WO2023153182A1 - Oxidized carbon nanotube and method for producing same, and oxidized carbon nanotube dispersion liquid - Google Patents

Oxidized carbon nanotube and method for producing same, and oxidized carbon nanotube dispersion liquid Download PDF

Info

Publication number
WO2023153182A1
WO2023153182A1 PCT/JP2023/001783 JP2023001783W WO2023153182A1 WO 2023153182 A1 WO2023153182 A1 WO 2023153182A1 JP 2023001783 W JP2023001783 W JP 2023001783W WO 2023153182 A1 WO2023153182 A1 WO 2023153182A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidized
carbon nanotubes
oxidized carbon
carbon nanotube
cnt
Prior art date
Application number
PCT/JP2023/001783
Other languages
French (fr)
Japanese (ja)
Inventor
広和 高井
宏晃 周
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2023153182A1 publication Critical patent/WO2023153182A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment

Definitions

  • the present invention relates to oxidized carbon nanotubes, methods for producing the same, and oxidized carbon nanotube dispersions.
  • Carbon nanotubes have attracted attention as a material with various excellent properties due to their unique structure.
  • CNTs are excellent in various properties such as mechanical strength, optical properties, electrical properties, thermal properties, ion storage capacity, and ion adsorption capacity. Development as a material is expected.
  • CNTs when using CNTs, it is necessary to disperse them uniformly in a solvent in order to fully demonstrate their properties.
  • CNTs tend to aggregate and become entangled with each other, and it is very difficult to disperse them uniformly.
  • Patent Document 1 discloses that a fibrous carbon nanostructure containing CNT and having at least one absorption peak in the wavenumber region of 500 cm ⁇ 1 or more and 600 cm ⁇ 1 or less in the spectroscopic absorption spectrum has excellent dispersibility.
  • Patent Document 2 discloses that CNTs satisfying predetermined conditions for a peak based on plasmon resonance, the maximum peak in differential pore volume distribution, or a peak in the two-dimensional spatial frequency spectrum of an electron microscope image are excellent in dispersibility. It is
  • an object of the present invention is to provide oxidized carbon nanotubes with excellent dispersibility, a method for producing the same, and an oxidized carbon nanotube dispersion in which oxidized carbon nanotubes are well dispersed.
  • the present inventors have conducted intensive studies with the aim of solving the above problems.
  • the inventors of the present invention have newly discovered that oxidized carbon nanotubes satisfying predetermined conditions, which are obtained by oxidation treatment of carbon nanotubes satisfying predetermined conditions, can have excellent dispersibility, and have completed the present invention. let me
  • an object of the present invention is to advantageously solve the above problems, and the present invention is [1] an oxidized carbon nanotube that satisfies the following conditions (1) to (3).
  • the ratio of the number of oxidized single-walled carbon nanotubes to the total number of the oxidized carbon nanotubes is 51% or more.
  • the oxygen atomic ratio is 13 atomic % or more.
  • Oxidized carbon nanotubes that satisfy all of the above conditions (1) to (3) can have excellent dispersibility.
  • the "peak based on plasmon resonance" in the spectrum obtained by Fourier transform infrared spectroscopy can be detected by the method described in Examples.
  • the "proportion of the number of oxidized single-walled carbon nanotubes to the total number of oxidized carbon nanotubes" and the “oxygen atomic ratio” can be measured by the methods described in Examples.
  • the oxidized carbon nanotube of [1] above preferably has an average diameter of 3.5 nm or more and 5 nm or less. Oxidized carbon nanotubes having an average diameter within the above range may have better dispersibility.
  • the "average diameter of oxidized carbon nanotubes" can be measured by the method described in Examples.
  • the oxidized carbon nanotubes of [1] or [2] above preferably have an average length of 30 nm or more and 200 nm or less. Oxidized carbon nanotubes having an average length within the above range can have even better dispersibility.
  • the "average length of oxidized carbon nanotubes" can be measured by the method described in Examples.
  • Another object of the present invention is to advantageously solve the above problems. and a step of oxidizing carbon nanotubes including single-walled carbon nanotubes that satisfy at least one of the following conditions (1) and (2).
  • the carbon nanotube dispersion At least one peak based on the plasmon resonance of the body exists in the wave number range of 500 cm ⁇ 1 to 900 cm ⁇ 1 .
  • the tap bulk density is 0.02 g/cm 3 or more and 0.04 g/cm 3 or less.
  • oxidized carbon nanotubes including single-walled carbon nanotubes, that satisfy at least one of the above conditions (1) and (2), oxidized carbon nanotubes that can have excellent dispersibility can be obtained.
  • the "tap bulk density" can be measured by the method described in Examples.
  • the present invention is intended to advantageously solve the above problems, and the present invention provides [5] an oxidized carbon nanotube according to any one of [1] to [3] above, and a solvent. It is an oxidized carbon nanotube dispersion. Any one of the oxidized carbon nanotubes described above is unlikely to aggregate in a dispersion, and a dispersion containing such oxidized carbon nanotubes has excellent dispersibility of the oxidized carbon nanotubes.
  • oxidized carbon nanotubes with excellent dispersibility, a method for producing the same, and an oxidized carbon nanotube dispersion in which oxidized carbon nanotubes are well dispersed.
  • the oxidized carbon nanotubes of the present invention are not particularly limited, and can be suitably produced by the method for producing oxidized carbon nanotubes of the present invention.
  • the method for producing an oxidized carbon nanotube of the present invention can be suitably used, for example, when producing an oxidized carbon nanotube of the present invention.
  • the oxidized carbon nanotube dispersion of the present invention can be produced using the oxidized carbon nanotubes of the present invention.
  • the oxidized carbon nanotubes of the present invention are aggregates (oxidized carbon nanotube aggregates) in which a plurality of oxidized carbon nanotubes are aggregated.
  • the oxidized carbon nanotubes of the present invention must satisfy the following conditions (1) to (3).
  • (1) The ratio of the number of oxidized single-walled carbon nanotubes to the total number of oxidized carbon nanotubes is 51% or more.
  • the oxygen atomic ratio is 13 atomic % or more.
  • the oxidized carbon nanotubes of the present invention that satisfy these conditions can have excellent dispersibility in dispersion liquids. Each condition will be described below.
  • Condition (1) is that ⁇ the ratio of the number of oxidized single-walled carbon nanotubes to the total number of oxidized carbon nanotubes (hereinafter, simply referred to as the ⁇ proportion of oxidized single-walled carbon nanotubes'') is 51% or more. stipulate. If the proportion of oxidized single-walled carbon nanotubes is less than 51%, the dispersibility of the oxidized carbon nanotubes is poor. From the viewpoint of further improving the dispersibility of oxidized carbon nanotubes, the proportion of oxidized single-walled carbon nanotubes is preferably 60% or more, more preferably 65% or more, and even more preferably 70% or more. .
  • the oxidized carbon nanotubes of the present invention can include oxidized multi-walled carbon nanotubes in addition to oxidized single-walled carbon nanotubes.
  • Condition (2) is that "in the spectrum obtained by Fourier transform infrared spectroscopic analysis of the oxidized carbon nanotube, the peak based on the plasmon resonance of the oxidized carbon nanotube is at least 1 in the wavenumber range of more than 700 cm -1 and 1000 cm -1 or less. “the existence of one”.
  • a strong absorption characteristic in the far-infrared region has been widely known as an optical characteristic of CNTs. Such strong absorption properties in the far-infrared region are believed to be due to the diameter and length of CNTs.
  • the absorption characteristics in the far-infrared region more specifically, the relationship between the peak based on the plasmon resonance of CNTs and the length of CNTs is described in non-patent literature (T.Morimoto et al., “Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes”, pp 9897-9904, Vol.8, No.10, ACS NANO, 2014).
  • the inventors of the present invention based on the study described in the non-patent literature and their own knowledge, detected peaks based on the plasmon resonance of CNTs in the spectrum obtained by Fourier transform infrared spectrophotometry.
  • Oxidized CNT satisfying the above conditions has a peak based on plasmon resonance in a spectrum obtained by Fourier transform infrared spectroscopy at a position with a large wave number. It is inferred that it has a structure. Oxidized CNTs having such a structure are hard to agglomerate and are presumed to have excellent dispersibility in a dispersion liquid.
  • the oxidized carbon nanotubes of the present invention preferably have only one peak based on plasmon resonance.
  • the oxidized carbon nanotube of the present invention has a plurality of peaks based on plasmon resonance, it is preferable that at least the peak based on the strongest plasmon resonance has a wavenumber in the range of more than 700 cm ⁇ 1 and 1000 cm ⁇ 1 or less.
  • the oxidized carbon nanotube of the present invention preferably does not have a peak due to plasmon resonance in the wavenumber range of 700 cm -1 or less or in the wavenumber range of more than 1000 cm -1 .
  • the oxidized carbon nanotube of the present invention has a peak based on plasmon resonance within the range of 800 cm ⁇ 1 or more and 950 cm ⁇ 1 or less in wavenumber, preferably 850 cm ⁇ 1 or more and 950 cm ⁇ 1 or less in wavenumber. It is preferable to have at least one peak within the range, and the peak based on plasmon resonance is in the range of 800 cm -1 to 950 cm -1 , preferably in the wavenumber range of 850 cm -1 to 950 cm -1 . preferable.
  • Condition (3) defines that "the oxygen atomic ratio of the oxidized carbon nanotubes is 13 at % or more". If the oxygen atomic ratio is less than 13 at %, the dispersibility of the oxidized carbon nanotubes cannot be ensured.
  • the “oxygen atomic ratio” is a value represented by the ratio of the total atomic weight on the carbon nanotube surface and the abundance of oxygen atoms (O) determined by X-ray photoelectron spectroscopy. More specifically, the “oxygen atomic ratio” is a value obtained by calculating the ratio of the abundance of oxygen atoms (O), assuming that the total atomic weight constituting the carbon nanotube surface is 100 at %.
  • the "oxygen atomic ratio” can be calculated based on X-ray photoelectron spectroscopy.
  • the oxygen atomic ratio of the oxidized carbon nanotubes is preferably 14 at% or more, more preferably 15 at% or more.
  • the oxygen atomic ratio is preferably 20 atomic % or less, and 18 atomic % or less. is more preferred.
  • the oxygen atomic ratio of the oxidized carbon nanotubes is determined, for example, in the oxidation treatment step in the method for producing the oxidized carbon nanotubes of the present invention, which will be described later, according to various conditions for oxidation treatment of carbon nanotubes as a material (for example, when an acidic solution is used, an acidic solution
  • various conditions for oxidation treatment of carbon nanotubes as a material for example, when an acidic solution is used, an acidic solution
  • the type of acid in the acid solution, the acid concentration of the acid solution, the stirring time of the mixed solution of the carbon nanotubes as the material and the acid solution, the reflux temperature/reflux time of the mixed solution, etc. can be adjusted as appropriate. .
  • the oxidized carbon nanotubes of the present invention preferably further have, for example, the following properties.
  • the oxidized carbon nanotubes of the present invention preferably have an average diameter of 3.5 nm or more, more preferably 3.7 nm or more, still more preferably 4.0 nm or more, and 5 nm or less. is preferred, and 4.8 nm or less is more preferred. If the average diameter of the oxidized carbon nanotubes is within the above range, the dispersibility can be further enhanced.
  • the oxidized carbon nanotubes of the present invention preferably have an average length of 30 nm or more, more preferably 50 nm or more, even more preferably 155 nm or more, and preferably 200 nm or less, and 180 nm or less. is more preferable. If the average length of the oxidized carbon nanotubes is within the above range, the dispersibility can be further enhanced.
  • the oxidized carbon nanotubes of the present invention preferably have a total specific surface area measured by the BET method of 100 m 2 /g or less, more preferably 70 m 2 /g or less. If the total specific surface area by the BET method is equal to or less than the above upper limit, the dispersibility and dispersion stability of the oxidized CNTs in water will be even more excellent.
  • the total specific surface area of the oxidized carbon nanotubes by the BET method can be measured using, for example, a BET specific surface area measuring device conforming to JIS Z8830.
  • the G/D ratio of the oxidized carbon nanotubes of the present invention is preferably 0.6 or more and 2.0 or less. If the G/D ratio is within the above range, the dispersibility of the oxidized CNTs in water will be even more excellent.
  • the G/D ratio is an index commonly used to evaluate the quality of CNTs. Vibrational modes called G band (near 1600 cm ⁇ 1 ) and D band (near 1350 cm ⁇ 1 ) are observed in the Raman spectrum of CNTs measured by a Raman spectrometer.
  • the G band is a vibrational mode derived from the hexagonal lattice structure of graphite, which is the cylindrical surface of CNT
  • the D band is a vibrational mode derived from amorphous sites. Therefore, a CNT with a higher peak intensity ratio (G/D ratio) between the G band and the D band can be evaluated as having higher crystallinity (linearity).
  • Various attributes of the oxidized carbon nanotubes as described above can be obtained by performing a general dispersion treatment such as ultrasonic dispersion treatment when preparing an oxidized carbon nanotube dispersion as described later using the oxidized carbon nanotubes. does not change significantly. That is, the values of various attributes measured for the oxidized carbon nanotubes before the dispersion treatment usually apply as they are to the oxidized carbon nanotubes in the oxidized carbon nanotube dispersion. Moreover, the reverse is similarly established.
  • a method for producing an oxidized carbon nanotube of the present invention is a method for producing an oxidized carbon nanotube of the present invention described above, and is a single-walled carbon nanotube that satisfies at least one of the following conditions (1) and (2): It is characterized by oxidizing a carbon nanotube (hereinafter also simply referred to as “material CNT”) containing (1) A carbon nanotube dispersion obtained by dispersing carbon nanotubes including single-walled carbon nanotubes so that the bundle length is 10 ⁇ m or more.
  • the carbon nanotube dispersion At least one peak based on the plasmon resonance of the body exists in the wave number range of 500 cm ⁇ 1 to 900 cm ⁇ 1 .
  • the tap bulk density is 0.02 g/cm 3 or more and 0.04 g/cm 3 or less.
  • the method for producing oxidized carbon nanotubes of the present invention preferably oxidizes carbon nanotubes that satisfy both the above conditions (1) and (2). Each condition will be described below.
  • Condition (1) is "a spectrum obtained by Fourier transform infrared spectroscopic analysis of a carbon nanotube dispersion obtained by dispersing carbon nanotubes containing single-walled carbon nanotubes so that the bundle length is 10 ⁇ m or more, At least one peak based on plasmon resonance of the carbon nanotube dispersion exists in the wavenumber range of 500 cm ⁇ 1 or more and 900 cm ⁇ 1 or less.”
  • the oxidized carbon nanotubes of the present invention can be suitably obtained by oxidizing the material CNT that satisfies these conditions.
  • the position of the peak based on plasmon resonance in the spectrum obtained by Fourier transform infrared spectroscopy can be changed, for example, by changing the feed rate of the raw material gas in the CNT growth step of "Method for synthesizing CNT material" described later. can be controlled.
  • the CNT material preferably has only one peak based on plasmon resonance within the wave number range of 500 cm ⁇ 1 or more and 900 cm ⁇ 1 or less.
  • the material CNT has a plurality of peaks based on plasmon resonance, it is preferable that at least the peak based on the strongest plasmon resonance has a wavenumber within the range of 500 cm ⁇ 1 to 900 cm ⁇ 1 .
  • the material CNT preferably does not have a peak due to plasmon resonance in the wavenumber range of less than 500 cm ⁇ 1 or in the wavenumber range of more than 900 cm ⁇ 1 .
  • the material CNT preferably has at least one peak based on plasmon resonance within a range of wavenumbers of 600 cm -1 or more and 850 cm -1 or less. It is more preferable to have all peaks within the wavenumber range of 600 cm ⁇ 1 or more and 850 cm ⁇ 1 or less.
  • the material CNT can include multi-walled carbon nanotubes in addition to single-walled carbon nanotubes.
  • condition (1) in obtaining a spectrum by Fourier transform infrared spectrophotometry, carbon nanotubes including single-walled carbon nanotubes are dispersed so that the bundle length is 10 ⁇ m or more, so that carbon nanotubes are dispersed.
  • a body for example, carbon nanotubes including single-walled carbon nanotubes, water, and a surfactant (for example, sodium dodecylbenzenesulfonate) are blended in an appropriate ratio and stirred for a predetermined period of time using ultrasonic waves or the like.
  • a dispersion liquid in which a carbon nanotube dispersion having a bundle length of 10 ⁇ m or more is dispersed in water can be obtained.
  • the bundle length of the carbon nanotube dispersion can be obtained by analyzing it with a wet image analysis type particle size measuring device. Such a measurement device calculates the area of each dispersion from the image obtained by photographing the carbon nanotube dispersion, and the diameter of the circle having the calculated area (hereinafter also referred to as ISO area diameter) can be obtained).
  • ISO area diameter the diameter of the circle having the calculated area
  • the bundle length of each dispersion is defined as the value of the ISO circle diameter thus obtained.
  • Condition (2) defines that "the tapped bulk density of CNT material is 0.02 g/cm 3 or more and 0.04 g/cm 3 or less". If material CNTs having a tapped bulk density within the above range are used, the material CNTs can be sufficiently oxidized to suitably obtain the oxidized carbon nanotubes of the present invention. From the viewpoint of further enhancing the dispersibility of the resulting oxidized carbon nanotubes, the tapped bulk density of the CNT material is preferably 0.025 g/cm 3 or more, and preferably 0.035 g/cm 3 or less. Note that the tap bulk density of the CNT material can be controlled, for example, by changing the feed rate of the raw material gas in the CNT growth step of the "method for synthesizing CNT material" described later.
  • the CNT material preferably has an average diameter of 3.5 nm or more, more preferably 3.7 nm or more, and preferably 5 nm or less, more preferably 4.8 nm or less. If the average diameter of the material CNTs is within the above range, the dispersibility of the resulting oxidized CNTs can be further enhanced.
  • the CNT material preferably has a total specific surface area of 600 m 2 /g or more, more preferably 800 m 2 /g or more, and preferably 2600 m 2 / g or less, more preferably 1400 m 2 /g or less, according to the BET method. be.
  • the material CNT preferably has a G/D ratio of 1 or more and 50 or less.
  • Carbon nanotubes with a G/D ratio of less than 1 are considered to have low crystallinity of single-walled CNTs, a large amount of dirt such as amorphous carbon, and a large content of multi-walled CNTs. Conversely, CNTs with a G/D ratio exceeding 50 have high linearity, tend to form bundles with few gaps, and may have a reduced specific surface area.
  • the material CNT is not particularly limited, and can be synthesized by a known CNT synthesis method such as chemical vapor deposition (CVD) method.
  • the CNT material is prepared by supplying a raw material compound and a carrier gas onto a base material having a catalyst layer for CNT production on its surface, and synthesizing CNT by a CVD method.
  • Activating substance the catalytic activity of the catalyst layer is dramatically improved (super-growth method; see International Publication No. 2006/011655).
  • a method for synthesizing the material CNT includes a catalyst carrier forming step of forming a catalyst carrier, a CNT synthesis step of synthesizing CNT using the catalyst carrier obtained in the catalyst carrier forming step, and and a recovery step of recovering the CNTs synthesized in the CNT synthesis step.
  • the catalyst support formation step can be carried out according to known wet or dry catalyst support methods.
  • the base material, the catalyst, the method of forming the catalyst, and the like used in producing the supported catalyst are not particularly limited, and for example, those described in International Publication No. 2017/170579 can be used.
  • CNT synthesis step In the CNT synthesis step, a raw material gas that serves as a carbon source is supplied to the catalyst carrier, and CNTs are grown on the catalyst layer by the CVD method (CNT growth step). A large number of CNTs are formed on the catalyst layer in a state of being arranged (orientated) in a predetermined direction.
  • the raw material gas serving as a carbon source is not particularly limited, and hydrocarbon gases such as methane, ethane, ethylene, propane, butane, pentane, hexane, heptane, propylene and acetylene; Gases of lower alcohols; as well as mixtures thereof can also be used.
  • this raw material gas may be diluted with an inert gas such as helium gas, argon gas, nitrogen gas, or a mixed gas thereof.
  • an inert gas such as helium gas, argon gas, nitrogen gas, or a mixed gas thereof.
  • the growth rate of CNTs is preferably 10 ⁇ m/min or more. Note that the temperature can be adjusted, for example, in the range of 400° C. or higher and 1100° C. or lower.
  • the raw material gas serving as a carbon source contain ethylene.
  • ethylene By heating ethylene in a predetermined temperature range (700° C. or higher and 900° C. or lower), the decomposition reaction of ethylene is promoted, and when the decomposition gas comes into contact with the catalyst, CNTs can grow at high speed.
  • the thermal decomposition time is too long, the decomposition reaction of ethylene proceeds too much, causing deactivation of the catalyst and adhesion of carbon impurities to the CNTs.
  • the thermal decomposition time is preferably in the range of 0.5 seconds to 10 seconds with respect to the ethylene concentration in the range of 0.1 volume % to 40 volume %.
  • Thermal decomposition time (heating channel volume)/ ⁇ (source gas flow rate) x (273.15+T)/273.15 ⁇
  • the heated channel volume is the volume of the channel heated to a predetermined temperature T° C. through which the raw material gas passes before coming into contact with the catalyst, and the raw material gas flow rate is the flow rate at 0° C. and 1 atm.
  • the catalyst activating material supplied during CNT growth is not particularly limited, and oxygen-containing compounds with a low carbon number such as water, oxygen, ozone, acid gases, nitrogen oxides, carbon monoxide and carbon dioxide; alcohols such as ethanol and methanol. ethers such as tetrahydrofuran; ketones such as acetone; aldehydes; esters; and mixtures thereof. Among these, it is preferable to use water. Substances containing both carbon and oxygen, such as carbon monoxide and alcohols, may function as both a raw material gas and a catalyst activating substance.
  • carbon monoxide acts as a catalyst activating substance when combined with a more reactive raw material gas such as ethylene, and acts as a raw material gas when combined with a catalyst activating substance that exhibits a large catalytic activation effect even in a small amount such as water.
  • the concentration of the catalyst activation substance in the growth atmosphere of the CNT aggregates is preferably 0.01% by volume or more.
  • the concentration of the catalyst activation material in the growth atmosphere of the CNT aggregate is usually 1.0% by volume or less.
  • the catalyst activation material concentration can be controlled by appropriately adjusting the feed rate of the catalyst activation material supplied during CNT growth.
  • a "formation step” can be performed to reduce the catalyst supported on the catalyst support.
  • the atmosphere containing the catalyst carrier is used as a reducing gas atmosphere, and at least one of the reducing gas atmosphere and the catalyst carrier is heated to reduce and atomize the catalyst supported on the catalyst carrier. do.
  • the temperature of the catalyst carrier or reducing gas atmosphere in the formation step is preferably 400° C. or higher and 1100° C. or lower.
  • the execution time of a formation process can be 3 minutes or more and 120 minutes or less.
  • the reducing gas for example, hydrogen gas, ammonia gas, water vapor, or a mixed gas thereof can be used.
  • the reducing gas may be a mixed gas in which these gases are mixed with an inert gas such as helium gas, argon gas, or nitrogen gas.
  • the recovery step is not particularly limited, and can be performed, for example, by using a spatula with a sharp edge to peel the CNTs from the substrate.
  • the recovery may be performed using a known separation and recovery device such as a classifier.
  • the method of oxidizing the CNT material is not particularly limited, and the oxidizing treatment can be performed, for example, by adding the CNT material to an acidic solution and mixing.
  • a mixing method is not particularly limited, and stirring operation can be performed by any method.
  • the mixing time is not particularly limited, but is preferably 0.1 hour or more and 10 hours or less.
  • the acidic solution include solutions containing acids such as nitric acid, hydrochloric acid, and sulfuric acid. From the viewpoint of sufficiently oxidizing the material CNT, it is preferable to use a solution containing nitric acid.
  • the solvent of the acidic solution can be a solvent that can be contained in the oxidized carbon nanotube dispersion of the present invention, which will be described later, but it is preferable to use water. That is, the acidic solution is preferably an acidic aqueous solution.
  • the pH of the acidic solution can be, for example, 2 or less.
  • the oxidation treatment is preferably performed by refluxing the mixed solution of the CNT material and the acid solution under a predetermined temperature condition.
  • the temperature condition for refluxing the mixture is preferably 100° C. or higher and 150° C. or lower, and the reflux time is preferably 3 hours or longer and 20 hours or shorter.
  • the oxidized carbon nanotubes of the present invention can be obtained by filtering the oxidized carbon nanotubes in the mixed liquid that has undergone the oxidation treatment step and optionally drying them by a known method.
  • the mixed liquid can be used for the production of the oxidized carbon nanotube dispersion of the present invention, which will be described later.
  • the oxidized carbon nanotube dispersion of the present invention contains the oxidized carbon nanotubes of the present invention described above and a solvent. As described above, since the oxidized carbon nanotubes of the present invention are excellent in dispersibility, the oxidized carbon nanotubes are highly dispersed in the oxidized carbon nanotube dispersion of the present invention.
  • the oxidized carbon nanotubes are those described in the above item "the oxidized carbon nanotubes of the present invention".
  • the oxidized carbon nanotube preferably satisfies various suitable attributes as described in the section "Oxidized carbon nanotube of the present invention” above.
  • the oxidized carbon nanotubes can be produced by the above-described method for producing oxidized carbon nanotubes of the present invention.
  • solvent contained in the oxidized carbon nanotube dispersion of the present invention include non-halogen solvents and non-aqueous solvents.
  • water methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, amyl alcohol, methoxy Alcohols such as propanol, propylene glycol and ethylene glycol; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Esters such as ethyl acetate, butyl acetate, ethyl lactate, ⁇ -hydroxycarboxylic acid esters and benzyl benzoate (benzyl benzoate) Ethers such as diethyl ether, dioxane, tetrahydrofuran, and monomethyl ether; Amide-based polar organic solvents such as N,N-dimethylformamide and N-
  • the oxidized carbon nanotube dispersion of the present invention preferably does not substantially contain a dispersant.
  • the term “substantially free” means that it is not actively blended except when it is unavoidably mixed.
  • the content in the oxidized carbon nanotube dispersion is It is preferably less than 0.05% by mass, more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass in terms of solid content.
  • surfactant, a synthetic polymer, a natural polymer, etc. are mentioned as said dispersing agent.
  • the viscosity of the oxidized carbon nanotube dispersion of the present invention is preferably 0.5 mPa s or more, more preferably 1 mPa s or more, preferably 100 mPa s or less, and 10 mPa s or less. It is more preferable to have When the viscosity of the oxidized carbon nanotube dispersion liquid is 0.5 mPa ⁇ s or more and 100 mPa ⁇ s or less, the oxidized carbon nanotubes are excellent in dispersibility.
  • the "viscosity of the oxidized carbon nanotube dispersion” is at least one shear rate within the range of 10 s -1 or more and 1000 s -1 or less (for example, 152 s -1 ) in accordance with JIS Z8803. It can be measured at a temperature of 25°C.
  • the absorbance of the oxidized carbon nanotube dispersion of the present invention measured using a spectrophotometer is preferably 0.1 or more, preferably 0.2, at an optical path length of 1 mm and a wavelength of 550 nm, from the viewpoint of dispersibility. It is more preferably 10 or less, preferably 10 or less, and more preferably 5 or less. If the absorbance of the oxidized carbon nanotube dispersion is 0.1 or more, a sufficient amount of oxidized carbon nanotubes in the oxidized carbon nanotube dispersion can be ensured. Further, when the absorbance of the oxidized carbon nanotube dispersion is 10 or less, the proportion of highly dispersible oxidized carbon nanotubes contained in the oxidized carbon nanotube dispersion can be increased.
  • the absorbance ratio of the oxidized carbon nanotube dispersion liquid of the present invention is preferably 0.5 or more, preferably 0.7 or more, from the viewpoint of high purity with few aggregates and excellent dispersibility of oxidized carbon nanotubes. It is more preferably 0 or less.
  • the "absorbance ratio" is defined for the oxidized carbon nanotube dispersion and the purified dispersion obtained by filtering and purifying the oxidized carbon nanotube dispersion, respectively, using a spectrophotometer with an optical path length of 1 mm.
  • the oxidized carbon nanotube dispersion of the present invention is not particularly limited, and can be obtained by subjecting a mixture (coarse dispersion) containing the oxidized carbon nanotubes of the present invention and a solvent to dispersion treatment.
  • a coarse dispersion can be obtained, for example, by adding oxidized carbon nanotubes to the solvent described above and optionally mixing them under normal pressure using a mixer or the like.
  • the acidic solution containing oxidized CNT obtained in the oxidation treatment step in the method for producing oxidized carbon nanotubes of the present invention described above may be used as it is as the coarse dispersion.
  • the coarse dispersion may also optionally contain additives such as the dispersing agents described above.
  • the obtained dispersion is centrifuged to precipitate a part of the oxidized carbon nanotubes (centrifugation treatment), and the supernatant is separated from the centrifuged dispersion.
  • the supernatant may be obtained as an oxidized carbon nanotube dispersion liquid by performing a treatment for collecting (fractionation treatment).
  • the dispersion treatment is not particularly limited, and can be performed using a known dispersion treatment method used for dispersing a liquid containing carbon nanotubes, such as ultrasonic dispersion treatment.
  • the dispersion treatment time is not particularly limited, but is preferably from 1 hour to 30 hours.
  • Any neutralizing agent may be added in order to adjust the pH of the crude dispersion to neutrality (approximately pH 6 to pH 8) during the dispersion treatment.
  • the neutralizing agent include, but are not particularly limited to, alkaline solutions having a pH of 9 or more and 14 or less, more specifically sodium hydroxide aqueous solution, ammonia aqueous solution, and the like.
  • the solvent described above may be added to the acidic solution as necessary during the dispersion treatment.
  • Such solvent may be the same as or different from the solvent of the acidic solution, but is preferably the same solvent.
  • Centrifugation of the liquid (dispersion mixed liquid) that has undergone the dispersion treatment is not particularly limited, and can be performed using a known centrifuge. Among them, from the viewpoint of obtaining an oxidized carbon nanotube dispersion liquid having excellent dispersibility of oxidized carbon nanotubes by leaving an appropriate amount of oxidized carbon nanotubes having excellent dispersibility in the supernatant liquid obtained, centrifugation when centrifuging the dispersed mixed liquid
  • the acceleration is preferably 2000G or more, more preferably 5000G or more, preferably 20000G or less, and more preferably 15000G or less.
  • centrifugation during centrifugation of the dispersion mixture The separation time is preferably 20 minutes or longer, more preferably 30 minutes or longer, preferably 120 minutes or shorter, and more preferably 90 minutes or shorter.
  • the supernatant liquid from the centrifuged dispersion can be collected by, for example, decantation, pipetting, or the like, leaving a sediment layer and recovering the supernatant liquid.
  • the supernatant liquid present in a portion from the liquid surface of the dispersed mixed liquid after centrifugation to a depth of 5/6 may be recovered.
  • the supernatant liquid separated from the dispersed mixture after centrifugation contains oxidized carbon nanotubes that were not precipitated by centrifugation. Therefore, the supernatant liquid is an oxidized carbon nanotube dispersion in which the oxidized carbon nanotubes are more highly dispersed.
  • FT-IR ⁇ Fourier transform infrared spectroscopy
  • CNT bundle length measurement 100 g of water containing sodium dodecylbenzenesulfonate as a surfactant at a concentration of 1% by mass was added to 10 mg of CNT material prepared in each example and comparative example and 10 mg of oxidized CNT prepared in Comparative Example 2, An ultrasonic bath was used to stir at 45 Hz for 1 minute to obtain 100 ml of each CNT dispersion.
  • a CNT dispersion or oxidized CNT dispersion present in the dispersion was analyzed using a flow-type particle image analyzer (manufactured by Jusco International Co., Ltd., a circulation type image analysis particle size distribution meter "CF-3000").
  • the ISO circle diameter average value was measured, and the obtained value was defined as the CNT bundle length.
  • the analysis conditions were as follows.
  • the plasmon peak top position (FIR resonance peak) was obtained from an approximated curve by polynomial fitting using drawing software.
  • ⁇ Average diameter of material CNT and oxidized CNT> Using a transmission electron microscope, the diameters (outer diameters) of 100 randomly selected material CNTs and 100 oxidized CNTs were measured, and the arithmetic average value was taken as the average diameter of the material CNTs and oxidized CNTs.
  • ⁇ Tap bulk density> The tapped bulk density (g/cm 3 ) of the CNT materials prepared in Examples and Comparative Examples was measured according to the method specified in JIS R 1628 "Method for measuring bulk density of fine ceramic powder".
  • ⁇ Average length of oxidized CNT> The oxidized CNTs prepared in each example and comparative example were observed with a scanning electron microscope (SEM), and the lengths of 50 oxidized CNTs were measured from the obtained SEM images. Then, the arithmetic average value of the measured lengths of the oxidized CNTs was taken as the average length of the oxidized CNTs. In Comparative Example 2 in which the average length of oxidized CNTs exceeded 1.0 ⁇ m, the above ⁇ CNT bundle length> was used as the average length of oxidized CNTs.
  • ⁇ Absorbance ratio> The oxidized carbon nanotube dispersion liquid prepared in each example and comparative example was filtered and purified using a 0.2 ⁇ m syringe filter (manufactured by Pall Corporation, product name “Acrodisc Syringe Filter”) to obtain a purified dispersion liquid.
  • a spectrophotometer manufactured by JASCO Corporation, Absorbance at an optical path length of 1 mm and a wavelength of 550 nm was measured using a product name "V670").
  • the absorbance ratio was determined by the following formula.
  • Absorbance ratio (absorbance of purified dispersion)/(absorbance of unpurified dispersion) ⁇ Dispersion stability of oxidized CNT>
  • the oxidized CNT dispersions prepared in Examples and Comparative Examples were stored at room temperature in a dark place for one month. The absorbance ratio is determined for the oxidized CNT dispersion after storage. If the decrease in the absorbance ratio before and after storage is less than 0.1, the dispersion stability is “good”, and if it is 0.1 or more, the dispersion stability is “poor”. ” he decided.
  • Example 1 [Synthesis of material CNT]
  • a coating solution A was prepared by dissolving aluminum tri-sec-butoxide as an aluminum compound in 2-propanol. Further, a coating liquid B was prepared by dissolving iron acetate as an iron compound in 2-propanol.
  • the above-described coating liquid A was applied to the surface of an Fe--Cr alloy SUS430 substrate as a substrate by dip coating under an environment of room temperature of 25° C. and relative humidity of 50%. Specifically, after the substrate was immersed in the coating liquid A, the substrate was held for 20 seconds and pulled up at a pulling speed of 10 mm/sec. Then, it was air-dried for 5 minutes, heated in an air environment at 300° C.
  • the above-described coating liquid B was applied by dip coating on the alumina thin film provided on the substrate under an environment of room temperature of 25° C. and relative humidity of 50%. Specifically, after the substrate provided with the alumina thin film was immersed in the coating liquid B, the substrate was held for 20 seconds, and the substrate provided with the alumina thin film was pulled up at a lifting speed of 3 mm/second.
  • the catalyst for CNT synthesis (iron) is reduced to promote the formation of fine particles of iron, and a state suitable for the growth of single-walled CNTs (a state in which a large number of nanometer-sized catalyst fine particles are formed on the underlayer).
  • the density of the fine catalyst particles at this time was adjusted to 1 ⁇ 10 12 to 1 ⁇ 10 14 particles/cm 2 .
  • a reaction chamber maintained at a furnace temperature of 750° C. and a furnace pressure of 1.02 ⁇ 10 5 Pa, He: 850 sccm, C 2 H 4 : 150 sccm, and H 2 O: 300 ppm. was fed for 5 minutes.
  • CNT growth step single-walled CNTs were grown from each fine catalyst particle.
  • He: 1000 sccm was supplied into the reaction chamber, and the remaining raw material gas and catalyst activator were eliminated.
  • a substrate with CNTs formed on the surface was obtained.
  • the CNTs grown on the substrate were peeled off from the surface of the obtained substrate.
  • a plastic spatula with a sharp edge was used to separate the CNTs (recovery step).
  • the sharp part of the spatula was brought into contact with the boundary between the CNTs and the base material, and the sharp part was moved along the surface of the base material so as to scrape off the CNTs from the base material.
  • the CNTs were stripped from the substrate to obtain the material CNTs.
  • the wavenumber of the FIR resonance peak, the tapped bulk density, and the average diameter were obtained for the obtained material CNT. Table 1 shows the results.
  • oxidized CNT dispersion Using the obtained oxidized CNT dispersion, FT-IR measurement, absorbance ratio measurement, and dispersion stability evaluation were performed. Table 1 shows the results. Also, the oxidized CNTs in the oxidized CNT dispersion were collected by filtration and dried. Then, the ratio of oxidized single-walled carbon nanotubes, the ratio of oxygen atoms, the average diameter, and the average length of the dried oxidized CNTs were determined. Table 1 shows the results.
  • Example 2 A CNT material was synthesized in the same manner as in Example 1 except that He: 800 sccm and C 2 H 4 : 200 sccm in the CNT growth step in synthesizing the material CNT, and an oxidized CNT and an oxidized CNT dispersion were obtained. Then, various measurements and evaluations were performed. Table 1 shows the results.
  • Example 1 A CNT material was synthesized in the same manner as in Example 1, except that He: 900 sccm and C 2 H 4 : 100 sccm in the CNT growth step in the synthesis of the material CNT, to obtain oxidized CNT and an oxidized CNT dispersion. Then, various measurements and evaluations were performed. Table 1 shows the results.
  • Example 2 An oxidized CNT and an oxidized CNT dispersion were prepared in the same manner as in Example 1, except that the material CNT was synthesized according to the method described in Example 1 of WO2021/172078. Then, various measurements and evaluations were performed. Table 1 shows the results.
  • oxidized carbon nanotubes with excellent dispersibility, a method for producing the same, and an oxidized carbon nanotube dispersion in which oxidized carbon nanotubes are well dispersed.

