WO2023137634A1 - 三并环化合物、其制备、药物组合物及应用 - Google Patents

三并环化合物、其制备、药物组合物及应用 Download PDF

Info

Publication number
WO2023137634A1
WO2023137634A1 PCT/CN2022/072781 CN2022072781W WO2023137634A1 WO 2023137634 A1 WO2023137634 A1 WO 2023137634A1 CN 2022072781 W CN2022072781 W CN 2022072781W WO 2023137634 A1 WO2023137634 A1 WO 2023137634A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
alkyl
unsubstituted
halogen
compound
Prior art date
Application number
PCT/CN2022/072781
Other languages
English (en)
French (fr)
Inventor
郑乾刚
江相清
曾庆龙
许明
刘景�
朱继东
Original Assignee
上海奕拓医药科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海奕拓医药科技有限责任公司 filed Critical 上海奕拓医药科技有限责任公司
Priority to PCT/CN2022/072781 priority Critical patent/WO2023137634A1/zh
Publication of WO2023137634A1 publication Critical patent/WO2023137634A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to a tricyclic compound, its preparation, pharmaceutical composition and application.
  • the Hippo pathway is involved in the regulation of cell growth, proliferation and apoptosis, and plays an important role in the regulation of organ size, cancer occurrence, tissue regeneration, and renewal and differentiation of stem cells and precursor cells. Studies have found that in mammals, this pathway has a tumor suppressive effect, and the abnormal activation of the main effector molecules in the pathway is closely related to the occurrence and development of various tumors. In addition, the Hippo pathway interacts with other pathways such as Wnt, Notch, Hedgehog, and MAPK/ERK to jointly regulate cell fate. Dysregulation of this pathway also has important implications for diseases other than cancer.
  • the Hippo signaling pathway is highly conserved during evolution.
  • the core part of the Hippo signaling pathway in mammalian cells is a kinase chain composed of MST1/2 (member of Ste20-like kinase, the homologous gene in Drosophila is Hippo) and LATS1/2 (large tumor suppressor 1/2, the homologous gene in Drosophila is Warts) protein kinases, and their adapter proteins SAV1 and Mob1 (Mps one binder kinase activator-like 1A and 1B, the homologous gene in Drosophila is composed of Mats).
  • This kinase chain can phosphorylate the transcriptional co-activators YAP (Yes-Associated Protein) and TAZ (Transcription co-activator with PDZ binding motif, also known as WWTR1) (corresponding to Yorkie in Drosophila)).
  • LATS1/2 The core component of the mammalian Hippo pathway, LATS1/2, belongs to the Dbf2-realted (NDR) family of kinases. Activated by binding to the scaffold protein Mob1A/B. LATS1/2 can also be activated directly after phosphorylation by MST1/2. LATS1/2 kinases can phosphorylate multiple sites on the downstream effector YAP, among which phosphorylation at Ser127 plays a key role in YAP inhibition. Ser127-phosphorylated YAP binds to 14-3-3 protein in the cytoplasm, is trapped in the cytoplasm, and cannot perform transcriptional functions in the nucleus, thereby inhibiting the pro-proliferation and anti-apoptosis activities of YAP.
  • NDR Dbf2-realted
  • LATS1/2 kinases can phosphorylate multiple sites on the transcription factor TAZ, among which phosphorylation at Ser89 plays a key role in TAZ repression. Phosphorylated TAZ is retained or sequestered in the cytoplasm. At the same time, phosphorylated YAP or TAZ can be further recognized and degraded by the ubiquitinase SCF ⁇ -TRCP. Therefore, if the Hippo pathway is "on", YAP and/or TAZ will be inactivated by phosphorylation and retained in the cytoplasm. Conversely, if the Hippo pathway is 'off', YAP and/or TAZ are dephosphorylated and activated, and are often found localized in the nucleus.
  • YAP itself does not contain a DNA binding region. After the activated YAP enters the nucleus, it must combine with transcription factors to perform the transcription function together.
  • the most tightly bound transcription factor after YAP enters the nucleus is TEAD.
  • Human TEAD family proteins include TEAD1/TEAD2/TEAD3/TEAD4.
  • YAP together with TEAD can initiate the transcription of a series of downstream genes, including CTGF (connective tissue growth factor), Gli2, Birc5, Birc2, FGF1 (fibroblast growth factor 1) and AREG (amphiregulin).
  • non-phosphorylated TAZ enters the nucleus, where it binds to a variety of DNA-binding transcription factors, such as PPAR ⁇ (peroxisome proliferation-activated receptor ⁇ ), TTF-1 (thyroid transcription factor-1), Pax3, TBX5, RUNX, TEAD1, and Smad2/3/4.
  • PPAR ⁇ peroxisome proliferation-activated receptor ⁇
  • TTF-1 thyroid transcription factor-1
  • Pax3, TBX5, RUNX, TEAD1, and Smad2/3/4 Most of the genes activated by YAP or TAZ transcription factor complexes are related to cell growth and proliferation.
  • the Hippo-YAP pathway regulates the size of organs and normal physiological functions by regulating cell proliferation and apoptosis, and is strictly regulated under normal physiological conditions. Inactivation of protein kinases or activation of YAP in the Hippo pathway promotes tumorigenesis. In fact, abnormal activation of the Hippo pathway is a major event in the development of various malignant tumors. Increased expression levels and nuclear localization of YAP or TAZ have been found in tumors including non-small cell lung cancer, breast cancer, head and neck cancer, esophageal cancer, ovarian cancer, liver cancer, prostate cancer, mesothelioma and skin cancer.
  • MPM Malignant pleural mesothelioma
  • MMM Malignant pleural mesothelioma
  • the treatment options for surgically unresectable MPM are extremely limited.
  • the effect of the current first-line pemetrexed/platinum therapy is not satisfactory, and the median overall survival rate is only about one year.
  • Abnormal activation of the Hippo-YAP pathway exists in about 70% of MPM patients and is considered an important cancer driver gene. Reducing the activity of the Hippo-YAP pathway through biological means and small chemical molecules has shown good tumor growth inhibitory activity, indicating that Hippo-YAP is a potential target for the treatment of MPM.
  • Lung cancer is currently one of the cancers with the highest mortality rate in the world.
  • a number of studies have shown that the YAP signaling pathway can induce drug resistance to lung cancer drugs such as EGFR inhibitors through mechanisms such as mediating tumor cell dormancy and resisting apoptosis.
  • Inhibition of the Hippo-YAP signaling pathway can increase the sensitivity of tumor cells to EGFR-targeted drugs, suggesting that a combined strategy can be used clinically to improve the therapeutic effect.
  • Liver cancer is a cancer with a high incidence in China, and the current breakthroughs in clinical treatment methods are very limited, and there is a large unmet clinical need.
  • YAP is an important gene that regulates the occurrence and development of liver cancer.
  • Multiple in vivo experiments have shown that overexpressing YAP alone in the liver of mice or knocking out the upstream regulatory factor MST1-2 without introducing other oncogenes can lead to the occurrence of hepatocellular carcinoma.
  • knocking down the expression of YAP can significantly inhibit tumors and promote the differentiation of tumor cells into functional liver parenchyma-like cells, accompanied by the recovery of liver function, suggesting that YAP is a potential target for the treatment of liver cancer.
  • KRas mutations are widespread in pancreatic ductal adenocarcinoma (PDAC), and targeting KRas is considered to have broad clinical application prospects in PDAC.
  • PDAC pancreatic ductal adenocarcinoma
  • targeting KRas can inhibit tumor growth and also face tumor recurrence.
  • YAP plays an important role in inducing EMT (epithelial-mesenchymal transition) by regulating Fos; knocking down YAP expression in recurrent tumors can re-inhibit tumor growth. Indicating that targeting YAP also has potential clinical application prospects in pancreatic ductal adenocarcinoma.
  • Inhibitors targeting BRAF and MEK have a wide range of clinical applications in a variety of tumors including melanoma, colon cancer, and thyroid cancer, but they also face the problem of resistance to recurrence after treatment.
  • YAP or TAZ in mammalian epithelial cells leads to transformation of the cells.
  • Enhanced YAP/TAZ transcriptional activity induces EMT (epithelial-mesenchymal transition) and confers breast cancer cell properties on stem cells.
  • the therapeutic strategy targeting the Hippo-Yap pathway is likely to provide new ideas for the treatment of various tumors.
  • the development of specific small molecules to destroy the interaction between YAP/TAZ and TEAD, weaken the transcriptional activity of YAP, and thus inhibit the occurrence of tumors with abnormal Hippo pathway is expected to become a new strategy for tumor treatment and has broad clinical application prospects.
  • the first aspect of the present invention provides the compound represented by the following formula I, its pharmaceutically acceptable salt, or its enantiomers, diastereomers, tautomers, solvates, isotope substitutions, polymorphs, prodrugs or metabolites:
  • a 1 is selected from N or CR a ;
  • a 2 is selected from NH, O or CR b R c ;
  • a 3 is selected from N or CR 3 ;
  • a 4 is selected from N or CR 4 ;
  • a 5 is selected from N or CR 5 ;
  • R is selected from H, hydroxy, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted amino, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocyclyl;
  • R is selected from H, hydroxy, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted amino, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocyclyl;
  • R 3 , R 4 and R s are each independently selected from H, hydroxyl, halogen, carboxyl, cyano, substituted or unsubstituted alkyl, substituted or unsubstituted amino, and substituted or unsubstituted alkoxy;
  • R is selected from H, hydroxyl, halogen, carboxyl, substituted or unsubstituted alkyl, substituted or unsubstituted amino and substituted or unsubstituted alkoxy;
  • R and R are each independently selected from: H, hydroxy, halogen, carboxy, substituted or unsubstituted alkyl, and substituted or unsubstituted alkoxy;
  • Ring A is a 5-8 membered carbocyclyl, a 4-8 membered heterocyclic group or a 5 or 6 membered heteroaryl group, optionally substituted by 1 to 3 substituents selected from hydroxyl, halogen, carboxyl, substituted or unsubstituted alkyl, substituted or unsubstituted amino and substituted or unsubstituted alkoxy.
  • the second aspect of the present invention provides a pharmaceutical composition, which contains the I, II or III compound according to any embodiment of the present invention, its pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer, solvate, isotope substitution, polymorph, prodrug or metabolite, and a pharmaceutically acceptable carrier or excipient.
  • the third aspect of the present invention provides the application of the I, II or III compound according to any embodiment of the present invention, its pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer, solvate, isotope substitution, polymorph, prodrug or metabolite in the preparation of a drug for treating or preventing diseases mediated by the interaction between YAP/TAZ and TEAD.
  • the fourth aspect of the present invention provides a method for treating or preventing diseases mediated by the interaction of YAP/TAZ and TEAD, comprising administering to a subject in need a therapeutically effective amount of the compound I, II or III described in any embodiment of the present invention, its pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer, solvate, isotope substitution, polymorph, prodrug or metabolite, or a pharmaceutical composition thereof.
  • the compounds described herein generally contain an axial chirality, including a pair of axial chiral isomers.
  • the axial chirality of the compounds described herein is the S configuration.
  • the axial chirality of the compounds described herein is in the R configuration.
  • reactions and purifications can be carried out using the manufacturer's instructions for the kit, or by methods known in the art or as described herein.
  • the techniques and methods described above can generally be performed according to conventional methods well known in the art as described in various general and more specific documents that are cited and discussed in this specification.
  • groups and substituents thereof can be selected by those skilled in the art to provide stable moieties and compounds.
  • C1-C6 alkyl refers to an alkyl group as defined below having a total of 1 to 6 carbon atoms.
  • the total number of carbon atoms in the abbreviated notation does not include carbons that may be present in substituents of the stated group.
  • halogen means fluorine, chlorine, bromine or iodine.
  • Haldroxy means an -OH group.
  • Hydroalkyl means an alkyl group as defined below substituted with a hydroxyl group (-OH).
  • Niro means -NO2 .
  • Amino refers to -NH2 .
  • Acyl refers to -COR, wherein R is H or alkyl, such as C 1-5 alkyl.
  • Substituted amino refers to an amino group substituted with one or two alkyl, alkylcarbonyl, aralkyl, aryl, heteroaryl, heterocyclyl, heteroaralkyl groups as defined below, for example, monoalkylamino, dialkylamino, alkylamido, aralkylamino, heteroaralkylamino, heteroarylamino and arylamino.
  • substituted amino is represented as -NR'R", wherein R' and R" are each independently selected from H, amino, and substituted or unsubstituted alkyl.
  • Carboxy means -COOH.
  • alkyl refers to a fully saturated straight or branched chain hydrocarbon chain group, consisting only of carbon and hydrogen atoms, having, for example, 1 to 12 (preferably 1 to 8, more preferably 1 to 6) carbon atoms, and connected to the rest of the molecule by a single bond, such as but not limited to methyl, ethyl, n-propyl, isopropyl, n- Butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-methylbutyl, 2,2-dimethylpropyl, n-hexyl, heptyl, 2-methylhexyl, 3-methylhexyl, octyl, nonyl and decyl, etc.
  • halogen such as fluorine, chlorine, bromine or iodine substituted alkyl group, etc.
  • alkenyl as a group or part of another group, means a straight or branched hydrocarbon chain group consisting only of carbon atoms and hydrogen atoms, containing at least one double bond, having, for example, 2 to 20 (preferably 2 to 10, more preferably 2 to 6) carbon atoms and connected to the rest of the molecule by a single bond, such as but not limited to vinyl, propenyl, allyl, but-1-enyl, but-2-enyl, pent-1-enyl, pent-1-enyl, 1,4-dienyl, etc.
  • cyclic hydrocarbon group means a stable non-aromatic monocyclic or polycyclic hydrocarbon group (such as an alkyl, alkenyl or alkynyl group) consisting only of carbon atoms and hydrogen atoms, which may include fused ring systems, bridged ring systems or spiro ring systems, having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms, more preferably 3 to 8 carbon atoms, such as 3, 4, 5, 6, 7 or 8 carbon atoms, and is saturated or not Saturated and can be single bonded to the rest of the molecule via any suitable carbon atom.
  • cyclic hydrocarbon group means a stable non-aromatic monocyclic or polycyclic hydrocarbon group (such as an alkyl, alkenyl or alkynyl group) consisting only of carbon atoms and hydrogen atoms, which may include fused ring systems, bridged ring systems or spiro ring systems, having 3 to 15 carbon atoms, preferably 3 to 10 carbon
  • carbon atoms in a cycloalkyl group may be optionally oxidized.
  • the cycloalkyl is cycloalkyl, preferably C3-C8 cycloalkyl.
  • cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, cycloheptyl, cyclooctyl, 1H-indenyl, 2,3-indanyl, 1,2,3,4-tetrahydro-naphthyl, 5,6,7,8-tetrahydro-naphthyl, 8,9-dihydro-7H-benzocyclohepten-6-yl, 6,7,8,9- Tetrahydro-5H-benzocycloheptenyl, 5,6,7,8,9,10-hexahydro-benzocyclooctenyl, fluorenyl, bicyclo[2.2.1]heptyl, 7,7-dimethyl-bicyclo[2.2.1]heptyl, bicyclo
  • heterocyclyl means a stable 3- to 20-membered non-aromatic cyclic group composed of 2 to 14 carbon atoms (such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 carbon atoms) and 1 to 6 heteroatoms selected from nitrogen, phosphorus, oxygen and sulfur.
  • the heterocyclic group may be a monocyclic, bicyclic, tricyclic or multicyclic ring system, which may include a fused ring system, a bridged ring system or a spiro ring system; the nitrogen, carbon or sulfur atoms in the heterocyclic group thereof may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclic group may be partially or fully saturated.
  • a heterocyclyl group can be attached to the rest of the molecule via a carbon atom or a heteroatom and by a single bond.
  • heterocyclyl groups comprising fused rings
  • one or more rings may be aryl or heteroaryl as defined below, provided that the point of attachment to the rest of the molecule is a non-aromatic ring atom.
  • the heterocyclyl group is preferably a stable 4- to 12-membered, 5- to 12-membered, or 4- to 9-membered non-aromatic monocyclic, bicyclic, bridged or spirocyclic group comprising 1 to 3 heteroatoms selected from nitrogen, oxygen and sulfur, more preferably a stable 5- to 9-membered non-aromatic monocyclic, bicyclic, bridged or spirocyclic group comprising 1 to 3 heteroatoms selected from nitrogen, oxygen and sulfur.
  • heterocyclyl groups described in various embodiments herein include, but are not limited to: pyrrolidinyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, thiomorpholinyl, 2,7-diaza-spiro[3.5]nonan-7-yl, 2-oxa-6-aza-spiro[3.3]heptane-6-yl, 2,5-diaza-bicyclo[2.2.1]heptan-2-yl, azetidinyl, pyranyl, Tetrahydropyranyl, thiopyranyl, tetrahydrofuranyl, oxazinyl, dioxolyl, tetrahydroisoquinolyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, quinozinyl, thiazolidinyl, isothiazolidinyl, isoxazolidinyl, dihydro
  • aryl as a group or part of another group, means a conjugated hydrocarbon ring system group having 6 to 18 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, for example 6, 7, 8, 9 or 10 carbon atoms.
  • an aryl group can be a monocyclic, bicyclic, tricyclic or multicyclic ring system, and can also be fused to a cycloalkyl or heterocyclyl group as defined above, provided that the aryl group is connected to the rest of the molecule via a single bond via an atom of the aromatic ring.
  • aryl groups described in various embodiments herein include, but are not limited to, phenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, 2,3-dihydro-1H-isoindolyl, 2-benzoxazolinone, 2H-1,4-benzoxazin-3(4H)-on-7-yl, and the like.
  • arylalkyl refers to an alkyl group as defined above substituted with an aryl group as defined above.
  • heteroaryl as a group or part of another group, means a 5- to 16-membered conjugated ring system group having 1 to 15 carbon atoms (preferably 1 to 10 carbon atoms, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms) and 1 to 6 heteroatoms selected from nitrogen, oxygen and sulfur in the ring.
  • a heteroaryl group may be a monocyclic, bicyclic, tricyclic or multicyclic ring system, and may also be fused to a cycloalkyl or heterocyclyl group as defined above, provided that the heteroaryl group is attached to the rest of the molecule by a single bond via an atom on the aromatic ring.
  • a nitrogen, carbon or sulfur atom in a heteroaryl can be optionally oxidized; the nitrogen atom can be optionally quaternized.
  • heteroaryl is preferably a stable 5- to 12-membered aromatic group comprising 1 to 5 heteroatoms selected from nitrogen, oxygen and sulfur, more preferably a stable 5- to 10-membered aromatic group comprising 1 to 4 heteroatoms selected from nitrogen, oxygen and sulfur or a 5- to 6-membered aromatic group comprising 1 to 3 heteroatoms selected from nitrogen, oxygen and sulfur.
  • heteroaryl groups described in various embodiments herein include, but are not limited to, thienyl, imidazolyl, pyrazolyl, thiazolyl, oxazolyl, oxadiazolyl, isoxazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzimidazolyl, benzopyrazolyl, indolyl, furyl, pyrrolyl, triazolyl, tetrazolyl, triazinyl, indolyl, isoindolyl, indazolyl, isindazolyl, purinyl, quinolinyl , isoquinolyl, naphthyl, naphthyridinyl, quinoxalinyl, pteridinyl, carbazolyl, carbolinyl, phenanthridinyl, phenanthrolinyl, acridinyl,
  • heteroarylalkyl refers to an alkyl group as defined above substituted by a heteroaryl group as defined above.
  • substituents described in the claims and description of the present invention include but are not limited to alkyl, alkenyl, alkynyl, halogen, haloalkyl, haloalkenyl, haloalkynyl, cyano, nitro, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl, optionally substituted heterocyclic.
  • moiety As used herein, the terms “moiety”, “structural moiety”, “chemical moiety”, “group”, “chemical group” refer to a specific segment or functional group in a molecule. Chemical moieties are generally considered to be chemical entities embedded or attached to molecules.
  • the functional groups of intermediate compounds may need to be protected by appropriate protecting groups.
  • Such functional groups include hydroxyl, amino, mercapto and carboxylic acid.
  • Suitable hydroxy protecting groups include trialkylsilyl or diarylalkylsilyl (eg tert-butyldimethylsilyl, tert-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl and the like.
  • Suitable protecting groups for amino, amidino and guanidino include tert-butoxycarbonyl, benzyloxycarbonyl and the like.
  • Suitable protecting groups for mercapto include -C(O)-R" (where R" is alkyl, aryl or aralkyl), p-methoxybenzyl, trityl and the like.
  • Suitable carboxy protecting groups include alkyl esters, aryl esters or aralkyl esters.
  • Protecting groups can be introduced and removed according to standard techniques known to those skilled in the art and as described herein. The use of protecting groups is described in detail in Greene, T.W. and P.G.M. Wuts, Protective Groups in Organi Synthesis, (1999), 4th Ed., Wiley.
  • the protecting group can also be a polymeric resin.
  • the compound with wedge-shaped bond drawing (such as compound 67 in Example 33) is a single-configuration compound with an absolute stereochemical structure.
  • the present invention provides the compound represented by the following formula I, its pharmaceutically acceptable salt, or its enantiomers, diastereomers, tautomers, solvates, isotope substitutions, polymorphs, prodrugs or metabolites:
  • a 1 Choose from N or CR a ;
  • a 2 Choose from NH, O or CR b R c ;
  • a 3 Choose from N or CR 3 ;
  • a 4 Choose from N or CR 4 ;
  • a 5 Choose from N or CR 5 ; 1 selected from H, hydroxy, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted amino, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocyclyl;
  • R 2 selected from H, hydroxy, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted amino, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted
  • the alkyl is preferably C 1-6 alkyl, more preferably C 1-4 alkyl; the alkoxy is preferably C 1-6 alkoxy, more preferably C 1-4 alkoxy; the cycloalkyl is preferably C 3-8 cycloalkyl ; the aryl is preferably 6-14 aryl; 2-membered heterocyclic group, more preferably 4-9 membered heterocyclic group; preferably, the heteroatoms in the heterocyclic group and heteroaryl group include nitrogen, oxygen and/or sulfur, and the number of heteroatoms is 1, 2 or 3. ⁇ , ⁇ , ⁇ 1-6 ⁇ , ⁇ : ⁇ ,C 1-4 ⁇ , ⁇ C 1-4 ⁇ , ⁇ ,C 1-4 ⁇ , ⁇ C 1-4 ⁇ , ⁇ C 1-4 ⁇ , ⁇ , ⁇ , ⁇ , ⁇ 1-3 ⁇ C 1-4 ⁇ C 1-4 ⁇ C 1-4 ⁇ C 1-4 ⁇ 6-14 ⁇ 5-12 ⁇ 4-12 ⁇ , ⁇ NR'R”-C(O)-(CH 2 ) n
  • a 1 is N.
  • a 1 is CR a , wherein R a is selected from H and substituted or unsubstituted C 1-4 alkyl.
  • ring A is a 5-8 membered saturated carbocyclic ring or a 4-8 membered heterocyclic group.
  • Ring A is a 4-8 membered nitrogen-containing heterocyclic group.
  • the nitrogen-containing heterocyclic group optionally further contains 1 or 2 heteroatoms selected from N and O, preferably further optionally contains 1 or 2 nitrogen atoms.
  • ring A is a piperidine ring, especially, the ring nitrogen atom of the piperidine ring is A 1 .
  • ring A is a piperazine ring, especially, one ring nitrogen atom of the piperazine ring is A 1 .
  • Ring A is a 5- or 6-membered heteroaryl, preferably containing 1 or 2 nitrogen atoms, one of which is at the A 1 position.
  • Ring A is a benzene ring.
  • the substituent on ring A is preferably selected from hydroxyl, halogen, substituted or unsubstituted alkyl and substituted or unsubstituted alkoxy; more preferably, the substituent on ring A is selected from substituted or unsubstituted C 1-4 alkyl.
  • the alkyl group is substituted by 1-6 substituents selected from hydroxyl, halogen and NR 12 R 13 , wherein each of R 12 and R 13 is independently selected from H and C 1-4 alkyl.
  • a 2 is CR b R c , wherein, preferably, R b and R c of A 2 are each independently H and C 1-4 alkyl, more preferably both are H.
  • A2 is NH or O.
  • a 3 is CR 3 ; preferred R 3 is H, halogen, C 1-4 alkoxy, cyano and substituted or unsubstituted C 1-4 alkyl, more preferably halogen.
  • the substituents may be 1-3 substituents selected from halogen, hydroxyl and amino.
  • preferred A 4 is CR 4 ; preferred R 4 is H, halogen, C 1-4 alkoxy, cyano and substituted or unsubstituted C 1-4 alkyl, more preferably halogen.
  • the substituent may be 1-3 substituents selected from halogen, hydroxyl and amino.
  • R3 and R4 are each independently halogen.
  • preferred A 5 is CR 5 ; preferred R 5 is H, halogen, cyano, C 1-4 alkoxy and substituted or unsubstituted C 1-4 alkyl, more preferably H.
  • the substituents may be 1-3 substituents selected from halogen, hydroxyl and amino.
  • any one or any two of A 3 , A 4 and A 5 is N, and the rest are corresponding CR 3 , CR 4 or CR 5 .
  • R 1 is substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heterocyclyl.
  • the substituents on R can be 1-3 substituents selected from halogen, hydroxyl, C 1-4 alkyl, C 1-4 alkoxy, halogenated C 1-4 alkyl, halogenated C 1-4 alkoxy and -NR 12 R 13 , wherein, R 12 and R 13 are each independently H or C 1-4 alkyl.
  • the cycloalkyl group is a C3-8 cycloalkyl group; a preferred aryl group is an aryl group having 6 to 14 ring carbon atoms; a preferred heteroaryl group is a heteroaryl group having 5 to 12 ring atoms, more preferably a heteroaryl group having at least a ring nitrogen atom among the heteroatoms; a preferred heterocyclyl group is a heterocyclyl group having 4 to 9 ring atoms.
  • R is an unsubstituted 6-14 membered aryl group, such as phenyl, or a 6-14 membered aryl group, such as phenyl, optionally substituted with 1-3 substituents selected from hydroxyl, halogen, C 1-4 alkyl and C 1-4 alkoxy.
  • R is H, substituted or unsubstituted alkyl, halogen, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl or substituted or unsubstituted heterocyclyl.
  • the substituents may be 1-5 selected from halogen, hydroxyl, carboxyl, cyano and -NR 12 R 13 , wherein R 12 and R 13 are each independently H or C 1-4 alkyl.
  • the substituted or unsubstituted alkyl is a substituted or unsubstituted C 1-4 alkyl, preferably an unsubstituted C 1-4 alkyl or a halogenated C 1-4 alkyl.
  • R is substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heterocyclyl.
  • ⁇ C 3-8 ⁇ ; ⁇ 6-14 ⁇ , ⁇ ; ⁇ 5 ⁇ 12 ⁇ , ⁇ , ⁇ ; ⁇ 4 ⁇ 9 ⁇ , ⁇ / ⁇ / ⁇ , ⁇ ,R 2 ⁇ 1-3 ⁇ NR'R”-C(O)-(CH 2 ) n - ⁇ C 1- 4 ⁇ C 1-4 ⁇ 4-9 ⁇ , ⁇ ,R' ⁇ R” ⁇ H ⁇ C 1-4 ⁇ ,n ⁇ 0-4 ⁇ ; ⁇ , ⁇ , ⁇ 1-5 ⁇ ; ⁇ , ⁇ , ⁇ 1-5 ⁇ C 1-4 ⁇ 5-12 ⁇ ; ⁇ , ⁇ , ⁇ 1-5 ⁇ C 1-4 ⁇ C 1-4 ⁇ ; ⁇ , ⁇ , ⁇ 1 ⁇ 4-9 ⁇ 1 ⁇ 2 ⁇ C 1-4 ⁇ C 1-4 ⁇ , ⁇ , ⁇ N ⁇ O ⁇ S ⁇ 4-9 ⁇ , ⁇ , ⁇ , ⁇ 1 ⁇ 2 ⁇ C 1-4 ⁇ , ⁇ 1 ⁇ 2 ⁇
  • R 3 , R 4 , R 5 , R a , R b , R c and the alkyl and alkoxy groups in the definition of ring A are substituted, their respective substituents can be 1-3 selected from halogen, hydroxyl, carboxyl or amino groups optionally substituted by 1 or 2 C 1-4 alkyl groups, and the amino group in the definition of these groups can be substituted by 1 or 2 C 1-4 alkyl groups.
  • R 1 selected from substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclyl and substituted or unsubstituted cycloalkyl
  • R 2 selected from H, substituted or unsubstituted alkyl, halogen, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclyl, and substituted or unsubstituted cycloalkyl
  • R 3 , R 4 and R the s each independently selected from H, hydroxy, halogen, carboxyl, substituted or unsubstituted alkyl, substituted or unsubstituted amino and substituted or unsubstituted alkoxy
  • R 11 is H or substituted or unsubstituted alkyl.
  • R 1 when R 1 is a group with a substituent, the substituent is 1-3 substituents selected from halogen, hydroxyl, C 1-4 alkyl, C 1-4 alkoxy and -NR 12 R 13 , wherein, R 12 and R 13 are each independently H or C 1-4 alkyl.
  • R 1 is a substituted or unsubstituted 6-14 membered aryl group or a substituted or unsubstituted 5-12 membered heteroaryl group; the preferred substituent on R 1 is selected from one or more of hydroxyl, halogen, C 1-4 alkyl and C 1-4 alkoxy.
  • R is a substituted or unsubstituted phenyl group or a substituted or unsubstituted 5-12 membered nitrogen-containing heteroaryl group, such as pyridyl, pyrimidinyl, pyrazolyl, pyrrolyl, imidazolyl, triazolyl, pyrazinyl and pyridazinyl, etc.; preferably, when it is a group with a substituent, the substituent is selected from one or more of hydroxyl, halogen, C 1-4 alkyl and C 1-4 alkoxy.
  • R 3 is H, halogen, C 1-4 alkoxy and C 1-4 alkyl, in particular, halogen and C 1-4 alkyl.
  • R 4 is H, halogen, C 1-4 alkoxy and C 1-4 alkyl, in particular, halogen.
  • R 5 is H, halogen, C 1-4 alkoxy and C 1-4 alkyl, especially, H.
  • each of R3 and R4 is independently halogen, and R5 is H.
  • R 11 is H or C 1-6 alkyl that is unsubstituted or optionally substituted with 1-3 substituents selected from halogen and hydroxy, in particular, R 11 is H.
  • the number of substituents is at least two; preferably, at least one, more preferably at least two substituents are located in the ortho position.
  • the at least two substituents include at least halogen and the NR'R"-C(O)-(CH 2 ) n -; preferably, the substituents also include one selected from the group consisting of substituted or unsubstituted C 1-4 alkyl, substituted or unsubstituted C 1-4 alkoxy, substituted or unsubstituted heterocyclic group and substituted or unsubstituted amino.
  • R 1 It is a substituted or unsubstituted phenyl or a substituted or unsubstituted 5-12 membered nitrogen-containing heteroaryl group, such as pyridyl, pyrimidyl, pyrazolyl, pyrrolyl, imidazolyl, triazolyl, pyrazinyl and pyridazinyl, etc., wherein, when it is a group with substituents, the number of substituents is 1-3, and is selected from hydroxyl, halogen, C 1-4 Alkyl and C 1-4 Alkoxy, preferably R 1 For unsubstituted phenyl; R 2 It is a 4-9 membered heterocyclic group, preferably a 4-9 membered heterocyclic group containing N and/or O and/or S, including azetidinyl, oxetanyl, tetrahydrofuryl, pyrrolidinyl, t
  • R 1 It is a substituted or unsubstituted phenyl group or a substituted or unsubstituted 5-12 membered nitrogen-containing heteroaryl group, such as pyridyl, pyrimidyl, pyrazolyl, pyrrolyl, imidazolyl, triazolyl, pyrazinyl and pyridazinyl, etc., wherein, when it is a group with substituents, the number of substituents is 1-3, and is selected from halogen, C 1-4 Alkyl and C 1-4 Alkoxy, preferably R 1 For unsubstituted phenyl; R 2 It is a 5-12 membered heteroaryl group, preferably a 5-12 membered heteroaryl group containing N, including pyrrolyl, pyrazolyl, imidazolyl, triazolyl, pyridyl, pyridazinyl, pyrimidinyl and pyr
  • R 1 , R 3 -R s are as described in any embodiment of the aforementioned formula I or II;
  • B 1 is C or N;
  • B 2 is CR 6 or N;
  • B 3 is CR 7 or N;
  • B 4 is CR 8 or N;
  • B 5 is CR 9 or N;
  • B 6 is CR 10 or N;
  • R 6 is selected from H, halogen, C 1-4 alkyl, C 1-4 alkoxy, cyano, carboxyl, NR 12 R 13 and NR'R"-C(O)-(CH 2 ) n -, wherein R 12 and R 13 are each independently selected from H, C 1-4 acyl and substituted or unsubstituted C 1-4 alkyl, n is an integer of 0-4;
  • R 7 is H, halogen, NR 12 R 13 , C 1-4 alkoxy or C 1-4 alkyl;
  • R 8 is H, halogen or C 1-4 alkyl
  • R9 is H, halogen, substituted or unsubstituted C 1-4 Alkyl, substituted or unsubstituted C 1-4 Alkoxy, substituted or unsubstituted 4-9 membered heterocyclic group (such as nitrogen and/or oxygen and/or sulfur-containing 4-9 membered heterocyclic group, including tetrahydrofuranyl, tetrahydropyranyl, azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and dioxothiomorpholinyl, etc.), or substituted or unsubstituted amino;
  • Substituents preferably, when the alkoxy group is substituted, its substituents can be 1-5 selected from hydroxyl, halogen, carboxyl, amino, halogenated C 1-4 Alkyl and substituted or unsubstituted 5-12 membered heteroaryl substituents; in some embodiments, when the heterocyclic group is
  • R 10 is H, halogen, alkyl or halogenated C 1-4 alkyl
  • R 11 is H or substituted or unsubstituted C 1-4 alkyl, preferably H.
  • R 12 and R 13 are each independently H or substituted or unsubstituted C 1-4 alkyl.
  • B 1 is CH; B 2 is CR 6 ; B 3 is CR 7 ; B 4 is CR 8 ; B 5 is CR 9 ; ⁇ R 6 ⁇ C 1-4 ⁇ C 1-4 ⁇ NR 12 R 13 ⁇ NR'R”-C(O)-(CH 2 ) n -, ⁇ ,R 12 ⁇ R 13 ⁇ H ⁇ C 1-4 ⁇ C 1-4 ⁇ ,n ⁇ 0-4 ⁇ R 7 ⁇ H ⁇ NR 12 R 13 , ⁇ H ⁇ NH 2 ⁇ R 8 ⁇ H ⁇ R 9 ⁇ : ⁇ C 1-4 ⁇ C 1-4 ⁇ 4-9 ⁇ ( ⁇ N ⁇ O ⁇ / ⁇ S ⁇ 4-9 ⁇ ) ⁇ , ⁇ : ⁇ 1-3 ⁇ C 1-4 ⁇ , ⁇ 1-3 ⁇ C 1-4 ⁇ C 1-4 ⁇ , ⁇ , ⁇ 1 ⁇ 2 ⁇ C 1-4 ⁇ 1 ⁇ 4-9 ⁇ ( ⁇ 5-12 ⁇ , ⁇ ) ⁇ R 10 ⁇ R 11 ⁇ H ⁇ 1-3 ⁇ C 1-4 ⁇
  • R is substituted or unsubstituted phenyl, preferably , when it is a group with substituents, the number of substituents is 1, 2 or 3, selected from hydroxyl, halogen, C 1-4 alkyl and C 1-4 alkoxy; R is H, halogen, C 1-4 alkoxy and C 1-4 alkyl, preferably hal
  • R is substituted or unsubstituted phenyl , preferably, when it is a group with substituents, the number of substituents is 1, 2 or 3, selected from hydroxyl, halogen, C 1-4 alkyl and C 1-4 alkoxy; R is H, halogen, C 1-4 alkoxy and C 1-4 alky
  • the compound of Formula I has the structure shown in Formula IV below:
  • R 1 , R 3 -R 5 and R 11 are as described in any embodiment of the aforementioned formula I or II;
  • each m is independently 1, 2 or 3;
  • X is CH2 , O or NH
  • R d is H, C 1-4 alkyl, halogenated C 1-4 alkyl, C 1-4 alkoxy, halogenated C 1-4 alkoxy, carboxyl or NR'R"-C(O)-(CH 2 ) n -, wherein, R' and R" are each independently selected from H and C 1-4 alkyl, n is an integer of 0-4; the number of R d can be 1, 2 or 3.
  • Rd is located ortho to the nitrogen atom to which the heterocyclyl is attached to the remainder of Formula IV.
  • Rd is H, carboxy, or NR'R"-C(O)-( CH2 ) n- .
  • the X-containing heterocycle is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl.
  • R 1 It is a substituted or unsubstituted phenyl group or a substituted or unsubstituted 5-12 membered nitrogen-containing heteroaryl group, such as pyridyl, pyrimidyl, pyrazolyl, pyrrolyl, imidazolyl, triazolyl, pyrazinyl and pyridazinyl, etc., wherein, when it is a group with substituents, the number of substituents is 1-3, and is selected from halogen, C 1-4 Alkyl and C 1-4 Alkoxy, preferably R 1 For unsubstituted phenyl; R 3 is H, halogen, C 1-4 Alkoxy and C 1- 4 Alkyl, preferably H and halogen; R 4 is H, halogen, C 1-4 Alkoxy and C 1-4 Alkyl, preferably halogen; R 5 is H, halogen, C 1-4 Alkoxy and C 1-4 Alky
  • n is 0, and R' and R" are independently H and C 1-4 alkyl.
  • the compounds described herein generally contain an axial chirality, including a pair of axial chiral isomers.
  • the axial chirality of the compounds described herein is the S configuration.
  • the axial chirality of the compounds described herein is in the R configuration.
  • the formula I has the structural formula shown in the following formula V:
  • B 1 , B 3 -B 5 , R 1 , R 3 -R 5 , and R 11 are as described in any embodiment of formula I, II or III;
  • R 6 is selected from H, halogen, alkyl, carboxyl, NR 12 R 13 and NR'R"-C(O)-(CH 2 ) n -, wherein R' and R" are each independently selected from H, amino, and substituted or unsubstituted alkyl, and n is an integer of 0-4;
  • R 10 is H, halogen, alkyl or halogenated C 1-4 alkyl
  • R 12 and R 13 are each independently H, C 1-4 acyl or substituted or unsubstituted C 1-4 alkyl; preferably, the alkyl is substituted by 1-6 substituents selected from hydroxyl and halogen, or unsubstituted;
  • R 6 and R 10 are not H at the same time.
  • the formula I has the structural formula shown in the following formula VI:
  • B 1 , B 3 -B 5 , R 1 , R 3 -R 5 , and R 11 are as described in any embodiment of formula I, II or III;
  • R 6 is selected from H, halogen, alkyl, carboxyl, NR 12 R 13 and NR'R"-C(O)-(CH 2 ) n -, wherein R' and R" are each independently selected from H, amino, and substituted or unsubstituted alkyl, n is an integer of 0-4;
  • R 10 is H, halogen, alkyl or halogenated C 1-4 alkyl
  • R 12 and R 13 are each independently H, C 1-4 acyl or substituted or unsubstituted C 1-4 alkyl; preferably, the alkyl is substituted by 1-6 substituents selected from hydroxyl and halogen, or unsubstituted;
  • R 6 and R 10 are not H at the same time.
  • the formula I has the structural formula shown in the following formula VII:
  • R 1 , R 3 -R s , R 7 -R 9 , and R 11 are as described in any embodiment of formula I, II or III;
  • R 6 is selected from H, halogen, alkyl, carboxyl, NR 12 R 13 and NR'R"-C(O)-(CH 2 ) n -, wherein R' and R" are each independently selected from H, amino, and substituted or unsubstituted alkyl, n is an integer of 0-4;
  • R 10 is H, halogen, alkyl or halogenated C 1-4 alkyl
  • R 12 and R 13 are each independently H, C 1-4 acyl or substituted or unsubstituted C 1-4 alkyl; preferably, the alkyl is substituted by 1-6 substituents selected from hydroxyl and halogen, or unsubstituted;
  • R 6 and R 10 are not H at the same time.
  • R 1 , R 3 -R s , R 7 -R 9 , and R 11 are as described in any embodiment of formula I, II or III;
  • R 6 is selected from H, halogen, alkyl, carboxyl, NR 12 R 13 and NR'R"-C(O)-(CH 2 ) n -, wherein R' and R" are each independently selected from H, amino, and substituted or unsubstituted alkyl, and n is an integer of 0-4;
  • R 10 is H, halogen, alkyl or halogenated C 1-4 alkyl
  • R 12 and R 13 are each independently H, C 1-4 acyl or substituted or unsubstituted C 1-4 alkyl; preferably, the alkyl is substituted by 1-6 substituents selected from hydroxyl and halogen, or unsubstituted;
  • R 6 and R 10 are not H at the same time.
  • the following compounds, or pharmaceutically acceptable salts thereof, or enantiomers, diastereomers, tautomers, solvates, isotope substitutions, polymorphs, prodrugs or metabolites thereof are provided, wherein the compound is selected from:
  • stereoisomer refers to a compound composed of the same atoms bonded by the same bond, but having a different three-dimensional structure.
  • the present invention will encompass each stereoisomer and mixtures thereof.
  • the compounds of the present invention are intended to include both E- and Z-geometric isomers.
  • Tautomer refers to isomers formed by the transfer of a proton from one atom of a molecule to another atom of the same molecule. All tautomeric forms of the compounds of the invention are also intended to be within the scope of the invention.
  • the compounds of the present invention may contain one or more chiral carbon atoms, and thus may give rise to enantiomers, diastereoisomers and other stereoisomeric forms.
  • Each chiral carbon atom can be defined as (R)- or (S)- based on stereochemistry.
  • the present invention is intended to include all possible isomers, as well as their racemates and optically pure forms.
  • the preparation of the compounds of the present invention can select racemates, diastereomers or enantiomers as starting materials or intermediates.
  • Optically active isomers can be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, such as crystallization and chiral chromatography.
  • the present invention also includes all suitable isotopic variations of the compounds of the present invention or pharmaceutically acceptable salts thereof.
  • Isotopic variations of a compound of the present invention, or a pharmaceutically acceptable salt thereof are defined as those in which at least one atom is replaced by an atom having the same atomic number but an atomic mass different from that normally found in nature.
  • Isotopes that may be incorporated into compounds of the present invention and pharmaceutically acceptable salts thereof include, but are not limited to, isotopes of H, C, N, and O, such as 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 17 O, 18 O, 35 S, 18 F, 36 Cl, and 125 I.
  • Isotopic variations of the compounds described herein, or pharmaceutically acceptable salts thereof may be prepared by conventional techniques using appropriate isotopic variations of suitable reagents.
  • pharmaceutically acceptable salt includes pharmaceutically acceptable acid addition salts and pharmaceutically acceptable base addition salts.
  • “Pharmaceutically acceptable acid addition salt” refers to a salt formed with an inorganic or organic acid that retains the biological effectiveness of the free base without other side effects.
  • Inorganic acid salts include but not limited to hydrochloride, hydrobromide, sulfate, nitrate, phosphate, etc.
  • organic acid salts include but not limited to formate, acetate, 2,2-dichloroacetate, trifluoroacetate, propionate, caproate, caprylate, caprate, undecylenate, glycolate, gluconate, lactate, sebacate, adipate, glutarate, malonate, oxalate, maleate, succinate, fumarate, tartrate, citrate, palmitate, stearate, Oleate, cinnamate, laurate, malate, glutamate, pyroglutamate, aspartate, benzoate, methanesulfonate, benzenesulfonate, p-to
  • “Pharmaceutically acceptable base addition salt” refers to a salt formed with an inorganic base or an organic base that can maintain the biological effectiveness of the free acid without other side effects.
  • Salts derived from inorganic bases include, but are not limited to, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like.
  • Preferred inorganic salts are ammonium, sodium, potassium, calcium and magnesium salts.
  • Salts derived from organic bases include, but are not limited to, those of primary, secondary, and tertiary amines, substituted amines, including natural substituted amines, cyclic amines, and basic ion exchange resins such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, diethanolamine, triethanolamine, dimethylethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, Lucaine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, theobromine, purine, piperazine, piperidine, N-ethylpiperidine, polyamine resin, etc.
  • Preferred organic bases include isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine,
  • the pharmaceutically acceptable salts of the compounds of the present invention preferably include hydrochloride (such as compound 1-4, 7-23, 26-29, 33-38, 41, 46, 48-49), formate (such as compound 30-32, 39-40, 44-45) and hydrobromide (such as compound 43).
  • hydrochloride such as compound 1-4, 7-23, 26-29, 33-38, 41, 46, 48-49
  • formate such as compound 30-32, 39-40, 44-45
  • hydrobromide such as compound 43.
  • compound of formula II can be prepared by following method:
  • X 1 and X 2 are halogen; PG 1 and G 2 P are protecting groups; LG 1 is a leaving group; R 1 -R 5 and R 11 are as defined in formula II.
  • the Grignard reagent is preferably isopropyl Grignard reagent, and the inert solvent is preferably toluene;
  • II-b is reduced to II-c by a reducing agent in a polar protic solvent
  • the reducing agent is preferably sodium borohydride
  • the polar protic solvent is preferably a methanol/tetrahydrofuran mixed solvent
  • II-c is obtained through halogenation/mesylation/p-toluenesulfonation to obtain II-d;
  • the halogenation reagent is preferably NBS/triphenylphosphine, and the solvent is preferably a halogenated alkane;
  • II-d is alkylated to II-e under the action of a strong base to obtain II-f;
  • the strong base is preferably LDA, and the ether solvent is preferably tetrahydrofuran;
  • the protecting group PG 1 is preferably BOC
  • the deprotection condition is preferably an acid such as trifluoroacetic acid
  • the solvent is preferably a halogenated alkane
  • II-g is ring-closed by a strong base to obtain II-h;
  • the strong base is preferably sodium hydride, and the solvent used is preferably DMAc;
  • II-h obtains II-i by reducing the amide with a reducing agent such as borane; the solvent used is preferably tetrahydrofuran;
  • the bis-boron pinacol ester replaces the bromine in II-i to obtain boron ester II-j;
  • the palladium catalyst is preferably PdCl 2 dppf, the base is preferably potassium phosphate, and the solvent used is preferably p-toluene;
  • Boron ester II-j and aromatic halide R 2 -X 2 are catalyzed by a Pd catalyst and a phosphorus ligand, and a coupling reaction is carried out in a base and an inert solvent to obtain II-k;
  • the Pd catalyst is preferably Pd 2 (dba) 3
  • the phosphorus ligand is preferably XantPhos
  • the base is preferably potassium phosphate
  • the solvent used is preferably a toluene/water mixed solvent;
  • the protecting group is preferably benzyl
  • the deprotection conditions used are preferably chloroethyl chloroformate
  • the solvent used is preferably a halogenated alkane
  • the compound of formula II is obtained through reductive amination reaction of II-1 and aldehyde compound in a polar solvent;
  • the reducing agent used is preferably sodium cyanoborohydride, and the solvent is preferably methanol.
  • the compounds of formulas I, II and III of the present invention, their pharmaceutically acceptable salts, enantiomers, diastereomers, tautomers, solvates, isotopic substitutions, polymorphs, prodrugs and metabolites are inhibitors of the interaction between YAP/TAZ and TEAD, more specifically, inhibitors of the interaction between YAP and TEAD. Therefore, the compounds of formulas I, II and III of the present invention, their pharmaceutically acceptable salts, enantiomers, diastereomers, tautomers, solvates, isotopic substitutions, polymorphs, prodrugs and metabolites can be used for the treatment or prevention of diseases mediated by the interaction of YAP/TAZ and TEAD.
  • disease mediated by the interaction between YAP/TAZ and TEAD refers to a disease in which the interaction between YAP/TAZ and TEAD is involved in the occurrence and/or development of the disease, and the purpose of remission, treatment and/or prevention can be achieved by inhibiting the expression and/or activity of YAP and TEAD or by inhibiting or blocking the interaction of YAP-TEAD protein.
  • diseases mediated by the interaction of YAP/TAZ and TEAD include but are not limited to lung cancer (such as non-small cell lung cancer), breast cancer, head and neck cancer, esophageal cancer, ovarian cancer, liver cancer, prostate cancer, mesothelioma, pancreatic cancer, melanoma, colon cancer, thyroid cancer and skin cancer.
  • lung cancer such as non-small cell lung cancer
  • breast cancer breast cancer
  • head and neck cancer esophageal cancer
  • ovarian cancer liver cancer
  • prostate cancer mesothelioma
  • pancreatic cancer pancreatic cancer
  • melanoma colon cancer
  • thyroid cancer thyroid cancer and skin cancer.
  • the disease mediated by the interaction of YAP/TAZ and TEAD is malignant pleural mesothelioma (MPM), a rare thoracic malignancy.
  • MPM malignant pleural mesothelioma
  • Abnormal activation of the Hippo-YAP pathway exists in about 70% of MPM patients and is considered to be an important cancer driver gene. Reducing the activity of the Hippo-YAP pathway through biological means and small chemical molecules has shown good tumor growth inhibitory activity.
  • the disease mediated by the interaction of YAP/TAZ and TEAD is pancreatic ductal adenocarcinoma (PDAC).
  • PDAC pancreatic ductal adenocarcinoma
  • the YAP signaling pathway can produce drug resistance to a variety of anti-cancer targeted drugs by mediating tumor cell dormancy and resisting apoptosis. Inhibiting the Hippo-YAP signaling pathway can increase the sensitivity of tumor cells to targeted drugs. In addition, as a pathway that promotes tumor cell growth, Hippo-YAP is overactivated in multiple drug-resistant tumor models. Inhibiting its activity can significantly increase the sensitivity of therapeutic cells to related inhibitors.
  • compounds I, II and III of the present invention their pharmaceutically acceptable salts, enantiomers, diastereoisomers, tautomers, solvates, isotope substitutions, polymorphs, prodrugs and metabolites can be used to improve the sensitivity of therapeutic cells to targeted drugs (such as EGFR inhibitors, BRAF-targeted inhibitors, MEK-targeted inhibitors, etc.), and improve the therapeutic effect of these tumor-targeted drugs.
  • targeted drugs such as EGFR inhibitors, BRAF-targeted inhibitors, MEK-targeted inhibitors, etc.
  • the present invention provides a method of treating or preventing a disease mediated by the interaction of YAP/TAZ and TEAD as described herein, the method comprising administering to a subject in need thereof a therapeutically effective amount of a compound of the present invention I, II or III, a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer, solvate, isotopic substitution, polymorph, prodrug or metabolite, or a pharmaceutical composition thereof.
  • Subject or “individual” as used herein refers to mammals, especially primates, more specifically humans.
  • prevent and preventing include reducing the likelihood of a disease or condition occurring or worsening in a patient; the term also includes preventing the occurrence of a disease or condition in a mammal, especially when such mammals are susceptible to the disease or condition but have not yet been diagnosed with the disease or condition.
  • Treatment and other similar synonyms include the following meanings: (i) inhibiting a disease or condition, i.e. arresting its development; (ii) ameliorating a disease or condition, i.e. causing regression of the state of the disease or condition; or (iii) alleviating the symptoms caused by the disease or condition.
  • the terms “effective amount”, “therapeutically effective amount”, “administered amount”, and “pharmaceutically effective amount” refer to the amount of at least one agent or compound that is sufficient to alleviate to some extent one or more symptoms of the disease or condition being treated after administration. The result may be a reduction and/or alleviation of a sign, symptom or cause, or any other desired change in a biological system.
  • a therapeutically "effective amount” is the amount of a composition comprising a compound I, II or III disclosed herein, a pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer, solvate, isotopic substitution, polymorph, prodrug or metabolite thereof, required to provide a clinically significant disease-modifying effect.
  • the dose can be determined according to the subject's age, sex, disease and its severity and other factors. Effective amounts suitable for any individual case can be determined using techniques such as dose escalation assays.
  • administering refers to methods capable of delivering a compound or composition to the desired site of biological action.
  • Administration methods known in the art can be used in the present invention. These methods include, but are not limited to, oral routes, transduodenal routes, parenteral injection (including intrapulmonary, intranasal, intrathecal, intravenous, subcutaneous, intraperitoneal, intramuscular, intraarterial injection or infusion), topical administration, and rectal administration.
  • the compounds I, II or III of the present invention are administered orally.
  • the compounds I, II or III of the present invention can be used in combination with other pharmacologically active compounds, especially for the treatment of cancer.
  • compounds I, II or III of the present invention pharmaceutically acceptable salts, enantiomers, diastereomers, tautomers, solvates, isotopic substitutions, polymorphs, prodrugs or metabolites, or pharmaceutical compositions thereof of the present invention may be administered simultaneously, sequentially or separately in combination with one or more drugs selected from the group consisting of chemotherapeutic agents such as mitotic inhibitors such as taxanes, vinca alkaloids, paclitaxel, docetaxel, vincristine, vinblastine, vinca Ruibine or vinflunine, other anticancer agents such as cisplatin, 5-fluorouracil or 5-fluoro-2-4(1H,3H)-pyrimidinedione (5FU), flutamide or gemcitabine, etc.
  • chemotherapeutic agents such as mitotic inhibitors such as taxanes, vinca alkaloids, paclitaxel, docetaxel, vincristine, vinblastine, vinca Ruibine or vinflunine
  • the compound of formula I of the present invention, its pharmaceutically acceptable salts and isomers, or the pharmaceutical composition containing the compound of formula I of the present invention, its pharmaceutically acceptable salts and isomers can also be used together with tumor immunotherapy drugs known in the art, such as anti-PD1 antibodies, etc. for the treatment of cancer.
  • tumor immunotherapy drugs known in the art, such as anti-PD1 antibodies, etc. for the treatment of cancer.
  • the compounds I, II or III of the present invention, their pharmaceutically acceptable salts, enantiomers, diastereomers, tautomers, solvates, isotope substitutions, polymorphs, prodrugs or metabolites or pharmaceutical compositions thereof can also be used in combination with conventional radiotherapy.
  • combination refers to the drug treatment obtained by mixing or combining more than one active ingredient, which includes fixed and non-fixed combinations of active ingredients, or refers to the combination of two or more different therapeutic means.
  • fixed combination refers to the simultaneous administration to a patient of at least one compound described herein and at least one co-agent in the form of a single entity or single dosage form.
  • variable combination refers to simultaneous, concomitant or sequential administration at variable intervals of at least one compound described herein and at least one synergistic agent as separate entities to a patient. These also apply to cocktail therapy, eg the administration of three or more active ingredients.
