WO2023151308A1 - 一种具有自吸和气液分散功能的搅拌器 - Google Patents

一种具有自吸和气液分散功能的搅拌器 Download PDF

Info

Publication number
WO2023151308A1
WO2023151308A1 PCT/CN2022/126121 CN2022126121W WO2023151308A1 WO 2023151308 A1 WO2023151308 A1 WO 2023151308A1 CN 2022126121 W CN2022126121 W CN 2022126121W WO 2023151308 A1 WO2023151308 A1 WO 2023151308A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cavity
gas
diameter
disc
Prior art date
Application number
PCT/CN2022/126121
Other languages
English (en)
French (fr)
Inventor
郑志永
高敏杰
詹晓北
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US18/337,093 priority Critical patent/US20230332612A1/en
Publication of WO2023151308A1 publication Critical patent/WO2023151308A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/21Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by their rotating shafts
    • B01F27/2122Hollow shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time

Definitions

  • the invention relates to a stirrer with self-suction and gas-liquid dispersion functions, belonging to the technical field of stirrers.
  • the gas-liquid dispersion process widely exists in process units such as aerated fermentation, oxidation reaction, hydrogenation reaction, chlorination reaction, gas flotation and biological aeration.
  • Engineers have developed bubble column reactors, airlift reactors, radial flow agitators with gas-liquid dispersion functions, gas-liquid mixing nozzles, aerators, etc. to achieve effective gas-liquid dispersion and mass transfer processes.
  • the gas self-suction agitator is a kind of radial flow agitator, which is a gas-liquid contact device that generates negative pressure when the agitator itself rotates in the liquid without a gas conveying device to suck in the external gas.
  • the most common self-priming agitator is the back-bend hollow turbine. Its working principle is that during the high-speed rotation, the back-bend area at the end of the hollow turbine forms a negative pressure, and the inhaled gas and the liquid near the back-bend produce cavitation. Formation of small bubbles enables gas-liquid dispersion and mass transfer.
  • the efficiency ratio of gas-liquid two-phase fluid to generate bubbles through cavitation is not very high, and bubbles of millimeter or even centimeter scale are often formed. If micron-sized bubbles are to be formed, a high power input is required and gas handling capabilities are limited. In the cavitation process under negative pressure conditions, the gas-liquid two phases collide violently to generate small bubbles, and the heat dissipation and energy loss caused by the violent collision are also relatively serious. In fact, in the design process of new gas-liquid dispersion mixers (such as Bakker Turbine), it is often necessary to avoid the formation of cavitation on the back of the paddle.
  • new gas-liquid dispersion mixers such as Bakker Turbine
  • the jet-type gas-liquid dispersing device based on the Venturi tube principle needs to use an external circulation pump to continuously transport liquid.
  • the high-speed flowing liquid generates negative pressure in the shrinkage channel to inhale gas, and forms gas-liquid collision and stretching in the expansion zone. shearing action, forming small bubbles.
  • the pressure difference between the inlet and outlet and the liquid flow rate are the key factors.
  • the gas-liquid dispersion device based on the static mixer realizes the dispersion and mixing of the gas-liquid two-phase by utilizing the flow resistance and flow state change of the internal components and channels of the mixer.
  • gas-liquid dispersion mixers generally belong to radial flow mixers, and are often independent of other types of mixers in function.
  • a combination of different mixers is often required. Realization increases the equipment cost and reduces the production efficiency, and it is difficult to realize the functions of gas-liquid dispersion and efficient mixing at the same time through a stirrer in the prior art.
  • the present invention provides a stirrer with self-priming and gas-liquid dispersion functions.
  • the stirrer has the dual functions of radial gas-liquid dispersion and axial fluid mixing, and effectively promotes the microscopic Mass transfer and macroscopic fluid transport, suitable for multiphase flow reaction systems with various requirements such as gas-liquid mass transfer, mixing and heat transfer.
  • the invention provides a stirrer with self-priming and gas-liquid dispersion functions, comprising a stirring shaft, a hub, a disk and paddles;
  • the stirring shaft is a hollow stirring shaft, the hub is sleeved on the stirring shaft, and the circular
  • the disc is connected to the hub, and the circumferential side of the disc is provided with several radially extending paddles, and the disc is provided with an air intake channel;
  • the paddles include an upper curved surface and a lower curved surface, and the upper curved surface and the lower curved surface
  • a rotary cavity is embedded in the space, and the rotary cavity communicates with the hollow stirring shaft through an air inlet channel;
  • one side of the rotary cavity is the liquid facing surface, and the other side is the back liquid surface, and the liquid facing A liquid inlet channel is provided in the surface, and the liquid inlet channel communicates with the rotary cavity.
  • the inside of the hub is provided with a ventilation groove
  • one side of the stirring shaft is provided with a side hole; the outside of the ventilation groove communicates with the air intake channel of the disc, and the inside of the ventilation groove The side hole of the stirring shaft is connected.
  • a sealing ring is further provided between the stirring shaft and the hub, the number of the sealing rings is two, and the side hole and the ventilation groove are located between the two sealing rings.
  • the connection mode of disc and paddle is welding or detachable connection.
  • the projection of the upper curved surface and the lower curved surface of the blade on the plane of the disc is rectangular, fan-shaped or trapezoidal; It has an inclination angle of 10-60° with the horizontal plane; the lower curved surface has an inclination angle of 10-45° with the horizontal plane in the direction close to the liquid surface, and the lower curved surface tends to be horizontal in the direction close to the back liquid surface.
  • the revolving cavity is a combination of a cylindrical cavity and a conical cavity or a single conical cavity, and the cross-sectional area of the outer end face of the revolving cavity is smaller than the cross-sectional area of the inner end face.
  • the blade further includes an outer surface and an inner surface, the outer surface and the inner surface are plane or cylindrical curved surfaces, the liquid-facing surface is used to guide liquid into the blade, and the liquid-facing surface
  • the included angle with the disc plane is 60-90°, and the upper curved surface and the lower curved surface converge to meet at the back liquid surface.
  • the ratio of the diameter of the outer end face of the revolving cavity to the diameter of the inner end face is 0.4 to 0.9, and the diameter of the revolving cavity
  • the ratio of the length to the diameter of the inner end surface is 1.2 to 4
  • the ratio of the height of the circular table cavity to the diameter of the inner end surface of the rotary cavity is 0.2 to 1
  • the ratio of the width of the blade to the length of the rotary cavity is 1 to 2
  • the ratio of the diameter of the outer end surface of the rotary cavity to the diameter of the inner end surface is 0.5-0.9
  • the ratio of the length of the rotary cavity to the diameter of the inner end surface is 1.5-4.
  • the cross-sectional area of the end of the liquid inlet channel near the liquid-facing surface is greater than the cross-sectional area of the end near the rotary cavity, and the height of the liquid inlet channel at the liquid-facing end is 0.2 times the diameter of the inner end surface of the rotary cavity. ⁇ 0.75, the height of the liquid inlet channel near the end of the cylindrical cavity is 0.1 ⁇ 0.4 of the inner end surface of the rotary cavity.
  • the ratio of the diameter of the intake passage to the diameter of the outer end surface of the revolving cavity is 0.05-0.4.
  • the number of the blades is 2-8, the blades are evenly distributed along the circumference of the disk, and the ratio of the length of the rotating cavity to the diameter of the disk is 0.2-0.8.
  • the agitator of the present invention has a gas self-absorption function, which can reduce the inlet pressure or even directly save the gas compression equipment, and can reduce the investment cost and ventilation power consumption of the ventilation equipment.
  • the agitator of the present invention has dual functions of radial gas-liquid dispersion and axial fluid mixing, effectively promoting microscopic mass transfer and macroscopic fluid transport between gas-liquid two phases, and is suitable for gas-liquid mass transfer, mixing and heat transfer Multiphase flow reaction system with various needs.