Abstract

The purpose of the present invention is to provide: oxidized carbon nanotubes having excellent dispersibility and a method for producing the same; and an oxidized carbon nanotube dispersion liquid in which oxidized carbon nanotubes are preferably dispersed. The oxidized carbon nanotubes according to the present invention are characterized by satisfying conditions (1)-(3): (1) The ratio of the number of oxidized monolayer carbon nanotubes with respect to the total number of the oxidized carbon nanotubes is 51% or more. (2) In a spectrum obtained by performing a Fourier transform infrared spectroscopic analysis on the oxidized carbon nanotubes, at least one peak based on a plasmon resonance of the oxidized carbon nanotubes exists in a wave number range of more than 700 cm-1 but not more than 1000 cm-1. (3) The oxygen atom ratio is 13 at% or more.

Description

酸化カーボンナノチューブおよびその製造方法、ならびに、酸化カーボンナノチューブ分散液Oxidized carbon nanotube, method for producing same, and oxidized carbon nanotube dispersion
 本発明は、酸化カーボンナノチューブおよびその製造方法、ならびに、酸化カーボンナノチューブ分散液に関する。 The present invention relates to oxidized carbon nanotubes, methods for producing the same, and oxidized carbon nanotube dispersions.
 カーボンナノチューブ(以下、「CNT」と称することがある)は、その特異的な構造に起因して、種々の優れた特性を有する材料として注目されてきた。例えば、CNTは、力学的強度、光学特性、電気特性、熱特性、イオン貯蔵能、およびイオン吸着能等の各種特性に優れており、電子デバイス材料、光学素子材料、導電性材料等の機能性材料としての展開が期待されている。 Carbon nanotubes (hereinafter sometimes referred to as "CNT") have attracted attention as a material with various excellent properties due to their unique structure. For example, CNTs are excellent in various properties such as mechanical strength, optical properties, electrical properties, thermal properties, ion storage capacity, and ion adsorption capacity. Development as a material is expected.
 一方、CNTの使用にあたっては、その特性を十分に発揮させる観点から、溶媒中に均一に分散させる必要がある。しかしながら、CNTは互いに凝集して絡み合いやすく、均一に分散させることは非常に困難である。 On the other hand, when using CNTs, it is necessary to disperse them uniformly in a solvent in order to fully demonstrate their properties. However, CNTs tend to aggregate and become entangled with each other, and it is very difficult to disperse them uniformly.
 そこで、近年では、CNTの分散性を向上させる技術の開発が進められている。例えば、特許文献1には、CNTを含み、かつ、分光吸収スペクトルにおいて500cm-1以上600cm-1以下の波数領域に少なくとも1つの吸収ピークを有する繊維状炭素ナノ構造体が分散性に優れることが開示されている。また、特許文献2には、プラズモン共鳴に基づくピーク、微分細孔容量分布における最大のピークまたは電子顕微鏡画像の二次元空間周波数スペクトルのピークが所定の条件を満たすCNTが分散性に優れることが開示されている。 Therefore, in recent years, techniques for improving the dispersibility of CNTs have been developed. For example, Patent Document 1 discloses that a fibrous carbon nanostructure containing CNT and having at least one absorption peak in the wavenumber region of 500 cm −1 or more and 600 cm −1 or less in the spectroscopic absorption spectrum has excellent dispersibility. disclosed. Further, Patent Document 2 discloses that CNTs satisfying predetermined conditions for a peak based on plasmon resonance, the maximum peak in differential pore volume distribution, or a peak in the two-dimensional spatial frequency spectrum of an electron microscope image are excellent in dispersibility. It is
国際公開第2018/180901号WO2018/180901 国際公開第2021/172078号WO2021/172078
 しかし、上記従来の技術に従って達成され得るCNTの分散性には、一層の向上の余地があった。 However, there is room for further improvement in the dispersibility of CNTs that can be achieved according to the above conventional technology.
 そこで、本発明は、分散性に優れる酸化カーボンナノチューブおよびその製造方法、ならびに、酸化カーボンナノチューブが良好に分散した酸化カーボンナノチューブ分散液を提供することを目的とする。 Therefore, an object of the present invention is to provide oxidized carbon nanotubes with excellent dispersibility, a method for producing the same, and an oxidized carbon nanotube dispersion in which oxidized carbon nanotubes are well dispersed.
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、所定の条件を満たすカーボンナノチューブを酸化処理して得られた所定の条件を満たす酸化カーボンナノチューブが優れた分散性を有し得ることを新たに見出し、本発明を完成させた。 The present inventors have conducted intensive studies with the aim of solving the above problems. The inventors of the present invention have newly discovered that oxidized carbon nanotubes satisfying predetermined conditions, which are obtained by oxidation treatment of carbon nanotubes satisfying predetermined conditions, can have excellent dispersibility, and have completed the present invention. let me
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[1]下記(1)~(3)の条件を満たす酸化カーボンナノチューブである。
 (1)前記酸化カーボンナノチューブの全本数に対して酸化単層カーボンナノチューブの本数が占める割合が51%以上である。
 (2)前記酸化カーボンナノチューブについて、フーリエ変換赤外分光分析して得たスペクトルにおいて、前記酸化カーボンナノチューブのプラズモン共鳴に基づくピークが、波数700cm-1超1000cm-1以下の範囲に少なくとも1つ存在する。
 (3)酸素原子比率が13at%以上である。
 上記の(1)~(3)の条件を全て満たす酸化カーボンナノチューブは、優れた分散性を有し得る。
 なお、本明細書において、フーリエ変換赤外分光分析して得たスペクトルにおける「プラズモン共鳴に基づくピーク」は実施例に記載の方法により検出することができる。また、本明細書において、「酸化カーボンナノチューブの全本数に対する酸化単層カーボンナノチューブの本数が占める割合」、および「酸素原子比率」は、それぞれ実施例に記載の方法により測定することができる。
That is, an object of the present invention is to advantageously solve the above problems, and the present invention is [1] an oxidized carbon nanotube that satisfies the following conditions (1) to (3).
(1) The ratio of the number of oxidized single-walled carbon nanotubes to the total number of the oxidized carbon nanotubes is 51% or more.
(2) In the spectrum obtained by Fourier transform infrared spectroscopic analysis of the oxidized carbon nanotube, at least one peak based on the plasmon resonance of the oxidized carbon nanotube exists in a wavenumber range of more than 700 cm −1 and 1000 cm −1 or less. do.
(3) The oxygen atomic ratio is 13 atomic % or more.
Oxidized carbon nanotubes that satisfy all of the above conditions (1) to (3) can have excellent dispersibility.
In this specification, the "peak based on plasmon resonance" in the spectrum obtained by Fourier transform infrared spectroscopy can be detected by the method described in Examples. In addition, in the present specification, the "proportion of the number of oxidized single-walled carbon nanotubes to the total number of oxidized carbon nanotubes" and the "oxygen atomic ratio" can be measured by the methods described in Examples.
[2]上記[1]の酸化カーボンナノチューブは、平均直径が3.5nm以上5nm以下であることが好ましい。平均直径が上記範囲内である酸化カーボンナノチューブは、一層優れた分散性を有し得る。
 なお、本明細書において、「酸化カーボンナノチューブの平均直径」は、実施例に記載の方法により測定することができる。
[2] The oxidized carbon nanotube of [1] above preferably has an average diameter of 3.5 nm or more and 5 nm or less. Oxidized carbon nanotubes having an average diameter within the above range may have better dispersibility.
In this specification, the "average diameter of oxidized carbon nanotubes" can be measured by the method described in Examples.
[3]上記[1]または[2]の酸化カーボンナノチューブは、平均長さが30nm以上200nm以下であることが好ましい。平均長さが上記範囲内である酸化カーボンナノチューブは、一層優れた分散性を有し得る。
 なお、本明細書において、「酸化カーボンナノチューブの平均長さ」は、実施例に記載の方法により測定することができる。
[3] The oxidized carbon nanotubes of [1] or [2] above preferably have an average length of 30 nm or more and 200 nm or less. Oxidized carbon nanotubes having an average length within the above range can have even better dispersibility.
In this specification, the "average length of oxidized carbon nanotubes" can be measured by the method described in Examples.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[4]上記[1]~[3]のいずれかの酸化カーボンナノチューブを製造する方法であって、下記(1)および(2)のうちの少なくとも1つの条件を満たす、単層カーボンナノチューブを含むカーボンナノチューブを酸化処理する工程を含むことを特徴とする。
 (1)単層カーボンナノチューブを含むカーボンナノチューブを、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、前記カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数500cm-1以上900cm-1以下の範囲に少なくとも1つ存在する。
 (2)タップかさ密度が0.02g/cm以上0.04g/cm以下である。
 上記の(1)および(2)の条件のうちの少なくとも1つを満たす、単層カーボンナノチューブを含むカーボンナノチューブを酸化処理すれば、優れた分散性を有し得る酸化カーボンナノチューブを得ることができる。
 なお、本明細書において、「タップかさ密度」は実施例に記載の方法により測定することができる。
Another object of the present invention is to advantageously solve the above problems. and a step of oxidizing carbon nanotubes including single-walled carbon nanotubes that satisfy at least one of the following conditions (1) and (2).
(1) A carbon nanotube dispersion obtained by dispersing carbon nanotubes including single-walled carbon nanotubes so that the bundle length is 10 μm or more. In the spectrum obtained by Fourier transform infrared spectroscopic analysis, the carbon nanotube dispersion At least one peak based on the plasmon resonance of the body exists in the wave number range of 500 cm −1 to 900 cm −1 .
(2) The tap bulk density is 0.02 g/cm 3 or more and 0.04 g/cm 3 or less.
By oxidizing carbon nanotubes, including single-walled carbon nanotubes, that satisfy at least one of the above conditions (1) and (2), oxidized carbon nanotubes that can have excellent dispersibility can be obtained. .
In addition, in this specification, the "tap bulk density" can be measured by the method described in Examples.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[5]上記[1]~[3]のいずれかの酸化カーボンナノチューブと、溶媒とを含む酸化カーボンナノチューブ分散液である。上述したいずれかの酸化カーボンナノチューブは分散液中にて凝集しにくく、かかる酸化カーボンナノチューブを含有する分散液は酸化カーボンナノチューブの分散性に優れる。 Further, the present invention is intended to advantageously solve the above problems, and the present invention provides [5] an oxidized carbon nanotube according to any one of [1] to [3] above, and a solvent. It is an oxidized carbon nanotube dispersion. Any one of the oxidized carbon nanotubes described above is unlikely to aggregate in a dispersion, and a dispersion containing such oxidized carbon nanotubes has excellent dispersibility of the oxidized carbon nanotubes.
 本発明によれば、分散性に優れる酸化カーボンナノチューブおよびその製造方法、ならびに、酸化カーボンナノチューブが良好に分散した酸化カーボンナノチューブ分散液を提供することができる。 According to the present invention, it is possible to provide oxidized carbon nanotubes with excellent dispersibility, a method for producing the same, and an oxidized carbon nanotube dispersion in which oxidized carbon nanotubes are well dispersed.
 以下、本発明の実施形態について詳細に説明する。
 本発明の酸化カーボンナノチューブは、特に限定されることなく、本発明の酸化カーボンナノチューブの製造方法により好適に製造することができる。本発明の酸化カーボンナノチューブの製造方法は、例えば、本発明の酸化カーボンナノチューブを製造する際に好適に用いることができる。そして、本発明の酸化カーボンナノチューブ分散液は、本発明の酸化カーボンナノチューブを用いて製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.
The oxidized carbon nanotubes of the present invention are not particularly limited, and can be suitably produced by the method for producing oxidized carbon nanotubes of the present invention. The method for producing an oxidized carbon nanotube of the present invention can be suitably used, for example, when producing an oxidized carbon nanotube of the present invention. Then, the oxidized carbon nanotube dispersion of the present invention can be produced using the oxidized carbon nanotubes of the present invention.
(酸化カーボンナノチューブ)
 本発明の酸化カーボンナノチューブは、複数本の酸化されたカーボンナノチューブが集合してなる集合体(酸化カーボンナノチューブ集合体)である。そして、本発明の酸化カーボンナノチューブは、下記条件(1)~(3)を満たすことを必要とする。
 (1)酸化カーボンナノチューブの全本数に対して酸化単層カーボンナノチューブの本数が占める割合が51%以上である。
 (2)酸化カーボンナノチューブについて、フーリエ変換赤外分光分析して得たスペクトルにおいて、酸化カーボンナノチューブのプラズモン共鳴に基づくピークが、波数700cm-1超1000cm-1以下の範囲に少なくとも1つ存在する。
 (3)酸素原子比率が13at%以上である。
 かかる条件を満たす本発明の酸化カーボンナノチューブは、分散液中で優れた分散性を有し得る。以下、各条件について説明する。
(oxidized carbon nanotube)
The oxidized carbon nanotubes of the present invention are aggregates (oxidized carbon nanotube aggregates) in which a plurality of oxidized carbon nanotubes are aggregated. The oxidized carbon nanotubes of the present invention must satisfy the following conditions (1) to (3).
(1) The ratio of the number of oxidized single-walled carbon nanotubes to the total number of oxidized carbon nanotubes is 51% or more.
(2) In the spectrum obtained by Fourier transform infrared spectroscopic analysis of the oxidized carbon nanotube, at least one peak based on plasmon resonance of the oxidized carbon nanotube exists in the wavenumber range of more than 700 cm −1 and 1000 cm −1 or less.
(3) The oxygen atomic ratio is 13 atomic % or more.
The oxidized carbon nanotubes of the present invention that satisfy these conditions can have excellent dispersibility in dispersion liquids. Each condition will be described below.
<条件(1)>
 条件(1)は、「酸化カーボンナノチューブの全本数に対して酸化単層カーボンナノチューブの本数が占める割合(以下、単に「酸化単層カーボンナノチューブの割合」ともいう)が51%以上であること」を規定する。酸化単層カーボンナノチューブの割合が51%未満であると、酸化カーボンナノチューブの分散性に劣る。
 酸化カーボンナノチューブの分散性を一層向上させる観点からは、酸化単層カーボンナノチューブの割合は60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることが更に好ましい。
 本発明の酸化カーボンナノチューブは、酸化単層カーボンナノチューブに加えて、酸化多層カーボンナノチューブを含み得る。
<Condition (1)>
Condition (1) is that ``the ratio of the number of oxidized single-walled carbon nanotubes to the total number of oxidized carbon nanotubes (hereinafter, simply referred to as the ``proportion of oxidized single-walled carbon nanotubes'') is 51% or more. stipulate. If the proportion of oxidized single-walled carbon nanotubes is less than 51%, the dispersibility of the oxidized carbon nanotubes is poor.
From the viewpoint of further improving the dispersibility of oxidized carbon nanotubes, the proportion of oxidized single-walled carbon nanotubes is preferably 60% or more, more preferably 65% or more, and even more preferably 70% or more. .
The oxidized carbon nanotubes of the present invention can include oxidized multi-walled carbon nanotubes in addition to oxidized single-walled carbon nanotubes.
<条件(2)>
 条件(2)は、「酸化カーボンナノチューブについて、フーリエ変換赤外分光分析して得たスペクトルにおいて、酸化カーボンナノチューブのプラズモン共鳴に基づくピークが、波数700cm-1超1000cm-1以下の範囲に少なくとも1つ存在すること」を規定する。
 ここで、従来から、CNTの光学特性として、遠赤外領域における強い吸収特性が広く知られている。かかる遠赤外領域における強い吸収特性は、CNTの直径及び長さに起因ものであると考えられている。なお、遠赤外線領域における吸収特性、より具体的には、CNTのプラズモン共鳴に基づくピークと、CNTの長さとの関係については、非特許文献(T.Morimoto et.al., “Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes”, pp 9897-9904, Vol.8, No.10, ACS NANO, 2014)にて詳細に検討されている。本発明者は、上記非特許文献に記載されたような検討内容、および、独自の知見に基づいて、フーリエ変換赤外分光光分析して得たスペクトルにおいて、CNTのプラズモン共鳴に基づくピークの検出される位置が、CNTにおける欠陥点の間の距離により何らかの影響を受け得ると推測し、検証を行った。そして、本発明者らは、CNTのプラズモン共鳴に基づくピークの検出される位置が、波状構造を有するCNTにおける屈曲点間の道のりに対応する指標としての役割を果たし得ることを見出し、上記の条件(2)を設定した。
 上記条件を満たす酸化CNTは、フーリエ変換赤外分光分析して得たスペクトルにおいて、プラズモン共鳴に基づくピークが波数の大きい位置に存在するため、酸化CNTにおける欠陥間距離が短く、酸化CNTが湾曲した構造を有していると推察される。そして、このような構造を有する酸化CNTは凝集し難く、分散液中における分散性に優れるものと推察される。
<Condition (2)>
Condition (2) is that "in the spectrum obtained by Fourier transform infrared spectroscopic analysis of the oxidized carbon nanotube, the peak based on the plasmon resonance of the oxidized carbon nanotube is at least 1 in the wavenumber range of more than 700 cm -1 and 1000 cm -1 or less. “the existence of one”.
Here, a strong absorption characteristic in the far-infrared region has been widely known as an optical characteristic of CNTs. Such strong absorption properties in the far-infrared region are believed to be due to the diameter and length of CNTs. The absorption characteristics in the far-infrared region, more specifically, the relationship between the peak based on the plasmon resonance of CNTs and the length of CNTs is described in non-patent literature (T.Morimoto et al., “Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes”, pp 9897-9904, Vol.8, No.10, ACS NANO, 2014). The inventors of the present invention, based on the study described in the non-patent literature and their own knowledge, detected peaks based on the plasmon resonance of CNTs in the spectrum obtained by Fourier transform infrared spectrophotometry. We speculated and verified that the positions where the defects are detected may be affected in some way by the distance between the defect points in the CNTs. Then, the present inventors found that the detected position of the peak based on the plasmon resonance of the CNT can serve as an index corresponding to the path between the bending points in the CNT having a wave-like structure, and the above conditions (2) is set.