  • the present invention also provides a pharmaceutical composition, which contains the compound I, II or III of the present invention, its pharmaceutically acceptable salt, enantiomer, diastereomer, tautomer, solvate, isotope substitution, polymorph, prodrug or metabolite, and a pharmaceutically acceptable carrier or excipient.
  • pharmaceutical composition refers to a preparation containing compound I, II or III, pharmaceutically acceptable salts, enantiomers, diastereomers, tautomers, solvates, isotopic substitutions, polymorphs, prodrugs or metabolites thereof and vehicles generally accepted in the art for delivering biologically active compounds to mammals (such as humans).
  • the medium includes a pharmaceutically acceptable carrier.
  • the purpose of the pharmaceutical composition is to promote the administration of the organism, facilitate the absorption of the active ingredient and thus exert its biological activity.
  • pharmaceutically acceptable refers to a substance (such as a carrier or diluent) that does not affect the biological activity or properties of the compounds I, II or III of the present invention, their pharmaceutically acceptable salts, enantiomers, diastereomers, tautomers, solvates, isotopic substitutions, polymorphs, prodrugs or metabolites, and is relatively non-toxic, that is, the substance can be administered to an individual without causing adverse biological reactions or interacting with any components contained in the composition in an adverse manner.
  • “Pharmaceutically acceptable carrier or excipient” includes, but is not limited to, any adjuvant, carrier, excipient, glidant, sweetener, diluent, preservative, dye/colorant, flavoring agent, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent or emulsifying agent approved by the relevant government regulatory agency as acceptable for human or livestock use.
  • the active ingredients of the pharmaceutical composition of the present invention may contain other known anticancer agents, including but not limited to taxanes, vinca alkaloids, paclitaxel, docetaxel, vincristine, vinblastine, vinorelbine, Vinflunine, cisplatin, 5-fluorouracil, 5-fluoro-2-4(1H,3H)-pyrimidinedione (5FU), flutamide and gemcitabine, etc.
  • taxanes including but not limited to taxanes, vinca alkaloids, paclitaxel, docetaxel, vincristine, vinblastine, vinorelbine, Vinflunine, cisplatin, 5-fluorouracil, 5-fluoro-2-4(1H,3H)-pyrimidinedione (5FU), flutamide and gemcitabine, etc.
  • the present invention relates to compounds I, II or III of the present invention, pharmaceutically acceptable salts, enantiomers, diastereomers, tautomers, solvates, isotope substitutions, polymorphs, prodrugs or metabolites or pharmaceutical compositions thereof in the treatment or prevention of diseases mediated by YAP/TAZ and TEAD interactions described herein, or in the preparation of drugs for the treatment or prevention of diseases mediated by YAP/TAZ-TEAD interactions described herein.
  • the present invention also provides compounds I, II or III described in the present invention, pharmaceutically acceptable salts, enantiomers, diastereomers, tautomers, solvates, isotopic substitutions, polymorphs, prodrugs or metabolites or pharmaceutical compositions thereof for the treatment or prevention of diseases mediated by the interaction of YAP/TAZ and TEAD as described herein.
  • the starting materials used in the following examples can be purchased from chemical distributors such as Aldrich, TCI, Alfa Aesar, Bi De, Anaiji, etc., or can be synthesized by known methods.
  • Step 1 Add 1,3-dibromo-5-fluoro-2-iodobenzene (7.50 g, 19.7 mmol), toluene (45 mL) to a dry three-necked flask successively under nitrogen protection, and add isopropylmagnesium chloride (12.8 mL, 25.6 mmol, 2.0 M) dropwise at -30°C, and the obtained brown solution is stirred at -30°C for 30 minutes. Then DMF (4.75g, 65.0mmol) was added to the solution, and the reaction solution was naturally warmed to 0°C in 30 minutes, and continued to stir at 0°C for 30 minutes. Spot plate showed complete reaction.
  • reaction solution was quenched by pouring into saturated ammonium chloride solution.
  • the resulting mixture was extracted with ethyl acetate.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • the obtained residue was purified by silica gel chromatography (petroleum ether) to obtain yellow solid A-1 (4.10 g, yield: 73.9%).
  • Step 2 Add compound A-1 (4.10 g, 14.5 mmol), tetrahydrofuran (40 mL), methanol (6 mL) and sodium borohydride (329 mg, 8.70 mmol) sequentially into a dry one-necked bottle.
  • the reaction solution was stirred at 20°C for 0.5 hours. Spot plate showed complete reaction.
  • the reaction solution was concentrated under reduced pressure.
  • the concentrate was diluted with water, and the aqueous phase was extracted twice with ethyl acetate. The combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain yellow solid A-2 (4.12 g, crude product).
  • Step 3 Add compound A-2 (4.12g, 14.5mmol), dichloromethane (60mL), triphenylphosphine (4.56g, 17.4mmol) and NBS (3.10g, 17.4mmol) sequentially into a dry single-necked bottle at 20°C. The reaction solution was stirred at 20°C for 0.5 hours. Spot plate showed complete reaction. The reaction solution was concentrated to dryness under reduced pressure. The obtained residue was purified by silica gel chromatography (petroleum ether) to obtain white solid A (4.40 g, yield: 87.5%).
  • Step 4 Ethyl 2-bromo-2-phenylacetate (13g, 53.48mmol, 1.0eq), tert-butyl (2-aminoethyl)carbamate (9.42g, 58.82mmol, 1.1eq) were dissolved in ethanol (130mL) and triethylamine (8.12g, 80.21mmol, 1.5eq) was added and stirred at 60°C for 12 hours, TLC showed that the raw material was completely reacted New spots were formed, the reaction solution was spin-dried under reduced pressure, placed in water and extracted with ethyl acetate, the organic phase was dried over anhydrous sodium sulfate, filtered, and spin-dried under reduced pressure to obtain A1-1 (14 g, crude product) as a yellow oil.
  • Step 5 Dissolve A1-1 (14g, 43.42mmol) in dichloromethane (90mL) and add trifluoroacetic acid (30mL), then react at 20°C for 2h, TLC shows that the reaction of the raw materials is complete and new spots are formed, the reaction solution is spin-dried under reduced pressure, placed in water, adjusted to neutral with saturated NaHCO 3 aqueous solution and extracted with ethyl acetate, the organic phase is dried with anhydrous sodium sulfate, filtered, and spin-dried under reduced pressure to obtain A1-2 (10g , crude product) as a yellow oil.
  • Step 6 Dissolve A1-2 (9.65g, 43.41mmol) in ethanol (100mL) and heat to 85°C, add triethylamine (6.59g, 65.12mmol) and react at this temperature for 12h, TLC shows that the reaction of raw materials is complete and new spots are formed, the reaction solution is spin-dried under reduced pressure, put into water, adjust the pH to neutral with saturated NaHCO 3 aqueous solution and extract with ethyl acetate, and dry the organic phase with anhydrous sodium sulfate. Filtration and spin-drying under reduced pressure gave A1-3 (5.6 g, crude product) as a white solid.
  • Step 8 Compound A1-4 (6.82g, 24.7mmol) was dissolved in tetrahydrofuran (120mL), and 60% sodium hydrogen (1.09g, 27.2mmol) was added in one batch at 20°C, and stirred for 5 minutes. Benzyl bromide (4.83 g, 28.4 mmol) was then added and stirred overnight. After spotting the plate to follow the reaction to completion, the reaction was quenched with methanol (5 mL) and diluted with water (80 mL). Concentrate under reduced pressure to remove most of the solvent.
  • Step 9 To a solution of compound A1-5 (3.59 g, 9.80 mmol) in tetrahydrofuran (40 mL) was added dropwise lithium diisopropylamide solution (6.4 mL, 12.7 mmol, 2.0 M) at -50°C. The reaction solution was stirred at -30°C for 1 hour. Then the temperature was lowered to -50°C, and a solution of compound A (3.40 g, 9.8 mmol) in tetrahydrofuran (10 mL) was added to the reaction solution. The temperature of the reaction solution was gradually raised to 20°C, and stirring was continued for 12 hours. After the reaction was completed, it was quenched by adding saturated ammonium chloride solution.
  • Step ten Add trifluoroacetic acid (20 mL) to a solution of A1-6 (6.10 g, 9.65 mmol) in dichloromethane (40 mL). The reaction solution was stirred at 30°C for 2 hours. After the reaction was completed, the reaction solution was concentrated to dryness under reduced pressure. To the residue obtained by concentration was added saturated sodium bicarbonate solution (60 mL), and extracted with ethyl acetate. The combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain yellow solid A1-7 (5.10 g, yield: 99.2%).
  • Step 12 Add compound A1-8 (4.0 g, 8.86 mmol), tetrahydrofuran (40 mL) and borane dimethyl sulfide (35.5 mL, 70.9 mmol, 2M) sequentially into a dry one-necked bottle. The reaction solution was stirred at 65°C for 20 hours. The reaction solution was quenched with methanol, then concentrated to dryness under reduced pressure. The obtained residue was dissolved in methanol (40 mL) and 4N dioxane hydrochloride (20 mL), and the reaction solution was stirred at 20° C. for 1 hour.
  • reaction solution was concentrated to dryness under reduced pressure, added with saturated sodium bicarbonate solution (150 mL), and extracted twice with ethyl acetate. The combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain colorless oil A1-9 (4.10 g, crude product).
  • Step 13 Add compound A1-9 (4.10 g, 8.86 mmol), 1,2-dichloroethane (40 mL) and 2-chloroethyl chloroformate (3.17 g, 22.2 mmol) sequentially into a dry one-necked bottle.
  • the reaction solution was stirred at 80°C for 16 hours.
  • the reaction solution was concentrated to dryness under reduced pressure.
  • the obtained residue was dissolved in methanol and stirred at 75°C for 1.5 hours. After the reaction was completed, the solution was concentrated under reduced pressure to obtain compound 6 (3.10 g, crude product) as a yellow oil.
  • Step 14 Add compound 6 (3.08g, 8.86mmol), dichloromethane (50mL), triethylamine (3.58g, 35.4mmol) and Boc 2 O (2.90g, 13.3mmol) sequentially into a dry one-necked bottle.
  • the reaction solution was stirred at 20°C for 1 hour and then concentrated under reduced pressure.
  • Step 16 Add compound A1-11 (600mg, 1.25mmol), bis-pinacol borate (635mg, 2.50mmol), xylene (10mL), Pd(dppf)Cl 2 ⁇ CH 2 Cl 2 (102mg, 0.125mmol) and potassium pivalate (526mg, 3.75mmol) in a dry three-necked flask.
  • Step 1 Add tetraisopropyl titanate (24 g, 84.9 mmol) dropwise to a solution of 3-benzyloxybenzaldehyde (A2-1, 45 g, 212.3 mmol) in dichloromethane (900 mL) under the protection of argon at 0°C. After slowly warming to room temperature, TMSCN (84.2 g, 849.2 mmol) was added. Stir at room temperature for 4h. TLC showed that the reaction was complete, and the reaction was quenched by adding aqueous hydrochloric acid (20ml, 1.5M) at 0°C. Water (270 mL) was added and extracted with ethyl acetate (3 x 200 mL).
  • Step 2 2-(3-(benzyloxy)phenyl)-2-hydroxyacetonitrile (44g, 183.9mmol) was dissolved in HCl/MeOH (4N, 500ml). The reaction was stirred at 80°C for 14h. TLC confirmed complete reaction. The reaction solution was concentrated under reduced pressure to nearly dryness. The residue was added with water (400 mL) and extracted with ethyl acetate (3*300 mL). The organic phases were combined, washed with water (2*150 mL) and saturated brine (100 mL).
  • Step 3 To a solution of methyl 2-(3-(benzyloxy)phenyl)-2-hydroxyacetate (37.3 g, 137.0 mmol) in dichloromethane (100 mL) was added SOCl 2 (18 g, 150.7 mmol). The temperature was raised to 60°C for 5h. TLC showed that the reaction was complete, and the reaction solution was concentrated under reduced pressure. Water (100 mL) was added to the residue, and the pH was adjusted to 8 with saturated aqueous sodium bicarbonate. Extracted with ethyl acetate (3*400 mL). The organic phases were combined, washed with water (2*200mL) and saturated brine (3*200mL).
  • Step 4 Add triethylamine (18.5 g, 183.2 mmol) and N-tert-butoxycarbonyl-1,2-ethylenediamine (25.4 g, 158.6 mmol) to a solution of methyl 2-(3-(benzyloxy)phenyl)-2-chloroacetate (35.5 g, 122.1 mmol) in methanol (350 mL). The temperature was raised to 60°C and the reaction was stirred for 18h. TLC and LCMS showed the reaction was complete. The reaction solution was concentrated under reduced pressure. The residue was added with water (600 mL) and extracted with ethyl acetate (3*200 mL). The combined organic phases were washed with saturated brine (3 ⁇ 200 mL).
  • Step 5 Trifluoroacetic acid (60 mL) was added dropwise to a solution of methyl 2-((2-((tert-butoxycarbonyl)amino)ethyl)amino)-2-(3-(benzyloxy)phenyl)acetate (30.0 g, 72.4 mmol) in dichloromethane (300 mL). Reaction at 20°C for 2h. The reaction solution was concentrated to dryness under reduced pressure. Ethyl acetate (150 mL) and saturated aqueous sodium bicarbonate (300 mL) were added to the residue. The organic phase was collected and the aqueous phase was extracted with ethyl acetate (3*150 mL).
  • Step 6 To a solution of methyl 2-((2-aminoethyl)amino)-2-(3-(benzyloxy)phenyl)acetate (27.0 g, 85.85 mmol) in ethanol (50 mL) was added triethylamine (13.0 g, 128.77 mmol). The reaction was stirred at 85°C for 3h.
  • reaction solution was concentrated under reduced pressure, the residue was diluted with ethyl acetate (100 mL), washed with water (3*100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated to obtain crude 3-(3-(benzyloxy)phenyl)piperazin-2-one (A2-7, 17.0 g, two-step yield: 83%), which was directly used in the next reaction.
  • Step 7 Di-tert-butyl dicarbonate (14.5 g, 66.3 mmol) and triethylamine (18.3 g, 180.8 mmol) were added to a solution of 3-(3-(benzyloxy)phenyl)piperazin-2-one (17.0 g, 60.3 mmol) in 1,4-dioxane (150 ml). Stir at 90°C for 1.5h.
  • reaction solution was concentrated to dryness, diethyl ether (100 mL) was added to stir for slurry, and a white solid 2-(3-(benzyloxy)phenyl)-3-oxopiperazine-1-carboxylic acid tert-butyl ester (A2-8, 18.0 g, yield: 78.2%) was obtained by filtration.
  • Step 8 Add NaH (60% dispersion in oil, 785 mg, 19.6 mmol) to a solution of tert-butyl 2-(3-(benzyloxy)phenyl)-3-oxopiperazine-1-carboxylate (5.0 g, 13.1 mmol) in THF (75 mL) at 20°C under the protection of argon. After stirring for 30 min benzyl bromide (3.4 g, 19.62 mmol) was added. Greenhouse stirring reaction 16h. The reaction solution was diluted with ethyl acetate (100 mL), and poured into ice water (150 mL).
  • Step 9 Add LDA (2.0M in THF, 14.9mL, 29.8mmol) dropwise to a solution of tert-butyl 4-benzyl-2-(3-(benzyloxy)phenyl)-3-oxopiperazine-1-carboxylate (10.8g, 22.9mmol) in tetrahydrofuran (150mL) under the protection of argon at -50°C. After dropping, stir at -30°C for 1h. The temperature was lowered to -50°C, and a solution of 1,3-dibromo-2-(bromomethyl)-5-fluorobenzene (7.2 g, 20.8 mmol) in tetrahydrofuran (50 mL) was added dropwise.
  • LDA 2.0M in THF, 14.9mL, 29.8mmol
  • Step ten Trifluoroacetic acid (45 mL) was added dropwise to a solution of 4-benzyl-2-(3-(benzyloxy)phenyl)-2-(2,6-dibromo-4-fluorobenzyl)-3-oxopiperazine-1-carboxylic acid tert-butyl ester (13.0 g, 17.6 mmol) in dichloromethane (85 mL). Reaction at 30°C for 2h. Concentrate to dryness under reduced pressure. The residue was added dichloromethane (200 mL) and saturated aqueous sodium bicarbonate (300 mL). The aqueous phase was further extracted with dichloromethane (3*150 mL).
  • Step eleven 1-benzyl-3-(3-(benzyloxy)phenyl)-3-(2,6-dibromo-4-fluorobenzyl)piperazin-2-one (3.0 g, 4.70 mmol) was dissolved in trifluoroacetic acid (50 mL). Heated to 60°C and stirred for 2h.
  • reaction solution was concentrated to dryness under reduced pressure, then diluted with ethyl acetate (300 mL), washed with saturated aqueous sodium bicarbonate (400 mL), washed with saturated brine (2*400 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel chromatography (0 to 50% gradient of ethyl acetate: petroleum ether) to obtain 1-benzyl-3-(2,6-dibromo-4-fluorobenzyl)-3-(3-hydroxyphenyl)piperazine-2 as a white solid - Ketone (A2-12, 2.1 g, yield: 82%).
  • Step twelve To a solution of 1-benzyl-3-(2,6-dibromo-4-fluorobenzyl)-3-(3-hydroxyphenyl)piperazin-2-one (1.9 g, 3.47 mmol) and potassium carbonate (1.4 g, 10.40 mmol) in MeCN (30 mL) was added dimethyl sulfate (525 mg, 4.16 mmol). The reaction was heated to 60°C and stirred for 4h. The reaction solution was diluted with ethyl acetate (100mL), washed with saturated aqueous sodium bicarbonate (100mL), washed with saturated brine (2*100mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. 2-13, 1.16 g, yield: 60%).
  • Step 1 Add N-bromosuccinimide (34.40 g, 193.26 mmol) and azobisisobutyronitrile (9.76 g, 59.46 mmol) to a solution of methyl 3-fluoro-phenylacetate (25.00 g, 148.66 mmol) in carbon tetrachloride (250 mL) under the protection of argon. Heated to 70°C for 20h. LCMS monitored the completion of the reaction.
  • Step 1 to Step 9 Refer to the synthesis method of intermediate A3, replace A3-1 with A5-1, and perform nine-step reaction to obtain intermediate A5-10.
  • Step 10 Add compound A5-10 (585mg, 1.29mmol), tetrahydrofuran (10mL) and borane dimethyl sulfide (5.2mL, 10.3mmol, 2M) sequentially into a dry single-necked bottle. The reaction solution was stirred at 35°C for 50 hours. The reaction solution was quenched with methanol, then concentrated to dryness under reduced pressure. The obtained residue was dissolved in methanol (10 mL) and 4N dioxane hydrochloride (2 mL), and the reaction solution was stirred at 20° C. for 1 hour. The reaction solution was concentrated to dryness under reduced pressure, saturated sodium bicarbonate solution (20 mL) was added, and extracted twice with ethyl acetate.
  • Step 12 Add compound A5-12 (310mg, 0.656mmol), bis-pinacol borate (333mg, 1.31mmol), xylene (6mL), Pd(dppf)Cl 2 ⁇ CH 2 Cl 2 (54mg, 0.066mmol) and potassium pivalate (276mg, 1.97mmol) in a dry three-necked flask.
  • the reaction solution was stirred under nitrogen protection at 100°C for 12 hours. After the reaction was completed, the reaction solution was diluted with water and extracted twice with ethyl acetate. The combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain yellow oil A5 (250 mg, crude product).
  • Step 1 Add compound A1-11 (200mg, 0.42mmol) and sodium methoxide solution (6mL, 5.4M) into a single-necked bottle. The mixture was heated to 80°C overnight. The reaction solution was quenched with saturated ammonium chloride solution, extracted with ethyl acetate (50 mL*2), the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain yellow oil A6-1 (250 mg, crude product).
  • Step 2 Refer to the synthesis method of intermediate A1, replace A1-11 with A6-1, and perform a one-step reaction to obtain intermediate A6.
  • Step 1 Add compound A1-10 (390 mg, 0.87 mmol) and anhydrous tetrahydrofuran (5 mL) into a three-neck flask. LDA (0.865 mL, 2M, 1.73 mmol) was added dropwise at -50°C. The mixture was continued to react at -50°C for 45 minutes. Then iodomethane (246 mg, 1.73 mmol) was added dropwise.
  • Step 2 Refer to the synthesis method of intermediate A1, replace A1-11 with A7-1, and perform a one-step reaction to obtain intermediate A7.
  • Step 1 At 25 degrees Celsius, add dichloromethane (20mL), 2-bromo-3,4-difluorobenzoic acid (B1-1, 2g, 8.44mmol, 1.0eq), HATU (4.83g, 12.7mmol, 1.5eq), triethylamine (5.5mL, 42.2mmol, 5.0eq) and ammonium chloride (1.35g, 25.3 mmol, 3.0 eq). The yellow reaction was stirred at this temperature for 12 hours. TLC showed the reaction was complete.
  • Step 2 At 25°C, tetrahydrofuran (20mL), 2-bromo-3,4-difluorobenzamide (B1-2, 1.8g, 7.63mmol, 1.0eq), triethylamine (2.12mL, 15.3mmol, 2.0eq) and trifluoroacetic anhydride (2.39g, 11.4mmol, 1.5eq) were successively added into a round bottom flask. The yellow reaction was stirred at this temperature for 12 hours. TLC showed the reaction was complete.
  • Step 3 Add dimethylsulfoxide (11.5mL), 2-bromo-3,4-difluorobenzonitrile (B1-3, 1.5g, 6.88mmol, 1.0eq), potassium carbonate (4.75g, 34.4mmol, 5.0eq) and acetylhydroxamic acid (1.55g, 20.6mmol, 3.0eq) into a round-bottomed flask successively.
  • the yellow reaction solution was warmed up to 80°C and stirred for 4 hours. TLC showed the reaction was complete.
  • Step 1 Add tetrahydrofuran (20mL), 2-((tert-butyldimethylsilyl)oxy)ethan-1-ol (B2-1, 1.76g, 10.0mmol, 1.0eq), imidazole (2.04g, 30.0mmol, 3.0eq), triphenylphosphine (3.93g, 15.0mmol, 1.5eq ) and elemental iodine (3.04g, 12.0mmol, 1.2eq). The pale yellow reaction was stirred at this temperature for 2 hours. TLC showed the reaction was complete.
  • Step 2 Add compound B1 (500 mg, 2.31 mmol), DMF (10 mL), compound B2-2 (727 mg, 2.54 mmol) and potassium carbonate (638 mg, 4.62 mmol) sequentially into a dry single-necked bottle.
  • the reaction solution was stirred at 80° C. for 12 hours.
  • the reaction solution was diluted with water, and the aqueous phase was extracted twice with petroleum ether/ethyl acetate (1/1, 30 mL).
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 1 At 25°C, add anhydrous methanol (42mL), 2-bromo-3,4-difluorobenzoic acid (B1-1, 3.3g, 14.8mmol, 1.0eq) into a round bottom flask in sequence, and then add thionyl chloride (7mL) dropwise. The yellow reaction was stirred at this temperature for 4 hours. TLC showed the reaction was complete. The volatiles were removed under reduced pressure, and the resulting residue was purified by silica gel chromatography (petroleum ether) to give methyl 2-bromo-3,4-difluorobenzoate (B3-1, 3.4 g, yield: 92.6%) as a yellow oil.
  • 2-bromo-3,4-difluorobenzoic acid B1-1, 3.3g, 14.8mmol, 1.0eq
  • Step 2 refer to the synthesis method of intermediate B1 step 3 to obtain yellow solid methyl 2-bromo-3-fluoro-4-hydroxybenzoate (B3-2, 3.5 g, yield: 93.5%).
  • Step 3 Refer to the synthesis method of intermediate B2 step 2 to obtain colorless oily product 2-bromo-4-(2-(((tert-butyldimethylsilyl)oxy)ethoxy)-3-fluorobenzoic acid methyl ester (B3, 1.44g, yield: 88.3%).
  • Step 1 Add compound B1 (500mg, 2.31mmol), DMF (10mL), ethyl bromoacetate (463mg, 2.77mmol) and potassium carbonate (638mg, 4.62mmol) sequentially into a dry one-necked bottle.
  • the reaction solution was stirred at 20°C for 12 hours.
  • the reaction solution was diluted with water, and the aqueous phase was extracted twice with ethyl acetate.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 1 Add compound B1-3 (1.0 g, 4.59 mmol), diethyl malonate (883 mg, 5.51 mmol), DMF (10 mL) and potassium carbonate (1.27 g, 9.18 mmol) sequentially into a dry one-necked bottle.
  • the reaction solution was stirred at 35°C for 12 hours.
  • the reaction solution was diluted with water and extracted twice with ethyl acetate.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 2 Add compound B5-1 (1.60 g, 4.47 mmol), dimethyl sulfoxide (16 mL), water (0.8 mL) and lithium chloride (379 mg, 8.94 mmol) sequentially into a dry one-necked bottle.
  • the reaction solution was stirred at 85°C for 36 hours.
  • the reaction solution was diluted with water and extracted twice with ethyl acetate.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 4 Add compound B5-3 (100mg, 0.410mmol), dichloromethane (3mL), DMF (1mL), tert-butyldimethylsilyl chloride (93mg, 0.615mmol) and N,N-diisopropylethylamine (106mg, 0.820mmol) sequentially into a dry one-necked bottle.
  • the reaction solution was stirred at 20°C for 1 hour.
  • the reaction solution was diluted with water and extracted twice with ethyl acetate.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 1 Add L-methyl lactate (1.0g, 9.61mmol), dichloromethane (15mL), tert-butyldimethylsilyl chloride (1.88g, 12.5mmol), triethylamine (1.46g, 14.4mmol) and 4-dimethylaminopyridine (117mg, 0.961mmol) sequentially into a dry one-necked bottle.
  • the reaction solution was stirred at 20°C for 12 hours.
  • the reaction solution was diluted with water and extracted twice with dichloromethane.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 2 Add compound B10-1 (1.70g, 7.78mmol), tetrahydrofuran (20mL) and diisobutylaluminum hydride (13.0mL, 19.5mmol, 1.5M) sequentially into a dry one-necked flask at 0°C.
  • the reaction solution was stirred at 25°C for 2 hours.
  • the reaction was quenched by adding 1.0 M sodium potassium tartrate solution (30 mL) at 0°C, and stirring was continued at 25°C for 30 minutes.
  • the resulting mixture was extracted twice with ethyl acetate.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 3 Add compound B10-2 (500mg, 2.63mmol), dichloromethane (10mL), triethylamine (798mg, 7.89mmol) and methanesulfonic anhydride (688mg, 3.95mmol) sequentially into a dry one-necked bottle at 0°C.
  • the reaction solution was stirred at 25°C for 2 hours.
  • the reaction solution was diluted with water and extracted twice with dichloromethane.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 4 Add compound B1 (200mg, 0.926mmol), DMF (6mL), compound B10-3 (274mg, 1.02mmol), sodium iodide (274mg, 1.85mmol) and potassium carbonate (256mg, 1.85mmol) sequentially into a dry single-necked bottle.
  • the reaction solution was stirred at 80° C. for 12 hours.
  • the reaction solution was diluted with water and extracted twice with petroleum ether/ethyl acetate (1/1, 15 mL).
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • a colorless oily substance B12 (1.32 g, yield: 85.7%) was synthesized referring to the synthesis method of intermediate B3.
  • Step 1 B13-1 (6.5g, 27.8mmol, 1.0eq), DMF-DMA (13mL, 61.1mmol, 2.2eq), triethylamine (4.25mL, 61.1mmol, 2.2eq) and DMF (25mL) were sequentially added to a 500mL round bottom flask, then heated to 110°C and stirred for 3 hours. TLC showed that the reaction was complete, and the reaction solution was diluted with water (50 mL), and extracted with ethyl acetate (50 mL*3).
  • Step 2 Under nitrogen protection, compound B13-2 (3.7g, 17.3mmol, 1.0eq), zinc cyanide (1.34g, 11.42mmol, 0.66eq) and t-BuXPhos-Pd-G3 (686mg, 0.86mmol, 0.05eq) were sequentially added into a dry three-necked flask, and then THF/H 2 O (10mL/50mL) was added, The reaction solution was stirred at 40°C for 12 hours. After the reaction was complete, the reaction solution was concentrated under reduced pressure, and the obtained residue was purified by silica gel chromatography (0-40% ethyl acetate/petroleum ether) to obtain yellow solid B13-3 (2.85 g, yield: 93%).
  • Step 3 Under nitrogen protection, compound B13-3 (0.68g, 4.25mmol, 1.0eq), triethylsilylhydrogen (1mL, 26.6mmol, 6.25eq) and tetrahydrofuran (6mL) were sequentially added to a dry round bottom flask, and the reaction solution was stirred at 60°C for 5 hours. TLC showed that the reaction was complete, and the reaction solution was spin-dried, diluted with water (10 mL), and extracted with ethyl acetate (10 mL*3). The combined organic phases were washed with saturated aqueous sodium bicarbonate (30 mL), saturated brine (30 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography (0-50% ethyl acetate/petroleum ether) to obtain yellow solid B13-4 (566 mg, yield: 82.2%).
  • Step 4 Under cooling in an ice bath, compound B13-4 (562mg, 3.47mmol, 1.0eq) and acetonitrile (10mL) were sequentially added to a dry round bottom flask, and then a solution of NBS (617mg, 3.47mmol, 1.0eq) in acetonitrile (10mL) was added dropwise. The reaction solution was stirred at 0°C for 0.5 hours. TLC showed that the reaction was complete, and the reaction solution was diluted with water (30 mL), extracted with ethyl acetate (30 mL*3).
  • Step 5 Add compound B13-5 (50mg, 0.2mmol, 1.0eq) and dichloromethane (4mL) sequentially to a dry round bottom flask under ice cooling, then add (Boc) 2 O (66mg, 0.3mmol, 1.5eq) and DMAP (24.4mg, 0.2mmol, 1.0eq). The reaction solution was stirred at room temperature for 2 hours. TLC showed that the reaction was complete, and the reaction solution was concentrated. The resulting residue was purified by silica gel chromatography (0-20% ethyl acetate/petroleum ether) to afford white solid B13 (50 mg, yield: 73%).
  • Step 2 Acetic acid (20 mL), B14-2 (21.0 g, 4.65 mmol, 1.0 eq) and NIS (1.57 g, 6.98 mmol, 1.5 eq) were sequentially added to a dry one-necked bottle. The reaction solution was stirred at 25° C. for 12 hours. After the reaction was complete, the reaction solution was diluted with water (100 mL), and extracted with ethyl acetate (35 mL*3).
  • Step 3 Add tetrahydrofuran (20mL), B14-3 (1.5g, 4.4mmol, 1.0eq), ditriphenylphosphinepalladium dichloride (154mg, 0.22mmol, 0.05eq), cuprous iodide (84mg, 0.44mmol, 0.1eq) and triethylamine (1.22mL, 8.8mmol, 2.0eq), and ethynyltrimethylsilane (682uL, 4.84mmol, 1.1eq) was added dropwise with stirring. The reaction solution was stirred at 25° C. for 12 hours.
  • reaction solution was diluted with water (100 mL), and extracted with ethyl acetate (45 mL*3). The combined organic phases were washed with saturated brine (100 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The obtained residue was dissolved in anhydrous methanol (20 mL), then potassium carbonate (1.22 g, 8.8 mmol, 2.0 eq) was added, and the reaction solution was stirred for 2 hours. After the reaction was complete, it was filtered under reduced pressure, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel chromatography (0-13% ethyl acetate/petroleum ether) to obtain yellow solid B14-4 (700 mg, yield: 66.7%).
  • Step 4 Under nitrogen protection, pyridine (10 mL), compound B14-4 (700 mg, 2.93 mmol, 1.0 eq) and CpRuCl(PPh 3 ) 2 (233 mg, 0.29 mmol, 0.1 eq) were sequentially added into a dry three-necked flask. The reaction solution was stirred at 90°C for 12 hours. After the reaction was complete, the reaction solution was concentrated under reduced pressure, and the obtained residue was purified by silica gel chromatography (0-13% ethyl acetate/petroleum ether) to obtain yellow solid B14-5 (170 mg, yield: 24.3%).
  • Step 5 Add dichloromethane (2mL), B14-5 (70mg, 0.29mmol, 1.0eq), Boc 2 O (96mg, 0.44mmol, 1.5eq), triethylamine (82uL, 0.59mmol, 2.0eq) and N,N-lutidine (4mg, 0.03mmol, 0.1eq) into a dry one-necked bottle in sequence.
  • the reaction solution was stirred at 25°C for 1 hour. After the completion of the reaction, the reaction solution was concentrated under reduced pressure, and the resulting residue was purified by silica gel chromatography (0-7.2% ethyl acetate/petroleum ether) to obtain white solid B14 (94 mg, yield: 94.9%).
  • Step 2 Dissolve 5-bromo-3-fluoropyridin-2-amine (B15-2, 74.50g, 390.05mmol) in tetrahydrofuran (260mL) and water (1000mL), add Zn(CN) 2 (30.22g, 257.45mmol), and replace with argon in vacuum three times. Add t-BuXPhos-Pd G3. (6.80 g, 8.56 mmol), and replace with argon in vacuum 3 times. React at 40°C for 15 hours.
  • reaction solution was slowly poured into ice water (1.0L), extracted with ethyl acetate (3*400mL), and the insoluble matter was filtered off with diatomaceous earth, and the filter residue was rinsed with tetrahydrofuran (300mL).
  • Step 3 6-amino-5-fluoronicotinonitrile (B15-3, 28.53 g, 208.10 mmol) was dissolved in acetone (290 mL) and tert-butanol (145 mL), and DMAP (82.84 g, 677.9 mmol) was added.
  • Step 4 Dissolve tert-butyl N-(3-fluoro-5-cyanopyridin-2-yl)-N-[(2-methylpropan-2-yl)oxycarbonyl]carbamate (B15-4, 58.32g, 172.85mmol) in tetrahydrofuran (630mL), add iodine (87.72g, 345.64mmol), protect with nitrogen, and cool down to -65°C. LDA (2.0M in THF, 440 mL, 888.00 mmol) was added dropwise. After dropping, stir for 10 minutes, then rise to room temperature and react for 16 hours.
  • iodine 87.72g, 345.64mmol
  • reaction solution was slowly poured into ice water (1.0L), extracted with ethyl acetate (3*400mL), the organic phase was washed with saturated brine (2*500mL), the organic phase was dried and concentrated, purified by silica gel column chromatography (0-10% ethyl acetate/petroleum ether), and then slurried with dichloromethane/petroleum ether (1/50) to obtain light yellow powder (5-cyano-3-fluoro-4-iodopyridin-2-yl) tert-butyl carbamate ( B15-5, 23.27g, yield: 37.1%).
  • Step 5 To a solution of tert-butyl (5-cyano-3-fluoro-4-iodopyridin-2-yl)carbamate (B15-5, 32.06g, 88.29mmol) in dichloromethane (360mL) was added dropwise trifluoroacetic acid (130mL) at 0°C. React at room temperature for 2 hours. The reaction solution was concentrated to remove most of the solvent and trifluoroacetic acid.
  • Step 6 Dissolve 6-amino-5-fluoro-4-iodonicotinonitrile (B15-6, 4.58g, 17.43mmol) in tetrafluoroboric acid (150mL), cool down to -10°C, add NaNO 2 (3.32g, 48.13mmol) in batches, and react for 2 hours.
  • reaction solution was poured into icy sodium carbonate aqueous solution (800mL), stirred for 5 minutes, extracted with ethyl acetate (3*200mL), the organic phase was washed with saturated brine (100mL), dried, concentrated, and purified by silica gel column chromatography (0-5% ethyl acetate/petroleum ether) to obtain white solid 5,6-difluoro-4-iodonicotinonitrile (B15-7, 1.47g, yield: 31.7%).
  • Step 7 Dissolve 2-((tert-butyldimethylsilyl)oxy)ethyl-1-hydroxyl (B15-7, 72mg, 0.40mmol) in tetrahydrofuran (8mL), cool down to 0°C, add sodium hydrogen (32mg, 0.76mmol, 60%) in batches, and react for 30 minutes. Then a tetrahydrofuran solution (2 mL) of 5,6-difluoro-4-iodonicotinonitrile (100 mg, 0.37 mmol) was added dropwise, and stirred at room temperature for 2 hours.
  • Step 1 Referring to the synthesis of compound B4, compound B18-1 was synthesized through one-step reaction.
  • Step 2 Referring to the synthesis of compound B17, intermediate compound B18 was synthesized through one-step reaction.
  • Step 1 N,N-dimethylformamide (15mL), 2-bromo-3-fluoro-4-hydroxybenzonitrile (B1, 1.0g, 4.63mmol, 1.0eq), cesium carbonate (3.01g, 9.26mmol, 2.0eq) and sodium chlorodifluoroacetate (1.06g, 6.94mmol, 1.5eq) were sequentially added to a round bottom flask. The yellow reaction solution was warmed up to 90°C and stirred for 6 hours (gas evolution occurred). TLC showed the reaction was complete.
  • Embodiment one the synthesis of compound 1
  • Step 1 Dissolve HMPA (3.0mL) and LDA (7.7mL, 15.4mmol, 2.0M) in anhydrous THF (100mL), and slowly add A1-5 (1.7g, 4.64mmol) in THF (25mL) dropwise at -60°C. After the drop, the reaction solution is heated to -30°C and stirred for 30 minutes, and then stirred at -60°C for another 30 minutes. Then a solution of compound 1-1 (2.20 g, 8.35 mmol) in tetrahydrofuran (10 mL) was added dropwise at -60°C.
  • Embodiment 2 the synthesis of compound 6
  • Step 1 Add compound A1-9 (4.10 g, 8.86 mmol), 1,2-dichloroethane (40 mL) and 2-chloroethyl chloroformate (3.17 g, 22.2 mmol) sequentially into a dry one-necked bottle. The reaction solution was stirred at 80°C for 16 hours. The reaction solution was concentrated to dryness under reduced pressure. The obtained residue was dissolved in methanol and stirred at 75°C for 1.5 hours. After the reaction was complete, the solution was concentrated under reduced pressure to obtain a yellow oil (compound 6, 3.10 g).
  • Embodiment 3 the synthesis of compound 7
  • Embodiment 4 the synthesis of compound 8
  • Step 2 Referring to the synthesis of compound 7, compound 8 was obtained by one-step reaction.
  • Embodiment 5 the synthesis of compound 15
  • Step 2 Add compound 15-1 (19mg, 0.040mmol), methanol (5mL), and hydrogen chloride dioxane solution (1mL, 4mmol) into a single-necked flask in sequence, and stir the reaction solution at 25°C for 3 hours. The solvent was removed under reduced pressure to obtain compound 15 (12 mg, yield: 65.57%) as a yellow solid.
  • Embodiment 6 the synthesis of compound 30
  • Step 1 Referring to the synthesis of compound 15-1, compound 30-2 was obtained in one step.
  • Step 3 Referring to the synthesis of compound B1-2, a one-step reaction was carried out to obtain compound 30-4.
  • Step 4 Referring to the synthesis of compound 15, carry out a one-step reaction to obtain compound 30.
  • Embodiment seven the synthesis of compound 41
  • Step 3 sequentially add compound 41-2 (5 mg, 0.008 mmol), methanol (2 mL) and dioxane hydrochloride (1 mL, 4.0 M) into a single-necked flask, and stir the reaction solution at 20° C. for 1 hour. After the reaction was completed, the reaction solution was concentrated under reduced pressure. The residue was lyophilized to obtain white solid compound 41 (3.7 mg, hydrochloride, yield: 82.2%).
  • Embodiment eight the synthesis of compound 42
  • compound 42-1 was used instead of compound 41-1, and compound 42 was obtained by two-step reaction.
  • Embodiment nine the synthesis of compound 43
  • compound B2 was used instead of compound B20, and XantPhos was used instead of NiXantPhos to perform a three-step reaction to obtain compound 43.
  • Embodiment ten the synthesis of compound 44
  • compound 44-1 was used instead of compound 41-1, and compound 44 was obtained by two-step reaction.
  • Embodiment eleven the synthesis of compound 45
  • Step 1 and Step 2 Refer to the synthesis method of compound 41-2, using compound B4 instead of compound B20, and XantPhos instead of NiXantPhos to carry out two-step reactions to obtain compound 45-2.
  • Step 3 Add compound 45-2 (100mg, 0.156mmol), tetrahydrofuran (1mL), methanol (1mL), water (1mL) and lithium hydroxide monohydrate (66mg, 1.56mmol) into a single-necked flask successively, and stir the reaction solution at 20°C for 1 hour.
  • the mixture was diluted with water and extracted twice with ethyl acetate.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain off-white solid 45-3 (90 mg, yield: 93.8%).
  • Step 4 Add compound 45-3 (90 mg, 0.147 mmol), methanol (2.5 mL), and dioxane hydrochloride (1.0 mL, 4M) to a single-necked flask in sequence, and stir the reaction solution at 20° C. for 1 hour.
  • the mixture was diluted with water and extracted twice with ethyl acetate.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 5 Add compound 45-4 (50mg, 0.095mmol), tetrahydrofuran (1mL), methanol (1mL), water (1mL) and sodium hydroxide (60mg, 1.50mmol) into a single-necked flask successively, and the reaction solution was stirred at 20°C for 1 hour.
  • the mixture was concentrated to dryness, the residue was diluted with dichloromethane/methanol (10:1, 5 mL), and the resulting suspension was filtered. The filtrate was concentrated under reduced pressure to obtain off-white solid 45 (16 mg, yield: 30.8%).
  • Embodiment 12 the synthesis of compound 46
  • compound 46-1 was used instead of compound 45-4, and compound 46 was obtained by one-step reaction.
  • Embodiment 13 the synthesis of compound 47
  • Step 1 Add compound 44 (10mg, 0.019mmol), compound C1 (5mg, 0.029mmol), dichloromethane (1mL) and sodium triacetylborohydride (6mg, 0.029mmol) sequentially into a single-necked flask, and the reaction solution was stirred at 20°C for 2 hours.
  • the reaction solution was diluted with water and extracted twice with dichloromethane.
  • the combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 2 sequentially add compound 47-1 (9 mg, 0.014 mmol), methanol (2.0 mL) and dioxane hydrochloride (1.0 mL, 4M) into a single-necked flask, and stir the reaction solution at 20° C. for 1 hour.
  • the reaction solution was concentrated under reduced pressure and lyophilized to obtain off-white solid 47 (5.5 mg, hydrochloride, yield: 67.9%).
  • Embodiment 14 the synthesis of compound 48
  • compound B5 was used instead of compound B20, and XantPhos was used instead of NiXantPhos to perform a three-step reaction to obtain compound 48.
  • Embodiment 15 the synthesis of compound 49
  • compound 49-1 was used instead of compound 41-2, and compound 49 was obtained by one-step reaction.
  • Embodiment 16 the synthesis of compound 50
  • compound B6 was used instead of compound B20, and XantPhos was used instead of NiXantPhos to perform a three-step reaction to obtain compound 50.
  • Embodiment 17 the synthesis of compound 51
  • compound 51-1 was used instead of compound 41-2, and compound 51 was obtained by one-step reaction.
  • Embodiment 18 the synthesis of compound 52
  • Step 1 Referring to the synthesis method of compound 45-3, compound B5-2 was used instead of compound B4, and a three-step reaction was carried out to obtain compound 52-3.
  • Step 4 Add compound 52-3 (18mg, 0.048mmol), dioxane (2.0mL) and dioxane hydrochloride (1.0mL, 4M) to a single-necked flask in turn, and stir the reaction solution at 20°C for 2 hours. The reaction solution was concentrated under reduced pressure and lyophilized to give yellow solid 52 (14 mg, hydrochloride).
  • Embodiment nineteen the synthesis of compound 53
  • compound 53-1 was used instead of compound 52-2, and compound 53 was obtained by two-step reaction.
  • Embodiment 20 Synthesis of Compound 54
  • compound B7 was used instead of compound B20, and XantPhos was used instead of NiXantPhos to perform a three-step reaction to obtain compound 54.
  • Embodiment 21 Synthesis of Compound 55
  • compound 55-1 was used instead of compound 41-2, and compound 55 was obtained by one-step reaction.
  • Embodiment 22 Synthesis of Compound 56
  • compound B8 was used instead of compound B20, and XantPhos was used instead of NiXantPhos to perform a three-step reaction to obtain compound 56.
  • compound 57-1 was used instead of compound 41-2, and compound 57 was obtained by one-step reaction.
  • compound B9 was used instead of compound B20, and XantPhos was used instead of NiXantPhos to perform a three-step reaction to obtain compound 58.
  • compound 59-1 was used instead of compound 41-2, and compound 59 was obtained by one-step reaction.
  • Embodiment 26 the synthesis of compound 60
  • compound B10 was used instead of compound B20, and XantPhos was used instead of NiXantPhos to perform a three-step reaction to obtain compound 60.
  • Embodiment 27 Synthesis of Compound 61
  • compound 61-1 was used instead of compound 41-2, and compound 61 was obtained by one-step reaction.
  • Embodiment 28 Synthesis of Compound 62
  • compound B11 was used instead of compound B20, and XantPhos was used instead of NiXantPhos to perform a three-step reaction to obtain compound 62.
  • Embodiment 29 Synthesis of Compound 63
  • compound 63-1 was used instead of compound 41-2, and compound 63 was obtained by one-step reaction.
  • Embodiment 30 the synthesis of compound 64
  • Step 1 and Step 2 Referring to the synthesis method of compound 41-2, compound B14 was used instead of compound B20, and XantPhos was used instead of NiXantPhos to perform a two-step reaction to obtain compound 64-2 and compound 65-1.
  • Step 3 Add compound 64-2 (12 mg, 0.018 mmol), dichloromethane (2 mL) and trifluoroacetic acid (1 mL) to a one-necked flask in sequence, and stir the reaction solution at 20° C. for 2 hours. The reaction solution was concentrated under reduced pressure. A saturated sodium bicarbonate solution (6 mL) was added to the obtained residue, followed by extraction with ethyl acetate twice. The combined organic phases were concentrated under reduced pressure and lyophilized to afford white solid 64 (5 mg, yield: 58.1%).
  • Embodiment thirty-one the synthesis of compound 65
  • compound 65-1 was used instead of compound 64-2, and compound 65 was obtained by one-step reaction.
  • Embodiment thirty-two the synthesis of compound 66
  • Step 2 Referring to the synthesis method of compound A1, compound 66-2 was synthesized by using compound 66-1 instead of compound A1-11.
  • Step 3 to Step 5 Referring to the synthesis method of compound 41, using compound 66-2 instead of compound A20, a three-step reaction was carried out to obtain compound 66.
  • Embodiment thirty-four the synthesis of compound 68
  • compound 68-1 was used instead of compound A1-11, and compound 68 was obtained by four-step reaction.
  • compound 69-1 was used instead of compound 41-2, and compound 69 was obtained by one-step reaction.
  • Embodiment thirty-six the synthesis of compound 70
  • Step 1 Referring to the synthesis step 1 of compound 43, compound 72-1 (yellow solid, 20 mg, yield: 74.1%) was synthesized by using intermediate B12 instead of B2.
  • Step 3 Dissolve 72-2 (4 mg, 0.006 mmol, 1.0 eq) in dichloromethane (500 uL), cool to minus 70 degrees Celsius with a dry ice acetone bath, and then add boron tribromide (18 uL, 0.018 mmol, 3.0 eq). Stirred at low temperature for thirty minutes, LCMS showed product formation. The reaction was quenched by adding methanol (1 mL) at low temperature, concentrated under reduced pressure, and the residue was separated by preparative HPLC (formic acid system) to obtain crude compound 72 (1 mg, yield: 33.3%) as a white solid.
  • Step 1 Compounds 73-1 (yellow solid, 80 mg) and 73-2 (yellow solid, 80 mg) were synthesized by referring to the method of synthetic step 1 of compound 43.
  • Step 2 73-1 (80 mg, 0.11 mmol, 1.0 eq) was dissolved in tetrahydrofuran (500 uL), methanol (500 uL) and water (500 uL), and then lithium hydroxide monohydrate (14 mg, 0.33 mmol, 3.0 eq) was added.
  • the reaction solution was reacted at 25 degrees Celsius for 12 hours, and TLC showed that the reaction was complete.
  • the organic phase was washed with saturated brine (30 mL), dried over anhydrous sodium sulfate, filtered, and the volatiles were removed under reduced pressure to give yellow solid 73-3 (90 mg, crude).
  • Step 3 Under 25 degrees Celsius conditions, add dichloromethane (10ml), 73-3 (33mg, 0.055 mmol, 1.0EQ), ethylamine hydrochloride (9mg, 0.11mmol, 2.0EQ), trio, 0.22mmmol, 4.0EQ), and TBTU (35mg, 0.11mmol, 2.0eq).
  • dichloromethane 10ml
  • 73-3 33mg, 0.055 mmol, 1.0EQ
  • ethylamine hydrochloride 9mg, 0.11mmol, 2.0EQ
  • trio 0.22mmmol, 4.0EQ
  • TBTU 35mg, 0.11mmol, 2.0eq
  • Step 4 Dissolve 73-4 (27mg, 0.043mmol, 1.0eq) in methanol (1mL) at 25°C, then add hydrochloric acid/dioxane solution (1mL, 4M) and stir for two hours. LCMS shows that the reaction is complete. The reaction solution was concentrated under reduced pressure to obtain white solid 73 (21 mg, yield: 87.5%).
  • Compound 74 (21 mg, yield: 87.5%) was obtained by referring to the synthesis method of compound 73 in three steps.
  • Compound 75 (22 mg, yield: 81.5%) was obtained by referring to the synthesis method of compound 73 in two steps.
  • Compound 76 (22 mg, yield: 81.5%) was obtained by referring to the synthetic method of compound 73 in two steps.
  • Step 1 Add 73-1 (30 mg, 0.56 mmol, 1.0 eq), hydrazine hydrate (1 mL) and ethanol (1 mL) into a 15 mL pressure bottle. The temperature was raised to 100°C and stirred for 12 hours. TLC showed that the reaction was complete, and the reaction solution was concentrated under reduced pressure to obtain a white solid 77-1 (30 mg, crude product).
  • Step 2 The white solid 77 (15 mg, yield: 66.1%) was synthesized by referring to the method of step 4 of compound 73.
  • Step 1 73-1 (30mg, 0.56mmol, 1.0eq) was dissolved in methanol (1mL), then added to hydrochloric acid/dioxane (1mL, 4M) solution, stirred at 25°C for 12 hours, LCMS showed that the product was formed. The reaction solution was concentrated under reduced pressure to obtain yellow solid 79-1 (24 mg, crude product).
  • Step 2 The white solid 79 (15 mg, yield: 50.0%) was synthesized by referring to the method of compound 73 synthesis step 2.
  • Compound 80 Refer to the synthetic method of compound 79 to synthesize white solid 80 (12 mg, yield: 52.9%) in two steps.
  • Step 1 Add anhydrous dichloromethane (1 mL) and 82 (15 mg, 0.026 mmol, 1.0 eq) to a 4 mL reaction flask in sequence at 25 degrees Celsius, then add boron tribromide (20 mg, 0.079 mmol, 3.0 eq) dropwise, and react for one hour.
  • LCMS showed that the product was formed, methanol (1 mL) was added to quench the reaction, filtered, and the filtrate was separated by preparative HPLC (formic acid system) to obtain a white solid 83 (4 mg, yield: 25%).
  • Embodiment fifty the synthesis of compound 84
  • Embodiment fifty-one the synthesis of compound 85
  • Embodiment fifty-two the synthesis of compound 86
  • Embodiment fifty-four Synthesis of compound 88
  • Embodiment fifty-five the synthesis of compound 89
  • Embodiment fifty-six the synthesis of compound 90
  • Step 2 Referring to the synthesis method of compound 41-2, using compound 90-1 instead of compound 41-1, one-step reaction was carried out to obtain compound 90-2 and compound 91-1.
  • Step 3 Referring to the synthesis method of compound 41, compound 90-2 was used instead of compound 41-2, and compound 90 was obtained by one-step reaction.
  • Embodiment fifty-seven the synthesis of compound 91
  • compound 91-1 was used instead of compound 41-2, and compound 91 was obtained by one-step reaction.
  • Test Example 1 YAP-TEAD protein interaction HTRF experiment
  • Inhibition % (1-(cpd signal -background signal )/(DMSO signal -background signal ))*100
  • the half-inhibitory concentration IC 50 value was calculated by GraphPad Prism software.
  • the IC 50 of each compound blocking the YAP-TEAD protein interaction is shown in Table 1, wherein, the letter A represents the IC 50 of less than 0.5uM; the letter B represents the IC 50 of 0.5uM to 5uM; the letter C represents the IC 50 of 5uM to 50uM, and the letter D represents the IC50 of greater than 50uM.
  • Compound 10 Compound 56 C Compound 11 C Compound 57 C Compound 12 C Compound 58 C Compound 13 C Compound 59 C Compound 14 C Compound 60 C Compound 15 C Compound 61 A Compound 16 C Compound 62 C Compound 17 C Compound 63 B Compound 18 C Compound 64 C Compound 19 C Compound 65 B Compound 20 C Compound 66 C Compound 21 C Compound 67 A Compound 22 C Compound 68 C Compound 23 C Compound 69 A Compound 24 C Compound 70 B Compound 25 C Compound 71 B Compound 26 C Compound 72 A Compound 27 C Compound 73 A Compound 28 C Compound 74 B Compound 29 C Compound 75 A Compound 30 C Compound 76 B Compound 31 B Compound 77 C Compound 32 B Compound 78 A Compound 33 B Compound 79 C Compound 34 C Compound 80 C Compound 35 C Compound 81 B Compound 36 B Compound 82 B Compound 37 B Compound 83 A Compound 38 B Compound 84 B Compound
  • Test Example 2 YAP/TEAD reporter gene suppression experiment
  • the inhibition of the compound on the target was detected by the signal of the reporter gene in the stable cell line SF268-YAP-Luc containing the YAP/TEAD reporter gene.
  • the sequence containing six tandem YAP/TEAD binding sites and a basic transcription promoter was constructed on the vector pGL4.76 of Promega Company.
  • the constructed reporter gene vector was transfected into SF268 cells (NCI DCTD tumor/cell line repository), and screened with 0.5 ⁇ g/ml hygromycin to obtain the SF268-YAP-Luc stable strain.
  • Inoculate SF268-YAP-Luc cells in a 96-well plate seed the cells into a 96-well plate at a density of 3000 cells per well, and have a volume of 100 ⁇ L per well (cell culture medium composition: RPMI1640 (Gibco-A10491-01) + 10% FBS (Gibco-10099-141C) + 1% Penicillin-Streptomycin (5,000 U/mL, Gibco -15070-063)), placed in a 37°C, 5% carbon dioxide incubator and cultured overnight.
  • cell culture medium composition RPMI1640 (Gibco-A10491-01) + 10% FBS (Gibco-10099-141C) + 1% Penicillin-Streptomycin (5,000 U/mL, Gibco -15070-063)
  • the compound to be tested was diluted 3-fold, and a total of 8 concentration gradients were set; a certain volume of DMSO (control group) or the compound to be tested (treatment group) was added to each well, and two replicates were set for each concentration, and the final concentration of DMSO was controlled at no higher than 0.5%. Place in a 37°C, 5% carbon dioxide incubator for 24 hours. Cell seeding and compound treatment were done in two identical parallel plates.
  • Renila-Glo Luciferase assay system kit (Promega, E2720) was used to detect reporter gene signals in control and treatment groups. Add 70ul Renila-Glo to each well, mix well, and incubate at room temperature for 10 minutes. use Signals were read with Multilabel Plate Reader (Perkin Elmer).
  • the CellTiter-Glo Luminescent Cell Viability Assay kit (Promega, G7570) was used to detect the cell viability of the control group and the treatment group. Add 50ul CellTiter-Glo to each well, mix well, and incubate at room temperature for 10 minutes. use Signals were read with Multilabel Plate Reader (Perkin Elmer).
  • Inhibition rate% (1-(Renila signal of compound-treated wells/Renila signal of DMSO-treated wells)/(CTG signal of compound-treated wells/CTG signal of DMSO-treated wells))*100
  • the IC 50 of the compounds blocking the expression of the YAP reporter gene is shown in Table 2.
  • the letter A indicates that the IC 50 is less than 0.5uM;
  • the letter B indicates that the IC 50 is from 0.5uM to 5uM;
  • the letter C indicates that the IC 50 is greater than 5uM.
  • the CellTiter-Glo Luminescent Cell Viability Detection Kit was used to quantitatively measure intracellular ATP and detect the number of living cells in the culture.
  • Step 1 Inoculate MSTO-211H (ATCC, CRL-2081 TM ) or NCI-H2052 (ATCC, CRL-5915 TM ) cells in a 96-well plate, inoculate the cells into the 96-well plate at a density of 1500 cells per well, with a volume of 100 ⁇ L per well, and culture overnight in a 37°C, 5% carbon dioxide incubator.
  • the medium is: RPMI1640 medium (GIBCO-A10491-01) + 10% FBS (GIBCO-10099141C) + 1% Pen/Strep (GIBCO-15070-063).
  • Second step compound treatment of cells.
  • the compound to be tested was diluted 3-fold, and a total of 9 concentration gradients were set; a certain volume of DMSO (control group) or the compound to be tested (treatment group) was added to each well, and two replicates were set for each concentration, and the final concentration of DMSO was controlled at no higher than 0.5%. Place in a 37°C, 5% carbon dioxide incubator for 96 hours.
  • Step 3 Use the CellTiter-Glo Luminescent Cell Viability Assay Kit (Promega, G7570) to detect the cell viability of the control group and the treatment group. Add 50ul CellTiter-Glo to each well, mix well, and incubate at room temperature for 10 minutes. use Signals were read with Multilabel Plate Reader (Perkin Elmer).
  • Inhibition percentage (%) is calculated by the following formula:
  • Inhibition rate% (1-CTG signal of compound-treated wells/CTG signal of DMSO-treated wells)*100
  • Graphpad Prism software was used to calculate the IC50 value of the compound on the inhibition of CTG signal of cell proliferation activity.
  • the IC 50 of the compound's inhibitory activity on cell proliferation is shown in Table 3, wherein, the letter A indicates that the IC 50 is less than 1uM; the letter B indicates that the IC 50 is from 1uM to 5uM; the letter C indicates that the IC 50 is greater than 5uM.

