WO2023137821A1 - 一种单晶硅材料的深、微孔加工方法 - Google Patents

一种单晶硅材料的深、微孔加工方法 Download PDF

Info

Publication number
WO2023137821A1
WO2023137821A1 PCT/CN2022/077280 CN2022077280W WO2023137821A1 WO 2023137821 A1 WO2023137821 A1 WO 2023137821A1 CN 2022077280 W CN2022077280 W CN 2022077280W WO 2023137821 A1 WO2023137821 A1 WO 2023137821A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill bit
cutting
hole
monocrystalline silicon
silicon material
Prior art date
Application number
PCT/CN2022/077280
Other languages
English (en)
French (fr)
Inventor
郭朋飞
李善维
杨佐东
Original Assignee
重庆臻宝实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆臻宝实业有限公司 filed Critical 重庆臻宝实业有限公司
Publication of WO2023137821A1 publication Critical patent/WO2023137821A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/02Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/02Accessories specially adapted for use with machines or devices of the preceding groups for removing or laying dust, e.g. by spraying liquids; for cooling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/04Accessories specially adapted for use with machines or devices of the preceding groups for supporting or holding work or conveying or discharging work

Definitions

  • the invention relates to the technical field of monocrystalline silicon processing, and specifically discloses a deep and micropore processing method for monocrystalline silicon materials.
  • the drilling technology of monocrystalline silicon materials generally adopts mechanical drilling, and the drilling depth is 6.0mm-11.0mm. Because mechanical drilling is based on high-speed grinding, the processing efficiency is low, and the quality of the processed hole wall and the verticality of the hole are poor. In addition, because the monocrystalline silicon material is a brittle and hard material, the machining method is not only easy to affect the processing quality of the product due to problems such as chipping and hole inclination, but also the drill bit is easy to break during processing, resulting in NG.
  • the present invention intends to provide a method for processing deep and micro-holes of monocrystalline silicon materials, so as to solve the problems of low efficiency of mechanical drilling of monocrystalline silicon, poor quality of processed hole walls and poor verticality of holes.
  • the basic scheme of the present invention is:
  • a method for processing deep and micropores of a single crystal silicon material comprising the steps of:
  • Step 1 Divide the hole machining into five cuts, and calculate the single effective cutting depth Q value according to the hole depth L value.
  • the Q value and L value are as follows:
  • Step 5 Fix the monocrystalline silicon material on the drilling equipment, and replace the corresponding drill bit according to the hole diameter.
  • the shank of the drill bit is equipped with an ultrasonic vibration mechanism, and perform deep and micro-hole processing of the monocrystalline silicon material according to the above calculation data.
  • the ultrasonic vibration mechanism is used to drive the drill to vibrate, and the drill touches the workpiece with a fixed frequency per second, causing the contact surface of the workpiece to be broken; at the same time, the drill rotates at a speed of tens of thousands of revolutions per minute, which causes the contact surface of the drill and the workpiece to be ground.
  • step 2 the two parameters of single cutting time and cutting feed rate need to cooperate with each other to determine the single cutting time, so as to prevent the local temperature rise caused by too long single residence time, and the amount of single grinding powder is too large, which is not good for processing.
  • the ultrasonic frequency involved in step 3 is tested and analyzed.
  • the ultrasonic frequency adapted to different depths is different.
  • the ultrasonic frequency should gradually decrease, so as to ensure the consistency of the verticality of the hole and the state of the hole wall.
  • the D value in step 4 that is, the height allowance before the effective cutting, reserves the height allowance before a single cutting, and its main function is to form a vacuum environment to facilitate cutting and improve the quality of the hole.
  • the drilling speed of the rapid feed is between 4000mm/min-5000mm/min, and the drilling speed is between 3000mm/min-4000mm/min.
  • This processing parameter has a great influence on the processing row cutting and the state of the hole wall.
  • the slow lifting of the tool will cause the silicon powder produced by the grinding to be unable to be discharged, and the tool will drop too fast and the drill bit will not be able to withstand short-term deformation and break.
  • the drilling equipment in step 5 is equipped with an ultrasonic system for cutting fluid, and the cutting fluid is equipped with abrasive emery.
  • this program adopts the drill bit ultrasonic and cutting fluid ultrasonic to carry out synchronously.
  • a cutting fluid ultrasonic system is added.
  • the cutting fluid is equipped with corundum, which is repeatedly vibrated through the cooperation of grinding emery and water, so that the processing part changes state before drilling, which is convenient for ultrasonic grinding of the drill bit.
  • the drilling equipment includes a frame and an ultrasonic vibration mechanism fixed at the bottom of the frame.
  • the bottom of the frame is rotatably connected with a hollow mounting base, the mounting base is coaxial with the ultrasonic vibration mechanism, and the frame is provided with a power device that drives the rotation of the mounting base;
  • the main mounting seat is provided with a suction device that communicates with the auxiliary drill bit.
  • the power device drives the mounting base to rotate, and the mounting base drives the auxiliary drill to rotate.
  • the auxiliary drill rotates, the main drill is driven to rotate synchronously and reversely through the planetary gear, and the main drill is driven to vibrate continuously in the axial direction through the ultrasonic vibration mechanism.
  • the drill is pulled out from the gap between the drill and the main drill to speed up chip removal and prevent debris from affecting the quality of grinding and heat dissipation.
  • the synchronous reverse rotation of the main drill and the auxiliary drill cooperates with the crushing protrusions to effectively crush the debris in the gap and prevent the debris from being too large and stuck in the gap.