Oxidized CNT satisfying the above conditions has a peak based on plasmon resonance in a spectrum obtained by Fourier transform infrared spectroscopy at a position with a large wave number. It is inferred that it has a structure. Oxidized CNTs having such a structure are hard to agglomerate and are presumed to have excellent dispersibility in a dispersion liquid.
 また、本発明の酸化カーボンナノチューブは、分散性を一層向上させる観点から、プラズモン共鳴に基づくピークを1つだけ有することが好ましい。なお、本発明の酸化カーボンナノチューブがプラズモン共鳴に基づくピークを複数有する場合には、少なくとも最も強いプラズモン共鳴に基づくピークが波数700cm-1超1000cm-1以下の範囲内であることが好ましい。また、本発明の酸化カーボンナノチューブは、波数700cm-1以下、あるいは波数1000cm-1超の範囲にはプラズモン共鳴に基づくピークを有さないことが好ましい。さらに、分散性を一層高める観点から、本発明の酸化カーボンナノチューブは、プラズモン共鳴に基づくピークを、波数800cm-1以上950cm-1以下の範囲内、好ましくは波数850cm-1以上950cm-1以下の範囲内に少なくとも1つ有することが好ましく、プラズモン共鳴に基づくピークを、800cm-1以上950cm-1以下の範囲内、好ましくは波数850cm-1以上950cm-1以下の範囲内に全て有することがより好ましい。 From the viewpoint of further improving the dispersibility, the oxidized carbon nanotubes of the present invention preferably have only one peak based on plasmon resonance. When the oxidized carbon nanotube of the present invention has a plurality of peaks based on plasmon resonance, it is preferable that at least the peak based on the strongest plasmon resonance has a wavenumber in the range of more than 700 cm −1 and 1000 cm −1 or less. Further, the oxidized carbon nanotube of the present invention preferably does not have a peak due to plasmon resonance in the wavenumber range of 700 cm -1 or less or in the wavenumber range of more than 1000 cm -1 . Furthermore, from the viewpoint of further enhancing the dispersibility, the oxidized carbon nanotube of the present invention has a peak based on plasmon resonance within the range of 800 cm −1 or more and 950 cm −1 or less in wavenumber, preferably 850 cm −1 or more and 950 cm −1 or less in wavenumber. It is preferable to have at least one peak within the range, and the peak based on plasmon resonance is in the range of 800 cm -1 to 950 cm -1 , preferably in the wavenumber range of 850 cm -1 to 950 cm -1 . preferable.
<条件(3)>
 条件(3)は、「酸化カーボンナノチューブの酸素原子比率が13at%以上であること」を規定する。酸素原子比率が13at%未満であると、酸化カーボンナノチューブの分散性が確保できない。
 「酸素原子比率」とは、X線光電子分光分析によって決定した、カーボンナノチューブ表面における全原子量と酸素原子(O)の存在量との比率により表される値である。より具体的には、「酸素原子比率」は、カーボンナノチューブ表面を構成する全原子量を100at%として、酸素原子(O)の存在量の占める比率を算出することにより求められる値である。そして「酸素原子比率」は、X線光電子分光分析に基づいて算出することができる。
<Condition (3)>
Condition (3) defines that "the oxygen atomic ratio of the oxidized carbon nanotubes is 13 at % or more". If the oxygen atomic ratio is less than 13 at %, the dispersibility of the oxidized carbon nanotubes cannot be ensured.
The “oxygen atomic ratio” is a value represented by the ratio of the total atomic weight on the carbon nanotube surface and the abundance of oxygen atoms (O) determined by X-ray photoelectron spectroscopy. More specifically, the “oxygen atomic ratio” is a value obtained by calculating the ratio of the abundance of oxygen atoms (O), assuming that the total atomic weight constituting the carbon nanotube surface is 100 at %. The "oxygen atomic ratio" can be calculated based on X-ray photoelectron spectroscopy.
 酸化カーボンナノチューブの分散性を一層高める観点から、酸化カーボンナノチューブの酸素原子比率は14at%以上であることが好ましく、15at%以上であることがより好ましい。一方、酸化カーボンナノチューブの導電性、熱伝導性、および強度が損なわれることを抑制しつつ分散性を一層高める観点から、酸素原子比率は20at%以下であることが好ましく、18at%以下であることがより好ましい。 From the viewpoint of further enhancing the dispersibility of the oxidized carbon nanotubes, the oxygen atomic ratio of the oxidized carbon nanotubes is preferably 14 at% or more, more preferably 15 at% or more. On the other hand, from the viewpoint of further increasing the dispersibility while suppressing deterioration of the electrical conductivity, thermal conductivity, and strength of the oxidized carbon nanotubes, the oxygen atomic ratio is preferably 20 atomic % or less, and 18 atomic % or less. is more preferred.
 酸化カーボンナノチューブの酸素原子比率は、例えば、後述する本発明の酸化カーボンナノチューブの製造方法における酸化処理工程において、材料としてのカーボンナノチューブの酸化処理の諸条件(例えば、酸性溶液を用いる場合、酸性溶液中の酸の種類、酸性溶液の酸濃度、材料としてのカーボンナノチューブと酸性溶液との混合溶液の攪拌時間、該混合液の還流温度・還流時間等)を適宜変更することにより調節することができる。 The oxygen atomic ratio of the oxidized carbon nanotubes is determined, for example, in the oxidation treatment step in the method for producing the oxidized carbon nanotubes of the present invention, which will be described later, according to various conditions for oxidation treatment of carbon nanotubes as a material (for example, when an acidic solution is used, an acidic solution The type of acid in the acid solution, the acid concentration of the acid solution, the stirring time of the mixed solution of the carbon nanotubes as the material and the acid solution, the reflux temperature/reflux time of the mixed solution, etc.) can be adjusted as appropriate. .
<酸化カーボンナノチューブの他の性状>
 本発明の酸化カーボンナノチューブは、例えば以下の性状を更に有していることが好ましい。
<Other Properties of Oxidized Carbon Nanotubes>
The oxidized carbon nanotubes of the present invention preferably further have, for example, the following properties.
 本発明の酸化カーボンナノチューブは、平均直径が3.5nm以上であることが好ましく、3.7nm以上であることがより好ましく、4.0nm以上であることが更に好ましく、また、5nm以下であることが好ましく、4.8nm以下であることがより好ましい。酸化カーボンナノチューブの平均直径が上記範囲内であれば、分散性を一層高めることができる。 The oxidized carbon nanotubes of the present invention preferably have an average diameter of 3.5 nm or more, more preferably 3.7 nm or more, still more preferably 4.0 nm or more, and 5 nm or less. is preferred, and 4.8 nm or less is more preferred. If the average diameter of the oxidized carbon nanotubes is within the above range, the dispersibility can be further enhanced.
 本発明の酸化カーボンナノチューブは、平均長さが30nm以上であることが好ましく、50nm以上であることがより好ましく、155nm以上であることが更に好ましく、また、200nm以下であることが好ましく、180nm以下であることがより好ましい。酸化カーボンナノチューブの平均長さが上記範囲内であれば、分散性を一層高めることができる。 The oxidized carbon nanotubes of the present invention preferably have an average length of 30 nm or more, more preferably 50 nm or more, even more preferably 155 nm or more, and preferably 200 nm or less, and 180 nm or less. is more preferable. If the average length of the oxidized carbon nanotubes is within the above range, the dispersibility can be further enhanced.
 本発明の酸化カーボンナノチューブは、BET法による全比表面積が、100m/g以下であることが好ましく、より好ましくは70m/g以下である。BET法による全比表面積が上記上限値以下であれば、酸化CNTの水への分散性及び分散安定性が一層優れたものとなる。酸化カーボンナノチューブのBET法による全比表面積は、例えば、JIS Z8830に準拠した、BET比表面積測定装置を用いて測定できる。 The oxidized carbon nanotubes of the present invention preferably have a total specific surface area measured by the BET method of 100 m 2 /g or less, more preferably 70 m 2 /g or less. If the total specific surface area by the BET method is equal to or less than the above upper limit, the dispersibility and dispersion stability of the oxidized CNTs in water will be even more excellent. The total specific surface area of the oxidized carbon nanotubes by the BET method can be measured using, for example, a BET specific surface area measuring device conforming to JIS Z8830.
 本発明の酸化カーボンナノチューブのG/D比は0.6以上2.0以下であることが好ましい。G/D比が上記範囲内であれば、酸化CNTの水への分散性が一層優れたものとなる。G/D比とはCNTの品質を評価するのに一般的に用いられている指標である。ラマン分光装置によって測定されるCNTのラマンスペクトルには、Gバンド(1600cm-1付近)とDバンド(1350cm-1付近)と呼ばれる振動モードが観測される。GバンドはCNTの円筒面であるグラファイトの六方格子構造由来の振動モードであり、Dバンドは非晶箇所に由来する振動モードである。よって、GバンドとDバンドのピーク強度比(G/D比)が高いものほど、結晶性(直線性)の高いCNTと評価できる。 The G/D ratio of the oxidized carbon nanotubes of the present invention is preferably 0.6 or more and 2.0 or less. If the G/D ratio is within the above range, the dispersibility of the oxidized CNTs in water will be even more excellent. The G/D ratio is an index commonly used to evaluate the quality of CNTs. Vibrational modes called G band (near 1600 cm −1 ) and D band (near 1350 cm −1 ) are observed in the Raman spectrum of CNTs measured by a Raman spectrometer. The G band is a vibrational mode derived from the hexagonal lattice structure of graphite, which is the cylindrical surface of CNT, and the D band is a vibrational mode derived from amorphous sites. Therefore, a CNT with a higher peak intensity ratio (G/D ratio) between the G band and the D band can be evaluated as having higher crystallinity (linearity).
 なお、上述したような酸化カーボンナノチューブの各種属性は、酸化カーボンナノチューブを用いて後述するように酸化カーボンナノチューブ分散液を調製する際に、超音波分散処理等の一般的な分散処理を経ることによっては大幅に変化しない。すなわち、分散処理前の酸化カーボンナノチューブについて測定した各種属性の値は、通常、酸化カーボンナノチューブ分散液中における酸化カーボンナノチューブについてそのまま当てはまる。また、その逆も同様に成立する。 Various attributes of the oxidized carbon nanotubes as described above can be obtained by performing a general dispersion treatment such as ultrasonic dispersion treatment when preparing an oxidized carbon nanotube dispersion as described later using the oxidized carbon nanotubes. does not change significantly. That is, the values of various attributes measured for the oxidized carbon nanotubes before the dispersion treatment usually apply as they are to the oxidized carbon nanotubes in the oxidized carbon nanotube dispersion. Moreover, the reverse is similarly established.
(酸化カーボンナノチューブの製造方法)
 本発明の酸化カーボンナノチューブの製造方法は、上述した本発明の酸化カーボンナノチューブを製造する方法であって、下記(1)および(2)の条件のうちの少なくとも1つを満たす、単層カーボンナノチューブを含むカーボンナノチューブ(以下、単に「材料CNT」ともいう)を酸化処理することを特徴とする。
 (1)単層カーボンナノチューブを含むカーボンナノチューブを、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、前記カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数500cm-1以上900cm-1以下の範囲に少なくとも1つ存在する。
 (2)タップかさ密度が0.02g/cm以上0.04g/cm以下である。
 得られる酸化カーボンナノチューブの分散性を一層高める観点から、本発明の酸化カーボンナノチューブの製造方法は、上記(1)および(2)の条件の両方を満たすカーボンナノチューブを酸化処理することが好ましい。以下、各条件について説明する。
(Method for producing oxidized carbon nanotubes)
A method for producing an oxidized carbon nanotube of the present invention is a method for producing an oxidized carbon nanotube of the present invention described above, and is a single-walled carbon nanotube that satisfies at least one of the following conditions (1) and (2): It is characterized by oxidizing a carbon nanotube (hereinafter also simply referred to as “material CNT”) containing
(1) A carbon nanotube dispersion obtained by dispersing carbon nanotubes including single-walled carbon nanotubes so that the bundle length is 10 μm or more. In the spectrum obtained by Fourier transform infrared spectroscopic analysis, the carbon nanotube dispersion At least one peak based on the plasmon resonance of the body exists in the wave number range of 500 cm −1 to 900 cm −1 .
(2) The tap bulk density is 0.02 g/cm 3 or more and 0.04 g/cm 3 or less.
From the viewpoint of further enhancing the dispersibility of the resulting oxidized carbon nanotubes, the method for producing oxidized carbon nanotubes of the present invention preferably oxidizes carbon nanotubes that satisfy both the above conditions (1) and (2). Each condition will be described below.
<条件(1)>
 条件(1)は、「単層カーボンナノチューブを含むカーボンナノチューブを、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、前記カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数500cm-1以上900cm-1以下の範囲に少なくとも1つ存在すること」を規定する。かかる条件を満たす材料CNTを酸化処理すれば、本発明の酸化カーボンナノチューブを好適に得ることができる。
 なお、フーリエ変換赤外分光分析して得たスペクトルにおけるプラズモン共鳴に基づくピークの位置は、例えば、後述する「材料CNTの合成方法」のCNT成長工程において、原料ガスの供給速度を変更することで制御することができる。
<Condition (1)>
Condition (1) is "a spectrum obtained by Fourier transform infrared spectroscopic analysis of a carbon nanotube dispersion obtained by dispersing carbon nanotubes containing single-walled carbon nanotubes so that the bundle length is 10 μm or more, At least one peak based on plasmon resonance of the carbon nanotube dispersion exists in the wavenumber range of 500 cm −1 or more and 900 cm −1 or less.” The oxidized carbon nanotubes of the present invention can be suitably obtained by oxidizing the material CNT that satisfies these conditions.
The position of the peak based on plasmon resonance in the spectrum obtained by Fourier transform infrared spectroscopy can be changed, for example, by changing the feed rate of the raw material gas in the CNT growth step of "Method for synthesizing CNT material" described later. can be controlled.
 また、材料CNTは、得られる酸化カーボンナノチューブの分散性を向上させる観点から、波数500cm-1以上900cm-1以下の範囲内にプラズモン共鳴に基づくピークを1つだけ有することが好ましい。なお、材料CNTがプラズモン共鳴に基づくピークを複数有する場合には、少なくとも最も強いプラズモン共鳴に基づくピークが波数500cm-1以上900cm-1以下の範囲内であることが好ましい。また、材料CNTは、波数500cm-1未満、あるいは波数900cm-1超の範囲にはプラズモン共鳴に基づくピークを有さないことが好ましい。さらに、得られる酸化カーボンナノチューブの分散性を一層高める観点から、材料CNTは、プラズモン共鳴に基づくピークを波数600cm-1以上850cm-1以下の範囲内に少なくとも1つ有することが好ましく、プラズモン共鳴に基づくピークを波数600cm-1以上850cm-1以下の範囲内に全て有することがより好ましい。
 また、材料CNTは、単層カーボンナノチューブに加えて、多層カーボンナノチューブを含み得る。
In addition, from the viewpoint of improving the dispersibility of the resulting oxidized carbon nanotubes, the CNT material preferably has only one peak based on plasmon resonance within the wave number range of 500 cm −1 or more and 900 cm −1 or less. When the material CNT has a plurality of peaks based on plasmon resonance, it is preferable that at least the peak based on the strongest plasmon resonance has a wavenumber within the range of 500 cm −1 to 900 cm −1 . In addition, the material CNT preferably does not have a peak due to plasmon resonance in the wavenumber range of less than 500 cm −1 or in the wavenumber range of more than 900 cm −1 . Furthermore, from the viewpoint of further enhancing the dispersibility of the obtained oxidized carbon nanotubes, the material CNT preferably has at least one peak based on plasmon resonance within a range of wavenumbers of 600 cm -1 or more and 850 cm -1 or less. It is more preferable to have all peaks within the wavenumber range of 600 cm −1 or more and 850 cm −1 or less.
Also, the material CNT can include multi-walled carbon nanotubes in addition to single-walled carbon nanotubes.
 ここで、条件(1)において、フーリエ変換赤外分光光分析によるスペクトルを取得するにあたり、バンドル長が10μm以上になるように、単層カーボンナノチューブを含むカーボンナノチューブを分散させることにより、カーボンナノチューブ分散体を得る必要がある。ここで、例えば、単層カーボンナノチューブを含むカーボンナノチューブ、水、および界面活性剤(例えば、ドデシルベンゼンスルホン酸ナトリウム)を適切な比率で配合して、超音波等により所定時間にわたり攪拌処理することで、水中に、バンドル長が10μm以上であるカーボンナノチューブ分散体が分散されてなる分散液を得ることができる。 Here, in condition (1), in obtaining a spectrum by Fourier transform infrared spectrophotometry, carbon nanotubes including single-walled carbon nanotubes are dispersed so that the bundle length is 10 μm or more, so that carbon nanotubes are dispersed. I need to get a body Here, for example, carbon nanotubes including single-walled carbon nanotubes, water, and a surfactant (for example, sodium dodecylbenzenesulfonate) are blended in an appropriate ratio and stirred for a predetermined period of time using ultrasonic waves or the like. , a dispersion liquid in which a carbon nanotube dispersion having a bundle length of 10 μm or more is dispersed in water can be obtained.
 カーボンナノチューブ分散体のバンドル長は、湿式画像解析型の粒度測定装置により解析することで得ることができる。かかる測定装置は、カーボンナノチューブ分散体を撮影して得られた画像から、各分散体の面積を算出して、算出した面積を有する円の直径(以下、ISO円径(ISO area diameter)とも称することがある)を得ることができる。そして、本明細書では、各分散体のバンドル長は、このようにして得られるISO円径の値であるものとして、定義した。 The bundle length of the carbon nanotube dispersion can be obtained by analyzing it with a wet image analysis type particle size measuring device. Such a measurement device calculates the area of each dispersion from the image obtained by photographing the carbon nanotube dispersion, and the diameter of the circle having the calculated area (hereinafter also referred to as ISO area diameter) can be obtained). In this specification, the bundle length of each dispersion is defined as the value of the ISO circle diameter thus obtained.
<条件(2)>
