscosity lithium metal battery positive electrode slurry, and the mixed The slurry is coated on both sides of the aluminum foil, dried and rolled to obtain a positive electrode sheet.
  • the lithium metal batteries produced in Examples 1-12 and Comparative Examples 1-3 were subjected to rate and cycle tests respectively.
  • the specific test conditions are as follows, and the performance test results are shown in Table 2.
  • Examples 1-12 have phosphoramide compounds containing -PF groups, which can be combined with lithium
  • the metal forms a bond to form a stable protective film on the surface of the lithium metal negative electrode.
  • the film is rich in LiF, Li 3 N, LiN x O y , LiP x O y and other components, in which phosphorus, nitrogen, fluorine, oxygen and many other impurities Atoms are negatively charged and attractive to lithium ions.
  • the SEI film formed after the decomposition product is deposited on the surface of the positive and negative electrodes is conducive to the passage of lithium ions, effectively improving the DCR (resistance) of the SEI film, thereby increasing the rate of lithium metal batteries Performance, thereby weakening the electrochemical adverse reactions caused by lithium dendrites in lithium metal batteries.
  • the compound contains a -PF group, which has a high oxidation potential. After the introduction, the oxidation resistance of the additive can be improved, which helps to inhibit the oxidative decomposition of the electrolyte under the 4.55V high-voltage system, thereby improving the lithium metal battery. cycle performance.
  • Example 2 Comparing Example 2 and Example 10, it can be seen that when the lithium salt is LiFSI, the cycle performance of the lithium metal battery increases, which may be due to the high reactivity of the anion-SO 2 F group of LiFSI to lithium, and the decomposition product is LiF. Mainly, the high surface energy of LiF and lithium metal is beneficial to inhibit the growth of lithium dendrites. At the same time, LiF has low electronic conductivity and high electrochemical stability, which can effectively passivate the surface of lithium metal anode, thereby protecting the lithium metal anode.
