WO2023136208A1 - 液体急結剤、吹付けコンクリート - Google Patents

液体急結剤、吹付けコンクリート Download PDF

Info

Publication number
WO2023136208A1
WO2023136208A1 PCT/JP2023/000149 JP2023000149W WO2023136208A1 WO 2023136208 A1 WO2023136208 A1 WO 2023136208A1 JP 2023000149 W JP2023000149 W JP 2023000149W WO 2023136208 A1 WO2023136208 A1 WO 2023136208A1
Authority
WO
WIPO (PCT)
Prior art keywords
setting agent
liquid quick
quick
ppm
mass
Prior art date
Application number
PCT/JP2023/000149
Other languages
English (en)
French (fr)
Inventor
博貴 水野
貴光 室川
昌浩 岩崎
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023136208A1 publication Critical patent/WO2023136208A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the present invention relates to liquid quick-setting agents and shotcrete.
  • a method of spraying quick-setting concrete in which a quick-setting agent is mixed with concrete, is used.
  • the materials are weighed and mixed at a weighing plant installed at the excavation site to prepare shotcrete, which is then pumped and mixed with a quick setting agent that is pumped from the other side of the confluence pipe on the way, and the concrete is placed on the ground surface.
  • This is a method of spraying until the desired thickness is achieved.
  • the quick-setting agents used in the spraying method can be roughly classified into powder quick-setting agents whose main ingredients are calcium aluminate and alkali metal aluminate, and those whose main ingredients are alkali metal aluminate and aluminum sulfate. There are two types of liquid quick-setting agents.
  • liquid quick-setting agents had the problem of lower quick-setting properties than powder quick-setting agents. Therefore, as a measure to improve the rapid setting property, a measure to improve the strength by increasing the concentration of sulfate ions as disclosed in Patent Document 1, for example, has been taken.
  • a measure to improve the strength by increasing the concentration of sulfate ions as disclosed in Patent Document 1 has been taken.
  • a high-concentration liquid quick-setting agent is stored for a long period of time, it may cause precipitation in the liquid, gelation of the liquid, or sedimentation of suspended particles.
  • the solubility of aluminum sulfate in water is 27% at 20°C, and varies depending on coexisting solutes and liquid temperature. There was a difficult task to hold.
  • a liquid quick-setting agent composed of aluminum fluoride, an acidic or basic solution of aluminum containing hydrofluoric acid of aluminum as a component, lithium silicate, and lithium aluminate, as disclosed in Patent Document 2 is used. Proposed.
  • a water-soluble aluminum salt containing fluoride obtained by the reaction of aluminum sulfate and hydrofluoric acid as in Patent Document 3 aluminum hydroxide, and a liquid quick-setting agent composed of lithium hydroxide, lithium carbonate, lithium sulfate, etc. are developing.
  • an object of the present invention is to provide a liquid quick-setting agent that has excellent quick-setting properties and storage stability and that suppresses fluorine elution.
  • the present invention is as follows.
  • [1] Contains 5.0 to 20.0% by mass of aluminum in terms of Al 2 O 3 , 10.0 to 30.0% by mass of sulfur in terms of SO 3 , and a fluoride ion concentration of 1.0 to 500 ppm Some liquid quick-setting agents.
  • the liquid quick-setting agent according to [1] above which has a peak in the chemical shift range of -1.0 ppm or more and 3.0 ppm or less in a spectrum obtained by 27 Al-NMR measured under the following conditions.
  • liquid quick-setting agent that has excellent quick-setting properties and storage stability and that suppresses fluorine elution.
  • liquid quick-setting agent contains 5.0 to 20.0% aluminum in terms of Al 2 O 3 and 10.0 to 30.0% sulfur in terms of SO 3 , and has a fluoride ion concentration of 1.0 to 500 ppm.
  • the aluminum in the liquid quick-setting agent is 5.0 to 20.0% in terms of Al 2 O 3 when the mass of the liquid quick-setting agent is 100%. 0 to 20.0% is preferred, 7.5 to 20.0% is more preferred, 8.0 to 20.0% is even more preferred, and 8.0 to 15.0% is even more preferred.
  • sulfur in the liquid quick-setting agent is 10.0 to 30.0% in terms of SO 3 when the mass of the liquid quick-setting agent is 100%. ⁇ 29.0% is preferred, 15.0 to 27.0% is more preferred, 17.0 to 27.0% is even more preferred, and 17.0 to 20.5% is even more preferred.
  • the concentration of fluoride ions in the liquid quick-setting agent is 1.0 to 500 ppm, preferably 1.0 to 450 ppm, more preferably 1.0 to 350 ppm, from the viewpoint of reducing elution from the cured body. If the fluoride ion concentration in the liquid quick-setting agent exceeds 500 ppm, fluorine elution may not be suppressed.
