WO2023135669A1 - 玉軸受 - Google Patents

玉軸受 Download PDF

Info

Publication number
WO2023135669A1
WO2023135669A1 PCT/JP2022/000652 JP2022000652W WO2023135669A1 WO 2023135669 A1 WO2023135669 A1 WO 2023135669A1 JP 2022000652 W JP2022000652 W JP 2022000652W WO 2023135669 A1 WO2023135669 A1 WO 2023135669A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
balls
inner ring
raceway
inclined surface
Prior art date
Application number
PCT/JP2022/000652
Other languages
English (en)
French (fr)
Inventor
清兼 岩本
勇泰 久保山
知博 石井
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to PCT/JP2022/000652 priority Critical patent/WO2023135669A1/ja
Publication of WO2023135669A1 publication Critical patent/WO2023135669A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings

Definitions

  • This disclosure relates to ball bearings.
  • angular contact ball bearings of double-row ball bearings have the minor angle between the bearing central axis and the line of action of each row of balls arranged in the same direction, and the pitch diameter of the ball set of each row of balls is made different, and the single-row A ball bearing is known that can bear a greater axial load than an angular contact ball bearing.
  • Such ball bearings are called tandem type.
  • FIG. 16 is a sectional view showing a conventional ball bearing.
  • a conventional ball bearing 210 comprises an inner ring assembly 235 and an outer ring 220 .
  • the inner ring assembly 235 includes an inner ring 230 , a plurality of first balls 241 , a plurality of second balls 242 , a first retainer 251 and a second retainer 252 .
  • the diameter of the plurality of first balls 241 and the diameter of the plurality of second balls 242 are the same.
  • the inner ring 230 has a first inner ring raceway 231 on the first side in the axial direction and a second inner ring raceway 232 on the second side in the axial direction of the first inner ring raceway 231 on the outer peripheral surface.
  • the raceway contact diameter of the first inner ring raceway 231 is smaller than the raceway contact diameter of the second inner ring raceway 232 .
  • a plurality of first balls 241 are arranged to roll on the first inner ring raceway 231 .
  • the first retainer 251 has multiple pockets.
  • a plurality of first balls 241 are slidably disposed in a plurality of pockets of the first retainer 251 . Since the diameter of the inscribed circle of the radially outer openings of the plurality of pockets of the first retainer 251 is smaller than the diameter of the first balls 241, the plurality of first balls 241 are each held in the first holding state.
  • the inner ring 230, the plurality of first balls 241 and the first retainer 251 are not separated.
  • a plurality of second balls 242 are arranged to roll on the second inner ring raceway 232 .
  • the second retainer 252 has multiple pockets.
  • a plurality of second balls 242 are slidably disposed in a plurality of pockets of the second retainer 252 . Since the diameter of the inscribed circle of the radially outer openings of the plurality of pockets of the second retainer 252 is smaller than the diameter of the second balls 242, the plurality of second balls 242 are each held in the second holding state.
  • the inner ring 230, the plurality of second balls 242, and the second retainer 252 do not separate when placed in each pocket of the container 252 and placed on the second inner ring raceway 232.
  • the inner ring assembly 235 is assembled so that the inner ring 230, the plurality of first balls 241, the plurality of second balls 242, the first retainer 251, and the second retainer 252 are not separated. It is
  • the pitch diameter of the ball set in the row of the first balls 241 formed by the plurality of first balls 241 of the inner ring assembly 235 is the same as the pitch diameter of the balls in the row of the second balls 242 formed by the plurality of second balls 242. Smaller than the pitch diameter of the set.
  • the outer ring 220 has a first outer ring raceway 221 on the first side in the axial direction and a second outer ring raceway 222 on the second side in the axial direction of the first outer ring raceway 221 on its inner peripheral surface.
  • the raceway contact diameter of the first outer ring raceway 221 is smaller than the raceway contact diameter of the second outer ring raceway 222 .
  • Ball bearing 210 is formed by combining inner ring assembly 235 and outer ring 220 .
  • the plurality of first balls 241 are rollably arranged on the first outer ring raceway 221, and the plurality of second balls 242 are rollably arranged on the second outer ring raceway 222.
  • the nominal contact point of the first inner ring raceway 231 is located on the second axial side of the nominal contact point of the first outer ring raceway 221 .
  • the nominal contact point of the second inner ring raceway 232 is located on the second axial side of the nominal contact point of the second outer ring raceway 222 .
  • the side surface on the first axial side of the inner ring 230 is the front surface of the inner ring 230
  • the side surface on the second axial side is the rear surface of the inner ring 230 .
  • the side surface of the outer ring 220 on the first side in the axial direction is the rear surface of the outer ring 220
  • the side surface on the second side in the axial direction is the front surface of the outer ring 220 . Since the ball bearing 210 has two rows of balls, the axial load that the ball bearing 210 can bear is larger than the axial load that a single-row angular contact ball bearing can bear (see, for example, Patent Document 1).
  • the diameter of the first ball 241 and the diameter of the second ball 242 are the same.
  • the life of the first row of balls 241, the first inner ring raceway 231, and the first outer ring raceway 221, the life of the second row of balls 242, the second inner ring raceway 232, and the second outer ring raceway 222 It may be greatly different from the life related to.
  • a ball bearing of the present disclosure comprises an inner ring assembly, an outer ring, the inner ring assembly comprising an inner ring, a plurality of first balls, a plurality of second balls, a first cage, and a second retainer, the inner ring having a first inner ring raceway on a first axial side and a second inner ring raceway on a second axial side of the first inner ring raceway; , on the outer peripheral surface, the raceway contact diameter of the first inner ring raceway is smaller than the raceway contact diameter of the second inner ring raceway, and the plurality of first balls are arranged on the first inner ring raceway.
  • the first retainer has a plurality of first pockets, the plurality of first balls are slidably arranged in the first pockets, the plurality of A second ball is rotatably disposed on the second inner ring raceway, the second retainer has a plurality of second pockets, the plurality of second balls are arranged in the second The inner ring, the plurality of first balls, the plurality of second balls, the first retainer, and the second retainer are separated from each other. and the pitch diameter of the ball set in the first row of balls formed by the plurality of first balls of the inner ring assembly is equal to the pitch diameter of the second ball formed by the plurality of second balls.
  • the outer ring has a first outer ring raceway, a first inclined surface and a second having an inclined surface and a second outer ring raceway on the inner peripheral surface, the inner peripheral surface of the outer ring expanding without decreasing in diameter from the first outer ring raceway to the second outer ring raceway;
  • the raceway contact diameter of the first outer ring raceway is smaller than the raceway contact diameter of the second outer ring raceway, the diameter of the plurality of first balls is smaller than the diameter of the plurality of second balls;
  • the plurality of first balls are rollably arranged on the first outer ring raceway, the plurality of second balls are rollably arranged on the second outer ring raceway, and the first ball is arranged to roll on the second outer ring raceway.
  • the nominal contact point of the inner ring raceway is located on the second side in the axial direction from the nominal contact point of the first outer ring raceway, and the nominal contact point of the second inner ring raceway is the nominal contact point of the second outer ring raceway.
  • the first inclined surface is formed on the second side in the axial direction of the first outer ring raceway on the inner peripheral surface of the outer ring. It is an inclined surface that expands in diameter from a first side toward a second side, and the second inclined surface is on the second side in the axial direction of the first inclined surface on the inner peripheral surface of the outer ring.
  • a first minor angle formed by the first inclined surface and the central axis of the outer ring in a cross section is equal to a second minor angle formed by the second inclined surface and the central axis of the outer ring in a cross section including the central axis of the outer ring.
  • a first minor radius which is the radius of the first minor circle, is half the diameter of the first ball on the great circle, and half the pitch diameter of the ball set in the first row of balls is the first minor radius.
  • a torus with a first major radius that is the radius of one great circle is defined as a first virtual torus, and when the plurality of second balls are arranged and brought into contact with the second inner ring raceway, the The center of each second ball of the plurality of second balls is on the second great circle, and half the diameter of the second ball is the second minor radius, which is the radius of the second small circle;
  • a second virtual torus is defined as a torus having a second major radius, which is the radius of the second great circle, which is half the pitch diameter of the ball set of the second row of balls, and includes the bearing center axis.
  • a line segment connecting the end point of and the second end point is defined as a first line segment
  • a line segment connecting the third end point and the fourth end point is defined as a second line segment
  • the third end point and the fifth end point is defined as a third line segment
  • a line segment connecting the sixth end point and the second end point is defined as a fourth line segment
  • the sixth end point and the A line segment connecting the fifth end point is defined as a fifth line segment
  • the characteristic is that the length of the first line segment is greater than the length of the second line segment, or the length of the first line segment is The length of the line segment is smaller than the length of the second line segment, the length of the first line segment is smaller than the length of the third line segment, and the length of the third line segment is smaller than the length of the third line segment.
  • the length of line segment 4 is smaller than the length of the fifth line segment.
  • the outer ring has the first outer ring raceway, the first inclined surface, and the second radial direction on the inner peripheral surface from the first side in the axial direction toward the second side. , the second outer ring raceway, and a third inclined surface, and the inner peripheral surface of the outer ring is reduced in diameter from the first outer ring raceway to the third inclined surface.
  • the first minor angle is smaller than the third minor angle formed by the third inclined surface and the central axis of the outer ring in a cross section including the central axis of the outer ring.
  • the plurality of second balls and an imaginary plane including the front surface of the second axial side of the outer ring and perpendicular to the central axis of the outer ring overlap in the axial direction.
  • FIG. 3 is a schematic diagram showing an outline of a first virtual torus and a second virtual torus; It is a sectional view showing an outer race concerning a 1st embodiment.
  • FIG. 4 is a cross-sectional view showing each inclined surface formed on the inner peripheral surface of the outer ring;
  • FIG. 3 is a cross-sectional view showing how the outer ring is assembled to the inner ring assembly of the ball bearing according to the first embodiment;
  • FIG. 3 is a schematic diagram showing an outline of a first virtual torus and a second virtual torus; It is a sectional view showing an outer race concerning a 1st embodiment.
  • FIG. 4 is a cross-sectional view showing each inclined surface formed on the inner peripheral surface of the outer ring;
  • FIG. 3 is a cross-sectional view showing how the outer ring is assembled to the inner ring assembly
  • FIG. 7 is a cross-sectional view showing how the outer ring is assembled to the inner ring assembly of the ball bearing according to the second embodiment; It is a sectional view showing the whole ball bearing composition concerning the 1st comparative example.