  • Example 2 Comparing Example 2 and Example 11, it can be seen that when the solvent contains a high content of FEC, the cycle performance of the lithium metal battery is improved, which may be due to the introduction of fluoroethylene carbonate FEC with a stronger affinity with lithium ions.
  • Molecules participate in the lithium ion solvation shell, reduce the lithium ion desolvation energy barrier, thereby reducing the polarization of the lithium ion deposition and extraction process.
  • the FEC molecules coordinated with lithium ions preferentially decompose on the surface of lithium metal to form a LiF-rich SEI film, which can lower the diffusion energy barrier of lithium ions in the SEI film and induce the uniform deposition of lithium metal.
  • Comparing Example 12 and Comparative Example 3 it can be seen that adding VEC on the basis of phosphoramide compounds containing -P-F groups, the rate and cycle performance have been improved, especially the cycle performance, which is due to the LUMO energy of VEC.
  • the level is very low, and it can be preferentially reduced and decomposed on the surface of the lithium metal negative electrode to form a polycarbonate-rich SEI film, and the polycarbonate material has cohesiveness and flexibility, which can help the SEI film adapt to the volume change of the lithium metal negative electrode. stress, which improves the stability of the SEI film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂金属电池用添加剂、电解液及其锂金属电池,其中,添加剂为含-P-F基团的磷酰胺类化合物。添加剂可以与锂金属成键而在锂金属负极的表面上形成稳定的保护膜,保护膜富含LiF、Li 3N、LiN xO y、LiP xO y等成分,其中磷、氮、氟、氧等众多杂原子对锂离子具有吸引力,添加剂的分解产物沉积到正极、负极表面上后形成的SEI膜有利于锂离子通过,有效改善SEI膜的DCR,进而提高锂金属电池的倍率性能,从而削弱锂金属电池中锂枝晶所造成的电化学不良反应。另外,-P-F基团的氧化电位较高,引入-P-F基团后可提高添加剂的耐氧化性,有助于抑制4.55V高电压体系下电解液的氧化分解,从而改善锂金属电池的循环性能。

Description

锂金属电池用添加剂、电解液及其锂金属电池 技术领域
本申请属于锂电池技术领域,具体涉及一种电解液,更加涉及一种锂金属电池用添加剂、电解液及其锂金属电池。
背景技术
随着电气、电子、通信和计算机工业的快速发展,对具有高性能和高稳定性的二次电池的需求迅速增加。特别是,根据电池和电子产品的轻量化、薄型化、小型化和便携性的趋势,还要求作为核心部件的二次电池的轻量化和小型化。此外,由于对于由环境污染问题和油耗引起的对新型能源供应源的需求,对开发能够解决这种需求的电动车辆的需求日益增加。在二次电池之中,具有长循环寿命、重量轻且显示出高能量密度和工作电位的锂二次电池近来备受关注。
锂二次电池具有将包含正极、负极和设置在正极与负极之间的隔膜的电极组件层压或卷绕的结构,并且通过将所述电极组件嵌入电池壳中并且将非水电解液注入其内部而构成锂二次电池。在这种情况下,锂二次电池的容量根据电极活性材料的类型而不同,并且不能通过与理论容量一样多的足够容量确保实际驱动时的容量,因此这样的电池尚未商业化。