  • a spectrum obtained by 27 Al-NMR of the liquid quick-setting agent preferably has a peak in the chemical shift range of -1.0 ppm or more and 3.0 ppm or less. Further, the half width of the peak is preferably 10.0 ppm or less, more preferably 9.0 ppm or less, and even more preferably 8.0 ppm or less. Thereby, the storage stability of the quick-setting agent can be improved. Note that the half width may be, for example, 0.1 ppm or more.
  • the 27 Al-NMR measurement of the liquid quick-setting agent can be carried out under the following conditions using a commercially available measurement apparatus, for example, a superconducting nuclear magnetic resonance apparatus (ECX-400) manufactured by JEOL.
  • a commercially available measurement apparatus for example, a superconducting nuclear magnetic resonance apparatus (ECX-400) manufactured by JEOL.
  • Observation nuclei 27 Al Sample tube rotation speed: 12 Hz
  • Pulse width 5 ⁇ sec (45° pulse) Waiting time: 5 seconds
  • External standard Aluminum chloride aqueous solution
  • the pH of the liquid quick-setting agent is preferably 7 or less, more preferably 5 or less.
  • the pH is 7 or less, the effect of reducing the environmental load and adverse effects on the human body can be suppressed.
  • it is preferable that pH is 2 or more.
  • the pH of the liquid quick-setting agent can be measured using a pH meter.
  • the total alkali content R 2 O (R is an alkali metal) in the liquid quick-setting agent is preferably 1.0% or less, more preferably 0.8% or less, and 0.5% or less from the viewpoint of worker safety. is more preferred. Moreover, it may be 0% or more.
  • the total alkali content R 2 O in the liquid quick-setting agent can be measured by atomic absorption spectrometry.
  • a liquid quick-setting agent can be obtained, for example, by mixing raw materials such as aluminum sulfate, various types of alum, aluminum hydroxide, and sulfuric acid, and reacting them at high heat.
  • the heating temperature is preferably 70 to 100°C, more preferably 85 to 100°C, even more preferably 85 to 95°C.
  • the reaction time is preferably 30 to 150 minutes, more preferably 60 to 150 minutes, even more preferably 90 to 120 minutes.
  • raw materials such as aluminum sulfate also contain trace amounts, but raw materials such as natural or synthetic cryolite, sodium fluoride, and aluminum fluoride are intentionally mixed in a liquid. By doing so, the effect of improving the strength is also recognized. From the viewpoint of good productivity, it is preferable to use sulfuric acid, aluminum hydroxide, aluminum sulfate or various types of alum, and natural or synthetic cryolite as raw materials. From the viewpoint of suppressing the generation of insoluble precipitates, the cryolite preferably contains 5% by mass or less of thiolite and elpasolite in the cryolite.
  • the concentration of fluoride ions in the prepared liquid quick-setting agent can be measured by a commercially available analyzer, for example, ion chromatography (ICS2100 manufactured by Thermo Scientific). At the time of analysis, the measurement can be carried out by diluting in advance so that the fluoride ions are within the calibration curve.
  • the liquid quick-setting agent of the present embodiment for example, aluminum hydroxide, sulfuric acid, and cryolite are mixed with aluminum in an amount of 5.0 to 20.0% in terms of Al 2 O 3 and sulfur in an amount of 5.0 to 20.0% in terms of SO 3 It can be prepared by mixing so that the content is 10.0 to 30.0% and the fluoride ion concentration is 1.0 to 500 ppm, and heating at 85 to 95° C. for 90 to 120 minutes.
  • the position and half width of the peak in the spectrum obtained by 27 Al-NMR of the liquid quick-setting agent are affected by the ratio of raw materials of aluminum, sulfur, and fluoride ions.
  • increasing the ratio of starting material containing aluminum tends to cause the chemical shift to fall within the desired range, and increasing the ratio of starting material containing sulfur tends to reduce the half-value width.
  • the liquid quick-setting agent can contain various additives within a range that does not impair the effects of the present invention, but from the viewpoint of handling, it is preferable not to contain sodium aluminate.
  • the shotcrete according to this embodiment preferably uses both the liquid quick-setting agent of the present invention and a powder quick-setting agent containing calcium aluminate as a main component.
  • Cement is actually used for shotcrete, and the cement used for the shotcrete includes various Portland cements such as normal, high-early strength, ultra-early strength, low heat, and moderate heat, and these Portland cements.
  • Cement eco-cement