  • the suction device sucks the debris, it can also suck the cutting fluid to the inner wall of the auxiliary drill and the main drill, so as to better cool the main drill and auxiliary drill.
  • the auxiliary drill bit is vertically slidably connected to the connecting hole; the support rods are provided with horizontal connecting grooves, and the connecting grooves are facing the center of the main drill bit and the auxiliary drill bit at the same time.
  • a swing rod is hinged in the connecting groove, and the swing rod includes a conductive rod and two connecting rods. All are provided with annular grooves, and the connecting seats are slidably connected in corresponding annular grooves.
  • the main drill bit vibrates continuously under the action of the ultrasonic vibration mechanism, that is, it performs a vertical reciprocating linear motion.
  • the main drill bit drives the corresponding connecting seat to move vertically.
  • the cutting head alternately and intermittently cuts the workpiece, while ensuring the cutting effect, it can also help the main drill bit and the auxiliary drill bit to dissipate heat during the gap; at the same time, the main drill bit and the auxiliary drill bit are reversed synchronously, and cooperate with the crushing protrusion to further improve the crushing effect on the debris in the gap between the main drill bit and the auxiliary drill bit, preventing the bit from being stuck.
  • the connecting seats on both sides of the swing rod are slidably connected in the corresponding annular grooves, it is ensured that when the auxiliary drill bit and the main drill bit rotate and grind, the corresponding connecting seat can maintain the connection with the auxiliary drill bit and the main drill bit.
  • the connection between the connecting rod and the connecting seat is maintained by sliding the connecting rod at the end of the conducting rod to ensure that the swinging rod can swing normally; at the same time, the limit spring is used to limit and buffer the connecting rod to prevent the connecting rod from continuously hitting the conducting rod during the sliding process, causing damage to the connecting rod and the conducting rod.
  • the suction device includes a suction machine, a chip discharge hole is opened on the side wall of the auxiliary drill bit, and a pipeline is provided between the output end of the vacuum cleaner and the chip discharge hole.
  • the suction machine forms a negative pressure in the gap between the auxiliary drill bit and the main drill bit through the pipeline, so as to extract the debris and cutting fluid in the gap from the chip removal hole.
  • a coaxial annular baffle is fixed on the main drill bit, the annular baffle is attached to the inner wall of the auxiliary drill bit, and the annular baffle is located between the planetary gear and the chip removal hole.
  • the planetary gear, the swing rod and other structures are shielded by the annular baffle to prevent debris from entering the planetary gear and the swing rod, which will affect the normal use of the device.
  • the outer side of the auxiliary drill bit is provided with a coaxial protective sleeve
  • the protective sleeve is fixed at the bottom of the mounting base
  • the inner wall of the protective sleeve is provided with a number of vertically arranged limiting grooves
  • the outer wall of the auxiliary drill bit is fixed with a number of limiting rods extending into the corresponding limiting grooves.
  • the auxiliary drill bit is clamped without affecting the normal use of the auxiliary drill bit, so as to prevent the auxiliary drill bit from breaking.
  • Fig. 1 is the vertical sectional view of drilling equipment in the embodiment of the present invention
  • Fig. 2 is the enlarged schematic diagram of place A in Fig. 1;
  • Fig. 3 is the horizontal sectional view of drilling equipment in the embodiment of the present invention.
  • FIG. 4 is an enlarged schematic view of point B in FIG. 3 .
  • the reference numerals in the drawings of the description include: frame 1, ultrasonic vibration mechanism 2, mounting seat 3, main drill bit 4, auxiliary drill bit 5, support rod 6, planetary gear 7, suction machine 8, conduction rod 9, connecting rod 10, limit spring 11, connecting seat 12, crushing protrusion 13, connecting hole 14, annular baffle 15, protective sleeve 16, limit rod 17.
  • a method for processing deep and micropores of a single crystal silicon material comprising the steps of:
  • Step 1 Divide the hole machining into five cuts, and calculate the single effective cutting depth Q value according to the hole depth L value.
  • the Q value and L value are as follows:
  • Step 5 Fix the monocrystalline silicon material on the drilling equipment, and replace the corresponding drill bit according to the hole diameter.
  • the shank of the drill bit is equipped with an ultrasonic vibration mechanism, and perform deep and micro-hole processing of the monocrystalline silicon material according to the above calculation data.
  • the ultrasonic vibration mechanism is used to drive the drill to vibrate, and the drill touches the workpiece with a fixed frequency per second, causing the contact surface of the workpiece to be broken; at the same time, the drill rotates at a speed of tens of thousands of revolutions per minute, which causes the contact surface of the drill and the workpiece to be ground.
  • step 2 the two parameters of single cutting time and cutting feed rate need to cooperate with each other to determine the single cutting time, so as to prevent the local temperature rise caused by too long single residence time, and the amount of single grinding powder is too large, which is not good for processing.
  • the ultrasonic frequency involved in step 3 is tested and analyzed.
  • the ultrasonic frequency adapted to different depths is different.
  • the ultrasonic frequency should gradually decrease, so as to ensure the consistency of the verticality of the hole and the state of the hole wall.
  • the D value in step 4 that is, the height allowance before the effective cutting, reserves the height allowance before a single cutting, and its main function is to form a vacuum environment to facilitate cutting and improve the quality of the hole.
  • the drilling speed of the rapid feed is 4500mm/min, and the drilling speed is 3500mm/min.
  • This processing parameter has a great influence on the processing row cutting and the state of the hole wall.