Abstract

本发明提供下式I所示的三并环化合物、其制备、药物组合物及应用。本发明提供的化合物可作为YAP/TAZ与TEAD相互作用的抑制剂,用于治疗或预防YAP/TAZ与TEAD相互作用的介导的疾病。

Description

三并环化合物、其制备、药物组合物及应用 技术领域
本发明涉及三并环化合物、其制备、药物组合物及应用。
背景技术
Hippo通路参与调节细胞的生长,增殖和凋亡,在调控器官大小、癌症发生、组织再生及干细胞和前体细胞更新分化等功能上发挥重要作用。研究发现,在哺乳动物中,该通路具有肿瘤抑制作用,通路中主要效应分子的异常活化与多种肿瘤的发生发展密切相关。此外,Hippo通路会和其他通路例如Wnt、Notch、Hedgehog、MAPK/ERK相互作用,共同调节细胞命运。这一通路的失调对肿瘤之外的其他疾病也有重要影响。
Hippo信号通路在进化过程中高度保守,哺乳动物细胞中的Hippo信号通路的核心部分是由MST1/2(member of Ste20-like kinase,在果蝇中的同源基因为Hippo)和LATS1/2(large tumor suppressor 1/2,在果蝇中的同源基因是Warts)蛋白激酶组成的激酶链,以及它们的接头蛋白SAV1和Mob1(Mps one binder kinase activator-like 1A and 1B,在果蝇中同源基因是Mats)组成。该激酶链能够磷酸化转录共激活因子YAP(Yes-Associated Protein)和TAZ(Transcription co-activator with PDZ binding motif,也被称作WWTR1)(对应果蝇中的Yorkie))。
哺乳动物Hippo通路的核心组分LATS1/2属于Dbf2-realted(NDR)家族激酶。通过和骨架蛋白Mob1A/B结合而被激活。LATS1/2也可以直接被MST1/2磷酸化后激活。LATS1/2激酶能够磷酸化下游效应因子YAP上的多个位点,其中Ser127位磷酸化对YAP抑制具有关键作用。Ser127位磷酸化的YAP与胞质中的14-3-3蛋白结合,被截留在细胞质中,不能进核行使转录功能,从而抑制YAP的促增殖和抗凋亡活性。与此类似,LATS1/2激酶能够磷酸化转录因子TAZ上的多个位点,其中Ser89位磷酸化对TAZ抑制具有关键作用。磷酸化的TAZ会在胞质滞留或隔离。与此同时,磷酸化的YAP或者TAZ可以进一步被泛素化酶SCFβ-TRCP识别并降解。因此,如果Hippo通路“on”,YAP和/或TAZ会被磷酸化失活,滞留在胞质中。相反地,如果Hippo通路“off”,YAP和/或TAZ会去磷酸化活化,并常常被发现定位在细胞核 中。
YAP作为转录因子,其本身并不含DNA结合区域。活化的YAP进入细胞核后必须和转录因子结合,才能共同行使转录功能。YAP进入细胞核后结合最紧密的转录因子是TEAD。人源的TEAD家族蛋白包括TEAD1/TEAD2/TEAD3/TEAD4。YAP连同TEAD(或者其他转录因子,如Smad1、RUNX、ErbB4和p73)可以起始一系列下游基因的转录,包括CTGF(connectivetissuegrowthfactor)、Gli2、Birc5、Birc2、FGF1(fibroblast growth factor 1)和AREG(amphiregulin)。和YAP一样,非磷酸化的TAZ会进入细胞核,在此结合多种DNA结合转录因子,例如PPARγ(peroxisome proliferation-activated receptorγ)、TTF-1(thyroid transcription factor-1)、Pax3、TBX5、RUNX、TEAD1和Smad2/3/4。大多数被YAP或TAZ转录因子复合物激活表达的基因都和细胞的生长和增殖相关。
基于此前所述,Hippo-YAP通路通过调控细胞增殖和凋亡,调控器官的大小及正常生理功能,在正常生理状态下是受到严格调控的。Hippo通路的蛋白激酶失活或YAP激活会促进肿瘤发生。事实上,Hippo通路的异常活化是多种恶性肿瘤发生发展的主要事件,在包括非小细胞肺癌,乳腺癌,头颈癌,食管癌,卵巢癌,肝癌,***癌,间皮瘤和皮肤癌等肿瘤中都发现了YAP或TAZ的表达水平升高和核定位增加。
恶性胸膜间皮瘤(MPM)是一种罕见的胸部恶性肿瘤,临床表现通常不特异且隐匿,许多患者在诊断时已是疾病的晚期阶段。手术不可切除的MPM治疗手段极为有限,目前的一线培美曲塞/铂类治疗的效果无法令人满意,仅可获得一年左右的中位总体生存率,存在较大的未被满足的临床需求。Hippo-YAP通路的异常活化存在于大约70%的MPM的病人中,被认为是其重要的癌症驱动基因,通过生物学手段及化学小分子降低Hippo-YAP通路活性显示出了良好的抑制肿瘤生长的活性,表明Hippo-YAP是潜在的治疗MPM的靶点。
肺癌是目前世界上死亡率最高的癌种之一,目前临床上有包括靶向治疗和免疫治疗在内的多种治疗手段,但都面临着响应率不高或复发的问题。近年来多项研究表明,YAP信号通路可以通过介导肿瘤细胞休眠,抵抗凋亡等机制产生对诸如EGFR抑制剂在内的肺癌药物的抗药性,抑制Hippo-YAP信号通路可以提高肿瘤细胞对EGFR靶向药物的敏感性,提示临床上可以采用联用的策略,提高治疗效果。
肝癌是中国高发的癌种,目前的临床治疗手段突破很有限,存在着很大的未被满足的临床需求。YAP是调控肝癌发生发展的重要的基因,多项体内实验表明,在小 鼠肝脏中单独过表达YAP或者敲除上游调控因子MST1-2,而不引入其他致癌基因,会引发肝细胞癌的发生;同时,在已经建立的肝癌小鼠模型里,敲低YAP的表达,可以显著的抑制肿瘤,并促进肿瘤细胞分化为具有功能的肝实质样细胞,同时伴随肝功能的恢复,提示YAP是治疗肝癌的潜在靶点。
在胰腺导管腺癌(PDAC)中广泛存在KRas的突变,靶向KRas的手段被认为在PDAC中有广阔的临床应用前景。在PDAC小鼠模型里,靶向KRas可以抑制肿瘤生长,同时也会面临着肿瘤复发,研究表明,YAP通过调控Fos,诱导EMT(上皮间质转化),在其中发挥了重要作用;在复发肿瘤中敲低YAP表达,可以重新抑制肿瘤生长。表明靶向YAP在胰腺导管腺癌里也有潜在的临床应用前景。
靶向BRAF和MEK的抑制剂在包括黑色素瘤、结肠癌及甲状腺癌等多种肿瘤里有广泛的临床应用,但同时也面临着用药后抵抗复发的难题。研究表明,Hippo-YAP作为促进肿瘤细胞生长的通路,在多个耐药肿瘤模型中发生过度活化,抑制其活性可以显著提高对BRAF/MEK抑制剂的敏感性,提示在临床上具有药物联用的潜力。
在体外,哺乳动物上皮细胞过表达YAP或者TAZ会导致细胞的转化。增强的YAP/TAZ转录活性会诱导EMT(上皮间质转化),并赋予干细胞乳腺癌细胞的特性。
综上所述,以Hippo-Yap通路为靶点的治疗策略极有可能为多种肿瘤治疗提供新的思路。开发特异性的小分子破坏YAP/TAZ与TEAD之间的相互作用,减弱YAP的转录活性,从而抑制Hippo通路异常的肿瘤发生有望成为肿瘤治疗的新策略,具有较为广阔的临床应用前景。
发明内容
本发明第一方面提供下式I所示的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物:
Figure PCTCN2022072781-appb-000001
Figure PCTCN2022072781-appb-000002
式中:
A 1选自N或CR a
A 2选自NH、O或CR bR c
A 3选自N或CR 3
A 4选自N或CR 4
A 5选自N或CR 5
R 1选自H、羟基、卤素、取代或未取代的烷基、取代或未取代的氨基、取代或未取代的烷氧基、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基和取代或未取代的杂环基;
R 2选自H、羟基、卤素、取代或未取代的烷基、取代或未取代的氨基、取代或未取代的烷氧基、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基和取代或未取代的杂环基;
R 3、R 4和R s各自独立选自H、羟基、卤素、羧基、氰基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基;
R a选自H、羟基、卤素、羧基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基;
R b和R c各自独立选自:H、羟基、卤素、羧基、取代或未取代的烷基和取代或未取代的烷氧基;和
环A为5-8元碳环基、4-8元杂环基或5或6元杂芳基,任选地被1-3个选自羟基、卤素、羧基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基的取代基取代。
本发明第二方面提供一种药物组合物,其含有本发明任一实施方案所述的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,以及药学上可接受的载体或赋形剂。
本发明第三方面提供本发明任一实施方案所述的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物在制备治疗或预防YAP/TAZ与TEAD相互作用介导的疾病的药物中的应用。
本发明第四方面提供一种治疗或预防YAP/TAZ与TEAD相互作用介导的疾病 的方法,包括给予需要的对象治疗有效量的本发明任一实施方案所述的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,或其药物组合物。
本文所述化合物通常都含有一个轴手性,包含了一对轴手性异构体。在一些的实施方案中,本文所述化合物的轴手性为S构型。在一些的实施方案中,本文所述化合物的轴手性为R构型。
本发明各方面的详细描述如下文所述。
具体实施方式
应理解,在本发明范围中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成优选的技术方案。
I.术语
除非另有定义,否则本文所有科技术语具有的涵义与所属领域技术人员通常理解的涵义相同。除非另有说明,本申请中引用的所有文献或文献部分包括但不限于专利、专利申请、文章、书籍、操作手册和论文,均通过引用方式整体并入本文。本文所用的章节标题仅用于组织文章的目的,而不应被解释为对所述主题的限制。
应理解,上述简述和下文的详述为示例性且仅用于解释,而不对本发明主题作任何限制。在本申请中,除非另有具体说明,否则使用单数时也包括复数。必须注意,除非文中另有清楚的说明,否则在本说明书和权利要求书中所用的单数形式包括所指事物的复数形式。还应注意,除非另有说明,否则所用“或”、“或者”表示“和/或”。此外,所用术语“包括”以及其它形式,例如“包含”、“含”和“含有”并非限制性,其可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由…构成”、或“由…构成”之义。
可在参考文献(包括Carey and Sundberg″ADVANCED ORGANIC CHEMISTRY 4TH ED.″Vols.A(2000)and B(2001),Plenum Press,New York)中找到对标准化学术语的定义。除非另有说明,否则采用本领域技术范围内的常规方法,如质谱、NMR、IR和UV/VIS光谱法和药理学方法。除非提出具体定义,否则本文在分析化学、有机合成化学以及药物和药物化学的有关描述中采用的术语是本领域已知的。可在化学合成、化学分析、药物制备、制剂和递送,以及对患者的治疗中使用标准技术。例如,可利用厂商对试剂盒的使用说明,或者按照本领域公知的方式或本发明的说明来实施反应 和进行纯化。通常可根据本说明书中引用和讨论的多个概要性和较具体的文献中的描述,按照本领域熟知的常规方法实施上述技术和方法。在本说明书中,可由本领域技术人员选择基团及其取代基以提供稳定的结构部分和化合物。
当通过从左向右书写的常规化学式描述取代基时,该取代基也同样包括从
右向左书写结构式时所得到的在化学上等同的取代基。举例而言,-CH 2O-等同于-OCH 2-。
在本文中定义的某些化学基团前面通过简化符号来表示该基团中存在的碳原子总数。例如,C1-C6烷基是指具有总共1至6个碳原子的如下文所定义的烷基。简化符号中的碳原子总数不包括可能存在于所述基团的取代基中的碳。
除前述以外,当用于本申请的说明书及权利要求书中时,除非另外特别指明,否则以下术语具有如下所示的含义。
在本申请中,术语“卤素”是指氟、氯、溴或碘。
“羟基”是指-OH基团。
“羟基烷基”是指被羟基(-OH)取代的如下文所定义的烷基。
“羰基”是指-C(=O)-基团。
“硝基”是指-NO 2
“氰基”是指-CN。
“氨基”是指-NH 2
“酰基”指-COR,其中,R为H或烷基,如C 1-5烷基。
“取代的氨基”是指被一个或两个如下文所定义的烷基、烷基羰基、芳烷基、芳基、杂芳基、杂环基、杂芳烷基取代的氨基,例如,单烷基氨基、二烷基氨基、烷基酰氨基、芳烷基氨基、杂芳烷基氨基、杂芳基氨基和芳基氨基。在本文的一些实施方案中,“取代的氨基”表示为-NR’R”,其中,R’和R”各自独立选自H、氨基、和取代或未取代的烷基。
“羧基”是指-COOH。
在本申请中,作为基团或是其它基团的一部分(例如用在卤素(例如氟、氯、溴或碘)取代的烷基等基团中),术语“烷基”是指完全饱和的直链或支链的烃链基,仅由碳原子和氢原子组成、具有例如1至12个(优选为1至8个,更优选为1至6个)碳原子,且通过单键与分子的其余部分连接,例如包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、2-甲基丁基、2,2-二甲基丙基、正己基、庚基、2-甲基己基、3-甲基己基、辛基、壬基和癸基等。本发明各实施方案 的各烷基优选为C1-C4烷基。
在本申请中,作为基团或是其它基团的一部分,术语“烯基”意指仅由碳原子和氢原子组成、含有至少一个双键、具有例如2至20个(优选为2至10个,更优选为2至6个)碳原子且通过单键与分子的其余部分连接的直链或支链的烃链基团,例如但不限于乙烯基、丙烯基、烯丙基、丁-1-烯基、丁-2-烯基、戊-1-烯基、戊-1,4-二烯基等。
在本申请中,作为基团或是其它基团的一部分,术语“环烃基”意指仅由碳原子和氢原子组成的稳定的非芳香族单环或多环烃基(例如烷基、烯基或炔基),其可包括稠合环体系、桥环体系或螺环体系,具有3至15个碳原子,优选具有3至10个碳原子,更优选具有3至8个碳原子,例如3、4、5、6、7或8个碳原子,且其为饱和或不饱和并可经由任何适宜的碳原子通过单键与分子的其余部分连接。除非本说明书中另外特别指明,环烃基中的碳原子可以任选地被氧化。在优选的实施方案中,环烃基为环烷基,优选C3-C8环烷基。环烃基的实例包括但不限于环丙基、环丁基、环戊基、环戊烯基、环己基、环己烯基、环己二烯基、环庚基、环辛基、1H-茚基、2,3-二氢化茚基、1,2,3,4-四氢-萘基、5,6,7,8-四氢-萘基、8,9-二氢-7H-苯并环庚烯-6-基、6,7,8,9-四氢-5H-苯并环庚烯基、5,6,7,8,9,10-六氢-苯并环辛烯基、芴基、二环[2.2.1]庚基、7,7-二甲基-二环[2.2.1]庚基、二环[2.2.1]庚烯基、二环[2.2.2]辛基、二环[3.1.1]庚基、二环[3.2.1]辛基、二环[2.2.2]辛烯基、二环[3.2.1]辛烯基、金刚烷基、八氢-4,7-亚甲基-1H-茚基和八氢-2,5-亚甲基-并环戊二烯并基等。
在本申请中,作为基团或是其它基团的一部分,术语“杂环基”意指由2至14个碳原子(例如2、3、4、5、6、7、8、9、10、11、12、13或14个碳原子)以及1至6个选自氮、磷、氧和硫的杂原子组成的稳定的3元至20元非芳香族环状基团。除非本说明书中另外特别指明,否则杂环基可以为单环、双环、三环或更多环的环体系,其可包括稠合环体系、桥环体系或螺环体系;其杂环基中的氮、碳或硫原子可任选地被氧化;氮原子可任选地被季铵化;且杂环基可为部分或完全饱和。杂环基可以经由碳原子或者杂原子并通过单键与分子其余部分连接。在包含稠环的杂环基中,一个或多个环可以是下文所定义的芳基或杂芳基,条件是与分子其余部分的连接点为非芳香族环原子。就本发明的目的而言,杂环基优选为包含1至3个选自氮、氧和硫的杂原子的稳定的4元至12元、5元至12元、或4元至9元非芳香性单环、双环、桥环或螺环基团,更优选为包含1至3个选自氮、氧和硫的杂原子的稳定的5元至9元非芳香性单环、双环、桥环或螺环基团。本文各实施方案所述的杂环基的实例包括但 不限于:吡咯烷基、吗啉基、哌嗪基、高哌嗪基、哌啶基、硫代吗啉基、2,7-二氮杂-螺[3.5]壬烷-7-基、2-氧杂-6-氮杂-螺[3.3]庚烷-6-基、2,5-二氮杂-双环[2.2.1]庚烷-2-基、氮杂环丁烷基、吡喃基、四氢吡喃基、噻喃基、四氢呋喃基、噁嗪基、二氧环戊基、四氢异喹啉基、十氢异喹啉基、咪唑啉基、咪唑烷基、喹嗪基、噻唑烷基、异噻唑烷基、异噁唑烷基、二氢吲哚基、八氢吲哚基、八氢异吲哚基、吡唑烷基、邻苯二甲酰亚氨基、二氧代硫代吗啉等。
在本申请中,作为基团或是其它基团的一部分,术语“芳基”意指具有6至18个碳原子(优选具有6至14个碳原子、更优选具有6至10个碳原子,例如6、7、8、9或10个碳原子)的共轭烃环体系基团。就本发明的目的而言,芳基可以为单环、双环、三环或更多环的环体系,还可以与上文所定义的环烷基或杂环基稠合,条件是芳基经由芳香环上的原子通过单键与分子的其余部分连接。本文各实施方案所述的芳基的实例包括但不限于苯基、萘基、蒽基、菲基、芴基、2,3-二氢-1H-异吲哚基、2-苯并噁唑啉酮、2H-1,4-苯并噁嗪-3(4H)-酮-7-基等。
在本申请中,术语“芳基烷基”是指被上文所定义的芳基所取代的上文所定义的烷基。
在本申请中,作为基团或是其它基团的一部分,术语“杂芳基”意指环内具有1至15个碳原子(优选具有1至10个碳原子,例如1、2、3、4、5、6、7、8、9或10个碳原子)和1至6个选自氮、氧和硫的杂原子的5元至16元共轭环系基团。除非本说明书中另外特别指明,否则杂芳基可为单环、双环、三环或更多环的环体系,还可以与上文所定义的环烷基或杂环基稠合,条件是杂芳基经由芳香环上的原子通过单键与分子的其余部分连接。杂芳基中的氮、碳或硫原子可任选地被氧化;氮原子可任选地被季铵化。就本发明的目的而言,杂芳基优选为包含1至5个选自氮、氧和硫的杂原子的稳定的5元至12元芳香性基团,更优选为包含1至4个选自氮、氧和硫的杂原子的稳定的5元至10元芳香性基团或者包含1至3个选自氮、氧和硫的杂原子的5元至6元芳香性基团。本文各实施方案所述的杂芳基的实例包括但不限于噻吩基、咪唑基、吡唑基、噻唑基、噁唑基、噁二唑基、异噁唑基、吡啶基、嘧啶基、吡嗪基、哒嗪基、苯并咪唑基、苯并吡唑基、吲哚基、呋喃基、吡咯基、***基、四唑基、三嗪基、吲嗪基、异吲哚基、吲唑基、异吲唑基、嘌呤基、喹啉基、异喹啉基、二氮萘基、萘啶基、喹噁啉基、蝶啶基、咔唑基、咔啉基、菲啶基、菲咯啉基、吖啶基、吩嗪基、异噻唑基、苯并噻唑基、苯并噻吩基、噁***基、噌啉基、喹唑啉基、苯硫基、中氮茚基、邻二氮杂菲基、异噁唑基、吩噁嗪基、吩噻嗪基、4,5,6,7-四氢苯并[b]噻吩 基、萘并吡啶基、[1,2,4]***并[4,3-b]哒嗪、[1,2,4]***并[4,3-a]吡嗪、[1,2,4]***并[4,3-c]嘧啶、[1,2,4]***并[4,3-a]吡啶、咪唑并[1,2-a]吡啶、咪唑并[1,2-b]哒嗪、咪唑并[1,2-a]吡嗪等。
在本申请中,术语“杂芳基烷基”是指被上文所定义的杂芳基所取代的上文所定义的烷基。
在本申请中,“任选地”或“任选”表示随后描述的事件或状况可能发生也可能不发生,且该描述同时包括该事件或状况发生和不发生的情况。例如,“任选地被取代的芳基”表示芳基被取代或未被取代,且该描述同时包括被取代的芳基与未被取代的芳基。本发明权利要求书和说明书部分所述的“任选”的取代基包括但不限于烷基、烯基、炔基、卤素、卤代烷基、卤代烯基、卤代炔基、氰基、硝基、任选取代的芳基、任选取代的杂芳基、任选取代的环烃基、任选取代的杂环基。
本文所用术语“部分”、“结构部分”、“化学部分”、“基团”、“化学基团”是指分子中的特定片段或官能团。化学部分通常被认为是嵌入或附加到分子上的化学实体。
本领域技术人员还应当理解,在下文所述的方法中,中间体化合物官能团可能需要由适当的保护基保护。这样的官能团包括羟基、氨基、巯基及羧酸。合适的羟基保护基包括三烷基甲硅烷基或二芳基烷基甲硅烷基(例如叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基或三甲基甲硅烷基)、四氢吡喃基、苄基等。合适的氨基、脒基及胍基的保护基包括叔丁氧羰基、苄氧羰基等。合适的巯基保护基包括-C(O)-R”(其中R”为烷基、芳基或芳烷基)、对甲氧基苄基、三苯甲基等。合适的羧基保护基包括烷基酯类、芳基酯类或芳烷基酯类。
保护基可根据本领域技术人员已知的和如本文所述的标准技术来引入和除去。保护基的使用详述于Greene,T.W.与P.G.M.Wuts,Protective Groups in Organi Synthesis,(1999),4th Ed.,Wiley中。保护基还可为聚合物树脂。
为避免疑义,本发明中,楔形键绘制的化合物(如实施例三十三的化合物67)为绝对立体化学结构确定的单一构型化合物。
II.化合物
本发明提供下式I所示的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物:
Figure PCTCN2022072781-appb-000003
式中:
A 1选自N或CR a;A 2选自NH、O或CR bR c;A 3选自N或CR 3;A 4选自N或CR 4;A 5选自N或CR 5;R 1选自H、羟基、卤素、取代或未取代的烷基、取代或未取代的氨基、取代或未取代的烷氧基、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基和取代或未取代的杂环基;R 2选自H、羟基、卤素、取代或未取代的烷基、取代或未取代的氨基、取代或未取代的烷氧基、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基和取代或未取代的杂环基;R 3、R 4和R s各自独立选自H、羟基、卤素、羧基、氰基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基;R a选自H、羟基、卤素、羧基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基;R b和R c各自独立选自:H、羟基、卤素、羧基、取代或未取代的烷基和取代或未取代的烷氧基;和环A为5-8元碳环基、4-8元杂环基或者5或6元杂芳基,任选地被1-3个选自羟基、卤素、羧基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基的取代基取代。
式I以及下文所述的各结构式中,除非另有说明,所述烷基优选为C 1-6烷基,更优选为C 1-4烷基;所述烷氧基优选为C 1-6烷氧基,更优选为C 1-4烷氧基;所述环烷基优选为C 3-8环烷基;所述芳基优选为6-14元芳基;所述杂芳基优选为5-12元杂芳基,更优选为5-9元杂芳基;所述杂环基优选为4-12元杂环基,更优选为4-9元杂环基;优选地,该杂环基和杂芳基中的杂原子包括氮、氧和/或硫,杂原子的数量为1、2或3个。除非另有说明,所述烷基、烷氧基、环烷基、芳基、杂芳基和杂环基被取代时,它们的取代基数量可以为1-6个,可各自独立选自:卤素,C 1-4烷基,卤代C 1-4烷基,羟基,C 1-4烷氧基,卤代C 1-4烷氧基,羧基,氨基,氰基,任选被1-3个选自卤素、C 1-4烷基、卤代C 1-4烷基、羟基、C 1-4烷氧基、卤代C 1-4烷氧基、羧基、氨基和氰基的取代基取代的6-14元芳基、5-12元杂芳基和4-12元杂环基,以及NR’R”-C(O)-(CH 2) n-等,其中,R’和R”各自独立为H、氨基或取代或未取代的C 1-4烷基,n为0-4的整数;所述氨基被取代时,取代基可以是1或2个选自C 1-4烷基、卤代C 1-4烷基、 C 1-4烷氧基、C 1-4酰基和卤代C 1-4烷基的取代基,或1个任选被1-3个选自卤素、C 1- 4烷基、卤代C 1-4烷基、羟基、C 1-4烷氧基、卤代C 1-4烷氧基、羧基、氨基和氰基的取代基取代的6-14元芳基、5-12元杂芳基或4-12元杂环基。优选地,各烷基和烷氧基的优选取代基为1-6个选自卤素、羟基、NR 12R 13和氰基的取代基,其中,所述R 12和R 13各自独立选自H、C 1-4酰基和C 1-4烷基。
特别地,式I中,A 1为N。在一些实施方案中,A 1为CR a,其中,R a选自H和取代或未取代的C 1-4烷基。
在一些实施方案中,式I中,环A为5-8元饱和碳环或4-8元杂环基。特别地,环A为4-8元含氮杂环基,当A 1为N时,该含氮杂环基任选地还含有1或2个选自N和O的杂原子,优选还任选地含有1或2个氮原子。在进一步优选的实施方案中,环A为哌啶环,特别地,该哌啶环的环氮原子为A 1。在另外一些优选的实施方案中,环A为哌嗪环,特别地,该哌嗪环的一个环氮原子为A 1。在一些实施方案中,环A为5元或6元杂芳基,优选含有1或2个氮原子,其中1个氮原子位于A 1位置。在一些实施方式中,环A为苯环。
环A上的取代基优选选自羟基、卤素、取代或未取代的烷基和取代或未取代的烷氧基;更优选地,环A上的取代基选自取代或未取代的C 1-4烷基。优选地,所述烷基被1-6个选自羟基、卤素和NR 12R 13的取代基取代,其中,所述R 12和R 13各自独立选自H和C 1-4烷基。
在某些实施方案中,式I中,A 2为CR bR c,其中,优选地,A 2的R b和R c各自独立为H和C 1-4烷基,更优选都为H。在一些实施方案中,A 2为NH或O。
在某些实施方案中,式I中,A 3为CR 3;优选的R 3为H、卤素、C 1-4烷氧基、氰基和取代或未取代的C 1-4烷基,更优选为卤素。在某些实施方案中,当所述C 1-4烷基被取代时,取代基可以是1-3个选自卤素、羟基和氨基的取代基。
式I中,优选的A 4为CR 4;优选的R 4为H、卤素、C 1-4烷氧基、氰基和取代或未取代的C 1-4烷基,更优选为卤素。优选地,当所述C 1-4烷基被取代时,取代基可以是1-3个选自卤素、羟基和氨基的取代基。
在某些实施方案中,式I中,R 3和R 4各自独立为卤素。
式I中,优选的A 5为CR 5;优选的R 5为H、卤素、氰基、C 1-4烷氧基和取代或未取代的C 1-4烷基,更优选为H。在某些实施方案中,当所述C 1-4烷基被取代时,取代基可以是1-3个选自卤素、羟基和氨基的取代基。
在一些实施方案中,式I中,A 3、A 4和A 5中的任意1个或任意两个为N,其余 的为相应的CR 3、CR 4或CR 5
式I中,在某些实施方案中,R 1为取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基或者取代或未取代的杂环基。在某些实施方案中,当为具有取代基的基团时,R 1上的取代基可为1-3个选自卤素、羟基、C 1-4烷基、C 1-4烷氧基、卤代C 1-4烷基、卤代C 1-4烷氧基和-NR 12R 13的取代基,其中,R 12和R 13各自独立为H或C 1-4烷基。在某些实施方案中,环烷基是C 3-8环烷基;优选的芳基是具有6到14个环碳原子的芳基;优选的杂芳基是具有5到12个环原子的杂芳基,更优选为杂原子中至少包括环氮原子的杂芳基;优选的杂环基是具有4到9个环原子的杂环基。在某些实施方案中,R 1为未取代的6-14元芳基,如苯基,或任选地被1-3个选自羟基、卤素、C 1-4烷基和C 1-4烷氧基的取代基取代的6-14元芳基,如苯基。
式I中,优选的R 2为H、取代或未取代的烷基、卤素、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基或取代或未取代的杂环基。在某些实施方案中,所述烷基被取代时,取代基可以是1-5个选自卤素、羟基、羧基、氰基和-NR 12R 13,其中,R 12和R 13各自独立为H或C 1-4烷基。在某些实施方案中,所述取代或未取代的烷基为取代或未取代的C 1-4烷基,优选为未取代的C 1-4烷基或为卤代C 1-4烷基。在一些实施方案中,R 2为取代或未取代的芳基、取代或未取代的杂芳基或取代或未取代的杂环基。优选的环烷基是C 3-8环烷基;优选的芳基是6-14元芳基,更优选为苯基;优选的杂芳基为具有5到12个环原子的杂芳基,更优选为杂原子中至少包括环氮原子的杂芳基,包括但不限于吡啶基、嘧啶基、吡唑基、吡咯基、咪唑基、***基、吡嗪基、吲哚基和哒嗪基等;优选的杂环基是具有4到9个环原子的杂环基,更优选为含环氮和/或氧原子和/或硫原子的杂环基,如吗啉基、哌啶基、哌嗪基、二氢吲哚基、吡咯烷基、氮杂环丁烷基。当为具有取代基的基团时,R 2上的取代基可以是1-3个选自羟基、羧基、卤素、氰基、NR’R”-C(O)-(CH 2) n-、取代或未取代的C 1- 4烷基、取代或未取代的C 1-4烷氧基、取代或未取代的4-9元杂环基和取代或未取代的氨基的取代基,其中,R’和R”各自独立选自H和取代或未取代的C 1-4烷基,n为0-4的整数;在某些实施方案中,所述烷基被取代时,其取代基可以是1-5个选自羟基、卤素、羧基和氨基的取代基;优选地,所述烷氧基被取代时,其取代基可以是1-5个选自羟基、卤素、羧基、氨基、卤代C 1-4烷基和取代或未取代的5-12元杂芳基的取代基;在一些实施方案中,前述杂环基被取代时,其取代基可以是1-5个选自羟基、卤素、羧基、氨基、C 1-4烷基和卤代C 1-4烷基的取代基;在某些实施方案中,所述氨基被取代时,其取代基可以是1个取代或未被取代的4-9元杂环基、或1或2个选自 取代或未被取代的C 1-4烷基和C 1-4酰基的取代基,优选地,所述杂环基为含N、O和或S的4-9元杂环基,包括四氢呋喃基、四氢吡喃基、氮杂环丁烷基、吡咯烷基、哌啶基、哌嗪基、吗啉基以及二氧代硫代吗啉基等,其中,所述杂环基上的取代基可以是1或2个选自卤素、C 1-4烷基和氨基的取代基,所述烷基上的取代基可以是1或2个选自卤素、羟基和氨基的取代基。
式I中,优选地,R 3、R 4、R 5、R a、R b、R c以及环A定义中的烷基和烷氧基被取代时,它们各自的取代基可为1-3个选自卤素、羟基、羧基或者任选被1或2个C 1-4烷基取代的氨基,这些基团定义中的氨基可以是被1个或2个C 1-4烷基取代。
式I化合物的一些示例性化合物具有下式II所示的结构:
Figure PCTCN2022072781-appb-000004
式中,R 1选自取代或未取代的芳基、取代或未取代的杂芳基、取代或未取代的杂环基和取代或未取代的环烷基;R 2选自H、取代或未取代的烷基、卤素、取代或未取代的芳基、取代或未取代的杂芳基、取代或未取代的杂环基和取代或未取代的环烷基;R 3、R 4和R s各自独立选自H、羟基、卤素、羧基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基;R 11为H或者取代或未取代的烷基。
在某些实施方案中,式II中,R 1为具有取代基的基团时,取代基为1-3个选自卤素、羟基、C 1-4烷基、C 1-4烷氧基和-NR 12R 13的取代基,其中,R 12和R 13各自独立为H或C 1-4烷基。优选的R 1是取代或未取代的6-14元芳基或者取代或未取代的5-12元杂芳基;优选的R 1上的取代基选自羟基、卤素、C 1-4烷基和C 1-4烷氧基中的一个或多个。更优选的R 1为取代或未取代的苯基或者取代或未取代的5-12元含氮杂芳基,如吡啶基、嘧啶基、吡唑基、吡咯基、咪唑基、***基、吡嗪基和哒嗪基等;优选地,当为具有取代基的基团时,取代基选自羟基、卤素、C 1-4烷基和C 1-4烷氧基中的一个或多个。
在一些实施方案中,式II中,R 2为具有取代基的基团时,取代基为1-3个选自羟基、羧基、卤素、氰基、NR’R”-C(O)-(CH 2) n-、取代或未取代的C 1-4烷基、取代或未取代的C 1-4烷氧基、取代或未取代的4-9元杂环基(如含氮、含硫和/或氧的4-9元杂 环基,包括四氢呋喃基、四氢吡喃基、氮杂环丁烷基、吡咯烷基、哌啶基、哌嗪基、吗啉基以及二氧代硫代吗啉基等)和取代或未取代的氨基的取代基,其中,R’和R”各自独立选自H、氨基和取代或未取代的C 1-4烷基,n为0-4的整数;优选地,所述烷基被取代时,其取代基可以是1-5个选自羟基、卤素、羧基和氨基的取代基;在某些实施方案中,所述烷氧基被取代时,其取代基可以是1-5个选自羟基、卤素、羧基、氨基、卤代C 1-4烷基和取代或未取代的5-12元杂芳基的取代基;优选地,所述杂环基被取代时,其取代基可以是1-5个选自羟基、卤素、羧基、氨基、C 1-4烷基和卤代C 1-4烷基的取代基;在某些实施方案中,所述氨基被取代时,其取代基可以是取代或未被取代的4-9元杂环基(如含氧的4-9元杂环基,如四氢呋喃基、四氢吡喃基;或含氮的4-9元杂环基,如氮杂环丁烷基、吡咯烷基、哌啶基、哌嗪基、吗啉基;或含硫的4-9元杂环基等)、取代或未被取代的C 1-4烷基、或C 1-4酰基。所述芳基、杂芳基和杂环基具有本文所述的定义。在一些实施方案中,R 2为取代或未取代的6-14元芳基(如苯基)、取代或未取代的5-12元含氮杂芳基(如吡唑基、咪唑基、吡啶基、嘧啶基、吡咯基、***基、吡嗪基、吲哚基和哒嗪基等)、取代或未取代的4-9元含氮和/或氧和/或硫的杂环基(如氮杂环丁烷基、吗啉基、吡咯烷基、二氢吲哚基、哌啶基和哌嗪基等)、或者取代或未取代的C 3-8环烷基,这些芳基、杂芳基、杂环基和环烷基上的取代基优选为1-3个选自下组的取代基:卤素,NR’R”-C(O)-(CH 2) n-,未取代或被1-3个选自卤素、羟基、羧基和氨基的取代基取代的C 1-4烷基,未取代或被1-3个选自羟基、卤素、羧基、氨基和卤代C 1-4烷基取代基取代的C 1-4烷氧基,未取代的4-9元杂环基(优选为含有N与O和/或S的杂环基),和未取代或被选自1或2个C 1-4烷基和C 1-4酰基的取代基、或1个4-9元杂环基(如含氧的4-9元杂环基,如四氢呋喃基、四氢吡喃基;或含氮的4-9元杂环基,如氮杂环丁烷基、吡咯烷基、哌啶基、哌嗪基、吗啉基等;或含硫的4-9元杂环基,如硫代吗啉基)取代的氨基。在另外一些实施方案中,式II中的R 2为H、卤素、C 1-4烷基或卤代C 1-4烷基。
在某些实施方案中,式II中,R 3为H、卤素、C 1-4烷氧基和C 1-4烷基,特别地,为卤素和C 1-4烷基。
在某些实施方案中,式II中,R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,特别地,为卤素。
在一些实施方案中,式II中,R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,特别地,为H。
在一些实施方案中,式II中,R 3和R 4各自独立为卤素,R 5为H。
在某些实施方案中,式II中,R 11为H或未取代或任选被1-3个选自卤素和羟基的取代基取代的C 1-6烷基,特别地,R 11为H。
在一些实施方案中,式I和式II的化合物中,R 2为被取代的环烷基、芳基、杂芳基或杂环基时,取代基的数量至少为两个;优选地,至少一个、更优选至少两个取代基位于邻位。在一些实施方案中,所述至少两个取代基至少包括卤素和所述NR’R”-C(O)-(CH 2) n-;优选地,所述取代基还包括选自所述取代或未取代的C 1-4烷基、取代或未取代的C 1-4烷氧基、取代或未取代的杂环基和取代或未取代的氨基中的一个。
在式II的一些优选的实施方案中,R 1为取代或未取代的苯基或取代或未取代的5-12元含氮杂芳基,如吡啶基、嘧啶基、吡唑基、吡咯基、咪唑基、***基、吡嗪基和哒嗪基等,其中,当为具有取代基的基团时,取代基的数量为1-3个,并选自羟基、卤素、C 1-4烷基和C 1-4烷氧基,优选的R 1为未取代的苯基;R 2为4-9元杂环基,优选为含N和/或O和/或S的4-9元杂环基,包括氮杂环丁烷基、氧杂环丁烷基、四氢呋喃基、吡咯烷基、四氢吡喃基、哌啶基和哌嗪基,所述杂环基任选地被1-3个选自卤素、C 1-4烷基、卤代C 1-4烷基、C 1-4烷氧基、卤代C 1-4烷氧基、羧基和NR’R”-C(O)-(CH 2) n-的取代基取代,其中,R’和R”各自独立选自H和C 1-4烷基,n为0-4的整数,优选的取代基为所述羧基或NR’R”-C(O)-(CH 2) n-,且优选地,所述取代基位于邻位,和/或当该杂环基为含氮杂环基时,通过该杂环基的环氮原子与式II化合物的其它部分连接;R 3为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H和卤素;R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素;R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H;优选地,R 3和R4各自独立为卤素,R 5为H;R 11为H或未取代或任选被1-3个选自卤素和羟基的取代基取代的C 1-6烷基,优选为H。
在式II的另外一些实施方案中,R 1为取代或未取代的苯基或者取代或未取代的5-12元含氮杂芳基,如吡啶基、嘧啶基、吡唑基、吡咯基、咪唑基、***基、吡嗪基和哒嗪基等,其中,当为具有取代基的基团时,取代基的数量为1-3个,并选自卤素、C 1-4烷基和C 1-4烷氧基,优选的R 1为未取代的苯基;R 2为5-12元杂芳基,优选为含N的5-12元杂芳基,包括吡咯基、吡唑基、咪唑基、***基、吡啶基、哒嗪基、嘧啶基和吡嗪基等,所述杂芳基任选地被1-3个选自卤素、C 1-4烷基、卤代C 1-4烷基、C 1- 4烷氧基、卤代C 1-4烷氧基、羧基和NR’R”-C(O)-(CH 2) n-的取代基取代,其中,R’和R”各自独立选自H和C 1-4烷基,n为0-4的整数,优选的取代基为所述卤素、C 1-4烷基或NR’R”-C(O)-(CH 2) n-,且优选地,所述取代基位于邻位,和/或当该杂环基为含氮杂环基时,通过该杂环基的环氮原子与式II化合物的其它部分连接;R 3为H、卤 素、C 1-4烷氧基和C 1-4烷基,优选为H和卤素;R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素;R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H;优选地,R 3和R 4各自独立为卤素,R 5为H;R 11为H或未取代或任选被1-3个选自卤素和羟基的取代基取代的C 1-6烷基,优选为H。
式I化合物的进一步优选的化合物具有下式III所示的结构:
Figure PCTCN2022072781-appb-000005
式中:
R 1、R 3-R s如前述式I或II的任一实施方案所述;
B 1为C或N;B 2为CR 6或N;B 3为CR 7或N;B 4为CR 8或N;B 5为CR 9或N;B 6为CR 10或N;
R 6选自H、卤素、C 1-4烷基、C 1-4烷氧基、氰基、羧基、NR 12R 13和NR’R”-C(O)-(CH 2) n-,其中,R 12和R 13各自独立选自H、C 1-4酰基和取代或未取代的C 1-4烷基,n为0-4的整数;
R 7为H、卤素、NR 12R 13、C 1-4烷氧基或C 1-4烷基;
R 8为H、卤素或C 1-4烷基;
R9为H、卤素、取代或未取代的C 1-4烷基、取代或未取代的C 1-4烷氧基、取代或未取代的4-9元杂环基(如含氮和/或氧和/或硫的4-9元杂环基,包括四氢呋喃基、四氢吡喃基、氮杂环丁烷基、吡咯烷基、哌啶基、哌嗪基、吗啉基以及二氧代硫代吗啉基等)、或者取代或未取代的氨基;在一些实施方案中,所述烷基被取代时,其取代基可以是1-5个选自羟基、卤素、羧基和氨基的取代基;优选地,所述烷氧基被取代时,其取代基可以是1-5个选自羟基、卤素、羧基、氨基、卤代C 1-4烷基和取代或未取代的5-12元杂芳基的取代基;在一些实施方案中,所述杂环基被取代时,其取代基可以是1-5个选自羟基、卤素、羧基、氨基、C 1-4烷基和卤代C 1-4烷基的取代基;优选地,所述氨基被取代时,其取代基可以是取代或未被取代的4-9元杂环基(如含氧的4-9元杂环基,如四氢呋喃基、四氢吡喃基;或含氮的4-9元杂环基,如氮杂环 丁烷基、吡咯烷基、哌啶基、哌嗪基、吗啉基等;或含硫的4-9元杂环基,如硫代吗啉基)或者取代或未被取代的C 1-4烷基(如羟基或卤素取代的C 1-4烷基);或者R 7与R 8、或R 8与R 9与他们各自所连接的C一起形成5元含氮饱和或不饱和杂环,如吡咯基或吡咯烷基;
R 10为H、卤素、烷基或卤代C 1-4烷基;
R 11为H或者取代或未取代的C 1-4烷基,优选为H;和
R 12和R 13各自独立为H或者取代或未取代的C 1-4烷基。
在某些实施方案中,式III中,B 1为CH;B 2为CR 6;B 3为CR 7;B 4为CR 8;B 5为CR 9;B 6为CR 10。优选的R 6为卤素、C 1-4烷基、C 1-4烷氧基、氰基、NR 12R 13或NR’R”-C(O)-(CH 2) n-,其中,R 12和R 13各自独立选自H、C 1-4酰基和取代或未取代的C 1-4烷基,n为0-4的整数。优选的R 7为H或NR 12R 13,更优选为H或NH 2。优选的R 8为H。优选的R 9为:前述取代或未取代的C 1-4烷基、取代或未取代的C 1-4烷氧基、未取代的4-9元杂环基(优选为含有N与O和/或S的4-9元杂环基)、或者取代或未取代的氨基,更优选为:未取代或被1-3个选自卤素、羟基、羧基和氨基的取代基取代的C 1-4烷基,未取代或被1-3个选自羟基、卤素、羧基、氨基和卤代C 1-4烷基取代基取代的C 1-4烷氧基,未取代的吗啉基、二氧化硫代吗啉基和四氢吡喃基,或未取代或被1或2个C 1-4烷基或被1个4-9元杂环基(优选为5-12元含氧杂环基,如氧杂环丁烷基、四氢呋喃基、四氢吡喃基等)取代的氨基。优选的R 10为卤素。优选的R 11为H或任选被1-3个选自羟基和卤素取代的C 1-4烷基。