  • shotcrete uses aggregate, but the aggregate is not particularly limited, and preferably has a low water absorption rate and high aggregate strength.
  • the maximum size of the aggregate is not particularly limited as long as it can be sprayed.
  • river sand, mountain sand, sea sand, lime sand, silica sand, etc. can be used.
  • coarse aggregates river gravel, mountain gravel, lime gravel, etc. can be used. Crushed stone can also be used.
  • the powder quick-setting agent according to the present embodiment is preferably a powder quick-setting agent containing calcium aluminate as a main component.
  • a powder quick-setting agent containing calcium aluminate as a main component it is possible to enhance good rapid setting properties and strength development.
  • "containing calcium aluminate as a main component” means that the content (by mass) of calcium aluminate is the largest among the quick-setting agent components in the powder quick-setting agent.
  • the content of calcium aluminate in the powder quick-setting agent of the present embodiment is 30% or more in the powder quick-setting agent, preferably 30 to 80%, more preferably 45 to 60%. preferable. When it is 30% or more, it becomes easy to obtain good coagulation properties. In addition, when it is 80% or less, it becomes easy to obtain good long-term strength development.
  • CA Calcium aluminate
  • CaO and Al 2 O 3 are main components, and a small amount of these are solid-dissolved, and CAs may be either crystalline or amorphous.
  • crystalline materials As specific examples of crystalline materials, if CaO is C, Al 2 O 3 is A, and R 2 O (Na 2 O, K 2 O, Li 2 O) is R, C 3 A and alkali metals are solidified thereto. Dissolved C14RA5 , CA, C12A7 , C11A7.CaF2 , C4A.Fe2O3 , and C3A3.CaSO4 , etc. , have good rapid setting properties . , amorphous calcium aluminate is preferred. In the case of amorphous calcium aluminate, the vitrification rate is preferably 80% or more.
  • the CaO/Al 2 O 3 molar ratio of calcium aluminate is not particularly limited, but considering the initial and long-term strength development, the molar ratio is preferably 2.0 to 3.0, .8 is more preferred. When the molar ratio is 2.0 or more, good initial setting properties can be obtained, and when it is 3.0 or less, good long-term strength development is likely to be obtained.
  • the Blaine specific surface area of calcium aluminate is preferably 4000 to 8000 cm 2 /g, more preferably 5000 to 7000 cm 2 /g. When it is 4,000 to 8,000 cm 2 /g, the initial strength development property can be easily obtained, and the handleability of mortar and/or concrete during spraying can be improved.
  • the Blaine specific surface area is measured based on the specific surface area test described in JIS R 5201:2015 "Physical Test Methods for Cement".
  • Al 2 O 3 source Aluminum hydroxide, for industrial use SO 3 source: Sulfuric acid, for industrial use Fluoride ion source: Cryolite, for industrial use, containing 52-54% fluorine Solvent: Pure water
  • ⁇ Caking test/compressive strength test> A test sample was obtained by mixing 100 parts by mass of ordinary Portland cement (pH 14, industrial product), 10 parts by mass of the prepared liquid quick-setting agent, and 40 parts by mass of water (tap water). A condensation test and a compressive strength test were performed using the obtained test sample. The test complied with JIS R 5201:2015 "Physical Test Method for Cement", and the compressive strength at the initial and final times and at each material age was measured. The results are shown in Table 2 below.
  • test piece was prepared in the same manner as the test piece preparation method for the compressive strength test, and an elution test was carried out according to "Concrete Library 111".
  • the prepared specimen was immersed in pure water, and after 24 hours, the specimen was taken out, and the immersion water was subjected to quantitative analysis of fluoride ions by ion chromatography. The results are shown in Table 2 below.
  • ⁇ Storage test> A storage test was performed to evaluate the storage stability of the liquid quick-setting agent. Decreased storability results in the formation of deposits in liquid accelerators, especially in cold environments.
  • the liquid quick-setting agent was allowed to stand in an environment of 10° C. for one month, and the precipitate was extracted with filter paper to calculate the amount of precipitate per 100 g of the liquid quick-setting agent. The results are shown in Table 2 below.
  • the liquid quick-setting agent of the present invention can be suitably used, for example, for tunnels such as roads, railways, and waterways, and cement concrete that is sprayed onto exposed ground surfaces such as slopes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