 条件(2)は、「材料CNTのタップかさ密度が0.02g/cm以上0.04g/cm以下であること」を規定する。タップかさ密度が上記範囲内である材料CNTを用いれば、材料CNTを充分酸化させて、本発明の酸化カーボンナノチューブを好適に得ることができる。
 得られる酸化カーボンナノチューブの分散性を一層高める観点から、材料CNTのタップかさ密度は0.025g/cm以上であることが好ましく、また、0.035g/cm以下であることが好ましい。
 なお、材料CNTのタップかさ密度は、例えば、後述する「材料CNTの合成方法」のCNT成長工程において、原料ガスの供給速度を変更することで制御することができる。
<Condition (2)>
Condition (2) defines that "the tapped bulk density of CNT material is 0.02 g/cm 3 or more and 0.04 g/cm 3 or less". If material CNTs having a tapped bulk density within the above range are used, the material CNTs can be sufficiently oxidized to suitably obtain the oxidized carbon nanotubes of the present invention.
From the viewpoint of further enhancing the dispersibility of the resulting oxidized carbon nanotubes, the tapped bulk density of the CNT material is preferably 0.025 g/cm 3 or more, and preferably 0.035 g/cm 3 or less.
Note that the tap bulk density of the CNT material can be controlled, for example, by changing the feed rate of the raw material gas in the CNT growth step of the "method for synthesizing CNT material" described later.
<材料CNTの他の性状>
 材料CNTは、平均直径が3.5nm以上であることが好ましく、3.7nm以上であることがより好ましく、また、5nm以下であることが好ましく、4.8nm以下であることがより好ましい。材料CNTの平均直径が上記範囲内であれば、得られる酸化CNTの分散性を一層高めることができる。
 また、材料CNTは、BET法による全比表面積が、好ましくは600m/g以上、より好ましくは800m/g以上であり、好ましくは2600m/g以下、より好ましくは1400m/g以下である。さらに開口処理したものにあっては、1300m/g以上であることが好ましい。ここで、高い比表面積を有するCNTは、CNT同士に隙間があり、過度にCNTがバンドル化していない。そのため、個々のCNT同士が緩やかに結合しており、容易に分散させることが可能になる。材料カーボンナノチューブのBET法による全比表面積は、例えば、JIS Z8830に準拠した、BET比表面積測定装置を用いて測定できる。
 また、材料CNTは、G/D比が1以上50以下であることが好ましい。G/D比が1に満たないカーボンナノチューブは、単層CNTの結晶性が低く、アモルファスカーボンなどの汚れが多い上、多層CNTの含有量が多いことが考えられる。反対にG/D比が50を超えるCNTは直線性が高く、CNTが隙間の少ないバンドルを形成しやすく、比表面積が減少する可能性がある。
<Other properties of material CNT>
The CNT material preferably has an average diameter of 3.5 nm or more, more preferably 3.7 nm or more, and preferably 5 nm or less, more preferably 4.8 nm or less. If the average diameter of the material CNTs is within the above range, the dispersibility of the resulting oxidized CNTs can be further enhanced.
The CNT material preferably has a total specific surface area of 600 m 2 /g or more, more preferably 800 m 2 /g or more, and preferably 2600 m 2 / g or less, more preferably 1400 m 2 /g or less, according to the BET method. be. Furthermore, it is preferable that it is 1300 m <2> /g or more in the thing which carried out the opening process. Here, CNTs having a high specific surface area have gaps between CNTs and are not excessively bundled. Therefore, the individual CNTs are loosely bound to each other and can be easily dispersed. The total specific surface area of the carbon nanotube material measured by the BET method can be measured using, for example, a BET specific surface area measuring device conforming to JIS Z8830.
Moreover, the material CNT preferably has a G/D ratio of 1 or more and 50 or less. Carbon nanotubes with a G/D ratio of less than 1 are considered to have low crystallinity of single-walled CNTs, a large amount of dirt such as amorphous carbon, and a large content of multi-walled CNTs. Conversely, CNTs with a G/D ratio exceeding 50 have high linearity, tend to form bundles with few gaps, and may have a reduced specific surface area.
<材料CNTの合成方法>
 材料CNTは、特に限定されず、例えば、化学的気相成長(CVD)法などの既知のCNT合成方法により合成することができる。例えば、材料CNTは、CNT製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、CVD法によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。
<Method for synthesizing material CNT>
The material CNT is not particularly limited, and can be synthesized by a known CNT synthesis method such as chemical vapor deposition (CVD) method. For example, the CNT material is prepared by supplying a raw material compound and a carrier gas onto a base material having a catalyst layer for CNT production on its surface, and synthesizing CNT by a CVD method. Activating substance), the catalytic activity of the catalyst layer is dramatically improved (super-growth method; see International Publication No. 2006/011655).
 以下、CVD法により材料CNTを合成する方法の一例を説明する。一例において、材料CNTの合成方法は、触媒担持体を形成する触媒担持体形成工程と、かかる触媒担持体形成工程にて得られた触媒担持体を用いてCNTを合成するCNT合成工程と、かかるCNT合成工程で合成されたCNTを回収する回収工程と、を含む。 An example of a method for synthesizing the material CNT by the CVD method will be described below. In one example, a method for synthesizing the material CNT includes a catalyst carrier forming step of forming a catalyst carrier, a CNT synthesis step of synthesizing CNT using the catalyst carrier obtained in the catalyst carrier forming step, and and a recovery step of recovering the CNTs synthesized in the CNT synthesis step.
[触媒担持体形成工程]
 触媒担持体形成工程は、湿式または乾式の既知の触媒担持法に従って実施することができる。触媒担持体を製造する際に用いられる基材、触媒、触媒の形成方法等は特に限定されず、例えば、国際公開第2017/170579号に記載されたものを用いることができる。
[Catalyst carrier forming step]
The catalyst support formation step can be carried out according to known wet or dry catalyst support methods. The base material, the catalyst, the method of forming the catalyst, and the like used in producing the supported catalyst are not particularly limited, and for example, those described in International Publication No. 2017/170579 can be used.
[CNT合成工程]
 CNT合成工程では、炭素源となる原料ガスを触媒担持体に供給し、CVD法により触媒層上にCNTを成長させる(CNT成長工程)。多数のCNTが触媒層上に所定の方向に配列(配向)した状態で形成される。ここで、炭素源となる原料ガスとしては、特に限定されることなく、メタン、エタン、エチレン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、プロピレンおよびアセチレンなどの炭化水素のガス;メタノール、エタノールなどの低級アルコールのガス;ならびに、これらの混合物も使用可能である。また、この原料ガスは、例えば、ヘリウムガス、アルゴンガス、窒素ガス、またはこれらの混合ガスなどの不活性ガスで希釈されていてもよい。また、得られる酸化CNTの分散性を一層高める観点から、CNTの成長速度は、10μm/分以上であることが好ましい。なお、温度は、例えば、400℃以上1100℃以下の範囲で調節することができる。
[CNT synthesis step]
In the CNT synthesis step, a raw material gas that serves as a carbon source is supplied to the catalyst carrier, and CNTs are grown on the catalyst layer by the CVD method (CNT growth step). A large number of CNTs are formed on the catalyst layer in a state of being arranged (orientated) in a predetermined direction. Here, the raw material gas serving as a carbon source is not particularly limited, and hydrocarbon gases such as methane, ethane, ethylene, propane, butane, pentane, hexane, heptane, propylene and acetylene; Gases of lower alcohols; as well as mixtures thereof can also be used. Also, this raw material gas may be diluted with an inert gas such as helium gas, argon gas, nitrogen gas, or a mixed gas thereof. From the viewpoint of further enhancing the dispersibility of the obtained oxidized CNTs, the growth rate of CNTs is preferably 10 μm/min or more. Note that the temperature can be adjusted, for example, in the range of 400° C. or higher and 1100° C. or lower.
 CNT成長雰囲気下にて、炭素源となる原料ガスはエチレンを含むことが好ましい。エチレンを所定の温度範囲(700℃以上900℃以下)の範囲で加熱することで、エチレンの分解反応が促進され、その分解ガスが触媒と接触した際に、CNTの高速成長が可能になる。しかしながら、熱分解時間が長すぎると、エチレンの分解反応が進みすぎ、触媒の失活やCNTへの炭素不純物付着を引き起こす。本発明の材料CNTの合成においては、エチレン濃度0.1体積%以上40体積%以下の範囲に対して、熱分解時間0.5秒以上10秒以下の範囲が好ましい。0.5秒未満ではエチレンの熱分解が不足し、CNT集合体を高速に成長させることが困難になる。10秒より長いと、エチレンの分解が進み過ぎ、炭素不純物が多く発生し、触媒失活やCNTの品質低下を引き起こしてしまう。熱分解時間は以下の式から計算する。
(熱分解時間)=(加熱流路体積)/{(原料ガス流量)×(273.15+T)/273.15}
 ここで加熱流路体積とは、原料ガスが触媒に接触する前に通過する、所定温度T℃に加熱された流路の体積であり、原料ガス流量は0℃、1atmにおける流量である。
Under the CNT growth atmosphere, it is preferable that the raw material gas serving as a carbon source contain ethylene. By heating ethylene in a predetermined temperature range (700° C. or higher and 900° C. or lower), the decomposition reaction of ethylene is promoted, and when the decomposition gas comes into contact with the catalyst, CNTs can grow at high speed. However, if the thermal decomposition time is too long, the decomposition reaction of ethylene proceeds too much, causing deactivation of the catalyst and adhesion of carbon impurities to the CNTs. In synthesizing the CNT material of the present invention, the thermal decomposition time is preferably in the range of 0.5 seconds to 10 seconds with respect to the ethylene concentration in the range of 0.1 volume % to 40 volume %. If the time is less than 0.5 seconds, thermal decomposition of ethylene is insufficient, making it difficult to grow CNT aggregates at high speed. If the time is longer than 10 seconds, the decomposition of ethylene proceeds too much to generate a large amount of carbon impurities, resulting in deactivation of the catalyst and deterioration of CNT quality. Thermal decomposition time is calculated from the following formula.
(Thermal decomposition time) = (heating channel volume)/{(source gas flow rate) x (273.15+T)/273.15}
Here, the heated channel volume is the volume of the channel heated to a predetermined temperature T° C. through which the raw material gas passes before coming into contact with the catalyst, and the raw material gas flow rate is the flow rate at 0° C. and 1 atm.
 CNT成長時に供給する触媒賦活物質としては、特に限定されず、水、酸素、オゾン、酸性ガス、酸化窒素、一酸化炭素及び二酸化炭素などの低炭素数の含酸素化合物;エタノール、メタノールなどのアルコール類;テトラヒドロフランなどのエーテル類;アセトンなどのケトン類;アルデヒド類;エステル類;ならびにこれらの混合物が挙げられる。この中でも、水を用いることが好ましい。なお、一酸化炭素やアルコール類など、炭素と酸素の両方を含む物質は、原料ガスと触媒賦活物質との両方の機能を有する場合がある。例えば一酸化炭素は、エチレンなどのより反応性の高い原料ガスと組み合わせれば触媒賦活物質として作用し、水などの微量でも大きな触媒賦活作用を示す触媒賦活物質と組み合わせれば原料ガスとして作用する。
 また、得られる酸化CNTの分散性を一層高める観点から、CNT集合体の成長雰囲気における触媒賦活物質濃度は、0.01体積%以上であることが好ましい。なお、CNT集合体の成長雰囲気における触媒賦活物質濃度は、通常1.0体積%以下である。触媒賦活物質濃度は、CNT成長時に供給する触媒賦活物質の供給速度を適宜調節することで制御することができる。
The catalyst activating material supplied during CNT growth is not particularly limited, and oxygen-containing compounds with a low carbon number such as water, oxygen, ozone, acid gases, nitrogen oxides, carbon monoxide and carbon dioxide; alcohols such as ethanol and methanol. ethers such as tetrahydrofuran; ketones such as acetone; aldehydes; esters; and mixtures thereof. Among these, it is preferable to use water. Substances containing both carbon and oxygen, such as carbon monoxide and alcohols, may function as both a raw material gas and a catalyst activating substance. For example, carbon monoxide acts as a catalyst activating substance when combined with a more reactive raw material gas such as ethylene, and acts as a raw material gas when combined with a catalyst activating substance that exhibits a large catalytic activation effect even in a small amount such as water. .
Moreover, from the viewpoint of further enhancing the dispersibility of the obtained oxidized CNTs, the concentration of the catalyst activation substance in the growth atmosphere of the CNT aggregates is preferably 0.01% by volume or more. Incidentally, the concentration of the catalyst activation material in the growth atmosphere of the CNT aggregate is usually 1.0% by volume or less. The catalyst activation material concentration can be controlled by appropriately adjusting the feed rate of the catalyst activation material supplied during CNT growth.
 また、CNT合成工程では、上記CNT成長工程に先立って、任意で、触媒担持体に担持された触媒を還元する「フォーメーション工程」を実施することができる。「フォーメーション工程」では、例えば、触媒担持体を含む雰囲気を還元ガス雰囲気として、かかる還元ガス雰囲気または触媒担持体のうち少なくとも一方を加熱して、触媒担持体に担持された触媒を還元および微粒子化する。フォーメーション工程における触媒担持体または還元ガス雰囲気の温度は、好ましくは400℃以上1100℃以下である。また、フォーメーション工程の実施時間は、3分間以上120分間以下であり得る。なお、還元ガスとしては、例えば、水素ガス、アンモニアガス、水蒸気、またはそれらの混合ガスを用いることができる。また、還元ガスは、これらのガスをヘリウムガス、アルゴンガス、窒素ガス等の不活性ガスと混合した混合ガスでもよい。 In addition, in the CNT synthesis step, prior to the CNT growth step, optionally, a "formation step" can be performed to reduce the catalyst supported on the catalyst support. In the "formation step", for example, the atmosphere containing the catalyst carrier is used as a reducing gas atmosphere, and at least one of the reducing gas atmosphere and the catalyst carrier is heated to reduce and atomize the catalyst supported on the catalyst carrier. do. The temperature of the catalyst carrier or reducing gas atmosphere in the formation step is preferably 400° C. or higher and 1100° C. or lower. Moreover, the execution time of a formation process can be 3 minutes or more and 120 minutes or less. As the reducing gas, for example, hydrogen gas, ammonia gas, water vapor, or a mixed gas thereof can be used. Also, the reducing gas may be a mixed gas in which these gases are mixed with an inert gas such as helium gas, argon gas, or nitrogen gas.
[回収工程]
 回収工程は、特に限定されず、例えば、鋭利部を備えたヘラを使用して、CNTを基材から剥離することにより行うことができる。あるいは、分級装置などの既知の分離回収装置を用いて回収を行ってもよい。
[Recovery process]
The recovery step is not particularly limited, and can be performed, for example, by using a spatula with a sharp edge to peel the CNTs from the substrate. Alternatively, the recovery may be performed using a known separation and recovery device such as a classifier.
<酸化処理>
 材料CNTを酸化処理する方法は、特に限定されず、酸化処理は、例えば、酸性溶液中に材料CNTを添加して混合することにより行うことができる。混合方法は、特に限定されず、任意の方法による撹拌操作を行い得る。また、混合時間は、特に限定されないが、0.1時間以上10時間以下とすることが好ましい。
 酸性溶液としては、例えば、硝酸、塩酸、硫酸などの酸を含む溶液が挙げられるが、材料CNTを充分酸化させる観点からは、硝酸を含む溶液を用いることが好ましい。酸性溶液の溶媒は、後述する本発明の酸化カーボンナノチューブ分散液に含有され得る溶媒とすることができるが、水を用いることが好ましい。すなわち、酸性溶液は酸性水溶液であることが好ましい。酸性溶液のpHは、例えば、2以下とすることができる。
 また、材料CNTを充分酸化させる観点からは、酸化処理は、材料CNTと酸性溶液との混合液を所定の温度条件下で還流させることにより行うことが好ましい。混合液を還流させる際の温度条件は、100℃以上150℃以下とすることが好ましく、還流時間は3時間以上20時間以下とすることが好ましい。
<Oxidation treatment>
The method of oxidizing the CNT material is not particularly limited, and the oxidizing treatment can be performed, for example, by adding the CNT material to an acidic solution and mixing. A mixing method is not particularly limited, and stirring operation can be performed by any method. Also, the mixing time is not particularly limited, but is preferably 0.1 hour or more and 10 hours or less.
Examples of the acidic solution include solutions containing acids such as nitric acid, hydrochloric acid, and sulfuric acid. From the viewpoint of sufficiently oxidizing the material CNT, it is preferable to use a solution containing nitric acid. The solvent of the acidic solution can be a solvent that can be contained in the oxidized carbon nanotube dispersion of the present invention, which will be described later, but it is preferable to use water. That is, the acidic solution is preferably an acidic aqueous solution. The pH of the acidic solution can be, for example, 2 or less.
Moreover, from the viewpoint of sufficiently oxidizing the CNT material, the oxidation treatment is preferably performed by refluxing the mixed solution of the CNT material and the acid solution under a predetermined temperature condition. The temperature condition for refluxing the mixture is preferably 100° C. or higher and 150° C. or lower, and the reflux time is preferably 3 hours or longer and 20 hours or shorter.
 そして、上記酸化処理工程を経た混合液中の酸化カーボンナノチューブを公知の方法によりろ取および任意で乾燥することにより、本発明の酸化カーボンナノチューブを得ることができる。また、上記混合液は、後述する本発明の酸化カーボンナノチューブ分散液の製造に供することができる。 Then, the oxidized carbon nanotubes of the present invention can be obtained by filtering the oxidized carbon nanotubes in the mixed liquid that has undergone the oxidation treatment step and optionally drying them by a known method. Moreover, the mixed liquid can be used for the production of the oxidized carbon nanotube dispersion of the present invention, which will be described later.
(酸化カーボンナノチューブ分散液)
 本発明の酸化カーボンナノチューブ分散液は、上述した本発明の酸化カーボンナノチューブと、溶媒とを含む。上述したとおり、本発明の酸化カーボンナノチューブは分散性に優れているため、本発明の酸化カーボンナノチューブ分散液中では酸化カーボンナノチューブが高度に分散されている。
(Oxidized carbon nanotube dispersion)
The oxidized carbon nanotube dispersion of the present invention contains the oxidized carbon nanotubes of the present invention described above and a solvent. As described above, since the oxidized carbon nanotubes of the present invention are excellent in dispersibility, the oxidized carbon nanotubes are highly dispersed in the oxidized carbon nanotube dispersion of the present invention.
