WO2023140180A1 - 燃焼器及びガスタービン - Google Patents

燃焼器及びガスタービン Download PDF

Info

Publication number
WO2023140180A1
WO2023140180A1 PCT/JP2023/000711 JP2023000711W WO2023140180A1 WO 2023140180 A1 WO2023140180 A1 WO 2023140180A1 JP 2023000711 W JP2023000711 W JP 2023000711W WO 2023140180 A1 WO2023140180 A1 WO 2023140180A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
combustor
fuel
internal flow
nozzle
Prior art date
Application number
PCT/JP2023/000711
Other languages
English (en)
French (fr)
Inventor
高史 西海
祐輔 高見
昌紀 市川
宜彦 本山
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023140180A1 publication Critical patent/WO2023140180A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply

Definitions

  • the present disclosure relates to combustors and gas turbines. This application claims priority based on Japanese Patent Application No. 2022-007824 filed with the Japan Patent Office on January 21, 2022, the content of which is incorporated herein.
  • a combustor used in a gas turbine mainly includes a cylinder through which combustion gas flows, multiple nozzles that form flames in the cylinder, and multiple swirl vanes provided around the nozzles.
  • a flame formed by the nozzle produces high temperature, high pressure combustion gases within the cylinder.
  • flashback is a phenomenon in which a flame propagates to an unexpected area within a combustor, resulting in abnormal combustion.
  • it is known that flashback is likely to occur in the center region (vortex core) of the swirl flow formed by the swirl vanes, because the flow velocity and pressure are lower than those in other regions.
  • the flow velocity of the fluid in the vortex core is increased by forming an air flow path that supplies air from the tip of the nozzle to the vortex core. Air is introduced into the air flow path from a position on the upstream side of the swirl vane (pressure loss portion) in the nozzle. This is said to prevent flashbacks.
  • Patent Document 1 discloses a configuration in which a part of the cabin air is taken into the fuel nozzle as purge air via the piping outside the cabin.
  • gas turbine combustor disclosed in Patent Document 1 there is a problem that heat loss occurs because the casing air passes through the piping outside the casing.
  • At least one embodiment of the present disclosure aims to provide a combustor and a gas turbine capable of suppressing heat loss in the gas turbine in view of the circumstances described above.
  • a combustor that burns compressed air supplied from a compressor together with fuel, at least one fuel nozzle having a fuel channel for supplying the fuel and a purge air channel for ejecting purge air; a nozzle fixture for securing the at least one fuel nozzle; a top hat body arranged on the outer peripheral side of at least a part of the nozzle fixing portion; with The top hat body has a first internal flow path capable of supplying the compressed air to the nozzle fixing portion from a space on the outer peripheral side thereof, The nozzle fixing portion has a second internal channel capable of supplying compressed air supplied from the first internal channel to the purge air channel of the fuel nozzle.
  • a gas turbine according to at least one embodiment of the present disclosure, the compressor; a combustor having the configuration of (1) above; a turbine configured to be driven by combustion gases from the combustor; Prepare.
  • heat loss in the gas turbine can be suppressed.
  • FIG. 1 is a schematic configuration diagram of a gas turbine according to some embodiments;
  • FIG. 1 is a schematic diagram of a combustor and a turbine inlet portion of a gas turbine according to some embodiments;
  • FIG. 1 is a schematic cross-sectional view of a combustor of a gas turbine according to one embodiment;
  • FIG. 1 is a schematic cross-sectional view of a combustor of a gas turbine according to one embodiment;
  • FIG. 1 is a schematic cross-sectional view of a main part of a combustor of a gas turbine according to one embodiment;
  • FIG. 5 is a schematic cross-sectional view taken along line CC of FIG. 4;
  • FIG. 4 is a schematic cross-sectional view of a combustor of a gas turbine according to another embodiment
  • FIG. 5 is a schematic cross-sectional view of a main part of a combustor of a gas turbine according to another embodiment
  • FIG. 8 is a schematic cross-sectional view taken along line FF of FIG. 7;
  • expressions such as “same,””equal,” and “homogeneous” that indicate that things are in the same state not only indicate the state of being strictly equal, but also the state in which there is a tolerance or a difference to the extent that the same function can be obtained.
  • the expression representing a shape such as a square shape or a cylindrical shape not only represents a shape such as a square shape or a cylindrical shape in a geometrically strict sense, but also represents a shape including an uneven part, a chamfered part, etc. to the extent that the same effect can be obtained.
  • the expressions “comprising”, “comprising”, “having”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIG. 1 is a schematic configuration diagram of a gas turbine according to some embodiments.
  • the gas turbine 1 includes a compressor 2 for generating compressed air, a combustor 4 for generating combustion gas using the compressed air and fuel, and a turbine 6 configured to be rotationally driven by the combustion gas.
  • the turbine 6 is connected with a generator (not shown).
  • the compressor 2 includes a plurality of stationary blades 16 fixed to the compressor casing 10 side, and a plurality of moving blades 18 implanted in the rotor 8 so as to be alternately arranged with respect to the stationary blades 16 .
  • Air taken in from an air intake port 12 is sent to the compressor 2, and this air passes through a plurality of stationary blades 16 and a plurality of moving blades 18 and is compressed to become high-temperature and high-pressure compressed air.
  • Fuel and compressed air generated by the compressor 2 are supplied to the combustor 4 , and the fuel is combusted in the combustor 4 to generate combustion gas, which is the working fluid of the turbine 6 .
  • the gas turbine 1 has a plurality of combustors 4 arranged in a casing 20 along the circumferential direction around a rotor 8 .
  • the turbine 6 has a combustion gas passage 28 defined by the turbine casing 22 and includes a plurality of stator vanes 24 and rotor blades 26 provided in the combustion gas passage 28 .
  • Stator vanes 24 and rotor vanes 26 of turbine 6 are provided downstream of combustor 4 with respect to the flow of combustion gases.
  • the stationary blades 24 are fixed on the turbine casing 22 side, and a plurality of stationary blades 24 arranged along the circumferential direction of the rotor 8 form a row of stationary blades.
  • the rotor blades 26 are implanted in the rotor 8, and a plurality of rotor blades 26 arranged along the circumferential direction of the rotor 8 form a rotor blade cascade.
  • the row of stationary blades and row of moving blades are alternately arranged in the axial direction of the rotor 8 .
  • the combustion gas from the combustor 4 that has flowed into the combustion gas passage 28 passes through the plurality of stationary blades 24 and the plurality of moving blades 26 to rotate the rotor 8 around the axis O, thereby driving a generator coupled to the rotor 8 to generate electric power.
  • Combustion gas after driving the turbine 6 is discharged to the outside through an exhaust chamber 30 .
  • FIG. 2 is a schematic diagram showing the inlet portions of the combustor 4 and turbine 6 of the gas turbine 1 according to some embodiments.
  • FIG. 3A is a schematic cross-sectional view of combustor 4 of gas turbine 1 according to one embodiment.
  • FIG. 3B is a schematic cross-sectional view of the combustor 4 of the gas turbine 1 according to one embodiment, and represents a cross section at a different position in the circumferential direction (hereinafter also simply referred to as “circumferential direction”) of the combustor from FIG. 3A.
  • FIG. 4 is a schematic cross-sectional view of a main part of the combustor 4 of the gas turbine 1 according to one embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along line CC of FIG. 4.
  • FIG. FIG. 6 is a schematic cross-sectional view of a combustor 4 of a gas turbine 1 according to another embodiment.
  • FIG. 7 is a schematic cross-sectional view of main parts of a combustor 4 of a gas turbine 1 according to another embodiment.
  • 8 is a schematic cross-sectional view taken along line FF of FIG. 7.
  • each of the plurality of combustors 4 (see FIG. 1) arranged in the circumferential direction around the rotor 8 includes a combustion cylinder (combustor liner) 36 provided in a combustor casing 32 defined by the casing 20, and a first combustion burner 38 arranged in the combustion cylinder 36 and a plurality of second combustion burners arranged so as to surround the first combustion burner 38.
  • a burner 44 That is, the combustion cylinder 36 , the first combustion burner 38 and the second combustion burner 44 are housed in the casing 20 .
  • the combustion tube (combustor liner) 36 has an inner tube 48 arranged around the first combustion burner 38 and the plurality of second combustion burners 44, and a transition piece 50 connected to the tip of the inner tube 48. Note that the inner cylinder 48 and the transition cylinder 50 may be integrally formed.
  • the first combustion burner 38 is arranged along the direction of the central axis C1 of the combustion cylinder 36 (that is, the axial direction of the combustor 4; hereinafter also simply referred to as "axial direction"), and has a first fuel nozzle 40 for injecting fuel and a first burner cylinder 41 arranged to surround the first fuel nozzle 40. Fuel is supplied to the first fuel nozzle 40 through a first fuel port 42 .
  • the second combustion burner 44 has a second fuel nozzle 46 for injecting fuel and a second burner cylinder 47 arranged to surround the second fuel nozzle 46 . Fuel is supplied to the second fuel nozzle 46 via the second fuel port 43 .
  • the combustor 4 has a nozzle fixing portion 400 .
  • the first fuel nozzle 40 and the second fuel nozzle 46 are fixed to the nozzle fixing part 400 at the base ends of the first fuel nozzle 40 and the second fuel nozzle 46 .
  • the combustor 4 further includes an outer cylinder 52 provided inside the casing 20 on the outer peripheral side of the inner cylinder 48 .
  • An air passage 54 through which compressed air flows is formed on the outer peripheral side of the inner cylinder 48 and the inner peripheral side of the outer cylinder 52 .
  • Compressed air generated by the compressor 2 (see FIG. 1) is supplied into the combustor casing 32 through the casing inlet 31, and the compressed air flows as combustion air from the combustor casing 32 into the air passage 54, is changed in direction by the wall surface portion 53 provided along the plane orthogonal to the axial direction of the combustor 4, and flows into the first burner cylinder 41 and the second burner cylinder 47.
  • the fuel injected from the fuel nozzle and the compressed air are mixed, and this mixture flows into the combustion cylinder 36 and is ignited and combusted to generate combustion gas.
  • the first combustion burner 38 described above may be a burner for generating a diffusion combustion flame
  • the second combustion burner 44 may be a burner for combusting a premixed gas to generate a premixed combustion flame. That is, in the second combustion burner 44 , the fuel from the second fuel port 43 and the compressed air are premixed, and the premixed air mainly forms a swirling flow by the swirler 49 and flows into the combustion cylinder 36 . Compressed air and fuel injected from the first combustion burner 38 through the first fuel port 42 are mixed in the combustion cylinder 36, ignited by an ignition means (not shown), and combusted to generate combustion gas.
  • the diffusion combustion flame of the fuel injected from the first combustion burner 38 can hold the premixed gas (premixed fuel) from the second combustion burner 44 for stable combustion.
  • the combustor 4 includes a third fuel nozzle 70 for injecting fuel into the air passage 54 described above.
  • a plurality of third fuel nozzles 70 may be provided along the circumferential direction.
  • the third fuel nozzle 70 is fixed to the top hat body 60, which will be described later.
  • the combustor 4 may have other components such as a bypass pipe (not shown) for bypassing the combustion gas.
  • straightening vanes 55 are arranged in the air passage 54 .
  • the current plate 55 is a perforated plate that is provided between the inner cylinder 48 and the outer cylinder 52 and is fixedly arranged on the outer peripheral portion of the inner cylinder 48. A plurality of through-holes passing through the current plate 55 are arranged.