为了获得具有高容量的锂二次电池,将通过与锂发生合金化反应而具有高储存容量特性的金属材料如硅(4200mAh/g)和锡(990mAh/g)用作负极活性材料。然而,当将诸如硅和锡的金属用作负极活性材料时,在与锂进行合金化的充电过程中其体积膨胀至约4倍,并且在放电过程中再收缩。由于在充电/放电过程中重复发生电极组件的较大的体积变化,因此活性材料逐渐微粉化并从电极上脱落,因此容量迅速减小,从而难以确保稳定性和可靠性,且由此导致商业化失败。
由于与上述负极活性材料相比,锂金属具有3860mAh/g的优异理论容量和-3.045V的相对于标准氢电极(SHE)的低电位,由此能够获得具有高容量和高能量密度的电池,所以关于使用锂金属作为锂二次电池的负极活性材料的锂金属电池(LMB)的研究很多。
然而,在锂金属电池的情况下,锂金属由于其高化学/电化学反应性而易于与电解质、杂质和锂盐反应,并且在电极表面上形成固态电解质中间相(SEI),并且这样的固态电解质中间相引起局部电流密度差,从而在锂金属的表面上形成枝晶。锂枝晶不仅缩短锂二次电池的寿命,而且还引起电池中的短路和死锂,从而增加锂二次电池的物理和化学不稳定性、减小电池的容量、缩短循环寿命、并且不利地影响电池的稳定性。此外,固体电解质中间相是热不稳定的,使得可以连续进行电池的充电/放电过程,或者尤其是在以满电状态高温储存期间固体电解质中间相可以因增加的电化学能和热能而逐渐塌陷。由于固体电解质中间相的塌陷,连续地发生锂金属的暴露表面因与电解质溶剂的直接反应而分解的副反应,且因此负极的电阻增加,并且电池的充电/放电效率降低。另外,存在如下问题:在形成固体电解质中间相期间,电解质的溶剂被消耗,并且由于在各种副反应如固体电解质中间相的形成和塌陷以及电解质的分解期间产生的副产物、气体等,电池的寿命缩短。
韩国专利KR2016-106169610A号公开了通过氟取代的醚类和非氟取代的醚类添加剂组合可以改善4.4V钴酸锂材料的循环特性。此外,中国专利CN202010965195公开了环状磷酰胺基锂盐在应用于电解液具有较高的稳定性,充放电循环过程中所形成的SEI膜更利于锂离子的通过,进而可提高4.5V NCM523电池的电性能。但是上述改善的效果并不充分,因此,需要开发一种用于稳定作为4.55V锂金属电池中的负极的锂金属界面的新型电解液。
申请内容
为了解决上述问题,本申请的目的在于提供一种锂金属电池用添加剂、电解液及其锂金属电池,此添加剂可改善锂金属电池的电化学性能,尤其可改善高电压锂金属电池的容量和循环寿命。
为实现上述目的,本申请第一方面提供了一种锂金属电池用添加剂,为含-P-F基团的磷酰胺类化合物。
本申请的锂金属电池添加剂中包括含-P-F基团的磷酰胺类化合物,该化合物可以与锂金属成键而在锂金属负极的表面上形成稳定的保护膜,该膜富含LiF,Li 3N,LiN xO y,LiP xO y等成分,其中磷、氮、氟、氧等众多杂原子带电负性,对锂离子具有吸引力,该分解产物沉积到正负极表面上后形成的SEI膜有利于锂离子通过,有效改善SEI膜的DCR(电阻),进而提高锂金属电池的倍率性能,从而削弱锂金属电池中锂枝晶所造成的电化学不良反应。另外,该化合物中含有-P-F基团,此结构的氧化电位较高,引入后可提高添加剂的耐氧化性,有助于抑制4.55V高电压体系下电解液的氧化分解,从而改善锂金属电池的循环性能。
本申请第二方面提供了一种锂金属电池用电解液,包括锂盐、非水有机溶剂和添加剂,所述添加剂包括前述的锂金属电池用添加剂。
本申请的锂金属电池用电解液中包括含-P-F基团的磷酰胺类化合物,该化合物可改善SEI膜的DCR(电阻),因而可提高电池的倍率性能,且氧化电位较高,可改善锂金属电池的循环性能。
本申请第三方面提供了一种锂金属电池,包括正极材料、负极材料和电解液,所述电解液为前述的电解液,所述负极材料为锂金属或锂合金,且最高充电电压为4.55V。
本申请的负极材料为锂金属或锂合金,因而电池的容量较高,且电解液中包括含-P-F基团的磷酰胺类化合物,可进一步改善电池的倍率及循环性能。
具体实施方式
本申请的锂金属电池用添加剂,为含-P-F基团的磷酰胺类化合物。此含-P-F基团的磷酰胺类化合物如结构式I或结构式II所示,其中,R 1为氟原子或氟代烃,R 2和R 3各自独立地选自烃基、苯基、酯基、硅基和氟代烃中至少一种。
Figure PCTCN2022097318-appb-000001
更进一步的,R 1为氟原子或C 1-C 3的氟代烃,R 2和R 3各自独立地选自C 1-C 3的烃基、苯基、C 2-C 3的酯基、三甲基硅基和C 1-C 3的氟代烃中至少一种。更优选的,R 1为氟原子,R 2和R 3各自独立地选自甲基、乙基、苯基、甲酸甲酯基、三甲基硅基和氟代甲基中至少一种。含-P-F基团的磷酰胺类化合物优选为化合物1~6所示中的至少一种,优选化合物4和化合物5。
Figure PCTCN2022097318-appb-000002
本申请的锂金属电池用电解液,包括锂盐、非水有机溶剂和添加剂,添加剂包括前述的锂金属电池用添加剂。其中,含-P-F基团的磷酰胺类化合物占锂盐、非水有机溶剂和添加剂质量之和的0.1~5%,优选为0.05%至1%。当其含量小于0.05%时,在锂金属负极的表面上不能均匀地形成SEI膜,因此不能获得期望的效果。相反的,当含量超过5%时,在锂金属电池驱动时可能发生不必要的反应,从而可以使锂金属电池的性能劣化。含-P-F基团的磷酰胺类化合物的含量具体可但不限于为0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、 4.5%、5%。