  • FIG. 5 is a cross-sectional view showing an outer ring according to a first comparative example;
  • FIG. 5 is a cross-sectional view showing how an outer ring is attached to an inner ring assembly of a ball bearing according to a first comparative example; It is a sectional view showing the whole ball bearing composition concerning the 2nd comparative example.
  • FIG. 5 is a cross-sectional view showing an outer ring according to a second comparative example;
  • FIG. 7 is a cross-sectional view showing how an outer ring is assembled to an inner ring assembly of a ball bearing according to a second comparative example
  • FIG. 10 is a cross-sectional view showing a conventional ball bearing
  • FIG. 4 is a cross-sectional view showing how an outer ring is attached to an inner ring assembly in a ball bearing of a comparative example
  • FIG. 17 is a cross-sectional view showing how the outer ring is attached to the inner ring assembly in the ball bearing of the comparative example.
  • the second balls 242 of the conventional double-row ball bearing 210 shown in FIG. It is a configuration that converts A double-row ball bearing 110 of the comparative example includes an inner ring assembly 135 and an outer ring 120 .
  • the inner ring assembly 135 includes an inner ring 130 , a plurality of first balls 141 , a plurality of second balls 142 , a first retainer 151 and a second retainer 152 .
  • the inner ring 130 has a first inner ring raceway 131 on the first side in the axial direction and a second inner ring raceway 132 on the second side in the axial direction of the first inner ring raceway 131 on the outer peripheral surface.
  • the raceway contact diameter of the first inner ring raceway 131 is smaller than the raceway contact diameter of the second inner ring raceway 132 .
  • a plurality of first balls 141 are arranged to roll on the first inner ring raceway 131 .
  • the first retainer 151 has multiple pockets. The plurality of first balls 141 are slidably arranged in the plurality of pockets of the first retainer 151 .
  • the plurality of first balls 141 are respectively attached to the first retainer. 151 and placed on the first inner ring raceway 131, the inner ring 130, the plurality of first balls 141 and the first retainer 151 are not separated.
  • a plurality of second balls 142 are arranged to roll on the second inner ring raceway 132 .
  • the second retainer 152 has multiple pockets.
  • a plurality of second balls 142 are slidably disposed in a plurality of pockets of the second retainer 152 .
  • the plurality of second balls 142 are respectively attached to the second retainer.
  • the inner ring 130, the plurality of second balls 142 and the second retainer 152 do not separate.
  • the inner ring 130, the plurality of first balls 141, the plurality of second balls 142, the first retainer 151, and the second retainer 152 are configured so as not to separate.
  • the pitch diameter of the ball set in the row of the first balls 141 formed by the plurality of first balls 141 of the inner ring assembly 135 is the same as the pitch diameter of the balls in the row of the second balls 142 formed by the plurality of second balls 142. Smaller than the pitch diameter of the set.
  • the diameter of the plurality of first balls 141 is smaller than the diameter of the plurality of second balls 142 .
  • the outer ring 120 has a first outer ring raceway 121, a first inclined surface 123, a second inclined surface 124, and a second outer ring raceway 122 from the first side in the axial direction to the second side. and a third inclined surface 125 on the inner peripheral surface.
  • the inner peripheral surface of the outer ring 120 expands from the first outer ring raceway 121 to the third inclined surface 125 without decreasing in diameter.
  • the raceway contact diameter of the first outer ring raceway 121 is smaller than the raceway contact diameter of the second outer ring raceway 122 .
  • Ball bearing 110 is formed by combining inner ring assembly 135 and outer ring 120 .
  • a plurality of first balls 141 are arranged to roll on the first outer ring raceway 121 .
  • a plurality of second balls 142 are arranged to roll on the second outer ring raceway 122 .
  • the nominal contact point of the first inner ring raceway 131 is located on the second axial side of the nominal contact point of the first outer ring raceway 121 .
  • the nominal contact point of the second inner ring raceway 132 is located on the second axial side of the nominal contact point of the second outer ring raceway 122 .
  • the first inclined surface 123 is formed on the inner peripheral surface of the outer ring 120 on the second side in the axial direction of the first outer ring raceway 121 and has a diameter that increases from the first side in the axial direction toward the second side. It is a conical surface that
  • the second inclined surface 124 is formed on the second axial side of the first inclined surface 123 on the inner peripheral surface of the outer ring 120 and on the first axial side of the second outer ring raceway 122, It is a conical surface that expands in diameter from a first axial side toward a second axial side.
  • a third inclined surface 125 is formed on the inner peripheral surface of the outer ring 120 on the axial second side of the second outer ring raceway 122 , adjoins the front surface of the outer ring 120 , and extends from the axial first side to the third axial side. It is a conical surface that expands toward the side of 2.
  • An object of the present disclosure is to improve the assembling property of the outer ring to the inner ring assembly and to suppress damage to the ball bearing in the ball bearing.
  • a ball bearing of the present disclosure comprises an inner ring assembly and an outer ring, the inner ring assembly comprising an inner ring, a plurality of first balls, a plurality of second balls, and a first retainer. and a second retainer, wherein the inner ring has a first inner ring raceway on a first axial side and a second inner ring raceway on a second axial side of the first inner ring raceway.
  • the raceway contact diameter of the first inner ring raceway being smaller than the raceway contact diameter of the second inner ring raceway, and the plurality of first balls rollingly disposed on an inner ring raceway
  • the first retainer having a plurality of first pockets, the plurality of first balls slidably disposed in the first pockets;
  • the plurality of second balls are arranged to be able to roll on the second inner ring raceway, the second retainer has a plurality of second pockets, and the plurality of second balls are: slidably disposed in the second pocket, the inner ring, the plurality of first balls, the plurality of second balls, the first retainer, and the second retainer; are configured not to separate, and the pitch diameter of the ball set in the first row of balls formed by the plurality of first balls of the inner ring assembly is equal to the pitch diameter of the ball set formed by the plurality of second balls.
  • the outer ring has, from the first side in the axial direction toward the second side, a first outer ring raceway, a first inclined surface;
  • the inner peripheral surface of the outer ring has a second inclined surface and a second outer ring raceway, and the inner peripheral surface of the outer ring does not decrease in diameter from the first outer ring raceway to the second outer ring raceway.
  • the raceway contact diameter of the first outer ring raceway is smaller than the raceway contact diameter of the second outer ring raceway, and the diameter of the plurality of first balls is smaller than the diameter of the plurality of second balls.
  • the plurality of first balls are arranged so as to be able to roll on the first outer ring raceway; the plurality of second balls are arranged so as to be able to roll on the second outer ring raceway;
  • the nominal contact point of the first inner ring raceway is located on the second side in the axial direction from the nominal contact point of the first outer ring raceway, and the nominal contact point of the second inner ring raceway is located on the second outer ring.
  • the first inclined surface being formed on the second side in the axial direction of the first outer ring raceway on the inner peripheral surface of the outer ring, It is an inclined surface that expands in diameter from a first side toward a second side in the axial direction, and the second inclined surface is the second inclined surface in the axial direction of the first inclined surface on the inner peripheral surface of the outer ring.
  • a first minor angle formed by the first inclined surface and the central axis of the outer ring in a cross section containing the axis is equal to a first minor angle formed by the second inclined surface and the central axis of the outer ring in a cross section containing the central axis of the outer ring.
  • the center of each first ball of the plurality of first balls is smaller than the second minor angle formed and when the plurality of first balls are arranged on the first inner ring raceway and brought into contact with each other.
  • half the diameter of the first ball is the radius of the first minor circle, the first minor radius being the radius of the first minor circle, and half the pitch diameter of the ball set of the first row of balls.
  • the radius of the first great circle is the radius of the first great circle
  • the torus is defined as the first virtual torus
  • the plurality of second balls are arranged and brought into contact with the second inner ring raceway
  • the center of each second ball of said plurality of second balls is on a second great circle
  • half the diameter of said second ball is the radius of a second minor circle.
  • a second virtual torus is defined as a torus having a radius and a half of the pitch diameter of the ball set of the second ball row as the second major radius, which is the radius of the second great circle, and the bearing center
  • a radial first side and a radial second side that is 180° circumferentially opposite the radial first side are defined, and the radial first side A radial second side of the second virtual torus on the radial second side and a straight line passing through the first great circle on the radial side and the second great circle on the radial second side A straight line passing through the first great circle on the first side in the radial direction and the second great circle on the second side in the radial direction and the second great circle in the radial direction.
  • the intersection of the first virtual torus on the first side with the surface on the first side in the radial direction is defined as a second end point, and the most axial direction of the second outer ring raceway on the second side in the radial direction is defined as the second end point.
  • 2 side is a third end point, the most axial second side of the first inclined surface on the first side in the radial direction is a fourth end point, and the second side on the first side in the radial direction is a fourth end point.
  • a fifth end point is a point located on the first inclined surface and the smallest distance from the third end point, and a sixth end point is a great circle of the second virtual torus on the second side in the radial direction
  • a line segment connecting the first end point and the second end point is defined as a first line segment
  • a line segment connecting the third end point and the fourth end point is defined as a second line segment
  • the line segment connecting the third end point and the fourth end point is defined as a second line segment.
  • a line segment connecting the end point and the fifth end point is defined as a fifth line segment, characterized in that the length of the first line segment is greater than the length of the second line segment, or The length of the first line segment is smaller than the length of the second line segment, and the length of the first line segment is smaller than the length of the third line segment, and , the length of the fourth line segment is smaller than the length of the fifth line segment.
  • the outer ring preferably has the first outer ring raceway and the first inclination on the inner peripheral surface from the first side in the axial direction toward the second side. surface, the second inclined surface, the second outer ring raceway, and a third inclined surface, wherein the inner peripheral surface of the outer ring extends from the first outer ring raceway to the third inclined surface. and the first minor angle is smaller than the third minor angle formed by the third inclined surface and the central axis of the outer ring in a cross section including the central axis of the outer ring. .
  • FIG. 1 is a cross-sectional view showing the overall configuration of a ball bearing according to the first embodiment.
  • the ball bearing 10 shown in FIG. 1 is a double-row angular contact ball bearing in which the minor angles between the bearing central axis and the line of action of each row of balls are set in the same direction, and the pitches of the ball sets of each row of balls are equal to each other.
  • This is a ball bearing with different diameters that can handle a greater axial load than a single-row angular contact ball bearing.
  • Such ball bearings are called tandem type.
  • the ball bearing 10 is used, for example, to rotatably support a pinion shaft constituting a differential mechanism (gear mechanism), which is a bearing device used in a differential gear device mounted on an automobile or the like, with respect to a case. .
  • the ball bearing 10 has an inner ring assembly 35 and an outer ring 20 .