在式III的一些优选实施方式中,B 1为CH;B 2为CR 6;B 3为CR 7;B 4为CR 8;B 5为CR 9;B 6为CR 10;R 6为NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基和任选被1-2个选自羟基和卤素的取代基取代的C 1-4烷基,n为0-4的整数;R 7和R 8为H;R 9为未取代或被1-3个选自卤素、羟基、羧基和氨基的取代基取代的C 1- 4烷基,或者未取代或被1-3个选自羟基、卤素、羧基、氨基和卤代C 1-4烷基取代基取代的C 1-4烷氧基,或未取代或被1-3个选自羟基、卤素、羧基、氨基和卤代C 1-4烷基取代基取代的氨基;R 10为卤素;R 11为H。进一步地,这些优选的实施方案中,R 1为取代或未取代的苯基,优选地,当为具有取代基的基团时,取代基的数量为1、2或3个,选自羟基、卤素、C 1-4烷基和C 1-4烷氧基;R 3为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素和C 1-4烷基;R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素;R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H。优选地,R 3和R 4各自独立为卤素,R 5为H。
在式III的一些优选实施方式中,B 1为CH;B 2为CR 6;B 3为N或CR 7;B 4为N或CR 8;B 5为N或CR 9;B 6为CR 10;R 6为NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基和任选被1-2个选自羟基和卤素的取代基取代的C 1-4烷基,n为0-4的整数;R 7和R 8为H;R 9为未取代或被1-3个选自卤素、羟基、羧基和氨基的取代基取代的C 1-4烷基,或者未取代或被1-3个选自羟基、卤素、羧基、氨基和卤代C 1- 4烷基取代基取代的C 1-4烷氧基,或未取代或被1-3个选自羟基、卤素、羧基、氨基和卤代C 1-4烷基取代基取代的氨基;R 10为卤素;R 11为H。进一步地,这些优选的实施方案中,R 1为取代或未取代的苯基,优选地,当为具有取代基的基团时,取代基的数量为1、2或3个,选自羟基、卤素、C 1-4烷基和C 1-4烷氧基;R 3为H、卤素、C 1- 4烷氧基和C 1-4烷基,优选为卤素和C 1-4烷基;R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素;R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H。优选地,R 3和R 4各自独立为卤素,R 5为H。
在一些实施方案中,式I化合物具有下式IV所示的结构:
Figure PCTCN2022072781-appb-000006
式中:
R 1、R 3-R 5和R 11如前述式I或II的任一实施方案所述;
各m独立为1、2或3;
X为CH 2、O或NH;
R d为H、C 1-4烷基、卤代C 1-4烷基、C 1-4烷氧基、卤代C 1-4烷氧基、羧基或NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H和C 1-4烷基,n为0-4的整数;R d的数量可以是1、2或3个。
在一些实施方案中,式IV中,R d位于该杂环基与式IV其余部分连接的氮原子的邻位。
在一些实施方案中,在式IV中,R d为H、羧基或NR’R”-C(O)-(CH 2) n-。
在一些实施方案中,式IV中,含X的杂环为氮杂环丁烷基、吡咯烷基、哌啶基、哌嗪基或吗啉基。
在某些实施方案中,式IV中,R 1为取代或未取代的苯基或者取代或未取代的5-12元含氮杂芳基,如吡啶基、嘧啶基、吡唑基、吡咯基、咪唑基、***基、吡嗪基和哒嗪基等,其中,当为具有取代基的基团时,取代基的数量为1-3个,并选自卤素、C 1-4烷基和C 1-4烷氧基,优选的R 1为未取代的苯基;R 3为H、卤素、C 1-4烷氧基和C 1- 4烷基,优选为H和卤素;R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素;R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H;优选地,R 3和R 4各自独立为卤素,R 5为H;R 11为H或者未取代或任选被1-3个选自卤素和羟基的取代基取代的C 1-6烷基,优选为H;X为CH 2、O或NH;R d为H、羧基或NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H和C 1-4烷基,n为0-4的整数。
在本发明式I、II、III和IV的优选的实施方案中,所述NR’R”-C(O)-(CH 2) n-中,n为0,R’和R”各自独立为H和C 1-4烷基。
本文所述化合物通常都含有一个轴手性,包含了一对轴手性异构体。在一些的实施方案中,本文所述化合物的轴手性为S构型。在一些的实施方案中,本文所述化合物的轴手性为R构型。
在一些实施方案中,所述式I化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物中:所述式I具有下式V所示的结构式:
Figure PCTCN2022072781-appb-000007
式V中,B 1、B 3-B 5、R 1、R 3-R 5、R 11如前述式I、II或III中的任一实施方案所述;
R 6选自H、卤素、烷基、羧基、NR 12R 13和NR’R”-C(O)-(CH 2) n-,其中,R’和R” 各自独立选自H、氨基、和取代或未取代的烷基,n为0-4的整数;
R 10为H、卤素、烷基或卤代C 1-4烷基;
R 12和R 13各自独立为H、C 1-4酰基或者取代或未取代的C 1-4烷基;优选地,该烷基被1-6个选自羟基和卤素的取代基取代,或未被取代;
其中,R 6和R 10不同时为H。
在一些实施方案中,所述式I化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物中:所述式I具有下式VI所示的结构式:
Figure PCTCN2022072781-appb-000008
式V中,B 1、B 3-B 5、R 1、R 3-R 5、R 11如前述式I、II或III中的任一实施方案所述;
R 6选自H、卤素、烷基、羧基、NR 12R 13和NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基、和取代或未取代的烷基,n为0-4的整数;
R 10为H、卤素、烷基或卤代C 1-4烷基;
R 12和R 13各自独立为H、C 1-4酰基或者取代或未取代的C 1-4烷基;优选地,该烷基被1-6个选自羟基和卤素的取代基取代,或未被取代;
其中,R 6和R 10不同时为H。
在一些实施方案中,所述式I化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物中:所述式I具有下式VII所示的结构式:
Figure PCTCN2022072781-appb-000009
式VI中,R 1、R 3-R s、R 7-R 9、R 11如前述式I、II或III中的任一实施方案所述;
R 6选自H、卤素、烷基、羧基、NR 12R 13和NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基、和取代或未取代的烷基,n为0-4的整数;
R 10为H、卤素、烷基或卤代C 1-4烷基;
R 12和R 13各自独立为H、C 1-4酰基或者取代或未取代的C 1-4烷基;优选地,该烷基被1-6个选自羟基和卤素的取代基取代,或未被取代;
其中,R 6和R 10不同时为H。
在一些实施方案中,所述式I化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物中:所述式I具有下式VIII所示的结构式:
Figure PCTCN2022072781-appb-000010
式VI中,R 1、R 3-R s、R 7-R 9、R 11如前述式I、II或III中的任一实施方案所述;
R 6选自H、卤素、烷基、羧基、NR 12R 13和NR’R”-C(O)-(CH 2) n-,其中,R’和R” 各自独立选自H、氨基、和取代或未取代的烷基,n为0-4的整数;
R 10为H、卤素、烷基或卤代C 1-4烷基;
R 12和R 13各自独立为H、C 1-4酰基或者取代或未取代的C 1-4烷基;优选地,该烷基被1-6个选自羟基和卤素的取代基取代,或未被取代;
其中,R 6和R 10不同时为H。
在本发明某些的实施方案中,提供了以下化合物、或其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,所述化合物选自:
Figure PCTCN2022072781-appb-000011
Figure PCTCN2022072781-appb-000012
Figure PCTCN2022072781-appb-000013
本文也包括上述各式化合物药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物。
本文中,“立体异构体”是指由相同原子组成,通过相同的键键合,但具有不同三维结构的化合物。本发明将涵盖各种立体异构体及其混合物。
当本发明的化合物中含有烯双键时,除非另有说明,否则本发明的化合物旨在包含E-和Z-几何异构体。
“互变异构体”是指质子从分子的一个原子转移至相同分子的另一个原子而形成 的异构体。本发明的化合物的所有互变异构形式也将包含在本发明的范围内。
本发明的化合物或其药学上可接受的盐可能含有一个或多个手性碳原子,且因此可产生对映异构体、非对映异构体及其它立体异构形式。每个手性碳原子可以基于立体化学而被定义为(R)-或(S)-。本发明旨在包括所有可能的异构体,以及其外消旋体和光学纯形式。本发明的化合物的制备可以选择外消旋体、非对映异构体或对映异构体作为原料或中间体。光学活性的异构体可以使用手性合成子或手性试剂来制备,或者使用常规技术进行拆分,例如采用结晶以及手性色谱等方法。
制备/分离个别异构体的常规技术包括由合适的光学纯前体的手性合成,或者使用例如手性高效液相色谱法拆分外消旋体(或盐或衍生物的外消旋体),例如可参见GeRald Gübitz and Martin G.Schmid(Eds.),Chiral Separations,Methods and Protocols,Methods in Molecular Biology,Vol.243,2004;A.M.Stalcup,Chiral Separations,Annu.Rev.Anal.Chem.3:341-63,2010;Fumiss et al.(eds.),VOGEL’S ENCYCLOPEDIA OF PRACTICAL ORGANIC CHEMISTRY.sup.TH ED.,Longman Scientific and Technical Ltd.,Essex,1991,809-816;Heller,Acc.Chem.Res.1990,23,128。
本发明还包括本发明的化合物或其药学上可接受的盐的所有适宜的同位素变体。本发明的化合物或其药学上可接受的盐的同位素变体被定义为其中至少一个原子被具有相同原子数、但原子质量与自然界经常发现的原子质量不同的原子所替换的那些。可以掺入到本发明的化合物及其药学上可接受的盐中的同位素包括但不限于H、C、N和O的同位素,例如 2H、 3H、 11C、 13C、 14C、 15N、 17O、 18O、 35S、 18F、 36Cl和 125I。本发明所述化合物或其药学上可接受的盐的同位素变体可以通过常规技术、采用适宜试剂的适当同位素变体来制备。
在本申请中,术语“药学上可接受的盐”包括药学上可接受的酸加成盐和药学上可接受的碱加成盐。
“药学上可接受的酸加成盐”是指能够保留游离碱的生物有效性而无其它副作用的,与无机酸或有机酸所形成的盐。无机酸盐包括但不限于盐酸盐、氢溴酸盐、硫酸盐、硝酸盐、磷酸盐等;有机酸盐包括但不限于甲酸盐、乙酸盐、2,2-二氯乙酸盐、三氟乙酸盐、丙酸盐、己酸盐、辛酸盐、癸酸盐、十一碳烯酸盐、乙醇酸盐、葡糖酸盐、乳酸盐、癸二酸盐、己二酸盐、戊二酸盐、丙二酸盐、草酸盐、马来酸盐、琥珀酸盐、富马酸盐、酒石酸盐、柠檬酸盐、棕榈酸盐、硬脂酸盐、油酸盐、肉桂酸盐、月桂酸盐、苹果酸盐、谷氨酸盐、焦谷氨酸盐、天冬氨酸盐、苯甲酸盐、甲磺酸盐、苯磺酸盐、对甲苯磺酸盐、海藻酸盐、抗坏血酸盐、水杨酸盐、4-氨基水杨酸盐、萘 二磺酸盐等。这些盐可通过本专业已知的方法制备。
“药学上可接受的碱加成盐”是指能够保持游离酸的生物有效性而无其它副作用的、与无机碱或有机碱所形成的盐。衍生自无机碱的盐包括但不限于钠盐、钾盐、锂盐、铵盐、钙盐、镁盐、铁盐、锌盐、铜盐、锰盐、铝盐等。优选的无机盐为铵盐、钠盐、钾盐、钙盐及镁盐。衍生自有机碱的盐包括但不限于以下的盐:伯胺类、仲胺类及叔胺类,被取代的胺类,包括天然的被取代胺类、环状胺类及碱性离子交换树脂,例如氨、异丙胺、三甲胺、二乙胺、三乙胺、三丙胺、乙醇胺、二乙醇胺、三乙醇胺、二甲基乙醇胺、2-二甲氨基乙醇、2-二乙氨基乙醇、二环己胺、赖氨酸、精氨酸、组氨酸、咖啡因、普鲁卡因、胆碱、甜菜碱、乙二胺、葡萄糖胺、甲基葡萄糖胺、可可碱、嘌呤、哌嗪、哌啶、N-乙基哌啶、聚胺树脂等。优选的有机碱包括异丙胺、二乙胺、乙醇胺、三甲胺、二环己基胺、胆碱及咖啡因。这些盐可通过本专业已知的方法制备。
本发明化合物的药学上可接受的盐优选包括盐酸盐(如化合物1-4、7-23、26-29、33-38、41、46、48-49)、甲酸盐(如化合物30-32、39-40、44-45)和氢溴酸盐(如化合物43)。本发明化合物的前药的实施例可包括含有羧酸的化合物的简单酯(例如依据本领域已知方法通过与C 1-4醇缩合而获得的酯);含有羟基的化合物的酯(例如依据本领域已知方法通过与C 1-4羧酸、C 3-6二酸或其酸酐例如琥珀酸酐和富马酸酐缩合而获得的酯);含有氨基的化合物的亚胺(例如依据本领域已知方法通过与C 1-4醛或酮缩合而获得的亚胺);含有氨基的化合物的氨基甲酸酯,例如Leu等人(J.Med.Chem.,42:3623-3628(1999))和Greenwald等人(J.Med.Chem.,42:3657-3667(1999))描述的那些酯;含有醇的化合物的醛缩醇或酮缩醇(例如依据本领域已知方法通过与氯甲基甲基醚或氯甲基乙基醚缩合而获得的那些缩醇)。
III.化合物制备
本发明代表性化合物,式II化合物可由如下方法制备:
Figure PCTCN2022072781-appb-000014
式中,X 1、X 2为卤素;PG 1和G 2P为保护基;LG 1为离去基团;R 1-R 5和R 11如式II所定义。
上述反应流程中:
由II-a出发,使用格式试剂/DMF在惰性溶剂下把碘代物转化为醛,得到II-b;格式试剂优选异丙基格式试剂,惰性溶剂优选甲苯;
II-b经还原剂在极性质子溶剂里还原为II-c;还原剂优选硼氢化钠,极性质子溶剂优选甲醇/四氢呋喃混合溶剂;
II-c经卤代/甲磺酸酯化/对甲苯磺酸酯化得到II-d;卤代试剂优选NBS/三苯基磷,溶剂优选卤代烷烃;
II-d在强碱作用下对II-e进行烷基化得到II-f;强碱优选LDA,醚类溶剂优选四氢呋喃;
II-f脱除保护基PG 1得到II-g;所述保护基PG 1优选BOC,脱保护条件优选三氟乙酸等酸,溶剂优选卤代烷烃;
II-g经强碱关环得到II-h;所述强碱优选氢化钠,所用溶剂优选DMAc;
II-h经硼烷等还原剂还原酰胺得到II-i;所用溶剂优选四氢呋喃;
在碱和钯催化剂的存在下,双联硼频哪醇酯把II-i中的溴置换,获得硼酯II-j;所述钯催化剂优选PdCl 2dppf,所述碱优选磷酸钾,所用溶剂优选对甲苯;
硼酯II-j与芳香卤代物R 2-X 2,经由Pd催化剂与磷配体催化,在碱和惰性溶剂里进行偶联反应得到II-k;所述Pd催化剂优选Pd 2(dba) 3,所述磷配体优选XantPhos,所述碱优选磷酸钾,所用溶剂优选甲苯/水混合溶剂;
II-k脱除保护基PG 2得到II-l,所述保护基优选苄基,所用脱保护条件优选氯甲酸氯乙酯,所用溶剂优选卤代烷烃;
最后,II-l与醛类化合物在极性溶剂里经由还原胺化反应得到式II化合物;所用还原剂优选氰基硼氢化钠,所述溶剂优选甲醇。
本发明其它化合物可参照上述流程或实施例中的制备例,采用相应的反应物,在相同或类似的反应条件下制备得到。
IV.药物组合物、方法及应用
本发明式I、II和III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药和代谢产物是YAP/TAZ与TEAD相互作用的抑制剂,更具体而言,是YAP与TEAD相互作用的抑制剂。因此,本发明的式I、II和III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药和代谢产物可用于治疗或预防YAP/TAZ与TEAD相互作用介导的疾病。本文中,“YAP/TAZ与TEAD相互作用介导的疾病”指YAP/TAZ与TEAD相互作用的参与了疾病的发生和/或发展、通过抑制YAP和TEAD的表达和/或活性或通过抑制或阻断YAP-TEAD蛋白相互作用可实现缓解、治疗和/或预防目的的疾病。本发明中,YAP/TAZ与TEAD相互作用介导的疾病包括但不限于肺癌(如非小细胞肺癌),乳腺癌,头颈癌,食管癌,卵巢癌,肝癌,***癌,间皮瘤,胰腺癌,黑色素瘤、结肠癌,甲状腺癌和皮肤癌等。
在一些实施方案中,YAP/TAZ与TEAD相互作用介导的疾病为恶性胸膜间皮瘤(MPM),其为一种罕见的胸部恶性肿瘤。Hippo-YAP通路的异常活化存在于大约70%的MPM的病人中,被认为是其重要的癌症驱动基因,通过生物学手段及化学小 分子降低Hippo-YAP通路活性显示出了良好的抑制肿瘤生长的活性。
在一些实施方案中,YAP/TAZ与TEAD相互作用介导的疾病为胰腺导管腺癌(PDAC)。
YAP信号通路可以通过介导肿瘤细胞休眠,抵抗凋亡等机制产生对多种抗癌靶向药的抗药性,抑制Hippo-YAP信号通路可以提高肿瘤细胞对靶向药物的敏感性;此外,Hippo-YAP作为促进肿瘤细胞生长的通路,在多个耐药肿瘤模型中发生过度活化,抑制其活性可以显著提高对治疗细胞对相关抑制剂的敏感性。因此,在一些实施方案中,本发明的I、II和III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药和代谢产物可用于提高治疗细胞对靶向药物(如EGFR抑制剂、靶向BRAF的抑制剂、靶向MEK的抑制剂等)的敏感性,提高这些肿瘤靶向药物的治疗效果。
因此,本发明提供一种治疗或预防本文所述的YAP/TAZ与TEAD相互作用介导的疾病的方法,该方法包括给予需要的对象治疗有效量的本发明I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,或其药物组合物。
本文所述的“对象”或“个体”指哺乳动物,尤其是灵长类动物,更具体是人。
本文所用术语“预防”和“防止”包括使病患减少疾病或病症的发生或恶化的可能性;该术语也包括:预防疾病或病症在哺乳动物中出现,特别是当这类哺乳动物易患有该疾病或病症,但尚未被诊断为已患有该疾病或病症时。“治疗”和其它类似的同义词包括以下含义:(i)抑制疾病或病症,即遏制其发展;(ii)缓解疾病或病症,即,使该疾病或病症的状态消退;或者(iii)减轻该疾病或病症所造成的症状。
本文所使用术语“有效量”、“治疗有效量”、“给药量”、“药学有效量”是指服用后足以在某种程度上缓解所治疗的疾病或病症的一个或多个症状的至少一种药剂或化合物的量。其结果可以为迹象、症状或病因的消减和/或缓解,或生物***的任何其它所需变化。例如,用于治疗的“有效量”是在临床上提供显著的病症缓解效果所需的包含本文公开的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物的组合物的量。可根据对象的年龄、性别、所患疾病及其严重程度等因素确定给药量。可使用诸如剂量递增试验的技术测定适合于任意个体病例中的有效量。
本文所用术语“服用”、“施用”、“给药”等是指能够将化合物或组合物递送到进行生物作用的所需位点的方法。本领域周知的给药方法均可用于本发明。这些方 法包括但不限于口服途径、经十二指肠途径、胃肠外注射(包括肺内、鼻内、鞘内、静脉内、皮下、腹膜内、肌内、动脉内注射或输注)、局部给药和经直肠给药。本领域技术人员熟知可用于本文所述化合物和方法的施用技术,例如在Goodman and Gilman,The Pharmacological Basis of Therapeutics,current ed.;Pergamon;and Remington’s,Pharmaceutical Sciences(current edition),Mack Publishing Co.,Easton,Pa中讨论的那些。在优选的实施方案中,通过口服施用本发明的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物或其药物组合物。
本发明的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物或其药物组合物可以与其它具有药理活性的化合物联用,尤其可联用于治疗癌症。例如,本发明的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物或其药物组合物可以与一种或多种选自如下的药物组合地同时、依次或分别施用:化疗剂,比如有丝***抑制剂,如紫杉烷、长春花生物碱、紫杉醇、多西他赛、长春花新碱、长春花碱、长春瑞滨或长春氟宁,其它抗癌剂如顺铂、5-氟尿嘧啶或5-氟-2-4(1H,3H)-嘧啶二酮(5FU)、氟他胺或吉西他滨等。在一些实施方案中,本发明的发明式I化合物、其药学上可接受的盐及异构体或含有本发明的式I化合物、其药学上可接受的盐及异构体的药物组合物还可与本领域周知的肿瘤免疫治疗药物,如抗PD1抗体等一起用于癌症的治疗。或者,本发明I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物或其药物组合物也可与常规的放疗联用。
本文中,“联用”、“药物联用”、“联合用药”或“联合治疗”等是指通过混合或组合不止一种活性成分而获得的药物治疗,其包括活性成分的固定和不固定组合,或者指两种或两种以上不同的治疗手段的组合。术语“固定组合”是指以单个实体或单个剂型的形式向患者同时施用至少一种本文所述的化合物和至少一种协同药剂。术语“不固定组合”是指以单独实体的形式向患者同时施用、合用或以可变的间隔时间顺次施用至少一种本文所述的化合物和至少一种协同制剂。这些也应用到鸡尾酒疗法中,例如施用三种或更多种活性成分。
本发明也提供一种药物组合物,其含有本发明的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多 晶型物、前药或代谢产物,以及药学上可接受的载体或赋形剂。
在本申请中,“药物组合物”是指含有I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物与本领域通常接受的用于将生物活性化合物输送至哺乳动物(例如人)的介质的制剂。该介质包括药学上可接受的载体。药物组合物的目的是促进生物体的给药,利于活性成分的吸收进而发挥生物活性。本文所用术语“药学上可接受的”是指不影响本发明I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物的生物活性或性质的物质(如载体或稀释剂),并且相对无毒,即该物质可施用于个体而不造成不良的生物反应或以不良方式与组合物中包含的任意组分相互作用。“药学上可接受的载体或赋形剂”包括但不限于任何被相关的政府管理部门许可为可接受供人类或家畜使用的佐剂、载体、赋形剂、助流剂、增甜剂、稀释剂、防腐剂、染料/着色剂、矫味剂、表面活性剂、润湿剂、分散剂、助悬剂、稳定剂、等渗剂、溶剂或乳化剂。
在一些实施方案中,本发明的药物组合物的活性成分中,除本I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物外,还可含有其它的已知抗癌剂,包括但不限于紫杉烷、长春花生物碱、紫杉醇、多西他赛、长春花新碱、长春花碱、长春瑞滨、长春氟宁、顺铂、5-氟尿嘧啶、5-氟-2-4(1H,3H)-嘧啶二酮(5FU)、氟他胺和吉西他滨等。
本发明涉及本发明的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物或其药物组合物在治疗或预防本文所述的YAP/TAZ与TEAD相互作用介导的疾病中的应用,或在制备用于治疗或预防本文所述的YAP/TAZ-TEAD相互作用介导的疾病的药物中的应用。本发明也提供用于治疗或预防本文所述的YAP/TAZ与TEAD相互作用介导的疾病的本发明所述的I、II或III化合物、其药学上可接受的盐、对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物或其药物组合物。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量 计算。
下述实施例中所用的起始物可由化学品销售商如Aldrich、TCI、Alfa Aesar、毕得、安耐吉等处购得,或者可通过已知的方法来合成。
中间体A1的合成:8-氯-7-氟-10a-苯基-9-(4,4,5,5-四甲基-1,3,2-二氧硼烷-2-基)-3,4,10,10a-四氢吡嗪[1,2-a]吲哚-2(1H)-碳酸叔丁酯
Figure PCTCN2022072781-appb-000015
步骤一:在氮气保护下向干燥的三口瓶中依次加入1,3-二溴-5-氟-2-碘苯(7.50g,19.7mmol),甲苯(45mL),在-30℃下滴加异丙基氯化镁(12.8mL,25.6mmol,2.0M),得到的棕色溶液在-30℃下搅拌30分钟。然后向溶液中加入DMF(4.75g,65.0mmol),反应液用30分钟自然升温到0度,并在0度下继续搅拌30分钟。点板显示反应完 全。将反应液倒入饱和氯化铵溶液中淬灭。得到的混合物用乙酸乙酯萃取。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚),得到黄色固体A-1(4.10g,产率:73.9%)。
1H NMR(400MHz,CDCl 3)δ10.22(s,1H),7.43(d,J=7.6Hz,2H)。
步骤二:向干燥的单口瓶中依次加入化合物A-1(4.10g,14.5mmol)、四氢呋喃(40mL)、甲醇(6mL)和硼氢化钠(329mg,8.70mmol)。反应液在20℃下搅拌0.5小时。点板显示反应完全。反应液减压浓缩。浓缩液加水稀释,水相用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩得到黄色固体A-2(4.12g,粗品)。
1H NMR(400MHz,CDCl 3)δ7.68(d,J=8.4Hz,2H),5.22(t,J=5.2Hz,1H),4.70(d,J=5.2Hz,2H)。
步骤三:在20度下向干燥的单口瓶中依次加入化合物A-2(4.12g,14.5mmol)、二氯甲烷(60mL)、三苯基膦(4.56g,17.4mmol)和NBS(3.10g,17.4mmol)。反应液在20℃下搅拌0.5小时。点板显示反应完全。反应液减压浓缩干。得到的残留物通过硅胶色谱法纯化(石油醚),得到白色固体A(4.40g,收率:87.5%)。
1H NMR(400MHz,CDCl 3)δ7.34(d,J=7.6Hz,2H),4.79(s,2H)。
步骤四:将2-溴-2-苯基乙酸乙酯(13g,53.48mmol,1.0eq),(2-氨基乙基)氨基甲酸叔丁酯(9.42g,58.82mmol,1.1eq)溶入乙醇(130mL)中然后加入三乙胺(8.12g,80.21mmol,1.5eq)并在60℃搅拌12小时,TLC显示原料反应完全并有新点生成,将反应液减压旋干,置入水中并用乙酸乙酯萃取,有机相用无水硫酸钠干燥,过滤,减压旋干得到A1-1(14g,粗品)为黄色油状物。
步骤五:将A1-1(14g,43.42mmol)溶于二氯甲烷(90mL)中并加入三氟乙酸(30mL),然后在20℃反应2h,TLC显示原料反应完全并有新点生成,将反应液减压旋干,置入水中,用饱和NaHCO 3水溶液调节pH至中性并用乙酸乙酯萃取,有机相用无水硫酸钠干燥,过滤,减压旋干得到A1-2(10g,粗品)为黄色油状物。
步骤六:将A1-2(9.65g,43.41mmol)溶于乙醇(100mL)中加热至85℃,加入三乙胺(6.59g,65.12mmol)并于此温度下反应12h,TLC显示原料反应完全并有新点生成,将反应液减压旋干,置入水中,用饱和NaHCO 3水溶液调节pH至中性并用乙酸乙酯萃取,有机相用无水硫酸钠干燥,过滤,减压旋干得到A1-3(5.6g,粗品)为白色固体。
1H NMR(400MHz,DMSO)δ7.82(s,1H),7.45-7.18(m,5H),4.35(s,1H),3.92 (s,1H),3.35-3.25(m,1H),3.19(dt,J=11.7,3.9Hz,1H),2.99-2.81(m,2H)。
步骤七:将化合物A1-3(4.67g,26.5mmol)悬浮于二氧六环(100mL)中,加入Boc 2O酸酐(5.78g,26.5mmol),混合物在90度加热1小时。点板跟踪反应完毕,混合物趁热过滤,滤液减压浓缩,粗品在(石油醚∶乙酸乙酯=10∶1)中打浆得浅粉色固体A1-4(6.82g,收率:93%)。
1H NMR(400MHz,DMSO-d6)δ8.27(s,1H),7.38-7.29(m,5H),5.46-5.15(brs,1H),3.80-3.70(brs,1H),3.25-3.15(m,3H),1.36(s,9H)。
步骤八:将化合物A1-4(6.82g,24.7mmol)溶于四氢呋喃(120mL),在20度一次性加入60%钠氢(1.09g,27.2mmol),搅拌5分钟。接着加入苄溴(4.83g,28.4mmol)并搅拌过夜。点板跟踪反应完毕,用甲醇(5mL)淬灭反应并加水(80mL)稀释。减压浓缩除去大部分溶剂。残留物用乙酸乙酯(50mL)萃取两次,饱和盐水洗涤(50mL),无水硫酸钠干燥,过滤,减压浓缩,硅胶柱层析(甲醇/二氯甲烷=6/100)得无色粘稠液体A1-5(7g,收率:77%)。
1H NMR(400MHz,DMSO-d6)δ7.44-7.18(m,10H),5.51(brs,1H),4.70(d,J=16Hz,1H),4.49(d,J=16Hz,1H),3.81(brs,1H),3.45-3.18(m,3H),1.37(s,9H)。
步骤九:在-50℃下,向化合物A1-5(3.59g,9.80mmol)的四氢呋喃(40mL)溶液中滴加二异丙基胺基锂溶液(6.4mL,12.7mmol,2.0M)。反应液在-30℃下搅拌1小时。然后降温到-50℃,向反应液中加入化合物A(3.40g,9.8mmol)的四氢呋喃(10mL)溶液。反应液逐渐升温到20℃,并继续搅拌12小时。反应完毕后,加入饱和氯化铵溶液淬灭。得到的混合物用乙酸乙酯萃取。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=5∶1),得到白色固体A1-6(6.10g,产率:98.4%)。
1H NMR(400MHz,CDCl 3)δ7.49-7.41(m,2H),7.39-7.33(m,2H),7.32-7.21(m,6H),7.05-6.95(m,2H),4.65-4.50(m,2H),4.40-4.20(m,1H),4.17-4.05(m,1H),3.80-3.70(m,1H),3.65-3.50(m,1H),3.25-3.10(m,1H),2.80-2.60(m,1H),1.10(s,9H)。
步骤十:向A1-6(6.10g,9.65mmol)的二氯甲烷(40mL)溶液中加入三氟乙酸(20mL)。反应液在30℃下搅拌2小时。反应完毕后,将反应液减压浓缩干。向浓缩得到的残留物中加入饱和碳酸氢钠溶液(60mL),并用乙酸乙酯萃取。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩得到黄色固体A1-7(5.10g,收率:99.2%)。
1H NMR(400MHz,CDCl 3)δ7.45-7.38(m,2H),7.35-7.20(m,10H),4.96(d,J=14.4 Hz,1H),4.44(d,J=14.8Hz,1H),4.13(d,J=14.8Hz,1H),3.80(d,J=14.8Hz,1H),3.40-3.30(m,1H),3.00-2.70(m,3H),2.50-2.10(m,2H)。
步骤十一:在干燥的单口瓶中依次加入化合物A1-7(5.10g,9.58mmol)、DMA(50mL)和氢化钠(768mg,19.2mmol,60%在矿物油中)。反应液在100℃下搅拌6小时。反应完毕后,反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=5∶1),得到白色固体A1-8(4.0g,收率:92.6%)。
1H NMR(400MHz,CDCl 3)δ7.65-7.55(m,2H),7.40-7.35(m,2H),7.34-7.22(m,4H),7.14-7.06(m,2H),6.63(dd,J=9.2,2.0Hz,1H),6.17(dd,J=9.6,2.0Hz,1H),4.83(d,J=14.8Hz,1H),4.44(d,J=14.8Hz,1H),4.29(dd,J=16.8,0.8Hz,1H),3.56-3.45(m,1H),3.40-3.30(m,2H),3.13-2.96(m,2H)。
步骤十二:在干燥的单口瓶中依次加入化合物A1-8(4.0g,8.86mmol)、四氢呋喃(40mL)和硼烷二甲硫醚(35.5mL,70.9mmol,2M)。反应液在65℃下搅拌20小时。反应液用甲醇淬灭,然后减压浓缩干。得到的剩余物溶解在甲醇(40mL)和4N的盐酸二氧六环(20mL)中,反应液在20℃下搅拌1小时。将反应液减压浓缩干,加入饱和碳酸氢钠溶液(150mL),并用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩得到无色油状物A1-9(4.10g,粗品)。
步骤十三:在干燥的单口瓶中依次加入化合物A1-9(4.10g,8.86mmol)、1,2-二氯乙烷(40mL)和氯甲酸2-氯乙酯(3.17g,22.2mmol)。反应液在80℃下搅拌16小时。反应液减压浓缩干。得到的剩余物溶解在甲醇中,并在75度下搅拌1.5小时。反应完毕后,将溶液减压浓缩得到黄色油状化合物6(3.10g,粗品)。
步骤十四:向干燥的单口瓶中依次加入化合物6(3.08g,8.86mmol),二氯甲烷(50mL),三乙胺(3.58g,35.4mmol)和Boc 2O(2.90g,13.3mmol)。反应液在20℃下搅拌1小时后减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=5∶1),得到白色固体A1-10(3.10g,收率:78.3%)。
1H NMR(400MHz,CDCl 3)δ7.70-7.50(m,2H),7.42-7.34(m,2H),7.32-7.26(m,1H),6.53(dd,J=9.2,2.0Hz,1H),6.25-6.10(m,1H),4.80-4.50(m,1H),4.00-4.36(m,1H),3.50-2.80(m,6H),1.50-1.30(m,9H)。
步骤十五:在干燥的单口瓶中依次加入化合物A1-10(1.0g,2.24mmol)、乙腈(20mL)和NCS(299mg,2.24mmol)。反应液在20℃下搅拌4小时。反应液减压 浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1)得到白色固体A1-11(700mg,收率:64.8%)。
1H NMR(400MHz,CDCl 3)δ7.65-7.50(m,2H),7.42-7.34(m,2H),7.33-7.27(m,1H),6.40-6.20(m,1H),4.80-4.50(m,1H),4.00-4.36(m,1H),3.50-2.80(m,6H),1.50-1.25(m,9H)。
步骤十六:在干燥的三口瓶中依次加入化合物A1-11(600mg,1.25mmol)、双联频哪醇硼酸酯(635mg,2.50mmol)、二甲苯(10mL)、Pd(dppf)Cl 2·CH 2Cl 2(102mg,0.125mmol)和特戊酸钾(526mg,3.75mmol)。反应液在氮气保护100℃下搅拌12小时。反应完毕后,反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到白色固体A1(470mg,收率:71.1%)。
1H NMR(400MHz,CDCl 3)δ7.70-7.50(m,2H),7.42-7.34(m,2H),7.33-7.27(m,1H),6.40-6.20(m,1H),4.75-4.45(m,1H),4.00-4.36(m,1H),3.40-2.80(m,6H),1.50-1.36(m,9H),1.35-1.27(m,12H)。
中间体A2的合成:8-氯-7-氟-10a-(3-甲氧基苯基)-9-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)-3,4,10,10a-四氢吡嗪并[1,2-a]吲哚-2(1H)-碳酸叔丁酯
Figure PCTCN2022072781-appb-000016
步骤一:0℃,氩气保护下向3-苄氧基苯甲醛(A2-1,45g,212.3mmol)的二氯甲烷(900mL)溶液中滴加钛酸四异丙酯(24g,84.9mmol)。缓慢升至室温后加入TMSCN(84.2g,849.2mmol)。室温搅拌4h。TLC显示反应完全,在0℃下加入盐酸的水溶液(20ml,1.5M)淬灭反应。加水(270mL),用乙酸乙酯萃取(3×200mL)。合并有机相,水洗(2×100mL),饱和盐水洗(100mL)。无水硫酸钠干燥,过滤,浓缩,柱层析纯化(乙酸乙酯∶石油醚=1∶6)得黄褐色油状物2-(3-(苄氧基)苯基)-2-羟基乙腈(A2-2,44g,收率:86.8%)。
1H NMR(400MHz,DMSO-d6),δppm 7.30~7.15(m,6H),6.97~6.87(m,3H),5.56(d,J=6.0Hz,1H),4.95(s,2H)。
步骤二:将2-(3-(苄氧基)苯基)-2-羟基乙腈(44g,183.9mmol)溶于HCl/MeOH(4N,500ml)中。80℃下搅拌反应14h。TLC确认反应完全。反应液减压浓缩近干。残留物加水(400mL),乙酸乙酯萃取(3*300mL)。合并有机相,水洗(2*150mL),饱和盐水洗(100mL)。无水硫酸钠干燥,过滤,浓缩,柱层析纯化(乙 酸乙酯∶石油醚=1∶4)得黄褐色固体2-(3-(苄氧基)苯基)-2-羟基乙酸甲酯(A2-3,37.3g,收率:74.5%)。
1H NMR(400MHz,DMSO-d6),δppm 7.46~7.24(m,6H),7.04~6.93(m,3H),5.11(s,1H),5.08(s,2H),3.60(s,3H)。
步骤三:向2-(3-(苄氧基)苯基)-2-羟基乙酸甲酯(37.3g,137.0mmol)的二氯甲烷(100mL)溶液中加入SOCl 2(18g,150.7mmol)。升温至60℃反应5h。TLC显示反应完全,反应液减压浓缩。向残留物中加水(100mL),用饱和碳酸氢钠水溶液调pH至8。乙酸乙酯萃取(3*400mL)。合并有机相,水洗(2*200mL),饱和盐水洗(3*200mL)。无水硫酸钠干燥,过滤,浓缩,柱层析纯化(乙酸乙酯∶石油醚=1∶5)得浅白色固体2-(3-(苄氧基)苯基)-2-氯乙酸甲酯(A2-4,35.5g,收率:89.1%)。
1H NMR(400MHz,CDCl 3),δ7.38~7.19(m,6H),7.06(t,J=2.0Hz,1H),7.00(d,J=7.6Hz,1H),6.92~6.89(m,1H),5.26(s,1H),5.00(s,2H),3.69(s,3H)。
步骤四:向2-(3-(苄氧基)苯基)-2-氯乙酸甲酯(35.5g,122.1mmol)的甲醇(350mL)溶液中加入三乙胺(18.5g,183.2mmol)和N-叔丁氧羰基-1,2-乙二胺(25.4g,158.6mmol)。升温至60℃搅拌反应18h。TLC和LCMS显示反应完全。反应液减压浓缩。残留物加水(600mL),乙酸乙酯萃取(3*200mL)。合并有机相,饱和盐水洗(3×200mL)。无水硫酸钠干燥,过滤,浓缩,柱层析纯化(乙酸乙酯∶石油醚=1∶3)得浅白色油状物2-((2-((叔丁氧基羰基)氨基)乙基)氨基)-2-(3-(苄氧基)苯基)乙酸甲酯(A2-5,30.5g,收率:60.3%)。
LCMS:m/z 415[M+H] +
步骤五:向2-((2-((叔丁氧基羰基)氨基)乙基)氨基)-2-(3-(苄氧基)苯基)乙酸甲酯(30.0g,72.4mmol)的二氯甲烷(300mL)溶液中滴加三氟乙酸(60mL)。20℃反应2h。反应液减压浓缩至干。残留物加乙酸乙酯(150mL)和饱和碳酸氢钠水溶液(300mL)。收集有机相,水相用乙酸乙酯萃取(3*150mL)。合并有机相,饱和盐水洗(100mL),无水硫酸钠干燥,过滤,滤液减压浓缩至干得2-((2-氨基乙基)氨基)-2-(3-(苄氧基)苯基)乙酸甲酯粗品(A2-6,27.0g),直接用于下一步反应。
LCMS:m/z 315.3[M+H] +
1H NMR(400MHz,DMSO-d 6):δppm 7.47~7.45(m,2H),7.40(t,J=7.2Hz,2H),7.35~7.33(m,1H),7.29~7.25(m,1H),7.11(s,1H),7.00~6.97(m,2H),5.09(s,2H),4.42(s, 1H),3.60(s,3H),2.88~2.84(m,2H),2.65~2.59(m,2H)。
步骤六:向2-((2-氨基乙基)氨基)-2-(3-(苄氧基)苯基)乙酸甲酯(27.0g,85.85mmol)的乙醇(50mL)溶液中加入三乙胺(13.0g,128.77mmol)。85℃搅拌反应3h。反应液减压浓缩,残留物加乙酸乙酯(100mL)稀释,水洗(3*100mL),无水硫酸钠干燥,过滤,浓缩得3-(3-(苄氧基)苯基)哌嗪-2-酮粗品(A2-7,17.0g,两步收率:83%),直接用于下一步反应。
LCMS:m/z 283.1[M+H] +
步骤七:向3-(3-(苄氧基)苯基)哌嗪-2-酮(17.0g,60.3mmol)的1,4-二氧六环(150ml)溶液中加入二碳酸二叔丁酯(14.5g,66.3mmol)和三乙胺(18.3g,180.8mmol)。90℃搅拌1.5h。反应液浓缩干,加入***(100mL)搅拌打浆,过滤得白色固体2-(3-(苄氧基)苯基)-3-氧哌嗪-1-羧酸叔丁酯(A2-8,18.0g,收率:78.2%)。
LCMS:m/z 765.4[2M+H] +