  • the rectifying plate 55 rectifies the flow of compressed air and causes pressure loss when passing through the rectifying plate 55 . That is, the pressure in the air passage 54 through which the compressed air flows after passing through the rectifying plate 55 is lower than in the combustor casing 32 (see FIG. 2) and in a space 33 to be described later.
  • the combustor 4 according to some embodiments will be described in more detail below.
  • the combustor 4 (top hat body 60) 3A, 3B, 4, 6, and 7, the combustor 4 according to some embodiments includes a flange portion 62 attached to the casing 20, an annular extension portion 64 extending from the flange portion 62 along the axial direction of the combustor 4, and a pipe portion 80 extending between the flange portion 62 and the extension portion 64.
  • the fuel from the third fuel port 74 is supplied to the third fuel nozzle 70 via a pipe portion 80 and a later-described passage 65 formed inside the extension portion 64 .
  • the third fuel nozzle 70 is provided on the inner peripheral side of the extension portion 64 .
  • the portion composed of the flange portion 62 and the extension portion 64 is sometimes called a top hat body 60 due to its shape.
  • the top hat body 60 according to some embodiments is a bottomed tubular member provided to close the combustor insertion hole 20h formed in the casing 20 .
  • the flange portion 62 has a shape protruding outward in the radial direction of the combustor 4 (hereinafter also simply referred to as "radial direction"), and is fixed to the casing 20 with bolts 59.
  • the extension portion 64 has a tubular shape extending from the flange portion 62 toward the internal space of the casing 20 along the axial direction of the combustor 4 .
  • extension 64 is located radially inward of casing 20 .
  • the extension portion 64 has an annular projecting portion 63 projecting radially inward.
  • the wall surface portion 53 that changes the direction of the compressed air flowing through the air passage 54 is formed by an annular protrusion 63 .
  • the air passageway 54 may be at least partially defined by an extension 64. That is, the extension portion 64 may include an air passage forming portion 66 (outer cylinder 52 ) that forms the air passage 54 .
  • the outer circumferential surface 52a of the outer cylinder 52 is separated from the inner circumferential surface 20i of the combustor insertion hole 20h in the circumferential area of the outer cylinder 52 located relatively radially outward from the axis O of the rotor 8.
  • a space 33 through which compressed air can flow is formed between the outer peripheral surface 52a of the outer cylinder 52 and the inner peripheral surface 20i of the combustor insertion hole 20h in a region located relatively radially outward about the axis O of the rotor 8.
  • the outer peripheral surface 52a of the outer cylinder 52 is separated from the inner peripheral surface 20i of the combustor insertion hole 20h over the entire circumference.
  • a space 33 through which compressed air can flow along the entire circumference of the outer peripheral surface 52a.
  • a first internal flow path 61 capable of supplying compressed air to the nozzle fixing portion 400 from a space (space 33) on the outer peripheral side thereof.
  • the first internal flow path 61 has a first inlet 61a, which is the inlet of the first internal flow path 61, and a first outlet 61b, which is an outlet located radially inward of the combustor 4 from the first inlet 61a.
  • the first inlet 61a is formed on the outer peripheral surface 52a of the outer cylinder 52 .
  • the first outlet 61b is formed in the inner peripheral portion 60a of the top hat body 60 facing the nozzle fixing portion 400, specifically, in the inner peripheral surface 63a of the annular protrusion 63, as best shown in FIGS.
  • the void 33 does not exist relatively radially inward from the axis O of the rotor 8 .
  • the radially inner side of the rotor 8 about the axis O is the lower side in FIG. Therefore, in the combustor 4 according to one embodiment, as shown in FIG. 5, the first internal flow path 61 is provided radially outward about the axis O of the rotor 8, that is, on the upper side in FIG. 5, but is not provided on the lower side in FIG.
  • the first internal flow path 61 is provided not only on the upper side in FIG. 5 but also on the lower side.
  • the first internal channel 61 is at least partially formed within the extension 64 .
  • at least one, preferably a plurality of first internal flow paths 61 may be provided as shown in FIG. 5, for example.
  • the first internal flow path 61 may be provided for each of a plurality of second internal flow paths 402 described later, as shown in FIGS. 7 and 8, for example.
  • a passage 65 for passing fuel is provided inside the extension portion 64 .
  • the passage 65 includes an annular passage 67 formed along the circumferential direction of the combustor 4 and a first connection passage 68 and a second connection passage 69 connected to the annular passage 67 .
  • the first connection passage 68 is provided between the internal flow path of the pipe portion 80 and the annular passage 67, and the internal flow passage of the pipe portion 80 and the annular passage 67 are communicated through the first connection passage 68.
  • a second connection passage 69 is provided between the annular passage 67 and the third fuel nozzle 70 . Note that when the combustor 4 is provided with a plurality of third fuel nozzles 70 , a second connection passage 69 is provided for each of the plurality of third fuel nozzles 70 . In the following description, the second connection passage 69 is also referred to as the third internal flow passage 69A.
  • the first internal flow path 61 may intersect the third internal flow path 69A when viewed from the circumferential direction of the combustor 4 . Therefore, for example, as shown in FIGS. 5 and 8, the first internal flow path 61 is formed at a position different in the circumferential direction from the third internal flow path 69A so as not to interfere with the third internal flow path 69A. 5 and 8 omit the illustration of the fuel flow path for supplying fuel to the first fuel nozzle 40 and the second fuel nozzle 46 and the first connection passage 68 .
  • the nozzle fixing portion 400 includes, for example, a flange portion 410 attached to the annular projection portion 63 of the top hat body 60, and a columnar body portion 420 extending from the flange portion 410 along the axial direction of the combustor 4.
  • the main body portion 420 is inserted into the inner peripheral surface 63 a of the annular protrusion 63 of the top hat body 60 .
  • the nozzle fixing portion 400 has a second internal flow path 402 capable of supplying compressed air supplied from the first internal flow path 61 to a purge air flow path 461 described later of the second fuel nozzle 46.
  • the second internal flow paths 402 are provided corresponding to each of the plurality of second fuel nozzles 46 .
  • the second internal flow path 402 according to some embodiments has a second inlet 402 a that is the inlet of the second internal flow path 402 and a second outlet 402 b that is the outlet connected to the purge air flow path 461 of the second fuel nozzle 46 .
  • the second inlet 402a is formed in the outer peripheral portion 400a of the nozzle fixing portion 400 facing the top hat body 60, specifically in the outer peripheral surface 420a of the main body portion 420.
  • the second outlet 402b is connected to an inlet 461a of a purge air flow path 461 of the second fuel nozzle 46, described below.
  • the top hat body 60 and the nozzle fixture 400 define a circumferentially extending cavity 500 between the top hat body 60 and the nozzle fixture 400. More specifically, the cavity 500 is formed between the inner peripheral surface 63a of the annular projecting portion 63 of the top hat body 60 and the outer peripheral surface 420a of the main body portion 420 of the nozzle fixing portion 400 .
  • the cavity 500 includes an axially downstream downstream region 510 and an axially upstream upstream region 520 .
  • the channel cross-sectional area of the downstream region 510 is smaller than the channel cross-sectional area of the upstream region 520 when viewed from the axial direction. That is, in the combustor 4 according to one embodiment, the radial height of the cavity 500 is smaller in the downstream region 510 than in the upstream region 520 .
  • first internal flow path 61 is in fluid communication with cavity 500 . More specifically, in the combustor 4 according to one embodiment, the first outlet 61 b of the first internal flow path 61 opens to the inner peripheral surface 63 a of the annular protrusion 63 that defines the downstream region 510 of the cavity 500 .
  • second internal flow path 402 is in fluid communication with cavity 500 . More specifically, in the combustor 4 according to one embodiment, the second inlet 402 a of the second internal flow path 402 opens to the outer peripheral surface 420 a of the main body 420 defining the downstream region 510 of the cavity 500 . That is, in the combustor 4 according to one embodiment, the first internal flow path 61 and the second internal flow path 402 are in fluid communication via the cavity 500 .
  • the cavity 500 may not be provided in the combustor 4 according to another embodiment.
  • the first outlet 61b of the first internal flow path 61 may be directly connected to the second inlet 402a of the second internal flow path 402 .
  • the second fuel nozzle 46 has a substantially tubular shape, and a purge air channel 461 and a fuel channel 462 are formed therein. As shown in FIGS. 4 and 7 , in some embodiments of the second fuel nozzle 46 , the purge air flow path 461 extends within the second fuel nozzle 46 along the central axis C2 of the second fuel nozzle 46 . An outlet 461 b of the purge air flow path 461 is formed at the tip 46 a of the second fuel nozzle 46 . Note that the central axis C2 of the second fuel nozzle 46 is parallel to the central axis C1 of the combustion cylinder 36 .
  • the compressed air generated by the compressor 2 (see FIG. 1) during operation of the gas turbine 1 is supplied into the combustor casing 32 via the casing inlet 31, and supplied to the first combustion burner 38 and the second combustion burner 44 as combustion air as described above.
  • the compressed air supplied into the combustor casing 32 is supplied from the void 33 to the cavity 500 via the first internal flow path 61 .
  • Compressed air supplied to cavity 500 is distributed to each second internal passage 402 and enters purge air passage 461 of each second fuel nozzle 46 .
  • the compressed air that has flowed into the purge air flow path 461 is injected into the combustion cylinder 36 as purge air Pa from an outlet 461b of the purge air flow path 461, as indicated by arrow IV in FIG.
  • the compressed air supplied into the combustor casing 32 flows from the void 33 through the first internal flow paths 61 and the second internal flow paths 402 into the purge air flow paths 461 of the second fuel nozzles 46.
  • the compressed air that has flowed into the purge air flow path 461 is injected into the combustion cylinder 36 as purge air Pa from an outlet 461b of the purge air flow path 461, as indicated by arrow VII in FIG.
  • the second combustion burner 44 is provided with the swirler 49, so the premixed combustion flame generated by the second combustion burner 44 contains a swirling flow component. That is, this premixed combustion flame propagates from one side in the axial direction of the combustor 4 toward the other side while swirling around the second fuel nozzle 46 . Therefore, a vortex core of the swirling flow is formed on the other axial side of the combustor 4 at the tip of the second fuel nozzle 46 . It is known that flashback is likely to occur in the vortex core because the flow velocity and pressure are lower than in other regions. Flashback is a phenomenon in which a flame propagates to fuel stagnating in an unexpected area in the combustor 4, causing abnormal combustion.
  • the purge air Pa is injected into the combustion cylinder 36 from the outlet 461b of the purge air flow path 461 formed at the tip 46a of the second fuel nozzle 46, so the flow velocity and pressure of the fluid at the vortex core can be increased. Thereby, the flashback mentioned above can be suppressed.
  • the combustor 4 is a combustor 4 that combusts compressed air supplied from the compressor 2 together with fuel.
  • the combustor 4 according to at least one embodiment of the present disclosure includes a second fuel nozzle 46 that is at least one fuel nozzle having a fuel flow path 462 that supplies fuel and a purge air flow path 461 that ejects purge air Pa.
  • the combustor 4 according to at least one embodiment of the present disclosure includes a nozzle retainer 400 for securing at least one fuel nozzle, the second fuel nozzle 46 .