其中,锂盐选自LiCl、LiBr、LiI、LiClO 4、LiBF 4、LiPF 6、LiCF 3SO 3、LiCF 3CO 2、LiC 4BO 8、LiAsF 6、LiSbF 6、LiAlCl 4、CH 3SO 3Li、CF 3SO 3Li、(CF 3SO 2) 2NLi、(C 2F 5SO 2) 2NLi、(SO 2F) 2NLi、(CF 3SO 2) 3Cli和氯硼烷锂中的至少一种。优选为(CF 3SO 2) 2NLi(双三氟甲磺酰亚胺锂,LiTFSI)和(SO 2F) 2NLi(双氟磺酰亚胺锂,LiFSI),由于LiTFSI的阴离子-SO 2F 3和LiFSI的阴离子-SO 2F基团对锂的反应性较高,分解产物以LiF为主,LiF与锂金属的高表面能有利于抑制锂枝晶生长。同时,LiF具有低电子电导率和高电化学稳定性,能有效钝化锂金属负极表面,从而保护锂金属负极。因此,LiTFSI和LiFSI在锂金属负极表面的成膜性能更好,能更有效保护锂金属负极和抑制锂枝晶生长。综合考虑电解液中离子导电性、溶解性等,锂盐占锂盐、非水有机溶剂和添加剂质量之和的6.5~15.5%,具体可但不限于为6.5%、7%、7.5%、8%、8.5%、9%、10%、11%、12%、13%、14%、15%、15.5%。其浓度可为0.1~4.0M,优选为0.5~2.0M。当锂盐的浓度低于0.1M时,则难以确保适于电池驱动的离子导电性。相反,当浓度超过4.0M时,电解液的粘度增加而降低锂离子的迁移率,并且锂盐本身的分解反应可能增加而导致电池性能劣化。
有机溶剂为链状碳酸酯、环状碳酸酯、羧酸酯、内酯和醚类化合物中的至少一种。其中,链状碳酸酯可为碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)、碳酸甲乙酯(EMC)、碳酸甲丙酯(PMC)和碳酸乙丙酯(PEC)中的至少一种。环状碳酸酯可为碳酸亚乙酯(EC)、碳酸亚丙基酯(PC)、氟代碳酸乙烯酯(FEC)、碳酸亚丁基酯和碳酸亚戊基酯中的至少一种。羧酸酯可为乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯和丙酸丙酯中的至少一种。内酯可为γ-丁内酯、γ-戊内酯、γ-己内酯、σ-戊内酯和ε-己内酯中的至少一种。醚类化合物可为二甲醚、二***、二丙醚、甲***、甲丙醚、乙丙醚、二甲氧基乙烷、二乙氧基乙烷、甲氧基乙氧基乙烷、二甘醇二甲醚、二甘醇二***、二甘醇甲***、三甘醇二甲醚、三甘醇二***、三甘醇甲***、四甘醇二甲醚、四甘醇二***、四甘醇甲***、聚乙二醇二甲醚、聚乙二醇二***、聚乙二醇甲***、1,3-二氧戊环、四氢呋喃和2-甲基四氢呋喃中的至少一种。另外,有机溶剂中还 可包括N-甲基吡咯烷酮、二甲亚砜或环丁砜。
本申请的添加剂除了含-P-F基团的磷酰胺类化合物,还可包括亚硫酸乙烯酯(ES)、碳酸亚乙烯酯(VC)、乙烯基碳酸乙烯酯(VEC)、1,3丙磺酸内酯(PS)和硫酸乙烯酯(DTD)中的至少一种,且后者的总含量占锂盐、非水有机溶剂和添加剂质量之和的0.1~10%。另外,也可包括占锂盐、非水有机溶剂和添加剂质量之和0.01~1%的硝酸类化合物,硝酸类化合物可为硝酸锂(LiNO 3)、硝酸钾(KNO 3)、硝酸铯(CsNO 3)、硝酸镁(Mg(NO 3) 2)、硝酸钡(Ba(NO 3) 2)、亚硝酸锂(LiNO 2)、亚硝酸钾(KNO 2)、亚硝酸铯(CsNO 2)。
本申请的第三方面提供了一种锂金属电池,包括正极材料、负极材料和电解液,所述电解液为前述的电解液,负极材料为锂金属或锂合金,且最高充电电压为4.55V。进一步的,正极材料为钴酸锂材料、镍钴锰氧化物或镍钴铝氧化物。较佳的,钴酸锂材料为经掺杂及包覆改性的钴酸锂,镍钴锰氧化物的化学式为LiNi xCo yMn zM (1-x-y-z)O 2,镍钴铝氧化物的化学式为LiNi xCo yAl zN (1-x-y-z)O 2,其中,M为Mg、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V和Ti中的至少一种,N为Mn、Mg、Cu、Zn、Sn、B、Ga、Cr、Sr、V和Ti中的至少一种,0.6≤x<1,0<y<1,0<z<1,x+y+z≤1。
下面通过具体实施例来进一步说明本申请的目的、技术方案及有益效果,但不构成对本申请的任何限制。实施例中未注明具体条件者,可按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可通过市售而获得的常规产品。
实施例1
(1)电解液的制备:在氩气氛围下,水分含量<1ppm的真空手套箱中,将碳酸甲乙酯(EMC)、氟代碳酸乙烯酯(FEC)按照重量比为EMC:FEC=50:50进行混合,接着加入各添加剂,溶解并充分搅拌后加入锂盐,混合均匀后获得电解液。