1H NMR:(400MHz,CDCl 3),δppm 7.42-7.25(m,6H),7.06-7.01(m,2H),6.93(dd,J=8.0,2.4Hz,1H),5.65(s,1H),5.06(s,2H),4.00(s,1H),3.50~3.47(m,1H),3.29~3.22(m,2H),1.45(s,9H)。
步骤八:20℃,氩气保护下向2-(3-(苄氧基)苯基)-3-氧哌嗪-1-羧酸叔丁酯(5.0g,13.1mmol)的四氢呋喃(75mL)溶液中加入NaH(60%分散于油中,785mg,19.6mmol)。搅拌30min后加入溴化苄(3.4g,19.62mmol)。温室搅拌反应16h。反应液用乙酸乙酯稀释后(100mL),倒至冰水(150mL)中。收集有机相,水相用乙酸乙酯萃取(3*100mL)。合并有机相,饱和盐水洗(200mL),无水硫酸钠干燥,过滤,浓缩,硅胶层析柱纯化(乙酸乙酯/石油醚=1/10~1/5)得无色透明油状4-苄基-2-(3-(苄氧基)苯基)-3-氧哌嗪-1-羧酸叔丁酯(A2-9,3.8g,收率:61.5%)。
LCMS:m/z 473.2[M+H] +
1H NMR(400MHz,CDCl 3),δppm 7.42~7.24(m,12H),7.03~7.00(m,2H),6.93(dd,J=8.4,2.4Hz,1H),5.07(s,2H),4.84(d,J=14.4Hz,1H),4.48(m,1H),3.87(s,1H),3.34~3.23(m,2H),3.18~3.14(m,1H),1.44(s,9H)。
步骤九:-50℃,氩气保护下向4-苄基-2-(3-(苄氧基)苯基)-3-氧哌嗪-1-羧酸叔丁酯(10.8g,22.9mmol)的四氢呋喃(150mL)溶液中滴加LDA(2.0M in THF,14.9mL,29.8mmol)。滴毕,在-30℃左右搅拌1h。降温至-50℃,滴加1,3-二溴-2-(溴甲基)-5-氟苯(7.2g,20.8mmol)的四氢呋喃(50mL)溶液。自然升至室温,搅拌反应16h。将反应液倒至冰水中(150mL)。加入乙酸乙酯萃取(3*150mL), 饱和盐水洗(150mL),无水硫酸钠干燥,过滤,浓缩,硅胶柱层析纯化(乙酸乙酯/石油醚=1/100~1/4)得4-苄基-2-(3-(苄氧基)苯基)-2-(2,6-二溴-4-氟苄基)-3-氧哌嗪-1-羧酸叔丁酯(A2-10,13.0g,收率:77.0%)。
LCMS:m/z 739.3[M+H] +
1H NMR(400MHz,CDCl 3):δppm 7.52~7.29(m,7H),7.26~7.20(m,4H),7.09~7.05(m,2H),7.00~6.99(m,2H),6.90~6.87(m,1H),5.09~5.02(m,2H),4.58~4.53(m,2H),4.27(s,1H),4.12(d,J=14.4Hz,1H),3.77~3.71(m,1H),3.52(s,1H),3.19~3.13(m,1H),2.72~2.70(m,1H),1.13(s,9H)。
步骤十:向4-苄基-2-(3-(苄氧基)苯基)-2-(2,6-二溴-4-氟苄基)-3-氧哌嗪-1-羧酸叔丁酯(13.0g,17.6mmol)的二氯甲烷(85mL)溶液中滴加三氟乙酸(45mL)。30℃反应2h。减压浓缩至干。残留物加入二氯甲烷(200mL)和饱和碳酸氢钠水溶液(300mL)。水相再用二氯甲烷萃取(3*150mL)。合并有机相,饱和盐水洗(150mL),无水硫酸钠干燥,过滤,减压浓缩,硅胶柱层析纯化(乙酸乙酯/石油醚=1/100~1/3)得1-苄基-3-(3-(苄氧基)苯基)-3-(2,6-二溴-4-氟苄基)哌嗪-2-酮(A2-11,10.5g,收率:93.4%)。
LCMS:m/z 639.0[M+H] +
1H NMR(400MHz,CDCl 3):δppm7.41~7.30(m,10H),7.23~7.21(m,2H),7.17~7.13(m,1H),7.09~7.08(m,1H),7.04~7.02(m,1H),6.89~6.87(m,1H),4.98~4.88(m,3H),4.41(d,J=14.4Hz,1H),4.08(d,J=14.8Hz,1H),3.77(d,J=14.4Hz,1H),3.36~3.29(m,1H),2.99~2.94(m,2H),2.44(s,1H)。
步骤十一:将1-苄基-3-(3-(苄氧基)苯基)-3-(2,6-二溴-4-氟苄基)哌嗪-2-酮(3.0g,4.70mmol)溶解在三氟乙酸(50mL)中。加热到60℃搅拌反应2h。反应液减压浓缩至干后加乙酸乙酯(300mL)稀释,饱和碳酸氢钠水溶液洗(400mL),饱和盐水洗(2*400mL),无水硫酸钠干燥,过滤,滤液减压浓缩,将得到的残留物通过硅胶色谱法(0至50%梯度的乙酸乙酯∶石油醚)纯化得白色固体1-苄基-3-(2,6-二溴-4-氟苄基)-3-(3-羟基苯基)哌嗪-2-酮(A2-12,2.1g,收率:82%)。
1H NMR(400MHz,DMSO-d 6):δppm 9.15(s,1H),7.56(d,J=8.0Hz,2H),7.35~7.24(m,5H),7.01(t,J=8.0Hz,1H),6.87(t,J=2.0Hz,1H),6.80(d,J=8.0Hz,1H),6.62(dd,J=8.0,2.0Hz,1H),4.79(d,J=14.8Hz,1H),4.43(d,J=14.8Hz,1H),3.87(d,J=14.4Hz,1H),3.68(d,J=14.4Hz,1H),3.36~3.29(m,1H),2.92~2.89(m,1H),2.79~2.76(m,2H),2.58~2.54(m,1H)。
步骤十二:向1-苄基-3-(2,6-二溴-4-氟苄基)-3-(3-羟基苯基)哌嗪-2-酮(1.9g,3.47mmol)和碳酸钾(1.4g,10.40mmol)的MeCN(30mL)溶液中加入硫酸二甲酯(525mg,4.16mmol)。反应加热到60℃搅拌反应4h。反应液用乙酸乙酯(100mL)稀释,饱和碳酸氢钠水溶液洗(100mL),饱和盐水洗(2*100mL),无水硫酸钠干燥,过滤,滤液减压浓缩,将得到的残留物通过硅胶色谱法(0至50%梯度的乙酸乙酯∶石油醚)纯化得白色固体1-苄基-3-(2,6-二溴-4-氟苄基)-3-(3-甲氧基苯基)哌嗪-2-酮(A2-13,1.16g,收率:60%)。
LCMS:m/z 563.3[M+H] +
1H NMR(400MHz,DMSO-d 6):δppm 7.57(d,J=8.0Hz,2H),7.35~7.24(m,5H),7.14(t,J=8.0Hz,1H),6.98(d,J=8.0Hz,1H),6.91(t,J=2.0Hz,1H),6.81(dd,J=8.0,2.0Hz,1H),4.83(d,J=14.4Hz,1H),4.39(d,J=14.8Hz,1H),3.90(d,J=14.4Hz,1H),3.68(d,J=14.0Hz,1H),3.60(s,3H),3.40~3.32(m,1H),2.94~2.89(m,2H),2.81~2.76(m,1H),2.57~2.50(m,1H)。
19F NMR(376MHzDMSO-d 6):δ-113.37.
剩余步骤:参考中间体A1的合成方法,用A2-13代替A1-7,进行六步反应得到中间体A2。
中间体A3的合成:8-氯-7-氟-10a-(3-氟苯基)-9-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)-3,4,10,10a-四氢吡嗪并[1,2-a]吲哚-2(1H)-碳酸叔丁酯
Figure PCTCN2022072781-appb-000017
步骤一:氩气保护下向3-氟-苯乙酸甲酯(25.00g,148.66mmol)的四氯化碳(250mL)溶液中加入N-溴代丁二酰亚胺(34.40g,193.26mmol)和偶氮二异丁腈(9.76g,59.46mmol)。加热至70℃反应20h。LCMS监控反应完毕。反应液减压浓缩,柱层析分离纯化(石油醚/乙酸乙酯=40/1~20/1)得黄色液体2-溴-2-(3-氟苯基)乙酸甲酯(A3-2,35.6g,收率:96.9%)。
1H NMR(400MHz,CDCl 3):δppm 7.34~7.27(m,3H),7.05(s,1H),5.32(s,1H),3.80(s,3H)。
19FNMR(376MHz,CDCl 3)δppm-111.72。
剩余步骤:参考中间体A1的合成方法,用A3-2代替2-溴-2-苯基乙酸乙酯,进行十三步反应得到中间体A3。
中间体A4的合成:8-氯-10a-(3-氯苯基)-7-氟-9-(4,4,5,5-四甲基-1,3,2-二氧杂 硼烷-2-基)-3,4,10,10a-四氢吡嗪并[1,2-a]吲哚-2(1H)-碳酸叔丁酯
Figure PCTCN2022072781-appb-000018
参考中间体A3的合成方法,用A4-1代替A3-1,进行十四步反应得到中间体A4。
中间体A5的合成:2-苄基-8-氯-7-氟-10a-(吡啶-3-基)-9-(4,4,5,5-四甲基-1,3,2-二氧硼烷-2-基)-1,2,3,4,10,10a-四氢吡嗪并[1,2-a]吲哚
Figure PCTCN2022072781-appb-000019
步骤一至步骤九:参考中间体A3的合成方法,用A5-1代替A3-1,进行九步反应得到中间体A5-10。
步骤十:在干燥的单口瓶中依次加入化合物A5-10(585mg,1.29mmol)、四氢呋喃(10mL)和硼烷二甲硫醚(5.2mL,10.3mmol,2M)。反应液在35℃下搅拌50小时。反应液用甲醇淬灭,然后减压浓缩干。得到的剩余物溶解在甲醇(10mL)和4N的盐酸二氧六环(2mL)中,反应液在20℃下搅拌1小时。将反应液减压浓缩干,加入饱和碳酸氢钠溶液(20mL),并用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=1∶1),得到无色油状物A5-11(350mg,收率:61.9%)。
1H NMR(400MHz,CDCl 3)δ8.70-8.60(m,1H),8.54(dd,J=4.8,1.6Hz,1H),7.71-7.64(m,1H),7.40-7.20(m,6H),6.53(dd,J=9.2,2.4Hz,1H),6.16(dd,J=10.0,2.0Hz,1H),3.56(d,J=12.8Hz,1H),3.43-3.29(m,2H),3.26-3.13(m,2H),2.86(d,J=1.6Hz,2H),2.68-2.58(m,1H),2.40(d,J=12.0Hz,1H),2.36-2.25(m,1H)。
步骤十一:在干燥的单口瓶中依次加入化合物A5-11(450mg,1.03mmol)、乙腈(20mL)和NCS(138mg,1.03mmol)。反应液在60℃下搅拌12小时。反应液减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=1∶1)得到白色固体A5-12(310mg,收率:63.7%)。
1H NMR(400MHz,CDCl 3)δ8.67-8.61(m,1H),8.55(dd,J=4.8,1.6Hz,1H),7.71- 7.64(m,1H),7.38-7.19(m,6H),6.29(dd,J=9.6Hz,1H),3.57(d,J=13.2Hz,1H),3.41-3.28(m,2H),3.27-3.12(m,2H),2.90(d,J=1.2Hz,2H),2.68-2.58(m,1H),2.40(d,J=12.4Hz,1H),2.35-2.24(m,1H)。
步骤十二:在干燥的三口瓶中依次加入化合物A5-12(310mg,0.656mmol)、双联频哪醇硼酸酯(333mg,1.31mmol)、二甲苯(6mL))Pd(dppf)Cl 2·CH 2Cl 2(54mg,0.066mmol)和特戊酸钾(276mg,1.97mmol)。反应液在氮气保护100℃下搅拌12小时。反应完毕后,反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩得到黄色油状物A5(250mg,粗品)。
LCMS:m/z 520.3[M+H] +
中间体A6的合成:8-氯-7-甲氧基-10a-苯基-9-(4,4,5,5-四甲基-1,3,2-二氧硼烷-2-基)-3,4,10,10a-四氢吡嗪[1,2-a]吲哚-2(1H)-碳酸叔丁酯
Figure PCTCN2022072781-appb-000020
步骤一:在单口瓶中加入化合物A1-11(200mg,0.42mmol)和甲醇钠溶液(6mL,5.4M)。混合物加热到80℃反应过夜。反应液用饱和氯化铵溶液淬灭,乙酸乙酯(50mL*2)萃取,合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩得到黄色油状物A6-1(250mg,粗品)。
LCMS:m/z 493/495[M+H] +
步骤二:参考中间体A1的合成方法,用A6-1代替A1-11,进行一步反应得到中间体A6。
中间体A7的合成:7-氟-8-甲基-10a-苯基-9-(4,4,5,5-四甲基-1,3,2-二氧硼烷-2-基)-3,4,10,10a-四氢吡嗪[1,2-a]吲哚-2(1H)-碳酸叔丁酯
Figure PCTCN2022072781-appb-000021
步骤一:在三口瓶中加入化合物A1-10(390mg,0.87mmol)和无水四氢呋喃(5mL)。在-50℃下滴加LDA(0.865mL,2M,1.73mmol)。混合物在-50℃下继续反 应45分钟。然后滴加碘甲烷(246mg,1.73mmol)。所得的混合物在-50℃下搅拌一个小时,然后升到室温,用饱和氯化铵溶液淬灭,乙酸乙酯(30mL*3)萃取,合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩得到黄色油状物,将得到的残留物通过硅胶色谱法纯化(乙酸乙酯∶石油醚=1/3)得到A7-1(280mg,0.630mmol,72.79%)。
LCMS:m/z 461/463[M+H] +
步骤二:参考中间体A1的合成方法,用A7-1代替A1-11,进行一步反应得到中间体A7.
中间体B1的合成:2-溴-3-氟-4-羟基苯甲腈
Figure PCTCN2022072781-appb-000022
步骤一:25摄氏度条件下,向圆底烧瓶中依次加入二氯甲烷(20mL),2-溴-3,4-二氟苯甲酸(B1-1,2g,8.44mmol,1.0eq),HATU(4.83g,12.7mmol,1.5eq),三乙胺(5.5mL,42.2mmol,5.0eq)和氯化铵(1.35g,25.3mmol,3.0eq)。黄色反应液在这个温度下搅拌12小时。TLC显示反应完全。加水(30mL)和二氯甲烷(30mL*3)萃取,有机相用饱和食盐水(30mL)洗涤,用无水硫酸钠干燥,过滤,并在减压下除去挥发物。将得到的残留物通过硅胶色谱法纯化(乙酸乙酯∶石油醚=1/10)得到白色固体2-溴-3,4-二氟苯甲酰胺(B1-2,1.8g,收率:90%)。
1H NMR(400MHz,DMSO_d6)δ7.95(s,1H),7.70(s,1H),7.53(ddd,J=10.0,8.8,7.6Hz,1H),7.31(ddd,J=8.8,5.2,2.0Hz,1H)。
步骤二:25摄氏度条件下,向圆底烧瓶中依次加入四氢呋喃(20mL),2-溴-3,4-二氟苯甲酰胺(B1-2,1.8g,7.63mmol,1.0eq),三乙胺(2.12mL,15.3mmol,2.0eq)和三氟乙酸酐(2.39g,11.4mmol,1.5eq)。黄色反应液在这个温度下搅拌12小时。TLC显示反应完全。加水(30mL)和二氯甲烷(30mL*3)萃取,有机相用饱和食 盐水(30mL)洗涤,用无水硫酸钠干燥,过滤,并在减压下除去挥发物。将得到的残留物通过硅胶色谱法纯化(0至6%梯度的乙酸乙酯∶石油醚)得到白色固体2-溴-3,4-二氟苯甲腈(B1-3,1.5g,收率:90%)。
1H NMR(400MHz,CDCl 3)δ7.50(ddd,J=8.8,4.8,2.0Hz,1H),7.33-7.24(m,1H)。
步骤三:向圆底烧瓶中依次加入二甲基亚砜(11.5mL),2-溴-3,4-二氟苯甲腈(B1-3,1.5g,6.88mmol,1.0eq),碳酸钾(4.75g,34.4mmol,5.0eq)和乙酰羟肟酸(1.55g,20.6mmol,3.0eq)。黄色反应液升温到80摄氏度并搅拌4小时。TLC显示反应完全。减压抽滤,滤液用稀盐酸(0.5N)调节pH到5,加乙酸乙酯(50mL*3)萃取,有机相用饱和食盐水(100mL)洗涤,用无水硫酸钠干燥,过滤,并在减压下除去挥发物。将得到的残留物通过硅胶色谱法纯化(0至20%梯度的乙酸乙酯∶石油醚)得到黄色固体2-溴-3-氟-4-羟基苯甲腈(B1,1.0g,收率:67.1%)。
中间体B2的合成:2-溴-4-(2-((叔丁基二甲基硅基)氧基)乙氧基)-3-氟苯甲腈
Figure PCTCN2022072781-appb-000023
步骤一:20摄氏度条件下,向圆底烧瓶中依次加入四氢呋喃(20mL),2-((叔丁基二甲基甲硅烷基)氧基)乙烷-1-醇(B2-1,1.76g,10.0mmol,1.0eq),咪唑(2.04g,30.0mmol,3.0eq),三苯基膦(3.93g,15.0mmol,1.5eq)和单质碘(3.04g,12.0mmol,1.2eq)。浅黄色反应液在这个温度下搅拌2小时。TLC显示反应完全。在减压条件下除去挥发物,将得到的残留物通过硅胶色谱法纯化(石油醚)得到黄色油状物叔丁基(2-碘乙氧基)二甲基硅烷(B2-2,2.4g,收率:83.9%)。
1H NMR(400MHz,DMSO_d6)δ3.90-3.76(m,2H),3.27-3.13(m,2H),0.99-0.83(m,9H),0.16-0.03(m,6H)。
步骤二:向干燥的单口瓶中依次加入化合物B1(500mg,2.31mmol)、DMF(10mL)、化合物B2-2(727mg,2.54mmol)和碳酸钾(638mg,4.62mmol)。反应液在80℃下搅拌12小时。反应液加水稀释,水相用石油醚/乙酸乙酯(1/1,30mL)萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到无色油状物B2(700mg,收率:80.9%)。
1H NMR(400MHz,CDCl 3)δ7.41(dd,J=8.4,1.6Hz,1H),7.03(dd,J=8.8,7.6Hz,1H),4.19(d,J=4.8Hz,2H),4.01(d,J=5.2Hz,2H),0.89(s,9H),0.09(s,6H)。
中间体B3的合成:2-溴-4-(2-(((叔丁基二甲基甲硅烷基)氧基)乙氧基)-3-氟苯甲酸甲酯
Figure PCTCN2022072781-appb-000024
步骤一:25摄氏度条件下,向圆底烧瓶中依次加入无水甲醇(42mL),2-溴-3,4-二氟苯甲酸(B1-1,3.3g,14.8mmol,1.0eq),然后滴加氯化亚砜(7mL)。黄色反应液在这个温度下搅拌4小时。TLC显示反应完全。减压下除去挥发物,将得到的残留物通过硅胶色谱法纯化(石油醚)得到黄色油状物2-溴-3,4-二氟苯甲酸甲酯(B3-1,3.4g,收率:92.6%)。
步骤二:参考中间体B1步骤三的合成方法得到黄色固体2-溴-3-氟-4-羟基苯甲酸甲酯(B3-2,3.5g,收率:93.5%)。
1H NMR(400MHz,DMSO_d6)δ11.18(s,1H),7.58(dd,J=8.8,1.6Hz,1H),7.02(t,J=8.4Hz,1H),3.80(s,3H)。
步骤三:参考中间体B2步骤二的合成方法得到无色油状物2-溴-4-(2-(((叔丁基二甲基甲硅烷基)氧基)乙氧基)-3-氟苯甲酸甲酯(B3,1.44g,收率:88.3%)。
中间体B4的合成:2-(3-溴-4-氰基-2-氟苯氧基)乙酸乙酯
Figure PCTCN2022072781-appb-000025
步骤一:向干燥的单口瓶中依次加入化合物B1(500mg,2.31mmol)、DMF(10mL)、溴乙酸乙酯(463mg,2.77mmol)和碳酸钾(638mg,4.62mmol)。反应液在20℃下搅拌12小时。反应液加水稀释,水相用乙酸乙酯萃取2次。合并的有机相用 饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=5∶1),得到白色固体B4(650mg,收率:93.1%)。
1H NMR(400MHz,CDCl 3)δ7.42(dd,J=8.8,2.0Hz,1H),6.89(dd,J=8.8,7.6Hz,1H),4.77(s,2H),4.28(q,J=7.2Hz,2H),1.30(t,J=7.2Hz,3H)。
中间体B5的合成:2-溴-4-(2-((叔丁基二甲基硅基)氧基)乙基)-3-氟苯甲腈
Figure PCTCN2022072781-appb-000026
步骤一:向干燥的单口瓶中依次加入化合物B1-3(1.0g,4.59mmol)、丙二酸二乙酯(883mg,5.51mmol)、DMF(10mL)和碳酸钾(1.27g,9.18mmol)。反应液在35℃下搅拌12小时。反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到无色油状物B5-1(1.60g,收率:97.6%)。
1H NMR(400MHz,CDCl 3)δ7.61(dd,J=8.4,6.4Hz,1H),7.50(dd,J=8.4,1.6Hz,1H),5.00(s,1H),4.34-4.16(m,4H),1.33-1.25(m,6H)。
步骤二:向干燥的单口瓶中依次加入化合物B5-1(1.60g,4.47mmol)、二甲亚砜(16mL)、水(0.8mL)和氯化锂(379mg,8.94mmol)。反应液在85℃下搅拌36小时。反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到无色油状物B5-2(1.0g,收率:78.1%)。
1H NMR(400MHz,CDCl 3)δ7.48-7.43(m,1H),7.39-7.33(m,1H),4.19(q,J=7.2Hz,2H),3.75(s,2H),1.27(t,J=7.2Hz,3H)。
步骤三:向干燥的单口瓶中依次加入化合物B5-2(150mg,0.524mmol)、乙醇(5mL)和硼氢化钠(40mg,1.05mmol)。反应液在20℃下搅拌36小时。反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=2∶1),得 到白色固体B5-3(100mg,收率:78.1%)。
1H NMR(400MHz,CDCl 3)δ7.43(dd,J=8.0,0.8Hz,1H),7.35(dd,J=7.6,6.4Hz,1H),3.92(t,J=6.4Hz,2H),3.05-2.95(m,2H)。
步骤四:向干燥的单口瓶中依次加入化合物B5-3(100mg,0.410mmol)、二氯甲烷(3mL)、DMF(1mL)、叔丁基二甲基氯硅烷(93mg,0.615mmol)和N,N-二异丙基乙胺(106mg,0.820mmol)。反应液在20℃下搅拌1小时。反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到无色油状物B5(103mg,收率:70.1%)。
1H NMR(400MHz,CDCl 3)δ7.40(dd,J=8.0,1.2Hz,1H),7.31(dd,J=8.0,6.4Hz,1H),3.84(t,J=6.4Hz,2H),2.96-2.90(m,2H),0.83(s,9H),-0.042(s,6H)。
中间体B6的合成:2-溴-4-(3-((叔丁基二甲基硅基)氧基)丙氧基)-3-氟苯甲腈
Figure PCTCN2022072781-appb-000027
参照化合物B2的合成方法,使用叔丁基-(3-碘丙氧基)二甲基硅烷代替化合物B2-2,进行一步反应得到粗品化合物B6,直接用于下一步反应。
中间体B7的合成:2-溴-3-氟-4-***啉基苯甲腈
Figure PCTCN2022072781-appb-000028
参照化合物B5-1的合成方法,使用***啉代替丙二酸二乙酯,进行一步反应得到粗品化合物B7,直接用于下一步反应。
中间体B8的合成:2-溴-4-(1,1-二氧化硫代***啉基)-3-氟苯甲腈
Figure PCTCN2022072781-appb-000029
参照化合物B5-1的合成方法,使用1,1-二氧化硫代***啉代替丙二酸二乙酯, 进行一步反应得到粗品化合物B8,直接用于下一步反应。
中间体B9的合成:2-溴-3-氟-4-((四氢-2H-吡喃-4-基)氨基)苯甲腈
Figure PCTCN2022072781-appb-000030
参照化合物B5-1的合成方法,使用4-氨基四氢吡喃代替丙二酸二乙酯,进行一步反应得到粗品化合物B9,直接用于下一步反应。
中间体B10的合成:(S)-2-溴-4-(2-((叔丁基二甲基硅基)氧基)丙氧基)-3-氟苯甲腈
Figure PCTCN2022072781-appb-000031
步骤一:向干燥的单口瓶中依次加入L-乳酸甲酯(1.0g,9.61mmol)、二氯甲烷(15mL)、叔丁基二甲基氯硅烷(1.88g,12.5mmol)、三乙胺(1.46g,14.4mmol)和4-二甲氨基吡啶(117mg,0.961mmol)。反应液在20℃下搅拌12小时。反应液加水稀释,用二氯甲烷萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到无色油状物B10-1(1.70g,收率:81.0%)。
1H NMR(400MHz,CDCl 3)δ4.33(q,J=6.8Hz,1H),3.72(s,3H),1.40(d,J=6.8Hz,3H),0.90(s,9H),0.08(d,J=10.8Hz,6H)。
步骤二:在0度下向干燥的单口瓶中依次加入化合物B10-1(1.70g,7.78mmol)、四氢呋喃(20mL)和二异丁基氢化铝(13.0mL,19.5mmol,1.5M)。反应液在25℃下搅拌2小时。反应在0度下加入1.0M酒石酸钾钠溶液(30mL)淬灭,在25℃下继续搅拌30分钟。得到的混合物用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到无色油状物B10-2(1.10g,收率:74.3%)。
1H NMR(400MHz,CDCl 3)δ4.00-3.80(m,1H),3.50(dd,J=10.8,3.6Hz,1H),3.36(dd,J=10.8,6.4Hz,1H),1.12(d,J=6.4Hz,3H),0.90(s,9H),0.09(s,6H)。
步骤三:在0度下向干燥的单口瓶中依次加入化合物B10-2(500mg,2.63mmol)、二氯甲烷(10mL)、三乙胺(798mg,7.89mmol)和甲磺酸酐(688mg,3.95mmol)。反应液在25℃下搅拌2小时。反应液加水稀释,用二氯甲烷萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到无色油状物B10-3(540mg,收率:76.5%)。
1H NMR(400MHz,CDCl 3)δ4.10-3.90(m,3H),3.02(s,3H),1.19(d,J=6.0Hz,3H),0.89(s,9H),0.09(s,6H)。
步骤四:向干燥的单口瓶中依次加入化合物B1(200mg,0.926mmol)、DMF(6mL)、化合物B10-3(274mg,1.02mmol)、碘化钠(274mg,1.85mmol)和碳酸钾(256mg,1.85mmol)。反应液在80℃下搅拌12小时。反应液加水稀释,用石油醚/乙酸乙酯(1/1,15mL)萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到无色油状物B10(100mg,收率:27.8%)。
1H NMR(400MHz,CDCl 3)δ7.42(dd,J=8.8,2.0Hz,1H),6.98(dd,J=8.4,7.2Hz,1H),4.28-4.18(m,1H),4.00-3.85(m,2H),1.25(d,J=6.0Hz,3H),0.88(s,9H),0.08(d,J=17.6Hz,6H)。
中间体B11的合成:(R)-2-溴-4-(2-((叔丁基二甲基硅基)氧基)丙氧基)-3-氟苯甲腈
Figure PCTCN2022072781-appb-000032
参照化合物B10的合成方法,使用化合物D-乳酸甲酯代替化合物L-乳酸甲酯,进行四步反应得到化合物B11。
1H NMR(400MHz,CDCl 3)δ7.42(dd,J=8.8,2.0Hz,1H),6.98(dd,J=8.4,7.2Hz,1H),4.28-4.18(m,1H),4.00-3.85(m,2H),1.25(d,J=6.0Hz,3H),0.88(s,9H),0.08(d,J=17.6Hz,6H)。
中间体B12的合成:4-(2-(苄氧基)乙氧基)-2-溴-3-氟苯甲酸甲酯
Figure PCTCN2022072781-appb-000033
参考中间体B3的合成方法合成无色油状物B12(1.32g,产率:85.7%)。
中间体B13的合成:5-溴-6-氰基-4-氟吲哚-1-羧酸叔丁酯
Figure PCTCN2022072781-appb-000034
步骤一:向500mL圆底瓶中依次加入B13-1(6.5g,27.8mmol,1.0eq),DMF-DMA(13mL,61.1mmol,2.2eq),三乙胺(4.25mL,61.1mmol,2.2eq)和DMF(25mL),然后升温到110摄氏度并搅拌3小时。TLC显示反应完全,反应液加水(50mL)稀释,用乙酸乙酯(50mL*3)萃取。合并的有机相用饱和碳酸氢钠水溶液(150mL),饱和硫代硫酸钠水溶液(150mL),饱和食盐水(150mL)洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物溶解在醋酸/甲苯(100mL/150mL)中,加入还原铁粉(31g,555mmol,20.0eq)然后升温到100摄氏度并搅拌1小时。冷却,过滤,反应液倒入冰水中,用乙酸乙酯(150mL*3)萃取。合并的有机相用饱和食盐水(300mL)洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(0-40%乙酸乙酯/石油醚),得到黄色固体B13-2(3.7g,收率:60%)。
1H NMR(400MHz,CDCl 3)δ8.27(s,1H),7.35(t,J=1.2Hz,1H),7.17(dd,J=3.2,2.4Hz,1H),6.96(dd,J=9.6,1.4Hz,1H),6.61(ddd,J=3.2,2.2,1.0Hz,1H)。
步骤二:氮气保护下,向干燥的三口瓶中依次加入化合物B13-2(3.7g,17.3mmol,1.0eq),氰化锌(1.34g,11.42mmol,0.66eq)和t-BuXPhos-Pd-G3(686mg,0.86mmol,0.05eq),然后加入THF/H 2O(10mL/50mL),反应液在40℃下搅拌12小时。反应完全后,反应液减压浓缩,得到的残留物通过硅胶色谱法纯化(0-40%乙酸乙酯/石油醚),得到黄色固体B13-3(2.85g,收率:93%)。
LCMS:[M+H] +=161。
步骤三:氮气保护下,向干燥的圆底烧瓶中依次加入化合物B13-3(0.68g,4.25mmol,1.0eq),三乙基硅氢(1mL,26.6mmol,6.25eq)和四氢呋喃(6mL),反应液在60℃下搅拌5小时。TLC显示反应完全,反应液旋干,加水(10mL)稀释,用乙酸乙酯(10mL*3)萃取。合并的有机相用饱和碳酸氢钠水溶液(30mL),饱和食盐水(30mL)洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(0-50%乙酸乙酯/石油醚),得到黄色固体B13-4(566mg,收率:82.2%)。
LCMS:[M+H] +=163。
步骤四:冰浴冷却下,向干燥的圆底烧瓶中依次加入化合物B13-4(562mg,3.47mmol,1.0eq)和乙腈(10mL),然后滴加NBS(617mg,3.47mmol,1.0eq)的乙腈(10mL)溶液。反应液在0℃下搅拌0.5小时。TLC显示反应完全,反应液加水(30mL)稀释,用乙酸乙酯(30mL*3)萃取。合并的有机相用饱和碳酸氢钠水溶液(60mL),饱和食盐水(60mL)洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(0-30%乙酸乙酯/石油醚),得到白色固体B13-5(423mg,收率:59.6%)。
F-NMR(400MHz,CDCl 3):-108.80;
1H NMR(400MHz,CDCl 3)δ6.63(S,1H),3.72(t,J=8.8Hz,2H),3.18(m,2H)。
步骤五:冰浴冷却下,向干燥的圆底烧瓶中依次加入化合物B13-5(50mg,0.2mmol,1.0eq)和二氯甲烷(4mL),然后加入(Boc) 2O(66mg,0.3mmol,1.5eq)和DMAP(24.4mg,0.2mmol,1.0eq)。反应液在室温下搅拌2小时。TLC显示反应完全,反应液浓缩。得到的残留物通过硅胶色谱法纯化(0-20%乙酸乙酯/石油醚),得到白色固体B13(50mg,收率:73%)。
LCMS:m/z=340.95[M+H] +
中间体B14的合成:6-溴-5-氰基-7-氟-1H-吲哚-1-甲酸叔丁酯
Figure PCTCN2022072781-appb-000035
步骤一:向60mL耐压瓶中依次加入乙腈(20mL),氨水(20mL)和B1-3(2.18g,10.0mmol,1.0eq),然后升温到60摄氏度并搅拌16小时。TLC显示反应完全,反应液减压浓缩,残留物通过硅胶色谱法(石油醚/乙酸乙酯=10∶1)纯化得到白色固体B14-2(1.9g,产率:88.4%)。
步骤二:向干燥的单口瓶中依次加入醋酸(20mL),B14-2(21.0g,4.65mmol,1.0eq)和NIS(1.57g,6.98mmol,1.5eq)。反应液在25摄氏度下搅拌12小时。反应完全后,反应液加水(100mL)稀释,用乙酸乙酯(35mL*3)萃取。合并的有机相用饱和碳酸氢钠水溶液(100mL),饱和硫代硫酸钠水溶液(100mL),饱和食盐水(100mL)洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(0-15%乙酸乙酯/石油醚),得到黄色固体B14-3(1.3g,收率:81.8%)。
1H NMR(400MHz,CDCl 3)δ7.71(d,J=1.6Hz,1H),4.79(s,2H)。
步骤三:在25摄氏度,氮气保护的条件下,向干燥的三口瓶中依次加入四氢呋喃(20mL),B14-3(1.5g,4.4mmol,1.0eq),二三苯基膦二氯化鈀(154mg,0.22mmol,0.05eq),碘化亚铜(84mg,0.44mmol,0.1eq)和三乙胺(1.22mL,8.8mmol,2.0eq),搅拌下滴加乙炔基三甲基硅烷(682uL,4.84mmol,1.1eq)。反应液在25摄氏度下搅拌12小时。反应完全后,反应液加水(100mL)稀释,用乙酸乙酯(45mL*3)萃取。合并的有机相用饱和食盐水(100mL)洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物溶解在无水甲醇(20mL)中,然后加入碳酸钾(1.22g,8.8mmol,2.0eq),反应液继续搅拌2小时,反应完全后,减压抽滤,滤液减压浓缩,残留物通过硅胶色谱法纯化(0-13%乙酸乙酯/石油醚),得到黄色固体B14-4(700mg,收率:66.7%)。
1H NMR(400MHz,DMSO_d6)δ7.65(d,J=1.2Hz,1H),6.79(s,2H),4.68(s,1H)。
步骤四:氮气保护下,向干燥的三口瓶中依次加入吡啶(10mL),化合物B14-4(700mg,2.93mmol,1.0eq)和CpRuCl(PPh 3) 2(233mg,0.29mmol,0.1eq)。反应 液在90℃下搅拌12小时。反应完全后,反应液减压浓缩,得到的残留物通过硅胶色谱法纯化(0-13%乙酸乙酯/石油醚),得到黄色固体B14-5(170mg,收率:24.3%)。
1H NMR(400MHz,DMSO_d6)δ12.46(s,1H),8.13(s,1H),7.78-7.57(m,1H),6.72(d,J=1.6Hz,1H).
步骤五:向干燥的单口瓶中依次加入二氯甲烷(2mL),B14-5(70mg,0.29mmol,1.0eq),Boc 2O(96mg,0.44mmol,1.5eq),三乙胺(82uL,0.59mmol,2.0eq)和N,N-二甲基吡啶(4mg,0.03mmol,0.1eq)。反应液在25摄氏度下搅拌1小时。反应完全后,反应液减压浓缩,得到的残留物通过硅胶色谱法纯化(0-7.2%乙酸乙酯/石油醚),得到白色固体B14(94mg,收率:94.9%)。
LCMS:m/z=339.16(M+H) +
中间体B15的合成:6-(2-((叔丁基二甲基硅)氧基)乙氧基)-5-氟-4-碘烟腈
Figure PCTCN2022072781-appb-000036
步骤一:冰水浴下向2-氨基-3-氟吡啶(B15-1,40.0g,356.79mmol)的DMF(400mL)溶液中加入NBS(64.1g,360.36mmol)。室温搅拌反应4小时。反应液倒入冰的饱和亚硫酸钠水溶液(1200mL)中,过滤,滤饼水洗,硅胶色谱法(乙酸乙酯/石油醚=1/20to 1/5)纯化得白色固体5-溴-3-氟吡啶-2-胺(B15-2,60.7g,收率:89%)。
1H NMR(400MHz,CDCl 3):δppm 7.93(d,J=1.6Hz,1H),7.38(dd,J=10.0,2.0Hz,1H),4.66(br,2H)。
步骤二:将5-溴-3-氟吡啶-2-胺(B15-2,74.50g,390.05mmol)溶解于四氢呋喃(260mL)与水(1000mL)中,加入Zn(CN) 2(30.22g,257.45mmol),真空氩气置换3次。加入t-BuXPhos-Pd G3.(6.80g,8.56mmol),真空氩气再置换3次。40℃反应15小时。将反应液缓慢倒至冰水(1.0L)中,加入乙酸乙酯(3*400mL)萃取,其中不溶物硅藻土滤除,并用四氢呋喃(300mL)淋洗滤渣。有机相合并,饱和盐水(2*500mL)洗涤,无水硫酸钠干燥浓缩,硅胶柱层析纯化(乙酸乙酯/石油醚=1/20到1/1)得浅黄色粉末6-氨基-5-氟烟腈(B15-3,28.53g,收率:53.3%)。
LCMS:m/z 138.5[M+H] +
步骤三:将6-氨基-5-氟烟腈(B15-3,28.53g,208.10mmol)溶解于丙酮(290mL)与叔丁醇(145mL)中,加入DMAP(82.84g,677.9mmol)。缓慢加入(Boc) 2O(200.39g,919.26mmol),60℃反应12小时。将反应液浓缩近干,湿法上样,硅胶柱层析纯化(乙酸乙酯/石油醚=1/100to 1/15)得白色固体N-(3-氟-5-氰基吡啶-2-基)-N-[(2-甲基丙烷-2-基)氧羰基]氨基甲酸叔丁酯(B15-4,58.32g,收率:83.1%)。
1H NMR(400MHz,CDCl 3):δppm 8.60(s,1H),7.75(d,J=7.2Hz,1H),1.44(s,18H)。
步骤四:将N-(3-氟-5-氰基吡啶-2-基)-N-[(2-甲基丙烷-2-基)氧羰基]氨基甲酸叔丁酯(B15-4,58.32g,172.85mmol)溶解于四氢呋喃(630mL)中,加入碘(87.72g,345.64mmol),氮气保护,降温至-65℃。滴加LDA(2.0M in THF,440mL,888.00mmol)。滴毕,搅拌10分钟,然后升至室温反应16小时。将反应液缓慢倒至冰水(1.0L)中,加入乙酸乙酯(3*400mL)萃取,有机相用饱和食盐水(2*500mL)洗涤,有机相干燥浓缩,硅胶柱层析纯化(0-10%乙酸乙酯/石油醚),再用二氯甲烷/石油醚(1/50)打浆,得浅黄色粉末(5-氰基-3-氟-4-碘吡啶-2-基)氨基甲酸叔丁酯(B15-5,23.27g,收率:37.1%)。
1H NMR(400MHz,DMSO-d6)δppm:10.27(s,1H),8.52(s,1H),1.46(s,9H)。
步骤五:0℃下向(5-氰基-3-氟-4-碘吡啶-2-基)氨基甲酸叔丁酯(B15-5,32.06g,88.29mmol)的二氯甲烷(360mL)溶液中滴加三氟乙酸(130mL)。室温反应2小时。反应液浓缩掉大部分溶剂和三氟乙酸。加乙酸乙酯(60mL)稀释,倒至饱和碳酸钠水溶液(500mL)中,水相用乙酸乙酯(3×200mL)萃取,有机相用饱和盐水(100mL)洗涤后干燥,浓缩得类白色固体6-氨基-5-氟-4-碘烟腈(B15-6,19.08g,收率:82.2%)。
LCMS:m/z:264.2[M+H] +
1H NMR(400MHz,CDCl 3)δ8.20(s,1H)。
步骤六:将6-氨基-5-氟-4-碘烟腈(B15-6,4.58g,17.43mmol)溶解于四氟硼酸(150mL)中,降温至-10℃,分批加入NaNO 2(3.32g,48.13mmol),反应2小时。将反应液倒入到冰碳酸钠水溶液(800mL)中,搅拌5分钟,用乙酸乙酯(3*200mL)萃取,有机相用饱和盐水(100mL)洗涤后干燥,浓缩,经硅胶柱层析纯化(0-5%乙酸乙酯/石油醚)得白色固体5,6-二氟-4-碘烟腈(B15-7,1.47g,收率:31.7%)。
1H NMR(400MHz,CDCl 3):δppm8.22(s,1H)。
步骤七:将2-((叔丁基二甲基硅)氧基)乙基-1-羟基(B15-7,72mg,0.40mmol)溶解于四氢呋喃(8mL)中,降温至0℃,分批加入钠氢(32mg,0.76mmol,60%),反应30分钟。然后滴加5,6-二氟-4-碘烟腈(100mg,0.37mmol)的四氢呋喃溶液(2mL),室温搅拌2小时。将反应液倒入到冰水(20mL)中,搅拌5分钟,用乙酸乙酯(3*20mL)萃取,有机相用饱和盐水(20mL)洗涤后干燥,浓缩,经硅胶板纯化(乙酸乙酯/石油醚=1/20)得油状物6-(2-((叔丁基二甲基硅)氧基)乙氧基)-5-氟-4-碘烟腈(B15,40mg,收率:25%)。
1H NMR(400MHz,CDCl 3):δppm8.03(s,1H),4.45(t,J=8.0Hz,2H),3.90(t,J=8.0Hz,2H),0.81(s,9H),0.01(s,6H)。
