WO2023157941A1 - 導電性ペースト及び多層基板 - Google Patents

導電性ペースト及び多層基板 Download PDF

Info

Publication number
WO2023157941A1
WO2023157941A1 PCT/JP2023/005640 JP2023005640W WO2023157941A1 WO 2023157941 A1 WO2023157941 A1 WO 2023157941A1 JP 2023005640 W JP2023005640 W JP 2023005640W WO 2023157941 A1 WO2023157941 A1 WO 2023157941A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal particles
mass
melting point
parts
conductive paste
Prior art date
Application number
PCT/JP2023/005640
Other languages
English (en)
French (fr)
Inventor
元 中園
剛志 津田
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Publication of WO2023157941A1 publication Critical patent/WO2023157941A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a conductive paste and a multilayer substrate using this conductive paste.
  • a conductive paste used for filling holes in substrates flux, curing agent, thermosetting resin, and conductive filler are added, and by heating under certain conditions, the resin hardens and the metal particles melt.
  • Metal melting pastes have been used which metallize (ie, form intermetallics between metal particles) by heating.
  • Patent Documents 1 and 2 In order to exhibit long-term connection stability in such a conductive paste, a method of using a conductive filler in combination with high-melting metal particles and low-melting metal particles has been known (Patent Documents 1 and 2). .
  • Patent Document 3 In addition, in order to improve conductivity, an invention has been reported in which a fluorine-based surfactant is used to improve the wettability of a conductive paste and improve connectivity (Patent Document 3).
  • An object of the present invention is to solve such problems, and to provide a conductive paste capable of forming a cured product that achieves both high conductivity and long-term reliability.
  • the material has high conductivity and long-term reliability.
  • the present invention has been completed based on these findings.
  • the present invention provides high melting point metal particles (B1) containing silver and/or copper and having a melting point of 800° C. or higher and a low melting point metal alloy having a melting point of 130° C. to 150° C. per 100 parts by mass of a liquid epoxy compound.
  • a conductive paste containing 1700 to 3300 parts by mass of metal particles, 1 to 30 parts by mass of a curing agent, and 20 to 200 parts by mass of flux.
  • the conductive paste can contain a large amount of metal particles, and as a result, the conductivity can be improved.
  • the high-melting-point metal particles (B1) and the low-melting-point metal particles (B2) in combination the cured product has excellent conductivity.
  • the low-melting-point metal particles (B3) the long-term reliability of a cured product can be improved. Further, 1700 parts by weight of metal particles containing the high melting point metal particles (B1), the low melting point metal particles (B2), and the low melting point metal particles (B3) are added to 100 parts by mass of the liquid epoxy compound.
  • the cured product of the conductive paste By containing up to 3300 parts by weight, it is possible to reduce the specific resistance in the cured product of the conductive paste, improve the conductivity, and suppress the occurrence of cracks, thereby improving the long-term connection reliability.
  • the occurrence of cracks in the cured product By containing 1 part by mass to 30 parts by mass of the curing agent, the occurrence of cracks in the cured product can be suppressed, and long-term reliability can be improved.
  • the cured product of the conductive paste By containing 20 parts by mass to 200 parts by mass of flux, the cured product of the conductive paste can have a reduced specific resistance and an improved electrical conductivity.
  • the mass ratio of the low-melting-point metal particles (B2) and the low-melting-point metal particles (B3) is 0.9 or more, the specific resistance tends to be reduced and the conductivity tends to be excellent. Further, when the mass ratio of the low-melting-point metal particles (B2) and the low-melting-point metal particles (B3) is 40 or less, crack generation can be suppressed and long-term connection reliability can be easily achieved. Become.
  • the curing agent is preferably a hydroxyl group-containing aromatic compound.
  • the curing agent is preferably a phenol-based curing agent and/or a naphthol-based curing agent.
  • the present invention comprises a plurality of conductive layers and an insulating layer interposed between the plurality of conductive layers, holes penetrating the insulating layers are filled with a cured product of the conductive paste of the present invention, and the conductive paste A multilayer substrate in which conductive layers in contact with both surfaces of the insulating layer are electrically connected to each other through the cured product of (1).
  • the high-melting metal particles (B1), the low-melting metal particles (B2), and the low-melting metal particles (B3) are melted and integrated with each other to form an alloy. is preferred.
  • the conductive paste of the present invention can form a cured product that achieves both high conductivity and long-term reliability.
  • the conductive paste of the present invention contains at least a liquid epoxy compound, metal particles, a curing agent and flux.
  • the conductive paste may contain components other than the components described above.
  • the liquid epoxy compound is a compound having at least one epoxy group (oxiranyl group) in the molecule (in one molecule).
  • the liquid epoxy compound means an epoxy compound that is liquid at room temperature.
  • liquid at room temperature shall mean that it is in a state of exhibiting fluidity at 25°C in the absence of a solvent. Since the conductive paste of the present invention contains the liquid epoxy compound having high fluidity, a large amount of metal particles can be blended, and as a result, the conductivity can be improved. Only one kind of the liquid epoxy compound may be used, or two or more kinds thereof may be used.
  • liquid epoxy compound examples include, but are not limited to, bisphenol-type epoxy compounds, spirocyclic-type epoxy compounds, naphthalene-type epoxy compounds, biphenyl-type epoxy compounds, terpene-type epoxy compounds, novolak-type epoxy compounds, and dimer acid-modified epoxy compounds. , glycidylamine-type epoxy compounds, glycidyl ether-type epoxy compounds, rubber-modified epoxy resins, chelate-modified epoxy resins, and the like. Among them, a dimer acid-modified epoxy compound is preferable from the viewpoint of low resistance and excellent storage stability.
  • bisphenol-type epoxy compounds examples include bisphenol A-type epoxy compounds, bisphenol F-type epoxy compounds, bisphenol S-type epoxy compounds, tetrabromobisphenol A-type epoxy compounds, and the like.
  • novolak-type epoxy compounds examples include cresol novolak-type epoxy compounds, phenol novolak-type epoxy compounds, ⁇ -naphthol novolak-type epoxy compounds, and brominated phenol novolac-type epoxy compounds.
  • the dimer acid-modified epoxy compound is an epoxy compound modified with dimer acid, that is, a reaction of at least one carboxyl group in the dimer acid structure with a polyfunctional epoxy compound.
  • a dimer acid is a dimer of an unsaturated fatty acid here.
  • the unsaturated fatty acid used as the raw material is not particularly limited, but for example, plant-derived fats and oils mainly composed of unsaturated fatty acids having 18 carbon atoms such as oleic acid and linoleic acid can be used.
  • the structure of the dimer acid may be either cyclic or non-cyclic.
  • the epoxy compound that undergoes dimer acid modification is not particularly limited, but includes, for example, the epoxy compounds exemplified as the above epoxy compounds.
  • Epoxy compounds contained in the dimer acid-modified epoxy compound may be used alone or in combination of two or more.
  • known dimer acid-modified epoxy compounds obtained by modifying various epoxy compounds such as bisphenol type, ether ester type, novolac epoxy type, ester type, aliphatic type, and aromatic type with dimer acid can be used.
  • glycidylamine-type epoxy compounds examples include aminophenol-type epoxy compounds such as tetraglycidyldiaminodiphenylmethane and N,N-bis(2,3-epoxypropyl)-4-(2,3-epoxypropoxy)aniline. mentioned.
  • glycidyl ether-type epoxy compounds examples include tris(glycidyloxyphenyl)methane, tetrakis(glycidyloxyphenyl)ethane, and glycidyl alkyl ethers.
  • the rubber-modified epoxy resin contains a rubber component in the epoxy resin.
  • the rubber component include butadiene rubber, acrylic rubber, silicone rubber, butyl rubber, isoprene rubber, styrene rubber, chloroprene rubber, NBR, SBR, IR, and EPR. Only one type of the rubber component may be used, or two or more types may be used.
  • metal particles In the conductive paste of the present invention, as metal particles, high-melting-point metal particles (B1) containing silver and/or copper and having a melting point of 800° C. or higher and low-melting-point metal particles (B2) being an alloy having a melting point of 130° C. to 150° C. and low-melting-point metal particles (B3) having a melting point of 200° C. to 240° C., which is an alloy of two or more selected from the group consisting of tin, silver, copper, bismuth, and indium.
  • the high melting point metal particles (B1) are metal particles containing copper (melting point: 1083°C) and/or silver (melting point: 961°C).
  • the conductive paste of the present invention can exhibit sufficient conductivity by combining the high melting point metal particles (B1) and the low melting point metal particles (B2).
  • the high melting point metal particles (B1) may contain metals other than copper and silver, such as gold (melting point: 1064°C), nickel (melting point: 1455°C), zinc (melting point: 420°C) , or an alloy containing one or more of these and having a melting point of 800° C. or higher.
  • the high-melting-point metal particles (B1) only one type may be used, or two or more types may be used.
  • the high-melting-point metal particles (B1) may be metal-coated metal particles, such as silver-coated copper particles, gold-coated copper particles, silver-coated nickel particles, or silver-coated alloy particles.
  • metal-coated metal particles such as silver-coated copper particles, gold-coated copper particles, silver-coated nickel particles, or silver-coated alloy particles.
  • silver-coated alloy particles include silver-coated copper alloy particles in which an alloy containing copper (for example, a copper alloy comprising an alloy of copper, nickel and zinc) is coated with silver.
  • the melting point of the high melting point metal particles (B1) is 800°C or higher, preferably 900°C or higher, more preferably 1000°C or higher.
  • the melting point of the high-melting-point metal particles (B1) is preferably 1300° C. or lower, more preferably 1200° C. or lower.
  • the conductive paste tends to be easily alloyed when cured.