  • the slow lifting of the tool will cause the silicon powder produced by the grinding to fail to discharge, and the tool will drop too fast and the drill bit will not be able to withstand short-term deformation and break.
  • the above-mentioned feed speed can better ensure the cutting quality.
  • the drilling equipment in step 5 is equipped with a cutting fluid ultrasonic system, and the cutting fluid is equipped with abrasive emery.
  • this program adopts the drill bit ultrasonic and cutting fluid ultrasonic to carry out synchronously.
  • a cutting fluid ultrasonic system is added.
  • the cutting fluid is equipped with corundum, which is repeatedly vibrated through the cooperation of grinding emery and water, so that the processing part changes state before drilling, which is convenient for ultrasonic grinding of the drill bit.
  • Described drilling equipment comprises frame 1 and the ultrasonic vibration mechanism 2 that is fixed on the bottom of frame 1, and the bottom of described frame 1 is rotatably connected with hollow mounting base 3, and mounting base 3 is coaxial with ultrasonic vibration mechanism 2, and described frame 1 is provided with the power device that drives mounting base 3 to rotate;
  • the bottom of described ultrasonic vibration mechanism 2 is connected with main drill bit 4, and mounting base 3 bottom is provided with connecting hole 14, and connecting hole 14 places is provided with hollow secondary drill bit 5, and described secondary drill bit 5 is set on the main drill bit 4, and described main drill bit
  • a number of crushing protrusions 13 are arranged on the outer side wall of 4, and several identical crushing protrusions 13 are arranged on the inner side wall of the auxiliary drill bit 5; a number of evenly distributed support rods 6 are arranged between the main drill bit 4 and the auxiliary drill bit 5, and the support rods 6 are fixed on the bottom of the frame 1.
  • Suction equipment is arranged
  • the mounting base 3 when drilling, the mounting base 3 is driven to rotate by the power device, and the mounting base 3 drives the auxiliary drill bit 5 to rotate.
  • the auxiliary drill bit 5 rotates, the main drill bit 4 is driven to rotate synchronously and reversely through the planetary gear 7, and the ultrasonic vibration mechanism 2 drives the main drill bit 4 to vibrate continuously in the axial direction.
  • the generated debris is extracted from the gap between the auxiliary drill bit 5 and the main drill bit 4 through the suction device to speed up the chip removal and prevent the debris from affecting the quality and heat dissipation during grinding; in addition, the synchronous reverse rotation of the main drill bit 4 and the auxiliary drill bit cooperates with the crushing protrusion 13, which can effectively crush the debris in the gap to prevent the debris from being too large and stuck in the gap; The head 4 and the auxiliary drill 5 are cooled.
  • the auxiliary drill bit 5 is vertically slidably connected to the connecting hole 14; the supporting rod 6 is provided with a connecting groove arranged horizontally, and the connecting groove is facing the center of the main drill bit 4 and the auxiliary drilling bit 5 at the same time.
  • a swing rod is hinged in the connecting groove.
  • the swing rod includes a conducting rod 9 and two connecting rods 10. 12:
  • the outer peripheral side of the main drill bit 4 and the inner peripheral side of the auxiliary drill bit 5 are provided with annular grooves, and the connecting seat 12 is slidably connected in the corresponding annular grooves.
  • the main drill bit 4 vibrates continuously under the action of the ultrasonic vibrating mechanism 2, that is, performs vertical reciprocating linear motion.
  • the main drill bit 4 drives the corresponding connecting seat 12 to move vertically.
  • the existence of the moving rod makes the main drill bit 4 and the auxiliary drill bit 5 alternately and intermittently cut the workpiece, while ensuring the cutting effect, it can also help the main drill bit 4 and the auxiliary drill bit 5 to dissipate heat during the gap; at the same time, the main drill bit 4 and the auxiliary drill bit 5 are reversed synchronously, and cooperate with the crushing protrusion 13 to further improve the crushing effect of the debris in the gap between the main drill bit 4 and the auxiliary drill bit 5, and prevent the drill bit from being stuck.
  • the connecting seat 12 on both sides of the swing rod is slidably connected in the corresponding annular groove, when ensuring that the auxiliary drill bit 5 and the main drill bit 4 are rotated and ground, the corresponding connecting seat 12 can maintain the connection between the auxiliary drill bit 5 and the main drill bit 4.
  • the swinging rod swings, that is, when the conducting rod 9 and the connecting rod 10 swing, the sliding of the connecting rod 10 at the end of the conducting rod 9 keeps the connection between the connecting rod 10 and the connecting seat 12, ensuring that the swinging rod can swing normally;
  • the suction device includes a suction machine 8, a chip discharge hole is opened on the side wall of the auxiliary drill 5, and a pipeline is arranged between the output end of the vacuum cleaner and the chip discharge hole.
  • the suction machine 8 forms a negative pressure in the gap between the auxiliary drill bit 5 and the main drill bit 4 through the pipeline, thereby extracting debris and cutting fluid in the gap from the chip removal hole.
  • a coaxial annular baffle 15 is fixed on the main drill 4, and the annular baffle 15 is attached to the inner wall of the auxiliary drill 5, and the annular baffle 15 is located between the planetary gear 7 and the chip removal hole.
  • the ring baffle 15 shields structures such as the planetary gear 7 and the swing rod to prevent debris from entering the planetary gear 7 and the swing rod and affecting the normal use of the device.
  • the outer side of the auxiliary drill bit 5 is covered with a coaxial protective cover 16, and the protective cover 16 is fixed on the bottom of the mounting seat 3.
  • the inner wall of the protective cover 16 is provided with some vertically arranged spacer grooves, and the outer wall of the auxiliary drill bit 5 is fixed with some limit rods 17 extending into the corresponding limit grooves.
  • the auxiliary drill bit 5 is clamped without affecting the normal use of the auxiliary drill bit 5, so as to prevent the auxiliary drill bit 5 from breaking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Drilling And Boring (AREA)