  • the agitator of the present invention uses the tangential force generated during the rotation process to guide the liquid into the rotary cavity at the liquid-facing surface of the paddle, and the liquid rotates at a high speed in the rotary cavity.
  • the gas core at the axis of the cavity is efficiently rotated and sheared to produce micron-sized small bubbles;
  • the radial centrifugal force generated during the rotation of the agitator is used to promote negative pressure in the rotary cavity and self-absorption of gas, and the radial centrifugal force
  • the gas-liquid mixture is accelerated from the outer end surface of the shrinking rotary cavity, which further strengthens the speed difference and shearing effect between the gas and the liquid, and produces a secondary crushing effect on the bubbles.
  • the tangential force and the radial centrifugal force can synergistically lift the bubbles. Specific surface area and gas-liquid mass transfer efficiency.
  • the agitator with self-priming and gas-liquid dispersing functions provided by the present invention abandons violent gas-liquid two-phase contact methods such as “collision”, “slapping” and “blasting”, but guides the liquid through high-speed rotation and Gas contact efficiently converts the kinetic energy of the agitator into surface energy, thereby generating a uniform population of micron-sized bubbles.
  • the agitator of the present invention utilizes the basic structure of the rotary cavity and the liquid inlet channel, combined with the inclinations of the upper curved surface and the lower curved surface at different spatial positions, can reduce the power standard of the agitator, which is conducive to exerting energy-saving effects; the lower curved surface Guide the fluid outside the paddle to move axially, transport the air bubbles generated in the paddle to a farther area, and avoid the cavitation of the fluid on the back liquid surface, so that the agitator of the present invention has both radial gas-liquid dispersion
  • the dual function of mixing with axial fluid effectively promotes microscopic mass transfer and macroscopic fluid transport between gas-liquid two phases, and is suitable for multiphase flow reaction systems with various requirements such as gas-liquid mass transfer, mixing and heat transfer.
  • Fig. 1 is the three-dimensional structural diagram of embodiment 1 stirrer
  • Fig. 2 is the front sectional view of embodiment 1 agitator
  • Fig. 3 is the top view of embodiment 1 stirrer
  • Fig. 4 is A-A direction sectional view in Fig. 3;
  • Fig. 5 is the three-dimensional structural diagram of embodiment 2 stirrer
  • Fig. 6 is the front view of embodiment 2 stirrer
  • Fig. 7 is the top view of embodiment 2 stirrer
  • Fig. 8 is a B-B sectional view in Fig. 7;
  • Fig. 9 is a C-C sectional view in Fig. 7;
  • Fig. 10 is the three-dimensional structure diagram of embodiment 3 stirrer
  • Fig. 11 is the front sectional view of embodiment 3 stirrer
  • Fig. 12 is a three-dimensional structural view of the stirrer in Example 4.
  • Fig. 13 is a three-dimensional structure diagram of another perspective of the stirrer in Embodiment 4.
  • a kind of agitator with self-suction and gas-liquid dispersion function as shown in Figure 1 ⁇ Figure 4, comprises agitator shaft 1, wheel hub 2, disk 3 and paddle 4; Described agitator shaft 1 is a hollow agitator shaft, and described The hub 2 is sleeved on the stirring shaft 1, the disc 3 is connected to the hub 2, the circumferential side of the disc 3 is provided with several radially extending paddles 4, and the disc 3 is provided with an air inlet passage 31;
  • the paddle 4 includes an inclined upper curved surface 41 and an inclined lower curved surface 42, a revolving cavity 50 is embedded between the upper curved surface 41 and the lower curved surface 42, and one side of the revolving cavity 50 is a liquid-facing surface 46 , the other side is the back liquid surface 45; the rotary cavity 50 communicates with the stirring shaft 1 through the air inlet passage 31.
  • the paddle 4 includes an upper curved surface 41, a lower curved surface 42, an outer surface 43, an inner surface 44, a liquid-back surface 45, and a liquid-facing surface 46, and the above-mentioned curved surfaces intersect to form the outline of the main body of the blade 4;
  • the included angle between the inner surface 44 and the outer surface 43 and the plane of the disc 3 is 90°.
  • the axis of the revolving chamber 50 is perpendicular to the axis of the stirring shaft 1 ; the inner end surface of the revolving chamber 50 communicates with the hollow stirring shaft 1 through an air inlet passage 31 .
  • a liquid inlet channel 49 is provided in the liquid-facing surface 46 , and the liquid inlet channel 49 communicates with the rotary cavity 50 .
  • the cross-sectional area of the outer end surface of the rotary cavity 50 is smaller than the cross-sectional area of the inner end surface. The gas-liquid mixture is radially discharged from the paddle 4 through the outer end surface of the revolving cavity 50 .
  • the upper curved surface 41 tends to be horizontal in the direction close to the liquid facing surface 46, and the direction of the upper curved surface 41 close to the back liquid surface 45 forms an inclination angle of 10-60° with the horizontal plane; -45° inclination angle, the direction of the lower curved surface 42 approaching the back liquid surface 45 tends to be horizontal.
  • the liquid-facing surface 46 is used to guide the liquid into the paddle 4, the angle between the liquid-facing surface 46 and the disk plane 3 is 60-90°, the liquid-back surface 45 can eliminate the cavitation effect, and the upper curved surface 41 and the lower curved surface 42 converge on the back liquid surface 45, preferably, the upper curved surface 41 and the lower curved surface 42 converge on a straight line in the direction of the back liquid surface 45; the two sides of the back liquid surface 45 are the same inclination, Both sides of the liquid-facing surface 46 have the same inclination.
  • the revolving cavity 50 includes a cylindrical cavity 48 and a conical cavity 47, the ratio of the diameter d T of the outer end face of the revolving cavity 50 to the diameter d C of the inner end face is 0.4-0.9; the length L of the revolving cavity 50
  • the ratio of 1 + L 2 to the diameter of the inner end face d C is 1.2 to 4; the diameter of the end face of the conical cavity 47 near the stirring shaft 1 (that is, the diameter of the inner end face) is the same as the diameter of the cylindrical cavity 48, and the diameter of the conical cavity 47 is
  • the ratio of the height L 2 of 47 to the diameter d C of the inner end surface of the revolving cavity 50 is 0.2-1.
  • the length of the paddle 4 is slightly longer than the length L 1 +L 2 of the revolving cavity 50 , and the ratio of the width W of the paddle 4 to the length L 1 +L 2 of the revolving cavity 50 is 1.0 ⁇ 2.0.
  • the height H W of the liquid inlet channel 49 at the end of the liquid facing surface 46 is 0.20 to 0.75 of the diameter d C of the inner end surface
  • the height H L of the end of the liquid inlet channel 49 near the cylindrical cavity 48 is the diameter d C of the inner end surface of the cylindrical cavity 0.1-0.4
  • the length L 3 of the transverse vertical section of the liquid inlet channel 49 is smaller than the length L 1 of the cylindrical cavity 48
  • the ratio between the two lengths is 0.45-0.95, preferably 0.7-0.9.
  • one end of the air intake channel 31 is connected to the hollow stirring shaft 1 through the disc 3 and the hub 2 , and the other end of the air intake channel 31 is connected to the rotating cavity 50 of the paddle 4 .
  • the ratio of the diameter of the intake channel 31 to the diameter of the outer end surface of the revolving cavity 50 is 0.05-0.4, preferably 0.1-0.25.
  • the disc 3 is perpendicular to the stirring shaft 1, and its inner and outer sides are respectively connected to the hub 2 and the paddle 4, and the disc 3 is provided with an air inlet passage 31; the connection mode between the outer side of the disc 3 and the paddle 4 can be Direct welding can also be provided with a paddle base on the disk 3, and then detachable connection with the paddle 4 can be realized through the paddle base.
  • the inner and outer sides of the hub 2 are respectively connected to the stirring shaft 1 and the disk 3, the inner side of the hub 2 is provided with a ventilation groove 21, and one side of the stirring shaft 1 is provided with a side hole 12; the outer side of the ventilation groove 21 It communicates with the air inlet channel 31 of the disc 3 , and the inner side of the ventilation groove 21 communicates with the side hole 12 of the stirring shaft 1 .
  • the number of the sealing rings 11 is two, and the side hole 12 and the ventilation groove 21 are located between the two sealing rings. Between 11, ensure that the gas in the hollow stirring shaft 1 communicates with the paddle 4.