  • the content of the high-melting-point metal particles (B1) is preferably 400 parts by mass to 1800 parts by mass, more preferably 500 parts by mass to 1500 parts by mass, based on 100 parts by mass of the liquid epoxy compound. It is preferably from 600 parts by mass to 1400 parts by mass, and particularly preferably from 700 parts by mass to 1300 parts by mass.
  • 400 parts by mass or more of the high-melting-point metal particles (B1) with respect to 100 parts by mass of the liquid epoxy compound the specific resistance of the cured product can be lowered, and sufficient conductivity can be exhibited. easier.
  • the content of the high-melting-point metal particles (B1) is 1800 parts by mass or less, it is possible to improve the long-term reliability by suppressing the occurrence of cracks when the cured product is made into a cured product. can.
  • the low-melting-point metal particles (B2) are metal particles that are an alloy with a melting point of 130.degree. C. to 150.degree.
  • the conductive paste of the present invention can exhibit sufficient conductivity by combining the high melting point metal particles (B1) and the low melting point metal particles (B2).
  • As the low-melting-point metal particles (B2) only one type may be used, or two or more types may be used.
  • the low-melting-point metal particles (B2) are preferably an alloy containing tin (melting point: 232°C) and bismuth (melting point: 271°C). Other metals may be contained if appropriate. Further, the mass ratio of tin:bismuth in the low melting point metal particles (B2) is preferably 80:20 to 40:60. By setting the mass ratio of tin to bismuth as described above, it becomes easy to set the melting point of the melting point metal particles (B2) within the range of 130°C to 150°C.
  • the melting point of the low melting point metal particles (B2) is 130°C to 150°C, preferably 135°C to 145°C. When the melting point is within the above range, it becomes easy to perform metallization during the curing reaction of the conductive paste.
  • the content of the low melting point metal particles (B2) is preferably 300 parts by mass to 2400 parts by mass, more preferably 400 parts by mass to 2300 parts by mass, based on 100 parts by mass of the liquid epoxy compound. It is preferably 500 to 2200 parts by mass, particularly preferably 600 to 2000 parts by mass.
  • the content of the low-melting-point metal particles (B2) is 300 parts by mass or more with respect to 100 parts by mass of the liquid epoxy compound, a cured product can exhibit sufficient conductivity.
  • the content of the low-melting-point metal particles (B2) is 2400 parts by mass or less, it is possible to improve the long-term reliability by suppressing the occurrence of cracks when the cured product is made into a cured product. can.
  • the low-melting-point metal particles (B3) are an alloy of two or more selected from the group consisting of tin, silver, copper, bismuth, and indium, and have a melting point of 200°C to 240°C.
  • the conductive paste of the present invention can improve the long-term reliability of the conductive paste by containing the low-melting-point metal particles (B3).
  • the low-melting-point metal particles (B3) only one kind may be used, or two or more kinds may be used.
  • the low-melting-point metal particles (B3) are preferably an alloy containing tin as a main component. Also, as long as the melting point is in the range of 200°C to 240°C, metals other than the metals mentioned above may be contained.
  • the content of tin is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more in the total amount (100% by mass) of the alloy.
  • the low-melting-point metal particles (B3) containing tin as a main component facilitates setting the melting point to 200°C to 240°C.
  • the melting point of the low melting point metal particles (B3) is 200°C to 240°C, preferably 205°C to 235°C.
  • the melting point of the low-melting-point metal particles (B3) is within the above range, long-term reliability can be easily improved.
  • the content of the low melting point metal particles (B3) is preferably 40 to 700 parts by mass, more preferably 50 to 600 parts by mass, and particularly preferably 100 parts by mass of the liquid epoxy compound. is 60 parts by mass to 500 parts by mass.
  • the content of the low-melting-point metal particles (B3) is 40 parts by mass or more with respect to 100 parts by mass of the liquid epoxy compound, long-term connection reliability can be improved when cured.
  • the content of the low-melting-point metal particles (B3) is 700 parts by mass or less, it is possible to exhibit appropriate filling properties.
  • the conductive paste of the present invention may contain metal particles other than the high melting point metal particles (B1), the low melting point metal particles (B2), and the low melting point metal particles (B3).
  • the high melting point metal particles (B1), the low melting point metal particles (B2), and the low melting point metal particles contained in the conductive paste The total amount of (B3) is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 99% by mass or more, based on the total amount (100% by mass) of the metal particles.
  • the shape of the metal particles includes spherical, flake-like (scale-like), dendritic, fibrous, amorphous (polyhedral), and the like.
  • the high-melting-point metal particles (B1), the low-melting-point metal particles (B2), and the low-melting-point metal particles (B3) may have different or identical particle shapes. Among them, a spherical shape is preferable from the viewpoint of higher filling properties, filling properties, and coating stability of the conductive paste and better conductivity.
  • the average particle size (D50) of the metal particles is 0.5 ⁇ m to 30 ⁇ m for each of the high melting point metal particles (B1), the low melting point metal particles (B2), and the low melting point metal particles (B3). preferably 1 ⁇ m to 10 ⁇ m.
  • the total amount of metal particles used in the conductive paste of the present invention is 1700 parts by mass to 3300 parts by mass, preferably 1800 parts by mass to 3200 parts by mass, relative to 100 parts by mass of the liquid epoxy compound. It is preferably 1900 parts by mass to 3000 parts by mass.
  • the content of the metal particles is 1700 parts by mass or more with respect to 100 parts by mass of the liquid epoxy compound, the specific resistance can be reduced and the conductivity can be improved when a cured product is obtained.
  • the content of the metal particles is 3300 parts by mass or less, it is possible to improve filling properties and improve long-term reliability.
  • the conductive paste has a mass ratio of 0.9 or more between the low-melting-point metal particles (B2) and the low-melting-point metal particles (B3). It tends to be able to achieve both long-term reliability while being excellent in performance.
  • the mass ratio of the low-melting-point metal particles (B2) and the low-melting-point metal particles (B3) is 40 or less, the cured product has sufficient reflow resistance and heat cycle resistance, and can be used for a long period of time. tend to be more reliable.
  • the curing agent preferably cures the liquid epoxy compound contained in the conductive paste of the present invention. Therefore, the curing agent preferably has a functional group reactive with an epoxy group. Only one kind of the curing agent may be used, or two or more kinds thereof may be used.
  • the curing agent examples include isocyanate-based curing agents, phenol-based curing agents, naphthol-based curing agents, imidazole-based curing agents, and amine-based curing agents.
  • the curing agent is preferably a hydroxyl group-containing aromatic compound from the viewpoint of reactivity with the epoxy compound.
  • Preferable examples of the hydroxyl-containing aromatic compound include phenol-based curing agents and naphthol-based curing agents.
  • phenol-based curing agent examples include a phenol-based curing agent having a novolac structure, a nitrogen-containing phenol-based curing agent, and a triazine skeleton-containing phenol-based curing agent.
  • Examples of the naphthol-based curing agent include a naphthol-based curing agent having a novolak structure, a nitrogen-containing naphthol-based curing agent, and a triazine skeleton-containing naphthol-based curing agent.
  • the content of the curing agent is 1 to 30 parts by mass, preferably 2 to 27 parts by mass, more preferably 3 to 25 parts by mass with respect to 100 parts by mass of the liquid epoxy compound.
  • the content is 1 part by mass or more, the curing of the curable compound in the conductive paste is sufficient, and long-term reliability tends to be excellent.
  • the content is 30 parts by mass or less, the curing agent does not hinder conduction in a cured product, and conductivity tends to be good.
  • the flux has a role of promoting metallization of the metal particles.
  • Examples of the flux include polyvalent carboxylic acid compounds and other compounds. Only one kind of flux may be used, or two or more kinds thereof may be used.
  • polyvalent carboxylic acid compounds examples include dicarboxylic acids such as oxalic acid, glutaric acid, adipic acid, succinic acid, sebacic acid, malonic acid, maleic acid, fumaric acid, phthalic acid, pimelic acid, suberic acid, and azelaic acid.
  • dicarboxylic acids such as oxalic acid, glutaric acid, adipic acid, succinic acid, sebacic acid, malonic acid, maleic acid, fumaric acid, phthalic acid, pimelic acid, suberic acid, and azelaic acid.
  • terephthalic acid citraconic acid, ⁇ -ketoglutaric acid, diglycolic acid, thiodiglycolic acid, dithiodiglycolic acid, 4-cyclohexene-1,2-dicarboxylic acid, dodecanedioic acid, diphenyl ether-4,4'-dicarboxylic acid , pyridine-2,6-dicarboxylic acid, tetrahydrocarboxylic acid, hexahydrocarboxylic acid, tetrahydrophthalic acid, hexahydrophthalic acid, 8-ethyloctadecanedioic acid, etc.
  • Tricarboxylic acids include, for example, trimellitic acid, citric acid, acid, isocitric acid, butane-1,2,4-tricarboxylic acid, cyclohexane-1,2,4-tricarboxylic acid, benzene-1,2,4-tricarboxylic acid, 1,2,3-propanetricarboxylic acid, etc.
  • Examples of tetracarboxylic acids include ethylenetetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, cyclobutane-1,2,3,4-tetracarboxylic acid, benzene-1,2,4, 5-tetracarboxylic acid and the like.
  • the compounds other than those mentioned above include zinc chloride, lactic acid, oleic acid, stearic acid, glutamic acid, benzoic acid, glutamic acid hydrochloride, aniline hydrochloride, cetylpyridine bromide, urea, triethanolamine, glycerin, hydrazine, and rosin. mentioned.
  • the content of the flux is 20 parts by mass to 200 parts by mass, preferably 30 parts by mass to 180 parts by mass, more preferably 40 parts by mass to 160 parts by mass, based on 100 parts by mass of the liquid epoxy compound. .
  • the content of the flux is 20 parts by mass or more, the metallization of the metal particles can be sufficiently promoted in the cured product.
  • the content is 200 parts by mass or less, the flux does not hinder conduction in a cured product, and the conductivity tends to be good.