  • the central axis of the ball bearing 10 will be referred to as central axis C1.
  • the central axis of the outer ring 20 is called central axis C2
  • the central axis of the inner ring 30 is called central axis C3.
  • the central axis C2 of the outer ring 20 and the central axis C3 of the inner ring 30 coincide with the central axis C1 of the ball bearing 10 in which the inner ring assembly 35 and the outer ring 20 are combined.
  • one direction along the central axis C1 of the ball bearing 10 is referred to as a first axial side, and is 180° opposite to the first axial side along the central axis of the ball bearing 10.
  • the side direction is referred to as the axial second side.
  • one direction perpendicular to the central axis C1 is referred to as a radial first side.
  • the direction 180° opposite to the side of is referred to as a second side in the radial direction.
  • FIG. 2 is a cross-sectional view showing the inner ring assembly.
  • the inner ring assembly 35 includes an inner ring 30 , a plurality of first balls 41 , a plurality of second balls 42 , a first retainer 51 and a second retainer 52 .
  • the inner ring 30 shown in FIG. 2 is made of steel such as high-carbon chromium bearing steel, carbon steel, or alloy steel.
  • the inner ring 30 is cylindrical.
  • the inner ring 30 has a first shoulder, a first inner ring raceway 31, a second shoulder, a second inner ring raceway 32, a third inner ring raceway 32, and a third inner ring raceway 31 from the first side in the axial direction toward the second side. and a shoulder on the outer peripheral surface.
  • the first shoulder has a cylindrical outer peripheral surface.
  • the first inner ring raceway 31 is a raceway groove having a groove radius slightly larger than half the diameter of a first ball 41 to be described later.
  • the second shoulder is a conical surface followed by a cylindrical surface whose outer peripheral surface increases in diameter from the first axial side to the second axial side.
  • the second inner ring raceway 32 is a raceway groove having a groove radius slightly larger than half the diameter of a second ball 42 to be described later.
  • the third shoulder has a cylindrical outer peripheral surface.
  • the raceway contact diameter of the first inner ring raceway 31 is smaller than the raceway contact diameter of the second inner ring raceway 32 .
  • the diameter of the first shoulder is larger than the raceway contact diameter of the first inner ring raceway 31 and smaller than the diameter of the second shoulder.
  • the diameter of the second shoulder is larger than the diameter of the second inner ring raceway 32 and smaller than the diameter of the third shoulder.
  • the first ball 41 is made of steel such as high carbon chromium bearing steel.
  • the second ball 42 is made of steel such as high carbon chromium bearing steel.
  • the diameter of the first ball 41 is smaller than the diameter of the second ball 42 .
  • the first retainer 51 is formed in an annular shape.
  • the first retainer 51 has a first annular body 51a, a second annular body 51b, and a plurality of first pillars 51c.
  • the first annular body 51a is on the first axial side of the plurality of first posts 51c.
  • the second annular body 51b is on the second axial side of the plurality of first posts 51c.
  • a plurality of first posts 51c connect to the first annular body 51a on a second axial side of the first annular body 51a.
  • a plurality of first posts 51c connect to the second annular body 51b on a first axial side of the second annular body 51b.
  • the plurality of first columns 51c are arranged at regular intervals in the circumferential direction of the first annular body 51a.
  • the diameter of the outer peripheral surface of the first annular body 51a is smaller than the diameter of the outer peripheral surface of the second annular body 51b.
  • the diameter of the inner peripheral surface of the first annular body 51a is smaller than the diameter of the inner peripheral surface of the second annular body 51b.
  • a region surrounded by the first annular body 51a, the second annular body 51b, and the first pillars 51c adjacent in the circumferential direction forms a plurality of first pockets 53 that hold the first balls 41. do.
  • the diameter of the inscribed circle of the radially outer openings of the plurality of first pockets 53 of the first retainer 51 is smaller than the diameter of the first balls 41 .
  • the first retainer 51 is made of synthetic resin such as polyamide resin, polyphenylene sulfide resin, or phenol resin.
  • the second retainer 52 is formed in an annular shape.
  • the second retainer 52 has a third annular body 52b, a fourth annular body 52a, and a plurality of second posts 52c.
  • the third annular body 52b is on the first axial side of the plurality of second posts 52c.
  • the fourth annular body 52a is on the second axial side of the plurality of second posts 52c.
  • a plurality of second posts 52c connect to the third annular body 52b on a second axial side of the third annular body 52b.
  • a plurality of second posts 52c connect to the fourth annular body 52a on a first axial side of the fourth annular body 52a.
  • the plurality of second columns 52c are arranged at regular intervals in the circumferential direction of the third annular body 52b.
  • the diameter of the outer peripheral surface of the third annular body 52b is smaller than the diameter of the outer peripheral surface of the fourth annular body 52a.
  • the diameter of the inner peripheral surface of the third annular body 52b is smaller than the diameter of the inner peripheral surface of the fourth annular body 52a.
  • a region surrounded by the third annular body 52b, the fourth annular body 52a, and the second pillars 52c adjacent in the circumferential direction forms a plurality of second pockets 54 that hold the second balls 42. do.
  • the diameter of the inscribed circle of the radially outer openings of the plurality of second pockets 54 of the second retainer 52 is smaller than the diameter of the second balls 42 .
  • the second retainer 52 is made of synthetic resin such as polyamide resin, polyphenylene sulfide resin, or phenol resin.
  • the plurality of first balls 41 forming the row of the first balls 41 are arranged to roll on the first inner ring raceway 31 of the inner ring 30 .
  • the plurality of first balls 41 are slidably arranged in the plurality of first pockets 53 of the first retainer 51 .
  • a plurality of first pockets 53 are formed along the circumferential direction so that the first retainer 51 can hold the plurality of first balls 41 at regular intervals along the circumferential direction. . Since the diameter of the inscribed circle of the radially outer openings of the plurality of first pockets 53 of the first retainer 51 is smaller than the diameter of the first balls 41, the first balls 41 do not drop radially outward from the first pocket 53 of the retainer 51 of the .
  • the diameter of the cylindrical surface of the outer peripheral surface of the first shoulder is larger than the raceway contact diameter of the first inner ring raceway 31 .
  • the minimum diameter of the conical surface of the outer peripheral surface of the second shoulder is larger than the raceway contact diameter of the first inner ring raceway 31 . Therefore, when the plurality of first balls 41 are arranged in the respective first pockets 53 of the first retainer 51 and arranged on the first inner ring raceway 31, the inner ring 30 and the plurality of first balls 41 and the first retainer 51 are not separated.
  • a plurality of second balls 42 forming a row of second balls 42 are arranged to roll on the second inner ring raceway 32 of the inner ring 30 .
  • a plurality of second balls 42 are slidably disposed in a plurality of second pockets 54 of the second retainer 52 .
  • a plurality of second pockets 54 are formed along the circumferential direction so that the second retainer 52 can hold the plurality of second balls 42 at regular intervals along the circumferential direction. . Since the diameter of the inscribed circle of the radially outer openings of the plurality of second pockets 54 of the second retainer 52 is smaller than the diameter of the second balls 42, the second balls 42 from the second pocket 54 of the retainer 52 in the radial direction.
  • the diameter of the cylindrical surface of the outer peripheral surface of the second shoulder is larger than the raceway contact diameter of the second inner ring raceway 32 .
  • the diameter of the cylindrical surface of the outer peripheral surface of the third shoulder is larger than the raceway contact diameter of the second inner ring raceway 32 . Therefore, when the plurality of second balls 42 are arranged in the respective second pockets 54 of the second retainer 52 and arranged on the second inner ring raceway 32, the inner ring 30 and the plurality of second balls 42 and the second retainer 52 are not separated.
  • the inner ring assembly 35 includes an inner ring 30, a plurality of first balls 41, a plurality of second balls 42, a first retainer 51, and a second retainer 52. , are configured so that they do not separate. In other words, the inner ring assembly 35 is obtained by removing the outer ring 20 from the ball bearing 10 .
  • the pitch diameter of the ball set in the row of the first balls 41 formed by the plurality of first balls 41 of the inner ring assembly 35 is the same as the pitch diameter of the balls in the row of the second balls 42 formed by the plurality of second balls 42. Smaller than the pitch diameter of the set.
  • the first virtual torus T1 is a virtual three-dimensional shape that represents the rolling area of the plurality of first balls 41 that are rotatably arranged on the first inner ring raceway 31 .
  • the first virtual torus T1 is the position of each first ball 41 when each first ball 41 is arranged and contacted with the first inner ring raceway 31 when the inner ring assembly 35 and the outer ring 20 are assembled.
  • the radius of the first small circle SC1, which is the outer shape of the cross section including the center, is defined as the first small radius Sr1
  • the radius of the first large circle BC1 which is the imaginary circle connecting the centers of the first balls 41
  • the first small radius Sr1 is the radius of the first balls 41 and is half the diameter of the first balls 41
  • the first large radius Br1 is composed of the plurality of first balls 41. It is half the pitch diameter of the set of balls in the row of the first balls 41 that are set.
  • the center of each first ball 41 of the plurality of first balls 41 is positioned on the first great circle BC1.
  • the first virtual torus T1 is defined with reference to the first balls 41 arranged on the first inner ring raceway 31, but the first virtual torus T1 is the inner ring assembly 35 and The first balls 41 when the first balls 41 are arranged and contacted with the first outer ring raceway 21 when the outer ring 20 is assembled may be defined as a reference.
  • the second virtual torus T2 is a virtual three-dimensional shape that represents the rolling area of the plurality of second balls 42 that are rollably arranged on the second inner ring raceway 32 .
  • the second virtual torus T2 is the position of each second ball 42 when each second ball 42 is arranged and comes into contact with the second inner ring raceway 32 when the inner ring assembly 35 and the outer ring 20 are assembled.
  • the radius of the second small circle SC2, which is the outer shape of the cross section including the center, is defined as the second small radius Sr2
  • the radius of the second large circle BC2 which is the imaginary circle connecting the centers of the second balls 42, is defined as the second small radius Sr2.
  • the second minor radius Sr2 is the radius of the second balls 42 and is half the diameter of the second balls 42
  • the second major radius Br2 is composed of the plurality of second balls 42. It is half the pitch diameter of the set of balls in the second row of balls 42 being set.
  • the center of each second ball 42 of the plurality of second balls 42 is positioned on the second great circle BC2.
  • the second virtual torus T2 is defined with reference to the second balls 42 arranged on the second inner ring raceway 32.
  • the second virtual torus T2 is the inner ring assembly 35.