中间体B16的合成:2-溴-3-氟-4-(甲基氨基)苯甲腈
Figure PCTCN2022072781-appb-000037
向60mL耐压瓶中依次加入甲胺乙醇溶液(5mL)和B1-3(400mg,1.83mmol,1.0eq),然后升温到100摄氏度并搅拌16小时。TLC显示反应完全,反应液减压浓缩,残留物通过硅胶色谱法(石油醚/乙酸乙酯=10∶1)纯化得到白色固体B16(400mg,产率:95.2%)。
中间体B17的合成:3,4-二氟-2-(4,4,5,5-四甲基-1,3,2-二氧硼烷-2-基)苯甲酸甲酯
Figure PCTCN2022072781-appb-000038
在干燥的三口瓶中依次加入化合物B1-1(310mg,1.25mmol)、双联频哪醇硼酸酯(636mg,2.50mmol)、二甲苯(10mL)、Pd(dppf)Cl 2·CH 2Cl 2(100mg,0.12mmol)和特戊酸钾(520mg,3.75mmol)。反应液在氮气保护100℃下搅拌12小时。反应完毕后,反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸 乙酯=10∶1),得到白色固体B17(220mg,收率:60.1%)
中间体B18的合成:3-氟-4-甲氧基-2-(4,4,5,5-四甲基-1,3,2-二氧硼烷-2-基)苯甲酸甲酯
Figure PCTCN2022072781-appb-000039
步骤一:参考化合物B4的合成,经一步反应合成化合物B18-1。
步骤二:参考化合物B17的合成,经一步反应合成中间体化合物B18。
中间体B19的合成:1-甲基-4-(4,4,5,5-四甲基-1,3,2-二氧硼烷-2-基)-1H-吡唑-5-甲酸甲酯
Figure PCTCN2022072781-appb-000040
参考化合物B17的合成,经一步反应合成中间体化合物B19。
中间体B20的合成:2-溴-4-(二氟甲氧基)-3-氟苯甲腈
Figure PCTCN2022072781-appb-000041
步骤一:向圆底烧瓶中依次加入N,N-二甲基甲酰胺(15mL),2-溴-3-氟-4-羟基苯甲腈(B1,1.0g,4.63mmol,1.0eq),碳酸铯(3.01g,9.26mmol,2.0eq)和氯二氟乙酸钠(1.06g,6.94mmol,1.5eq)。黄色反应液升温到90摄氏度并搅拌6小时(有气体放出)。TLC显示反应完全。减压抽滤,滤液用水(50mL)和乙酸乙酯(20mL*3)萃取,有机相用饱和食盐水(30mL)洗涤,用无水硫酸钠干燥,过滤,并在减压下除去挥发物。将得到的残留物通过硅胶色谱法纯化(至6%梯度的乙酸乙酯∶石油醚)得到黄色液体2-溴-4-(二氟甲氧基)-3-氟苯甲腈(B20,0.54g,收率:43.9%)。
1H NMR(400MHz,CDCl 3)δ7.54-7.46(m,1H),7.34(dd,J=8.0,7.2Hz,1H),6.65(t,J=71.6Hz,1H)。
中间体C1的合成:2-叔丁基二甲基硅烷氧基乙醛
Figure PCTCN2022072781-appb-000042
向干燥的单口瓶中依次加入2-叔丁基二甲基硅烷氧基乙醇(1.0g,5.67mmol)、二氯甲烷(40mL)和戴斯-马丁氧化剂(3.61g,8.51mmol)。反应液在25℃下搅拌1小时。TLC板检测反应完毕后,向反应液加入饱和碳酸氢钠溶液(30mL)和饱和硫代硫酸钠溶液(30mL),得到的混合物在25℃下搅拌30分钟。用二氯甲烷萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1),得到无色油状物C1(700mg,收率:70.9%)。
1H NMR(400MHz,CDCl 3)δ9.70(s,1H),4.22(s,2H),0.93(s,9H),0.11(s,6H)。
实施例一:化合物1的合成
8-甲基-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚
Figure PCTCN2022072781-appb-000043
步骤一:将HMPA(3.0mL)和LDA(7.7mL,15.4mmol,2.0M)溶解在无水四氢呋喃(100mL)中,在-60℃下缓慢滴入A1-5(1.7g,4.64mmol)的四氢呋喃(25mL)溶液,滴完后,将反应液升温至-30℃搅拌30分钟,而后在-60℃下再搅拌30分钟,然后在-60℃滴入化合物1-1(2.20g,8.35mmol)的四氢呋喃(10mL)溶液。滴完后,该反应液在-60℃下搅拌2小时,反应液用饱和氯化铵(30mL)淬灭,而后用乙酸乙酯(60mL*3)萃取,有机层浓缩后进行柱层析分离(石 油醚/乙酸乙酯=10/1)得到产物化合物1-2(1.8g,产率:71%),为棕色油状物。
步骤二:将化合物1-2(2.6g,4.73mmol)溶于乙酸乙酯(3mL)中,加入HCl(4M,EtOAc,10mL)溶液,在室温下再搅拌1小时,反应液用饱和碳酸氢钠溶液调至pH=8,用乙酸乙酯(50mL*2)萃取,有机相用饱和氯化钠(20mL*2)洗,再用无水硫酸钠干燥,过滤,浓缩得到产物1-3(1.1g,产率:51%)为无色油状物。
步骤三:将化合物1-3(1.1g,2.45mmol)溶解在DMA(4mL)中,在0℃下加入钠氢(294mg,7.34mmol,60%的矿物油混合物),反应液在100℃下再搅拌6小时,加入水(10mL)淬灭,而后用乙酸乙酯(60mL*3)萃取,有机层浓缩后进行柱层析分离(石油醚/乙酸乙酯=5/1)得到产物1-4(180mg,产率:20%)为淡黄色油状物。
步骤四:将化合物1-4(180mg,0.488mmol)溶解在四氢呋喃(3mL)中,在0℃下加入硼烷四氢呋喃(3mL,3mmol,1M),反应液在60℃下再搅拌20小时,加入甲醇(4mL)淬灭,浓缩后,将固体溶解于甲醇(4mL)和4N HCl/dioxane(20mL)中,该混合物在室温下搅拌1小时后,浓缩,用饱和碳酸氢钠溶液调至pH=8,用乙酸乙酯(50mL*2)萃取,有机相用饱和氯化钠(20mL*2)洗,再用无水硫酸钠干燥,过滤,浓缩后进行柱层析分离(石油醚/乙酸乙酯=5/1)得到产物1-5(120mg,产率:69%)为无色油状物。
步骤五:将化合物1-5(120mg,0.339mmol)溶解在1,2-二氯乙烷(4mL)中,加入1-氯乙基氯甲酸酯(121mg,0.846mmol),反应液在70℃下再搅拌2小时后,浓缩,在固体溶解于甲醇(6mL),该混合物在40℃下再搅拌1小时后,浓缩,用饱和碳酸氢钠溶液调至pH=8,用乙酸乙酯(30mL*2)萃取,有机相用饱和氯化钠(20mL*2)洗,再用无水硫酸钠干燥,过滤,浓缩后进行Prep-TLC分离(二氯甲烷/甲醇=20/1)得到产物8-甲基-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚(化合物1,83mg,产率:93%)为无色油状物。
1HNMR(400MHz,CDCl 3)7.59(d,J=8.0Hz,2H),7.41(t,J=8.0Hz,2H),7.29(d,J=4.0Hz,1H),6.95(d,J=8.0Hz,1H),6.86(s,1H),6.44(d,J=8.0Hz,1H),3.47(d,J=12.0Hz,2H),3.25-3.14(m,2H),2.94-2.89(m,2H),2.83(d,J=16.0Hz,1H),2.69(d,J=12Hz,1H),2.26(s,3H).
LC-MS[M+1] +=265.3
按照参考文献以及化合物1的合成步骤分别合成下列化合物:
Figure PCTCN2022072781-appb-000044
实施例2:化合物6的合成
9-溴-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚
Figure PCTCN2022072781-appb-000045
步骤一:在干燥的单口瓶中依次加入化合物A1-9(4.10g,8.86mmol)、1,2-二氯乙烷(40mL)和氯甲酸2-氯乙酯(3.17g,22.2mmol)。反应液在80℃下搅拌16小时。反应液减压浓缩干。得到的剩余物溶解在甲醇中,并在75度下搅拌1.5小时。反应完毕后,将溶液减压浓缩得到黄色油状物(化合物6,3.10g)。
LC-MS[M+1] +=347.0。
实施例3:化合物7的合成
9-溴-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚
Figure PCTCN2022072781-appb-000046
向单口烧瓶中依次加入化合物A1-11(5mg,0.008mmol)、甲醇(2mL)和盐酸二氧六环(1mL,4.0M),反应液在20℃下搅拌1小时。反应完毕后,反应液减压浓缩。将剩余物冻干得到白色固体(化合物7,3.6mg,盐酸盐,收率:89%)。
LC-MS[M+1] +=381.0。
实施例4:化合物8的合成
4-(7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)***啉
Figure PCTCN2022072781-appb-000047
步骤一:向反应瓶中依次加入化合物A-10(20mg,0.045mmol)、***啉(3.89mg,0.045mmol)、碳酸铯(29.13mg,0.089mmol)、XPhos Pd G3(3.81mg,0.004mmol)、1,4-二氧六环(2mL),反应液用氮气保护,在100℃下搅拌过夜。反应液减压浓缩,得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=5∶1)得到黄色固 体8-1(8mg,收率:39.45%)。
步骤二:参考化合物7的合成,一步反应得到化合物8。
1H NMR(400MHz,CD3OD)δ7.70-7.67(m,3H),7.57-7.53(m,4H),4.16-4.13(m,4H),3.77-3.72(m,2H),3.64-3.55(m,6H),3.46-3.39(m,2H),3.10-3.06(m,2H).
LC-MS[M+1] +=354.19。
按照参考文献以及化合物8的合成步骤分别合成下列化合物:
Figure PCTCN2022072781-appb-000048
Figure PCTCN2022072781-appb-000049
实施例5:化合物15的合成
8-氯-7-氟-9,10a-二苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚
Figure PCTCN2022072781-appb-000050
步骤一:向反应瓶中依次加入化合物A-11(20mg,0.042mmol)、苯硼酸(6.15mg,0.050mmol)、碳酸钾(11.61mg,0.084mmol)、水(0.5mL)、1,4-二氧六环(2.5mL)、四三苯基膦钯(4.85mg,0.004mmol),反应液用氮气保护,在100℃下搅拌2小时。反应液减压浓缩,得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1)得到黄色固体15-1(19mg,收率:95.57%)。
LCMS:m/z 479.2[M+H] +
步骤二:向单口烧瓶中依次加入化合物15-1(19mg,0.040mmol),甲醇(5mL)、氯化氢二氧六环溶液(1mL,4mmol),反应液在25℃下搅拌3小时。减压除去溶剂得到黄色固体化合物15(12mg,收率:65.57%)。
1H NMR(400MHz,CD3OD)δ7.55-7.52(m,2H),7.43-7.38(m,3H),7.32-7.20(m,5H),6.69(d,J=12Hz,1H),3.91-3.80(m,2H),3.45-3.37(m,1H),3.27-3.21(m,1H),3.13-3.07(m,1H),2.97-2.94(m,1H),2.71-2.66(m,2H).
LC-MS:m/z 379.1[M+H] +
按照参考文献以及化合物15的合成步骤分别合成下列化合物:
Figure PCTCN2022072781-appb-000051
Figure PCTCN2022072781-appb-000052
Figure PCTCN2022072781-appb-000053
实施例6:化合物30的合成
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-N-甲基苯甲酰胺
Figure PCTCN2022072781-appb-000054
步骤一:参考化合物15-1的合成,一步反应得到化合物30-2。
LCMS:m/z 537.2[M+H] +
步骤二:向化合物30-2(100mg,0.18mmol)的甲醇(5mL)溶液中加入NaOH(40mg,1mmol)。混合物在室温搅拌过夜。反应液用稀盐酸调到PH=6。乙酸乙酯萃取,无水硫酸钠干燥、过滤、减压浓缩得到粗产物30-3(105mg)。
步骤三:参考化合物B1-2的合成,进行一步反应得到化合物30-4。
LCMS:m/z 522.2[M+H] +
步骤四:参考化合物15的合成,进行一步反应得到化合物30。
1H NMR(400MHz,CD3OD)δ7.65-7.57(m,4H),7.51-7.37(m,4H),7.32-7.30(m,1H),6.69(d,J=8Hz,1H),4.01-3.92(m,2H),3.68-3.66(m,1H),3.51-3.48(m,1H),3.23-3.17(m,1H),3.06-3.04(m,1H),2.86-2.66(m,1H),2.76-2.72(m,1H).
LC-MS:m/z 422.1[M+H] +
按照参考文献以及化合物30的合成步骤分别合成下列化合物:
Figure PCTCN2022072781-appb-000055
Figure PCTCN2022072781-appb-000056
实施例七:化合物41的合成
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-4-(二氟甲氧基)-3-氟苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000057
步骤一:向反应瓶中依次加入化合物A1(130mg,0.246mmol)、化合物B20(65mg,0.246mmol)、磷酸钾(131mg,0.615mmol)、甲苯(5mL)、水(1mL)、Pd2(dba)3(23mg,0.025mmol)和NiXantPhos(27mg,0.049mmol),反应液在氮气保护100℃下搅拌6小时。反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=5∶1)得到白色固体41-1(16mg,收率:11.0%)和白色固体42-1(19mg,收率:13.1%)。
LCMS:m/z 588.2[M+H] +
步骤二:向单口烧瓶中依次加入化合物41-1(16mg,0.027mmol)、甲醇(4mL)、醋酸铜(20mg,0.108mmol)和二乙基羟胺(96mg,1.08mmol),反应液在20℃下搅拌12小时。反应完毕后,将反应液过滤浓缩。得到的残留物通过薄层层析法纯化(石油醚/乙酸乙酯=1∶1)得到白色固体41-2(5mg,收率:31.3%)。
LCMS:m/z 606.2[M+H] +
步骤三:向单口烧瓶中依次加入化合物41-2(5mg,0.008mmol)、甲醇(2mL)和盐酸二氧六环(1mL,4.0M),反应液在20℃下搅拌1小时。反应完毕后,反应液减压浓缩。将剩余物冻干得到白色固体化合物41(3.7mg,盐酸盐,收率:82.2%)。
1H NMR(400MHz,DMSO-d6)87.72(s,1H),7.62-7.55(m,2H),7.54-7.34(m,5H),7.28-7.18(m,1H),7.04(d,J=10.8Hz,1H),4.05-3.90(m,2H),3.55-3.40(m,1H),3.14-2.98(m,2H),2.78-2.70(m,1H),2.64-2.56(m,1H)。
LC-MS:m/z 506.1[M+H] +
实施例八:化合物42的合成
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-4-(二氟甲氧基)-3-氟苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000058
参照化合物41的合成方法,使用化合物42-1代替化合物41-1,进行两步反应得到化合物42。
1H NMR(400MHz,DMSO-d6)δ7.88(s,1H),7.42(d,J=8.8Hz,2H),7.03-6.91(m,3H),6.89-6.83(m,2H),6.82-6.76(m,1H),6.96(d,J=10.4Hz,1H),3.50-3.30(m,2H),3.00-2.87(m,1H),2.67-2.58(m,1H),2.45-2.25(m,1H);
LC-MS:m/z 506.1[M+H] +
实施例九:化合物43的合成
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000059
参照化合物41的合成方法,使用化合物B2代替化合物B20,XantPhos代替NiXantPhos进行三步反应得到化合物43。
1H NMR(400MHz,DMSO-d6)δ7.61-7.51(m,3H),7.49-7.41(m,2H),7.40-7.31(m,2H),7.30-7.22(m,1H),7.06-6.94(m,2H),5.00(d,J=10.8Hz,1H),4.20-4.07(m,2H),4.00-3.87(m,2H),3.82-3.73(m,2H),3.33-3.25(m,1H),3.10-2.80(m,3H),2.68(d,J=16.4Hz,1H),2.59-2.51(m,1H);
LC-MS:m/z 500.1[M+H] +
实施例十:化合物44的合成
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000060
参照化合物41的合成方法,使用化合物44-1代替化合物41-1,进行两步反应得到化合物44。
1H NMR(400MHz,DMSO-d6)δ7.79(s,1H),7.65-7.55(m,2H),7.49-7.41(m,3H),7.40-7.33(m,1H),7.30-7.20(m,1H),7.14(s,1H),7.02(d,J=10.4Hz,1H),4.91(t,J=5.6Hz,1H),4.14-4.02(m,2H),4.00-3.88(m,2H),3.75-3.65(m,2H),3.30-3.26(m,1H),3.20-3.10(m,1H),3.00-2.75(m,3H),2.44-2.36(m,1H)。
LC-MS:m/z 500.1[M+H] +
实施例十一:化合物45的合成
2-(4-氨基甲酰基-3-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-2-氟苯氧基)乙酸
Figure PCTCN2022072781-appb-000061
步骤一和步骤二:参照化合物41-2的合成方法,使用化合物B4代替化合物B20,XantPhos代替NiXantPhos进行两步反应得到化合物45-2。
步骤三:向单口烧瓶中依次加入化合物45-2(100mg,0.156mmol)、四氢呋喃(1mL)、甲醇(1mL)、水(1mL)和一水合氢氧化锂(66mg,1.56mmol),反应液在20℃下搅拌1小时。反应混合物用0.5N的稀盐酸调节到pH=5。混合物加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩得到灰白色固体45-3(90mg,收率:93.8%)。
LC-MS:m/z 614.2[M+H] +
步骤四:向单口烧瓶中依次加入化合物45-3(90mg,0.147mmol)、甲醇(2.5mL)、盐酸二氧六环(1.0mL,4M),反应液在20℃下搅拌1小时。反应混合物用饱和碳酸氢钠溶液调节到pH=8。混合物加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(二氯甲烷/甲醇=10∶1)得到灰白色固体45-4(50mg,收率:61.0%)和灰白色固体46-1(30mg,收率:36.6%)。
LC-MS:m/z 528.1[M+H] +
步骤五:向单口烧瓶中依次加入化合物45-4(50mg,0.095mmol)、四氢呋喃(1mL)、甲醇(1mL)、水(1mL)和氢氧化钠(60mg,1.50mmol),反应液在20℃下搅拌1小时。反应混合物用0.5N的稀盐酸调节到pH=6。将混合物浓缩干,剩余物用二氯甲烷/甲醇(10∶1,5mL)稀释,将得到的悬浊液过滤。滤液减压浓缩得到灰白色固体45(16mg,收率:30.8%)。
1H NMR(400MHz,DMSO-d6)δ7.60-7.52(m,3H),7.48-7.40(m,2H),7.38-7.31(m,2H),7.14(t,J=8.4Hz,1H),7.05-6.95(m,2H),4.95-4.75(m,2H),4.00-3.85(m,2H),3.30-3.25(m,1H),3.10-2.95(m,2H),2.72-2.62(m,1H),2.60-2.52(m,1H)。
LC-MS:m/z 514.1[M+H] +
实施例十二:化合物46的合成
2-(4-氨基甲酰基-3-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-2-氟苯氧基)乙酸
Figure PCTCN2022072781-appb-000062
参照化合物45的合成方法,使用化合物46-1代替化合物45-4,进行一步反应得到化合物46。
1H NMR(400MHz,DMSO-d6)δ7.80(s,1H),7.70-7.64(m,2H),7.55-7.39(m,4H),7.26-7.16(m,2H),7.02(d,J=10.4Hz,1H),4.80(s,2H),4.07-3.95(m,2H),3.30-3.25(m,1H),3.24-3.15(m,1H),3.06-2.82(m,3H),2.51-2.42(m,1H)。
LC-MS:m/z 514.1[M+H] +
实施例十三:化合物47的合成
(2S)-2-(8-氯-7-氟-2-(2-羟乙基)-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000063
步骤一:向单口烧瓶中依次加入化合物44(10mg,0.019mmol)、化合物C1(5mg,0.029mmol)、二氯甲烷(1mL)和三乙酰基硼氢化钠(6mg,0.029mmol),反应液在20℃下搅拌2小时。反应液加水稀释,用二氯甲烷萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过薄层层析法纯化(石油醚/乙酸乙酯=1∶1)得到灰白色固体47-1(7mg,收率:75.0%)。
LC-MS:m/z 658.3[M+H] +
步骤二:向单口烧瓶中依次加入化合物47-1(9mg,0.014mmol)、甲醇(2.0mL)和盐酸二氧六环(1.0mL,4M),反应液在20℃下搅拌1小时。反应液减压浓缩并冻干得到灰白色固体47(5.5mg,盐酸盐,收率:67.9%)。
1H NMR(400MHz,DMSO-d6)δ9.27(s,1H),7.78(s,1H),7.65-7.55(m,2H),7.50-7.33(m,4H),7.30-7.15(m,2H),7.06(d,J=10.0Hz,1H),5.50-5.30(m,1H),4.35-4.20(m,1H),4.15-3.95(m,3H),3.87-3.76(m,1H),3.75-3.65(m,2H),3.55-3.45(m,2H),3.22-3.04(m,4H),2.95-2.80(m,1H),2.46-2.39(m,1H)。
LC-MS:m/z 544.2[M+H] +
实施例十四:化合物48的合成
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(2-羟乙基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000064
参照化合物41的合成方法,使用化合物B5代替化合物B20,XantPhos代替 NiXantPhos进行三步反应得到化合物48。
1H NMR(400MHz,DMSO-d6)δ9.60-9.20(m,1H),9.50-9.10(m,1H),7.61-7.54(m,3H),7.50-7.40(m,3H),7.39-7.34(m,1H),7.33-7.29(m,1H),7.12(s,1H),7.01(d,J=10.4Hz,1H),4.86-4.78(m,1H),4.02-3.90(m,2H),3.70-3.60(m,2H),3.10-2.75(m,3H),2.87-2.77(m,2H),2.70-2.55(m,2H)。
LC-MS:m/z 484.2[M+H] +
实施例十五:化合物49的合成
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(2-羟乙基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000065
参照化合物41的合成方法,使用化合物49-1代替化合物41-2,进行一步反应得到化合物49。
1H NMR(400MHz,DMSO-d6)δ9.64-9.48(m,1H),8.40-8.22(m,1H),7.85(s,1H),7.65-7.55(m,2H),7.49-7.34(m,5H),7.26(s,1H),7.02(d,J=10.4Hz,1H),4.90-4.50(m,1H),4.02-3.89(m,2H),3.58-3.48(m,2H),3.20-3.10(m,1H),3.00-2.78(m,3H),2.76-2.69(m,2H),2.43-2.35(m,1H)。
LC-MS:m/z 484.2[M+H] +
实施例十六:化合物50的合成
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(3-羟丙基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000066
参照化合物41的合成方法,使用化合物B6代替化合物B20,XantPhos代替NiXantPhos进行三步反应得到化合物50。
1H NMR(400MHz,DMSO-d6)δ7.60-7.50(m,3H),7.48-7.42(m,2H),7.41-7.32(m,2H),7.26(t,J=8.4Hz,1H),7.04-6.94(m,2H),4.63(t,J=5.2Hz,1H),4.25-4.10(m,2H),4.00-3.90(m,2H),3.62-3.54(m,2H),3.10-2.86(m,3H),2.75-2.65(m,1H),2.60-2.50(m,1H),1.98-1.86(m,2H)。
LC-MS:m/z 514.2[M+H] +
实施例十七:化合物51的合成
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(3-羟丙基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000067
参照化合物41的合成方法,使用化合物51-1代替化合物41-2,进行一步反应得到化合物51。
1H NMR(400MHz,DMSO-d6)δ7.78(s,1H),7.65-7.55(m,2H),7.49-7.41(m,3H),7.40-7.33(m,1H),7.25(t,J=8.4Hz,1H),7.13(s,1H),7.01(d,J=10.8Hz,1H),4.55(t,J=5.2Hz,1H),4.20-4.06(m,2H),4.00-3.87(m,2H),3.54-3.44(m,2H),3.15(d,J=13.6Hz,1H),3.00-2.75(m,3H),2.45-2.35(m,1H),1.90-1.78(m,2H)。
LC-MS:m/z 514.2[M+H] +
实施例十八:化合物52的合成
2-(4-氨甲酰基-3-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-2-氟苯基)乙酸盐酸盐
Figure PCTCN2022072781-appb-000068
步骤一、步骤二和步骤三:参照化合物45-3的合成方法,使用化合物B5-2代替化合物B4,进行三步反应得到化合物52-3。
步骤四:向单口烧瓶中依次加入化合物52-3(18mg,0.048mmol)、二氧六环(2.0mL)和盐酸二氧六环(1.0mL,4M),反应液在20℃下搅拌2小时。反应液减压浓缩并冻干得到黄色固体52(14mg,盐酸盐)。
1H NMR(400MHz,DMSO-d6)δ12.57(brs,1H),7.66-7.54(m,1H),7.52-7.42(m,3H),7.40-7.33(m,3H),7.30-7.23(m,1H),7.22-7.12(m,1H),6.92-6.80(m,1H),3.76-3.68(m,2H),3.67-3.61(m,1H),3.58-3.53(m,1H),3.52-3.45(m,3H),3.44-3.38(m,3H)。
LC-MS:m/z 498.1[M+H] +
实施例十九:化合物53的合成
2-(4-氨甲酰基-3-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-2-氟苯基)乙酸盐酸盐
Figure PCTCN2022072781-appb-000069
参照化合物52的合成方法,使用化合物53-1代替化合物52-2,进行两步反应得到化合物53。
1H NMR(400MHz,DMSO-d6)δ8.27(s,1H),7.70(s,1H),7.49-7.29(m,6H),7.28-7.20(m,1H),6.74(d,J=10.8Hz,1H),3.60-3.51(m,2H),3.50-3.45(m,1H),3.44-3.38(m,1H),3.35-3.25(m,1H),3.10-2.92(m,2H),2.72-2.62(m,2H),2.60-2.53(m,1H),2.32-2.22(m,1H)。
LC-MS:m/z 498.1[M+H] +
实施例二十:化合物54的合成
2-((9R)8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-***啉苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000070
参照化合物41的合成方法,使用化合物B7代替化合物B20,XantPhos代替NiXantPhos进行三步反应得到化合物54。
1H NMR(400MHz,DMSO-d6)δ9.78-9.62(m,1H),8.42-8.15(m,1H),7.61-7.55(m,2H),7.51(brs,1H),7.48-7.42(m,2H),7.40-7.32(m,2H),7.10(t,J=8.4Hz,1H),7.03-6.97(m,2H),4.04-3.90(m,2H),3.82-3.70(m,4H),3.40-3.28(m,1H),3.17-3.09(m,2H),3.08-2.88(m,5H),2.71-2.62(m,1H),2.61-2.52(m,1H)。
LC-MS:m/z 525.2[M+H] +
实施例二十一:化合物55的合成
2-((9S)8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-***啉苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000071
参照化合物41的合成方法,使用化合物55-1代替化合物41-2,进行一步反应得到化合物55。
1H NMR(400MHz,DMSO-d6)δ9.70-9.55(m,1H),8.40-8.25(m,1H),7.78(s,1H),7.64-7.56(m,2H),7.49-7.41(m,3H),7.40-7.33(m,1H),7.18-7.05(m,2H),7.01(d,J=10.8Hz,1H),4.00-3.90(m,2H),3.72-3.62(m,4H),3.35-3.25(m,1H),3.20-3.10(m,1H),3.05-2.75(m,7H),2.45-2.36(m,1H)。
LC-MS:m/z 525.2[M+H] +
实施例二十二:化合物56的合成
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-4-(1,1-二氧化硫代***啉基)-3-氟苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000072
参照化合物41的合成方法,使用化合物B8代替化合物B20,XantPhos代替NiXantPhos进行三步反应得到化合物56。
1H NMR(400MHz,DMSO-d6)δ9.70(brs,1H),8.34(brs,1H),7.62-7.52(m, 3H),7.50-7.42(m,2H),7.40-7.33(m,2H),7.25(t,J=8.4Hz,1H),7.07-6.97(m,2H),4.00-3.90(m,2H),3.63-3.52(m,4H),3.34-3.25(m,5H),3.05-2.85(m,3H),2.75-2.65(m,1H),2.63-2.53(m,1H)。
LC-MS:m/z 573.1[M+H] +
实施例二十三:化合物57的合成
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-4-(1,1-二氧化硫代***啉基)-3-氟苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000073
参照化合物41的合成方法,使用化合物57-1代替化合物41-2,进行一步反应得到化合物57。
1H NMR(400MHz,DMSO-d6)δ9.57(brs,1H),8.32(brs,1H),7.82(s,1H),7.65-7.55(m,2H),7.50-7.33(m,4H),7.28-7.14(m,2H),7.03(d,J=10.8Hz,1H),4.00-3.90(m,2H),3.54-3.42(m,4H),3.30-3.10(m,6H),3.30-2.75(m,3H),2.47-2.40(m,1H)。
LC-MS:m/z 573.1[M+H] +
实施例二十四:化合物58的合成
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-((四氢-2H-吡喃-4-基)氨基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000074
参照化合物41的合成方法,使用化合物B9代替化合物B20,XantPhos代替NiXantPhos进行三步反应得到化合物58。
1H NMR(400MHz,DMSO-d6)δ9.76-9.58(m,1H),8.40-8.25(m,1H),7.65-7.55(m,2H),7.50-7.41(m,2H),7.40-7.26(m,3H),6.98(d,J=10.4Hz,1H),6.90-6.70(m,2H),5.90-5.75(m,1H),4.00-3.80(m,4H),3.64-3.52(m,1H),3.50-3.38(m,3H),3.10-2.85(m,3H),2.72-2.62(m,1H),2.56-2.50(m,1H),1.95-1.75(m,2H),1.65-1.45(m,2H)。
LC-MS:m/z 539.2[M+H] +
实施例二十五:化合物59的合成
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-((四氢-2H-吡喃-4-基)氨基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000075
参照化合物41的合成方法,使用化合物59-1代替化合物41-2,进行一步反应得到化合物59。
1H NMR(400MHz,DMSO-d6)δ8.20(s,1H),7.50-7.42(m,2H),7.40-7.20(m,5H),6.91(brs,1H),6.80(t,J=8.4Hz,1H),6.71(d,J=10.8Hz,1H),5.68-5.60(m,1H),3.89-3.78(m,2H),3.60-3.45(m,5H),3.10-3.00(m,1H),2.98-2.90(m,1H),2.73-2.64(m,1H),2.63-2.55(m,3H),2.35-2.25(m,2H),2.35-2.25(m,1H),1.86-1.72(m,2H), 1.54-1.35(m,2H)。
LC-MS:m/z 539.2[M+H] +
实施例二十六:化合物60的合成
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-((S)-2-羟基丙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000076
参照化合物41的合成方法,使用化合物B10代替化合物B20,XantPhos代替NiXantPhos进行三步反应得到化合物60。
1H NMR(400MHz,DMSO-d6)δ9.85-12.70(m,1H),8.43-8.25(m,1H),7.61-7.52(m,3H),7.47-7.41(m,2H),7.40-7.32(m,2H),7.30-7.22(m,1H),7.05-6.97(m,2H),4.06-3.88(m,5H),3.75-3.63(m,0.5H),3.52-3.45(m,0.5H),3.10-2.85(m,3H),2.70(d,J=16.4Hz,1H),2.60-2.50(m,1H),1.18(d,J=2.0Hz,3H)。
LC-MS:m/z 514.2[M+H] +
实施例二十七:化合物61的合成
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-((S)-2-羟基丙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000077
参照化合物41的合成方法,使用化合物61-1代替化合物41-2,进行一步反应得到化合物61。
1H NMR(400MHz,DMSO-d6)δ9.80-9.64(m,1H),8.42-8.27(m,1H),7.80(s,1H),7.64-7.57(m,2H),7.48-7.41(m,3H),7.40-7.33(m,1H),7.30-7.22(m,1H),7.17(brs,1H),7.02(d,J=10.4Hz,1H),4.00-3.85(m,5H),3.75-3.63(m,0.5H),3.52-3.43(m,0.5H),3.19-3.07(m,1H),3.00-2.75(m,3H),2.44-2.36(m,1H),1.13-1.08(m,3H)。
LC-MS:m/z 514.2[M+H] +
实施例二十八:化合物62的合成
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-((R)-2-羟基丙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000078
参照化合物41的合成方法,使用化合物B11代替化合物B20,XantPhos代替NiXantPhos进行三步反应得到化合物62。
1H NMR(400MHz,DMSO-d6)δ9.64-9.46(m,1H),8.40-8.25(m,1H),7.61-7.52(m,3H),7.48-7.41(m,2H),7.40-7.32(m,2H),7.30-7.22(m,1H),7.05-6.97(m,2H),5.00(brs,1H),4.06-3.88(m,5H),3.75-3.63(m,0.5H),3.52-3.43(m,0.5H),3.10-2.85(m,3H),2.70(d,J=16.0Hz,1H),2.60-2.50(m,1H),1.18(d,J=2.0Hz,3H)。
LC-MS:m/z 514.2[M+H] +
实施例二十九:化合物63的合成
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-((R)- 2-羟基丙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000079
参照化合物41的合成方法,使用化合物63-1代替化合物41-2,进行一步反应得到化合物63。
1H NMR(400MHz,DMSO-d6)δ9.53-9.40(m,1H),8.41-8.23(m,1H),7.80(s,1H),7.64-7.57(m,2H),7.48-7.41(m,3H),7.40-7.33(m,1H),7.30-7.22(m,1H),7.17(brs,1H),7.02(d,J=10.4Hz,1H),4.00-3.85(m,5H),3.75-3.63(m,0.5H),3.52-3.43(m,0.5H),3.19-3.07(m,1H),3.00-2.75(m,3H),2.44-2.36(m,1H),1.13-1.08(m,3H)。
LC-MS:m/z 514.2[M+H] +
实施例三十:化合物64的合成
6-((9R)8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-7-氟-1H-吲哚-5-甲酰胺
Figure PCTCN2022072781-appb-000080
步骤一和步骤二:参照化合物41-2的合成方法,使用化合物B14代替化合物B20,XantPhos代替NiXantPhos进行两步反应得到化合物64-2和化合物65-1。
步骤三:向单口烧瓶中依次加入化合物64-2(12mg,0.018mmol)、二氯甲烷(2mL)和三氟乙酸(1mL),反应液在20℃下搅拌2小时。反应液减压浓缩。向得到的剩余物中加入饱和碳酸氢钠溶液(6mL),用乙酸乙酯萃取2次。合并的有机相减压浓缩,并冻干得到白色固体64(5mg,产率:58.1%)。