  • the conductive paste of the present invention may contain components other than the components described above within a range that does not impair the effects of the present invention.
  • the above-mentioned other components include components contained in known or commonly used compositions.
  • the other components include binder components other than the liquid epoxy compound, solvents, antifoaming agents, leveling agents, thickeners, adhesives, fillers, flame retardants, colorants, and the like. Only one kind of the other components may be used, or two or more kinds thereof may be used.
  • thermosetting compounds other than the liquid epoxy compound examples include thermosetting compounds other than the liquid epoxy compound.
  • thermosetting compound examples include epoxy compounds, acrylate compounds, phenol-based resins, urethane-based resins, melamine-based resins, and alkyd-based resins that are solid at room temperature.
  • solid at normal temperature shall mean the state which does not show fluidity
  • the conductive paste of the present invention may or may not contain the above other binder components.
  • the content thereof should be 50 parts by mass or less with respect to 100 parts by mass of the liquid epoxy compound, from the viewpoint of reducing the viscosity of the conductive paste and improving the handleability. is preferred, more preferably 30 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • solvent examples include ketones such as methyl ethyl ketone, acetone and acetophenone; ethers such as methyl cellosolve, methyl carbitol, diethylene glycol dimethyl ether and tetrahydrofuran; and esters such as methyl cellosolve acetate, butyl acetate and methyl acetate. Solvents may be mentioned.
  • the content of the solvent in the conductive paste of the present invention is not particularly limited, but it is preferably 10% by mass or less, more preferably 5% by mass or less with respect to 100% by mass of the total amount of the conductive paste of the present invention. be.
  • the conductive paste of the present invention is BH type viscometer rotor No. 7 (rotational speed: 10 rpm) at 25° C. is preferably 300 dPa ⁇ s to 2500 dPa ⁇ s, more preferably 500 dPa ⁇ s to 2000 dPa ⁇ s. It exists in the tendency which is excellent in the filling property as the said viscosity is in the said range.
  • the conductive paste of the present invention can be used for filling holes such as vias and through holes in semiconductor packages.
  • it can be used for filling holes in multilayer substrates.
  • the thermosetting compound such as a liquid epoxy compound is cured by heat curing, and the high melting point metal particles (B1) and the low melting point metal particles ( B2) and the metal particles containing the low-melting-point metal particles (B3) are melted and metallized, and the metal particles and the contact portions of the conductive layer provided at the upper and lower ends of the through-hole are integrated. do.
  • the metal particles and the conductive layer are simply in contact with each other, higher conductivity can be obtained, and the reliability of bonding between the conductive paste and the conductive layer is remarkably improved.
  • the conductive paste has excellent adhesiveness to the insulating layer of the multilayer substrate, a multilayer substrate having high long-term reliability can be obtained.
  • the conductive paste of the present invention is not particularly limited, and can be produced by a known or commonly used method. For example, it can be produced by mixing the above components and stirring with a three-roll mill, planetary stirring device, planetary mixer, homomixer, paddle mixer, or the like.
  • the multilayer substrate of the present invention comprises a plurality of conductive layers and insulating layers interposed between the plurality of conductive layers, holes passing through the insulating layers are filled with a conductive paste cured product, and the conductive paste cured product is filled. It is preferable that the multilayer substrate is a multilayer substrate in which the conductive layers that are in contact with both surfaces of the insulating layer are electrically connected to each other.
  • the conductive layer is not particularly limited as long as it exhibits conductivity, but examples include gold, silver, copper, palladium, nickel, aluminum, or alloys containing one or more of these metals. Moreover, the conductive layer may be a single layer, or may be a laminate of the same or different types.
  • the thickness of the conductive layer is preferably 5 nm to 10 ⁇ m.
  • the thickness of the conductive layer is the total thickness of all layers.
  • the insulating layer is not particularly limited as long as it exhibits insulating properties, but examples thereof include plastic substrates (particularly plastic films) and glass plates.
  • the insulating layer may be a single layer or a laminate of the same or different types.
  • the thickness of the insulating layer is preferably 1 ⁇ m to 1000 ⁇ m.
  • the thickness of the insulating layer is the total thickness of all the layers.
  • the multilayer substrate preferably has a structure in which two or more layers of the conductive layers are formed on both sides of the insulating layer, and more preferably two to ten layers.
  • the high melting point metal particles (B1), the low melting point metal particles (B2), and the low melting point metal particles (B3) are melted and mutually It is preferably integrated with and alloyed.
  • the above-mentioned alloying is metallization in which adjacent metal particles are connected and integrated when used for filling holes in a multilayer substrate, and a conductive layer that contacts the metal particles at the upper and lower ends of the holes. It means to connect and integrate.
  • FIG. 1 is a schematic cross-sectional view showing an example of manufacturing a multilayer substrate using the conductive paste of the present invention.
  • reference numeral 1 indicates an insulating layer
  • reference numeral 2 indicates a conductive paste filled in through-holes of the insulating layer
  • reference numeral 3 indicates a conductive layer
  • reference numeral 2' indicates a cured product of the conductive paste 2.
  • reference numeral 3' denotes a patterned conductive layer. It should be noted that this figure shows an example in which the filler is in direct contact with the inner walls of the through-holes without through-hole plating being applied to the through-holes of the substrate.
  • conductive layers 3 are arranged on both upper and lower surfaces of the insulating layer 1, pressed and integrated, and heated under predetermined conditions. This heating cures the liquid epoxy compound and melts the metal particles, thereby promoting metallization in which adjacent metal particles are connected to each other and firmly bonding the end surfaces of the conductive layer and the metal particles. After curing, the conductive layer can be patterned as required, for example, as shown in (c).
  • heating conditions for the conductive paste conditions suitable for both curing of the liquid epoxy compound and metallization of the metal particles are selected. Heating may be performed within the temperature range of 150° C. to 180° C. for about 30 minutes to 120 minutes.
  • a multi-layer substrate in which three or more conductive layers and two or more insulating layers are alternately laminated can also be used. It can be manufactured according to the above.
  • Liquid epoxy compound trade name "jER871", high melting point metal particles (B1) manufactured by Mitsubishi Chemical Corporation 1: silver-coated copper powder (melting point 990 ° C., average particle size 3 ⁇ m), high melting point metal particles (B1) 2 manufactured by DOWA Electronics Co., Ltd. : Silver powder (melting point 961 ° C., average particle size 3 ⁇ m), high melting point metal particles (B1) manufactured by DOWA Electronics 3: copper powder (melting point 1083 ° C., average particle size 3 ⁇ m), low melting point metal manufactured by Fukuda Metal Particle Foil Powder Industry Co., Ltd.
  • Particles (B2): Sn—Bi alloy metal particles (Sn:Bi 42:58, melting point 138° C., average particle size 6 ⁇ m)
  • Low melting point metal particles (B3): Sn96.5-Ag3.0-Cu0.5 metal particles (Sn:Ag:Cu 96.5:3.0:0.5, melting point 217° C., average particle size 6 ⁇ m)
  • Curing agent phenolic curing agent, trade name “Tamanol 758”, manufactured by Arakawa Chemical Industries, Ltd. Flux: 8-ethyloctadecanedioic acid, manufactured by Okamura Oil Co., Ltd.
  • a ⁇ 100 ⁇ m 169-hole connection pattern is formed on an insulating layer (manufactured by Panasonic Corporation, product name “R-1551”) with a thickness of about 100 ⁇ m using a CO 2 laser, and the holes are filled with the above conductive paste by a printing method.
  • a substrate for evaluation was produced by pressing under the following pressure and temperature conditions using a vacuum press. Pressure: The surface pressure was increased from 0 kg/cm 2 to 10.2 kg/cm 2 over 17 minutes and maintained for 10 minutes. Next, the surface pressure was increased to 30.6 kg/cm 2 over 24 minutes, maintained for 46 minutes, and then decreased to 0 kg/cm 2 over 23 minutes. Temperature: The temperature was raised from 30°C to 130°C over 17 minutes and maintained for 10 minutes. Then, the temperature was raised to 180° C. over 24 minutes, maintained for 46 minutes, and then cooled to 30° C. over 23 minutes.
  • Examples 1 to 7 were excellent in conductivity and long-term reliability. Long-term reliability was insufficient in Comparative Example 1, which did not contain the low-melting-point metal particles (B3). In Comparative Example 3, in which the metal particle content did not reach 1700 parts by mass, the conductivity and long-term reliability were insufficient. Comparative Examples 2 and 4, in which the content of the metal particles exceeded 3300 parts by mass, lacked filling properties and reflow resistance, resulting in insufficient long-term reliability. Comparative Example 5 with less than 1 part by mass of the curing agent lacked long-term reliability, and Comparative Example 6 with more than 30 parts by mass of the curing agent had insufficient electrical conductivity. Comparative Example 7, in which the flux was less than 20 parts by mass, lacked long-term reliability, and Comparative Example 8, in which the flux was more than 200 parts by mass, had insufficient electrical conductivity.
  • Appendix 5 It consists of a plurality of conductive layers and an insulating layer interposed between the plurality of conductive layers, a hole passing through the insulating layer is filled with a cured conductive paste, and the insulating layer is formed through the cured conductive paste.
  • Appendix 6 In the hardened conductive paste, the high-melting-point metal particles (B1), the low-melting-point metal particles (B2), and the low-melting-point metal particles (B3) are melted, integrated with each other, and alloyed.
  • the multilayer substrate according to .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