  • the number of paddles 4 of the agitator is 2 to 8, and the paddles 4 are evenly distributed along the circumference of the disc 3.
  • the number of paddles 4 is four, and the paddles 4 are set in a downward pressure .
  • the ratio of the length L 1 +L 2 of the revolving cavity 50 to the diameter d b of the disk 3 is 0.2-0.8, preferably 0.5-0.7.
  • the projection of the upper curved surface 41 and the lower curved surface 42 of the paddle 4 on the plane of the disc 3 is a rectangle.
  • the operating conditions of the agitator with self-priming and gas-liquid dispersion functions are: the linear velocity of the paddle 4 is greater than 2.0m/s, the viscosity of the liquid is less than 1000mPa ⁇ s, and the maximum size of solid particles is less than the minimum height of the liquid inlet channel 49 .
  • the gas-liquid mass transfer rate and efficiency of the agitator during operation are closely related to the gas-liquid flow ratio.
  • the liquid flow is mainly regulated by the stirring speed, and the gas flow is mainly regulated by the diameter d g of the inlet channel 31 and the opening of the inlet valve.
  • the difference between this embodiment and Embodiment 1 is that the projections of the upper curved surface 41 and the lower curved surface 42 of the blade 4 on the plane of the disk 3 in this embodiment are fan-shaped.
  • the width of the paddle 4 is determined by the fan-shaped central angle ⁇ , the radius r of the inner surface and the radius R of the outer surface.
  • the central angle ⁇ is 30° to 60°.
  • the width of the inner surface of the blade 4 is equal to ⁇ r/180, Its outer side width is equal to ⁇ R/180.
  • the upper curved surface 41 of the paddle 4 tends to be horizontal in the direction close to the liquid facing surface 46; the direction of the upper curved surface 41 close to the back liquid surface 45 is at an inclination angle of 10-60° with the horizontal plane; further, the upper curved surface 41 is close to the direction of the back liquid surface 45
  • the inner inclination of the lower curved surface 42 is greater than the outer inclination; the direction of the lower curved surface 42 close to the liquid-facing surface 46 is at an angle of 10-45° to the horizontal plane, and the inner inclination of the lower curved surface 42 near the liquid-facing surface 46 is greater than the outer inclination; the lower curved surface 42
  • the direction close to the back liquid surface 45 tends to be horizontal.
  • the difference between this embodiment and Embodiment 1 is that the projections of the upper curved surface 41 and the lower curved surface 42 of the blade 4 on the plane of the disc 3 in this embodiment are trapezoidal, that is, the rotation in this embodiment
  • the cavity 50 is a single circular frustum cavity.
  • the ratio of the diameter d T of the outer end surface of the rotary cavity 50 to the diameter d C of the inner end surface is 0.5 to 0.9, and the ratio of the length L 2 of the rotary cavity 50 to the diameter d C of the inner end surface is The ratio is 1.5-4.
  • the radial vertical cross-section of the liquid inlet channel 49 is parallelogram or trapezoidal, and its cross-sectional area is larger at the end of the liquid-facing surface 46, and becomes smaller at the end close to the conical cavity, and communicates with the conical cavity in a tangential direction.
  • the height H W of the liquid inlet channel 49 at the end of the liquid-facing surface 46 is 0.2-0.75 times the diameter d c of the inner end surface, and the height H L at the end near the conical cavity is 0.1-0.4 times the diameter of the inner end surface.
  • the length L 3 of the radial vertical section of the liquid inlet channel 49 near the end of the frustum cavity is smaller than the length L 2 of the cavity, and the ratio between the two lengths is 0.45-0.7.
  • the difference between this embodiment and Embodiment 1 is that the outer end surface of the paddle 4 in this embodiment is connected with a discharge elbow 51 facing the back liquid surface 45, and the rotation plane of the discharge elbow 51 is parallel to the circle. Disk plane, the rotation angle is 40° ⁇ 90°.
  • the arrangement of the discharge elbow 51 is conducive to the gas-liquid mixture being discharged from the paddle more quickly, and a higher negative pressure is formed inside the paddle, which is suitable for occasions where the installation position is farther from the water level.
  • FIG. 1 An agitator with self-priming and gas-liquid dispersion functions, as shown in Figures 1 to 4, this embodiment is a specific realization based on Embodiment 1, as shown in Figure 4, the upper curved surface 41 is close to the liquid-facing surface 46 The direction tends to be horizontal, and the upper curved surface 41 is at a 40° inclination angle to the horizontal plane in the direction close to the back liquid surface 45;
  • the liquid-facing surface 46 is used to guide liquid into the paddle 4, the angle between the liquid-facing surface 46 and the plane of the disk 3 is 70°, the liquid-back surface 45 can eliminate the cavitation effect, and the upper curved surface 41 and the lower curved surface 42 Converge and meet at the back liquid surface 45, preferably, the upper curved surface 41 and the lower curved surface 42 converge on a straight line in the direction of the back liquid surface 45; The sides are of the same slope.
  • the revolving cavity 50 includes a cylindrical cavity 48 and a conical cavity 47.
  • the diameter d T of the outer end surface of the revolving cavity 50 is 40 mm, and the ratio of the diameter d T of the outer end surface of the revolving cavity 50 to the diameter d C of the inner end surface is 0.70.
  • the ratio of the length L 1 +L 2 of the rotary cavity 50 to the inner end face diameter d C is 1.375;
  • the diameters are the same, and the ratio of the height L 2 of the conical cavity 47 to the diameter d C of the inner end surface of the rotary cavity 50 is 0.375.
  • the length of the paddle 4 is slightly longer than the length L 1 +L 2 of the revolving cavity 50 , and the ratio of the width W of the paddle 4 to the length L 1 +L 2 of the revolving cavity 50 is 1.4.
  • One end of the air intake channel 31 is connected to the hollow stirring shaft 1 through the disc 3 and the hub 2 , and the other end of the air intake channel 31 is connected to the rotating cavity 50 of the paddle 4 .
  • the ratio of the diameter of the intake channel 31 to the diameter of the outer end surface of the revolving cavity 50 is 0.15.
  • the disc 3 is perpendicular to the stirring shaft 1, and its inner and outer sides are respectively connected to the hub 2 and the paddle 4.
  • the disc 3 is provided with an air inlet passage 31; the outer side of the disc 3 is connected to the paddle 4 by direct welding.
  • the overall diameter of the agitator is 200mm, and the number of paddles 4 is 4.
  • the paddles 4 are evenly distributed along the circumference of the disk 3, and the paddles 4 are set in a downward pressure type.
  • the diameter d b of the disc 3 is 90 mm.
  • the projection of the upper curved surface 41 and the lower curved surface 42 of the paddle 4 on the plane of the disc 3 is a rectangle.
  • BT-4 paddle and RT-4 are: the overall size is 200mm, the disc diameter is 120mm, the blade length is 55mm, and the hub size is consistent with the stirring paddle of the present invention.
  • the height of the RT-4 blade is 40mm, and the thickness of the blade is 2mm.
  • the height of the BT-4 blade is 40mm, and the thickness of the blade is 2mm.
  • the circumferential vertical section of the blade is in the shape of a parabola. is 18mm.
  • the operating conditions of the above three stirring paddles are that the diameter of the stirring tank is 600mm, the linear velocity of the blade tip is 5.0m/s, the experiment is carried out in a water-air system, and the air flow rate is 150L/min.
  • Analysis and measurement oxygen transfer efficiency results show that the oxygen transfer efficiency of the stirrer described in embodiment 5 improves 18% and 32% than traditional BT-4 and RT-4, shows that the stirring paddle described in embodiment 5 shows good transfer efficiency. oxygen performance.
  • the operating conditions for applying the agitator with self-suction and gas-liquid dispersion functions of the present invention are: the linear velocity of the tip of the paddle 4 is greater than 2.0m/s, and the maximum size of solid particles is smaller than the minimum height of the liquid inlet channel 49 .
  • the gas-liquid mass transfer rate and efficiency of the agitator during operation are closely related to the gas-liquid flow ratio and liquid properties.
  • the liquid flow is mainly regulated by the stirring speed, and the gas flow is mainly through the diameter d g of the inlet channel 31 and the opening of the inlet valve. Make adjustments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