(2)正极的制备:将LiNi 0.8Mn 0.1Co 0.1O 2、粘接剂PVDF和导电剂SuperP按质量比95:1:4混合均匀制成一定粘度的锂金属电池正极浆料,将混制的浆料 涂布在铝箔的两面后,烘干、辊压后得到正极片。
(3)隔膜的制备:采用厚度为约15μm的聚乙烯(PE)作为隔离膜。
(4)负极的制备:通过物理辊压的方法,将金属锂复合到厚度约为10μm的集流体铜箔上,调节辊的压力,使铜集流体上双面覆锂,所覆锂的厚度控制为约35μm,便可得到锂铜复合带负极。然后经过裁片、分切后,放置在干燥的氩气气氛手套箱中存放备用。
(5)锂金属电池的制备:将正极、隔离膜、锂铜复合带负极按顺序叠好,然后根据需要进行叠加。极耳焊接后置于电池外包装铝塑膜中,将上述制备好的电解液注入到干燥后的裸电芯中,先后进行真空封装、静置、化成(0.05C恒流充电到3.6V,再以0.1C恒流充电到3.9V)、整形、容量测试等工序,最后获得1Ah的软包锂金属电池。
实施例2~12和对比例1~3的电解液配方如表1所示,配制电解液及制备电池的步骤同实施例1。
表1各实施例的电解液组分
组别 非水有机溶剂/质量(g) 锂盐/质量(g) 添加剂/质量(g)
实施例1 EMC/FEC=1:1(86.5g) LiFSI(12.5g) 化合物1(1.0g)
实施例2 EMC/FEC=1:1(86.5g) LiFSI(12.5g) 化合物2(1.0g)
实施例3 EMC/FEC=1:1(87g) LiFSI(12.5g) 化合物2(0.5g)
实施例4 EMC/FEC=1:1(85.5g) LiFSI(12.5g) 化合物2(2.0g)
实施例5 EMC/FEC=1:1(86.5g) LiFSI(12.5g) 化合物3(1.0g)
实施例6 EMC/FEC=1:1(86.5g) LiFSI(12.5g) 化合物4(1.0g)
实施例7 EMC/FEC=1:1(86.5g) LiFSI(12.5g) 化合物5(1.0g)
实施例8 EMC/FEC=1:1(86.5g) LiFSI(12.5g) 化合物6(1.0g)
实施例9 PC/EMC/FEC=3:5:2(88g) LiPF 6+LiFSI(3.2g+3.8g) 化合物1(5.0g)
实施例10 EMC/FEC=1:1(86.5g) LiPF6(12.5g) 化合物2(1.0g)
实施例11 EMC/DEC=1:1(86.5g) LiFSI(12.5g) 化合物2(1.0g)
实施例12 EMC/FEC=1:1(86.5g) LiFSI(12.5g) 化合物4(0.5g)+VEC(0.5g)
对比例1 EMC/FEC=1:1(87.5g) LiFSI(12.5g) /
对比例2 EMC/FEC=1:1(86.5g) LiFSI(12.5g) 化合物7(1.0g)
对比例3 EMC/FEC=1:1(86.5g) LiFSI(12.5g) VEC(1g)
Figure PCTCN2022097318-appb-000003
对实施例1~12和对比例1~3制成的锂金属电池分别进行倍率和循环测试,其具体测试条件如下,性能测试结果如表2所示。
(1)倍率性能测试
将实施例1~12和对比例1~3的锂金属电池在25℃下以0.5C恒流充电至4.55V,然后恒压充电至电流为0.05C,然后用0.5C恒流放电至3.0V,为一个充放电循环,重复充放3次,最后一圈放电容量为C 0。再以0.5C恒流充电至4.55V,然后恒压充电至电流为0.05C,然后用2C恒流放电至3.0V,放电容量为C 1。容量保持率=C1/C0*100%
(2)循环性能测试
将实施例1~12和对比例1~2的锂金属电池在25℃下进行一次0.5C/0.5C充电和放电(电池放电容量为C0),上限电压为4.55V,然后在常温条件下进行0.5C/0.5C充电和放电300周(电池放电容量为C1),容量保持率=(C1/C0)*100%
表2各实施例性能测试结果
Figure PCTCN2022097318-appb-000004
Figure PCTCN2022097318-appb-000005
由表2的结果可知,实施例1~12的倍率性能和循环性能皆好于对比例1~3,实施例1~12中具有含-P-F基团的磷酰胺类化合物,该化合物可以与锂金属成键而在锂金属负极的表面上形成稳定的保护膜,该膜富含LiF,Li 3N,LiN xO y,LiP xO y等成分,其中磷、氮、氟、氧等众多杂原子带电负性,对锂离子具有吸引力,该分解产物沉积到正负极表面上后形成的SEI膜有利于锂离子通过,有效改善SEI膜的DCR(电阻),进而提高锂金属电池的倍率性能,从而削弱锂金属电池中由于锂枝晶所造成的电化学不良反应。另外,该化合物中含有-P-F基团,此结构的氧化电位较高,引入后可提高添加剂的耐氧化性,有助于抑制4.55V高电压体系下电解液的氧化分解,从而改善锂金属电池的循环性能。对比例2中虽然也加入了磷酰胺类化合物,但是其P全部被二乙基氨基所取代,不存在-P-F基团,故其难以抑制4.55V高电压体系下锂金属电池的电解液的氧化分解,因而循环性能不佳。
对比例实施例1~2,及实施例5~8可知,采用化合物5和6时,锂金属电池的倍率性能更佳,这可能与其具有较多的吸电子基团有关。