高い導電性と長期の信頼性とを両立する硬化物を形成可能な導電性ペーストを提供する。 液状エポキシ化合物100質量部に対して、 銀及び/又は銅を含有する融点800℃以上の高融点金属粒子(B1)と、融点130℃~150℃の合金である低融点金属粒子(B2)と、錫、銀、銅、ビスマス、及びインジウムからなる群から選択された2種以上の合金である融点200℃~240℃の低融点金属粒子(B3)とを含む金属粒子1700質量部~3300質量部、 硬化剤1質量部~30質量部、 及びフラックス20質量部~200質量部を含有している導電性ペースト。

Description

導電性ペースト及び多層基板
 本発明は導電性ペースト及びこの導電性ペーストを使用した多層基板に関する。
 基板のホール充填などに用いられる導電性ペーストとして、フラックス、硬化剤、熱硬化性樹脂、及び導電性フィラーを添加し、一定条件下で加熱することにより、樹脂が硬化するとともに、金属粒子が融解してメタライズ化する(即ち、金属粒子同士の金属間化合物を形成する)金属溶融ペーストが使用されている。
 このような導電性ペーストにおいて長期の接続安定性を発揮させるため、導電性フィラーに高融点金属粒子と、低融点金属粒子とを組み合わせて使用する方法が知られていた(特許文献1、2)。
 しかしながら、これらの方法で得られる導電性ペーストは今日の高機能化、小型化が求められている半導体装置として使用する場合、硬化物とした際の比抵抗が高く、導電性が十分ではなかった。
 また、導電性を改善するため、フッ素系界面活性剤を使用して導電性ペーストの濡れ性を改善し、接続性を向上させる発明も報告されている(特許文献3)。
特開2008-108629号公報 国際公開第2016/136204号 特開2020-152778号公報
 しかしながら、フッ素系界面活性剤を使用することで導電性ペーストの接着性を向上させることはできたが、硬化物とした際に比抵抗は低減されておらず、導電性は不十分であり、また長期の信頼性は評価されておらず、不明であった。
 したがって、硬化物とした際に高い導電性と、長期の信頼性とを高いレベルで両立する導電性ペーストは未だ得られていなかった。
 本発明はこのような課題を解決するものであって、高い導電性と長期の信頼性とを両立する硬化物を形成可能な導電性ペーストを提供することを目的とする。
 本発明者らは、上記目標を達成するために鋭意努力した結果、液状エポキシ樹脂100質量部に対して、銀及び/又は銅を含有する融点800℃以上の高融点金属粒子(B1)と、融点130℃~150℃の合金である低融点金属粒子(B2)と、錫、銀、銅、ビスマス、及びインジウムからなる群から選択された2種以上の合金である融点200℃~240℃の低融点金属粒子(B3)とを含む金属粒子1700質量部~3300質量部、硬化剤1質量部~30質量部、及びフラックス20質量部~200質量部を含有する導電性ペーストによれば、硬化物とした際に高い導電性と長期の信頼性とを有することを見出した。本発明はこれらの知見に基づいて完成されたものである。
 すなわち、本発明は液状エポキシ化合物100質量部に対して、銀及び/又は銅を含有する融点800℃以上の高融点金属粒子(B1)と、融点130℃~150℃の合金である低融点金属粒子(B2)、と錫、銀、銅、ビスマス、及びインジウムからなる群から選択された2種以上の合金である融点200℃~240℃の低融点金属粒子(B3)との3種以上の金属粒子とを含む金属粒子1700質量部~3300質量部、硬化剤1質量部~30質量部、及びフラックスを20質量部~200質量部含有している導電性ペーストを提供する。
 上記導電性ペーストは上記液状エポキシ化合物を使用することで金属粒子を多量配合することができ、その結果導電性を向上することができる。上記高融点金属粒子(B1)と、上記低融点金属粒子(B2)とを組み合わせて含有することにより、硬化物とした際の導電性に優れる。上記低融点金属粒子(B3)を含有することにより、硬化物とした際の長期信頼性を向上することができる。また、上記液状エポキシ化合物100質量部に対して、上記高融点金属粒子(B1)と、上記低融点金属粒子(B2)と、上記低融点金属粒子(B3)とを含む金属粒子を1700重量部~3300重量部含有することで、上記導電性ペーストの硬化物における比抵抗を低減し、導電性を向上させつつ、クラックの発生を抑制するため長期の接続信頼性を向上させることができる。硬化剤1質量部~30質量部含有することにより、硬化物とした際のクラックの発生を抑制し、長期信頼性を向上させることができる。フラックスを20質量部~200質量部を含有することにより、上記導電性ペーストの硬化物において比抵抗を低減し、導電性を向上することができる。
 本発明の導電性ペーストは、上記低融点金属粒子(B2)と、上記低融点金属粒子(B3)との質量比率が(B2)/(B3)=0.9~40であることが好ましい。上記低融点金属粒子(B2)と上記低融点金属粒子(B3)との質量比率が0.9以上であることにより、比抵抗が低減し、導電性に優れる傾向にある。また、上記低融点金属粒子(B2)と上記低融点金属粒子(B3)との質量比率が40以下であることにより、クラックの発生を抑制して長期の接続信頼性を両立することが容易となる。
 また、上記硬化剤は水酸基含有芳香族化合物であることが好ましい。
 また、上記硬化剤はフェノール系硬化剤及び/又はナフトール系硬化剤であることが好ましい。
 また、本発明は複数の導電層と上記複数の導電層間に介在する絶縁層からなり、上記絶縁層を貫通するホールが本発明の導電性ペーストの硬化物により充填されており、上記導電性ペーストの硬化物を介して上記絶縁層の両面に接する導電層同士が相互に導通している多層基板を提供する。
 また、上記導電性ペースト硬化物において、上記高融点金属粒子(B1)と、低融点金属粒子(B2)と、低融点金属粒子(B3)とが融解して相互に一体化し、合金化していることが好ましい。
 本発明の導電性ペーストは、高い導電性と長期の信頼性とを両立する硬化物を形成可能である。
本発明の導電性ペーストを用いた多層基板の製造例を示す模式断面図である。
[導電性ペースト]
 本発明の導電性ペーストは、液状エポキシ化合物、金属粒子、硬化剤、及びフラックスを少なくとも含む。上記導電性ペーストは上記各成分以外のその他の成分を含んでいてもよい。
(液状エポキシ化合物)
 上記液状エポキシ化合物は分子内(一分子中)に1以上のエポキシ基(オキシラニル基)を少なくとも有する化合物である。上記液状エポキシ化合物は、常温で液体のエポキシ化合物を意味する。なお、「常温で液体」とは、25℃において無溶媒状態で流動性を示す状態であることを意味するものとする。本発明の導電性ペーストは流動性の高い上記液状エポキシ化合物を含有することにより、金属粒子を多量配合することができ、その結果導電性を向上することができる。上記液状エポキシ化合物は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記液状エポキシ化合物としては、特に限定されないが、例えば、ビスフェノール型エポキシ化合物、スピロ環型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、テルペン型エポキシ化合物、ノボラック型エポキシ化合物、ダイマー酸変性エポキシ化合物、グリシジルアミン型エポキシ化合物、グリシジルエーテル型エポキシ化合物、ゴム変性エポキシ樹脂、又はキレート変性エポキシ樹脂などが挙げられる。中でも、抵抗値を低くでき、保存安定性に優れる観点からダイマー酸変性エポキシ化合物であることが好ましい。
 上記ビスフェノール型エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、又はテトラブロムビスフェノールA型エポキシ化合物などが挙げられる。
 上記ノボラック型エポキシ化合物としては、例えば、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、α-ナフトールノボラック型エポキシ化合物、又は臭素化フェノールノボラック型エポキシ化合物などが挙げられる。
 上記ダイマー酸変性エポキシ化合物とは、ダイマー酸で変性したエポキシ化合物、すなわちダイマー酸構造中の少なくとも一つのカルボキシル基と多官能エポキシ化合物が反応したものである。ここでダイマー酸とは不飽和脂肪酸の二量体である。原料の不飽和脂肪酸は、特に限定されないが、例えば、オレイン酸やリノール酸などの炭素数18の不飽和脂肪酸を主成分とする植物由来油脂が使用可能である。ダイマー酸の構造は、環状、非環状のいずれでもよい。
 ダイマー酸変性を行うエポキシ化合物としては、特に限定されないが、例えば、上記エポキシ化合物として例示されたエポキシ化合物などが挙げられる。上記ダイマー酸変性エポキシ化合物に含まれるエポキシ化合物は、一種のみを使用してもよいし、二種以上を使用してもよい。例えば、ビスフェノール型、エーテルエステル型、ノボラックエポキシ型、エステル型、脂肪族型、芳香族型などの各種エポキシ化合物をダイマー酸で変性した公知のダイマー酸変性エポキシ化合物を用いることができる。
 上記グリシジルアミン型エポキシ化合物としては、例えば、テトラグリシジルジアミノジフェニルメタン、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリンなどのアミノフェノール型エポキシ化合物などが挙げられる。