一种具有自吸和气液分散功能的搅拌器,属于搅拌器技术领域。所述具有自吸和气液分散功能的搅拌器包括搅拌轴(1)、轮毂(2)、圆盘(3)和桨叶(4);所述搅拌轴(1)为空心搅拌轴,所述轮毂(2)套在搅拌轴(1)上,所述圆盘(3)连接在轮毂(2)上,圆盘(3)的圆周侧面设置有若干个径向伸展的桨叶(4),圆盘(3)内设有进气通道(31);所述桨叶(4)包括上曲面(41)和下曲面(42),所述上曲面(41)和下曲面(42)之间内嵌有回转腔体(50),所述回转腔体(50)与空心搅拌轴之间通过进气通道(31)连通;所述回转腔体(50)的一侧为迎液面(46),另一侧为背液面(45),所述迎液面(46)内设有进液通道(49),所述进液通道(49)与回转腔体(50)连通。兼具径向气液分散和轴向流体混合的双重功能,有效促进气液两相之间微观传质和宏观流体输送。

Description

一种具有自吸和气液分散功能的搅拌器 技术领域
本发明涉及一种具有自吸和气液分散功能的搅拌器,属于搅拌器技术领域。
背景技术
气液分散过程广泛存在于通风发酵、氧化反应、氢化反应、氯化反应、气体浮选和生物曝气等过程单元。工程师开发了鼓泡塔反应器、气升式反应器、具有气液分散功能的径向流搅拌器、气液混合喷嘴、曝气器等以实现有效的气液分散和传质过程。
气体自吸搅拌器是一类径向流搅拌器,不用气体输送装置而由搅伴器自身在液体中旋转时产生负压,以吸入外界气体的气液接触装置。常见的自吸式搅拌器有空心管、空心涡轮和封闭涡轮三种类型。最常见自吸式搅拌器如后弯管空心涡轮,其工作原理是高速旋转过程中,空心涡轮末端的后弯管区域形成负压,吸入的气体与后弯管附近的液体发生空穴作用而形成小气泡,从而实现气液分散和传质。气液两相流体通过空穴作用而产生气泡的效能比并不是很高,往往形成毫米级甚至是厘米级的气泡。如果要形成微米级的气泡,则需要高功耗输入,并且气体处理能力也会受到局限。在负压条件下的空穴作用过程中,气液两相发生剧烈碰撞而产生小气泡,剧烈碰撞导致的热耗散和能量损失也比较严重。事实上,新型的气液分散搅拌器(如Bakker Turbine)在设计过程中,往往需要避免在桨叶背面形成空穴作用。
基于文丘里管原理的喷射式气液分散装置,则需要利用外置的循环泵连续输送液体,高速流动的液体在收缩孔道产生负压从而吸入气体,并在扩展区形成气液碰撞和拉伸剪切作用,从而形成小气泡。在这一过程中,进出口压差和液体流速是关键因素。基于静态混合器的气液分散装置,利用混合器的内构件和通道的阻流和流态改变,实现气液两相的分散和混合。与喷射式气液分散装置类似,由于需要外置循环泵和循环管道的引入,对于卫生和无菌要求很高的通风发酵来说,则不易被接受。文丘里管和静态混合器的压头损失是导致气液分散装置能耗较高的主要原因。
此外,气液分散搅拌器一般属于径向流搅拌器,与其他类型搅拌器在功能上往往是相互独立的,对于同时涉及气液分散和物料混合的反应过程,往往需要不同搅拌器的组合才能实现,增加了设备成本,降低了生产效率,而现有技术中难以通过一个搅拌器同时实现气液分散和高效混合的功能。
发明内容
为解决上述问题,本发明提供了一种具有自吸和气液分散功能的搅拌器,该搅拌器兼具 径向气液分散和轴向流体混合的双重功能,有效促进气液两相之间微观传质和宏观流体输送,适用于气液传质、混合和传热等多种需求的多相流反应体系。
本发明提供了一种具有自吸和气液分散功能的搅拌器,包括搅拌轴、轮毂、圆盘和桨叶;所述搅拌轴为空心搅拌轴,所述轮毂套在搅拌轴上,所述圆盘连接在轮毂上,圆盘的圆周侧面设置有若干个径向伸展的桨叶,圆盘内设有进气通道;所述桨叶包括上曲面和下曲面,所述上曲面和下曲面之间内嵌有回转腔体,所述回转腔体与空心搅拌轴之间通过进气通道连通;所述回转腔体的一侧为迎液面,另一侧为背液面,所述迎液面内设有进液通道,所述进液通道与回转腔体连通。
本发明的一种实施方式中,所述轮毂内侧设置有通气槽,所述搅拌轴的一侧设有侧孔;所述通气槽的外侧与圆盘的进气通道连通,通气槽的内侧与搅拌轴的侧孔连通。
本发明的一种实施方式中,所述搅拌轴与轮毂之间还设有密封环,所述密封环的数量为两个,所述侧孔和通气槽位于两个密封环之间,所述圆盘与桨叶的连接方式为焊接或可拆卸式连接。
本发明的一种实施方式中,所述桨叶的上曲面和下曲面在圆盘平面的投影为矩形、扇形或梯形;上曲面靠近迎液面方向趋于水平,上曲面靠近背液面方向与水平面呈10~60°倾角;下曲面靠近迎液面方向与水平面呈10-45°倾角,下曲面靠近背液面方向趋于水平。
本发明的一种实施方式中,所述回转腔体为圆柱腔体和圆台腔体的组合或者为单一的圆台腔体,所述回转腔体的外侧端面截面面积小于内侧端面截面面积。
本发明的一种实施方式中,所述桨叶还包括外侧面和内侧面,所述外侧面和内侧面为平面或圆柱曲面,所述迎液面用于引导液体进入桨叶,迎液面与圆盘平面的夹角为60~90°,所述上曲面和下曲面收敛交汇于背液面。
本发明的一种实施方式中,所述回转腔体为圆柱腔体和圆台腔体的组合时,所述回转腔体的外侧端面直径与内侧端面直径之比为0.4~0.9,回转腔体的长度与内侧端面直径之比为1.2~4,圆台腔体的高与回转腔体的内侧端面直径之比为0.2~1,所述桨叶的宽度与回转腔体的长度之比为1~2;所述回转腔体为单一的圆台腔体时,所述回转腔体的外侧端面直径与内侧端面直径之比为0.5~0.9,回转腔体的长度与内侧端面直径之比为1.5~4。
本发明的一种实施方式中,所述进液通道靠近迎液面一端的截面面积大于靠近回转腔体一端的截面面积,进液通道在迎液面端的高度为回转腔体内侧端面直径的0.2~0.75,进液通道靠近圆柱腔体一端的高度为回转腔体内侧端面的0.1~0.4。
本发明的一种实施方式中,进气通道的直径与回转腔体的外侧端面直径之比为0.05~0.4。
本发明的一种实施方式中,所述桨叶数量为2~8个,桨叶沿圆盘周向均匀分布,所述回转腔体的长度与圆盘直径之比为0.2~0.8。
有益效果
1、本发明的搅拌器具有气体自吸功能,可以减少进气压强甚至直接省去气体压缩设备,可以减少通气设备的投资成本和通气功率消耗。