  • the second balls 42 may be defined as a reference when the second balls 42 are arranged and contacted with the second outer ring raceway 22 when the outer ring 20 is assembled.
  • a first straight line L1 is defined for convenience of explanation.
  • the first straight line L1 extends across the central axis C3, the first great circle BC1 on the first radial side, and the second great circle BC1 on the second radial side in a cross section including the central axis C3 of the inner ring 30. It is a straight line that intersects with the great circle BC2.
  • the first radial side is one radial direction in a cross section including the central axis C3 of the inner ring 30, and the second radial side is the second radial direction in a cross section including the central axis C3 of the inner ring 30.
  • the 1 side is the radial direction opposite to the center axis C3 of the inner ring 30 by 180° in the circumferential direction.
  • points a and b are defined for convenience of explanation.
  • a point a (first end point) is located on the second side of the first straight line L1 and the second virtual torus T2 on the second side in the radial direction in a cross section including the central axis C3 of the inner ring 30. is the intersection with the surface of The point b (second end point) is the first straight line L1 and the first radial side of the first imaginary torus T1 on the cross section including the central axis C3 of the inner ring 30.
  • first line segment ab is a portion of the first straight line L1.
  • points a and b are out of phase by 180°.
  • FIG. 4 is a cross-sectional view showing the outer ring according to the first embodiment.
  • FIG. 5 is a cross-sectional view showing each inclined surface formed on the inner peripheral surface of the outer ring 20.
  • the outer ring 20 is made of steel such as high-carbon chromium bearing steel, carbon steel, or alloy steel.
  • the outer ring 20 has, from the axial first side to the second side, a fourth shoulder, a first outer ring raceway 21, a first inclined surface 23, a second inclined surface 24, It has a second outer ring raceway 22 and a third inclined surface 25 on the inner peripheral surface.
  • the inner peripheral surface of the outer ring 20 expands from the first outer ring raceway 21 to the third inclined surface 25 without decreasing in diameter.
  • the raceway contact diameter of the first outer ring raceway 21 is smaller than the raceway contact diameter of the second outer ring raceway 22 .
  • the first inclined surface 23 is formed on the inner peripheral surface of the outer ring 20 on the second side in the axial direction of the first outer ring raceway 21 and has a diameter that increases from the first side in the axial direction toward the second side. It is a conical surface that The second inclined surface 24 is formed on the second axial side of the first inclined surface 23 on the inner peripheral surface of the outer ring 20 and on the first axial side of the second outer ring raceway 22, It is a conical surface that expands in diameter from a first axial side toward a second axial side.
  • the third inclined surface 25 is formed on the inner peripheral surface of the outer ring 20 on the axial second side of the second outer ring raceway 22 , adjoins the front surface of the outer ring 20 , and extends from the axial first side to the third axial side. It is a conical surface that expands toward the side of 2.
  • the axial length of the second inclined surface 24 is preferably 1/10 to 1/2 of the axial length of the first inclined surface 23 .
  • the axial length of the third inclined surface 25 is preferably 1/10 to 1/2 of the axial length of the first inclined surface 23 .
  • a first inferiority plane formed by the first inclined surface 23 and the central axis C2 of the outer ring 20 in FIG. 5, a cylindrical surface centered on the central axis C2 of the outer ring 20.
  • the angle ⁇ 1 is the angle between the second inclined surface 24 and the central axis C2 of the outer ring 20 (in FIG. 5, a cylindrical surface centered on the central axis C2 of the outer ring 20) in a cross section including the central axis C2 of the outer ring 20. less than the minor angle ⁇ 2 of 2.
  • the first minor angle ⁇ 1 is between the third inclined surface 25 and the central axis C2 of the outer ring 20 (in FIG. ) is smaller than the third minor angle ⁇ 3 formed by
  • the first minor angle ⁇ 1 is preferably 12° or less.
  • the second minor angle ⁇ 2 is preferably 25° or more and 75° or less.
  • the third minor angle ⁇ 3 is preferably 25° or more and 75° or less.
  • a second straight line L2 is defined for convenience of explanation.
  • a first virtual torus T1 and a second virtual torus T2 are arranged on the outer ring 20 .
  • the centers of the plurality of first balls 41 arranged on the first outer ring raceway 21 when the inner ring assembly 35 and the outer ring 20 are assembled are aligned on the first great circle BC1.
  • the centers of the plurality of second balls 42 arranged on the second outer ring raceway 22 when the inner ring assembly 35 and the outer ring 20 are assembled are aligned on the second great circle BC2.
  • the second straight line L2 is defined by the central axis C2, the radially second side of the second outer ring raceway 22, and is a straight line that intersects the second most axial side of the first inclined surface 23 on the first side of .
  • a point c (third end point) is a point at which the second straight line L2 intersects the second side of the second outer ring raceway 22, in the cross section including the center axis C2 of the outer ring 20.
  • a point d (fourth end point) is a point at which the second straight line L2 intersects the second side of the first inclined surface 23, in the cross section including the central axis C2 of the outer ring 20.
  • a line segment whose end points are point c (third end point) and point d (fourth end point) will be referred to as a second line segment cd.
  • the second line segment cd is part of the second straight line L2.
  • the points c and d are out of phase by 180°.
  • the phase of point c is the same as the phase of point a
  • the phase of point d is the same as the phase of point b.
  • FIG. 6 is a cross-sectional view showing how the outer ring is attached to the inner ring assembly of the ball bearing according to the first embodiment.
  • 1 and 6 show a first ball bearing 10A, which is the ball bearing 10 according to the first embodiment.
  • the first ball bearing 10A has a first outer ring 20A which is the outer ring 20 according to the first embodiment.
  • the first outer ring raceway 21 in the first outer ring 20A is referred to as the first outer ring raceway 21A
  • the second outer ring raceway 22 as the second outer ring raceway 22A
  • the first inclined surface 23 as the first outer ring raceway 21A.
  • the inclined surface 23A and the second inclined surface 24 are called a second inclined surface 24A, and the third inclined surface 25 is called a third inclined surface 25A, respectively.
  • 10 A of 1st ball bearings are also simply called 10 A of ball bearings
  • 20 A of 1st outer rings are also simply called 20 A of outer rings.
  • the first ball bearing 10A is formed by combining an inner ring assembly 35 and a first outer ring 20A.
  • a plurality of first balls 41 are arranged so as to be able to roll on the first outer ring raceway 21A.
  • a plurality of second balls 42 are arranged so as to be able to roll on the second outer ring raceway 22A.
  • the nominal contact point of the first inner ring raceway 31 is located on the second axial side of the nominal contact point of the first outer ring raceway 21A.
  • the nominal contact point of the second inner ring raceway 32 is located on the second axial side of the nominal contact point of the second outer ring raceway 22A.
  • the side surface on the first axial side of the inner ring 30 is the front surface of the inner ring 30
  • the side surface on the second axial side of the inner ring 30 is the rear surface of the inner ring 30
  • the side surface on the first axial side of the outer ring 20A is the rear surface of the outer ring 20A
  • the side surface on the second axial side of the outer ring 20A is the front surface of the outer ring 20A.
  • the length of the first line segment ab is longer than the length of the second line segment cd.
  • the first outer ring 20A and inner ring assembly 35 shown in FIG. 6 have a point a (first end point) and a point c (second 3) are aligned with each other. From this state, when the inner ring assembly 35 is rotated around the tangent line on the second side of the second outer ring raceway 22A passing through the point c (third end point), the first line segment ab Since the length is larger than the length of the second line segment cd, the first ball 41 on the first side in the radial direction cannot enter the first inclined surface 23A.
  • the first outer ring 20A and the inner ring assembly 35 are combined in a state where the central axis C3 of the inner ring 30 is inclined with respect to the central axis C2 of the first outer ring 20A. difficult to attach. Therefore, when assembling the first outer ring 20A to the inner ring assembly 35, there is a low possibility that the first ball 41 will come into contact with the first inclined surface 23A and be caught. That is, in the first ball bearing 10A having such a configuration, when the central axis C3 of the inner ring 30 is inclined with respect to the central axis C2 of the first outer ring 20A, the first outer ring 20A and the inner ring group Assembling the solid 35 is difficult.
  • FIG. 7 is a cross-sectional view showing the overall configuration of a ball bearing according to the second embodiment.
  • FIG. 8 is a cross-sectional view showing an outer ring according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing how the outer ring is attached to the inner ring assembly of the ball bearing according to the second embodiment.
  • FIG. 7 shows a second ball bearing 10B, which is the ball bearing 10 according to the second embodiment.
  • the second ball bearing 10B differs from the first ball bearing 10A in that it has a second outer ring 20B (see FIG. 8) which is the outer ring 20 according to the second embodiment.
  • first outer ring raceway 21 of the second outer ring 20B is referred to as the first outer ring raceway 21B
  • the second outer ring raceway 22 is referred to as the second outer ring raceway 22B
  • the first inclined surface 23 is referred to as the first outer ring raceway 21B
  • the inclined surface 23B and the second inclined surface 24 are called a second inclined surface 24B
  • the third inclined surface 25 is called a third inclined surface 25B.
  • the second ball bearing 10B is also simply called the ball bearing 10B
  • the second outer ring 20B is also simply called the outer ring 20B.
  • a point e is defined for convenience of explanation (see FIG. 8).
  • a point e (fifth end point) is a point located on the first inclined surface 23 on the first side in the radial direction in a cross section including the central axis C2 of the second outer ring 20B. 3rd end point) is the shortest point.
  • a line segment whose end points are point c (third end point) and point e (fifth end point) will be referred to as a third line segment ce.
  • the points c and e are out of phase by 180°.
  • the phase of point e is the same as the phase of point d.
  • a point f is further defined for convenience of explanation (see FIG. 8).
  • a first virtual torus T1 and a second virtual torus T2 are arranged on the outer ring 20B.
  • the centers of the plurality of first balls 41 arranged on the first outer ring raceway 21B when the inner ring assembly 35 and the outer ring 20B are assembled are aligned on the first great circle BC1.
  • the centers of the plurality of second balls 42 arranged on the second outer ring raceway 22B when the inner ring assembly 35 and the outer ring 20B are assembled are aligned on the second great circle BC2. It is arranged to
  • the point f (sixth end point) is the intersection of the first straight line L1 and the second great circle BC2 on the second side in the radial direction in a cross section including the central axis C2 of the second outer ring 20B.
  • a point f (sixth end point) is the center of the second ball 42 when the center of the second ball 42 is shown on the cross section including this central axis C3.
  • a line segment having points f and b as endpoints will be referred to as a fourth line segment fb.
  • a line segment having endpoints f and e is referred to as a fifth line segment fe.