<酸化カーボンナノチューブ>
 酸化カーボンナノチューブは、上記「本発明の酸化カーボンナノチューブ」の項目で説明したものである。酸化カーボンナノチューブは、上記「本発明の酸化カーボンナノチューブ」の項目にて説明したような各種の好適な属性を満たすことが好ましい。そして、酸化カーボンナノチューブは、上述した本発明の酸化カーボンナノチューブの製造方法により製造することができる。
<溶媒>
 本発明の酸化カーボンナノチューブ分散液が含む溶媒としては、例えば、非ハロゲン系溶媒、および非水溶媒等が挙げられる。具体的には、上記溶媒としては、水;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコール、メトキシプロパノール、プロピレングリコール、エチレングリコール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、α-ヒドロキシカルボン酸のエステル、ベンジルベンゾエート(安息香酸ベンジル)等のエステル類;ジエチルエーテル、ジオキサン、テトラヒドロフラン、モノメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド系極性有機溶媒;トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼン、等の芳香族炭化水素類;サリチルアルデヒド、ジメチルスルホキシド、4-メチル-2-ペンタノン、N-メチルピロリドン、γ-ブチロラクトン、テトラメチルアンモニウムヒドロキシド等が挙げられる。中でも、酸化カーボンナノチューブの分散性を向上させる観点からは、水、アルコール類等の極性溶媒が好ましく、水がより好ましい。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
<Oxidized carbon nanotube>
The oxidized carbon nanotubes are those described in the above item "the oxidized carbon nanotubes of the present invention". The oxidized carbon nanotube preferably satisfies various suitable attributes as described in the section "Oxidized carbon nanotube of the present invention" above. The oxidized carbon nanotubes can be produced by the above-described method for producing oxidized carbon nanotubes of the present invention.
<Solvent>
Examples of the solvent contained in the oxidized carbon nanotube dispersion of the present invention include non-halogen solvents and non-aqueous solvents. Specifically, water; methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, amyl alcohol, methoxy Alcohols such as propanol, propylene glycol and ethylene glycol; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Esters such as ethyl acetate, butyl acetate, ethyl lactate, α-hydroxycarboxylic acid esters and benzyl benzoate (benzyl benzoate) Ethers such as diethyl ether, dioxane, tetrahydrofuran, and monomethyl ether; Amide-based polar organic solvents such as N,N-dimethylformamide and N-methylpyrrolidone; Aromas such as toluene, xylene, chlorobenzene, orthodichlorobenzene, and paradichlorobenzene group hydrocarbons; salicylaldehyde, dimethylsulfoxide, 4-methyl-2-pentanone, N-methylpyrrolidone, γ-butyrolactone, tetramethylammonium hydroxide and the like. Among them, polar solvents such as water and alcohols are preferable, and water is more preferable, from the viewpoint of improving the dispersibility of the oxidized carbon nanotubes. These may be used alone or in combination of two or more.
 また、酸化カーボンナノチューブ分散液を用いて得られる成形品に優れた性能を発揮させる観点から、本発明の酸化カーボンナノチューブ分散液は分散剤を実質的に含まないことが好ましい。本明細書において、「実質的に含まない」とは、不可避的に混入する場合を除いて積極的には配合しないことをいい、具体的には、酸化カーボンナノチューブ分散液中の含有量が、固形分換算で、0.05質量%未満であることが好ましく、0.01質量%未満であることがより好ましく、0.001質量%未満であることが更に好ましい。
 なお、上記分散剤としては、界面活性剤、合成高分子、天然高分子等が挙げられる。
In addition, from the viewpoint of allowing molded articles obtained using the oxidized carbon nanotube dispersion to exhibit excellent performance, the oxidized carbon nanotube dispersion of the present invention preferably does not substantially contain a dispersant. In the present specification, the term "substantially free" means that it is not actively blended except when it is unavoidably mixed. Specifically, the content in the oxidized carbon nanotube dispersion is It is preferably less than 0.05% by mass, more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass in terms of solid content.
In addition, surfactant, a synthetic polymer, a natural polymer, etc. are mentioned as said dispersing agent.
<物性>
 本発明の酸化カーボンナノチューブ分散液の粘度は、0.5mPa・s以上であることが好ましく、1mPa・s以上であることがより好ましく、100mPa・s以下であることが好ましく、10mPa・s以下であることがより好ましい。酸化カーボンナノチューブ分散液の粘度が0.5mPa・s以上100mPa・s以下であれば、酸化カーボンナノチューブの分散性に優れる。
 なお、本発明において、「酸化カーボンナノチューブ分散液の粘度」は、JIS Z8803に準拠して、10s-1以上1000s-1以下の範囲内の少なくとも一つのせん断速度(例えば、152s-1)で、温度25℃で測定することができる。
<Physical properties>
The viscosity of the oxidized carbon nanotube dispersion of the present invention is preferably 0.5 mPa s or more, more preferably 1 mPa s or more, preferably 100 mPa s or less, and 10 mPa s or less. It is more preferable to have When the viscosity of the oxidized carbon nanotube dispersion liquid is 0.5 mPa·s or more and 100 mPa·s or less, the oxidized carbon nanotubes are excellent in dispersibility.
In the present invention, the "viscosity of the oxidized carbon nanotube dispersion" is at least one shear rate within the range of 10 s -1 or more and 1000 s -1 or less (for example, 152 s -1 ) in accordance with JIS Z8803. It can be measured at a temperature of 25°C.
 本発明の酸化カーボンナノチューブ分散液の、分光光度計を用いて測定した吸光度は、分散性の観点から、光路長:1mm、波長:550nmにおいて、0.1以上であることが好ましく、0.2以上であることがより好ましく、10以下であることが好ましく、5以下であることがより好ましい。酸化カーボンナノチューブ分散液の吸光度が0.1以上であれば、酸化カーボンナノチューブ分散液中の酸化カーボンナノチューブの量を十分に確保することができる。また、酸化カーボンナノチューブ分散液の吸光度が10以下であれば、酸化カーボンナノチューブ分散液中に含まれている分散性の高い酸化カーボンナノチューブの割合を高めることができる。 The absorbance of the oxidized carbon nanotube dispersion of the present invention measured using a spectrophotometer is preferably 0.1 or more, preferably 0.2, at an optical path length of 1 mm and a wavelength of 550 nm, from the viewpoint of dispersibility. It is more preferably 10 or less, preferably 10 or less, and more preferably 5 or less. If the absorbance of the oxidized carbon nanotube dispersion is 0.1 or more, a sufficient amount of oxidized carbon nanotubes in the oxidized carbon nanotube dispersion can be ensured. Further, when the absorbance of the oxidized carbon nanotube dispersion is 10 or less, the proportion of highly dispersible oxidized carbon nanotubes contained in the oxidized carbon nanotube dispersion can be increased.
 本発明の酸化カーボンナノチューブ分散液の吸光度比は、凝集物が少なく高純度となり、また、酸化カーボンナノチューブの分散性に優れる観点から、0.5以上であることが好ましく、0.7以上1.0以下であることがより好ましい。
 なお、本発明において「吸光度比」は、酸化カーボンナノチューブ分散液と、酸化カーボンナノチューブ分散液をろ過精製して得た精製済分散液と、について、それぞれ、分光光度計を用いて光路長1mm、波長550nmでの吸光度を測定し、精製済分散液の吸光度の値を、ろ過精製処理をしていない酸化カーボンナノチューブ分散液の吸光度の値で除して算出することができる。
 吸光度比が高い、即ち、ろ過精製の前後で酸化カーボンナノチューブ分散液の吸光度の変化が小さい程、分散液中に含有される酸化カーボンナノチューブの凝集性が低く、酸化カーボンナノチューブ分散液が分散性に優れることを意味する。
The absorbance ratio of the oxidized carbon nanotube dispersion liquid of the present invention is preferably 0.5 or more, preferably 0.7 or more, from the viewpoint of high purity with few aggregates and excellent dispersibility of oxidized carbon nanotubes. It is more preferably 0 or less.
In addition, in the present invention, the "absorbance ratio" is defined for the oxidized carbon nanotube dispersion and the purified dispersion obtained by filtering and purifying the oxidized carbon nanotube dispersion, respectively, using a spectrophotometer with an optical path length of 1 mm. It can be calculated by measuring the absorbance at a wavelength of 550 nm and dividing the absorbance value of the purified dispersion by the absorbance value of the oxidized carbon nanotube dispersion that has not been filtered and purified.
The higher the absorbance ratio, that is, the smaller the change in the absorbance of the oxidized carbon nanotube dispersion before and after filtration and purification, the lower the aggregation of the oxidized carbon nanotubes contained in the dispersion, and the better the dispersibility of the oxidized carbon nanotube dispersion. means superior.
<酸化カーボンナノチューブ分散液の製造方法>
 本発明の酸化カーボンナノチューブ分散液は、特に限定されず、本発明の酸化カーボンナノチューブと溶媒とを含む混合液(粗分散液)を分散処理に供することにより得ることができる。かかる粗分散液は、例えば、酸化カーボンナノチューブを上述した溶媒中に添加し、任意に、ミキサー等を用いて常圧下で混合して得ることができる。あるいは、粗分散液として、上述した本発明の酸化カーボンナノチューブの製造方法における酸化処理工程で得られた、酸化CNTを含む酸性溶液をそのまま用いてもよい。また、粗分散液には、任意に、上述した分散剤などの添加剤を含有させてもよい。
 また、上述の分散処理を実施した後に、任意に、得られた分散液を遠心分離し酸化カーボンナノチューブの一部を沈殿させる処理(遠心分離処理)と、遠心分離した分散液から上澄み液を分取する処理(分取処理)とを実施して、当該上澄み液を酸化カーボンナノチューブ分散液として得てもよい。
<Method for Producing Oxidized Carbon Nanotube Dispersion>
The oxidized carbon nanotube dispersion of the present invention is not particularly limited, and can be obtained by subjecting a mixture (coarse dispersion) containing the oxidized carbon nanotubes of the present invention and a solvent to dispersion treatment. Such a coarse dispersion can be obtained, for example, by adding oxidized carbon nanotubes to the solvent described above and optionally mixing them under normal pressure using a mixer or the like. Alternatively, the acidic solution containing oxidized CNT obtained in the oxidation treatment step in the method for producing oxidized carbon nanotubes of the present invention described above may be used as it is as the coarse dispersion. The coarse dispersion may also optionally contain additives such as the dispersing agents described above.
In addition, after the above-described dispersion treatment, optionally, the obtained dispersion is centrifuged to precipitate a part of the oxidized carbon nanotubes (centrifugation treatment), and the supernatant is separated from the centrifuged dispersion. The supernatant may be obtained as an oxidized carbon nanotube dispersion liquid by performing a treatment for collecting (fractionation treatment).
[分散処理]
 分散処理は、特に限定されることなく、超音波分散処理等の、カーボンナノチューブを含む液の分散に使用されている既知の分散処理方法を用いて行うことができる。分散処理時間は、特に限定されないが、1時間以上30時間以内とすることが好ましい。
 なお、かかる分散処理に際して、粗分散液のpHを中性(pH6~pH8程度)に調節するために、任意の中和剤を添加してもよい。かかる中和剤としては、特に限定されることなく、pH9以上pH14以下のアルカリ性溶液、より具体的には、水酸化ナトリウム水溶液やアンモニア水溶液等が挙げられる。
 また、粗分散液として、酸化処理工程で得られた酸化CNTを含む酸性溶液を用いる場合、分散処理に際して、必要に応じて、上述した溶媒を該酸性溶液に更に添加してもよい。かかる溶媒は、酸性溶液の溶媒と同一でも異なっていてもよいが、同じ溶媒であることが好ましい。
[Distributed processing]
The dispersion treatment is not particularly limited, and can be performed using a known dispersion treatment method used for dispersing a liquid containing carbon nanotubes, such as ultrasonic dispersion treatment. The dispersion treatment time is not particularly limited, but is preferably from 1 hour to 30 hours.
Any neutralizing agent may be added in order to adjust the pH of the crude dispersion to neutrality (approximately pH 6 to pH 8) during the dispersion treatment. Examples of the neutralizing agent include, but are not particularly limited to, alkaline solutions having a pH of 9 or more and 14 or less, more specifically sodium hydroxide aqueous solution, ammonia aqueous solution, and the like.
In addition, when an acidic solution containing oxidized CNTs obtained in the oxidation treatment step is used as the coarse dispersion, the solvent described above may be added to the acidic solution as necessary during the dispersion treatment. Such solvent may be the same as or different from the solvent of the acidic solution, but is preferably the same solvent.
[遠心分離処理]
 上記分散処理を経た液(分散混合液)の遠心分離は、特に限定されることなく、既知の遠心分離機を用いて行うことができる。
 中でも、得られる上澄み液中に分散性に優れる酸化カーボンナノチューブを適度に残存させ、酸化カーボンナノチューブの分散性に優れる酸化カーボンナノチューブ分散液を得る観点からは、分散混合液を遠心分離する際の遠心加速度は、2000G以上であることが好ましく、5000G以上であることがより好ましく、20000G以下であることが好ましく、15000G以下であることがより好ましい。
 また、得られる上澄み液中に分散性に優れる酸化カーボンナノチューブを適度に残存させ、酸化カーボンナノチューブの分散性に優れる酸化カーボンナノチューブ分散液を得る観点からは、分散混合液を遠心分離する際の遠心分離時間は、20分間以上であることが好ましく、30分間以上であることがより好ましく、120分間以下であることが好ましく、90分間以下であることがより好ましい。
 かかる遠心分離により、分散処理を経た液中に含まれる複数本の酸化カーボンナノチューブの一部を沈殿させることができる。そして、遠心分離により、凝集性の高い酸化カーボンナノチューブが沈殿し、分散性に優れる酸化カーボンナノチューブが上澄み液中に残存する。
[Centrifuge treatment]
Centrifugation of the liquid (dispersion mixed liquid) that has undergone the dispersion treatment is not particularly limited, and can be performed using a known centrifuge.
Among them, from the viewpoint of obtaining an oxidized carbon nanotube dispersion liquid having excellent dispersibility of oxidized carbon nanotubes by leaving an appropriate amount of oxidized carbon nanotubes having excellent dispersibility in the supernatant liquid obtained, centrifugation when centrifuging the dispersed mixed liquid The acceleration is preferably 2000G or more, more preferably 5000G or more, preferably 20000G or less, and more preferably 15000G or less.
In addition, from the viewpoint of allowing an appropriate amount of oxidized carbon nanotubes with excellent dispersibility to remain in the resulting supernatant and obtaining an oxidized carbon nanotube dispersion with excellent dispersibility of oxidized carbon nanotubes, centrifugation during centrifugation of the dispersion mixture The separation time is preferably 20 minutes or longer, more preferably 30 minutes or longer, preferably 120 minutes or shorter, and more preferably 90 minutes or shorter.
By such centrifugation, part of the plurality of oxidized carbon nanotubes contained in the liquid that has undergone the dispersion treatment can be precipitated. Then, by centrifugation, highly cohesive oxidized carbon nanotubes are precipitated, and highly dispersible oxidized carbon nanotubes remain in the supernatant liquid.
[分取処理]
 遠心分離した分散液からの上澄み液の分取は、例えば、デカンテーションやピペッティング等により、沈殿層を残して上澄み液を回収することにより行うことができる。具体的には、例えば、遠心分離後の分散混合液の液面から5/6の深さまでの部分に存在する上澄み液を回収すればよい。
[Preparation]
The supernatant liquid from the centrifuged dispersion can be collected by, for example, decantation, pipetting, or the like, leaving a sediment layer and recovering the supernatant liquid. Specifically, for example, the supernatant liquid present in a portion from the liquid surface of the dispersed mixed liquid after centrifugation to a depth of 5/6 may be recovered.
 遠心分離後の分散混合液から分取した上澄み液は、遠心分離により沈殿しなかった酸化カーボンナノチューブを含んでいる。そのため、上記上澄み液は、酸化カーボンナノチューブがより高度に分散した酸化カーボンナノチューブ分散液である。 The supernatant liquid separated from the dispersed mixture after centrifugation contains oxidized carbon nanotubes that were not precipitated by centrifugation. Therefore, the supernatant liquid is an oxidized carbon nanotube dispersion in which the oxidized carbon nanotubes are more highly dispersed.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例および比較例における各種の測定および評価については、以下の方法に従って行なった。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples.
Various measurements and evaluations in Examples and Comparative Examples were carried out according to the following methods.
<酸化単層カーボンナノチューブの割合>
 酸化CNTを透過型電子顕微鏡(TEM)で観察し、TEM画像を得た。得られたTEM画像から無作為に選択した50本の酸化CNTについて層数を測定した。そして、50本の酸化CNTに対して酸化単層CNTの本数が占める割合を、「酸化単層カーボンナノチューブの割合」とした。
<フーリエ変換赤外分光分析(FT-IR)>
(CNTバンドル長さ測定)
 各実施例および比較例にて調製した材料CNT、および比較例2で調製した酸化CNT10mgに対して、界面活性剤としてのドデシルベンゼンスルホン酸ナトリウムを1質量%の濃度で含有する水100gを加え、超音波バスを用いて45Hzで1分間撹拌して、各CNTの分散液100mlを得た。
 各分散液について、フロー式粒子画像解析装置(ジャスコインタナショナル社製、循環型画像解析粒度分布計「CF-3000」)を用いて、分散液中に存在するCNT分散体または酸化CNT分散体のISO円径平均値を測定し、得られた値をCNTバンドル長さとした。解析条件は以下とした。
[解析条件]
 ・注入量:50ml(サンプリング容量1.2%)
 ・フローセルスペーサー:1000μm
 ・フロントレンズ倍率:2倍
 ・テレセントリックレンズ倍率0.75倍
 ・ピクセル当たりの長さ:2.3μm/pixel
 各分散液について、循環させながら同条件で4回測定を行い、それらの算術平均値を求めた。
(FT-IR測定)
 実施例1、実施例2および比較例1で調製した各酸化CNT分散液、ならびに上述のように調製した各分散液(実施例1、実施例2、比較例1および比較例2で調製した材料CNT分散液と、比較例2で合成した酸化CNTの分散液)について、同組成の溶媒を用いて2倍希釈し、それぞれシリコン基板上に滴下し乾燥させた。その後、フーリエ変換赤外分光光度計を用いて、プラズモン遠赤外(FIR)共鳴により、CNT分散体または酸化CNT分散体のプラズモン実効長を測定し、FIRスペクトルを得た。なお、プラズモンピークトップ位置(FIR共鳴ピーク)は作図ソフトウェアを用いて多項式フィットによる近似曲線から取得した。
<酸素元素比率>
 各実施例および比較例で調製した酸化CNT分散液をろ過して得たろ物を乾燥して、X線光電子分光分析装置(Thermo Fisher Scientific社製、VG Theta Probe)で分析した。O1sのピーク面積と、検出された全ピーク面積とを求め、これに基づいて酸化カーボンナノチューブ表面を構成する全原子量に対する酸素原子(O)存在量の比(at%)(=O原子存在量/全原子量×100)を算出し、この値を酸素原子比率(at%)とした。
<材料CNTおよび酸化CNTの平均直径>
 透過型電子顕微鏡を用いて、無作為に選択した材料CNTおよび酸化CNTそれぞれ100本の直径(外径)を測定し、その算術平均値を材料CNTおよび酸化CNTの平均直径とした。
<タップかさ密度>
 実施例および比較例で調製した材料CNTについて、JIS R 1628「ファインセラミックス粉末のかさ密度測定方法」に規定される方法にしたがってタップかさ密度(g/cm)を測定した。
<酸化CNTの平均長さ>