2、本发明的搅拌器兼具径向气液分散和轴向流体混合的双重功能,有效促进气液两相之间微观传质和宏观流体输送,适用于气液传质、混合和传热等多种需求的多相流反应体系。
3、本发明的搅拌器利用旋转过程中产生的切向作用力,在桨叶的迎液面处引导液体进入回转腔体,液体在回转腔体内产生高速旋转,这种旋转切向力对回转腔体轴心处的气核进行高效地旋转剪切,产生微米级的小气泡;利用搅拌器旋转过程中产生的径向离心力,促使回转腔体内产生负压和气体自吸进入,径向离心力促使气液混合物从收缩的回转腔体外侧端面加速喷出,进一步强化了气体与液体的速度差和剪切作用,对气泡产生二次破碎作用,切向作用力和径向离心力可协同提升气泡比表面积和气液传质效率。
4、本发明提供的具有自吸和气液分散功能的搅拌器摈弃了“冲撞”、“拍击”、“***”等剧烈的气液两相接触方式,而是引导液体通过高速旋转的方式与气体接触,将搅拌器的动能高效地转化为表面能,从而产生均一的微米级气泡群体。
5、本发明的搅拌器利用回转腔体和进液通道的基本结构,结合上曲面和下曲面在不同空间位置的倾斜度,可以减少搅拌器的功率准数,有利于发挥节能效果;下曲面引导桨叶外的流体作轴向运动,将桨叶内产生的气泡输送到更远的区域,并避免背液面流体产生空穴作用,从而使本发明的搅拌器兼具径向气液分散和轴向流体混合的双重功能,有效促进气液两相之间微观传质和宏观流体输送,适用于气液传质、混合和传热等多种需求的多相流反应体系。
附图说明
图1为实施例1搅拌器的立体结构图;
图2为实施例1搅拌器的正面剖视图;
图3为实施例1搅拌器的俯视图;
图4为图3中A-A向剖视图;
图5为实施例2搅拌器的立体结构图;
图6为实施例2搅拌器的正视图;
图7为实施例2搅拌器的俯视图;
图8为图7中B-B向剖视图;
图9为图7中C-C向剖视图;
图10为实施例3搅拌器的立体结构图;
图11为实施例3搅拌器的正面剖视图;
图12为实施例4搅拌器的立体结构图。
图13为实施例4搅拌器又一视角的立体结构图。
其中:1、搅拌轴;2、轮毂;3、圆盘;4、桨叶;11、密封环;12、侧孔;21、通气槽;31、进气通道;41、上曲面;42、下曲面;43、外侧面;44、内侧面;45、背液面;46、迎液面;47、圆台腔体;48、圆柱腔体;49、进液通道;50、回转腔体。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。其中相同的零部件用相同的附图标记表示。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”和“下”指的是附图中的方向。使用的词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
实施例1
一种具有自吸和气液分散功能的搅拌器,如图1~图4所示,包括搅拌轴1、轮毂2、圆盘3和桨叶4;所述搅拌轴1为空心搅拌轴,所述轮毂2套在搅拌轴1上,所述圆盘3连接在轮毂2上,圆盘3的圆周侧面设置有若干个径向伸展的桨叶4,圆盘3内设有进气通道31;所述桨叶4包括倾斜的上曲面41和倾斜的下曲面42,所述上曲面41和下曲面42之间内嵌有回转腔体50,所述回转腔体50的一侧为迎液面46,另一侧为背液面45;所述回转腔体50与搅拌轴1之间通过进气通道31连通。
进一步地,所述桨叶4包括上曲面41、下曲面42、外侧面43、内侧面44、背液面45和迎液面46,上述各曲面相交并形成桨叶4的主体轮廓边线;所述内侧面44和外侧面43均与圆盘3平面的夹角为90°。
如图2所示,所述回转腔体50的轴线与搅拌轴1的轴线垂直;回转腔体50的内侧端面与空心搅拌轴1之间通过进气通道31连通。如图4所示,所述迎液面46内设有进液通道49,所述进液通道49与回转腔体50连通,所述回转腔体50的外侧端面截面面积小于内侧端面截面面积,气液混合物通过回转腔体50外侧端面径向排出桨叶4。
如图4所示,上曲面41靠近迎液面46方向趋于水平,上曲面41靠近背液面45方向与水平面呈10~60°倾角;下曲面42靠近迎液面46方向与水平面呈10-45°倾角,下曲面42靠近背液面45方向趋于水平。
进一步地,所述迎液面46用于引导液体进入桨叶4,迎液面46与圆盘平面3的夹角为60~90°,所述背液面45能够消除空穴效应,上曲面41和下曲面42收敛交汇于背液面45,优选地,上曲面41和下曲面42收敛于背液面45方向的一条直线;所述背液面45的两侧边为相同的倾斜度,迎液面46两侧边为相同的倾斜度。
进一步地,所述回转腔体50包括圆柱腔体48和圆台腔体47,回转腔体50的外侧端面直径d T与内侧端面直径d C之比为0.4~0.9;回转腔体50的长度L 1+L 2与内侧端面直径d C之比为1.2~4;所述圆台腔体47靠近搅拌轴1一侧的端面直径(即内侧端面直径)与圆柱腔体48的直径相同,圆台腔体47的高L 2与回转腔体50的内侧端面直径d C之比为0.2~1。所述桨叶4的长度比回转腔体50的长度L 1+L 2稍长,所述桨叶4的宽度W与回转腔体50的长度L 1+L 2之比为1.0~2.0。
进一步地,所述桨叶4的迎液面46方向有一进液通道49与回转腔体50切向连通,进液通道49靠近迎液面46一端的截面面积大于靠近回转腔体5一端的截面面积,进液通道49在迎液面46端的高度H W为内侧端面直径d C的0.20~0.75,进液通道49靠近圆柱腔体48一端的高度H L为圆柱腔体内侧端面直径d C的0.1~0.4;进液通道49的横向垂直截面的长度L 3小于圆柱腔体48的长度L 1,两者的长度之比为0.45~0.95,优选地,为0.7~0.9。
进一步地,所述进气通道31的一端与空心搅拌轴1之间通过圆盘3、轮毂2连接,进气通道31的另一端连接至桨叶4的回转腔体50内。进气通道31的直径与回转腔体50的外侧端面直径之比为0.05~0.4,优选地,为0.1~0.25。
进一步地,所述圆盘3与搅拌轴1垂直,其内外侧分别连接轮毂2和桨叶4,圆盘3内设有进气通道31;圆盘3外侧与桨叶4的连接方式可以是直接焊接,也可以在圆盘3上设置有桨叶基座,再通过桨叶基座与桨叶4实现可拆卸的连接。