アルミニウムがAl2O3換算で5.0~20.0質量%、硫黄がSO3換算で10.0~30.0質量%含有され、フッ化物イオン濃度が1.0~500ppmである液体急結剤である。

Description

液体急結剤、吹付けコンクリート
 本発明は、液体急結剤、吹付けコンクリートに関する。
 従来、トンネル掘削等露出した地山の崩落を防止するために、急結剤をコンクリートに混合した急結性コンクリートの吹付け工法が用いられている。この工法は、掘削工事現場に設置した計量プラントで材料を計量混合して吹付けコンクリートを調製し、ポンプで圧送、途中で合流管の他方から圧送した急結剤と混合し、地山面に所定の厚みになるまで吹付ける工法である。
 吹付け工法に使用される急結剤は大きく分類すると、カルシウムアルミネートやアルカリ金属アルミン酸塩等を主成分とする粉体急結剤と、アルカリ金属アルミン酸塩や硫酸アルミニウムなどを主成分とする液体急結剤の2種類が挙げられる。
 近年では、トンネル建設現場等に従事する作業者の健康確保の観点から、吹付け時の粉塵量が少なく、アルカリ薬傷の懸念がないアルミニウム塩を主成分とする酸性の液体急結剤の使用が望まれている。
 一方で、液体急結剤は、粉体急結剤と比較して急結性が低い課題があった。そこで、急結性改善策として、例えば特許文献1に示されるような硫酸イオン濃度を高めることによって強度を改善させる対策がなされている。しかし、高濃度の液体急結剤は、長期間保存すると、液中に析出物が生成したり、液がゲル化したり、懸濁粒子が沈降したりする場合があった。硫酸アルミニウムの水に対する溶解度は20℃で27%であり、共存する溶質や液温によって変動するが、溶解度以上の硫酸アルミニウムを含有する液体急結剤は、貯蔵安定性が悪く、製造直後の性状を保持することが難しい課題があった。
 また、強度改善策として、例えば特許文献2のようなフッ化アルミニウム、アルミニウムのフッ化水素酸を成分とするアルミニウムの酸性又は塩基性溶液、ケイ酸リチウム、アルミン酸リチウムよりなる液体急結剤が提案されている。あるいは特許文献3のような硫酸アルミニウムとフッ化水素酸との反応で得られるフッ化物含有水溶性アルミニウム塩、水酸化アルミニウム、および水酸化リチウム、炭酸リチウム、硫酸リチウム等からなる液体急結剤の開発を行っている。
特開2006-193388号公報 特開2001-130935号公報 特開2005-89276号公報
 上記のような技術はフッ素化合物の添加により強度特性は改善される一方、昨今建設現場における環境保全の観点からフッ素の溶出を抑制するような対策が必要になってきており、前述したフッ化物イオンを含有する化合物を液体急結剤に添加すると、硬化体からのフッ素溶出の懸念が生じる課題があった。
 以上より、本発明は、優れた急結性及び貯蔵安定性を有するとともに、フッ素溶出を抑制する液体急結剤を提供することを目的とする。
 本発明者らは、上記のような課題を踏まえて鋭意検討を行った結果、所定量のアルミニウム、硫黄及びフッ素を有する液体急結剤が、上記の課題を解決できることを見出だし、本発明を完成するに至った。すなわち、本発明は、下記の通りである。
[1] アルミニウムがAl換算で5.0~20.0質量%、硫黄がSO換算で10.0~30.0質量%含有され、フッ化物イオン濃度が1.0~500ppmである液体急結剤。
[2] 下記の条件で測定される27Al-NMRによって得られるスペクトルにおいて、化学シフト-1.0ppm以上3.0ppm以下の範囲にピークを有する上記[1]に記載の液体急結剤。
(条件)
観測核:27Al
試料管回転数:12Hz
測定温度:25℃
パルス幅:5μsec(45°パルス)
待ち時間:5秒
外部標準:塩化アルミニウム水溶液
[3] 前記化学シフト-1.0ppm以上3.0ppm以下の範囲のピークの半値幅が10.0ppm以下である上記[1]又は[2]に記載の液体急結剤。
[4] 前記アルミニウムが、Al換算で7.5~20.0質量%含有される、上記[1]~[3]のいずれか1つに記載の液体急結剤。
[5] 前記硫黄が、SO換算で17.0~27.0質量%含有される、上記[1]~[4]のいずれか1つに記載の液体急結剤。
[6] pHが7以下である上記[1]~[5]のいずれか1つに記載の液体急結剤。
[7] 全アルカリ量RO(Rはアルカリ金属)が1.0質量%以下である上記[1]~[6]のいずれか1つに記載の液体急結剤。
[8] 上記[1]~[7]のいずれか1つに記載の液体急結剤とカルシウムアルミネートを主成分とした粉体急結剤とを併用してなる吹付けコンクリート。
 本発明によれば、優れた急結性及び貯蔵安定性を有するとともに、フッ素溶出を抑制する液体急結剤を提供することが出来る。
 以下、本発明の実施形態(本実施形態)を詳細に説明するが、本発明は当該実施形態に限定されるものではない。なお、本明細書における「%」は特に規定しない限り質量基準とする。
[1.液体急結剤]
 本実施形態に係る液体急結剤は、アルミニウムがAl換算で5.0~20.0%、硫黄がSO換算で10.0~30.0%含有され、フッ化物イオン濃度が1.0~500ppmである。
 液体急結剤中のアルミニウムは、強度発現性及び貯蔵安定性の観点から、液体急結剤の質量を100%とすると、Al換算で5.0~20.0%であり、6.0~20.0%が好ましく、7.5~20.0%がより好ましく、8.0~20.0%がさらに好ましく、8.0~15.0%がよりさらに好ましい。
 液体急結剤中の硫黄は、強度発現性及び貯蔵安定性の観点から、液体急結剤の質量を100%とすると、SO換算で10.0~30.0%であり、15.0~29.0%が好ましく、15.0~27.0%がより好ましく、17.0~27.0%がさらに好ましく、17.0~20.5%がよりさらに好ましい。