 各実施例および比較例で調製した酸化CNTについて、走査型電子顕微鏡(SEM)で観察し、得られたSEM画像から、50本の酸化CNTの長さを測定した。そして、測定した酸化CNTの長さの算術平均値を、酸化CNTの平均長さとした。
 なお、酸化CNTの平均長さが1.0μmを超えている比較例2については、上述の<CNTバンドル長さ>を酸化CNTの平均長さとした。
<吸光度比>
 各実施例および比較例で調製した酸化カーボンナノチューブ分散液を、0.2μmのシリンジフィルター(ポール社製、製品名「アクロディスクシリンジフィルター」)を用いて、ろ過精製して精製済分散液を得た。実施例、比較例で調製したそのままの、即ち、ろ過精製処理をしていない酸化カーボンナノチューブ分散液(未精製分散液)、および精製済分散液を用いて、分光光度計(日本分光社製、商品名「V670」)により、光路長1mm、波長550nmでの吸光度をそれぞれ測定した。そして、下記式により、吸光度比を求めた。
 吸光度比=(精製済分散液の吸光度)/(未精製分散液の吸光度)
<酸化CNTの分散安定性>
 実施例および比較例で調製した酸化CNT分散液を室温、暗所にて1か月間保管した。保管後の酸化CNT分散液について吸光度比を求め、保管前後で吸光度比の減少量が0.1未満であれば分散安定性は「良好」、0.1以上であれば分散安定性は「不良」と判断した。
<Percentage of oxidized single-walled carbon nanotubes>
The oxidized CNTs were observed with a transmission electron microscope (TEM) to obtain TEM images. The number of layers was measured for 50 oxidized CNTs randomly selected from the obtained TEM image. Then, the ratio of the number of oxidized single-walled CNTs to 50 oxidized CNTs was defined as the “ratio of oxidized single-walled carbon nanotubes”.
<Fourier transform infrared spectroscopy (FT-IR)>
(CNT bundle length measurement)
100 g of water containing sodium dodecylbenzenesulfonate as a surfactant at a concentration of 1% by mass was added to 10 mg of CNT material prepared in each example and comparative example and 10 mg of oxidized CNT prepared in Comparative Example 2, An ultrasonic bath was used to stir at 45 Hz for 1 minute to obtain 100 ml of each CNT dispersion.
For each dispersion, a CNT dispersion or oxidized CNT dispersion present in the dispersion was analyzed using a flow-type particle image analyzer (manufactured by Jusco International Co., Ltd., a circulation type image analysis particle size distribution meter "CF-3000"). The ISO circle diameter average value was measured, and the obtained value was defined as the CNT bundle length. The analysis conditions were as follows.
[Analysis conditions]
・Injection volume: 50 ml (sampling volume 1.2%)
・Flow cell spacer: 1000 μm
・Front lens magnification: 2 times ・Telecentric lens magnification: 0.75 times ・Length per pixel: 2.3 μm/pixel
Each dispersion liquid was measured four times under the same conditions while being circulated, and the arithmetic mean value thereof was obtained.
(FT-IR measurement)
Each oxidized CNT dispersion prepared in Example 1, Example 2 and Comparative Example 1, and each dispersion prepared as described above (materials prepared in Example 1, Example 2, Comparative Example 1 and Comparative Example 2 The CNT dispersion and the oxidized CNT dispersion synthesized in Comparative Example 2) were diluted two-fold using a solvent having the same composition, and each of the diluted solutions was dropped onto a silicon substrate and dried. After that, using a Fourier transform infrared spectrophotometer, the plasmon effective length of the CNT dispersion or the oxidized CNT dispersion was measured by plasmon far-infrared (FIR) resonance to obtain an FIR spectrum. The plasmon peak top position (FIR resonance peak) was obtained from an approximated curve by polynomial fitting using drawing software.
<Oxygen element ratio>
The filtered material obtained by filtering the oxidized CNT dispersions prepared in each of Examples and Comparative Examples was dried and analyzed with an X-ray photoelectron spectrometer (VG Theta Probe manufactured by Thermo Fisher Scientific). The O1s peak area and the total detected peak area are obtained, and based on this, the ratio (at%) of the oxygen atom (O) abundance to the total atomic weight constituting the oxidized carbon nanotube surface (=O atom abundance/ total atomic weight×100) was calculated, and this value was taken as the oxygen atomic ratio (at %).
<Average diameter of material CNT and oxidized CNT>
Using a transmission electron microscope, the diameters (outer diameters) of 100 randomly selected material CNTs and 100 oxidized CNTs were measured, and the arithmetic average value was taken as the average diameter of the material CNTs and oxidized CNTs.
<Tap bulk density>
The tapped bulk density (g/cm 3 ) of the CNT materials prepared in Examples and Comparative Examples was measured according to the method specified in JIS R 1628 "Method for measuring bulk density of fine ceramic powder".
<Average length of oxidized CNT>
The oxidized CNTs prepared in each example and comparative example were observed with a scanning electron microscope (SEM), and the lengths of 50 oxidized CNTs were measured from the obtained SEM images. Then, the arithmetic average value of the measured lengths of the oxidized CNTs was taken as the average length of the oxidized CNTs.
In Comparative Example 2 in which the average length of oxidized CNTs exceeded 1.0 μm, the above <CNT bundle length> was used as the average length of oxidized CNTs.
<Absorbance ratio>
The oxidized carbon nanotube dispersion liquid prepared in each example and comparative example was filtered and purified using a 0.2 μm syringe filter (manufactured by Pall Corporation, product name “Acrodisc Syringe Filter”) to obtain a purified dispersion liquid. Ta. Using the oxidized carbon nanotube dispersions (unpurified dispersions) and purified dispersions prepared in Examples and Comparative Examples as they are, that is, without filtration and purification, a spectrophotometer (manufactured by JASCO Corporation, Absorbance at an optical path length of 1 mm and a wavelength of 550 nm was measured using a product name "V670"). Then, the absorbance ratio was determined by the following formula.
Absorbance ratio = (absorbance of purified dispersion)/(absorbance of unpurified dispersion)
<Dispersion stability of oxidized CNT>
The oxidized CNT dispersions prepared in Examples and Comparative Examples were stored at room temperature in a dark place for one month. The absorbance ratio is determined for the oxidized CNT dispersion after storage. If the decrease in the absorbance ratio before and after storage is less than 0.1, the dispersion stability is “good”, and if it is 0.1 or more, the dispersion stability is “poor”. ” he decided.
(実施例1)
[材料CNTの合成]
 アルミニウム化合物としてのアルミニウムトリ-sec-ブトキシドを、2-プロパノールに溶解させて、塗工液Aを調製した。また、鉄化合物としての酢酸鉄を2-プロパノールに溶解させて、塗工液Bを調製した。
 基材としてのFe-Cr合金SUS430基板の表面に、室温25℃、相対湿度50%の環境下でディップコーティングにより、上述の塗工液Aを塗布した。具体的には、基材を塗工液Aに浸漬後、20秒間保持して、10mm/secの引き上げ速度で基材を引き上げた。その後、5分間風乾し、300℃の空気環境下で30分間加熱後、室温まで冷却することにより、基材上に膜厚40nmのアルミナ薄膜(下地層)を形成した。次いで、室温25℃、相対湿度50%の環境下で、基材に設けられたアルミナ薄膜の上に、ディップコーティングにより上述の塗工液Bを塗布した。具体的には、アルミナ薄膜を備える基材を塗工液Bに浸漬後、20秒間保持して、3mm/秒の引き上げ速度でアルミナ薄膜を備える基材を引き上げた。その後、5分間風乾(乾燥温度45℃)することにより、膜厚3nmの鉄薄膜(触媒層)を形成して触媒担持体を得た(触媒担持体形成工程)。
 次に、CVD装置(反応チャンバのサイズ:直径30mm、加熱長360mm)を用いて基材上にCNTを形成した。具体的には、作製した基材を、炉内温度:750℃、炉内圧力:1.02×10Paに保持されたCVD装置の反応チャンバ内に設置し、この反応チャンバ内に、He:100sccm、H:900sccmを6分間導入した。これにより、CNT合成用触媒(鉄)を還元して鉄の微粒子化を促進し、単層CNTの成長に適した状態(下地層上にナノメートルサイズの触媒微粒子が多数形成された状態)とした(フォーメーション工程)。なお、このときの触媒微粒子の密度は、1×1012~1×1014個/cmに調整した。その後、炉内温度:750℃、炉内圧力:1.02×10Paに保持された状態の反応チャンバ内に、He:850sccm、C:150sccm、HO:300ppmとなる量を5分間供給した。これにより、単層CNTを各触媒微粒子から成長させた(CNT成長工程)。そして、CNT成長工程の終了後、反応チャンバ内にHe:1000sccmのみを供給し、残余の原料ガスや触媒賦活剤を排除した。これにより、CNTが表面に形成された基材を得た。
 その後、得られた基材の表面から、基材上に成長したCNTを剥離した。具体的には、鋭利部を備えたプラスチック製のヘラを使用し、CNTを剥離した(回収工程)。なお、剥離時には、ヘラの鋭利部をCNTと基材との境界に当て、基材からCNTをそぎ取るように、基材面に沿って鋭利部を動かした。これにより、CNTを基材から剥ぎ取り、材料CNTを得た。
 得られた材料CNTについて、FIR共鳴ピークの波数、タップかさ密度、および平均直径を求めた。結果を表1に示す。
(Example 1)
[Synthesis of material CNT]
A coating solution A was prepared by dissolving aluminum tri-sec-butoxide as an aluminum compound in 2-propanol. Further, a coating liquid B was prepared by dissolving iron acetate as an iron compound in 2-propanol.
The above-described coating liquid A was applied to the surface of an Fe--Cr alloy SUS430 substrate as a substrate by dip coating under an environment of room temperature of 25° C. and relative humidity of 50%. Specifically, after the substrate was immersed in the coating liquid A, the substrate was held for 20 seconds and pulled up at a pulling speed of 10 mm/sec. Then, it was air-dried for 5 minutes, heated in an air environment at 300° C. for 30 minutes, and then cooled to room temperature to form an alumina thin film (underlayer) with a thickness of 40 nm on the substrate. Then, the above-described coating liquid B was applied by dip coating on the alumina thin film provided on the substrate under an environment of room temperature of 25° C. and relative humidity of 50%. Specifically, after the substrate provided with the alumina thin film was immersed in the coating liquid B, the substrate was held for 20 seconds, and the substrate provided with the alumina thin film was pulled up at a lifting speed of 3 mm/second. Then, it was air-dried for 5 minutes (at a drying temperature of 45° C.) to form an iron thin film (catalyst layer) with a film thickness of 3 nm to obtain a catalyst carrier (catalyst carrier forming step).
Next, CNTs were formed on the substrate using a CVD apparatus (reaction chamber size: diameter 30 mm, heating length 360 mm). Specifically, the prepared base material was placed in a reaction chamber of a CVD apparatus maintained at a furnace temperature of 750° C. and a furnace pressure of 1.02×10 5 Pa. : 100 sccm, H 2 : 900 sccm were introduced for 6 minutes. As a result, the catalyst for CNT synthesis (iron) is reduced to promote the formation of fine particles of iron, and a state suitable for the growth of single-walled CNTs (a state in which a large number of nanometer-sized catalyst fine particles are formed on the underlayer). (formation process). The density of the fine catalyst particles at this time was adjusted to 1×10 12 to 1×10 14 particles/cm 2 . Thereafter, in a reaction chamber maintained at a furnace temperature of 750° C. and a furnace pressure of 1.02×10 5 Pa, He: 850 sccm, C 2 H 4 : 150 sccm, and H 2 O: 300 ppm. was fed for 5 minutes. Thus, single-walled CNTs were grown from each fine catalyst particle (CNT growth step). After completion of the CNT growth process, only He: 1000 sccm was supplied into the reaction chamber, and the remaining raw material gas and catalyst activator were eliminated. As a result, a substrate with CNTs formed on the surface was obtained.
After that, the CNTs grown on the substrate were peeled off from the surface of the obtained substrate. Specifically, a plastic spatula with a sharp edge was used to separate the CNTs (recovery step). At the time of peeling, the sharp part of the spatula was brought into contact with the boundary between the CNTs and the base material, and the sharp part was moved along the surface of the base material so as to scrape off the CNTs from the base material. As a result, the CNTs were stripped from the substrate to obtain the material CNTs.
The wavenumber of the FIR resonance peak, the tapped bulk density, and the average diameter were obtained for the obtained material CNT. Table 1 shows the results.
[酸化処理]
 得られた材料CNT0.1gを、250mLの39質量%(7.7M)の硝酸(HNO)水溶液(pH0以下)中に添加して混合液とした。この混合液を室温(約25℃)で8時間撹拌した。さらに、マントルヒーターのヒーター温度を125℃に昇温して液温が100℃の状態で6時間還流して、混合液中に含まれる材料CNTを酸化処理することにより、酸化CNTを含む混合液(粗分散液)を得た。
[Oxidation treatment]
0.1 g of the obtained material CNT was added to 250 mL of 39 mass % (7.7 M) nitric acid (HNO 3 ) aqueous solution (pH 0 or less) to prepare a mixed solution. The mixture was stirred at room temperature (about 25° C.) for 8 hours. Furthermore, the heater temperature of the mantle heater is raised to 125° C. and the liquid is refluxed at a temperature of 100° C. for 6 hours to oxidize the material CNTs contained in the mixed liquid, thereby obtaining a mixed liquid containing oxidized CNTs. (coarse dispersion) was obtained.
[酸化CNT分散液および酸化CNTの調製]
 得られた酸化CNTを含む混合液に対して、脱イオン交換水1800mLを添加して希釈した。この希釈液を15分間静置して酸化CNTを沈殿させた後、上澄み液を除去した。その後、脱イオン交換水を加えて液量を1800mLとした。得られた液に対して、中和剤として0.1%アンモニア水溶液を添加して液のpHを7.1に調整した。そして、超音波照射機で2時間超音波処理を行い、酸化CNT分散液を得た。
 得られた酸化CNT分散液を用いて、FT-IR測定、吸光度比の測定、および分散安定性の評価を行った。結果を表1に示す。
 また、酸化CNT分散液中の酸化CNTをろ取および乾燥した。そして、乾燥後の酸化CNTについて、酸化単層カーボンナノチューブの割合、酸素原子比率、平均直径、および平均長さを求めた。結果を表1に示す。
[Preparation of oxidized CNT dispersion and oxidized CNT]
1800 mL of deionized exchange water was added to dilute the obtained mixture containing oxidized CNTs. After the diluted solution was allowed to stand for 15 minutes to precipitate the oxidized CNTs, the supernatant was removed. After that, deionized exchange water was added to bring the liquid volume to 1800 mL. A 0.1% aqueous ammonia solution was added as a neutralizing agent to the resulting liquid to adjust the pH of the liquid to 7.1. Then, ultrasonic treatment was performed for 2 hours using an ultrasonic irradiator to obtain an oxidized CNT dispersion.
Using the obtained oxidized CNT dispersion, FT-IR measurement, absorbance ratio measurement, and dispersion stability evaluation were performed. Table 1 shows the results.
Also, the oxidized CNTs in the oxidized CNT dispersion were collected by filtration and dried. Then, the ratio of oxidized single-walled carbon nanotubes, the ratio of oxygen atoms, the average diameter, and the average length of the dried oxidized CNTs were determined. Table 1 shows the results.
(実施例2)
 材料CNTの合成におけるCNT成長工程において、He:800sccm、C:200sccmとした以外は実施例1と同様にして材料CNTを合成し、酸化CNTおよび酸化CNT分散液を得た。そして、各種測定および評価を行った。結果を表1に示す。
(Example 2)
A CNT material was synthesized in the same manner as in Example 1 except that He: 800 sccm and C 2 H 4 : 200 sccm in the CNT growth step in synthesizing the material CNT, and an oxidized CNT and an oxidized CNT dispersion were obtained. Then, various measurements and evaluations were performed. Table 1 shows the results.
(比較例1)
 材料CNTの合成におけるCNT成長工程において、He:900sccm、C:100sccmとした以外は実施例1と同様にして材料CNTを合成し、酸化CNTおよび酸化CNT分散液を得た。そして、各種測定および評価を行った。結果を表1に示す。
(Comparative example 1)
A CNT material was synthesized in the same manner as in Example 1, except that He: 900 sccm and C 2 H 4 : 100 sccm in the CNT growth step in the synthesis of the material CNT, to obtain oxidized CNT and an oxidized CNT dispersion. Then, various measurements and evaluations were performed. Table 1 shows the results.
(比較例2)
 国際公開第2021/172078号の実施例1に記載の方法に従って材料CNTを合成した以外は実施例1と同様に酸化CNTおよび酸化CNT分散液を調製した。そして、各種測定および評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(Comparative example 2)
An oxidized CNT and an oxidized CNT dispersion were prepared in the same manner as in Example 1, except that the material CNT was synthesized according to the method described in Example 1 of WO2021/172078. Then, various measurements and evaluations were performed. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
 表1から、条件(1)~(3)を全て満たす実施例1および2の酸化CNTは分散性に優れていることがわかる、また、表1から、条件(2)を満たさない比較例1の酸化CNT、および、条件(3)を満たさない比較例2の酸化CNTはいずれも分散性に劣ることがわかる。 From Table 1, it can be seen that the oxidized CNTs of Examples 1 and 2, which satisfy all the conditions (1) to (3), have excellent dispersibility. and the oxidized CNT of Comparative Example 2, which does not satisfy the condition (3), are inferior in dispersibility.
 本発明によれば、分散性に優れる酸化カーボンナノチューブおよびその製造方法、ならびに、酸化カーボンナノチューブが良好に分散した酸化カーボンナノチューブ分散液を提供することができる。 According to the present invention, it is possible to provide oxidized carbon nanotubes with excellent dispersibility, a method for producing the same, and an oxidized carbon nanotube dispersion in which oxidized carbon nanotubes are well dispersed.