进一步地,所述轮毂2的内外侧分别连接搅拌轴1和圆盘3,轮毂2内侧设置有通气槽21,所述搅拌轴1的一侧设有侧孔12;所述通气槽21的外侧与圆盘3的进气通道31连通,通气槽21的内侧与搅拌轴1的侧孔12连通。所述搅拌轴1与轮毂2之间还设有密封环11,两者通过密封环11密封,所述密封环11的数量为两个,所述侧孔12和通气槽21位于两个密封环11之间,确保空心搅拌轴1内的气体与桨叶4连通。
进一步地,所述搅拌器的桨叶4数量为2~8个,桨叶4沿圆盘3周向均匀分布,优选地,桨叶4的数量为四个,桨叶4为下压式设置。所述回转腔体50的长度L 1+L 2与圆盘3直径d b之比为0.2~0.8,优选地,为0.5~0.7。
进一步地,所述桨叶4的上曲面41和下曲面42在圆盘3平面的投影为矩形。
所述具有自吸和气液分散功能的搅拌器的操作条件为:桨叶4尖线速率大于2.0m/s,液 体粘度小于1000mPa·s,固体颗粒的最大尺寸小于进液通道49的最低高度。搅拌器在运行过程中的气液传质速率、效率与气液流量比例密切相关,液体流量主要通过搅拌转速调节,气体流量主要通过进气通道31直径d g和进气阀门开度进行调节。
实施例2
如图5~图9所示,本实施例与实施例1的区别在于,本实施例桨叶4的上曲面41和下曲面42在圆盘3平面的投影为扇形。所述桨叶4的宽度由扇形的圆心角α、内侧面半径r和外侧面半径R所决定,圆心角α为30°~60°,比如,桨叶4的内侧面宽度等于απr/180,其外侧面宽度等于απR/180。所述桨叶4的上曲面41靠近迎液面46方向趋于水平;上曲面41靠近背液面45方向与水平面呈10~60°倾角;更进一步地,上曲面41靠近背液面45方向的内侧倾斜度大于外侧倾斜度;所述下曲面42靠近迎液面46方向与水平面呈10-45°倾角,下曲面42靠近迎液面46方向的内侧倾斜度大于外侧倾斜度;下曲面42靠近背液面45方向趋于水平。
实施例3
如图10和11所示,本实施例与实施例1的区别在于,本实施例桨叶4的上曲面41和下曲面42在圆盘3平面的投影为梯形,即本实施例中的回转腔体50为单一的圆台腔体,所述回转腔体50的外侧端面直径d T与内侧端面直径d C之比为0.5~0.9,回转腔体50的长度L 2与内侧端面直径d C之比为1.5~4。
进一步地,所述进液通道49的径向垂直截面呈平行四边形或梯形,其截面面积在迎液面46端较大,靠近圆台腔体一端趋小,并与圆台腔体切向连通。进液通道49在迎液面46端的高度H W为内侧端面直径d c的0.2~0.75倍,靠近圆台腔体一端的高度H L为内侧端面直径的0.1~0.4。进液通道49靠近圆台腔体一端的径向垂直截面的长度L 3小于圆台腔体的长度L 2,两者的长度之比为0.45~0.7。
实施例4
如图12所示,本实施例与实施例1的区别在于,本实施例桨叶4的外侧端面连接有一段面向背液面45的排出弯管51,排出弯管51的旋转平面平行于圆盘平面,旋转角为40°~90°。排出弯管51的设置有利于气液混合物更快速地排出桨叶,在桨叶内部形成更高负压,适用于安装位置离水平面较深的场合。
实施例5
一种具有自吸和气液分散功能的搅拌器,如图1~图4所示,本实施例是在实施例1基础上的具体实现,如图4所示,上曲面41靠近迎液面46方向趋于水平,上曲面41靠近背液面45方向与水平面呈40°倾角;下曲面42靠近迎液面46方向与水平面呈25°倾角,下曲面42 靠近背液面45方向趋于水平。
所述迎液面46用于引导液体进入桨叶4,迎液面46与圆盘3平面的夹角为70°,所述背液面45能够消除空穴效应,上曲面41和下曲面42收敛交汇于背液面45,优选地,上曲面41和下曲面42收敛于背液面45方向的一条直线;所述背液面45的两侧边为相同的倾斜度,迎液面46两侧边为相同的倾斜度。
所述回转腔体50包括圆柱腔体48和圆台腔体47,回转腔体50的外侧端面直径d T为40mm,回转腔体50的外侧端面直径d T与内侧端面直径d C之比为0.70;回转腔体50的长度L 1+L 2与内侧端面直径d C之比为1.375;所述圆台腔体47靠近搅拌轴1一侧的端面直径(即内侧端面直径)与圆柱腔体48的直径相同,圆台腔体47的高L 2与回转腔体50的内侧端面直径d C之比为0.375。所述桨叶4的长度比回转腔体50的长度L 1+L 2稍长,所述桨叶4的宽度W与回转腔体50的长度L 1+L 2之比为1.4。
所述桨叶4的迎液面46方向有一进液通道49与回转腔体50切向连通,进液通道49靠近迎液面46一端的截面面积大于靠近回转腔体5一端的截面面积,进液通道49在迎液面46端的高度H W为内侧端面直径d C的0.3,进液通道49靠近圆柱腔体48一端的高度H L为圆柱腔体内侧端面直径d C的0.15;进液通道49的横向垂直截面的长度L 3小于圆柱腔体48的长度L 1,两者的长度之比为0.7。
所述进气通道31的一端与空心搅拌轴1之间通过圆盘3、轮毂2连接,进气通道31的另一端连接至桨叶4的回转腔体50内。进气通道31的直径与回转腔体50的外侧端面直径之比为0.15。
所述圆盘3与搅拌轴1垂直,其内外侧分别连接轮毂2和桨叶4,圆盘3内设有进气通道31;圆盘3外侧与桨叶4的连接方式是直接焊接。
所述搅拌器的总体直径为200mm,桨叶4数量为4个,桨叶4沿圆盘3周向均匀分布,桨叶4为下压式设置。所述圆盘3直径d b为90mm。所述桨叶4的上曲面41和下曲面42在圆盘3平面的投影为矩形。
以传统的四桨叶Bakker Turbine桨(简称BT-4)和四桨叶Rushton Turbine桨(简称RT-4)为对照,与本发明的案例进行比较。BT-4桨和RT-4的主体尺寸为:整体尺寸为200mm,圆盘直径120mm,桨叶长度为55mm,轮毂尺寸与本发明搅拌桨一致。其中,RT-4桨叶的高度为40mm,桨叶的厚度为2mm。BT-4桨叶的高度40mm,桨叶的厚度为2mm,桨叶的周向垂直切面为抛物线形状,抛物线的上半部分宽度为40mm,高度为22mm;抛物线的下半部分宽度为30mm,高度为18mm。