Abstract

一种单晶硅材料的深、微孔加工方法,包括如下步骤:步骤1:将孔加工分为五次切削,根据孔深L值计算单次有效切削深度Q值,Q值与L值的如下所示:Q 1=(36%~40%)L,Q 2=(26%~30%)L,Q 3=(15%~18%)L,Q 4=(10%~12%)L,Q 5=(6%~8%)L;步骤2:计算单次切削时长H,H=Q/F,式中F为切削进给速度;步骤3:计算单次切削时超声震动发生器的超声频率M;其中M 1为初始频率,M 2=(70%~50%)M 1,M 3=(50%~40%)M 1,M 4=(40%~30%)M 1,M 35=(20%~10%)M 1;步骤4:计算钻头进给距离,进给距离包括快速进给与有效进给;快速进给为钻头切削前与切削后的进给距离,有效进给包括有效切削前的高度余量D以及有效切削深度Q;D=20%Q;步骤5:依据上述数据进行加工。上述方法解决了单晶硅采用机械打孔加工效率低,加工孔壁质量和孔垂直度较差的问题。

Description

一种单晶硅材料的深、微孔加工方法 技术领域
本发明涉及单晶硅加工技术领域,具体公开了一种单晶硅材料的深、微孔加工方法。
背景技术
目前单晶硅材料的打孔技术普遍采用机械打孔,打孔深度在6.0mm-11.0mm,因机械打孔依据高速磨削,加工效率低,加工孔壁质量和孔垂直度较差,此外因单晶硅材料属于脆硬性材料,采用机械加工的方法,不但容易因排削,孔斜等问题,影响产品的加工质量,且钻头在加工过程中很容易断,造成NG。
发明内容
本发明意在提供一种单晶硅材料的深、微孔加工方法,以解决单晶硅采用机械打孔加工效率低,加工孔壁质量和孔垂直度较差的问题。
为了达到上述目的,本发明的基础方案为:
一种单晶硅材料的深、微孔加工方法,包括如下步骤:
步骤1:将孔加工分为五次切削,根据孔深L值计算单次有效切削深度Q值,Q值与L值的如下所示:
Q 1=(36%~40%)L,Q 2=(26%~30%)L,Q 3=(15%~18%)L,Q 4=(10%~12%)L,Q 5=(6%~8%)L;
步骤2:计算单次切削时长H,H=Q/F,式中F为切削进给速度;
步骤3:计算单次切削时超声震动发生器的超声频率M;其中M 1为初始频率,M 2=(70%~50%)M 1,M 3=(50%~40%)M 1,M 4=(40%~30%)M 1,M 35=(20%~10%)M 1
步骤4:计算钻头进给距离,所述进给距离包括快速进给与有效进给;所述快速进给为钻头切削前与切削后的进给距离,所述有效进给包括有效切削前的高度余量D以及有效切削深度Q;所述D=20%Q;
步骤5:将单晶硅材料固定于钻孔设备上,并根据孔径更换对应的钻头,所述钻头刀柄处设置有超声振动发机构,并依据上述计算数据进行单晶硅材料的深、微孔加工。
在本方案中,因单晶硅材料属于脆硬性材料,采用超声振动机构带动钻头震动,钻头以每秒固定频率的震动接触工件,使工件接触面产生破碎;同时钻头以每分钟上万转的速度转动,使钻头和工件接触面产生磨削,由于钻头的振动使工件的接触面先产生破碎,使钻头的磨削效果更强,从而提高了切削速度,相对于机械磨削的加工方式,本方案的加工效率更高。
此外,在步骤2中,单次切削时长与切削进给速度这两个参数需要相互配合,确定单次切削时长,防止单次停留时间过长会造成局部温度升高,单次磨削粉量过大,对加工不利。
同时,在步骤3中所涉及的超声频率,通过测试分析,在打孔过程中,不同深度位置适配的超声频率有差异,随着深度加深,超声频率应该逐渐降低,这样才能保证孔垂直度和孔壁状态的一致性。
而在步骤4中的D值,即有效切削前的高度余量,在单次切削前预留高度余量,且主要主要作用是形成真空环境便于排削,提高孔的质量。
可选地,所述步骤4中的快速进给的钻头抬升速度在4000mm/min-5000mm/min之间,钻头下降速度在3000mm/min-4000mm/min之间。
此加工参数对加工排削、孔壁状态有较大的影响,抬刀慢会造成磨削产生的硅粉无法排出,刀具下降过快钻头无法承受短时间的形变发生断裂,上述中的进给速度能够更好的确保切削质量。
可选地,所述步骤5中的钻孔设备加设有切削液超声***,切削液内配有磨粉金刚砂。
为增加超声效果,本方案采用钻头超声和切削液超声同步进行,加设有切削液超声***,切削液内配有金刚砂,通过磨粉金钢砂和水的配合下反复震动,使得加工部分在打孔前改变状态,便于钻头超声磨削。
可选地,所述钻孔设备包括机架与固定于机架底部的超声波振动机构,所述机架底部转动连接有中空的安装座,安装座与超声波振动机构同轴线,所述机架上设置有驱动安装座转动的动力装置;所述超声波振动机构底部转动连接有主钻头,安装座底部开设有连接孔,连接孔处设置有中空的副钻头,所述副钻头套设于主钻头上,所述主钻头的外侧壁上设置有若干粉碎凸起,所述副钻头内侧壁上设置有若干相同的粉碎凸起;所述主钻头与副钻头之间设置有若干均匀分布的支撑杆,支撑杆固定于机架底部,支撑杆上均水平转动连接有行星齿轮,所述主钻头外周侧与副钻头内周侧上均设置有与行星齿轮啮合的齿;所述主安装座内设置有 与副钻头内部连通的抽吸设备。