  • the combustor 4 according to at least one embodiment of the present disclosure includes a top hat body 60 arranged on the outer peripheral side of at least a portion of the nozzle fixing portion 400 .
  • the top hat body 60 has the first internal flow path 61 capable of supplying compressed air to the nozzle fixing portion 400 from the space 33, which is the space on the outer peripheral side of the top hat body 60.
  • the nozzle fixing part 400 has a second internal channel 402 capable of supplying compressed air supplied from the first internal channel 61 to the purge air channel 461 of the second fuel nozzle 46, which is a fuel nozzle.
  • compressed air with relatively low pressure loss supplied from the compressor 2 without passing through the current plate 55 can be supplied as the purge air Pa to the second fuel nozzle 46, which is a fuel nozzle.
  • the compressed air supplied as the purge air Pa can be supplied to the purge air flow path 461 of the second fuel nozzle 46, which is a fuel nozzle, without passing through a flow path that passes through the outside of the combustor 4.
  • the compressed air can be supplied as purge air Pa to the second fuel nozzle 46, which is a fuel nozzle, while suppressing heat loss. Therefore, heat loss can be suppressed in the gas turbine 1 including the combustor 4 according to some embodiments.
  • a gas turbine 1 comprises a compressor 2 , a combustor 4 according to some embodiments, and a turbine 6 configured to be driven by combustion gases from the combustor 4 . Thereby, the heat loss in the gas turbine 1 can be suppressed.
  • the first outlet 61b may be formed in the inner peripheral portion 60a of the top hat body 60 facing the nozzle fixing portion 400, as described above. Accordingly, the formation location of the first outlet 61 b is rational for fluid communication between the first internal flow path 61 formed in the top hat body 60 and the second internal flow path 402 formed in the nozzle fixing portion 400 .
  • the second inlet 402a may be formed in the outer peripheral portion 400a of the nozzle fixing portion 400 facing the top hat body 60, as described above. Accordingly, the formation location of the second inlet 602 a is rational for fluid communication between the first internal flow path 61 formed in the top hat body 60 and the second internal flow path 402 formed in the nozzle fixing portion 400 .
  • the top hat body 60 and the nozzle fixture 400 may define a circumferentially extending cavity 500 between the top hat body 60 and the nozzle fixture 400 as described above.
  • the nozzle fixing portion 400 may fix a plurality of fuel nozzles (second fuel nozzles 46) in the circumferential direction, and may include a plurality of second internal flow paths 402 capable of supplying compressed air to the plurality of fuel nozzles (second fuel nozzles 46).
  • the plurality of second internal passages 402 may be in fluid communication with the circumferentially extending cavity 500 .
  • Forming the cavity 500 extending in the circumferential direction allows fluid communication between the first internal flow path 61 of the top hat body 60 and the plurality of second internal flow paths 402 of the nozzle fixing portion 400 . Therefore, the pressures of the purge air Pa injected from the plurality of fuel nozzles (the second fuel nozzles 46) can be made close to each other. Therefore, variations in the flow rate of the purge air Pa injected from the plurality of fuel nozzles (second fuel nozzles 46) can be suppressed.
  • the second inlet 402a may be provided at a position different from the first outlet 61b when viewed from the radial direction of the combustor 4 .
  • the second inlet 402a which is the inlet of the second internal flow path 402
  • the first outlet 61b which is the outlet of the first internal flow path 61
  • the pressure of the purge air Pa injected by the plurality of fuel nozzles (second fuel nozzles 46) can be made close to a value.
  • variations in the flow rate of the purge air Pa injected from the plurality of fuel nozzles (second fuel nozzles 46) can be suppressed.
  • the second inlet 402a may be provided at a position different from the first outlet 61b in at least one of the axial direction and the circumferential direction of the combustor 4 .
  • the second inlet 402a is provided axially downstream of the combustor 4 with respect to the first outlet 61b, but may be provided axially upstream of the combustor 4 with respect to the first outlet 61b. That is, in the combustor 4 according to one embodiment, the second inlet 402a may be provided axially upstream from the example shown in FIG. 4, and the first outlet 61b may be axially downstream from the example shown in FIG.
  • the flow passage cross-sectional area of the cavity 500 at the axial downstream end 511 of the cavity 500 is preferably smaller than the flow passage cross-sectional area of the cavity 500 at the axial position of the second inlet 402a.
  • the combustor 4 is configured such that the compressed air in the cavity 500 is jetted from the downstream end 511 to the air passage 54 via the downstream region 510 . Therefore, it is further suppressed that the fuel or the like injected from the third fuel nozzle 70 enters the cavity 500 from the downstream side in the axial direction.
  • the radial height of the cavity 500 in the downstream region 510 may be zero, that is, in the downstream region 510, there may be substantially no gap between the inner peripheral surface 63a of the annular projecting portion 63 of the top hat body 60 and the outer peripheral surface 420a of the main body portion 420 of the nozzle fixing portion 400.
  • the second internal flow paths 402 are preferably connected to the first internal flow paths 401 on a one-to-one basis. This eliminates the need to provide the cavity 500 .
  • the top hat body 60 may have a third internal flow path 69A for supplying fuel to the third fuel nozzle 70, which is a flow path injection nozzle fixed to the top hat body 60.
  • the first internal flow path 61 may intersect the third internal flow path 69A when viewed from the circumferential direction of the combustor 4 . Accordingly, the first internal flow path 61 can be arranged within the top hat body 60 without difficulty.
  • the combustor 4 is a combustor 4 that combusts compressed air supplied from the compressor 2 together with fuel.
  • the combustor 4 according to at least one embodiment of the present disclosure includes a second fuel nozzle 46 that is at least one fuel nozzle having a fuel flow path 462 that supplies fuel and a purge air flow path 461 that ejects purge air Pa.
  • the combustor 4 according to at least one embodiment of the present disclosure includes a nozzle retainer 400 for securing at least one fuel nozzle, the second fuel nozzle 46 .
  • the combustor 4 includes a top hat body 60 arranged on the outer peripheral side of at least a portion of the nozzle fixing portion 400 .
  • the top hat body 60 has a first internal flow path 61 capable of supplying compressed air to the nozzle fixing portion 400 from the space 33 which is a space on the outer peripheral side thereof.
  • the nozzle fixing part 400 has a second internal channel 402 capable of supplying compressed air supplied from the first internal channel 61 to the purge air channel 461 of the second fuel nozzle 46, which is a fuel nozzle.
  • the compressed air with relatively low pressure loss supplied from the compressor 2 can be supplied to the second fuel nozzle 46, which is a fuel nozzle, as purge air Pa while suppressing heat loss.
  • the gas turbine 1 including the combustor 4 configured as described in (1) above can be suppressed in the gas turbine 1 including the combustor 4 configured as described in (1) above.
  • the first internal flow path 61 may have a first inlet 61a, which is the inlet of the first internal flow path 61, and a first outlet 61b, which is an outlet positioned radially inward of the combustor 4 relative to the first inlet 61a.
  • the first outlet 61 b is preferably formed in the inner peripheral portion 60 a of the top hat body 60 facing the nozzle fixing portion 400 .
  • the formation location of the first outlet 61b is rational for fluid communication between the first internal flow path 61 formed in the top hat body 60 and the second internal flow path 402 formed in the nozzle fixing portion 400.
  • the second internal flow path 402 may have a second inlet 402a, which is the inlet of the second internal flow path 402, and a second outlet 402b, which is an outlet connected to the purge air flow path 461 of the fuel nozzle (second fuel nozzle 46).
  • the second inlet 402 a is preferably formed in the outer peripheral portion 400 a of the nozzle fixing portion 400 facing the top hat body 60 .
  • the formation location of the second inlet 402a is rational for fluid communication between the first internal flow path 61 formed in the top hat body 60 and the second internal flow path 402 formed in the nozzle fixing portion 400.
  • the top hat body 60 and the nozzle fixing portion 400 may define a cavity 500 extending in the circumferential direction between the top hat body 60 and the nozzle fixing portion 400.
  • the nozzle fixing portion 400 may fix a plurality of fuel nozzles (second fuel nozzles 46) in the circumferential direction, and may include a plurality of second internal flow paths 402 capable of supplying compressed air to the plurality of fuel nozzles (second fuel nozzles 46).
  • the plurality of second internal passages 402 may be in fluid communication with the circumferentially extending cavity 500 .
  • the configuration (4) above by forming the cavity 500 extending in the circumferential direction, the first internal flow path 61 of the top hat body 60 and the plurality of second internal flow paths 402 of the nozzle fixing portion 400 can be fluidly communicated. Therefore, the pressures of the purge air Pa injected from the plurality of fuel nozzles (the second fuel nozzles 46) can be made close to each other. Therefore, variations in the flow rate of the purge air Pa injected from the plurality of fuel nozzles (second fuel nozzles 46) can be suppressed.
  • the first internal flow path 61 preferably has a first inlet 61a, which is the inlet of the first internal flow path, and a first outlet 61b, which is an outlet positioned radially inward of the combustor 4 from the first inlet 61a.
  • the second internal flow path 402 may have a second inlet 402a, which is the inlet of the second internal flow path 402, and a second outlet 402b, which is the outlet connected to the purge air flow path 461 of the fuel nozzle (second fuel nozzle 46).
  • the second inlet 402a may be provided at a different position from the first outlet 61b when viewed from the radial direction of the combustor 4 .
  • the second inlet 402a which is the inlet of the second internal flow path 402 is provided at a position separated from the first outlet 61b, which is the outlet of the first internal flow path 61, in the cavity 500, so that the pressure of the purge air Pa injected by the plurality of fuel nozzles (second fuel nozzles 46) can be adjusted to a similar value.
  • variations in the flow rate of the purge air Pa injected from the plurality of fuel nozzles (second fuel nozzles 46) can be suppressed.
  • the second internal flow path 402 may have a second inlet 402a, which is the inlet of the second internal flow path 402, and a second outlet 402b, which is an outlet connected to the purge air flow path 461 of the fuel nozzle (second fuel nozzle 46).
  • the flow cross-sectional area of the cavity 500 at the axial downstream end 511 of the cavity 500 is preferably smaller than the flow cross-sectional area of the cavity 500 at the axial position of the second inlet 402a.
  • the second internal flow path 402 may be connected to the first internal flow path 61 on a one-to-one basis.
  • the cavity 500 need not be provided.
  • the top hat body 60 may have a third internal flow path 69A for supplying fuel to the third fuel nozzle 70, which is a flow path injection nozzle fixed to the top hat body 60.
  • the first internal flow path 61 may intersect the third internal flow path 69A when viewed from the circumferential direction of the combustor 4 .
  • the first internal flow path 61 can be arranged within the top hat body 60 without difficulty.
  • a gas turbine 1 includes a compressor 2, a combustor 4 configured in any one of (1) to (8) above, and a turbine 6 configured to be driven by combustion gas from the combustor 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本開示の少なくとも一実施形態に係る燃焼器は、圧縮機から供給される圧縮空気を燃料と共に燃焼させる燃焼器である。本開示の少なくとも一実施形態に係る燃焼器は、燃料を供給する燃料流路と、パージ空気を噴出させるパージ空気流路とを有する少なくとも1つの燃料ノズルを備える。本開示の少なくとも一実施形態に係る燃焼器は、少なくとも1つの燃料ノズルを固定するためのノズル固定部を備える。本開示の少なくとも一実施形態に係る燃焼器は、ノズル固定部の少なくとも一部の外周側に配置されるトップハットボディを備える。トップハットボディは、その外周側の空間からノズル固定部へ圧縮空気を供給可能な第1内部流路を有する。ノズル固定部は、第1内部流路から供給される圧縮空気を燃料ノズルのパージ空気流路へ供給可能な第2内部流路を有する。