1H NMR(400MHz,DMSO-d6)δ11.87(s,1H),7.63(s,1H),7.55-7.40(m,4H),7.39-7.30(m,2H),7.26-7.19(m,1H),6.90(brs,1H),6.74(d,J=10.8Hz,1H),6.63-6.58(m,1H),3.62-3.50(m,1H),3.40-3.31(m,2H),3.15-3.00(m,1H),2.86(d,J=12.8Hz,1H),2.75-2.65(m,1H),2.60-2.50(m,2H),2.43-2.35(m,1H)。
LC-MS:m/z 479.1[M+H] +
实施例三十一:化合物65的合成
6-((9S)8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-7-氟-1H-吲哚-5-甲酰胺
Figure PCTCN2022072781-appb-000081
参照化合物64的合成方法,使用化合物65-1代替化合物64-2,进行一步反应得到化合物65。
1H NMR(400MHz,DMSO-d6)δ11.77(s,1H),7.68(s,1H),7.61(brs,1H),7.50-7.41(m,3H),7.38-7.30(m,2H),7.26-7.19(m,1H),7.11(brs,1H),6.73(d,J=10.4Hz,1H),6.63-6.58(m,1H),3.62-3.50(m,1H),3.33-3.29(m,2H),3.13-2.97(m,2H),2.75-2.55(m,3H),2.34-2.25(m,1H)。
LC-MS:m/z 479.1[M+H] +
实施例三十二:化合物66的合成
2-((9R,10aR)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000082
步骤一:在干燥的单口瓶中依次加入化合物A1-10(1.50g,3.35mmol)、乙腈(20mL)和NCS(447mg,3.35mmol)。反应液在60℃下搅拌1小时。反应液减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=10∶1)得到白色固体(1.0g)。得到的产物经过SFC分离得到白色固体66-1(500mg,产率:31.1%)和白色固体68-1(500mg,产率:31.1%)。
LC-MS:m/z 481.1[M+H] +
步骤二:参照化合物A1的合成方法,使用化合物66-1代替化合物A1-11合成化合物66-2。
步骤三到步骤五:参照化合物41的合成方法,使用化合物66-2代替化合物A20,进行三步反应得到化合物66。
1H NMR(400MHz,DMSO-d6)δ9.80-9.60(m,1H),8.45-8.25(m,1H),7.61-7.51(m,3H),7.48-7.42(m,2H),7.41-7.33(m,2H),7.30-7.22(m,1H),7.05-6.98(m,2H),5.30-4.70(m,1H),4.20-4.07(m,2H),4.02-3.89(m,2H),3.82-3.73(m,2H),3.33-3.25(m,1H),3.10-2.80(m,3H),2.70(d,J=16.0Hz,1H),2.59-2.51(m,1H)。
LC-MS:m/z 500.1[M+H] +
实施例三十三:化合物67的合成
2-((9S,10aR)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000083
参照化合物41的合成方法,使用化合物67-1代替化合物41-2,进行一步反应得到化合物67。
1H NMR(400MHz,DMSO-d6)δ9.57-9.43(m,1H),8.41-8.23(m,1H),7.81(s,1H),7.65-7.55(m,2H),7.49-7.41(m,3H),7.40-7.33(m,1H),7.30-7.22(m,1H),7.15(brs,1H),7.02(d,J=10.4Hz,1H),5.10-4.75(m,1H),4.15-4.03(m,2H),4.00-3.89(m,2H),3.73-3.65(m,2H),3.32-3.25(m,1H),3.20-3.07(m,1H),3.00-2.75(m,3H),2.44-2.36(m,1H)。
LC-MS:m/z 500.1[M+H] +
实施例三十四:化合物68的合成
2-((9R,10aS)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000084
参照化合物43的合成方法,使用化合物68-1代替化合物A1-11,进行四步反应 得到化合物68。
1H NMR(400MHz,DMSO-d6)δ9.72-9.55(m,1H),8.45-8.20(m,1H),7.61-7.52(m,3H),7.48-7.42(m,2H),7.41-7.33(m,2H),7.30-7.22(m,1H),7.05-6.98(m,2H),5.20-4.80(m,1H),4.20-4.07(m,2H),4.02-3.89(m,2H),3.82-3.73(m,2H),3.33-3.25(m,1H),3.10-2.85(m,3H),2.70(d,J=16.0Hz,1H),2.59-2.51(m,1H)。
LC-MS:m/z 500.1[M+H] +
实施例三十五:化合物69的合成
2-((9S,10aS)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000085
参照化合物41的合成方法,使用化合物69-1代替化合物41-2,进行一步反应得到化合物69。
1H NMR(400MHz,DMSO-d6)δ9.58-9.43(m,1H),8.41-8.23(m,1H),7.81(s,1H),7.65-7.55(m,2H),7.49-7.41(m,3H),7.40-7.33(m,1H),7.30-7.22(m,1H),7.15(brs,1H),7.02(d,J=10.4Hz,1H),5.05-4.80(m,1H),4.15-4.03(m,2H),4.01-3.89(m,2H),3.73-3.65(m,2H),3.32-3.25(m,1H),3.20-3.07(m,1H),3.00-2.75(m,3H),2.44-2.36(m,1H)。
LC-MS:m/z 500.1[M+H] +
实施例三十六:化合物70的合成
5-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-4-氟吲哚-6-羧酰胺甲酸盐
Figure PCTCN2022072781-appb-000086
参照化合物43的合成方法,进行两步反应得到化合物70-2和70-3。
化合物70的合成:25摄氏度条件下,将70-2(25mg,0.037mmol,1.0eq)溶解在二氯甲烷(1mL)中,然后加入三氟乙酸(1mL)。黄色反应液搅拌12小时后,LCMS显示有产物生成。反应液通过减压浓缩除去溶剂,然后制备(0.05%甲酸/MeCN/H 2O)得到白色固体70(16mg,产率:82.9%)。
1H NMR(400MHz,DMSO_d6)δ9.08(s,1H),8.52(s,1H),8.16(s,1H),7.86(s,1H),7.57-7.43(m,3H),7.38(t,J=7.6Hz,2H),7.31-7.10(m,2H),6.80(d,J=10.8Hz,1H),4.27(s,1H),4.06-4.02(m,2H),3.64-3.60(m,2H),3.50-3.40(m,2H),3.27-3.16(m,2H),3.17-3.07(m,1H),2.86(d,J=12.8Hz,1H),2.81-2.67(m,1H),2.63-2.59(m,1H)。
LC-MS:m/z 481.1[M+H] +
实施例三十七:化合物71的合成
5-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-4-氟吲哚-6一羧酰胺甲酸盐
Figure PCTCN2022072781-appb-000087
参照实施例三十的合成方法,用中间体70-3代替70-2进行一步反应得到化合物71(10mg,产率:64.5%)。
1H NMR(400MHz,DMSO_d6)δ9.10(s,1H),8.50(s,1H),8.18(s,1H),7.90(s,1H),7.67(d,J=21.6Hz,1H),7.53(s,1H),7.44(d,J=7.6Hz,2H),7.36(t,J=7.6Hz,2H),7.24(s,1H),6.74(d,J=10.8Hz,1H),4.21(s,1H),4.05-3.87(m,2H),3.79(d,J=7.2Hz,1H),3.55(d,J=12.4Hz,1H),3.15-2.98(m,2H),2.97(s,1H),2.78-2.61(m,2H),2.58(d,J=8.8Hz,1H),2.35-2.23(m,1H)。
LC-MS:m/z 481.1[M+H] +
实施例三十八:化合物72的合成。
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)-N-甲基苯甲酰胺甲酸盐
Figure PCTCN2022072781-appb-000088
步骤一:参照化合物43合成步骤一,用中间体B12代替B2的方法合成化合物72-1(黄色固体,20mg,产率:74.1%)。
步骤二:向15mL的耐压瓶中加入72-1(20mg,0.028mmol,1.0eq)和甲胺乙醇溶液(1mL)。升温到100摄氏度并搅拌24小时,TLC显示有新点生成,反应液减压浓缩,残留物用制备板纯化(石油醚/乙酸乙酯=3/1)得到无色油状物72-2(4mg, 产率:20%)。
步骤三:将72-2(4mg,0.006mmol,1.0eq)溶解在二氯甲烷(500uL)中,利用干冰丙酮浴冷却至零下70摄氏度,然后加入三溴化硼(18uL,0.018mmol,3.0eq)。低温下搅拌三十分钟,LCMS显示有产物生成。低温下加入甲醇(1mL)淬灭反应,减压浓缩,残留物通过制备级HPLC分离(甲酸体系)得到白色固体粗品化合物72(1mg,产率:33.3%)。
LC-MS:m/z 514.1[M+H]+。
实施例三十九:化合物73的合成。
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-N-乙基-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000089
步骤一:参照化合物43合成步骤一的方法合成化合物73-1(黄色固体,80mg)和73-2(黄色固体,80mg)。
步骤二:将73-1(80mg,0.11mmol,1.0eq)溶解在四氢呋喃(500uL)、甲醇(500uL)和水(500uL)中,然后加入一水合氢氧化锂(14mg,0.33mmol,3.0eq)。反应液在25摄氏度下反应12小时,TLC显示反应完全。反应液用水(10mL)和甲基叔丁基醚(5mL*3)萃取,水相用稀盐酸(2N)调节到酸性(pH=4),加入乙酸乙酯(20mL*3)萃取。有机相用饱和食盐水(30mL)洗涤,用无水硫酸钠干燥,过滤,并在减压下除去挥发物得到黄色固体73-3(90mg,粗品)。
步骤三:在25摄氏度条件下,向圆底烧瓶中依次加入二氯甲烷(10mL)、73-3(33mg,0.055mmol,1.0eq)、乙胺盐酸盐(9mg,0.11mmol,2.0eq)、三乙胺(30uL,0.22mmol,4.0eq)和TBTU(35mg,0.11mmol,2.0eq)。浅黄色反应液在该温度下 搅拌1.5小时,LCMS检测到有产物生成。在减压条件下除去挥发物,将得到的残留物通过硅胶色谱法纯化(0至2.7%梯度的甲醇:二氯甲烷)得到白色固体73-4(27mg,收率:79.4%)。
LC-MS:m/z 528.1[M-Boc+H] +
步骤四:在25摄氏度条件下,将73-4(27mg,0.043mmol,1.0eq)溶解在甲醇(1mL)中,然后加入盐酸/二氧六环溶液(1mL,4M),搅拌两小时,LCMS显示反应完全。反应液减压浓缩得到白色固体73(21mg,产率:87.5%)。
1H NMR(400MHz,DMSO_d6)δ9.52(d,J=11.2Hz,1H),8.38-8.23(m,2H),7.55-7.50(m,2H),7.39(t,J=7.6Hz,2H),7.32-7.28(m,2H),7.20(t,J=8.4Hz,1H),6.96(d,J=10.4Hz,1H),4.07-3.95(m,2H),3.88(t,J=13.2Hz,2H),3.63(t,J=4.8Hz,2H),3.23-2.92(m,5H),2.90-2.76(m,2H),2.73(d,J=16.0Hz,1H),2.33(d,J=16.0Hz,1H),0.96(t,J=7.2Hz,3H)。
LC-MS:m/z 528.1[M+H] +
实施例四十:化合物74的合成。
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-N-乙基-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000090
化合物74:参考化合物73的合成方法进行三步反应得到化合物74(21mg,产率:87.5%)。
1H NMR(400MHz,DMSO_d6)δ9.73(d,J=10.0Hz,1H),8.34(d,J=10.8Hz,1H),8.07(t,J=5.6Hz,1H),7.56(d,J=7.6Hz,2H),7.45(t,J=7.6Hz,2H),7.37(d,J=7.2Hz,1H),7.32-7.19(m,2H),7.01(d,J=10.4Hz,1H),4.14(dtd,J=15.2,10.0,4.8Hz,2H),3.97(t,J=13.2Hz,2H),3.77(dd,J=11.2,6.4Hz,2H),3.37-3.23(m,2H),2.95 (tdd,J=20.0,15.2,9.2Hz,5H),2.76-2.55(m,2H),0.75(t,J=7.2Hz,3H)。
LC-MS:m/z 528.1[M+H] +
实施例四十一:化合物75的合成。
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)-N-(2-羟乙基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000091
化合物75:参考化合物73的合成方法进行两步反应得到化合物75(22mg,产率:81.5%)。
1H NMR(400MHz,DMSO_d6)δ9.58(d,J=10.8Hz,1H),8.4-8.25(m,1H),8.12(t,J=5.6Hz,1H),7.52(d,J=7.6Hz,2H),7.43-7.35(m,3H),7.30(t,J=7.2Hz,1H),7.21(t,J=8.4Hz,1H),6.96(d,J=10.4Hz,1H),4.09-3.97(m,2H),3.89(t,J=13.2Hz,2H),3.63(t,J=4.8Hz,2H),3.18-3.06(m,6H),2.96(dd,J=14.4,10.2Hz,1H),2.86(s,2H),2.73(t,J=12.0Hz,1H),2.33(d,J=15.6Hz,1H)。
LC-MS:m/z 544.1[M+H] +
实施例四十二:化合物76的合成。
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)-N-(2-羟基乙基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000092
化合物76:参考化合物73的合成方法进行两步反应得到化合物76(22mg,产率:81.5%)。
1H NMR(400MHz,DMSO_d6)δ9.77(s,1H),8.51-8.13(m,1H),8.02(s,1H),7.56(d,J=7.6Hz,2H),7.45(t,J=7.6Hz,2H),7.38-7.18(m,3H),7.00(d,J=10.4Hz,1H),5.03(s,1H),4.57(s,1H),4.13(dd,J=11.2,5.2Hz,2H),3.96(t,J=15.2Hz,2H),3.78(s, 2H),3.16-2.92(m,7H),2.76-2.64(m,1H)。
LC-MS:m/z 544.1[M+H] +
实施例四十三:化合物77的合成。
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯并酰肼盐酸盐
Figure PCTCN2022072781-appb-000093
步骤一:向15mL的耐压瓶中加入73-1(30mg,0.56mmol,1.0eq),水合肼(1mL)和乙醇(1mL)。升温到100摄氏度并搅拌12小时,TLC显示反应完成,反应液减压浓缩得到白色固体77-1(30mg,粗品)。
步骤二:参照化合物73步骤四的方法合成白色固体77(15mg,收率:66.1%)。
1H NMR(400MHz,DMSO_d6)δ11.02(s,1H),9.88(s,2H),8.33(d,J=10.4Hz,1H),7.56(d,J=7.6Hz,2H),7.50(d,J=8.4Hz,1H),7.44(t,J=7.6Hz,2H),7.39-7.30(m,2H),7.02(d,J=10.4Hz,1H),4.17(dt,J=10.4,5.3Hz,2H),3.96(t,J=14.0Hz,2H),3.78(t,J=4.8Hz,2H),3.12-2.89(m,4H),2.74(d,J=16.0Hz,1H),2.52(d,J=15.6Hz,1H)。
LC-MS:m/z 515.1[M+H] +
实施例四十四:化合物78的合成。
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰肼盐酸盐
Figure PCTCN2022072781-appb-000094
化合物78:参考化合物77的合成方法进行两步反应合成白色固体78(15mg,产率:66.1%)。
1H NMR(400MHz,DMSO_d6)δ9.46(s,1H),8.21(s,1H),7.45(d,J=7.6Hz,2H),7.41-7.27(m,3H),7.23(dd,J=15.6,7.6Hz,2H),6.72(d,J=10.8Hz,1H),4.13-3.99(m,3H),3.72-3.67(m,2H),3.55(d,J=13.6Hz,2H),3.36(d,J=12.8Hz,2H),3.09-3.00(m,1H),2.95(d,J=12.8Hz,1H),2.75-2.66(m,1H),2.60(t,J=11.6Hz,2H),2.33-2.25(m,1H)。
LC-MS:m/z 515.1[M+H] +
实施例四十五:化合物79的合成。
2-((9R)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酸甲酸盐
Figure PCTCN2022072781-appb-000095
步骤一:将73-1(30mg,0.56mmol,1.0eq)溶解在甲醇(1mL),然后加入盐酸/二氧六环(1mL,4M)溶液中,25摄氏度下搅拌12小时,LCMS显示有产物生成。反应液减压浓缩得到黄色固体79-1(24mg,粗品)。
LC-MS:m/z 515.1[M+H] +
步骤二:参照化合物73合成步骤二的方法合成白色固体79(15mg,收率:50.0%)。
1H NMR(400MHz,DMSO_d6)δ8.25(s,1H),7.72(d,J=8.4Hz,1H),7.46(d,J=7.6Hz,2H),7.35(t,J=7.6Hz,2H),7.30-7.19(m,2H),6.74(d,J=10.8Hz,1H),4.16(s,2H),3.81-3.74(m,2H),3.57(d,J=13.6Hz,1H),3.41(d,J=12.8Hz,1H),3.15-3.01(m,2H),2.84(d,J=12.8Hz,1H),2.69(d,J=10.4Hz,1H),2.57(d,J=9.6Hz,1H),2.45-2.33(m,2H)。
LCMS:m/z 500.1[M+H] +
实施例四十六:化合物80的合成。
2-((9S)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酸甲酸盐
Figure PCTCN2022072781-appb-000096
化合物80:参考化合物79的合成方法进行两步反应合成白色固体80(12mg,产率:52.9%)。
1H NMR(400MHz,DMSO_d6)δ8.19(s,1H),7.78(d,J=8.6Hz,1H),7.46(d,J=8.0Hz,2H),7.36(t,J=7.6Hz,2H),7.30-7.16(m,2H),6.75(d,J=10.8Hz,1H),4.11(dd,J=9.6,4.8Hz,2H),3.71(t,J=4.8Hz,2H),3.58(d,J=13.6Hz,2H),3.41(d,J=12.8Hz,2H),3.12-3.03(m,2H),2.89(d,J=13.2Hz,1H),2.76-2.57(m,2H),2.46(s,1H),2.33(d,J=16.0Hz,1H)。
LC-MS:m/z 500.1[M+H] +
实施例四十七:化合物81的合成。
(2R)-2-(8-氯-7-氟-10a-(3-甲氧基苯基)-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000097
化合物81:参照化合物43的合成方法,用中间体A2代替A1,进行三步反应合成白色固体81(45mg,纯度:80%,产率:94.7%)。
1H NMR(400MHz,DMSO_d6)δ10.35(s,1H),8.39(s,1H),7.56(s,1H),7.45-7.32(m,2H),7.27(s,1H),7.10(s,2H),7.00(d,J=10.4Hz,2H),6.95-6.85(m,1H),5.07(s,1H),4.14(d,J=4.8Hz,2H),3.95(d,J=13.6Hz,2H),3.77(s,4H),3.73-3.62(m,1H),3.53-3.44(m,1H),2.89(s,2H),2.66(s,1H),2.54(d,J=12.4Hz,1H)。
LCMS:m/z 530.1[M+H] +
实施例四十八:化合物82的合成。
(2S)-2-(8-氯-7-氟-10a-(3-甲氧基苯基)-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺
Figure PCTCN2022072781-appb-000098
化合物82:参照化合物81的合成方法合成白色固体82(18mg,产率:78.3%)。
1H NMR(400MHz,DMSO)δ7.78(s,1H),7.48-7.38(m,1H),7.36-7.23(m,3H),7.17-7.10(m,3H),6.99(d,J=10.4Hz,1H),6.90(dd,J=8.0,2.0Hz,1H),4.09(dt,J=10.0,5.2Hz,2H),3.93(d,J=14.0Hz,2H),3.76(s,3H),3.68(dt,J=16.0,8.0Hz,2H),3.37(s,2H),3.07(d,J=13.6Hz,1H),2.96-2.76(m,3H),2.39(d,J=16.0Hz,1H)。
LCMS:m/z 530.1[M+H] +
实施例四十九:化合物83的合成。
(2S)-2-(8-氯-7-氟-10a-(3-羟基苯基)-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺氢溴酸盐
Figure PCTCN2022072781-appb-000099
步骤一:在25摄氏度下,向4mL反应瓶中依次加入无水二氯甲烷(1mL)和82(15mg,0.026mmol,1.0eq),然后滴加三溴化硼(20mg,0.079mmol,3.0eq),反应一小时。LCMS显示有产物生成,加入甲醇(1mL)淬灭反应,过滤,滤液通过制备 级HPLC分离(甲酸体系)得到白色固体83(4mg,产率:25%)。
1H NMR(400MHz,DMSO_d6)δ9.30(s,1H),8.19(s,1H),7.58(s,1H),7.40(d,J=8.4Hz,1H),7.32-7.08(m,3H),6.88-6.78(m,2H),6.72(d,J=10.8Hz,1H),6.62(dd,J=8.0,2.0Hz,1H),4.89(s,1H),4.16-4.00(m,2H),3.70(t,J=4.8Hz,2H),3.54(d,J=13.6Hz,2H),3.11-3.02(m,2H),2.92(d,J=13.2Hz,1H),2.61(d,J=16.0Hz,3H),2.30(s,1H)。
LCMS:m/z 516.1[M+H] +
实施例五十:化合物84的合成
(4R)-(8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-5-氟-6-(2-羟基乙氧基)烟酰胺甲酸盐
Figure PCTCN2022072781-appb-000100
化合物84:参照化合物43的合成方法,用中间体B15代替B2,进行三步反应合成白色固体84(2mg,产率:52.9%)。
1H NMR(400MHz,Methanol-d4)δ8.46(s,1H),8.29(s,1H),7.63-7.56(m,2H),7.47(t,J=7.7Hz,2H),7.36(t,J=7.4Hz,1H),6.77(d,J=10.2Hz,1H),4.57-4.44(m,2H),3.94-3.74(m,4H),3.46-3.35(m,2H),3.09(d,J=12.7Hz,1H),2.91(d,J=13.3Hz,1H),2.78(d,J=16.0Hz,1H),2.61(dd,J=16.0,2.0Hz,1H)。
LCMS:m/z 501.1[M+H] +
实施例五十一:化合物85的合成
(4S)-(8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪[1,2-a]吲哚-9-基)-5-氟-6-(2-羟基乙氧基)烟酰胺甲酸盐
Figure PCTCN2022072781-appb-000101
化合物85:参照化合物84的方法合成白色固体85(2mg,产率:52.9%)。
1H NMR(400MHz,Methanol-d4)δ8.43(s,1H),8.25(s,1H),7.63-7.56(m,2H),7.46(t,J=7.7Hz,2H),7.36(t,J=7.4Hz,1H),6.77(d,J=10.2Hz,1H),4.59-4.53(m,2H),3.97-3.91(m,2H),3.83(t,J=14.1Hz,2H),3.51-3.39(m,1H),3.21(d,J=13.5Hz,1H),3.11-3.05(m,1H),2.91(d,J=12.9Hz,1H),2.81-2.66(m,2H)。
LCMS:m/z 501.1[M+H] +
实施例五十二:化合物86的合成
(2R)-2-(8-氯-10a-(3-氯苯基)-7-氟-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000102
化合物86:参照化合物43的合成方法,用中间体A4代替A1,进行三步反应合成白色固体86(11mg,纯度:80%,产率:77.2%)。
1H NMR(400MHz,DMSO_d6)δ10.16(d,J=9.2Hz,1H),8.51(d,J=9.6Hz,1H),7.61(s,1H),7.54(d,J=7.6Hz,1H),7.47(t,J=7.6Hz,1H),7.39(dd,J=15.6,7.3Hz,2H),7.27(t,J=8.4Hz,1H),7.01(d,J=10.4Hz,2H),4.12(dt,J=10.0,4.8Hz,2H),3.96(d,J=14.0Hz,2H),3.71-3.63(m,2H),3.54-3.42(m,1H),3.34-3.23(m,1H),2.97-2.88(m,3H),2.76-2.72(m,1H)。
LCMS:m/z 534.1[M+H] +
实施例五十三:化合物87的合成
(2S)-2-(8-氯-10a-(3-氯苯基)-7-氟-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺
Figure PCTCN2022072781-appb-000103
化合物87:参照化合物86的合成方法由化合物86-3合成白色固体87(8mg,产率:70.2%)。
1H NMR(400MHz,DMSO_d6)δ9.45(s,1H),8.41(s,1H),7.79(s,1H),7.66(s,1H),7.58(d,J=7.6Hz,1H),7.50-7.39(m,2H),7.28(d,J=8.4Hz,1H),7.13(s,1H),7.02(d,J=10.4Hz,1H),4.09(d,J=6.4Hz,2H),3.96(s,2H),3.70(t,J=4.8Hz,2H),3.46(dd,J=14.4,8.0Hz,2H),3.18-3.08(m,1H),2.97(d,J=11.6Hz,1H),2.85(d,J=16.0Hz,1H),2.45(s,1H)。
LCMS:m/z 534.1[M+H] +
实施例五十四:化合物88的合成
(2R)-2-(8-氯-7-氟-10a-(3-氟苯基)-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000104
化合物88:参照化合物43的合成方法,用中间体A3代替A1,进行三步反应合成白色固体88(24mg,产率:90.6%)。
1H NMR(400MHz,DMSO_d6)δ10.09(s,1H),8.47(s,1H),7.55(s,1H),7.52-7.44(m,1H),7.44-7.34(m,2H),7.30-7.24(m,1H),7.17(t,J=8.4Hz,1H),7.00(d,J=10.4Hz,1H),5.03(s,1H),4.12(dt,J=10.8,5.6Hz,2H),3.95(d,J=13.6Hz,2H),3.76(s,2H),2.90(d,J=10.8Hz,3H),2.75-2.49(m,3H)。
LCMS:m/z 518.1[M+H] +
实施例五十五:化合物89的合成
(2S)-2-(8-氯-7-氟-10a-(3-氟苯基)-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(2-羟基乙氧基)苯甲酰胺盐酸盐
Figure PCTCN2022072781-appb-000105
化合物89:参照化合物88的方法合成白色固体89(18mg,产率:79.3%)。
1H NMR(400MHz,DMSO)δ9.52(s,1H),8.32(s,1H),7.72(s,1H),7.39(dd,J=7.6,4.8Hz,4H),7.20(s,3H),6.95(d,J=10.4Hz,1H),4.02(d,J=6.0Hz,2H),3.95-3.82(m,2H),3.63(t,J=4.8Hz,3H),3.45-3.35(m,1H),3.12-3.02(m,1H),2.90(d,J=12.8Hz,1H),2.77(d,J=15.9Hz,1H),2.37(d,J=15.6Hz,1H)。
LCMS:m/z 518.1[M+H] +
实施例五十六:化合物90的合成
2-((9R,10aS)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(甲氨基)苯甲酰胺
Figure PCTCN2022072781-appb-000106
步骤一:向反应瓶中依次加入化合物A1(25mg,0.047mmol)、化合物B16(11mg,0.047mmol)、磷酸钾(60mg,0.284mmol)、1,4-二氧六环(1mL)、甲苯(1mL)、水(0.4mL)、RuPhos-Pd-G3(4mg,0.005mmol)和RuPhos(2mg,0.005mmol),反应液在氮气保护100℃下搅拌6小时。反应液加水稀释,用乙酸乙酯萃取2次。合并的有机相用饱和食盐水洗涤、无水硫酸钠干燥、过滤、减压浓缩。得到的残留物通过硅胶色谱法纯化(石油醚/乙酸乙酯=4∶1)得到黄色固体90-1(26mg,收率:96.1%)。
LCMS:m/z 551.2[M+H] +
步骤二:参照化合物41-2的合成方法,使用化合物90-1代替化合物41-1,进行 一步反应得到化合物90-2以及化合物91-1。
LCMS:m/z 569.2[M+H] +
步骤三:参照化合物41的合成方法,使用化合物90-2代替化合物41-2,进行一步反应得到化合物90。
1H NMR(400MHz,Methanol-d4)δ7.53-7.50(m,2H),7.38-7.34(m,3H),7.30-7.26(m,1H),6.72-6.67(m,2H),3.94-3.81(m,2H),3.41-3.34(m,2H),3.17-3.07(m,1H),2.92-2.87(m,1H),2.82(s,3H),2.66-2.60(m,2H)。
LC-MS:m/z 469.1[M+H] +
实施例五十七:化合物91的合成
2-((9S,10aS)-8-氯-7-氟-10a-苯基-1,2,3,4,10,10a-六氢吡嗪并[1,2-a]吲哚-9-基)-3-氟-4-(甲氨基)苯甲酰胺
Figure PCTCN2022072781-appb-000107
参照化合物41的合成方法,使用化合物91-1代替化合物41-2,进行一步反应得到化合物91。
1H NMR(400MHz,Methanol-d4)δ7.53-7.52(m,2H),7.41-7.37(m,3H),7.31-7.27(m,1H),6.73-6.67(m,2H),3.84-3.79(m,2H),3.43-3.36(m,2H),3.13-3.08(m,1H),2.94-2.91(m,1H),2.75(s,3H),2.72-2.68(m,1H)2.55-2.50(m,1H)。
LC-MS:m/z 469.1[M+H] +
测试例一:YAP-TEAD蛋白相互作用HTRF实验
1.在384孔检测白板中加入His-TEAD1蛋白,使之终浓度为10nM,用缓冲液作为背景信号孔。将待测化合物进行3倍稀释,共设置10个浓度梯度混匀。每孔分别加入一定体积的待测化合物,每个浓度设置2个重复,DMSO的终浓度控制在1%。室温孵育20分钟。本步骤中使用的TAED1(209-426)的氨基酸序列SEQ ID NO:1所示:
Figure PCTCN2022072781-appb-000108
2.每孔加入Bio-YAP肽,使之终浓度达到50nM,混匀,室温下孵育10分钟。本步骤中使用的Bio-YAP肽中的YAP肽(60-100)部分的氨基酸序列如SEQ ID NO:2所示:
Figure PCTCN2022072781-appb-000109
3.将Anti-His-Eucryptate gold和链霉亲和素-XL665按说明书稀释,并按等比例混合。将一定体积的检测试剂加入孔中,室温下孵育1小时。
4.使用Envision(Perkin Elmer)酶标仪,在激发光320nM,发射光665nM和620nM处检测信号。
5.通过Em665/Em620*10000的比值计算信号。抑制百分率(%)通过以下公式计算获得:
抑制%=(1-(cpd 信号-背景 信号)/(DMSO 信号-背景 信号))*100
半抑制浓度IC 50值采用GraphPad Prism软件计算求得。
各化合物阻断YAP-TEAD蛋白相互作用的IC 50如表一所示,其中,字母A代表IC 50小于0.5uM;字母B代表IC 50为0.5uM至5uM;字母C代表IC 50为5uM至50uM,字母D代表IC50大于50uM。
表一
化合物编号 活性(uM) 化合物编号 活性(uM)
化合物1 C 化合物47 B
化合物2 C 化合物48 C
化合物3 C 化合物49 A
化合物4 C 化合物50 C
化合物5 C 化合物51 A
化合物6 C 化合物52 C
化合物7 C 化合物53 A
化合物8 C 化合物54 C
化合物9 C 化合物55 C
化合物10 C 化合物56 C
化合物11 C 化合物57 C
化合物12 C 化合物58 C
化合物13 C 化合物59 C
化合物14 C 化合物60 C
化合物15 C 化合物61 A
化合物16 C 化合物62 C
化合物17 C 化合物63 B
化合物18 C 化合物64 C
化合物19 C 化合物65 B
化合物20 C 化合物66 C
化合物21 C 化合物67 A
化合物22 C 化合物68 C
化合物23 C 化合物69 A
化合物24 C 化合物70 B
化合物25 C 化合物71 B
化合物26 C 化合物72 A
化合物27 C 化合物73 A
化合物28 C 化合物74 B
化合物29 C 化合物75 A
化合物30 C 化合物76 B
化合物31 B 化合物77 C
化合物32 B 化合物78 A
化合物33 B 化合物79 C
化合物34 C 化合物80 C
化合物35 C 化合物81 B
化合物36 B 化合物82 B
化合物37 B 化合物83 A
化合物38 B 化合物84 B
化合物39 B 化合物85 A
化合物40 C 化合物86 B
化合物41 C 化合物87 B
化合物42 A 化合物88 B
化合物43 C 化合物89 A
化合物44 A 化合物90 C
化合物45 C 化合物91 A
化合物46 A    
测试例二:YAP/TEAD报告基因抑制实验
本实施例通过含有YAP/TEAD报告基因稳定细胞株SF268-YAP-Luc中报告基因的信号来检测化合物对靶点的抑制。
将包含6个串联YAP/TEAD结合位点以及一段基础转录启动子的序列构建在Promega公司的载体pGL4.76上。将构建好的报告基因载体转染至SF268细胞(NCI DCTD tumor/cell line repository)中,并用0.5μg/ml潮霉素进行筛选,获得SF268-YAP-Luc稳定株。
在96孔板中接种SF268-YAP-Luc细胞,以每孔3000个细胞密度接种细胞到96孔板,每孔体积100μL(细胞培养基成分:RPMI1640(Gibco-A10491-01)+10%FBS(Gibco-10099-141C)+1%Penicillin-Streptomycin(5,000U/mL,Gibco-15070-063)),置于37℃、5%二氧化碳培养箱培养过夜。
第二天,待测化合物进行3倍稀释,共设置8个浓度梯度;每孔分别加入一定体积的DMSO(对照组)或者待测化合物(处理组),每个浓度设置2个重复,DMSO的终浓度控制在不高于0.5%。置于37℃、5%二氧化碳培养箱培养24小时。细胞接种及化合物处理做两块相同的平行板。
使用Renila-Glo Luciferase assay system试剂盒(Promega,E2720)检测对照组和处理组报告基因信号。每孔加入70ul Renila-Glo,混匀,室温孵育10分钟。使用
Figure PCTCN2022072781-appb-000110
Multilabel Plate Reader(Perkin Elmer)读取信号。
使用CellTiter-Glo Luminescent Cell Viability Assay试剂盒(Promega,G7570)检测对照组和处理组细胞活力。每孔加入50ul CellTiter-Glo,混匀,室温孵育10分钟。使用
Figure PCTCN2022072781-appb-000111
Multilabel Plate Reader(Perkin Elmer)读取信号。
分析细胞活力校正过的Renila luciferase的信号,计算化合物对报告基因的抑制率,抑制百分率(%)通过以下公式计算获得:
抑制率%=(1-(化合物处理孔Renila信号/DMSO处理孔Renila信号)/(化合物处理孔CTG信号/DMSO处理孔CTG信号))*100
使用Graphpad Prism软件,计算化合物对Renila luciferase信号抑制活性的IC 50值。
化合物阻断YAP报告基因表达的IC 50如表二所示,表中,字母A代表IC 50小于0.5uM;字母B代表IC 50为0.5uM至5uM;字母C代表IC 50大于5uM。
表二
Figure PCTCN2022072781-appb-000112
测试例三:细胞增殖抑制实验
本实施例通过CellTiter-Glo发光法细胞活力检测试剂盒对细胞内ATP进行定量测定,检测培养物中活细胞数目。
第一步:在96孔板中接种MSTO-211H(ATCC,CRL-2081 TM)或NCI-H2052(ATCC,CRL-5915 TM)细胞,以每孔1500个细胞密度接种细胞到96孔板,每孔体积100μL,置于37℃、5%二氧化碳培养箱培养过夜。培养基为:RPMI1640培养基(GIBCO-A10491-01)+10%FBS(GIBCO-10099141C)+1%Pen/Strep(GIBCO-15070-063)。
第二步:化合物处理细胞。待测化合物进行3倍稀释,共设置9个浓度梯度;每孔分别加入一定体积的DMSO(对照组)或者待测化合物(处理组),每个浓度设置2个重复,DMSO的终浓度控制在不高于0.5%。置于37℃,5%二氧化碳培养箱培养96小时。
第三步:使用CellTiter-Glo Luminescent Cell Viability Assay试剂盒(Promega,G7570)检测对照组和处理组细胞活力。每孔加入50ul CellTiter-Glo,混匀,室温孵育10分钟。使用
Figure PCTCN2022072781-appb-000113
Multilabel Plate Reader(Perkin Elmer)读取信号。
抑制百分率(%)通过以下公式计算获得:
抑制率%=(1-化合物处理孔CTG信号/DMSO处理孔CTG信号)*100
使用Graphpad Prism软件,计算化合物对细胞增殖活力CTG信号抑制的IC 50值。
化合物对细胞增殖抑制活性IC 50如表三所示,其中,字母A代表IC 50小于1uM;字母B代表IC 50为1uM至5uM;字母C代表IC 50大于5uM。
表三
Figure PCTCN2022072781-appb-000114