对比实施例2和实施例10可知,锂盐为LiFSI时,锂金属电池的循环性能增加,这可能是由于LiFSI的阴离子-SO 2F基团对锂的反应性较高,分解产物以LiF为主,LiF与锂金属的高表面能有利于抑制锂枝晶生长。同时,LiF具有低电子电导率和高电化学稳定性,能有效钝化锂金属负极表面,从而保护锂金属负极。
对比实施例2和实施例11可知,溶剂中含有高含量的FEC时,锂金属电池 的循环性能得到了提高,这可能是由于通过引入与锂离子亲和性更强的氟代碳酸乙烯酯FEC分子,参与到锂离子溶剂化壳层中,降低锂离子脱溶剂化能垒,从而降低锂离子沉积、脱出过程的极化。同时,与锂离子配位的FEC分子优先在金属锂表面分解形成富含LiF的SEI膜,可以降低锂离子在SEI膜中扩散能垒并诱导金属锂均匀沉积。
对比实施例12和对比例3可知,在具有含-P-F基团的磷酰胺类化合物的基础上再增加VEC,倍率和循环性能都得到了提高,尤其是循环性能,这是由于VEC的LUMO能级很低,能在锂金属负极表面优先还原分解生成富含聚碳酸酯的SEI膜,而聚碳酸酯物质具有黏结性和柔韧性,能帮助SEI膜适应锂金属负极的体积变化所带来的应力,提高了SEI膜的稳定性。
最后应当说明的是,以上实施例仅用以说明本申请的技术方案而非对本申请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的实质和范围。

Claims (10)

  1. 一种锂金属电池用添加剂,其特征在于,为含-P-F基团的磷酰胺类化合物。
  2. 如权利要求1所述的锂金属电池用添加剂,其特征在于,所述含-P-F基团的磷酰胺类化合物如结构式I或结构式II所示,
    Figure PCTCN2022097318-appb-100001
    其中,R 1为氟原子或氟代烃,R 2和R 3各自独立地选自烃基、苯基、酯基、硅基和氟代烃中至少一种。
  3. 如权利要求2所述的锂金属电池用添加剂,其特征在于,所述R 1为氟原子或C 1-C 3的氟代烃,R 2和R 3各自独立地选自C 1-C 3的烃基、苯基、C 2-C 3的酯基、三甲基硅基和C 1-C 3的氟代烃中至少一种。
  4. 如权利要求1所述的锂金属电池用添加剂,其特征在于,所述含-P-F基团的磷酰胺类化合物为化合物1~6所示中的至少一种,
    Figure PCTCN2022097318-appb-100002
  5. 一种锂金属电池用电解液,包括锂盐、非水有机溶剂和添加剂,其特征在于,所述添加剂包括权利要求1~4任意一项所述的锂金属电池用添加剂。
  6. 如权利要求5所述的锂金属电池用电解液,其特征在于,所述含-P-F基团的磷酰胺类化合物占所述锂盐、所述非水有机溶剂和所述添加剂质量之和的0.1~5%。
  7. 如权利要求5所述的锂金属电池用电解液,其特征在于,所述锂盐选自LiCl、LiBr、LiI、LiClO 4、LiBF 4、LiPF 6、LiCF 3SO 3、LiCF 3CO 2、LiC 4BO 8、LiAsF 6、LiSbF 6、LiAlCl 4、CH 3SO 3Li、CF 3SO 3Li、(CF 3SO 2) 2NLi、(C 2F 5SO 2) 2NLi、(SO 2F) 2NLi、(CF 3SO 2) 3Cli和氯硼烷锂中的至少一种。
  8. 如权利要求5所述的锂金属电池用电解液,其特征在于,所述有机溶剂为链状碳酸酯、环状碳酸酯、羧酸酯、内酯和醚类化合物中的至少一种。
  9. 一种锂金属电池,包括正极材料、负极材料和电解液,其特征在于,所述电解液为权利要求1~8任意一项所述的电解液,所述负极材料为锂金属或锂合金,且最高充电电压为4.55V。
  10. 如权利要求9所述的锂金属电池,其特征在于,所述正极材料为钴酸锂材料、镍钴锰氧化物或镍钴铝氧化物。
PCT/CN2022/097318 2022-02-23 2022-06-07 锂金属电池用添加剂、电解液及其锂金属电池 WO2023159796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210173804.6 2022-02-23
CN202210173804.6A CN114552010B (zh) 2022-02-23 2022-02-23 锂金属电池用添加剂、电解液及其锂金属电池

Publications (1)

Publication Number Publication Date
WO2023159796A1 true WO2023159796A1 (zh) 2023-08-31

Family

ID=81676706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097318 WO2023159796A1 (zh) 2022-02-23 2022-06-07 锂金属电池用添加剂、电解液及其锂金属电池

Country Status (2)

Country Link
CN (1) CN114552010B (zh)
WO (1) WO2023159796A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552010B (zh) * 2022-02-23 2022-12-09 珠海市赛纬电子材料股份有限公司 锂金属电池用添加剂、电解液及其锂金属电池