Description

燃焼器及びガスタービン
 本開示は、燃焼器及びガスタービンに関する。
 本願は、2022年1月21日に日本国特許庁に出願された特願2022-007824号に基づき優先権を主張し、その内容をここに援用する。
 ガスタービンに用いられる燃焼器は、燃焼ガスが流通する筒体と、筒体内で火炎を形成する複数のノズルと、ノズルの周囲に設けられた複数の旋回羽根と、を主に備えている。ノズルによって形成された火炎によって筒体内で高温高圧の燃焼ガスが生じる。ところで、燃焼器の内部では、燃料と空気とが流通する過程で、フラッシュバックと呼ばれる現象が生じる場合がある。フラッシュバックとは、燃焼器内における予期しない領域に火炎が伝播することで異常な燃焼を生じる現象である。特に、上記の旋回羽根によって形成される旋回流の中心領域(渦芯)では、他の領域に比べて流速、圧力が低くなるため、フラッシュバックが生じやすいことが知られている。このようなフラッシュバックを回避するため、例えば下記特許文献1に記載された装置では、ノズルの先端から渦芯に空気を供給する空気流路を形成することで、渦芯における流体の流速が高められている。空気流路には、ノズルにおける旋回羽根(圧力損失部)よりも上流側の位置から空気が導かれる。これにより、フラッシュバックが回避できるとされている。
特開2019-082263号公報
 上記特許文献1には、車室外配管を介して車室空気の一部をパージ空気として燃料ノズルに取り込む構成が開示されている。しかしながら、特許文献1に記載のガスタービン燃焼器では、車室空気が車室外配管を通るため熱損失が発生してしまうという課題がある。
 本開示の少なくとも一実施形態は、上述の事情に鑑みて、ガスタービンにおける熱損失を抑制できる燃焼器及びガスタービンを提供することを目的とする。
(1)本開示の少なくとも一実施形態に係る燃焼器は、
 圧縮機から供給される圧縮空気を燃料と共に燃焼させる燃焼器であって、
 前記燃料を供給する燃料流路と、パージ空気を噴出させるパージ空気流路とを有する少なくとも1つの燃料ノズルと、
 前記少なくとも1つの燃料ノズルを固定するためのノズル固定部と、
 前記ノズル固定部の少なくとも一部の外周側に配置されるトップハットボディと、
を備え、
 前記トップハットボディは、その外周側の空間から前記ノズル固定部へ前記圧縮空気を供給可能な第1内部流路を有し、
 前記ノズル固定部は、前記第1内部流路から供給される圧縮空気を前記燃料ノズルの前記パージ空気流路へ供給可能な第2内部流路を有する。
(2)本開示の少なくとも一実施形態に係るガスタービンは、
 前記圧縮機と、
 上記(1)の構成の燃焼器と、
 前記燃焼器からの燃焼ガスによって駆動されるように構成されたタービンと、
を備える。
 本開示の少なくとも一実施形態によれば、ガスタービンにおける熱損失を抑制できる。
幾つかの実施形態に係るガスタービンの概略構成図である。 幾つかの実施形態に係るガスタービンの燃焼器及びタービンの入口部分を示す概略図である。 一実施形態に係るガスタービンの燃焼器の概略断面図である。 一実施形態に係るガスタービンの燃焼器の概略断面図である。 一実施形態に係るガスタービンの燃焼器の要部の概略断面図である。 図4のC-C矢視概略断面図である。 他の実施形態に係るガスタービンの燃焼器の概略断面図である。 他の実施形態に係るガスタービンの燃焼器の要部の概略断面図である。 図7のF-F矢視概略断面図である。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 まず、幾つかの実施形態に係る燃焼器の適用先の一例であるガスタービンについて、図1を参照して説明する。図1は、幾つかの実施形態に係るガスタービンの概略構成図である。
 図1に示すように、ガスタービン1は、圧縮空気を生成するための圧縮機2と、圧縮空気及び燃料を用いて燃焼ガスを発生させるための燃焼器4と、燃焼ガスによって回転駆動されるように構成されたタービン6と、を備える。発電用のガスタービン1の場合、タービン6には不図示の発電機が連結される。
 圧縮機2は、圧縮機車室10側に固定された複数の静翼16と、静翼16に対して交互に配列されるようにロータ8に植設された複数の動翼18と、を含む。
 圧縮機2には、空気取入口12から取り込まれた空気が送られるようになっており、この空気は、複数の静翼16及び複数の動翼18を通過して圧縮されることで高温高圧の圧縮空気となる。
 燃焼器4には、燃料と、圧縮機2で生成された圧縮空気とが供給されるようになっており、該燃焼器4において燃料が燃焼され、タービン6の作動流体である燃焼ガスが生成される。図1に示すように、ガスタービン1は、ケーシング20内にロータ8を中心として周方向に沿って複数配置された燃焼器4を有する。
 タービン6は、タービン車室22によって形成される燃焼ガス通路28を有し、該燃焼ガス通路28に設けられる複数の静翼24及び動翼26を含む。タービン6の静翼24及び動翼26は、燃焼ガスの流れに関して燃焼器4の下流側に設けられている。
 静翼24はタービン車室22側に固定されており、ロータ8の周方向に沿って配列される複数の静翼24が静翼列を構成している。また、動翼26はロータ8に植設されており、ロータ8の周方向に沿って配列される複数の動翼26が動翼列を構成している。静翼列と動翼列とは、ロータ8の軸方向において交互に配列されている。
 タービン6では、燃焼ガス通路28に流れ込んだ燃焼器4からの燃焼ガスが複数の静翼24及び複数の動翼26を通過することでロータ8が軸線O周りに回転駆動され、これにより、ロータ8に連結された発電機が駆動されて電力が生成されるようになっている。タービン6を駆動した後の燃焼ガスは、排気室30を介して外部へ排出される。
 次に、幾つかの実施形態に係る燃焼器4について説明する。
 図2は、幾つかの実施形態に係るガスタービン1の燃焼器4及びタービン6の入口部分を示す概略図である。
 図3Aは、一実施形態に係るガスタービン1の燃焼器4の概略断面図である。
 図3Bは、一実施形態に係るガスタービン1の燃焼器4の概略断面図であり、図3Aとは燃焼器の周方向(以下、単に「周方向」ともいう。)の位置が異なる断面を表している。
 図4は、一実施形態に係るガスタービン1の燃焼器4の要部の概略断面図である。
 図5は、図4のC-C矢視概略断面図である。
 図6は、他の実施形態に係るガスタービン1の燃焼器4の概略断面図である。
 図7は、他の実施形態に係るガスタービン1の燃焼器4の要部の概略断面図である。
 図8は、図7のF-F矢視概略断面図である。
 図2、図3A、図3B、及び図6に示すように、幾つかの実施形態に係るガスタービン1では、ロータ8を中心として周方向に複数配置される燃焼器4(図1参照)の各々は、ケーシング20により画定される燃焼器車室32に設けられた燃焼筒(燃焼器ライナ)36と、燃焼筒36内にそれぞれ配置された第1燃焼バーナ38及び第1燃焼バーナ38を囲うように配置された複数の第2燃焼バーナ44と、を含む。すなわち、燃焼筒36、第1燃焼バーナ38及び第2燃焼バーナ44は、ケーシング20に収容されている。
 燃焼筒(燃焼器ライナ)36は、第1燃焼バーナ38及び複数の第2燃焼バーナ44の周囲に配置される内筒48と、内筒48の先端部に連結された尾筒50と、を有している。なお、内筒48と尾筒50とは一体的に形成されていてもよい。
 第1燃焼バーナ38は、燃焼筒36の中心軸C1の方向(すなわち燃焼器4の軸方向;以下、単に「軸方向」ともいう。)に沿って配置されており、燃料を噴射するための第1燃料ノズル40と、第1燃料ノズル40を囲むように配置された第1バーナ筒41と、を有している。第1燃料ノズル40には、第1燃料ポート42を介して燃料が供給されるようになっている。
 第2燃焼バーナ44は、燃料を噴射するための第2燃料ノズル46と、第2燃料ノズル46を囲むように配置された第2バーナ筒47と、を有している。第2燃料ノズル46には、第2燃料ポート43を介して燃料が供給されるようになっている。
 幾つかの実施形態に係る燃焼器4は、ノズル固定部400を備えている。第1燃料ノズル40及び第2燃料ノズル46は、第1燃料ノズル40及び第2燃料ノズル46の基端部でノズル固定部400に固定されている。
 燃焼器4は、ケーシング20の内部において内筒48の外周側に設けられた外筒52をさらに含む。内筒48の外周側かつ外筒52の内周側には、圧縮空気が流れる空気通路54が形成される。
 圧縮機2(図1参照)で生成された圧縮空気は、車室入口31を介して燃焼器車室32内に供給され、該圧縮空気が燃焼用空気として燃焼器車室32から空気通路54に流れ込み、燃焼器4の軸方向に直交する面に沿って設けられた壁面部53で方向転換され、第1バーナ筒41及び第2バーナ筒47に流入するようになっている。そして、各バーナ筒では、燃料ノズルから噴射される燃料と圧縮空気(燃焼用空気)とが混合され、この混合気が燃焼筒36に流れ込み、着火されて燃焼することにより、燃焼ガスが発生するようになっている。
 上述の第1燃焼バーナ38は拡散燃焼火炎を発生させるためのバーナであってもよく、第2燃焼バーナ44は予混合気を燃焼させ予混合燃焼火炎を発生させるためのバーナであってもよい。