Claims (5)

  1.  下記(1)~(3)の条件を満たす酸化カーボンナノチューブ。
     (1)前記酸化カーボンナノチューブの全本数に対して酸化単層カーボンナノチューブの本数が占める割合が51%以上である。
     (2)前記酸化カーボンナノチューブについて、フーリエ変換赤外分光分析して得たスペクトルにおいて、前記酸化カーボンナノチューブのプラズモン共鳴に基づくピークが、波数700cm-1超1000cm-1以下の範囲に少なくとも1つ存在する。
     (3)酸素原子比率が13at%以上である。
    An oxidized carbon nanotube that satisfies the following conditions (1) to (3).
    (1) The ratio of the number of oxidized single-walled carbon nanotubes to the total number of the oxidized carbon nanotubes is 51% or more.
    (2) In the spectrum obtained by Fourier transform infrared spectroscopic analysis of the oxidized carbon nanotube, at least one peak based on the plasmon resonance of the oxidized carbon nanotube exists in a wavenumber range of more than 700 cm −1 and 1000 cm −1 or less. do.
    (3) The oxygen atomic ratio is 13 atomic % or more.
  2.  平均直径が3.5nm以上5nm以下である、請求項1に記載の酸化カーボンナノチューブ。 The oxidized carbon nanotube according to claim 1, having an average diameter of 3.5 nm or more and 5 nm or less.
  3.  平均長さが30nm以上200nm以下である、請求項1に記載の酸化カーボンナノチューブ。 The oxidized carbon nanotube according to claim 1, having an average length of 30 nm or more and 200 nm or less.
  4.  下記(1)および(2)のうちの少なくとも1つの条件を満たす、単層カーボンナノチューブを含むカーボンナノチューブを酸化処理する工程を含む、請求項1~3のいずれか一項に記載の酸化カーボンナノチューブの製造方法。
     (1)単層カーボンナノチューブを含むカーボンナノチューブを、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、前記カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数500cm-1以上900cm-1以下の範囲に少なくとも1つ存在する。
     (2)タップかさ密度が0.02g/cm以上0.04g/cm以下である。
    4. The oxidized carbon nanotube according to any one of claims 1 to 3, comprising a step of oxidizing carbon nanotubes, including single-walled carbon nanotubes, satisfying at least one of the following conditions (1) and (2): manufacturing method.
    (1) A carbon nanotube dispersion obtained by dispersing carbon nanotubes including single-walled carbon nanotubes so that the bundle length is 10 μm or more. In the spectrum obtained by Fourier transform infrared spectroscopic analysis, the carbon nanotube dispersion At least one peak based on the plasmon resonance of the body exists in the wave number range of 500 cm −1 to 900 cm −1 .
    (2) The tap bulk density is 0.02 g/cm 3 or more and 0.04 g/cm 3 or less.
  5.  請求項1~3のいずれか一項に記載の酸化カーボンナノチューブと、溶媒とを含む、酸化カーボンナノチューブ分散液。 An oxidized carbon nanotube dispersion containing the oxidized carbon nanotubes according to any one of claims 1 to 3 and a solvent.
PCT/JP2023/001783 2022-02-14 2023-01-20 Oxidized carbon nanotube and method for producing same, and oxidized carbon nanotube dispersion liquid WO2023153182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-020748 2022-02-14
JP2022020748 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153182A1 true WO2023153182A1 (en) 2023-08-17