CN115863768B (zh) * 2023-02-22 2023-04-25 安徽盟维新能源科技有限公司 一种电解液及包含该电解液的锂金属电池
CN117558987B (zh) * 2024-01-12 2024-05-03 江苏天鹏电源有限公司 一种锂离子电池电解液及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141974A (ja) * 2010-01-06 2011-07-21 Tosoh F-Tech Inc 含フッ素リン酸エステルアミドを含む非水電解液
CN103827416A (zh) * 2011-04-11 2014-05-28 巴斯夫公司 非水电解液和包含其的电化学电池
CN112186248A (zh) * 2020-09-30 2021-01-05 香河昆仑化学制品有限公司 一种锂离子电池非水电解液及锂离子电池
CN114552010A (zh) * 2022-02-23 2022-05-27 珠海市赛纬电子材料股份有限公司 锂金属电池用添加剂、电解液及其锂金属电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187073A1 (ja) * 2012-06-15 2013-12-19 東ソー・エフテック株式会社 LiPF6の安定化方法、熱安定性に優れた非水系二次電池用電解液及び熱安定性に優れた非水系二次電池
JP6665396B2 (ja) * 2015-02-19 2020-03-13 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP5835514B1 (ja) * 2015-05-27 2015-12-24 宇部興産株式会社 リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ
US10851124B2 (en) * 2017-04-10 2020-12-01 Central Glass Co., Ltd. Method for producing phosphoryl imide salt, method for producing nonaqueous electrolyte solution containing said salt, and method for producing nonaqueous secondary battery
CN108232168B (zh) * 2018-01-19 2020-06-09 河北力滔电池材料有限公司 改性磷酸铁锂复合材料及制备方法
CN108808087B (zh) * 2018-05-04 2022-06-10 常德市大度新材料有限公司 一种含有磷酰亚胺锂的电解液及使用该电解液的电池
CN110299562B (zh) * 2019-07-17 2021-10-08 珠海市赛纬电子材料股份有限公司 一种锂盐添加剂及其锂离子电池非水电解液
CN112467207B (zh) * 2019-09-09 2021-09-17 宁德时代新能源科技股份有限公司 一种电解液及包含该电解液的锂金属电池
US11881558B2 (en) * 2020-01-09 2024-01-23 Apple Inc. Electrolytes for lithium-containing battery cells
CN113549111A (zh) * 2020-04-24 2021-10-26 北京康派森医药科技有限公司 一种富马酸替诺福韦艾拉酚胺杂质的制备方法
CN111786020B (zh) * 2020-07-20 2022-11-29 香河昆仑新能源材料股份有限公司 一种含氟代磷酸酰胺盐的非水电解液和锂离子电池
CN112952196A (zh) * 2020-09-15 2021-06-11 比亚迪股份有限公司 环状磷酰胺基锂盐及其制备方法、电解液添加剂、电解液及电池
CN113113669B (zh) * 2021-04-09 2022-05-17 珠海市赛纬电子材料股份有限公司 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
CN113889667B (zh) * 2021-12-08 2022-04-19 新乡华锐锂电新能源有限公司 一种适配可快充钴酸锂电池的高电压电解液及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141974A (ja) * 2010-01-06 2011-07-21 Tosoh F-Tech Inc 含フッ素リン酸エステルアミドを含む非水電解液
CN103827416A (zh) * 2011-04-11 2014-05-28 巴斯夫公司 非水电解液和包含其的电化学电池
CN112186248A (zh) * 2020-09-30 2021-01-05 香河昆仑化学制品有限公司 一种锂离子电池非水电解液及锂离子电池