Claims (20)

  1. 下式I所示的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物:
    Figure PCTCN2022072781-appb-100001
    式中:
    A 1选自N或CR a
    A 2选自NH、O或CR bR c
    A 3选自N或CR 3
    A 4选自N或CR 4
    A 5选自N或CR 5
    R 1选自H、羟基、卤素、取代或未取代的烷基、取代或未取代的氨基、取代或未取代的烷氧基、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基和取代或未取代的杂环基;
    R 2选自H、羟基、卤素、取代或未取代的烷基、取代或未取代的氨基、取代或未取代的烷氧基、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基和取代或未取代的杂环基;
    R 3、R 4和R 5各自独立选自H、羟基、卤素、羧基、氰基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基;
    R a选自H、羟基、卤素、羧基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基;和
    R b和R c各自独立选自:H、羟基、卤素、羧基、取代或未取代的烷基和取代或未取代的烷氧基;
    其中,环A为5-8元碳环基、4-8元杂环基或5或6元杂芳基,任选地被1-3个选自羟基、卤素、羧基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代 的烷氧基的取代基取代。
  2. 如权利要求1所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    环A为5-8元饱和碳环或4-8元杂环基;优选地,环A为4-8元杂环基,含1或2个选自O和N的杂原子,优选A 1为N;和/或
    A 2为CR bR c,其中,R b和R c各自独立为H和C 1-4烷基,更优选都为H;和/或
    A 3为CR 3,R 3为H、卤素、C 1-4烷氧基、氰基和取代或未取代的C 1-4烷基,更优选为H、C 1-4烷基或卤素;和/或
    A 4为CR 4,R 4为H、卤素、C 1-4烷氧基、氰基和取代或未取代的C 1-4烷基,更优选为H、卤素或C 1-4烷氧基;和/或
    A 5为CR 5,R 5为H、卤素、C 1-4烷氧基、氰基和取代或未取代的C 1-4烷基,更优选为H;和/或
    R 1为取代或未取代的C 3-8环烷基、取代或未取代的6-14元芳基、取代或未取代的5-12元杂芳基或者取代或未取代的4-9元杂环基;其中,当为具有取代基的基团时,R 1上的取代基为1-3个选自卤素、羟基、C 1-4烷基、C 1-4烷氧基、卤代C 1-4烷基、卤代C 1-4烷氧基和-NR 12R 13的取代基,其中,R 12和R 13各自独立为H或C 1-4烷基;和/或
    R 2为H、卤素、C 1-4烷基、取代或未取代的C 1-4烷基、取代或未取代的C 3-8环烷基、取代或未取代的6-14元芳基、取代或未取代的5-12元杂芳基或者取代或未取代的4-9元杂环基;其中,当为具有取代基的基团时,R 2上的取代基为1-3个选自氰基、羟基、羧基、卤素、NR’R”-C(O)-(CH 2) n-、取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的杂环基和取代或未取代的氨基的取代基,其中,R’和R”各自独立选自H、氨基和取代或未取代的烷基,n为0-4的整数。
  3. 如权利要求1或2所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,R 3、R 4、R 5、R a、R b、R c以及环A定义中的烷基和烷氧基被取代时,它们的取代基各自独立为1-3个选自卤素、羟基、羧基和任选被1或2个C 1-4烷基取代的氨基的取代基;且R 3、R 4、R 5、R a、R b、R c以及环A定义中的氨基各自独立为任选被1个或2个C 1-4烷基取代的氨基。
  4. 如权利要求1所述的化合物、其药学上可接受的盐,或其对映异构体、非对 映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,所述式I化合物具有下式II所示的结构:
    Figure PCTCN2022072781-appb-100002
    式中,
    R 1选自取代或未取代的芳基、取代或未取代的杂芳基、取代或未取代的杂环基和取代或未取代的环烷基;
    R 2选自H、取代或未取代的烷基、卤素、取代或未取代的芳基、取代或未取代的杂芳基、取代或未取代的杂环基和取代或未取代的环烷基;
    R 3、R 4和R 5各自独立选自H、羟基、卤素、羧基、氰基、取代或未取代的烷基、取代或未取代的氨基和取代或未取代的烷氧基;和
    R 11为H或者取代或未取代的烷基。
  5. 如权利要求4所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    R 1是取代或未取代的6-14元芳基或者取代或未取代的5-12元杂芳基;其中,R 1为具有取代基的基团时,取代基为1-3个选自卤素、羟基、烷基、烷氧基和-NR 12R 13的取代基,其中,R 12和R 13各自独立为H或C 1-4烷基;和/或
    R 2为取代或未取代的6-14元芳基、取代或未取代的5-12元含氮杂芳基、取代或未取代的4-9元含氮和/或氧的杂环基、或者取代或未取代的C 3-8环烷基;其中,R 2为具有取代基的基团时,取代基为1-3个选自氰基、羟基、羧基、卤素、NR’R”-C(O)-(CH 2) n-、取代或未取代的C 1-4烷基、取代或未取代的C 1-4烷氧基、取代或未取代的杂环基和取代或未取代的氨基的取代基,其中,R’和R”各自独立选自H、氨基和取代或未取代的C 1-4烷基,n为0-4的整数;和/或
    R 3为H、卤素、C 1-4烷氧基或C 1-4烷基;和/或
    R 4为H、卤素、C 1-4烷氧基或C 1-4烷基;和/或
    R 5为H、卤素、C 1-4烷氧基或C 1-4烷基;和/或
    R 11为H或未取代或任选被1-3个选自卤素和羟基的取代基取代的C 1-4烷基。
  6. 如权利要求4所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    R 1为取代或未取代的苯基或者取代或未取代的5-12元含氮杂芳基,优选的5-12元含氮杂芳基选自:吡啶基、嘧啶基、吡唑基、吡咯基、咪唑基、***基、吡嗪基和哒嗪基;其中,当R 1为具有取代基的基团时,取代基的数量为1-3个,选自羟基、卤素、C 1-4烷基和C 1-4烷氧基;优选地,R 1为未取代的苯基;
    R 2为4-9元杂环基,优选为含N和/或O的4-9元杂环基,优选选自:氮杂环丁烷基、氧杂环丁烷基、四氢呋喃基、吡咯烷基、四氢吡喃基、哌啶基和哌嗪基;其中,所述杂环基任选地被1-3个选自卤素、C 1-4烷基、卤代C 1-4烷基、C 1-4烷氧基、卤代C1 -4烷氧基、羧基和NR’R”-C(O)-(CH 2) n-的取代基取代,其中,R’和R”各自独立选自H和C 1-4烷基,n为0-4的整数,优选的取代基为羧基或NR’R”-C(O)-(CH 2) n-,且优选地,所述取代基位于邻位,和/或当该杂环基为含氮杂环基时,通过该杂环基的环氮原子与式II化合物的其它部分连接;
    R 3为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H和卤素;
    R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素;
    R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H;
    优选地,R 3和R 4各自独立为卤素,R 5为H;
    R 11为H或者未取代或任选被1-3个选自卤素和羟基的取代基取代的C 1-6烷基,优选为H。
  7. 如权利要求4所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    R 1为取代或未取代的苯基或者取代或未取代的5-12元含氮杂芳基;优选地,所述杂芳基选自:吡啶基、嘧啶基、吡唑基、吡咯基、咪唑基、***基、吡嗪基和哒嗪基;其中,当R 1为具有取代基的基团时,取代基的数量为1-3个,选自羟基、卤素、C 1-4烷基和C 1-4烷氧基;优选的R 1为未取代的苯基;
    R 2为5-12元杂芳基,优选为含N的5-12元杂芳基,优选选自:吡咯基、吡唑基、咪唑基、***基、吡啶基、哒嗪基、嘧啶基和吡嗪基;其中,所述杂芳基任选地被1-3个选自卤素、C 1-4烷基、卤代C 1-4烷基、C 1-4烷氧基、卤代C 1-4烷氧基、羧基和 NR’R”-C(O)-(CH 2) n-的取代基取代,其中,R’和R”各自独立选自H和C 1-4烷基,n为0-4的整数,优选的取代基为卤素、C 1-4烷基或NR’R”-C(O)-(CH 2) n-,且优选地,所述取代基位于邻位,和/或当该杂环基为含氮杂环基时,通过该杂环基的环氮原子与式II化合物的其它部分连接;
    R 3为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H和卤素;
    R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素;
    R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H;
    优选地,R 3和R 4各自独立为卤素,R 5为H;
    R 11为H或者未取代或任选被1-3个选自卤素和羟基的取代基取代的C 1-6烷基,优选为H。
  8. 如权利要求1所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,所述式I化合物具有下式III所示的结构:
    Figure PCTCN2022072781-appb-100003
    式中:
    R 1、R 3-R 5如权利要求1所定义;
    B 1为C或N;
    B 2为CR 6或N;
    B 3为CR 7或N;
    B 4为CR 8或N;
    B 5为CR 9或N;
    B 6为CR 10或N;
    R 6选自H、卤素、C 1-4烷基、C 1-4烷氧基、氰基、羧基、NR 12R 13和NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基和取代或未取代的C 1-4烷基,n为0-4 的整数;
    R 7为H、卤素、NR 12R 13、C 1-4烷氧基或C 1-4烷基;
    R 8为H、卤素或C 1-4烷基;
    R 9为H、卤素、取代或未取代的C 1-4烷基、取代或未取代的C 1-4烷氧基、取代或未取代的杂环基、或取代或未取代的氨基;或R 7与R 8、或R 8与R 9与他们各自所连接的C一起形成5元含氮饱和或不饱和杂环,如吡咯基或吡咯烷基;
    R 10为H、卤素、烷基或卤代C 1-4烷基;
    R 11为H或者取代或未取代的C 1-4烷基;
    R 12和R 13各自独立为H、C 1-4酰基或者取代或未取代的C 1-4烷基。
  9. 如权利要求8所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    B 1为CH;和/或
    B 2为CR 6;和/或
    B 3为CR 7;和/或
    B 4为CR 8;和/或
    B 5为CR 9;和/或
    B 6为CR 10;和/或
    R 6为H、卤素、C 1-4烷基、C 1-4烷氧基、氰基、NR 12R 13或NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基和取代或未取代的C 1-4烷基,n为0-4的整数;和/或
    R 7为H或NR 12R 13
    R 8为H;和/或
    R 9为取代或未取代的C 1-4烷基、取代或未取代的C 1-4烷氧基、4-9元杂环基、或取代或未取代的氨基;和/或
    R 10为卤素;和/或
    R 11为H或任选被1-3个选自羟基和卤素取代的C 1-4烷基;
    其中,R 12和R 13各自独立为H、C 1-4酰基或者取代或未取代的C 1-4烷基。
  10. 如权利要求8所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    B 1为CH;B 2为CR 6;B 3为CR 7;B 4为CR 8;B 5为CR 9;B 6为CR 10
    R 6为NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基和任选被1-2个选自羟基和卤素的取代基取代的C 1-4烷基,n为0-4的整数;
    R 7和R 8为H;
    R 9为H,卤素,未取代或被1-3个选自卤素、羟基、羧基和氨基的取代基取代的C 1-4烷基,或者未取代或被1-3个选自羟基、卤素、羧基、氨基和卤代C 1-4烷基取代基取代的C 1-4烷氧基,或者未取代的4-9元杂环基,或者被1个4-9元杂环基取代的氨基,或者被1或2个C 1-4烷基取代的氨基;
    R 10为H或卤素;
    R 11为H。
  11. 如权利要求8所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    B 1为CH;B 2为CR 6;B 3为N或CR 7;B 4为N或CR 8;B 5为N或CR 9;B 6为CR 10
    R 6为NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基和任选被1-2个选自羟基和卤素的取代基取代的C 1-4烷基,n为0-4的整数;
    R 7和R 8为H;
    R 9为H,卤素,未取代或被1-3个选自卤素、羟基、羧基和氨基的取代基取代的C 1-4烷基,或者未取代或被1-3个选自羟基、卤素、羧基、氨基和卤代C 1-4烷基取代基取代的C 1-4烷氧基,或者未取代的4-9元杂环基,或者被1个4-9元杂环基取代的氨基,或者被1或2个C 1-4烷基取代的氨基;
    R 10为卤素;
    R 11为H。
  12. 如权利要求10或11所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    R 1为取代或未取代的苯基,优选地,当该苯基被取代时,取代基的数量为1、2或3个,选自羟基、卤素、C 1-4烷基和C 1-4烷氧基;
    R 3为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素和C 1-4烷基;
    R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素;
    R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H;
    优选地,R 3和R 4各自独立为卤素,R 5为H。
  13. 如权利要求1所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,所述式I化合物具有下式IV所示的结构:
    Figure PCTCN2022072781-appb-100004
    式中:
    R 1、R 3-R 5如权利要求1所述;R 11如权利要求4所述;
    各m独立为1、2或3;
    X为CH 2、O或NH;
    R d为H、C 1-4烷基、卤代C 1-4烷基、C 1-4烷氧基、卤代C 1-4烷氧基、羧基或NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H和C 1-4烷基,n为0-4的整数;R d的数量可以是1、2或3个。
  14. 如权利要求13所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    R d位于该杂环基与式IV其余部分连接的氮原子的邻位;和/或
    R d为H、羧基或NR’R”-C(O)-(CH 2) n-;和/或
    含X的杂环基为氮杂环丁烷基、吡咯烷基、哌啶基、哌嗪基或吗啉基。
  15. 如权利要求13所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,
    R 1为取代或未取代的苯基或者取代或未取代的5-12元含氮杂芳基;其中,所述杂芳基选自:吡啶基、嘧啶基、吡唑基、吡咯基、咪唑基、***基、吡嗪基和哒嗪基;其中,当R 1为具有取代基的基团时,取代基的数量为1-3个,选自羟基、卤素、C 1-4烷基和C 1-4烷氧基,优选的R 1为未取代的苯基;
    R 3为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H和卤素;
    R 4为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为卤素;
    R 5为H、卤素、C 1-4烷氧基和C 1-4烷基,优选为H;
    优选地,R 3和R 4各自独立为卤素,R 5为H;
    R 11为H或者未取代或任选被1-3个选自卤素和羟基的取代基取代的C 1-6烷基,优选为H;
    X为CH 2、O或NH;
    R d为H、羧基或NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H和C 1-4烷基,n为0-4的整数。
  16. 如权利要求1所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,所述式I化合物具有下式V或VI所示的结构:
    Figure PCTCN2022072781-appb-100005
    式中,
    R 1、R 3-R 5如权利要求1所定义;
    B 1为C或N;
    B 3为CR 7或N;
    B 4为CR 8或N;
    B 5为CR 9或N;
    R 6选自H、卤素、烷基、羧基、NR 12R 13和NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基、和取代或未取代的烷基,n为0-4的整数;
    R 7为H、卤素或C 1-4烷基;
    R 8为H、卤素或C 1-4烷基;
    R 9为H、卤素、取代或未取代的C 1-4烷基、取代或未取代的C 1-4烷氧基、取代或未取代的杂环基、或取代或未取代的氨基;或R 7与R 8、或R 8与R 9与他们各自所连接的C一起形成5元含氮饱和或不饱和杂环,如吡咯基或吡咯烷基;
    R 10为H、卤素、烷基或卤代C 1-4烷基;
    R 11为H或取代或未取代的C 1-4烷基;
    R 12和R 13各自独立为H、C 1-4酰基或者取代或未取代的C 1-4烷基;
    其中,R 6和R 10不同时为H。
  17. 如权利要求1所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,所述式I化合物具有下式VII或VIII所示的结构:
    Figure PCTCN2022072781-appb-100006
    式中,
    R 1、R 3-R 5如权利要求1所定义;
    R 6选自H、卤素、烷基、羧基、NR 12R 13和NR’R”-C(O)-(CH 2) n-,其中,R’和R”各自独立选自H、氨基、和取代或未取代的烷基,n为0-4的整数;
    R 7为H、卤素或C 1-4烷基;
    R 8为H、卤素或C 1-4烷基;
    R 9为H、卤素、取代或未取代的C 1-4烷基、取代或未取代的C 1-4烷氧基、取代或未取代的杂环基、或取代或未取代的氨基;或R 7与R 8、或R 8与R 9与他们各自所连接的C一起形成5元含氮饱和或不饱和杂环,如吡咯基或吡咯烷基;
    R 10为H、卤素、烷基或卤代C 1-4烷基;
    R 11为H或取代或未取代的C 1-4烷基;
    R 12和R 13各自独立为H、C 1-4酰基或者取代或未取代的C 1-4烷基;
    其中,R 6和R 10不同时为H。
  18. 如权利要求1所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,其特征在于,所述式I化合物选自:
    Figure PCTCN2022072781-appb-100007
    Figure PCTCN2022072781-appb-100008
    Figure PCTCN2022072781-appb-100009
  19. 一种药物组合物,其特征在于,所述药物组合物含有权利要求1-18中任一项所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物,和药学上可接受的载体或赋形剂。
  20. 权利要求1-18中任一项所述的化合物、其药学上可接受的盐,或其对映异构体、非对映异构体、互变异构体、溶剂化物、同位素取代物、多晶型物、前药或代谢产物在制备治疗或预防YAP/TAZ与TEAD相互作用介导的疾病的药物中的应用;优选地,所述YAP/TAZ与TEAD相互作用介导的疾病为癌症;更优选地,所述YAP/TAZ与TEAD相互作用介导的疾病选自肺癌、乳腺癌、头颈癌、食管癌、卵巢癌、肝癌、***癌、间皮瘤、胰腺癌、黑色素瘤、结肠癌、甲状腺癌和皮肤癌。
PCT/CN2022/072781 2022-01-19 2022-01-19 三并环化合物、其制备、药物组合物及应用 WO2023137634A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072781 WO2023137634A1 (zh) 2022-01-19 2022-01-19 三并环化合物、其制备、药物组合物及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072781 WO2023137634A1 (zh) 2022-01-19 2022-01-19 三并环化合物、其制备、药物组合物及应用

Publications (1)

Publication Number Publication Date
WO2023137634A1 true WO2023137634A1 (zh) 2023-07-27

Family

ID=87347646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072781 WO2023137634A1 (zh) 2022-01-19 2022-01-19 三并环化合物、其制备、药物组合物及应用

Country Status (1)

Country Link
WO (1) WO2023137634A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691782A (zh) * 2016-12-01 2020-01-14 艾普托斯生物科学公司 作为brd4和jak2双重抑制剂的稠合的嘧啶化合物及其使用方法
WO2021186324A1 (en) * 2020-03-16 2021-09-23 Novartis Ag Biaryl derivatives as yap/taz-tead protein-protein interaction inhibitors
WO2022007866A1 (zh) * 2020-07-09 2022-01-13 深圳信立泰药业股份有限公司 并三环类衍生物、其制备方法及其在医药上的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691782A (zh) * 2016-12-01 2020-01-14 艾普托斯生物科学公司 作为brd4和jak2双重抑制剂的稠合的嘧啶化合物及其使用方法
WO2021186324A1 (en) * 2020-03-16 2021-09-23 Novartis Ag Biaryl derivatives as yap/taz-tead protein-protein interaction inhibitors
WO2022007866A1 (zh) * 2020-07-09 2022-01-13 深圳信立泰药业股份有限公司 并三环类衍生物、其制备方法及其在医药上的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RICHTER, H.G.F. ADAMS, D.R. BENARDEAU, A. BICKERDIKE, M.J. BENTLEY, J.M. BLENCH, T.J. CLIFFE, I.A. DOURISH, C. HEB: "Synthesis and biological evaluation of novel hexahydro-pyrido[3',2':4,5]pyrrolo[1,2-a]pyrazines as potent and selective 5-HT"2"C receptor agonists", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, ELSEVIER, AMSTERDAM NL, vol. 16, no. 5, 1 March 2006 (2006-03-01), Amsterdam NL , pages 1207 - 1211, XP005263920, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2005.11.083 *
ROMAGNOLI ROMEO ET AL.: "Synthesis and Biological Effects of Novel 2-Amino-3-(4-chlorobenzoyl)-4-substituted Thiophenes as Allosteric Enhancers of the A1 Adenosine Receptor", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 67, 13 July 2013 (2013-07-13), XP028710095, ISSN: 0223-5234, DOI: 10.1016/j.ejmech.2013.07.002 *

Similar Documents

Publication Publication Date Title
CN111153901B (zh) 一类含氮稠杂环类shp2抑制剂化合物、制备方法和用途
CN110156786B (zh) 嘧啶并环化合物及其制备方法和应用
WO2019158019A1 (zh) 嘧啶并环化合物及其制备方法和应用
ES2866152T3 (es) Derivados de tirosina amida como inhibidores de la Rho-quinasa
WO2020094018A1 (zh) 一种螺芳环化合物及其应用
CN112839935A (zh) 可用作shp2抑制剂的新型杂环衍生物
CN113490664A (zh) Tyk2抑制剂和其用途
WO2020259432A1 (zh) Kras-g12c抑制剂
WO2021027943A1 (zh) 哒嗪酮并嘧啶类衍生物及其医药用途
WO2021043322A1 (zh) 氮杂环庚烷并嘧啶类衍生物及其医药用途
WO2020244518A1 (zh) 一种具有苄氧基芳环结构的化合物,其制备方法和用途
WO2021023233A1 (zh) Egfr蛋白降解剂及其抗肿瘤应用
CN112512589A (zh) 二聚体免疫调节化合物对抗基于cereblon的机制
TW202136275A (zh) 嗒𠯤基─噻唑甲醯胺化合物
WO2022253101A1 (zh) 作为parp7抑制剂的哒嗪酮类化合物
WO2016192630A1 (zh) 一类具有激酶抑制活性的化合物、制备方法和用途
WO2020182018A1 (zh) 氮杂环化合物、其制备方法及用途
CN110655520A (zh) 嘧啶并环化合物及其制备方法和应用
CN114249712A (zh) 嘧啶基衍生物、其制备方法及其用途
WO2018001332A1 (zh) 具有突变型异柠檬酸脱氢酶抑制活性的化合物、其制备方法及用途
WO2022017434A1 (zh) 一类具有激酶抑制活性的化合物
WO2018045971A1 (zh) 吡啶并五元芳香环类化合物、其制备方法及用途
WO2023137634A1 (zh) 三并环化合物、其制备、药物组合物及应用
WO2022174765A1 (zh) 作为Wee-1抑制剂的稠环化合物
TW201904969A (zh) Ck2抑制劑,其組成物及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921081

Country of ref document: EP

Kind code of ref document: A1