以上三个搅拌桨的操作条件为搅拌罐直径为600mm,桨叶叶尖线速率为5.0m/s,实验在 水-空气体系中进行,空气流量为150L/min。分析测量传氧效率结果表明,实施例5所述搅拌器的传氧效率比传统的BT-4和RT-4提高18%和32%,表明实施例5所述的搅拌桨表现出良好的传氧性能。
应用本发明所述具有自吸和气液分散功能的搅拌器的操作条件为:桨叶4叶尖线速率大于2.0m/s,固体颗粒的最大尺寸小于进液通道49的最低高度。搅拌器在运行过程中的气液传质速率、效率与气液流量比例、液体性质密切相关,液体流量主要通过搅拌转速调节,气体流量主要通过进气通道31直径d g和进气阀门开度进行调节。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同更换,凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有自吸和气液分散功能的搅拌器,其特征在于,包括搅拌轴(1)、轮毂(2)、圆盘(3)和桨叶(4);所述搅拌轴(1)为空心搅拌轴,所述轮毂(2)套在搅拌轴(1)上,所述圆盘(3)连接在轮毂(2)上,圆盘(3)的圆周侧面设置有若干个径向伸展的桨叶(4),圆盘(3)内设有进气通道(31);所述桨叶(4)包括上曲面(41)和下曲面(42),所述上曲面(41)和下曲面(42)之间内嵌有回转腔体(50),所述回转腔体(50)与空心搅拌轴之间通过进气通道(31)连通;所述回转腔体(50)的一侧为迎液面(46),另一侧为背液面(45),所述迎液面(46)内设有进液通道(49),所述进液通道(49)与回转腔体(50)连通。
  2. 根据权利要求1所述的具有自吸和气液分散功能的搅拌器,其特征在于,所述轮毂(2)内侧设置有通气槽(21),所述搅拌轴(1)的一侧设有侧孔(12);所述通气槽(21)的外侧与圆盘(3)的进气通道(31)连通,通气槽(21)的内侧与搅拌轴(1)的侧孔(12)连通。
  3. 根据权利要求2所述的具有自吸和气液分散功能的搅拌器,其特征在于,所述搅拌轴(1)与轮毂(2)之间还设有密封环(11),所述密封环(11)的数量为两个,所述侧孔(12)和通气槽(21)位于两个密封环(11)之间,所述圆盘(3)与桨叶(4)的连接方式为焊接或可拆卸式连接。
  4. 根据权利要求3所述的具有自吸和气液分散功能的搅拌器,其特征在于,所述桨叶(4)的上曲面(41)和下曲面(42)在圆盘(3)平面的投影为矩形、扇形或梯形;上曲面(41)靠近迎液面(46)方向趋于水平,上曲面(41)靠近背液面(45)方向与水平面呈10~60°倾角;下曲面(42)靠近迎液面(46)方向与水平面呈10~45°倾角,下曲面(42)靠近背液面(45)方向趋于水平。
  5. 根据权利要求4所述的具有自吸和气液分散功能的搅拌器,其特征在于,所述回转腔体(50)为圆柱腔体(48)和圆台腔体(47)的组合或者为单一的圆台腔体(47),所述回转腔体(50)的外侧端面截面面积小于内侧端面截面面积。
  6. 根据权利要求5所述的具有自吸和气液分散功能的搅拌器,其特征在于,所述桨叶(4)还包括外侧面(43)和内侧面(44),所述外侧面(43)和内侧面(44)为平面或圆柱曲面,所述迎液面(46)用于引导液体进入桨叶(4),迎液面(46)与圆盘(3)平面的夹角为60~90°,所述上曲面(41)和下曲面(42)收敛交汇于背液面(45)。
  7. 根据权利要求6所述的具有自吸和气液分散功能的搅拌器,其特征在于,所述回转腔体(50)为圆柱腔体(48)和圆台腔体(47)的组合时,所述回转腔体(50)的外侧端面直径与内侧端面直径之比为0.4~0.9,回转腔体(50)的长度与内侧端面直径之比为1.2~4,圆台腔体(47)的高与回转腔体(50)的内侧端面直径之比为0.2~1,所述桨叶(4)的宽度与 回转腔体(50)的长度之比为1~2;所述回转腔体(50)为单一的圆台腔体(47)时,所述回转腔体(50)的外侧端面直径与内侧端面直径之比为0.5~0.9,回转腔体(50)的长度与内侧端面直径之比为1.5~4。
  8. 根据权利要求7所述的具有自吸和气液分散功能的搅拌器,其特征在于,所述进液通道(49)靠近迎液面(46)一端的截面面积大于靠近回转腔体(50)一端的截面面积,进液通道(49)在迎液面(46)端的高度为回转腔体(50)内侧端面直径的0.2~0.75,进液通道(49)靠近圆柱腔体(48)一端的高度为回转腔体(50)内侧端面的0.1~0.4。
  9. 根据权利要求8所述的具有自吸和气液分散功能的搅拌器,其特征在于,进气通道(31)的直径与回转腔体(50)的外侧端面直径之比为0.05~0.4。
  10. 根据权利要求9所述的具有自吸和气液分散功能的搅拌器,其特征在于,所述桨叶(4)数量为2~8个,桨叶(4)沿圆盘(3)周向均匀分布,所述回转腔体(50)的长度与圆盘(3)直径之比为0.2~0.8。
PCT/CN2022/126121 2022-02-14 2022-10-19 一种具有自吸和气液分散功能的搅拌器 WO2023151308A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/337,093 US20230332612A1 (en) 2022-02-14 2023-06-19 Self-aspirating and Gas-liquid Dispersing Impellers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210132423.3 2022-02-14
CN202210132423.3A CN114632444B (zh) 2022-02-14 2022-02-14 一种具有自吸和气液分散功能的搅拌器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/337,093 Continuation US20230332612A1 (en) 2022-02-14 2023-06-19 Self-aspirating and Gas-liquid Dispersing Impellers