在本方案中,进行钻孔加工时,通过动力装置驱动安装座转动,安装座则驱动副钻头转动,副钻头转动时通过行星齿轮的驱动主钻头同步反向转动,并通过超声波振动机构驱动主钻头轴向不断振动,利用主钻头以每秒固定频率的震动接触工件,使工件接触面产生破碎,再通过副钻头与主钻头的转动进行磨削,能够有效的提高磨削效果,加快加工效率;同时,切削时所产生的碎屑,通过抽吸设备从副钻头与主钻头的间隙之中抽出,加快排屑,防止碎屑影响磨削时的质量以及散热;此外,主钻头与副钻的同步反向转动配合粉碎凸起,能够有效的对间隙中的碎屑进行粉碎,防止碎屑过大,在间隙中卡住;而抽吸设备抽吸碎屑时,还能够将切削液抽吸到副钻头的内侧壁与主钻头上,从而更好的对主钻头与副钻头进行冷却。
可选地,所述副钻头竖向滑动连接于连接孔上;所述支撑杆上均开有水平设置连接槽,连接槽同时朝向主钻头与副钻头的圆心,所述连接槽内铰接有摆动杆,摆动杆包括传导杆与两根连接杆,所述连接杆分别滑动连接于传导杆的两端,所述连接杆与传导杆之间均设置有限位弹簧,所述连接杆的端部均竖向铰接有连接座;所述主钻头外周侧与副钻头内周侧上均开设有环形槽,所述连接座滑动连接有于对应的环形槽内。
主钻头在超声波振动机构的作用下不断振动,即进行竖向上的往复直线运动,主钻头做往复直线运动时带动对应的连接座竖向往复运动,该连接座通过摆动杆,从而带动副钻头上的连接座竖向往复运动,以此来带动副钻头在竖向上往复运动,使副钻头同样具备振动与转动磨削功能,进一步提高孔对单晶硅材料孔的加工效率;此外,由于摆动杆的存在,使主钻头与副钻头交替间歇性对工件进行切削,在保证切削效果的同时也能够在间隙期间帮助主钻头与副钻头散热;同时,主钻头与副钻头同步反向,配合粉碎凸起,进一步提高对主钻头与副钻头间隙中碎屑的粉碎效果,防止造成钻头的卡住。
由于摆动杆两侧的连接座滑动连接于对应的环形槽内,以此来确保副钻头与主钻头转动磨削时,对应连接座能够保持与副钻头、主钻头之间的连接。当摆动杆摆动时,即传导杆与连接杆摆动时,通过连接杆在传导杆端部的滑动,保持连接杆与连接座之间的连接,确保摆动杆能够正常摆动;同时,利用限位弹簧对连接杆进行限位与缓冲,防止连接杆在滑动过程中不断撞击传导杆,造成连接杆与传导杆的损毁。
可选地,所述抽吸设备包括抽吸机,所述副钻头侧壁上开设有排屑孔,所述吸尘机输出 端与排屑孔之间设置有管道。
抽吸机通过管道对副钻头与主钻头间隙中形成负压,从而将间隙中的碎屑与切削液从排屑孔中抽出。
可选地,所述主钻头上固定有同轴线的环形挡板,环形挡板与副钻头内壁贴合,所述环形挡板位于行星齿轮与排屑孔之间。
通过环形挡板对行星齿轮与摆动杆等结构进行遮蔽,防止碎屑进入行星齿轮与摆动杆中,影响装置的正常使用。
可选地,所述副钻头外侧套设有同轴线的防护套,所述防护套固定于安装座底部,防护套内壁上开设有若干竖向设置的限位槽,所述副钻头外壁上固定有若干伸入对应限位槽的限位杆。
通过设置加设防护套,在不影响副钻头的正常使用下对副钻头进行夹持,防止副钻头断裂。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
图1为本发明实施例中钻孔设备的竖向剖视图
图2为图1中A处的放大示意图;
图3为本发明实施例中钻孔设备的水平剖视图;
图4为图3中B处的放大示意图。
具体实施方式
下面通过具体实施方式进一步详细说明:
说明书附图中的附图标记包括:机架1、超声波振动机构2、安装座3、主钻头4、副钻头5、支撑杆6、行星齿轮7、抽吸机8、传导杆9、连接杆10、限位弹簧11、连接座12、粉碎凸起13、连接孔14、环形挡板15、防护套16、限位杆17。
实施例
如图1、图2、图3与图4所示:
一种单晶硅材料的深、微孔加工方法,包括如下步骤:
步骤1:将孔加工分为五次切削,根据孔深L值计算单次有效切削深度Q值,Q值与L值的如下所示:
Q 1=38%L,Q 2=28%L,Q 3=17%L,Q 4=11%L,Q 5=6%L;
步骤2:计算单次切削时长H,H=Q/F,式中F为切削进给速度;
步骤3:计算单次切削时超声震动发生器的超声频率M;其中M 1为初始频率,M 2=60%M 1,M 3=30%M 1,M 4=20%M 1,M 35=10%M 1
步骤4:计算钻头进给距离,所述进给距离包括快速进给与有效进给;所述快速进给为钻头切削前与切削后的进给距离,所述有效进给包括有效切削前的高度余量D以及有效切削深度Q;所述D=20%Q;
步骤5:将单晶硅材料固定于钻孔设备上,并根据孔径更换对应的钻头,所述钻头刀柄处设置有超声振动发机构,并依据上述计算数据进行单晶硅材料的深、微孔加工。
在本方案中,因单晶硅材料属于脆硬性材料,采用超声振动机构带动钻头震动,钻头以每秒固定频率的震动接触工件,使工件接触面产生破碎;同时钻头以每分钟上万转的速度转动,使钻头和工件接触面产生磨削,由于钻头的振动使工件的接触面先产生破碎,使钻头的磨削效果更强,从而提高了切削速度,相对于机械磨削的加工方式,本方案的加工效率更高。
此外,在步骤2中,单次切削时长与切削进给速度这两个参数需要相互配合,确定单次切削时长,防止单次停留时间过长会造成局部温度升高,单次磨削粉量过大,对加工不利。