 すなわち、第2燃焼バーナ44において、第2燃料ポート43からの燃料と圧縮空気とが予混合されて、該予混合気がスワラ49によって主として旋回流を形成し、燃焼筒36に流れ込む。また、圧縮空気と、第1燃料ポート42を介して第1燃焼バーナ38から噴射された燃料とが燃焼筒36内で混合され、図示しない着火手段により着火されて燃焼し、燃焼ガスが発生する。このとき、燃焼ガスの一部が火炎を伴って周囲に拡散することで、各第2燃焼バーナ44から燃焼筒36内に流れ込んだ予混合気が着火されて燃焼する。すなわち、第1燃焼バーナ38から噴射された燃料による拡散燃焼火炎によって、第2燃焼バーナ44からの予混合気(予混合燃料)の安定燃焼を行うための保炎を行うことができる。
 このようにして燃焼器4において燃料の燃焼により発生した燃焼ガスは、尾筒50の下流端部に位置する燃焼器4の出口部51を介して、タービン6に流入する。
 燃焼器4は、上述の空気通路54に燃料を噴射するための第3燃料ノズル70を備えている。なお、周方向に沿って複数の第3燃料ノズル70が設けられていてもよい。第3燃料ノズル70は、後述するトップハットボディ60に固定されている。
 第3燃料ノズル70から空気通路54に燃料を噴射すると、空気通路54に流れ込んだ圧縮空気と噴射された燃料とが混合され、この燃料混合気が各バーナ筒に流入する。そして、この燃料混合気に対して、上述したように第1燃料ノズル40及び第2燃料ノズル46から燃料を噴射して混合気を形成することで、均一な燃料混合気を形成して低NOx化を図ることができる。
 なお、燃焼器4は、燃焼ガスをバイパスさせるためのバイパス管(不図示)等の他の構成要素を備えていてもよい。
 幾つかの実施形態に係る燃焼器4では、上記空気通路54に整流板55が配置されている。整流板55は、内筒48と外筒52との間に設けられ、内筒48の外周部に固定配置される多孔板であり、整流板55を貫通する複数の貫通孔が配置されている。
 整流板55は、圧縮空気の流れを整流するとともに、整流板55を通過する際に圧損を生じさせる。すなわち、整流板55を通過後の圧縮空気が流れる空気通路54内では、燃焼器車室32(図2参照)内、及び後述する空所33に比べて圧力が低くなっている。
 以下、幾つかの実施形態に係る燃焼器4についてより詳細に説明する。
(トップハットボディ60)
 図3A、図3B、図4、図6、及び図7に示すように、幾つかの実施形態に係る燃焼器4は、ケーシング20に取り付けられたフランジ部62と、フランジ部62から燃焼器4の軸方向に沿って延びる環状の延長部64と、フランジ部62と延長部64との間に延在する管部80と、を備えている。そして、第3燃料ポート74からの燃料が、管部80、及び、延長部64の内部に形成された後述する通路65を介して第3燃料ノズル70に供給されるようになっている。第3燃料ノズル70は、延長部64の内周側に設けられている。
 幾つかの実施形態に係る燃焼器4では、フランジ部62及び延長部64で構成される部分は、その形状からトップハットボディ60と呼ばれることがある。
 幾つかの実施形態に係るトップハットボディ60は、ケーシング20に形成された燃焼器挿通孔20hを塞ぐように設けられた有底筒状の部材である。
 図3A、図3B、図4、図6、及び図7に示すように、フランジ部62は、燃焼器4の径方向(以下、単に「径方向」ともいう。)外側に向かって突出する形状を有しており、ボルト59により、ケーシング20に固定されている。
 延長部64は、フランジ部62から、ケーシング20の内部空間に向かって燃焼器4の軸方向に沿って延びた筒状の形状を有している。幾つかの実施形態において、延長部64は、ケーシング20よりも径方向内側に位置している。また、延長部64は、径方向内側に向かって突出する環状突出部63を有している。上述の空気通路54を流れる圧縮空気流れを方向転換する壁面部53は、環状突出部63によって形成されている。
 図3A、図3B、図4、図6、及び図7に示すように、空気通路54は、延長部64によって少なくとも部分的に形成されていてもよい。すなわち、延長部64は、空気通路54を形成する空気通路形成部66(外筒52)を含んでいてもよい。
 図3A及び図3Bに示すように、一実施形態に係るガスタービン1では、外筒52の周方向の領域の内、ロータ8の軸線Oを中心とする比較的径方向外側に位置する領域では、外筒52の外周面52aは、燃焼器挿通孔20hの内周面20iから離間している。これにより、一実施形態に係るガスタービン1では、ロータ8の軸線Oを中心とする比較的径方向外側に位置する領域において、外筒52の外周面52aと燃焼器挿通孔20hの内周面20iとの間には、圧縮空気が流通可能な空所33が形成されている。
 図6に示すように、他の実施形態に係るガスタービン1では、外筒52の外周面52aは、その全周に亘って燃焼器挿通孔20hの内周面20iから離間している。これにより、他の実施形態に係るガスタービン1では、外筒52の外周面52aと燃焼器挿通孔20hの内周面20iとの間には、外周面52aの全周に亘って圧縮空気が流通可能な空所33が形成されている。
 図3A、図3B、図4、図6、及び図7に示すように、幾つかの実施形態に係るトップハットボディ60の内部には、その外周側の空間(空所33)からノズル固定部400へ圧縮空気を供給可能な第1内部流路61が形成されている。
 幾つかの実施形態に係る第1内部流路61は、第1内部流路61の入口である第1入口61aと、第1入口61aよりも燃焼器4の径方向内側に位置する出口である第1出口61bとを有する。
 幾つかの実施形態に係る第1内部流路61では、第1入口61aは、外筒52の外周面52aに形成されている。
 幾つかの実施形態に係る第1内部流路61では、第1出口61bは、ノズル固定部400と対向するトップハットボディ60の内周部60a、具体的には、図4及び図7によく示すように環状突出部63の内周面63aに形成されている。
 図3A及び図3Bに示すように、一実施形態に係る燃焼器4では、ロータ8の軸線Oを中心とする比較的径方向内側には空所33が存在しない。ロータ8の軸線Oを中心とする径方向内側は、図5において図示下側となる。そのため、一実施形態に係る燃焼器4では、図5に示すように、第1内部流路61は、ロータ8の軸線Oを中心とする径方向外側、すなわち図5において図示上側に設けられているが、図5において図示下側には設けられていない。
 図6に示すように、他の実施形態に係る燃焼器4では、ロータ8の軸線Oを中心とする比較的径方向内側にも空所33が存在する。そのため、他の実施形態に係る燃焼器4では、図8に示すように、第1内部流路61は、図5において図示上側だけでなく図示下側にも設けられている。
 幾つかの実施形態に係る第1内部流路61は、少なくともその一部が延長部64の内部に形成されている。
 図3A、及び図3Bに示す一実施形態に係るガスタービン1では、例えば図5に示すように、第1内部流路61は、少なくとも1つ、好ましくは複数設けられているとよい。
 図6に示す他の実施形態に係るガスタービン1では、第1内部流路61は、例えば図7及び図8に示すように、後述する複数の第2内部流路402のそれぞれに対して設けられているとよい。
 延長部64の内部には、燃料を通すための通路65が設けられている。通路65は、燃焼器4の周方向に沿って形成された環状通路67と、環状通路67に接続される第1接続通路68及び第2接続通路69と、を含む。
 第1接続通路68は、管部80の内部流路と環状通路67との間に設けられ、該第1接続通路68を介して、管部80の内部流路と環状通路67とが連通されるようになっている。第2接続通路69は、環状通路67と第3燃料ノズル70との間に設けられている。
 なお、燃焼器4において複数の第3燃料ノズル70が設けられる場合、複数の第3燃料ノズル70の各々に対して第2接続通路69が設けられる。
 以下の説明では、第2接続通路69は、第3内部流路69Aとも称する。
 幾つかの実施形態に係る第1内部流路61は、燃焼器4の周方向から見たときに第3内部流路69Aと交差していてもよい。そのため、例えば図5及び図8に示すように、第1内部流路61は、第3内部流路69Aと干渉しないように、第3内部流路69Aとは周方向の異なる位置に形成されている。
 なお、図5及び図8では、第1燃料ノズル40及び第2燃料ノズル46に燃料を供給するための燃料流路、及び第1接続通路68の記載を省略している。
(ノズル固定部400)
 図3A、図3B、図4、図6、及び図7に示すように、幾つかの実施形態に係る燃焼器4では、ノズル固定部400は、例えばトップハットボディ60の環状突出部63に取り付けられたフランジ部410と、フランジ部410から燃焼器4の軸方向に沿って延びる柱状の本体部420とを備えている。本体部420は、トップハットボディ60の環状突出部63の内周面63aに挿入されている。
 幾つかの実施形態に係る燃焼器4では、ノズル固定部400は、第1内部流路61から供給される圧縮空気を第2燃料ノズル46の後述するパージ空気流路461へ供給可能な第2内部流路402を有する。
 幾つかの実施形態に係る燃焼器4では、第2内部流路402は、複数の第2燃料ノズル46のそれぞれに対応して設けられている。
 幾つかの実施形態に係る第2内部流路402は、第2内部流路402の入口である第2入口402aと、第2燃料ノズル46のパージ空気流路461に接続される出口である第2出口402bとを有する。