 上記グリシジルエーテル型エポキシ化合物としては、例えば、トリス(グリシジルオキシフェニル)メタン、テトラキス(グリシジルオキシフェニル)エタン、グリシジルアルキルエーテルなどが挙げられる。
 上記ゴム変性エポキシ樹脂は、エポキシ樹脂中にゴム成分を含む。上記ゴム成分としては、例えば、ブタジエンゴム、アクリルゴム、シリコーンゴム、ブチルゴム、イソプレンゴム、スチレンゴム、クロロプレンゴム、NBR、SBR、IR、EPRなどが挙げられる。上記ゴム成分は、一種のみを使用してもよいし、二種以上を使用してもよい。
(金属粒子)
 本発明の導電性ペーストは金属粒子として、銀及び/又は銅を含有する融点800℃以上の高融点金属粒子(B1)と、融点130℃~150℃の合金である低融点金属粒子(B2)と、錫、銀、銅、ビスマス、及びインジウムからなる群から選択された2種以上の合金である融点200℃~240℃の低融点金属粒子(B3)とを含む。
<高融点金属粒子(B1)>
 上記高融点金属粒子(B1)は、銅(融点:1083℃)及び/又は銀(融点:961℃)を含む金属粒子である。本発明の導電性ペーストは上記高融点金属粒子(B1)と、上記低融点金属粒子(B2)とを組み合わせることで十分な導電性を発揮することが可能となる。また、上記高融点金属粒子(B1)は銅及び銀以外の金属を含有していてもよく、例えば、金(融点:1064℃)、ニッケル(融点:1455℃)、亜鉛(融点:420℃)、又はこれらのうちの一種以上を含む合金であって融点800℃以上であるものなどが挙げられる。また、上記高融点金属粒子(B1)としては、一種のみを使用してもよいし、二種以上を使用してもよい。
 また、上記高融点金属粒子(B1)は、金属被覆金属粒子であってもよく、例えば、銀被覆銅粒子、金被覆銅粒子、銀被覆ニッケル粒子、又は銀被覆合金粒子などが挙げられる。上記銀被覆合金粒子としては、例えば、銅を含む合金(例えば、銅とニッケルと亜鉛との合金からなる銅合金)が銀により被覆された銀被覆銅合金粒子などが挙げられる。
 上記高融点金属粒子(B1)の融点は800℃以上であり、好ましくは900℃以上、より好ましくは1000℃以上である。上記高融点金属粒子(B1)の融点が800℃以上であることにより導電性の高い金属を金属粒子中に多量含有でき、硬化物とした際の導電性に優れる傾向にある。また、上記高融点金属粒子(B1)の融点は1300℃以下であることが好ましく、より好ましくは1200℃以下である。上記高融点金属粒子(B1)の融点が1300℃以下であることにより、上記導電性ペーストを硬化物とした際に合金化しやすくなる傾向にある。
 上記高融点金属粒子(B1)の含有量は上記液状エポキシ化合物100質量部に対して、400質量部~1800質量部であることが好ましく、より好ましくは500質量部~1500質量部であり、さらに好ましくは600質量部~1400質量部であり、特に好ましくは700質量部~1300質量部である。上記液状エポキシ化合物100質量部に対して、上記高融点金属粒子(B1)を400質量部以上含有することにより、硬化物とした際に比抵抗を低下させ、十分な導電性を発揮させることが容易となる。また、上記高融点金属粒子(B1)の含有量が1800質量部以下であることにより、穴埋め性に優れ、硬化物とした際のクラックの発生を抑制して長期の信頼性を向上させることができる。
<低融点金属粒子(B2)>
 上記低融点金属粒子(B2)は、融点130℃~150℃の合金である金属粒子である。本発明の導電性ペーストは上記高融点金属粒子(B1)と、上記低融点金属粒子(B2)とを組み合わせることで十分な導電性を発揮することが可能となる。上記低融点金属粒子(B2)としては、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記低融点金属粒子(B2)は錫(融点:232℃)、及びビスマス(融点:271℃)を含有する合金であることが好ましく、錫及びビスマスの他に融点が130℃~150℃になるようのであれば他の金属を含有していてもよい。また、上記低融点金属粒子(B2)における錫:ビスマスの質量比率は80:20~40:60であることが好ましい。錫:ビスマスが上記質量比率であることにより、上記融点金属粒子(B2)の融点を130℃~150℃の範囲内とすることが容易になる。
 上記低融点金属粒子(B2)の融点は130℃~150℃であり、好ましくは135℃~145℃である。融点が上記範囲であることにより、上記導電性ペーストの硬化反応の際にメタライズ化を行うことが容易になる。
 上記低融点金属粒子(B2)の含有量は上記液状エポキシ化合物100質量部に対して、300質量部~2400質量部であることが好ましく、より好ましくは400質量部~2300質量部であり、さらに好ましくは500質量部~2200質量部であり、特に好ましくは600質量部~2000質量部である。上記低融点金属粒子(B2)の含有量が上記液状エポキシ化合物100質量部に対して、300質量部以上であることにより、硬化物とした際に十分な導電性を発揮することができる。また、上記低融点金属粒子(B2)の含有量が2400質量部以下であることにより、穴埋め性に優れ、硬化物とした際のクラックの発生を抑制して長期の信頼性を向上させることができる。
<低融点金属粒子(B3)>
 上記低融点金属粒子(B3)は、錫、銀、銅、ビスマス、及びインジウムからなる群から選択された2種以上の合金であり、融点が200℃~240℃のものである。本発明の導電性ペーストは上記低融点金属粒子(B3)を含有することにより、導電性ペーストの長期信頼性を向上することができる。上記低融点金属粒子(B3)としては、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記低融点金属粒子(B3)は錫を主成分とする合金であることが好ましい。また、融点が200℃~240℃の範囲である限り、上述した金属以外の金属を含有していてもよい。上記合金の総量(100質量%)のうち、錫の含有割合は80質量%以上であることが好ましく、より好ましくは85質量%以上であり、特に好ましくは90質量%以上である。上記低融点金属粒子(B3)は錫を主成分として含有することで融点を200℃~240℃とすることが容易となる。
 上記低融点金属粒子(B3)の融点は200℃~240℃であり、好ましくは205℃~235℃である。上記低融点金属粒子(B3)の融点が上記範囲であることにより、長期信頼性を向上することが容易になる。
 上記低融点金属粒子(B3)の含有量は液状エポキシ化合物100質量部に対して、40質量部~700質量部であることが好ましく、より好ましくは50質量部~600質量部であり、特に好ましくは60質量部~500質量部である。上記液状エポキシ化合物100質量部に対して、上記低融点金属粒子(B3)の含有量が40質量部以上であることにより、硬化物とした際に長期の接続信頼性を向上することができる。また、上記低融点金属粒子(B3)の含有量が700質量部以下であることにより、適度な充填性を発揮することができる。
 また、本発明の導電性ペーストは上記高融点金属粒子(B1)、上記低融点金属粒子(B2)、及び上記低融点金属粒子(B3)以外の金属粒子を含有していてもよい。
 本発明の導電性ペーストに導電性と長期信頼性を発揮させる観点から、上記導電性ペーストに含まれる上記高融点金属粒子(B1)、上記低融点金属粒子(B2)、及び上記低融点金属粒子(B3)の合計量は金属粒子全量(100質量%)のうち、90質量%以上であることが好ましく、より好ましくは95質量%以上であり、特に好ましくは99質量%以上である。
 上記金属粒子の形状としては、球状、フレーク状(鱗片状)、樹枝状、繊維状、不定形(多面体)などが挙げられる。上記高融点金属粒子(B1)、上記低融点金属粒子(B2)、及び上記低融点金属粒子(B3)のそれぞれにおいて、粒子形状は、異なっていてもよいし、同一であってもよい。中でも、導電性ペーストの穴埋め性、充填性、塗布安定性がより高く、導電性により優れる観点から、球状が好ましい。また、上記金属粒子の平均粒径(D50)は、上記高融点金属粒子(B1)、上記低融点金属粒子(B2)、及び上記低融点金属粒子(B3)のそれぞれにおいて0.5μm~30μmであることが好ましく、より好ましくは1μm~10μmである。
 本発明の導電性ペーストに使用する金属粒子の合計量が、上記液状エポキシ化合物100質量部に対して、1700質量部~3300質量部であり、好ましくは1800質量部~3200質量部であり、より好ましくは1900質量部~3000質量部である。上記液状エポキシ化合物100質量部に対して、上記金属粒子の含量が1700質量部以上であることにより、硬化物とした際に比抵抗を低減して導電性を向上することができる。また、上記金属粒子の含量が3300質量部以下であることにより、充填性を向上させ、長期の信頼性を向上させることができる。
 また、上記低融点金属粒子(B2)と上記低融点金属粒子(B3)との質量比率は(B2)/(B3)=0.9~40であることが好ましく、1.3~35であることがより好ましい。上記導電性ペーストは上記低融点金属粒子(B2)と上記低融点金属粒子(B3)との質量比率が0.9以上であることにより、硬化物とした際に比抵抗が低減し、導電性に優れつつ、長期の信頼性を両立できる傾向にある。また、上記低融点金属粒子(B2)と上記低融点金属粒子(B3)との質量比率が40以下であることにより、硬化物とした際に十分なリフロー耐性及びヒートサイクル耐性を有し、長期の信頼性に優れる傾向にある。