同时,在步骤3中所涉及的超声频率,通过测试分析,在打孔过程中,不同深度位置适配的超声频率有差异,随着深度加深,超声频率应该逐渐降低,这样才能保证孔垂直度和孔壁状态的一致性。
而在步骤4中的D值,即有效切削前的高度余量,在单次切削前预留高度余量,且主要主要作用是形成真空环境便于排削,提高孔的质量。
可选地,所述步骤4中的快速进给的钻头抬升速度在4500mm/min,钻头下降速度在3500mm/min。
此加工参数对加工排削、孔壁状态有较大的影响,抬刀慢会造成磨削产生的硅粉无法排出,刀具下降过快钻头无法承受短时间的形变发生断裂,上述中的进给速度能够更好的确保 切削质量。
所述步骤5中的钻孔设备加设有切削液超声***,切削液内配有磨粉金刚砂。
为增加超声效果,本方案采用钻头超声和切削液超声同步进行,加设有切削液超声***,切削液内配有金刚砂,通过磨粉金钢砂和水的配合下反复震动,使得加工部分在打孔前改变状态,便于钻头超声磨削。
所述钻孔设备包括机架1与固定于机架1底部的超声波振动机构2,所述机架1底部转动连接有中空的安装座3,安装座3与超声波振动机构2同轴线,所述机架1上设置有驱动安装座3转动的动力装置;所述超声波振动机构2底部转动连接有主钻头4,安装座3底部开设有连接孔14,连接孔14处设置有中空的副钻头5,所述副钻头5套设于主钻头4上,所述主钻头4的外侧壁上设置有若干粉碎凸起13,所述副钻头5内侧壁上设置有若干相同的粉碎凸起13;所述主钻头4与副钻头5之间设置有若干均匀分布的支撑杆6,支撑杆6固定于机架1底部,支撑杆6上均水平转动连接有行星齿轮7,所述主钻头4外周侧与副钻头5内周侧上均设置有与行星齿轮7啮合的齿;所述主安装座3内设置有与副钻头5内部连通的抽吸设备。
在本方案中,进行钻孔加工时,通过动力装置驱动安装座3转动,安装座3则驱动副钻头5转动,副钻头5转动时通过行星齿轮7的驱动主钻头4同步反向转动,并通过超声波振动机构2驱动主钻头4轴向不断振动,利用主钻头4以每秒固定频率的震动接触工件,使工件接触面产生破碎,再通过副钻头5与主钻头4的转动进行磨削,能够有效的提高磨削效果,加快加工效率;同时,切削时所产生的碎屑,通过抽吸设备从副钻头5与主钻头4的间隙之中抽出,加快排屑,防止碎屑影响磨削时的质量以及散热;此外,主钻头4与副钻的同步反向转动配合粉碎凸起13,能够有效的对间隙中的碎屑进行粉碎,防止碎屑过大,在间隙中卡住;而抽吸设备抽吸碎屑时,还能够将切削液抽吸到副钻头5的内侧壁与主钻头4上,从而更好的对主钻头4与副钻头5进行冷却。
所述副钻头5竖向滑动连接于连接孔14上;所述支撑杆6上均开有水平设置连接槽,连接槽同时朝向主钻头4与副钻头5的圆心,所述连接槽内铰接有摆动杆,摆动杆包括传导杆9与两根连接杆10,所述连接杆10分别滑动连接于传导杆9的两端,所述连接杆10与传导杆9之间均设置有限位弹簧11,所述连接杆10的端部均竖向铰接有连接座12;所述主钻 头4外周侧与副钻头5内周侧上均开设有环形槽,所述连接座12滑动连接有于对应的环形槽内。
主钻头4在超声波振动机构2的作用下不断振动,即进行竖向上的往复直线运动,主钻头4做往复直线运动时带动对应的连接座12竖向往复运动,该连接座12通过摆动杆,从而带动副钻头5上的连接座12竖向往复运动,以此来带动副钻头5在竖向上往复运动,使副钻头5同样具备振动与转动磨削功能,进一步提高孔对单晶硅材料孔的加工效率;此外,由于摆动杆的存在,使主钻头4与副钻头5交替间歇性对工件进行切削,在保证切削效果的同时也能够在间隙期间帮助主钻头4与副钻头5散热;同时,主钻头4与副钻头5同步反向,配合粉碎凸起13,进一步提高对主钻头4与副钻头5间隙中碎屑的粉碎效果,防止造成钻头的卡住。
由于摆动杆两侧的连接座12滑动连接于对应的环形槽内,以此来确保副钻头5与主钻头4转动磨削时,对应连接座12能够保持与副钻头5、主钻头4之间的连接。当摆动杆摆动时,即传导杆9与连接杆10摆动时,通过连接杆10在传导杆9端部的滑动,保持连接杆10与连接座12之间的连接,确保摆动杆能够正常摆动;同时,利用限位弹簧11对连接杆10进行限位与缓冲,防止连接杆10在滑动过程中不断撞击传导杆9,造成连接杆10与传导杆9的损毁。
所述抽吸设备包括抽吸机8,所述副钻头5侧壁上开设有排屑孔,所述吸尘机输出端与排屑孔之间设置有管道。
抽吸机8通过管道对副钻头5与主钻头4间隙中形成负压,从而将间隙中的碎屑与切削液从排屑孔中抽出。
所述主钻头4上固定有同轴线的环形挡板15,环形挡板15与副钻头5内壁贴合,所述环形挡板15位于行星齿轮7与排屑孔之间。
通过环形挡板15对行星齿轮7与摆动杆等结构进行遮蔽,防止碎屑进入行星齿轮7与摆动杆中,影响装置的正常使用。
所述副钻头5外侧套设有同轴线的防护套16,所述防护套16固定于安装座3底部,防护套16内壁上开设有若干竖向设置的限位槽,所述副钻头5外壁上固定有若干伸入对应限位槽的限位杆17。
通过设置加设防护套16,在不影响副钻头5的正常使用下对副钻头5进行夹持,防止副钻头5断裂。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和本发明的实用性。