 幾つかの実施形態に係る第2内部流路402では、第2入口402aは、トップハットボディ60と対向するノズル固定部400の外周部400a、具体的には、本体部420の外周面420aに形成されている。
 幾つかの実施形態に係る第2内部流路402では、第2出口402bは、第2燃料ノズル46の後述するパージ空気流路461の入口461aに接続されている。
(キャビティ)
 図4及び図5に示すように、一実施形態に係る燃焼器4では、トップハットボディ60及びノズル固定部400は、トップハットボディ60とノズル固定部400との間において周方向に延在するキャビティ500を画定する。
 より具体的には、キャビティ500は、トップハットボディ60の環状突出部63の内周面63aと、ノズル固定部400の本体部420の外周面420aとの間に形成されている。
 図4及に示すように、一実施形態に係る燃焼器4では、キャビティ500は、軸方向下流側の下流側領域510と、軸方向上流側の上流側領域520とを含む。
 一実施形態に係る燃焼器4では、軸方向から見たときに下流側領域510の流路断面積は、上流側領域520の流路断面積よりも小さい。
 すなわち、一実施形態に係る燃焼器4では、キャビティ500の径方向の高さは、下流側領域510の方が上流側領域520よりも小さい。
 一実施形態に係る燃焼器4では、第1内部流路61は、キャビティ500と流体連通している。より具体的には、一実施形態に係る燃焼器4では、第1内部流路61の第1出口61bは、キャビティ500の下流側領域510を画定する環状突出部63の内周面63aに開口している。
 一実施形態に係る燃焼器4では、第2内部流路402は、キャビティ500と流体連通している。より具体的には、一実施形態に係る燃焼器4では、第2内部流路402の第2入口402aは、キャビティ500の下流側領域510を画定する本体部420の外周面420aに開口している。
 すなわち、一実施形態に係る燃焼器4では、第1内部流路61と第2内部流路402とは、キャビティ500を介して流体連通している。
 なお、図7に示すように、他の実施形態に係る燃焼器4では、キャビティ500が設けられていなくてもよい。この場合、他の実施形態に係る燃焼器4では、第1内部流路61の第1出口61bは、第2内部流路402の第2入口402aに直接接続されているとよい。
(第2燃料ノズル46)
 幾つかの実施形態に係る燃焼器4では、第2燃料ノズル46は略管状をなしており、その内部にはパージ空気流路461及び燃料流路462が形成されている。
 図4及び図7に示すように、幾つかの実施形態に係る第2燃料ノズル46では、パージ空気流路461は、第2燃料ノズル46内で第2燃料ノズル46の中心軸C2に沿って延在している。パージ空気流路461の出口461bは、第2燃料ノズル46の先端46aに形成されている。
 なお、第2燃料ノズル46の中心軸C2は、燃焼筒36の中心軸C1と平行である。
(パージ空気の噴射について)
 このように構成される幾つかの実施形態に係る燃焼器4では、ガスタービン1の運転時に圧縮機2(図1参照)で生成された圧縮空気は、車室入口31を介して燃焼器車室32内に供給され、上述したように燃焼用空気として第1燃焼バーナ38及び第2燃焼バーナ44に供給される。
 また、図4に示す一実施形態に係るガスタービン1では、燃焼器車室32内に供給された圧縮空気は、上記の空所33から第1内部流路61を介してキャビティ500に供給される。キャビティ500に供給された圧縮空気は、各第2内部流路402に分配されて、各第2燃料ノズル46のパージ空気流路461に流入する。パージ空気流路461に流入した圧縮空気は、図4の矢印IVで示すように、パージ空気流路461の出口461bからパージ空気Paとして燃焼筒36内に噴射される。
 図7に示す他の実施形態に係るガスタービン1では、燃焼器車室32内に供給された圧縮空気は、上記の空所33から各第1内部流路61及び各第2内部流路402を介して、各第2燃料ノズル46のパージ空気流路461に流入する。パージ空気流路461に流入した圧縮空気は、図7の矢印VIIで示すように、パージ空気流路461の出口461bからパージ空気Paとして燃焼筒36内に噴射される。
(フラッシュバックについて)
 幾つかの実施形態に係る燃焼器4では、第2燃焼バーナ44にはスワラ49が設けられていることから、第2燃焼バーナ44が発生させる予混合燃焼火炎には旋回流成分が含まれている。すなわち、この予混合燃焼火炎は、燃焼器4の軸方向の一方側から他方側に向かって第2燃料ノズル46を中心として旋回しながら伝播する。したがって、第2燃料ノズル46先端の燃焼器4の軸方向の他方側には、旋回流の渦芯が形成されている。渦芯では、他の領域に比べて流速、圧力が低くなるため、フラッシュバックが生じやすいことが知られている。フラッシュバックとは、燃焼器4内における予期しない領域に滞留している燃料に、火炎が伝播することで異常な燃焼を生じる現象である。
 幾つかの実施形態に係る燃焼器4では、上述したように、第2燃料ノズル46の先端46aに形成されたパージ空気流路461の出口461bからパージ空気Paを燃焼筒36内に噴射するので、渦芯における流体の流速、及び圧力を高めることができる。これにより、上述したフラッシュバックを抑制できる。
 幾つかの実施形態に係る燃焼器4は、圧縮機2から供給される圧縮空気を燃料と共に燃焼させる燃焼器4である。本開示の少なくとも一実施形態に係る燃焼器4は、燃料を供給する燃料流路462と、パージ空気Paを噴出させるパージ空気流路461とを有する少なくとも1つの燃料ノズルである第2燃料ノズル46を備える。本開示の少なくとも一実施形態に係る燃焼器4は、少なくとも1つの燃料ノズルである第2燃料ノズル46を固定するためのノズル固定部400を備える。本開示の少なくとも一実施形態に係る燃焼器4は、ノズル固定部400の少なくとも一部の外周側に配置されるトップハットボディ60を備える。
 幾つかの実施形態に係る燃焼器4では、上述したように、トップハットボディ60は、その外周側の空間である空所33からノズル固定部400へ圧縮空気を供給可能な第1内部流路61を有する。ノズル固定部400は、第1内部流路61から供給される圧縮空気を燃料ノズルである第2燃料ノズル46のパージ空気流路461へ供給可能な第2内部流路402を有する。
 これにより、整流板55を介さずに圧縮機2から供給される比較的圧力損失の少ない圧縮空気をパージ空気Paとして燃料ノズルである第2燃料ノズル46に供給できる。
 また、幾つかの実施形態に係る燃焼器4では、パージ空気Paとして供給する圧縮空気を燃焼器4の外部を経由する流路を介さずに燃料ノズルである第2燃料ノズル46のパージ空気流路461へ供給できる。
 これにより、熱損失を抑えて圧縮空気をパージ空気Paとして燃料ノズルである第2燃料ノズル46に供給できる。よって、幾つかの実施形態に係る燃焼器4を備えるガスタービン1において、熱損失を抑制できる。
 幾つかの実施形態に係るガスタービン1では、圧縮機2と、幾つかの実施形態に係る燃焼器4と、該燃焼器4からの燃焼ガスによって駆動されるように構成されたタービン6と、を備える。
 これにより、ガスタービン1における熱損失を抑制できる。
 幾つかの実施形態に係る燃焼器4では、上述したように、第1出口61bは、ノズル固定部400と対向するトップハットボディ60の内周部60aに形成されているとよい。
 これにより、第1出口61bの形成場所がトップハットボディ60に形成される第1内部流路61とノズル固定部400に形成される第2内部流路402とを流体連通させるのに合理的となる。
 幾つかの実施形態に係る燃焼器4では、上述したように、第2入口402aは、トップハットボディ60と対向するノズル固定部400の外周部400aに形成されているとよい。
 これにより、第2入口602aの形成場所がトップハットボディ60に形成される第1内部流路61とノズル固定部400に形成される第2内部流路402とを流体連通させるのに合理的となる。
 一実施形態に係る燃焼器4では、上述したように、トップハットボディ60及びノズル固定部400は、トップハットボディ60とノズル固定部400との間において周方向に延在するキャビティ500を画定するとよい。ノズル固定部400は、複数の燃料ノズル(第2燃料ノズル46)を周方向に固定し、該複数の燃料ノズル(第2燃料ノズル46)に対して圧縮空気を供給可能な複数の第2内部流路402を備えるとよい。該複数の第2内部流路402は、周方向に延在するキャビティ500と流体連通するとよい。
 周方向に延在するキャビティ500を形成することで、トップハットボディ60の第1内部流路61と、ノズル固定部400の複数の第2内部流路402を流体連通することができる。このため、複数の燃料ノズル(第2燃料ノズル46)から射出されるパージ空気Paの圧力を近い値に揃えることができる。よって、複数の燃料ノズル(第2燃料ノズル46)から射出されるパージ空気Paの流量のばらつきを抑制できる。
 一実施形態に係る燃焼器4では、第2入口402aは、燃焼器4の径方向から見たときに第1出口61bとは異なる位置に設けられるとよい。
 キャビティ500内において、第2内部流路402の入口である第2入口402aは、第1内部流路61の出口である第1出口61bと離れた位置に設けることにより、複数の燃料ノズル(第2燃料ノズル46)が射出されるパージ空気Paの圧力を近い値に揃えることができる。これにより、複数の燃料ノズル(第2燃料ノズル46)から射出されるパージ空気Paの流量のばらつきを抑制できる。