(硬化剤)
 上記硬化剤は、本発明の導電性ペーストに含まれる液状エポキシ化合物を硬化させるものであることが好ましい。したがって、上記硬化剤は、エポキシ基と反応性を有する官能基を有することが好ましい。上記硬化剤は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記硬化剤としては、例えば、イソシアネート系硬化剤、フェノール系硬化剤、ナフトール系硬化剤、イミダゾール系硬化剤、及びアミン系硬化剤などが挙げられる。また、上記硬化剤は、エポキシ化合物との反応性の観点から、水酸基含有芳香族化合物であることが好ましい。上記水酸基含有芳香族化合物としては、例えばフェノール系硬化剤、及びナフトール系硬化剤などが好ましい。
 上記フェノール系硬化剤としては、例えば、ノボラック構造を有するフェノール系硬化剤、含窒素フェノール系硬化剤、及びトリアジン骨格含有フェノール系硬化剤などが挙げられる。
 上記ナフトール系硬化剤としては、例えば、ノボラック構造を有するナフトール系硬化剤、含窒素ナフトール系硬化剤、及びトリアジン骨格含有ナフトール系硬化剤などが挙げられる。
 上記硬化剤の含有量は、上記液状エポキシ化合物100質量部に対して、1質量部~30質量部であり、好ましくは2質量部~27質量部、より好ましくは3~25質量部である。上記含有量が1質量部以上であると、上記導電性ペースト中の硬化性化合物の硬化が十分となり、長期信頼性に優れる傾向にある。上記含有量が30質量部以下であると、硬化物とした際に硬化剤が導通を阻害せず、導電性が良好となる傾向にある。
(フラックス)
 上記フラックスは、上記金属粒子のメタライズ化を促進させる役割を有する。上記フラックスとしては、例えば、多価カルボン酸化合物又はそれ以外の化合物が挙げられる。上記フラックスは、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記多価カルボン酸化合物としては、例えば、ジカルボン酸では、シュウ酸、グルタル酸、アジピン酸、コハク酸、セバシン酸、マロン酸、マレイン酸、フマル酸、フタル酸、ピメリン酸、スベリン酸、アゼライン酸、テレフタル酸、シトラコン酸、α-ケトグルタル酸、ジグリコール酸、チオジグリコール酸、ジチオジグリコール酸、4-シクロヘキセン-1,2-ジカルボン酸、ドデカン二酸、ジフェニルエーテル-4,4’-ジカルボン酸、ピリジン-2,6-ジカルボン酸、テトラヒドロカルボン酸、ヘキサヒドロカルボン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、8-エチルオクタデカン二酸などが挙げられ、トリカルボン酸では、例えば、トリメリット酸、クエン酸、イソクエン酸、ブタン-1,2,4,-トリカルボン酸、シクロヘキサン-1,2,4-トリカルボン酸、ベンゼン-1,2,4-トリカルボン酸、1,2,3-プロパントリカルボン酸などが挙げられ、テトラカルボン酸では、例えば、エチレンテトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、シクロブタン-1,2,3,4-テトラカルボン酸、ベンゼン-1,2,4,5-テトラカルボン酸などが挙げられる。
 上記それ以外の化合物としては塩化亜鉛、乳酸、オレイン酸、ステアリン酸、グルタミン酸、安息香酸、グルタミン酸塩酸塩、アニリン塩酸塩、臭化セチルピリジン、尿素、トリエタノールアミン、グリセリン、ヒドラジン、及びロジンなどが挙げられる。
 上記フラックスの含有量は、上記液状エポキシ化合物100質量部に対して、20質量部~200質量部であり、好ましくは30質量部~180質量部、より好ましくは40質量部~160質量部である。上記フラックスの含有量が20質量部以上であると、硬化物とした際に上記金属粒子のメタライズ化を十分に促進することができる。上記含有量が200質量部以下であると、硬化物とした際にフラックスが導通を妨げず、導電性が良好となる傾向にある。
(その他の成分)
 本発明の導電性ペーストは、本発明の効果を損なわない範囲内において、上述の各成分以外のその他の成分を含有していてもよい。上記その他の成分としては、公知乃至慣用の組成物に含まれる成分が挙げられる。上記その他の成分としては、例えば、上記液状エポキシ化合物以外のその他のバインダー成分、溶剤、消泡剤、レベリング剤、増粘剤、粘着剤、充填剤、難燃剤、着色剤などが挙げられる。上記その他の成分は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記その他のバインダー成分としては、上記液状エポキシ化合物以外のその他の熱硬化性化合物が挙げられる。上記熱硬化性化合物としては、例えば常温で固体のエポキシ化合物、アクリレート化合物、フェノール系樹脂、ウレタン系樹脂、メラミン系樹脂、アルキド系樹脂などが挙げられる。なお、「常温で固体」とは、25℃において無溶媒状態で流動性を示さない状態であることを意味するものとする。上記その他のバインダー成分は、一種のみを使用してもよいし、二種以上を使用してもよい。
 本発明の導電性ペーストは、上記その他のバインダー成分を含有してもよいし、含有しなくてもよい。また、上記その他のバインダー成分を含有する場合、導電性ペーストの粘度を低下させ、取り扱い性を向上させる観点から、その含有量は上記液状エポキシ化合物100質量部に対して50質量部以下であることが好ましく、より好ましくは30質量部以下であり、特に好ましくは10質量部以下である。
 上記溶剤としては、例えば、メチルエチルケトン、アセトン、アセトフェノンなどのケトン;メチルセロソルブ、メチルカルビトール、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル;メチルセロソルブアセテート、酢酸ブチル、酢酸メチルなどのエステルなどの公知乃至慣用の有機溶剤が挙げられる。
 本発明の導電性ペーストにおける溶剤の含有割合は、特に限定されないが、本発明の導電性ペーストの総量100質量%に対し、10質量%以下であることが好ましく、より好ましくは5質量%以下である。
 本発明の導電性ペーストはBH型粘度計ローターNo.7(回転速度:10rpm)により測定される25℃における粘度が、300dPa・s~2500dPa・sであることが好ましく、より好ましくは500dPa・s~2000dPa・sである。上記粘度が上記範囲内であると、充填性に優れる傾向にある。
 本発明の導電性ペーストは、半導体パッケージのビアやスルーホールなどのホール充填用とすることができる。特に、導電性及び長期信頼性に優れる観点から、多層基板のホール充填用とすることができる。
 本発明の導電性ペーストを多層基板のスルーホール充填に用いた場合、熱硬化により液状エポキシ化合物などの熱硬化性化合物が硬化するとともに、上記高融点金属粒子(B1)、上記低融点金属粒子(B2)、及び上記低融点金属粒子(B3)を含む金属粒子が融解してメタライズ化し、上記金属粒子と、スルーホールの上端部と下端部に設置された導電層の接触部と、が一体化する。この場合、上記金属粒子と上記導電層とが単に接触しているだけの場合と比較して高い導電性が得られ、かつ導電性ペーストと導電層との接合の信頼性が顕著に向上する。また、上記導電性ペーストは、多層基板の絶縁層との接着性にも優れるので、高い長期信頼性を有する多層基板が得られる。
[導電性ペーストの製造方法]
 本発明の導電性ペーストは、特に限定されず、公知乃至慣用の方法により製造することができる。例えば、上記各成分を混合し、3本ロールミル、遊星式撹拌装置、プラネタリーミキサー、ホモミキサー、パドルミキサーなどで撹拌して製造することができる。
[多層基板]
 本発明の多層基板は複数の導電層と上記複数の導電層間に介在する絶縁層からなり、上記絶縁層を貫通するホールが導電性ペースト硬化物により充填されており、上記導電性ペースト硬化物を介して上記絶縁層の両面に接する導電層同士が相互に導通している多層基板であることが好ましい。
 上記導電層としては、導電性を発揮するものであれば特に限定されないが、例えば金、銀、銅、パラジウム、ニッケル、アルミニウム、若しくはこれらのうちの1以上の金属を含む合金などが挙げられる。また、上記導電層は単層であってもよいし、同種又は異種の積層体であってもよい。
 上記導電層の厚さは、5nm~10μmが好ましい。なお、導電層が複層構成である場合、上記導電層の厚さは、全ての層厚さの合計である。
 上記絶縁層としては、絶縁性を発揮するものであれば特に限定されないが、例えば、プラスチック基材(特にプラスチックフィルム)、ガラス板などが挙げられる。上記絶縁層は、単層であってもよいし、同種又は異種の積層体であってもよい。
 上記絶縁層の厚さは、1μm~1000μmが好ましい。なお、絶縁層が複層構成である場合、上記絶縁層の厚さは、全ての層厚さの合計である。
 上記多層基板は上記絶縁層の両面に上記導電層が形成された構造が2層以上積層されたものであることが好ましく、より好ましくは2層~10層積層されたものである。