CN114552010A (zh) * 2022-02-23 2022-05-27 珠海市赛纬电子材料股份有限公司 锂金属电池用添加剂、电解液及其锂金属电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GERHARD CZIESLIK, GERALD FLASKERUD, RAINER HOEFER, OSKAR GLEMSER: "N-(difluorophosphoryl)- and N-(dichlorophosphoranylidene)silylamines", CHEMISCHE BERICHTE, VCH, DE, vol. 106, no. 2, 28 February 1973 (1973-02-28), DE , pages 399 - 403, XP009548295, ISSN: 0009-2940 *
HEAP, R. ET AL.: "Esters containing phosphorus. Part VII. Substituted diaminofluorophosphine oxides", JOURNAL OF THE CHEMICAL SOCIETY, 1 January 1948 (1948-01-01), XP001100080, ISSN: 0368-1769, DOI: 10.1039/jr9480001313 *
MIKHAILYUCHENKO, N. K. ET AL.: "N-alkyl-N-(alkoxycarbonyl)amidophosphoric acid halides and isocyanates", ZHURNAL OBSHCHEI KHIMII [RUSSIAN JOURNAL OF ORGANIC CHEMISTRY], NAUKA, RU, vol. 58, no. 12, 31 December 1988 (1988-12-31), RU , pages 2767 - 2768?, XP009548776, ISSN: 0044-460X *

Also Published As

Publication number Publication date
CN114552010A (zh) 2022-05-27
CN114552010B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
JP4033074B2 (ja) 二次電池用電解液およびそれを用いた二次電池
KR101264364B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
TWI389896B (zh) Nonaqueous electrolytic solution and a nonaqueous electrolyte secondary battery using the same
WO2021110165A1 (zh) 一种低内阻的锂二次电池电解液及锂二次电池
JP4379567B2 (ja) 二次電池用電解液およびそれを用いた二次電池
JP4465968B2 (ja) 二次電池用電解液およびそれを用いた二次電池
WO2023159796A1 (zh) 锂金属电池用添加剂、电解液及其锂金属电池
JP5305446B2 (ja) 非水電解液およびそれを用いた非水電解液二次電池
JP2009129747A (ja) 二次電池
CN108630989A (zh) 电解液及锂离子电池
JP4352719B2 (ja) リチウムイオン二次電池用電解液およびそれを用いたリチウムイオン二次電池
JP4968614B2 (ja) 二次電池用電解液およびそれを用いた二次電池
WO2023213329A1 (zh) 富锂锰基电池体系电解液及其制备方法和含有其的富锂锰基锂离子电池
JP5300054B2 (ja) 非水電解液およびそれを用いた非水電解液二次電池
WO2023159798A1 (zh) 应用于碱金属电池的电解液及其碱金属电池
WO2021238052A1 (zh) 一种锂离子二次电池的电解液及其应用
CN110911748B (zh) 一种锂二次电池电解液和锂二次电池
CN111934015A (zh) 一种锂离子电池非水电解液及含该非水电解液的锂离子电池
JP4265169B2 (ja) 二次電池用電解液およびそれを用いた二次電池
CN110970663A (zh) 非水电解液及锂离子电池
CN108400382A (zh) 电解液及二次电池
KR20090106993A (ko) 비수 전해액 및 이를 이용한 비수 전해액 2차 전지
CN116487707B (zh) 锂离子电池及其电解液
WO2023221120A1 (zh) 非水电解液以及包含其的二次电池、电池模块、电池包及用电装置
WO2020063886A1 (zh) 非水电解液、锂离子电池、电池模块、电池包及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928067

Country of ref document: EP

Kind code of ref document: A1