 なお、一実施形態に係る燃焼器4では、第2入口402aは、燃焼器4の軸方向又は周方向の少なくとも何れか一方において第1出口61bとは異なる位置に設けられるとよい。
 また、図4に示した例では、第2入口402aは、第1出口61bに対して燃焼器4の軸方向下流側に設けられているが、第1出口61bに対して燃焼器4の軸方向上流側に設けられていてもよい。すなわち、一実施形態に係る燃焼器4では、第2入口402aは、図4に示した例よりも軸方向上流側に設けられ、且つ、第1出口61bは、図4に示した例よりも軸方向下流側に設けられていてもよい。
 一実施形態に係る燃焼器4では、燃焼器4の軸方向から見たときにキャビティ500の軸方向の下流側端部511におけるキャビティ500の流路断面積は、第2入口402aの軸方向の位置におけるキャビティ500の流路断面積よりも小さいとよい。
 これにより、軸方向下流側からキャビティ500に第3燃料ノズル70から噴射された燃料等が入り込むことを抑制できる。
 なお、一実施形態に係る燃焼器4では、キャビティ500内の圧縮空気が下流側領域510を介して下流側端部511から空気通路54に噴出するように構成されている。したがって、軸方向下流側からキャビティ500に第3燃料ノズル70から噴射された燃料等が入り込むことを一層抑制される。
 なお、一実施形態に係る燃焼器4では、下流側領域510におけるキャビティ500の径方向の高さがゼロ、すなわち、下流側領域510において、トップハットボディ60の環状突出部63の内周面63aと、ノズル固定部400の本体部420の外周面420aとの間の隙間が実質的に存在していなくてもよい。
 他の実施形態に係る燃焼器4では、第2内部流路402は、第1内部流路401と1対1で接続されているとよい。
 これにより、キャビティ500を設けなくてもよい。
 幾つかの実施形態に係る燃焼器4では、上述したように、トップハットボディ60は、トップハットボディ60に固定された流路噴射ノズルである第3燃料ノズル70に燃料を供給するための第3内部流路69Aを有していてもよい。第1内部流路61は、燃焼器4の周方向から見たときに第3内部流路69Aと交差してもよい。
 これにより、トップハットボディ60内に第1内部流路61を無理なく配置できる。
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の少なくとも一実施形態に係る燃焼器4は、圧縮機2から供給される圧縮空気を燃料と共に燃焼させる燃焼器4である。本開示の少なくとも一実施形態に係る燃焼器4は、燃料を供給する燃料流路462と、パージ空気Paを噴出させるパージ空気流路461とを有する少なくとも1つの燃料ノズルである第2燃料ノズル46を備える。本開示の少なくとも一実施形態に係る燃焼器4は、少なくとも1つの燃料ノズルである第2燃料ノズル46を固定するためのノズル固定部400を備える。本開示の少なくとも一実施形態に係る燃焼器4は、ノズル固定部400の少なくとも一部の外周側に配置されるトップハットボディ60を備える。トップハットボディ60は、その外周側の空間である空所33からノズル固定部400へ圧縮空気を供給可能な第1内部流路61を有する。ノズル固定部400は、第1内部流路61から供給される圧縮空気を燃料ノズルである第2燃料ノズル46のパージ空気流路461へ供給可能な第2内部流路402を有する。
 上記(1)の構成によれば、圧縮機2から供給される比較的圧力損失の少ない圧縮空気を、熱損失を抑えてパージ空気Paとして燃料ノズルである第2燃料ノズル46に供給できる。これにより、上記(1)の構成の燃焼器4を備えるガスタービン1において、熱損失を抑制できる。
(2)幾つかの実施形態では、上記(1)の構成において、第1内部流路61は、第1内部流路61の入口である第1入口61aと、第1入口61aよりも燃焼器4の径方向内側に位置する出口である第1出口61bとを有するとよい。第1出口61bは、ノズル固定部400と対向するトップハットボディ60の内周部60aに形成されているとよい。
 上記(2)の構成によれば、第1出口61bの形成場所がトップハットボディ60に形成される第1内部流路61とノズル固定部400に形成される第2内部流路402とを流体連通させるのに合理的となる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、第2内部流路402は、第2内部流路402の入口である第2入口402aと、燃料ノズル(第2燃料ノズル46)のパージ空気流路461に接続される出口である第2出口402bとを有するとよい。第2入口402aは、トップハットボディ60と対向するノズル固定部400の外周部400aに形成されているとよい。
 上記(3)の構成によれば、第2入口402aの形成場所がトップハットボディ60に形成される第1内部流路61とノズル固定部400に形成される第2内部流路402とを流体連通させるのに合理的となる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、トップハットボディ60及びノズル固定部400は、トップハットボディ60とノズル固定部400との間において周方向に延在するキャビティ500を画定するとよい。ノズル固定部400は、複数の燃料ノズル(第2燃料ノズル46)を周方向に固定し、該複数の燃料ノズル(第2燃料ノズル46)に対して圧縮空気を供給可能な複数の第2内部流路402を備えるとよい。該複数の第2内部流路402は、周方向に延在するキャビティ500と流体連通するとよい。
 上記(4)の構成によれば、周方向に延在するキャビティ500を形成することで、トップハットボディ60の第1内部流路61と、ノズル固定部400の複数の第2内部流路402を流体連通することができる。このため、複数の燃料ノズル(第2燃料ノズル46)から射出されるパージ空気Paの圧力を近い値に揃えることができる。よって、複数の燃料ノズル(第2燃料ノズル46)から射出されるパージ空気Paの流量のばらつきを抑制できる。
(5)幾つかの実施形態では、上記(4)の構成において、第1内部流路61は、第1内部流路の入口である第1入口61aと、第1入口61aよりも燃焼器4の径方向内側位置する出口である第1出口61bとを有するとよい。第2内部流路402は、第2内部流路402の入口である第2入口402aと、燃料ノズル(第2燃料ノズル46)のパージ空気流路461に接続される出口である第2出口402bとを有するとよい。第2入口402aは、燃焼器4の径方向から見たときに第1出口61bとは異なる位置に設けられるとよい。
 上記(5)の構成によれば、キャビティ500内において、第2内部流路402の入口である第2入口402aは、第1内部流路61の出口である第1出口61bと離れた位置に設けることにより、複数の燃料ノズル(第2燃料ノズル46)が射出されるパージ空気Paの圧力を近い値に揃えることができる。これにより、複数の燃料ノズル(第2燃料ノズル46)から射出されるパージ空気Paの流量のばらつきを抑制できる。
(6)幾つかの実施形態では、上記(4)又は(5)の構成において、第2内部流路402は、第2内部流路402の入口である第2入口402aと、燃料ノズル(第2燃料ノズル46)のパージ空気流路461に接続される出口である第2出口402bとを有するとよい。燃焼器4の軸方向から見たときにキャビティ500の軸方向の下流側端部511におけるキャビティ500の流路断面積は、第2入口402aの軸方向の位置におけるキャビティ500の流路断面積よりも小さいとよい。
 上記(6)の構成によれば、キャビティ500の下流側からキャビティ500に燃料などが入り込むことを抑制できる。
(7)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、第2内部流路402は、第1内部流路61と1対1で接続されているとよい。
 上記(7)の構成によれば、上記キャビティ500を設けなくてもよい。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、トップハットボディ60は、トップハットボディ60に固定された流路噴射ノズルである第3燃料ノズル70に燃料を供給するための第3内部流路69Aを有していてもよい。第1内部流路61は、燃焼器4の周方向から見たときに第3内部流路69Aと交差してもよい。
 上記(8)の構成によれば、トップハットボディ60内に第1内部流路61を無理なく配置できる。
(9)本開示の少なくとも一実施形態に係るガスタービン1は、圧縮機2と、上記(1)乃至(8)の何れかの構成の燃焼器4と、燃焼器4からの燃焼ガスによって駆動されるように構成されたタービン6と、を備える。
 上記(9)の構成によれば、上記(1)の構成の燃焼器4を備えるので、ガスタービン1における熱損失を抑制できる。
1 ガスタービン
2 圧縮機
4 燃焼器
6 タービン
38 第1燃焼バーナ
40 第1燃料ノズル
44 第2燃焼バーナ
46 第2燃料ノズル
60 トップハットボディ
61 第1内部流路
61a 第1入口
62b 第1出口
69 第2接続通路
69A 第3内部流路
70 第3燃料ノズル
400 ノズル固定部
402 第2内部流路
402a 第2入口
402b 第2出口
500 キャビティ