Claims (8)

  1. 一种单晶硅材料的深、微孔加工方法,其特征在于,包括如下步骤:
    步骤1:将孔加工分为五次切削,根据孔深L值计算单次有效切削深度Q值,Q值与L值的如下所示:
    Q 1=(36%~40%)L,Q 2=(26%~30%)L,Q 3=(15%~18%)L,Q 4=(10%~12%)L,Q 5=(6%~8%)L;
    步骤2:计算单次切削时长H,H=Q/F,式中F为切削进给速度;
    步骤3:计算单次切削时超声震动发生器的超声频率M;其中M 1为初始频率,M 2=(70%~50%)M 1,M 3=(50%~40%)M 1,M 4=(40%~30%)M 1,M 35=(20%~10%)M 1
    步骤4:计算钻头进给距离,所述进给距离包括快速进给与有效进给;所述快速进给为钻头切削前与切削后的进给距离,所述有效进给包括有效切削前的高度余量D以及有效切削深度Q;所述D=20%Q;
    步骤5:将单晶硅材料固定于钻孔设备上,并根据孔径更换对应的钻头,所述钻头刀柄处设置有超声振动发机构,并依据上述计算数据进行单晶硅材料的深、微孔加工。
  2. 根据权利要求1所述的一种单晶硅材料的深、微孔加工方法,其特征在于:所述步骤4中的快速进给的钻头抬升速度在4000mm/min-5000mm/min之间,钻头下降速度在3000mm/min-4000mm/min之间。
  3. 根据权利要求2所述的一种单晶硅材料的深、微孔加工方法,其特征在于:所述步骤5中的钻孔设备加设有切削液超声***,切削液内配有磨粉金刚砂。
  4. 根据权利要求3所述的一种单晶硅材料的深、微孔加工方法,其特征在于:所述钻孔设备包括机架与固定于机架底部的超声波振动机构,所述机架底部转动连接有中空的安装座,安装座与超声波振动机构同轴线,所述机架上设置有驱动安装座转动的动力装置;所述超声波振动机构底部转动连接有主钻头,安装座底部开设有连接孔,连接孔处设置有中空的副钻头,所述副钻头套设于主钻头上,所述主钻头的外侧壁上设置有若干粉碎凸起,所述副钻头内侧壁上设置有若干相同的粉碎凸起;所述主钻头与副钻头之间设置有若干均匀分布的支撑杆,支撑杆固定于机架底部,支撑杆上均水平转动连接有行星齿轮,所述主钻头外周侧与副钻头内周侧上均设置有与行星齿轮啮合的齿;所述主安装座内设置有与副钻头内部连通 的抽吸设备。
  5. 根据权利要求4所述的一种单晶硅材料的深、微孔加工方法,其特征在于:所述副钻头竖向滑动连接于连接孔上;所述支撑杆上均开有水平设置连接槽,连接槽同时朝向主钻头与副钻头的圆心,所述连接槽内铰接有摆动杆,摆动杆包括传导杆与两根连接杆,所述连接杆分别滑动连接于传导杆的两端,所述连接杆与传导杆之间均设置有限位弹簧,所述连接杆的端部均竖向铰接有连接座;所述主钻头外周侧与副钻头内周侧上均开设有环形槽,所述连接座滑动连接有于对应的环形槽内。
  6. 根据权利要求5所述的一种单晶硅材料的深、微孔加工方法,其特征在于:所述抽吸设备包括抽吸机,所述副钻头侧壁上开设有排屑孔,所述吸尘机输出端与排屑孔之间设置有管道。
  7. 根据权利要求6所述的一种单晶硅材料的深、微孔加工方法,其特征在于:所述主钻头上固定有同轴线的环形挡板,环形挡板与副钻头内壁贴合,所述环形挡板位于行星齿轮与排屑孔之间。
  8. 根据权利要求7所述的一种单晶硅材料的深、微孔加工方法,其特征在于:所述副钻头外侧套设有同轴线的防护套,所述防护套固定于安装座底部,防护套内壁上开设有若干竖向设置的限位槽,所述副钻头外壁上固定有若干伸入对应限位槽的限位杆。
PCT/CN2022/077280 2022-01-19 2022-02-22 一种单晶硅材料的深、微孔加工方法 WO2023137821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210058980.5 2022-01-19
CN202210058980.5A CN114347285B (zh) 2022-01-19 2022-01-19 一种单晶硅材料的深、微孔加工方法