 液体急結剤中のフッ化物イオン濃度は、硬化体からの溶出低減の観点から、1.0~500ppmとし、1.0~450ppmが好ましく、1.0~350ppmがさらに好ましい。液体急結剤中のフッ化物イオン濃度が、500ppmを超えると、フッ素溶出を抑制できないおそれがある。
 液体急結剤の27Al-NMRによって得られるスペクトルにおいて、化学シフト-1.0ppm以上3.0ppm以下の範囲にピークを有するものが好ましい。また、当該ピークの半値幅は、例えば、10.0ppm以下が好ましく、9.0ppm以下がより好ましく、8.0ppm以下がさらに好ましい。これにより、急結剤の貯蔵安定性を向上できる。なお、半値幅は、例えば、0.1ppm以上でもよい。
 ここで、液体急結剤の27Al-NMR測定は、市販の測定装置、例えば、日本電子製の超伝導核磁気共鳴装置(ECX-400)を用い、下記の条件で行うことができる。
(条件)
観測核:27Al
試料管回転数:12Hz
測定温度:25℃
パルス幅:5μsec(45°パルス)
待ち時間:5秒
外部標準:塩化アルミニウム水溶液
 液体急結剤のpHは、7以下であることが好ましく、5以下であることがより好ましい。pHが7以下であることで、環境負荷低減効果および人体への悪影響を抑制させることができる。また、pHは2以上であることが好ましい。なお、液体急結剤のpHは、pHメーターを用いて測定することができる。
 液体急結剤における全アルカリ量RO(Rはアルカリ金属)は、作業者の安全性の観点から、1.0%以下が好ましく、0.8%以下がより好ましく、0.5%以下がさらに好ましい。また、0%以上であってもよい。なお、液体急結剤中の全アルカリ量ROは、原子吸光法により測定することができる。
 液体急結剤は、例えば、硫酸アルミニウム、各種ミョウバン、水酸化アルミニウム、硫酸等の原料を混合し、高熱で反応させることによって得ることが出来る。加熱温度としては、70~100℃が好ましく、85~100℃がより好ましく、85~95℃がさらに好ましい。反応時間としては、30~150分が好ましく、60~150分がより好ましく、90~120分がさらに好ましい。
 フッ化物イオンの供給源としては硫酸アルミニウム等の原料にも微量ながら含有されているが、天然又は合成の氷晶石、フッ化ナトリウム、及びフッ化アルミニウム等の原料を液体中で意図的に混合することで強度の改善効果も認められる。良好な生産性の観点から、原料は硫酸と、水酸化アルミニウム、硫酸アルミニウム又は各種ミョウバンと、天然又は合成の氷晶石を用いることが好ましい。氷晶石としては、不溶性析出物の発生を抑制する観点から、含有されるチオライト及びエルパソライトの量が氷晶石中5質量%以下のものが好ましい。
 フッ素を含有することによって急結剤添加による急激な水和による偽凝結を緩和することができ、良好な施工性が得られる。一方、過剰量のフッ素を含有することによって水和に進行が妨げられ、急結性および強度発現性の低下や、硬化体からのフッ素の溶出も懸念される。なお、調製した液体急結剤中のフッ化物イオンの濃度は、市販の分析装置、例えば、Thermo Scientific製のイオンクロマトグラフィー(ICS2100)によって測定することができる。分析に際しては、予めフッ化物イオンが検量線内となるように希釈することで、測定を実施することができる。
 本実施形態の液体急結剤の調製方法としては、例えば、水酸化アルミニウム、硫酸及び氷晶石を、アルミニウムがAl換算で5.0~20.0%、硫黄がSO換算で10.0~30.0%含有、フッ化物イオン濃度が1.0~500ppmとなるように混合し、85~95℃で90~120分加熱することで調製することができる。
 ここで、液体急結剤の27Al-NMRによって得られるスペクトルにおけるピークの位置及び半値幅は、アルミニウム分、硫黄分、及びフッ化物イオンの原料の比率に影響され、例えば、アルミニウム分の原料と硫黄分の原料の比率において、アルミニウム分の原料の比率を大きくすると、化学シフトが所望の範囲に入りやすく、硫黄分の原料の比率を大きくすると、半値幅が小さくなりやすい。
 液体急結剤は、既述の成分以外に、本発明の効果を阻害しない範囲で種々の添加剤を含有させることができるが、取扱い性の観点から、アルミン酸ソーダは含有しないことが好ましい。
[2.吹付けコンクリート]
 本実施形態に係る吹付けコンクリートは、本発明の液体急結剤とカルシウムアルミネートを主成分とした粉体急結剤とを併用することが好ましい。
 吹付けコンクリートは、実際的にはセメントを用いるが、当該吹付けコンクリートに用いるセメントとしては、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)を挙げることができる。
 吹付けコンクリートは、実際的には骨材を用いるが、当該骨材は特に限定されるものではなく、吸水率が低くて、骨材強度が高いものが好ましい。骨材の最大寸法は、吹付けできれば特に限定されるものではない。細骨材としては、川砂、山砂、海砂、石灰砂、及び珪砂などが使用可能であり、粗骨材としては、川砂利、山砂利、及び石灰砂利などが使用可能であり、砕砂、砕石も使用可能である。
[3.粉体急結剤]
 本実施形態に係る粉体急結剤はカルシウムアルミネートを主成分とした粉体急結剤であることが好ましい。カルシウムアルミネートを主成分として含有することで、良好な急結性と強度発現性を高めることができる。
 ここで「カルシウムアルミネートを主成分として含有する」とは、粉体急結剤中の急結剤成分中、カルシウムアルミネートの含有量(質量基準)が最も多いことをいう。
 本実施形態の粉体急結剤におけるカルシウムアルミネートの含有量は、粉体急結剤中、30%以上であり、30~80%であることが好ましく、45~60%であることがより好ましい。30%以上であると良好な凝結性状が得られやすくなる。なお、80%以下であると良好な長期強度発現性が得られやすくなる。