Claims (9)

  1.  圧縮機から供給される圧縮空気を燃料と共に燃焼させる燃焼器であって、
     前記燃料を供給する燃料流路と、パージ空気を噴出させるパージ空気流路とを有する少なくとも1つの燃料ノズルと、
     前記少なくとも1つの燃料ノズルを固定するためのノズル固定部と、
     前記ノズル固定部の少なくとも一部の外周側に配置されるトップハットボディと、
    を備え、
     前記トップハットボディは、その外周側の空間から前記ノズル固定部へ前記圧縮空気を供給可能な第1内部流路を有し、
     前記ノズル固定部は、前記第1内部流路から供給される圧縮空気を前記燃料ノズルの前記パージ空気流路へ供給可能な第2内部流路を有する、
    燃焼器。
  2.  前記第1内部流路は、前記第1内部流路の入口である第1入口と、前記第1入口よりも前記燃焼器の径方向内側に位置する出口である第1出口とを有し、
     前記第1出口は、前記ノズル固定部と対向する前記トップハットボディの内周部に形成されている
    請求項1に記載の燃焼器。
  3.  前記第2内部流路は、前記第2内部流路の入口である第2入口と、前記燃料ノズルの前記パージ空気流路に接続される出口である第2出口とを有し、
     前記第2入口は、前記トップハットボディと対向する前記ノズル固定部の外周部に形成されている
    請求項1又は2に記載の燃焼器。
  4.  前記トップハットボディ及び前記ノズル固定部は、前記トップハットボディと前記ノズル固定部との間において周方向に延在するキャビティを画定し、
     前記ノズル固定部は、複数の前記燃料ノズルを周方向に固定し、該複数の燃料ノズルに対して前記圧縮空気を供給可能な複数の前記第2内部流路を備え、
     該複数の前記第2内部流路は、前記周方向に延在するキャビティと流体連通する、
    請求項1又は2に記載の燃焼器。
  5.  前記第1内部流路は、前記第1内部流路の入口である第1入口と、前記第1入口よりも前記燃焼器の径方向内側位置する出口である第1出口とを有し、
     前記第2内部流路は、前記第2内部流路の入口である第2入口と、前記燃料ノズルの前記パージ空気流路に接続される出口である第2出口とを有し、
     前記第2入口は、前記燃焼器の径方向から見たときに前記第1出口とは異なる位置に設けられる
    請求項4に記載の燃焼器。
  6.  前記第2内部流路は、前記第2内部流路の入口である第2入口と、前記燃料ノズルの前記パージ空気流路に接続される出口である第2出口とを有し、
     前記燃焼器の軸方向から見たときに前記キャビティの前記軸方向の下流側端部における前記キャビティの流路断面積は、前記第2入口の前記軸方向の位置における前記キャビティの流路断面積よりも小さい
    請求項4に記載の燃焼器。
  7.  前記第2内部流路は、前記第1内部流路と1対1で接続されている
    請求項1又は2に記載の燃焼器。
  8.  前記トップハットボディは、前記トップハットボディに固定された流路噴射ノズルに燃料を供給するための第3内部流路を有し、
     前記第1内部流路は、前記燃焼器の周方向から見たときに前記第3内部流路と交差する
    請求項1又は2に記載の燃焼器。
  9.  前記圧縮機と、
     請求項1又は2に記載の燃焼器と、
     前記燃焼器からの燃焼ガスによって駆動されるように構成されたタービンと、
    を備える
    ガスタービン。
PCT/JP2023/000711 2022-01-21 2023-01-13 燃焼器及びガスタービン WO2023140180A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-007824 2022-01-21
JP2022007824 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023140180A1 true WO2023140180A1 (ja) 2023-07-27

Family

ID=87348802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000711 WO2023140180A1 (ja) 2022-01-21 2023-01-13 燃焼器及びガスタービン

Country Status (1)

Country Link
WO (1) WO2023140180A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034859B1 (ja) * 1999-01-26 2000-04-17 川崎重工業株式会社 ガスタ―ビンの燃焼器
JP2005195284A (ja) * 2004-01-08 2005-07-21 Mitsubishi Heavy Ind Ltd ガスタービン用燃料ノズル、ガスタービン用燃焼器、ガスタービン用燃焼器の燃焼方法
JP2012145077A (ja) * 2011-01-14 2012-08-02 Mitsubishi Heavy Ind Ltd 燃料ノズル、これを備えたガスタービン燃焼器およびこれを備えたガスタービン
JP2017187186A (ja) * 2016-04-01 2017-10-12 川崎重工業株式会社 ガスタービンの燃焼器
JP2019082263A (ja) * 2017-10-27 2019-05-30 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン
JP6546334B1 (ja) * 2018-12-03 2019-07-17 三菱日立パワーシステムズ株式会社 ガスタービンの燃焼器及びこれを備えたガスタービン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034859B1 (ja) * 1999-01-26 2000-04-17 川崎重工業株式会社 ガスタ―ビンの燃焼器
JP2005195284A (ja) * 2004-01-08 2005-07-21 Mitsubishi Heavy Ind Ltd ガスタービン用燃料ノズル、ガスタービン用燃焼器、ガスタービン用燃焼器の燃焼方法
JP2012145077A (ja) * 2011-01-14 2012-08-02 Mitsubishi Heavy Ind Ltd 燃料ノズル、これを備えたガスタービン燃焼器およびこれを備えたガスタービン
JP2017187186A (ja) * 2016-04-01 2017-10-12 川崎重工業株式会社 ガスタービンの燃焼器
JP2019082263A (ja) * 2017-10-27 2019-05-30 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン
JP6546334B1 (ja) * 2018-12-03 2019-07-17 三菱日立パワーシステムズ株式会社 ガスタービンの燃焼器及びこれを備えたガスタービン

Similar Documents

Publication Publication Date Title
US6374615B1 (en) Low cost, low emissions natural gas combustor
JP5528756B2 (ja) 二次燃料ノズル用の管状燃料噴射器
JP4177812B2 (ja) タービンエンジンの燃料ノズル
KR101412237B1 (ko) 가스 터빈 연소기 및 가스 터빈
JP6196868B2 (ja) 燃料ノズルとその組立方法
JP2016098830A (ja) 予混合燃料ノズル組立体
JP2011099663A (ja) ターボ機械噴射装置のためのインピンジメントインサート
JP2005098678A (ja) ガスタービンエンジンのエミッションを低減するための方法及び装置
JP2012017971A (ja) ターボ機械用噴射ノズル
JP2012017971A5 (ja)
US10228140B2 (en) Gas-only cartridge for a premix fuel nozzle
JP6723768B2 (ja) バーナアセンブリ、燃焼器、及びガスタービン
US10240795B2 (en) Pilot burner having burner face with radially offset recess
KR102503916B1 (ko) 액체 연료 팁을 구비한 이중-연료 연료 노즐
JP2017072361A (ja) 予混合燃料ノズル組立体カートリッジ
JP6595010B2 (ja) 予混合保炎器を有する燃料ノズルアセンブリ
US20170268786A1 (en) Axially staged fuel injector assembly
JP2016099107A (ja) 予混合燃料ノズル組立体
US11668466B2 (en) Combustor nozzle assembly and gas turbine combustor including same
WO2021215458A1 (ja) バーナー集合体、ガスタービン燃焼器及びガスタービン
JP2011237167A (ja) ガスターボ機械用の流体冷却噴射ノズル組立体
JP2018087681A (ja) 燃焼ダイナミクス緩和システム
WO2023140180A1 (ja) 燃焼器及びガスタービン
KR102322598B1 (ko) 연소기용 노즐 어셈블리 및 이를 포함하는 가스터빈 연소기
JP7202084B2 (ja) 気体燃料および液体燃料の機能を有する二重燃料燃料ノズル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743174

Country of ref document: EP

Kind code of ref document: A1