Publications (1)

Publication Number Publication Date
WO2023137821A1 true WO2023137821A1 (zh) 2023-07-27

Family

ID=81090975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077280 WO2023137821A1 (zh) 2022-01-19 2022-02-22 一种单晶硅材料的深、微孔加工方法

Country Status (2)

Country Link
CN (1) CN114347285B (zh)
WO (1) WO2023137821A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202648A (ja) * 1997-01-21 1998-08-04 Agency Of Ind Science & Technol ケイ素単結晶の穴あけ加工方法
JP2004066358A (ja) * 2002-08-02 2004-03-04 Toshiba Tungaloy Co Ltd 小径ドリル
JP2008173738A (ja) * 2007-01-22 2008-07-31 Kobe Steel Ltd 超音波ドリル加工装置
CN106001611A (zh) * 2016-06-21 2016-10-12 北京航空航天大学 一种精密高速断续超声振动切削方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203805150U (zh) * 2014-03-25 2014-09-03 塔里木大学 和田玉超声波振动深孔钻削装置
CN106944647A (zh) * 2017-04-19 2017-07-14 广东工业大学 一种高多层pcb板深孔钻削加工方法
CN110303181A (zh) * 2019-06-24 2019-10-08 河南科技学院 难加工材料复合钻削方法
CN111250746B (zh) * 2020-01-24 2021-07-06 北京理工大学 电磁声多场复合辅助钻削微小深孔的方法及装置
CN113043155B (zh) * 2021-01-29 2022-11-11 河南理工大学 一种超声振动辅助钻扩珩磨箱体高精度内孔的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202648A (ja) * 1997-01-21 1998-08-04 Agency Of Ind Science & Technol ケイ素単結晶の穴あけ加工方法
JP2004066358A (ja) * 2002-08-02 2004-03-04 Toshiba Tungaloy Co Ltd 小径ドリル
JP2008173738A (ja) * 2007-01-22 2008-07-31 Kobe Steel Ltd 超音波ドリル加工装置
CN106001611A (zh) * 2016-06-21 2016-10-12 北京航空航天大学 一种精密高速断续超声振动切削方法

Also Published As

Publication number Publication date
CN114347285B (zh) 2022-09-13
CN114347285A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US2580716A (en) Method and means for removing material from a solid body
CN102442768A (zh) 玻璃加工设备
CN215394086U (zh) 一种自动化下料的机械配件加工用钻床
WO2023137821A1 (zh) 一种单晶硅材料的深、微孔加工方法
JP6261286B2 (ja) 硬質脆性板の穿孔装置
CN106903347A (zh) 能够提高安全性能的钻枪
US2569854A (en) Drill tool
CN109707308B (zh) 一种勘探工程用钻机
WO2021253661A1 (zh) 一种去除杂质的装置
JP4172887B2 (ja) ワイヤーソーイングによる切断工法
CN103395126B (zh) 石料容器的加工刀具
CN210024520U (zh) 轴向深孔回转式钻孔的工件固定夹具
CN104289915B (zh) 注塑件过线孔超声模具钻铣线
CN217096654U (zh) 一种机床防振动刀具夹紧装置
CN217964835U (zh) 一种精密零部件加工用钻床
CN205552910U (zh) 一种石材锣边机
CN214685202U (zh) 一种回转体高速数控钻铣床
CN220373452U (zh) 一种可调整开孔直径的木板开孔器
CN107336079A (zh) 一种新型五金加工用切削装置
CN210552198U (zh) 一种加工石墨托杆用加长钻孔刀
CN217552652U (zh) 一种用于陶瓷坯体滚压成型的高强度滚压机头
TW200836861A (en) Ultrasonic resonant tool head structure for rotary ultrasonic driller
CN213857209U (zh) 一种中空电极取芯装置
CN220347986U (zh) 一种毛刺裁边装置
CN216429497U (zh) 一种固体矿产勘查用扩孔器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921257

Country of ref document: EP

Kind code of ref document: A1