  • the phase of point f is the same as the phase of points a and c.
  • the length of the first line segment ab is shorter than the length of the second line segment cd and shorter than the length of the third line segment ce. Furthermore, in the second ball bearing 10B, the length of the fourth line segment fb is smaller than the length of the fifth line segment fe.
  • the second outer ring 20B and inner ring assembly 35 shown in FIG. 9 have a point a (first end point) and a point c (second 3) are aligned with each other. From this state, when the inner ring assembly 35 is rotated around the tangent line on the second side of the second outer ring raceway 22B passing through the point c (third end point), the first balls 41 Since the length of the first line segment ab is shorter than the length of the second line segment cd and shorter than the length of the third line segment ce, it enters the first inclined surface 23B. be able to.
  • the second ball bearing 10B when the outer ring 20B is assembled to the inner ring assembly 35, the first balls 41 are less likely to be caught in contact with the first inclined surface 23B. That is, in the second ball bearing 10B having such a configuration, the second outer ring 20B and the inner ring assembly are arranged in a state in which the central axis C3 of the inner ring 30 is inclined with respect to the central axis C2 of the second outer ring 20B. Even if the three-dimensional body 35 is assembled, it can be easily assembled without being caught. In addition, since the possibility that the second outer ring 20B is caught by the inner ring assembly 35 is low, it is difficult to force the second outer ring 20B into the inner ring assembly 35. It is possible to reduce the possibility of being scratched by rubbing against 23B. Therefore, it can be evaluated that the second ball bearing 10B is excellent in assembling performance.
  • FIG. 10 is a cross-sectional view showing the overall configuration of a ball bearing according to a first comparative example.
  • FIG. 11 is a cross-sectional view showing an outer ring according to a first comparative example.
  • FIG. 12 is a cross-sectional view showing how the outer ring is attached to the inner ring assembly of the ball bearing according to the first comparative example.
  • FIG. 10 shows a third ball bearing 60A, which is the ball bearing 60 according to the first comparative example.
  • a third ball bearing 60A shown in FIG. 10 differs from the ball bearing 10 of the present disclosure in that it has a third outer ring 70A.
  • the third ball bearing 60A includes an inner ring assembly 35 in common with the ball bearing 10 of the present disclosure.
  • the central axis of the third ball bearing 60A is referred to as central axis C4.
  • the central axis of the third outer ring 70A is called central axis C5
  • the central axis of the inner ring 30 is called central axis C3.
  • the central axis C5 of the third outer ring 70A and the central axis C3 of the inner ring 30 coincide with the central axis C4 of the third ball bearing 60A when the inner ring assembly 35 and the third outer ring 70A are combined.
  • the inner peripheral surface of the third outer ring 70A has a first inclined surface 73 and a second inclined surface in addition to the first outer ring raceway 71 and the second outer ring raceway 72.
  • a face 74 is formed.
  • the first outer ring raceway 71 of the third outer ring 70A is called the first outer ring raceway 71A
  • the second outer ring raceway 72 is called the second outer ring raceway 72A
  • the first inclined surface 73 is called the first outer ring raceway 71A
  • the inclined surface 73A and the second inclined surface 74 are called a second inclined surface 74A
  • the third inclined surface 75 is called a third inclined surface 75A, respectively.
  • the third ball bearing 60A is also simply called the ball bearing 60A
  • the third outer ring 70A is also simply called the outer ring 70A.
  • the first inclined surface 73A is formed on the second side in the axial direction of the first outer ring raceway 71A on the inner peripheral surface of the third outer ring 70A, and extends from the first side in the axial direction toward the second side. It is a conical surface that expands as The second inclined surface 74A is located on the second axial side of the first inclined surface 73A on the inner peripheral surface of the third outer ring 70A and on the first axial side of the second outer ring raceway 72A. It is a conical surface formed and expanding in diameter from a first axial side to a second axial side.
  • the third inclined surface 75A is formed on the second side in the axial direction of the second outer ring raceway 72A on the inner peripheral surface of the third outer ring 70A, adjoins the front surface of the third outer ring 70A, and extends axially. It is a conical surface that widens from the first side to the second side.
  • the first minor angle formed by the first inclined surface 73A and the central axis C5 of the outer ring 70A is the second minor angle in the cross section including the central axis C5 of the outer ring 70A. It is smaller than the second minor angle formed by the inclined surface 74A and the central axis C5 of the third outer ring 70A.
  • the first minor angle is smaller than the third minor angle formed by the third inclined surface 75A and the central axis C5 of the third outer ring 70A.
  • the length of the first line segment ab is shorter than the length of the second line segment cd and longer than the length of the third line segment ce.
  • the third ball bearing 60A differs from the ball bearing 10 (first ball bearing 10A and second ball bearing 10B) of the present disclosure in that it has such a dimensional relationship.
  • a third ball bearing 60A according to a comparative example is not included in the ball bearing 10 of the present disclosure.
  • the third outer ring 70A and inner ring assembly 35 shown in FIG. 12 have a point a (first end point) and a point c (second 3) are aligned with each other. From this state, when the inner ring assembly 35 is rotated around the tangent line of the second outer ring raceway 72A passing through the point c (third end point) on the second side in the axial direction, the first side in the radial direction is rotated. Although the first ball 41 can enter the first inclined surface 73A, it cannot cross the first inclined surface 73A and enter the first outer ring raceway 71A.
  • the third ball bearing 60A when the third outer ring 70A is assembled to the inner ring assembly 35, the first ball 41 may come into contact with the first inclined surface 73A and be caught. Further, if the third outer ring 70A in the hooked state is forcibly pushed into the inner ring assembly 35, the first ball 41 may rub against the first inclined surface 73A and be damaged. Therefore, it can be evaluated that the third ball bearing 60A is not easy to assemble.
  • FIG. 13 is a cross-sectional view showing the overall configuration of a ball bearing according to a second comparative example.
  • FIG. 14 is a cross-sectional view showing an outer ring according to a second comparative example.
  • FIG. 15 is a cross-sectional view showing how the outer ring is attached to the inner ring assembly of the ball bearing according to the second comparative example.
  • FIG. 13 shows a fourth ball bearing 60B that is the ball bearing 60 according to the second comparative example.
  • a fourth ball bearing 60B shown in FIG. 13 differs from the ball bearing 10 of the present disclosure in that it has a fourth outer ring 70B.
  • the fourth ball bearing 60B includes an inner ring assembly 35 in common with the ball bearing 10 of the present disclosure.
  • the central axis of the fourth ball bearing 60B is referred to as central axis C4.
  • the central axis of the fourth outer ring 70B is called central axis C5
  • the central axis of the inner ring 30 is called central axis C3.
  • the central axis C5 of the fourth outer ring 70B and the central axis C3 of the inner ring 30 coincide with the central axis C4 of the fourth ball bearing 60B in which the inner ring assembly 35 and the fourth outer ring 70B are combined.
  • the inner peripheral surface of the fourth outer ring 70B has a first inclined surface 73 and a second inclined surface in addition to the first outer ring raceway 71 and the second outer ring raceway 72.
  • a face 74 is formed.
  • the first outer ring raceway 71 of the fourth outer ring 70B is called the first outer ring raceway 71B
  • the second outer ring raceway 72 is called the second outer ring raceway 72B
  • the first inclined surface 73 is called the first outer ring raceway 71B
  • the inclined surface 73B and the second inclined surface 74 are called a second inclined surface 74B and the third inclined surface 75 is called a third inclined surface 75B, respectively.
  • the fourth ball bearing 60B is also simply called the ball bearing 60B
  • the fourth outer ring 70B is also simply called the outer ring 70B.
  • the first inclined surface 73B is formed on the second side in the axial direction of the first outer ring raceway 71B on the inner peripheral surface of the fourth outer ring 70B, and extends from the first side in the axial direction to the second side. It is a conical surface that expands as The second inclined surface 74B is located on the second axial side of the first inclined surface 73B on the inner peripheral surface of the fourth outer ring 70B and on the first axial side of the second outer ring raceway 72B. It is a conical surface formed and expanding in diameter from a first axial side to a second axial side.
  • the third inclined surface 75B is formed on the second side in the axial direction of the second outer ring raceway 72B on the inner peripheral surface of the fourth outer ring 70B, adjoins the front surface of the fourth outer ring 70B, and extends axially. It is a conical surface that widens from the first side to the second side.
  • the first minor angle formed by the first inclined surface 73B and the central axis C5 of the fourth outer ring 70B is the central axis C5 of the fourth outer ring 70B. It is smaller than the second minor angle formed by the second inclined surface 74B and the central axis C5 of the fourth outer ring 70B in the cross section including.
  • the first minor angle is smaller than the third minor angle formed by the third inclined surface 75 and the central axis C5 of the fourth outer ring 70B.
  • points d, e, and f similar to those of the second outer ring 20B (see FIG. 8) are defined (see FIG. 14).
  • the length of the first line segment ab is smaller than the length of the second line segment cd, but the length of the fourth line segment fb is greater than the length of the fifth line segment. It is large compared to the length of fe.
  • the fourth ball bearing 60B differs from the ball bearing 10 (first ball bearing 10A and second ball bearing 10B) of the present disclosure in that it has such a dimensional relationship.
  • the fourth ball bearing 60 according to the second comparative example is not included in the ball bearing 10 of the present disclosure.
  • the fourth outer ring 70B and the inner ring assembly 35 shown in FIG. 15 have a point a (first end point) and a point c (second 3) are aligned with each other. From this state, when the inner ring assembly 35 is rotated around the tangent line on the second side of the second outer ring raceway 72B passing through the point c (third end point), the first balls 41 Since the length of the first line segment ab is shorter than the length of the second line segment cd and shorter than the length of the third line segment ce, it enters the first inclined surface 73B. be able to.
  • the fourth ball bearing 60B when the fourth outer ring 70B is assembled to the inner ring assembly 35, the first ball 41 may come into contact with the first inclined surface 73B and be caught. be. Further, if the hooked fourth outer ring 70B is forcibly pushed into the inner ring assembly 35, the first ball 41 may rub against the first inclined surface 73B and be damaged. For this reason, the fourth ball bearing 60B can be evaluated as having poor assembling properties.
  • the ball bearings 10A, 10B in the embodiments described above include an inner ring assembly 35 and outer rings 20A, 20B.
  • the inner ring assembly 35 includes an inner ring 30 , a plurality of first balls 41 , a plurality of second balls 42 , a first retainer 51 and a second retainer 52 .