 カルシウムアルミネート(以下、CAともいう)は、CaOとAlを主成分とし、水和活性を有する化合物の総称であり、CaO及び/又はAlの一部が、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化ケイ素、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、及びアルカリ土類金属硫酸塩等と置換した化合物、あるいは、CaOとAlを主成分とするものにこれらが少量固溶した物質であり、CA類は結晶質、非晶質のいずれであってもよい。
 結晶質の具体例としては、CaOをC、AlをA、RO(NaO、KO、LiO)をRとすると、CAやこれにアルカリ金属が固溶したC14RA、CA、C12やC11・CaF、CA・Fe、及びC・CaSO等が挙げられるが、急結性が良好であることから、非晶質のカルシウムアルミネートが好ましい。また、非晶質のカルシウムアルミネートの場合、ガラス化率は80%以上であることが好ましい。
 カルシウムアルミネートのCaO/Alモル比は特に限定はされないが、極初期及び長期の強度発現性を考慮すると、当該モル比は2.0~3.0が好ましく、2.2~2.8がより好ましい。モル比が2.0以上であると、極初期の凝結性状を良好にすることができ、3.0以下であると、良好な長期強度発現性が得られやすくなる。
 カルシウムアルミネートのブレーン比表面積は、4000~8000cm/gであることが好ましく、5000~7000cm/gであることがより好ましい。4000~8000cm/gであることで、初期強度発現性が得られやすく、吹付け時のモルタル及び/又はコンクリートの取扱い性を良好にすることができる。
 なお、ブレーン比表面積とは、JIS R 5201:2015「セメントの物理試験方法」に記載された比表面積試験に基づいて測定されたものである。
 以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。
[実施例1~9]
<液体急結剤の調製>
 硫黄分、アルミニウム分及びフッ素分を表1に示す量となるよう各種原料を調整、混合し、90℃で2時間加熱することで液体急結剤を作製した。また、フッ化物イオンは水酸化アルミニウム及び硫酸にも微量ながら含有されているが、その最大値は100ppm程度であり、それ以上のフッ化物イオンを得るために氷晶石を意図的に混合した。
<使用材料>
 Al源:水酸化アルミニウム、工業用品用
 SO源:硫酸、工業用品用
 フッ化物イオン源:氷晶石、工業用品用、フッ素分として52~54%含有
 溶媒:純水
27Al-NMR測定>
 調製した液体急結剤は日本電子製の超伝導核磁気共鳴装置(ECX-400)を用いて下記の条件で行い、ピークの化学シフト及び半値幅を測定した。結果を下記表1に示す。
27Al-NMR測定条件>
観測核:27Al
試料管回転数:12Hz
測定温度:25℃
パルス幅:5μsec(45°パルス)
待ち時間:5秒
外部標準:塩化アルミニウム水溶液
<凝結試験・圧縮強度試験>
 普通ポルトランドセメント(pH14、工業品)100質量部と、調製した液体急結剤10部と、水(上水道水)40質量部とを混合し、試験サンプルを得た。得られた試験サンプルを用いて、凝結試験・圧縮強度試験を行った。試験は、JIS R 5201:2015「セメントの物理試験方法」に準拠し、始発時間及び終結時間ならびに各材齢における圧縮強度を計測した。結果を下記表2に示す。
<硬化体のフッ化物イオン溶出試験>
 圧縮強度試験の試験体作製方法と同様の方法で試験体を作製し、「コンクリートライブラリー111」に準拠し、溶出試験を実施した。作製した試験体は純水に浸漬し、24時間後に試験体を取り出し、浸漬水をイオンクロマトグラフィーにてフッ化物イオンの定量分析を実施した。結果を下記表2に示す。
<貯蔵試験>
 液体急結剤の貯蔵安定性を評価するために貯蔵試験を実施した。貯蔵性が低下すると特に低温環境において液体急結剤中に析出物が生成する。液体急結剤を10℃環境1か月間静置し、その析出物をろ紙にて抽出し、液体急結剤100g当たりの析出物量を算出した。結果を下記表2に示す。
[比較例1~6]
 実施例1~9と同様にして、液体急結剤を作製し、各試験により評価した。結果を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<吹付けコンクリートの調製>
 セメント400kg、水200kg、細骨材1100kg、粗骨材(新潟県姫川水系6号砕石、密度2.67g/cm)716kgのコンクリートを調製した。このコンクリート中のセメント100質量部に対して、液体急結剤及び粉体急結剤を表3に示す配合で混合し、吹付けコンクリートを調製した。液体急結剤としては、実施例1~5の液体急結剤を使用し、粉体急結剤としては、表3に記載のカルシウムアルミネート粉末を使用した。
 また、得られた吹付けコンクリートを用いて、圧縮強度試験を行った。試験結果を表3に示す。
 初期強度:JSCE-G 561-2010に準じて型枠に吹付けて、材齢10分、3時間、1日時点での引き抜き強度より、圧縮強度に換算し、初期強度を測定した
 長期強度:JSCE-F 561-2013に準じて型枠に吹付け、JIS A 1107:2012に準じて材齢28日時点でコアを採取して、圧縮強度を測定した。
Figure JPOXMLDOC01-appb-T000003
 本発明の液体急結剤は、例えば、道路、鉄道、及び導水路等のトンネルや、法面等において露出した地山面へ吹付けるセメントコンクリート等に対して好適に使用できる。