Publications (1)

Publication Number Publication Date
WO2023151308A1 true WO2023151308A1 (zh) 2023-08-17

Family

ID=81946816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126121 WO2023151308A1 (zh) 2022-02-14 2022-10-19 一种具有自吸和气液分散功能的搅拌器

Country Status (3)

Country Link
US (1) US20230332612A1 (zh)
CN (1) CN114632444B (zh)
WO (1) WO2023151308A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114632444B (zh) * 2022-02-14 2023-02-21 江南大学 一种具有自吸和气液分散功能的搅拌器
CN116459700A (zh) * 2023-04-19 2023-07-21 深圳市尚水智能股份有限公司 搅拌组件及捏合机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2649170Y (zh) * 2003-10-28 2004-10-20 杭州原正化学工程技术装备有限公司 高效自吸式气液搅拌装置
CN201135865Y (zh) * 2007-12-26 2008-10-22 方民 高效气液混合搅拌器
CN101439275A (zh) * 2008-12-10 2009-05-27 威海化工机械有限公司 高效自吸式搅拌器
CN101811004A (zh) * 2009-09-09 2010-08-25 威海化工机械有限公司 高效自吸式搅拌器
CN204656506U (zh) * 2015-06-05 2015-09-23 温州市中伟磁传密封设备厂 一种自吸式气液固搅拌装置
CN105854664A (zh) * 2016-04-27 2016-08-17 江南大学 一种装配扇环型凹面叶片的气液分散搅拌器装置
CN106268579A (zh) * 2016-08-04 2017-01-04 镇江东方生物工程设备技术有限责任公司 一种气液分散搅拌装置
CN209810077U (zh) * 2018-12-05 2019-12-20 杭州索孚机械有限公司 一种气固液三相反应自吸式叶轮结构
JP2021098152A (ja) * 2019-12-19 2021-07-01 住友金属鉱山株式会社 気液混合装置及び気液混合方法
CN113731219A (zh) * 2021-09-06 2021-12-03 中国科学院过程工程研究所 一种后掠式圆盘涡轮搅拌桨
CN114632444A (zh) * 2022-02-14 2022-06-17 江南大学 一种具有自吸和气液分散功能的搅拌器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224721A (ja) * 1987-03-12 1988-09-19 Mitsubishi Heavy Ind Ltd 自吸式微細気泡発生装置
CN201482481U (zh) * 2009-09-03 2010-05-26 程豪 自吸排气式搅拌反应器
CN209205082U (zh) * 2018-08-02 2019-08-06 南京太心动信息技术有限公司 一种带搅拌功能的自吸式微纳米气液混合装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2649170Y (zh) * 2003-10-28 2004-10-20 杭州原正化学工程技术装备有限公司 高效自吸式气液搅拌装置
CN201135865Y (zh) * 2007-12-26 2008-10-22 方民 高效气液混合搅拌器
CN101439275A (zh) * 2008-12-10 2009-05-27 威海化工机械有限公司 高效自吸式搅拌器
CN101811004A (zh) * 2009-09-09 2010-08-25 威海化工机械有限公司 高效自吸式搅拌器
CN204656506U (zh) * 2015-06-05 2015-09-23 温州市中伟磁传密封设备厂 一种自吸式气液固搅拌装置
CN105854664A (zh) * 2016-04-27 2016-08-17 江南大学 一种装配扇环型凹面叶片的气液分散搅拌器装置
CN106268579A (zh) * 2016-08-04 2017-01-04 镇江东方生物工程设备技术有限责任公司 一种气液分散搅拌装置
CN209810077U (zh) * 2018-12-05 2019-12-20 杭州索孚机械有限公司 一种气固液三相反应自吸式叶轮结构
JP2021098152A (ja) * 2019-12-19 2021-07-01 住友金属鉱山株式会社 気液混合装置及び気液混合方法
CN113731219A (zh) * 2021-09-06 2021-12-03 中国科学院过程工程研究所 一种后掠式圆盘涡轮搅拌桨
CN114632444A (zh) * 2022-02-14 2022-06-17 江南大学 一种具有自吸和气液分散功能的搅拌器

Also Published As

Publication number Publication date
CN114632444A (zh) 2022-06-17
CN114632444B (zh) 2023-02-21
US20230332612A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2023151308A1 (zh) 一种具有自吸和气液分散功能的搅拌器
US6250796B1 (en) Agitation apparatus with static mixer or swirler means
CN105854664A (zh) 一种装配扇环型凹面叶片的气液分散搅拌器装置
CN101190403B (zh) 一种高效流体混合搅拌叶片单元
KR101566240B1 (ko) 에어레이션 임펠러 및 이를 포함하는 수처리용 교반기
CN108854823A (zh) 一种高效气液混合装置
CN101439275A (zh) 高效自吸式搅拌器
LT3132B (en) Complex mixer for dispersion of gases in liquid
CN209810077U (zh) 一种气固液三相反应自吸式叶轮结构
CN101745334B (zh) 一种用于吸入和分散易自聚气体的搅拌桨
CN101811004A (zh) 高效自吸式搅拌器
CN107998943B (zh) 一种自吸式搅拌反应器
CN111518680A (zh) 一种微生物发酵罐
CN214399990U (zh) 一种搅拌曝气器
CN206215214U (zh) 一种制备氢氧化铝的反应器
CN116603481A (zh) 一种三层自吸搅拌式反应器
CN204522887U (zh) 一种加药混合器
CN209205082U (zh) 一种带搅拌功能的自吸式微纳米气液混合装置
KR100581748B1 (ko) 자흡기능과 교반기능이 구비된 유체공급장치와 이를이용한 포기장치
CN114917793B (zh) 自吸式搅拌器及搅拌设备
WO2022252530A1 (zh) 一种混合料搅拌设备
KR101949947B1 (ko) 기체 유도관 및 이를 이용한 임펠러
CN213771509U (zh) 一种微纳米气泡发生装置用组合垫片式进气结构
CN211259036U (zh) 一种气液混合泵非对称叶轮泵体
JP2519058Y2 (ja) 培養装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925661

Country of ref document: EP

Kind code of ref document: A1