  • the inner ring 30 has a first inner ring raceway 31 on the first side in the axial direction and a second inner ring raceway 32 on the second side in the axial direction of the first inner ring raceway 31 on its outer peripheral surface. There is The raceway contact diameter of the first inner ring raceway 31 is smaller than the raceway contact diameter of the second inner ring raceway 32 .
  • a plurality of first balls 41 are arranged to roll on the first inner ring raceway 31 .
  • the first retainer 51 has a plurality of first pockets 53 .
  • the plurality of first balls 41 are slidably arranged in the first pocket 53 .
  • a plurality of second balls 42 are arranged to roll on the second inner ring raceway 32 .
  • the second retainer 52 has a plurality of second pockets 54 .
  • a plurality of second balls 42 are slidably disposed in the second pocket 54 .
  • the inner ring 30, the plurality of first balls 41, the plurality of second balls 42, the first retainer 51, and the second retainer 52 are configured so as not to separate.
  • the pitch diameter of the ball set in the row of the first balls 41 formed by the plurality of first balls 41 of the inner ring assembly 35 is the same as the pitch diameter of the balls in the row of the second balls 42 formed by the plurality of second balls 42. Smaller than the pitch diameter of the set.
  • the outer rings 20A, 20B have first outer ring raceways 21A, 21B, first inclined surfaces 23A, 23B, and second inclined surfaces 24A, 24B from the first side in the axial direction to the second side. , and second outer ring raceways 22A and 22B on the inner peripheral surface.
  • the inner peripheral surfaces of the outer rings 20A, 20B expand from the first outer ring raceways 21A, 21B to the second outer ring raceways 22A, 22B without decreasing in diameter, and the raceway contact diameters of the first outer ring raceways 21A, 21B are , is smaller than the raceway contact diameter of the second outer ring raceway 22A, 22B.
  • the diameter of the plurality of first balls 41 is smaller than the diameter of the plurality of second balls 42 .
  • a plurality of first balls 41 are arranged so as to be able to roll on the first outer ring raceways 21A and 21B.
  • a plurality of second balls 42 are arranged so as to be able to roll on the second outer ring raceways 22A, 22B.
  • the nominal contact point of the first inner ring raceway 31 is located on the second side in the axial direction from the nominal contact point of the first outer ring raceways 21A, 21B.
  • the nominal contact point of the second inner ring raceway 32 is located on the second side in the axial direction from the nominal contact point of the second outer ring raceways 22A, 22B.
  • the first inclined surfaces 23A, 23B are formed on the second side in the axial direction of the first outer ring raceways 21A, 21B on the inner peripheral surfaces of the outer rings 20A, 20B. It is an inclined surface that expands in diameter toward the side.
  • the second inclined surfaces 24A, 24B are located on the second side in the axial direction of the first inclined surfaces 23A, 23B on the inner peripheral surfaces of the outer rings 20A, 20B and in the axial direction of the second outer ring raceways 22A, 22B. It is an inclined surface formed on the first side and increasing in diameter from the first side toward the second side in the axial direction.
  • a first minor angle ⁇ 1 formed by the first inclined surfaces 23A, 23B and the central axis C2 of the outer rings 20A, 20B in a cross section including the central axis C2 of the outer rings 20A, 20B includes the central axis C2 of the outer rings 20A, 20B.
  • the center of each first ball 41 of the plurality of first balls 41 is on the first great circle BC1
  • the half of the diameter of the first ball 41 is defined as the first small radius Sr1, which is the radius of the first small circle SC1
  • the half of the pitch diameter of the ball set in the row of the first balls 41 is defined as the diameter of the first great circle BC1.
  • a torus having a first major radius Br1, which is a radius, is defined as a first virtual torus T1.
  • the second small radius Sr2 which is the radius of the second small circle SC2 is half the diameter of the second ball 42, and the half of the pitch diameter of the ball set in the row of the second balls 42 is the second great circle BC2.
  • a torus having a second large radius Br2, which is a radius, is defined as a second virtual torus T2. In a cross section including the central axis C1, a radial first side and a radial second side opposite to the radial first side by 180° in the circumferential direction are defined.
  • a first straight line L1 passing through a first great circle BC1 on the first side in the radial direction and a second great circle BC2 on the second side in the radial direction and a second virtual line L1 on the second side in the radial direction The intersection with the surface of the torus T2 on the second side in the radial direction is defined as a first end point a.
  • the point of intersection with the surface on the first side in the radial direction of the torus T1 is defined as a second end point b.
  • the most axial second side of the second outer ring raceways 22A, 22B on the second radial side is defined as a third end point c.
  • the second most axial side of the first inclined surfaces 23A and 23B on the first side in the radial direction is defined as a fourth end point d.
  • a point located on the first inclined surfaces 23A and 23B on the first side in the radial direction and closest to the third end point is defined as a fifth end point e.
  • the great circle of the second virtual torus T2 on the second side in the radial direction is set as the sixth end point f.
  • a line segment connecting the first end point a and the second end point b is defined as a first line segment ab.
  • a line segment connecting the third end point c and the fourth end point d is defined as a second line segment cd.
  • a line segment connecting the third end point c and the fifth end point e is defined as a third line segment ce.