Claims (8)

  1.  アルミニウムがAl換算で5.0~20.0質量%、硫黄がSO換算で10.0~30.0質量%含有され、フッ化物イオン濃度が1.0~500ppmである液体急結剤。
  2.  下記の条件で測定される27Al-NMRによって得られるスペクトルにおいて、化学シフト-1.0ppm以上3.0ppm以下の範囲にピークを有する請求項1に記載の液体急結剤。
    (条件)
    観測核:27Al
    試料管回転数:12Hz
    測定温度:25℃
    パルス幅:5μsec(45°パルス)
    待ち時間:5秒
    外部標準:塩化アルミニウム水溶液
  3.  前記化学シフト-1.0ppm以上3.0ppm以下の範囲のピークの半値幅が10.0ppm以下である請求項1又は2に記載の液体急結剤。
  4.  前記アルミニウムが、Al換算で7.5~20.0質量%含有される請求項1~3のいずれか一項に記載の液体急結剤。
  5.  前記硫黄が、SO換算で17.0~27.0質量%含有される請求項1~4のいずれか一項に記載の液体急結剤。
  6.  pHが7以下である請求項1~5のいずれか一項に記載の液体急結剤。
  7.  全アルカリ量RO(Rはアルカリ金属)が1.0質量%以下である請求項1~6のいずれか一項に記載の液体急結剤。
  8.  請求項1~7のいずれか一項に記載の液体急結剤とカルシウムアルミネートを主成分とした粉体急結剤とを併用してなる吹付けコンクリート。
PCT/JP2023/000149 2022-01-12 2023-01-06 液体急結剤、吹付けコンクリート WO2023136208A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022003391A JP7209878B1 (ja) 2022-01-12 2022-01-12 液体急結剤、吹付けコンクリート
JP2022-003391 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023136208A1 true WO2023136208A1 (ja) 2023-07-20

Family

ID=84974995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000149 WO2023136208A1 (ja) 2022-01-12 2023-01-06 液体急結剤、吹付けコンクリート

Country Status (2)