Family

ID=87564035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001783 WO2023153182A1 (en) 2022-02-14 2023-01-20 Oxidized carbon nanotube and method for producing same, and oxidized carbon nanotube dispersion liquid

Country Status (1)

Country Link
WO (1) WO2023153182A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207758A (en) * 2008-12-30 2011-10-20 National Institute Of Advanced Industrial Science & Technology Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, and powdered aligned single-walled carbon nanotube aggregate
JP2018131348A (en) * 2017-02-14 2018-08-23 東洋インキScホールディングス株式会社 Carbon nanotubes oxide and its fluid dispersion
WO2018168346A1 (en) * 2017-03-16 2018-09-20 日本ゼオン株式会社 Method for producing surface-treated carbon nano-structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207758A (en) * 2008-12-30 2011-10-20 National Institute Of Advanced Industrial Science & Technology Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, and powdered aligned single-walled carbon nanotube aggregate
JP2018131348A (en) * 2017-02-14 2018-08-23 東洋インキScホールディングス株式会社 Carbon nanotubes oxide and its fluid dispersion
WO2018168346A1 (en) * 2017-03-16 2018-09-20 日本ゼオン株式会社 Method for producing surface-treated carbon nano-structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN ZHEYI, ET AL: "Soluble ultra-short single-walled carbon nanotubes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 128, no. 32, 16 August 2006 (2006-08-16), pages 10568 - 10571, XP002479239, ISSN: 0002-7863, DOI: 10.1021/ja063283p *

Similar Documents

Publication Publication Date Title
US8628747B2 (en) Carbon nanotube structures formed on large free floating substrates
Shirazi et al. Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: Purification and Functionalization
EP2404873A1 (en) Composition containing carbon nanotubes, catalyst for producing carbon nanotubes, and aqueous dispersion of carbon nanotubes
WO2018168346A1 (en) Method for producing surface-treated carbon nano-structure
JP4706852B2 (en) Method for producing carbon nanotube
JP7078038B2 (en) Fibrous carbon nanostructure dispersion liquid and its manufacturing method, and fibrous carbon nanostructure
WO2022114235A1 (en) Carbon film
WO2021172141A1 (en) Carbon film
JP5672008B2 (en) Method and apparatus for producing nanocarbon composite
JP2013193916A (en) Method of manufacturing carbon nanotube granule
CN102548896B (en) Method of forming single-walled carbon nanotubes
JP2008169092A (en) Carbon nanotube production method
Donato et al. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes
WO2023153182A1 (en) Oxidized carbon nanotube and method for producing same, and oxidized carbon nanotube dispersion liquid
WO2023008164A1 (en) Oxidized carbon nanotubes and oxidized carbon nanotube dispersion
KR100790839B1 (en) Method of nondestructively refining carbon nanotube
WO2019124026A1 (en) Fibrous carbon nanostructure, method for assessing fibrous carbon nanostructure, and method for producing surface-modified fibrous carbon nanostructure
WO2021172078A1 (en) Carbon nanotube aggregates, and production mehtod therefor
Geng et al. Temperature Threshold and Water role in cVD growth of single-Walled carbon nanotubes
Segura-Cardenas et al. Oxygen to carbon atoms ratio effect on the size, morphology and purity of functionalized carbon nanoshells by using alcohol mixtures as carbon source
Cheraghali Effect of dry & wet oxidation of multi-walled carbon nanotubes on their structures
Yamada et al. Vertically-aligned carbon nanotube growth using closely packed iron oxide nanoparticles
Pei et al. Smooth germanium nanowires prepared by a hydrothermal deposition process
WO2016072096A1 (en) Carbon nano structure aggregate and method for producing same
CN114728793A (en) Fibrous carbon nanostructure and method for producing surface-modified fibrous carbon nanostructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752650

Country of ref document: EP

Kind code of ref document: A1