  • a line segment connecting the sixth end point f and the second end point b is defined as a fourth line segment fb.
  • a line segment connecting the sixth end point f and the fifth end point e is defined as a fifth line segment fe.
  • a feature of the ball bearings 10A and 10B is that the length of the first line segment ab is longer than the length of the second line segment cd.
  • the ball bearings 10A and 10B are characterized in that the length of the first line segment ab is smaller than the length of the second line segment cd, and the length of the first line segment ab is the length of the third line segment. It is smaller than the length of the line segment ce, and the length of the fourth line segment fb is smaller than the length of the fifth line segment fe.
  • the ball bearings 10A and 10B having such a configuration, when the outer ring 20 is assembled to the inner ring assembly 35, the first balls 41 do not come into contact with the first inclined surface 23 of the outer ring 20. It is possible to prevent the outer ring 20 from being caught and stopped in a state where the first ball 41 is in contact with the inclined surface 23 of . Therefore, according to the ball bearings 10A and 10B shown in the above embodiment, it is possible to improve the assembling property of the outer ring 20 to the inner ring assembly 35 .
  • the outer rings 20A and 20B are provided with first outer ring raceways 21A and 21B and first inclined surfaces on the inner peripheral surface from the first side toward the second side in the axial direction.
  • the first minor angle ⁇ 1 is the third inclined surface in a cross section including the central axis C2 of the outer rings 20A, 20B It is smaller than the third minor angle ⁇ 3 formed between 25A, 25B and the central axis C2 of the outer rings 20A, 20B.
  • the plurality of second balls 42 and a virtual plane including the front surfaces of the second sides of the outer rings 20A and 20B in the axial direction and perpendicular to the central axes of the outer rings 20A and 20B are: They overlap in the axial direction.
  • the assembly of the outer rings 20A and 20B to the inner ring assembly 35 can be improved. can.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

玉軸受10は、中心軸C2を含む断面で、傾斜面23と当該中心軸C2とが形成する劣角θ1が、傾斜面24と当該中心軸C2とが形成する劣角θ2よりも小さく、中心軸C1を含む断面で、径方向第1側の大円BC1と径方向第2側の大円BC2とを通る直線L1と第2の仮想トーラスT2の径方向第2側の表面との交点を端点a、直線L1と第1の仮想トーラスT1の径方向第1側の表面との交点を端点b、径方向第2側の第2の外輪軌道22の最も軸方向第2側を端点c、径方向第1側の傾斜面23の最も軸方向第2側を端点d、径方向第1側の傾斜面23に位置し最も端点cとの距離が小さい点を端点e、径方向第2側の大円BC2を第6の端点fとし、線分abの長さが線分cdの長さに比べて大きい、又は、線分abの長さが線分cdの長さに比べて小さく、かつ、線分abの長さが線分ceの長さに比べて小さく、かつ、線分fbの長さが線分feの長さに比べて小さい。

Description

玉軸受
 本開示は、玉軸受に関する。
 従来、複列玉軸受のアンギュラ玉軸受であって、各玉の列の軸受中心軸と作用線との劣角を同じ方向にし、各玉の列の玉セットのピッチ径を異ならせ、単列玉軸受のアンギュラ玉軸受よりも大きなアキシアル荷重を負荷できる玉軸受が知られている。このような玉軸受は、タンデム形と称される。
 図16は従来の玉軸受を示す断面図である。従来の玉軸受210は、内輪組立体235と、外輪220と、を備える。内輪組立体235は、内輪230と、複数の第1の玉241と、複数の第2の玉242と、第1の保持器251と、第2の保持器252と、を備える。複数の第1の玉241の直径と複数の第2の玉242の直径とは同一である。内輪230は、軸方向の第1の側の第1の内輪軌道231と、第1の内輪軌道231の軸方向の第2の側の第2の内輪軌道232と、を外周面に有する。第1の内輪軌道231の軌道接触直径は、第2の内輪軌道232の軌道接触直径よりも小さい。複数の第1の玉241は、第1の内輪軌道231に転動可能に配置される。第1の保持器251は、複数のポケットを有する。複数の第1の玉241は、第1の保持器251の複数のポケットに摺動可能に配置される。第1の保持器251の複数のポケットの径方向の外側の開口の内接円の直径は、第1の玉241の直径よりも小さいので、複数の第1の玉241をそれぞれ第1の保持器251の各ポケットに配置して第1の内輪軌道231に配置したとき、内輪230と、複数の第1の玉241と、第1の保持器251と、は分離しない。複数の第2の玉242は、第2の内輪軌道232に転動可能に配置される。第2の保持器252は、複数のポケットを有する。複数の第2の玉242は、第2の保持器252の複数のポケットに摺動可能に配置される。第2の保持器252の複数のポケットの径方向の外側の開口の内接円の直径は、第2の玉242の直径よりも小さいので、複数の第2の玉242をそれぞれ第2の保持器252の各ポケットに配置して第2の内輪軌道232に配置したとき、内輪230と、複数の第2の玉242と、第2の保持器252と、は分離しない。内輪組立体235は、内輪230と、複数の第1の玉241と、複数の第2の玉242と、第1の保持器251と、第2の保持器252と、が分離しないように組み立てられている。内輪組立体235の、複数の第1の玉241が構成する第1の玉241の列の玉セットのピッチ径は、複数の第2の玉242が構成する第2の玉242の列の玉セットのピッチ径よりも小さい。
 外輪220は、軸方向の第1の側の第1の外輪軌道221と、第1の外輪軌道221の軸方向の第2の側の第2の外輪軌道222と、を内周面に有する。第1の外輪軌道221の軌道接触直径は、第2の外輪軌道222の軌道接触直径よりも小さい。玉軸受210は、内輪組立体235と外輪220とを組み合わせてなる。
 玉軸受210において、複数の第1の玉241は、第1の外輪軌道221に転動可能に配置され、複数の第2の玉242は、第2の外輪軌道222に転動可能に配置される。第1の内輪軌道231の呼び接触点は、第1の外輪軌道221の呼び接触点より軸方向の第2の側に位置する。第2の内輪軌道232の呼び接触点は、第2の外輪軌道222の呼び接触点より軸方向の第2の側に位置する。よって、内輪230の軸方向の第1の側の側面が内輪230の正面であり、軸方向の第2の側の側面が内輪230の背面である。また、外輪220の軸方向の第1の側の側面が外輪220の背面であり、軸方向の第2の側の側面が外輪220の正面である。玉軸受210は、玉の列が2列あるため、この玉軸受210が負荷できるアキシアル荷重は、単列のアンギュラ玉軸受が負荷できるアキシアル荷重よりも大きい(例えば、特許文献1参照)。
 一方、従来の玉軸受210は、第1の玉241の直径と第2の玉242の直径とが同じである。この場合、第1の玉241の列と第1の内輪軌道231と第1の外輪軌道221に係る寿命と、第2の玉242の列と第2の内輪軌道232と第2の外輪軌道222に係る寿命とが大きく相違する事がある。従来の玉軸受210の複数の第1の玉241の直径を複数の第2の玉242の直径に比べて小さくすることで、第1の玉241の列の寿命と第2の玉242の列の寿命との差を小さくすることができ、玉軸受210の寿命・剛性・トルク等を最適化することが可能となる。
特開2015-194244号公報
 本開示の玉軸受は、内輪組立体と、外輪と、を備え、前記内輪組立体は、内輪と、複数の第1の玉と、複数の第2の玉と、第1の保持器と、第2の保持器と、を備え、前記内輪は、軸方向の第1の側に第1の内輪軌道と、前記第1の内輪軌道の軸方向の第2の側に第2の内輪軌道と、を外周面に有し、前記第1の内輪軌道の軌道接触直径は、前記第2の内輪軌道の軌道接触直径よりも小さく、前記複数の第1の玉は、前記第1の内輪軌道に転動可能に配置され、前記第1の保持器は、複数の第1のポケットを有し、前記複数の第1の玉は、前記第1のポケットに摺動可能に配置され、前記複数の第2の玉は、前記第2の内輪軌道に転動可能に配置され、前記第2の保持器は、複数の第2のポケットを有し、前記複数の第2の玉は、前記第2のポケットに摺動可能に配置され、前記内輪と、前記複数の第1の玉と、前記複数の第2の玉と、前記第1の保持器と、前記第2の保持器と、が分離しないよう構成され、前記内輪組立体の、前記複数の第1の玉が構成する当該第1の玉の列の玉セットのピッチ径は、前記複数の第2の玉が構成する当該第2の玉の列の玉セットのピッチ径よりも小さく、前記外輪は、軸方向の第1の側から第2の側に向かって、第1の外輪軌道と、第1の傾斜面と、第2の傾斜面と、第2の外輪軌道と、を内周面に有し、前記外輪の内周面は、前記第1の外輪軌道から前記第2の外輪軌道まで直径が縮小することなく拡大し、前記第1の外輪軌道の軌道接触直径は、前記第2の外輪軌道の軌道接触直径よりも小さく、前記複数の第1の玉の直径は、前記複数の第2の玉の直径よりも小さく、前記複数の第1の玉は、前記第1の外輪軌道に転動可能に配置され、前記複数の第2の玉は、前記第2の外輪軌道に転動可能に配置され、前記第1の内輪軌道の呼び接触点は、前記第1の外輪軌道の呼び接触点より軸方向の第2の側に位置し、前記第2の内輪軌道の呼び接触点は、前記第2の外輪軌道の呼び接触点より軸方向の第2の側に位置し、前記第1の傾斜面は、前記外輪の内周面における前記第1の外輪軌道の軸方向の第2の側に形成され、軸方向の第1の側から第2の側に向かって拡径する傾斜面であり、前記第2の傾斜面は、前記外輪の内周面における前記第1の傾斜面の軸方向の第2の側であって前記第2の外輪軌道の軸方向の第1の側に形成され、軸方向の第1の側から第2の側に向かって拡径する傾斜面であり、前記外輪の中心軸を含む断面において前記第1の傾斜面と前記外輪の中心軸とがなす第1の劣角が、前記外輪の中心軸を含む断面において前記第2の傾斜面と前記外輪の中心軸とがなす第2の劣角よりも小さく、かつ、前記複数の第1の玉を前記第1の内輪軌道に配置し接触させた時に、前記複数の第1の玉の各第1の玉の中心が第1の大円上にあり、前記第1の玉の直径の半分を第1の小円の半径である第1の小半径とし、前記第1の玉の列の玉セットのピッチ径の半分を前記第1の大円の半径である第1の大半径とするトーラスを第1の仮想トーラスと、定義し、前記複数の第2の玉を前記第2の内輪軌道に配置し接触させた時に、前記複数の第2の玉の各第2の玉の中心が第2の大円上にあり、前記第2の玉の直径の半分を第2の小円の半径である第2の小半径とし、前記第2の玉の列の玉セットのピッチ径の半分を前記第2の大円の半径である第2の大半径とするトーラスを第2の仮想トーラスと、定義し、軸受中心軸を含む断面において、径方向の第1の側と径方向の第1の側とは周方向に180°反対側である径方向の第2の側とを定義し、径方向の第1の側の前記第1の大円と径方向の第2の側の前記第2の大円とを通る直線と径方向の第2の側の前記第2の仮想トーラスの径方向の第2の側の表面との交点を第1の端点とし、径方向の第1の側の前記第1の大円と径方向の第2の側の前記第2の大円とを通る直線と径方向の第1の側の前記第1の仮想トーラスの径方向の第1の側の表面との交点を第2の端点とし、径方向の第2の側の前記第2の外輪軌道の最も軸方向の第2の側を第3の端点とし、径方向の第1の側の前記第1の傾斜面の最も軸方向の第2の側を第4の端点とし、径方向の第1の側の前記第1の傾斜面に位置し最も前記第3の端点との距離が小さい点を第5の端点とし、径方向の第2の側の前記第2の仮想トーラスの大円を第6の端点とし、前記第1の端点と前記第2の端点とを結ぶ線分を第1の線分とし、前記第3の端点と前記第4の端点とを結ぶ線分を第2の線分とし、前記第3の端点と前記第5の端点とを結ぶ線分を第3の線分とし、前記第6の端点と前記第2の端点とを結ぶ線分を第4の線分とし、前記第6の端点と前記第5の端点とを結ぶ線分を第5の線分とし、特徴は、前記第1の線分の長さが前記第2の線分の長さに比べて大きい、又は、前記第1の線分の長さが前記第2の線分の長さに比べて小さく、かつ、前記第1の線分の長さが前記第3の線分の長さに比べて小さく、かつ、前記第4の線分の長さが前記第5の線分の長さに比べて小さい。