Country Link
JP (1) JP7209878B1 (ja)
WO (1) WO2023136208A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7355953B1 (ja) 2023-01-19 2023-10-03 デンカ株式会社 液体急結剤、補修材料、硬化体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047048A (ja) * 2000-05-25 2002-02-12 Denki Kagaku Kogyo Kk 液体急結剤、それを用いた急結性セメントコンクリート、及びその製造方法
WO2005019131A1 (ja) * 2003-08-20 2005-03-03 Denki Kagaku Kogyo Kabushiki Kaisha 吹付け材料及びそれを用いた吹付け工法
JP2005060201A (ja) * 2003-08-20 2005-03-10 Denki Kagaku Kogyo Kk 吹付け材料およびそれを用いた吹付け工法
JP2011037688A (ja) * 2009-08-18 2011-02-24 Denki Kagaku Kogyo Kk 急結性吹付けセメントコンクリートの吹付け工法
JP2018030731A (ja) * 2016-08-22 2018-03-01 デンカ株式会社 液体急結剤、吹付け材料及びそれを用いた吹付け工法
CN112608065A (zh) * 2019-12-13 2021-04-06 科之杰新材料集团(贵州)有限公司 一种喷射混凝土用液体无碱速凝剂及其制备方法
JP2021143090A (ja) * 2020-03-12 2021-09-24 デンカ株式会社 液体急結剤及び急結性セメントコンクリート
JP6989719B1 (ja) * 2021-03-02 2022-01-05 デンカ株式会社 2剤型急結剤、吹付け材料及び吹付け方法
JP2022072727A (ja) * 2020-10-30 2022-05-17 デンカ株式会社 発泡状急結剤、吹付けコンクリート組成物、吹付けコンクリート及び吹付け施工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6793270B1 (ja) 2020-05-13 2020-12-02 デンカ株式会社 急結性混和材、及び吹付け材料
JP6873305B1 (ja) * 2020-11-09 2021-05-19 デンカ株式会社 急結性混和材、及び吹付け材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047048A (ja) * 2000-05-25 2002-02-12 Denki Kagaku Kogyo Kk 液体急結剤、それを用いた急結性セメントコンクリート、及びその製造方法
WO2005019131A1 (ja) * 2003-08-20 2005-03-03 Denki Kagaku Kogyo Kabushiki Kaisha 吹付け材料及びそれを用いた吹付け工法
JP2005060201A (ja) * 2003-08-20 2005-03-10 Denki Kagaku Kogyo Kk 吹付け材料およびそれを用いた吹付け工法
JP2011037688A (ja) * 2009-08-18 2011-02-24 Denki Kagaku Kogyo Kk 急結性吹付けセメントコンクリートの吹付け工法
JP2018030731A (ja) * 2016-08-22 2018-03-01 デンカ株式会社 液体急結剤、吹付け材料及びそれを用いた吹付け工法
CN112608065A (zh) * 2019-12-13 2021-04-06 科之杰新材料集团(贵州)有限公司 一种喷射混凝土用液体无碱速凝剂及其制备方法
JP2021143090A (ja) * 2020-03-12 2021-09-24 デンカ株式会社 液体急結剤及び急結性セメントコンクリート
JP2022072727A (ja) * 2020-10-30 2022-05-17 デンカ株式会社 発泡状急結剤、吹付けコンクリート組成物、吹付けコンクリート及び吹付け施工方法
JP6989719B1 (ja) * 2021-03-02 2022-01-05 デンカ株式会社 2剤型急結剤、吹付け材料及び吹付け方法

Also Published As

Publication number Publication date
JP2023102715A (ja) 2023-07-25
JP7209878B1 (ja) 2023-01-20

Similar Documents

Publication Publication Date Title
Fu et al. Mechanisms of enhancement in early hydration by sodium sulfate in a slag-cement blend–Insights from pore solution chemistry
JP2018172267A (ja) 塩害防止用混和材及びそれを用いたセメント組成物
JP5026928B2 (ja) 急結剤および吹付材料
WO2022185659A1 (ja) 2剤型急結剤、吹付け材料及び吹付け方法
JP5783625B2 (ja) 低温用急硬性セメント混和材及び低温用急硬性セメント組成物
Winnefeld et al. Influence of shotcrete accelerators on the hydration of cement pastes and their impact on sulfate resistance
WO2023136208A1 (ja) 液体急結剤、吹付けコンクリート
JP7037879B2 (ja) 二次製品用早強混和材および二次製品用早強コンクリート
Abd-El-Aziz et al. Characteristics and durability of cements containing fly ash and limestone subjected to Caron's Lake water
JP2007153714A (ja) セメント混和材及びセメント組成物
JP6972213B2 (ja) セメント混和剤及び水硬性組成物
JP5345821B2 (ja) セメント混和材及びセメント組成物
JP7509867B2 (ja) セメント混和材、膨張材、及びセメント組成物
WO2024062805A1 (ja) 液体急結剤、吹付けコンクリート
JP3377604B2 (ja) セメント急結材及びセメント組成物
WO2021024853A1 (ja) セメント混和剤及び水硬性組成物
JP3810350B2 (ja) セメント混和材及びセメント組成物
Kaladharan et al. Novel alkali silica reaction inhibitors for concrete
JP3957672B2 (ja) 吹付け工法
JP7444619B2 (ja) セメント混和材
JP7503011B2 (ja) 急結剤用カルシウムアルミネート、および発泡型急結剤
JP2007051021A (ja) 吹付け材料及びそれを用いた吹付け工法
JP7037878B2 (ja) 二次製品用早強混和材および二次製品用早強コンクリート
JP2022143924A (ja) 発泡型急結剤
JP7037877B2 (ja) 二次製品用早強混和材および二次製品用早強コンクリート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740217

Country of ref document: EP

Kind code of ref document: A1