 また、上記多層基板に使用されている上記導電性ペースト硬化物において、上記高融点金属粒子(B1)、上記低融点金属粒子(B2)、及び上記低融点金属粒子(B3)が融解して相互に一体化し、合金化していることが好ましい。なお、上記合金化とは多層基板のホール充填に用いた場合に、隣接する金属粒子同士が繋がって一体化するメタライズ化するとともに、金属粒子と、ホールの上端部及び下端部で接触する導電層とも繋がって一体化することを言う。
[多層基板の製造方法]
 図1は、本発明の導電性ペーストを用いた多層基板の製造例を示す模式断面図である。図1において、符号1は絶縁層を示し、符号2は絶縁層1のスルーホールに充填された導電性ペーストを示し、符号3は導電層を示し、符号2’は導電性ペースト2の硬化物を示し、符号3’はパターニングされた導電層を示す。なお、本図は、基板のスルーホールにスルーホールメッキが施されずに、充填物がスルーホール内壁に直接接触している例を示している。
 本発明の多層基板を得るには、例えば、図1の(a)に示すように、予め加熱しておいた絶縁層1に、ドリルやレーザーによりスルーホールを形成したのち、スルーホール内に導電性ペースト2を充填して、(b)に示すように、その絶縁層1の上下両面に導電層3を配してプレスして一体化し、所定の条件で加熱する。この加熱により液状エポキシ化合物を硬化させ、かつ金属粒子を融解させることで、隣接する金属粒子同士が繋がるメタライズ化が進行すると共に、導電層の端面と金属粒子とが強固に接合する。硬化後は、例えば(c)に示すように、必要に応じて導電層にパターニングを行うことができる。
 導電性ペーストの加熱条件としては、液状エポキシ化合物の硬化と金属粒子のメタライズ化の双方に適した条件を選択するので、具体的な条件はペーストの組成により異なるが、おおよその目安としては、約150℃~180℃の温度範囲内で、約30分~120分間程度加熱すればよい。なお、本図では、導電層が2層で絶縁層が1層の場合を示したが、3層以上の導電層と2層以上の絶縁層とが交互に積層された多層基板の場合も、上記に準じて製造することができる。
 以下に、実施例に基づいて本発明の一実施形態をより詳細に説明する。
<導電性ペーストの作製>
 表1、表2に記載した各成分を配合して混合し、実施例及び比較例の各導電性ペーストを調製した(表中の数値は質量部を示す)。使用した各成分の詳細は以下の通りである。
 液状エポキシ化合物:商品名「jER871」、三菱ケミカル社製
 高融点金属粒子(B1)1:銀被覆銅粉(融点990℃、平均粒子径3μm)、DOWAエレクトロニクス社製
 高融点金属粒子(B1)2:銀粉(融点961℃、平均粒子径3μm)、DOWAエレクトロニクス社製
 高融点金属粒子(B1)3:銅粉(融点1083℃、平均粒子径3μm)、福田金属粒子箔粉工業社製
 低融点金属粒子(B2):Sn-Bi合金金属粒子(Sn:Bi=42:58、融点138℃、平均粒子径6μm)
 低融点金属粒子(B3):Sn96.5-Ag3.0-Cu0.5金属粒子(Sn:Ag:Cu=96.5:3.0:0.5、融点217℃、平均粒子径6μm)
 硬化剤:フェノール系硬化剤、商品名「タマノール758」、荒川化学工業社製
 フラックス:8-エチルオクタデカン二酸、岡村製油社製
<評価用基板の作製>
 厚さ約100μmの絶縁層(パナソニック社製、商品名「R-1551」)にCO2レーザーを用いて、φ100μmの169孔連結パターンを形成し、印刷法により孔内に上記導電性ペーストを充填した後、真空プレス機を用いて次の圧力条件及び温度条件でプレスを行うことで評価用基板を作製した。
 圧力:0kg/cm2から17分間かけて面圧10.2kg/cm2まで昇圧し、そのまま10分間保持した。次いで、24分間かけて面圧30.6kg/cm2まで昇圧し、そのまま46分間保持した後、23分間かけて0kg/cm2まで減圧した。
 温度:30℃から17分間かけて130℃まで昇温し、そのまま10分間保持した。次いで、24分間かけて180℃まで昇温し、そのまま46分間保持した後、23分間かけて30℃まで冷却した。
[評価]
 上記導電性ペースト又は上記評価用基板を用いて各種物性値の評価を実施した。
(1)比抵抗
 ガラスエポキシ基板上にメタル版を用いて実施例及び比較例で得られた上記導電性ペーストをライン印刷(長さ60mm、幅1mm、厚さ約100μm)し、180℃で60分間加熱することにより本硬化させ、導電性パターンが形成された評価用基板を作製した。次いで、テスターを用いて導電性パターンの両端間の抵抗値を測定し、断面積(S、cm2)と長さ(L、cm)から下記式(1)により比抵抗を計算した。なお、ガラスエポキシ基板3枚に各5本のライン印刷を施して導電性パターンを合計15本形成し、それらの比抵抗の平均値を求め、以下のように評価した。
   比抵抗=(S/L)×R    (1)
○:比抵抗が5×10-5Ω・cm未満
×:比抵抗が5×10-5Ω・cm以上
(2)充填性
 上記評価用基板をX線透過装置(商品名「Y.Cheetah μHD」、エクスロン・インターナショナル社製)を用いて、以下の測定条件にてVia部分を観察し、充填性を評価した。
<測定条件>電圧:50kV、電流:80μA、電力:4W
○:印刷性良好
×:硬化時にペースト未充填、クラックが発生
(3)初期Via抵抗値
 上記評価用基板の初期Via抵抗値の測定については、上記連結パターンの両端間の抵抗値を測定し、その抵抗値を各孔数で除算し、1孔当たりの抵抗値を求め、平均値を算出し、以下のように評価した。
○:4.0mΩ/Via未満
×:4.0mΩ/Via以上
(4)長期信頼性1(リフロー耐性)
 上記評価用基板を260℃、10秒間のリフロー炉で処理することを5回繰り返した後のVia抵抗値を測定し、試験前の評価用基板からのVia抵抗値の変化率を評価した。なお、Via抵抗値の測定方法は、上記初期Via抵抗値の測定方法と同一である。また、以下の長期信頼性2~4に関しても、同様の評価を行った。
○:抵抗値変化率が±10%以内の場合
×:抵抗値変化率が±10%より大きい場合
(5)長期信頼性2(ヒートサイクル耐性)
 上記評価用基板を-60℃、30分間と125℃、30分間で処理するヒートサイクル試験1000サイクル後、導電性ペーストの抵抗値を測定し、試験前の評価用基板からのVia抵抗値の変化率を算出し、上記のように評価した。
(6)長期信頼性3(耐熱試験)
 上記評価用基板を100℃、1000時間静置後の導電性ペーストの抵抗値を測定し、試験前の評価用基板からのVia抵抗値の変化率を算出し、上記のように評価した。
(7)長期信頼性4(耐湿試験)
 上記評価用基板を温度85℃、湿度85%の環境下で1000時間静置後の導電性ペーストの抵抗値を測定し、試験前の評価用基板からのVia抵抗値の変化率の変化率を算出し、上記のように評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~7では導電性及び長期の信頼性に優れていることが確認された。低融点金属粒子(B3)を含有していない比較例1では長期信頼性が不十分であった。金属粒子の含有量が1700質量部に達していない比較例3では導電性、長期信頼性が不十分であった。金属粒子の含有量が3300質量部超である比較例2、及び4では充填性とリフロー耐性に欠け長期信頼性が不十分であった。また、硬化剤が1質量部未満である比較例5では長期信頼性が欠ける結果となり、硬化剤が30質量部超である比較例6では導電性が不十分であった。また、フラックスが20質量部未満である比較例7では長期信頼性に欠ける結果であり、フラックスが200質量部超である比較例8では導電性が不十分であった。
 以下に本発明のバリエーションを開示する。
[付記1]
 液状エポキシ化合物100質量部に対して、
 銀及び/又は銅を含有する融点800℃以上の高融点金属粒子(B1)と、融点130℃~150℃の合金である低融点金属粒子(B2)と、錫、銀、銅、ビスマス、及びインジウムからなる群から選択された2種以上の合金である融点200℃~240℃の低融点金属粒子(B3)とを含む金属粒子1700質量部~3300質量部、
 硬化剤1質量部~30質量部、
 及びフラックス20質量部~200質量部を含有している導電性ペースト。
[付記2]
 前記低融点金属粒子(B2)と、前記低融点金属粒子(B3)との質量比率が(B2)/(B3)=0.9~40である付記1に記載の導電性ペースト。
[付記3]
 前記硬化剤が水酸基含有芳香族化合物である付記1又は2に記載の導電性ペースト。
[付記4]
 前記硬化剤がフェノール系硬化剤及び/又はナフトール系硬化剤である付記1~3のいずれか1項に記載の導電性ペースト。
[付記5]
 複数の導電層と前記複数の導電層間に介在する絶縁層からなり、前記絶縁層を貫通するホールが導電性ペースト硬化物により充填されており、前記導電性ペースト硬化物を介して前記絶縁層の両面に接する導電層同士が相互に導通している多層基板であり、前記導電性ペースト硬化物が付記1~4のいずれか1項に記載の導電性ペーストの硬化物である多層基板。
[付記6]
 前記導電性ペースト硬化物において、前記高融点金属粒子(B1)、前記低融点金属粒子(B2)、及び前記低融点金属粒子(B3)が融解して相互に一体化し、合金化している付記5に記載の多層基板。
 1 絶縁層
 2 導電性ペースト
 2’ 導電性ペーストの硬化物
 3 導電層
 3’ パターニングされた導電層

Claims (6)

  1.  液状エポキシ化合物100質量部に対して、
     銀及び/又は銅を含有する融点800℃以上の高融点金属粒子(B1)と、融点130℃~150℃の合金である低融点金属粒子(B2)と、錫、銀、銅、ビスマス、及びインジウムからなる群から選択された2種以上の合金である融点200℃~240℃の低融点金属粒子(B3)とを含む金属粒子1700質量部~3300質量部、
     硬化剤1質量部~30質量部、
     及びフラックス20質量部~200質量部を含有している導電性ペースト。
  2.  前記低融点金属粒子(B2)と、前記低融点金属粒子(B3)との質量比率が(B2)/(B3)=0.9~40である請求項1に記載の導電性ペースト。
  3.  前記硬化剤が水酸基含有芳香族化合物である請求項1又は2に記載の導電性ペースト。
  4.  前記硬化剤がフェノール系硬化剤及び/又はナフトール系硬化剤である請求項1又は2に記載の導電性ペースト。
  5.  複数の導電層と前記複数の導電層間に介在する絶縁層からなり、前記絶縁層を貫通するホールが導電性ペースト硬化物により充填されており、前記導電性ペースト硬化物を介して前記絶縁層の両面に接する導電層同士が相互に導通している多層基板であり、前記導電性ペースト硬化物が請求項1又は2に記載の導電性ペーストの硬化物である多層基板。
  6.  前記導電性ペースト硬化物において、前記高融点金属粒子(B1)、前記低融点金属粒子(B2)、及び前記低融点金属粒子(B3)が融解して相互に一体化し、合金化している請求項5に記載の多層基板。
PCT/JP2023/005640 2022-02-21 2023-02-17 導電性ペースト及び多層基板 WO2023157941A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-024897 2022-02-21
JP2022024897 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023157941A1 true WO2023157941A1 (ja) 2023-08-24

Family

ID=87578697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005640 WO2023157941A1 (ja) 2022-02-21 2023-02-17 導電性ペースト及び多層基板

Country Status (2)

Country Link
TW (1) TW202334367A (ja)
WO (1) WO2023157941A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034242A (ja) * 2006-07-28 2008-02-14 Fujikura Kasei Co Ltd 導電性ペースト
JP2012523091A (ja) * 2009-04-02 2012-09-27 オーメット サーキッツ インク 混合された合金フィラーを含む伝導性組成物
JP2015511888A (ja) * 2011-12-13 2015-04-23 ダウ コーニング コーポレーションDow Corning Corporation 組成物及びそれから形成される導体
WO2016136204A1 (ja) * 2015-02-27 2016-09-01 タツタ電線株式会社 導電性ペースト及びこれを用いた多層基板
WO2022034696A1 (ja) * 2020-08-11 2022-02-17 タツタ電線株式会社 導電性組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034242A (ja) * 2006-07-28 2008-02-14 Fujikura Kasei Co Ltd 導電性ペースト
JP2012523091A (ja) * 2009-04-02 2012-09-27 オーメット サーキッツ インク 混合された合金フィラーを含む伝導性組成物
JP2015511888A (ja) * 2011-12-13 2015-04-23 ダウ コーニング コーポレーションDow Corning Corporation 組成物及びそれから形成される導体
WO2016136204A1 (ja) * 2015-02-27 2016-09-01 タツタ電線株式会社 導電性ペースト及びこれを用いた多層基板
WO2022034696A1 (ja) * 2020-08-11 2022-02-17 タツタ電線株式会社 導電性組成物

Also Published As

Publication number Publication date
TW202334367A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
KR101225497B1 (ko) 도전성 접착제와 그 제조 방법 및 이를 포함하는 전자 장치
TWI647711B (zh) Conductive paste and multilayer substrate using the same
JP4593123B2 (ja) 導電性接着剤
WO2003105160A1 (ja) 導電性ペースト、これを用いた多層基板及びその製造方法
WO2004068506A1 (ja) 導電ペースト
KR100929136B1 (ko) 도전성 접착제와 그 제조 방법 및 이를 포함하는 전자 장치
JP6310954B2 (ja) 導電性接着剤および電子基板の製造方法
KR20070028556A (ko) 도전 페이스트 및 그것을 이용한 전자부품 탑재기판
JP2000290617A (ja) 導電性接着剤およびその使用法
WO2023157941A1 (ja) 導電性ペースト及び多層基板
JP2002201448A (ja) 導電性接着剤
CN109509569B (zh) 电极的连接方法及电子基板的制造方法
JP6660921B2 (ja) 電子基板の製造方法
JPH10279903A (ja) 導電性接着剤
JP2000192000A (ja) 導電性接着剤
JP6548933B2 (ja) 導電性接着剤および電子基板の製造方法
JP6092754B2 (ja) 導電性エポキシ樹脂組成物、該組成物を用いた太陽電池セル、及び該太陽電池セルの製造方法
KR20100093452A (ko) 도전성 접착제와 그 제조 방법 및 이를 포함하는 전자 장치
JP6619783B2 (ja) 電極の接続方法および電子基板の製造方法
JP2005317491A (ja) 導電ペーストおよびそれを用いた電子部品搭載基板
JPH10265748A (ja) 導電性接着剤
JPH11209716A (ja) 導電性の接着剤
JP4792700B2 (ja) 導電性接着剤
JP2004043608A (ja) 導電性接着剤
JP2004047419A (ja) 導電ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501443

Country of ref document: JP

Kind code of ref document: A