 本開示の玉軸受は、前記外輪は、内周面に軸方向の第1の側から第2の側に向かって、前記第1の外輪軌道と、前記第1の傾斜面と、前記第2の傾斜面と、前記第2の外輪軌道と、さらに第3の傾斜面を有し、前記外輪の内周面は、前記第1の外輪軌道から前記第3の傾斜面まで直径が縮小することなく拡大し、前記第1の劣角が、前記外輪の中心軸を含む断面において前記第3の傾斜面と前記外輪の中心軸とがなす第3の劣角よりも小さい。
 本開示の玉軸受は、前記複数の第2の玉と、前記外輪の軸方向の第2の側の正面を含み当該外輪の中心軸に垂直な仮想平面とが、軸方向において重なっている。
第1実施形態に係る玉軸受の全体構成を示す断面図である。 内輪組立体を示す断面図である。 第1仮想トーラス及び第2仮想トーラスの概略を示す模式図である。 第1実施形態に係る外輪を示す断面図である。 外輪の内周面に形成された各傾斜面を示す断面図である。 第1実施形態に係る玉軸受の内輪組立体に対する外輪の組付状況を示す断面図である。 第2実施形態に係る玉軸受の全体構成を示す断面図である。 第2実施形態に係る外輪を示す断面図である。 第2実施形態に係る玉軸受の内輪組立体に対する外輪の組付状況を示す断面図である。 第1比較例に係る玉軸受の全体構成を示す断面図である。 第1比較例に係る外輪を示す断面図である。 第1比較例に係る玉軸受の内輪組立体に対する外輪の組付状況を示す断面図である。 第2比較例に係る玉軸受の全体構成を示す断面図である。 第2比較例に係る外輪を示す断面図である。 第2比較例に係る玉軸受の内輪組立体に対する外輪の組付状況を示す断面図である。 従来の玉軸受を示す断面図である。 比較例の玉軸受における内輪組立体に対する外輪の組付状況を示す断面図である。
<本開示の発明が解決しようとする課題>
 図17は、比較例の玉軸受における内輪組立体に対する外輪の組付状況を示す断面図である。図17の複列玉軸受は、図16に示す従来の複列玉軸受210の第2の玉242を第1の玉241よりも大きくして、玉軸受210の寿命・剛性・トルク等を最適化する構成である。比較例の複列玉軸受110は、内輪組立体135と、外輪120と、を備える。内輪組立体135は、内輪130と、複数の第1の玉141と、複数の第2の玉142と、第1の保持器151と、第2の保持器152と、を備える。内輪130は、軸方向の第1の側の第1の内輪軌道131と、第1の内輪軌道131の軸方向の第2の側の第2の内輪軌道132と、を外周面に有する。第1の内輪軌道131の軌道接触直径は、第2の内輪軌道132の軌道接触直径よりも小さい。複数の第1の玉141は、第1の内輪軌道131に転動可能に配置される。第1の保持器151は、複数のポケットを有する。複数の第1の玉141は、第1の保持器151の複数のポケットに摺動可能に配置される。第1の保持器151の複数のポケットの径方向の外側の開口の内接円の直径が第1の玉141の直径よりも小さいので、複数の第1の玉141をそれぞれ第1の保持器151の各ポケットに配置して第1の内輪軌道131に配置したとき、内輪130と、複数の第1の玉141と、第1の保持器151と、は分離しない。複数の第2の玉142は、第2の内輪軌道132に転動可能に配置される。第2の保持器152は、複数のポケットを有する。複数の第2の玉142は、第2の保持器152の複数のポケットに摺動可能に配置される。第2の保持器152の複数のポケットの径方向の外側の開口の内接円の直径が第2の玉142の直径よりも小さいので、複数の第2の玉142をそれぞれ第2の保持器152の各ポケットに配置して第2の内輪軌道132に配置したとき、内輪130と、複数の第2の玉142と、第2の保持器152と、は分離しない。このように、内輪130と、複数の第1の玉141と、複数の第2の玉142と、第1の保持器151と、第2の保持器152と、が分離しないよう構成される。内輪組立体135の、複数の第1の玉141が構成する第1の玉141の列の玉セットのピッチ径は、複数の第2の玉142が構成する第2の玉142の列の玉セットのピッチ径よりも小さい。前記複数の第1の玉141の直径は、前記複数の第2の玉142の直径よりも小さい。外輪120は、軸方向の第1の側から第2の側に向かって、第1の外輪軌道121と、第1の傾斜面123と、第2の傾斜面124と、第2の外輪軌道122と、第3の傾斜面125と、を内周面に有する。外輪120の内周面は、第1の外輪軌道121から第3の傾斜面125まで直径が縮小することなく拡大する。第1の外輪軌道121の軌道接触直径は、第2の外輪軌道122の軌道接触直径よりも小さい。玉軸受110は、内輪組立体135と外輪120とを組み合わせてなる。複数の第1の玉141は、第1の外輪軌道121に転動可能に配置される。複数の第2の玉142は、第2の外輪軌道122に転動可能に配置される。第1の内輪軌道131の呼び接触点は、第1の外輪軌道121の呼び接触点より軸方向の第2の側に位置する。第2の内輪軌道132の呼び接触点は、第2の外輪軌道122の呼び接触点より軸方向の第2の側に位置する。第1の傾斜面123は、外輪120の内周面における第1の外輪軌道121の軸方向の第2の側に形成され、軸方向の第1の側から第2の側に向かって拡径する円すい面である。第2の傾斜面124は、外輪120の内周面における第1の傾斜面123の軸方向の第2の側であって第2の外輪軌道122の軸方向の第1の側に形成され、軸方向の第1の側から第2の側に向かって拡径する円すい面である。第3の傾斜面125は、外輪120の内周面における第2の外輪軌道122の軸方向の第2の側に形成され、外輪120の正面に隣接し、軸方向の第1の側から第2の側に向かって拡径する円すい面である。
 このような構成の玉軸受110では、図17に示すように、外輪120を内輪組立体135へ組み付ける際に、外輪120の中心軸C102が内輪組立体135の中心軸C103に対して傾いていると、第1の玉141が第1の傾斜面123と第1の内輪軌道131とに強く挟まれて接触して第1の玉141がすべることができず、スムーズに組付けできない(傾いた状態で組付けられずに止まってしまう)場合があった。このような場合において、内輪組立体135に外輪120を無理に押し込むと、第1の玉141が外輪120に噛み込んで、第1の玉141が傷つく場合があった。
 本開示は、玉軸受において、内輪組立体に対する外輪の組付け性を向上させ、玉軸受の損傷を抑制することを目的とする。
<本開示の発明の効果>
 本開示の玉軸受によれば、内輪組立体に対する外輪の組付け性を向上させ、玉軸受の損傷を抑制することができる。
<本開示の発明の実施形態の概要>
 以下、本開示の発明の実施形態の概要を列記して説明する。
 (1)本開示の玉軸受は、内輪組立体と、外輪と、を備え、前記内輪組立体は、内輪と、複数の第1の玉と、複数の第2の玉と、第1の保持器と、第2の保持器と、を備え、前記内輪は、軸方向の第1の側に第1の内輪軌道と、前記第1の内輪軌道の軸方向の第2の側に第2の内輪軌道と、を外周面に有し、前記第1の内輪軌道の軌道接触直径は、前記第2の内輪軌道の軌道接触直径よりも小さく、前記複数の第1の玉は、前記第1の内輪軌道に転動可能に配置され、前記第1の保持器は、複数の第1のポケットを有し、前記複数の第1の玉は、前記第1のポケットに摺動可能に配置され、前記複数の第2の玉は、前記第2の内輪軌道に転動可能に配置され、前記第2の保持器は、複数の第2のポケットを有し、前記複数の第2の玉は、前記第2のポケットに摺動可能に配置され、前記内輪と、前記複数の第1の玉と、前記複数の第2の玉と、前記第1の保持器と、前記第2の保持器と、が分離しないよう構成され、前記内輪組立体の、前記複数の第1の玉が構成する当該第1の玉の列の玉セットのピッチ径は、前記複数の第2の玉が構成する当該第2の玉の列の玉セットのピッチ径よりも小さく、前記外輪は、軸方向の第1の側から第2の側に向かって、第1の外輪軌道と、第1の傾斜面と、第2の傾斜面と、第2の外輪軌道と、を内周面に有し、前記外輪の内周面は、前記第1の外輪軌道から前記第2の外輪軌道まで直径が縮小することなく拡大し、前記第1の外輪軌道の軌道接触直径は、前記第2の外輪軌道の軌道接触直径よりも小さく、前記複数の第1の玉の直径は、前記複数の第2の玉の直径よりも小さく、前記複数の第1の玉は、前記第1の外輪軌道に転動可能に配置され、前記複数の第2の玉は、前記第2の外輪軌道に転動可能に配置され、前記第1の内輪軌道の呼び接触点は、前記第1の外輪軌道の呼び接触点より軸方向の第2の側に位置し、前記第2の内輪軌道の呼び接触点は、前記第2の外輪軌道の呼び接触点より軸方向の第2の側に位置し、前記第1の傾斜面は、前記外輪の内周面における前記第1の外輪軌道の軸方向の第2の側に形成され、軸方向の第1の側から第2の側に向かって拡径する傾斜面であり、前記第2の傾斜面は、前記外輪の内周面における前記第1の傾斜面の軸方向の第2の側であって前記第2の外輪軌道の軸方向の第1の側に形成され、軸方向の第1の側から第2の側に向かって拡径する傾斜面であり、前記外輪の中心軸を含む断面において前記第1の傾斜面と前記外輪の中心軸とがなす第1の劣角が、前記外輪の中心軸を含む断面において前記第2の傾斜面と前記外輪の中心軸とがなす第2の劣角よりも小さく、かつ、前記複数の第1の玉を前記第1の内輪軌道に配置し接触させた時に、前記複数の第1の玉の各第1の玉の中心が第1の大円上にあり、前記第1の玉の直径の半分を第1の小円の半径である第1の小半径とし、前記第1の玉の列の玉セットのピッチ径の半分を前記第1の大円の半径である第1の大半径とするトーラスを第1の仮想トーラスと、定義し、前記複数の第2の玉を前記第2の内輪軌道に配置し接触させた時に、前記複数の第2の玉の各第2の玉の中心が第2の大円上にあり、前記第2の玉の直径の半分を第2の小円の半径である第2の小半径とし、前記第2の玉の列の玉セットのピッチ径の半分を前記第2の大円の半径である第2の大半径とするトーラスを第2の仮想トーラスと、定義し、軸受中心軸を含む断面において、径方向の第1の側と径方向の第1の側とは周方向に180°反対側である径方向の第2の側とを定義し、径方向の第1の側の前記第1の大円と径方向の第2の側の前記第2の大円とを通る直線と径方向の第2の側の前記第2の仮想トーラスの径方向の第2の側の表面との交点を第1の端点とし、径方向の第1の側の前記第1の大円と径方向の第2の側の前記第2の大円とを通る直線と径方向の第1の側の前記第1の仮想トーラスの径方向の第1の側の表面との交点を第2の端点とし、径方向の第2の側の前記第2の外輪軌道の最も軸方向の第2の側を第3の端点とし、径方向の第1の側の前記第1の傾斜面の最も軸方向の第2の側を第4の端点とし、径方向の第1の側の前記第1の傾斜面に位置し最も前記第3の端点との距離が小さい点を第5の端点とし、径方向の第2の側の前記第2の仮想トーラスの大円を第6の端点とし、前記第1の端点と前記第2の端点とを結ぶ線分を第1の線分とし、前記第3の端点と前記第4の端点とを結ぶ線分を第2の線分とし、前記第3の端点と前記第5の端点とを結ぶ線分を第3の線分とし、前記第6の端点と前記第2の端点とを結ぶ線分を第4の線分とし、前記第6の端点と前記第5の端点とを結ぶ線分を第5の線分とし、特徴は、前記第1の線分の長さが前記第2の線分の長さに比べて大きい、又は、前記第1の線分の長さが前記第2の線分の長さに比べて小さく、かつ、前記第1の線分の長さが前記第3の線分の長さに比べて小さく、かつ、前記第4の線分の長さが前記第5の線分の長さに比べて小さい。
 このような構成の玉軸受では、内輪組立体に対する外輪の組付け性を向上させ、玉軸受の損傷を抑制することができる。
 (2)本開示の玉軸受は、好ましくは、前記外輪は、内周面に軸方向の第1の側から第2の側に向かって、前記第1の外輪軌道と、前記第1の傾斜面と、前記第2の傾斜面と、前記第2の外輪軌道と、さらに第3の傾斜面を有し、前記外輪の内周面は、前記第1の外輪軌道から前記第3の傾斜面まで直径が縮小することなく拡大し、前記第1の劣角が、前記外輪の中心軸を含む断面において前記第3の傾斜面と前記外輪の中心軸とがなす第3の劣角よりも小さい。
 (3)本開示の玉軸受は、好ましくは、前記複数の第2の玉と、前記外輪の軸方向の第2の側の正面を含み当該外輪の中心軸に垂直な仮想平面とが、軸方向において重なっている。
<本開示の発明の実施形態の詳細>
 以下、本開示の発明の実施形態を説明する。
〔玉軸受について〕
 図1は、第1実施形態に係る玉軸受の全体構成を示す断面図である。図1に示す玉軸受10は、複列玉軸受のアンギュラ玉軸受であって、各玉の列の軸受中心軸と作用線との劣角を同じ方向にし、各玉の列の玉セットのピッチ径を異ならせ、単列玉軸受のアンギュラ玉軸受よりも大きなアキシアル荷重を負荷できる玉軸受である。このような玉軸受は、タンデム形と称される。玉軸受10は、例えば、自動車等に搭載されるデファレンシャルギヤ装置に用いられる軸受装置である差動機構(ギヤ機構)を構成するピニオン軸をケースに対して回転自在に支持する用途に使用される。玉軸受10は、内輪組立体35と、外輪20と、を備える。以下の説明において、玉軸受10の中心軸は、中心軸C1という。同様に、外輪20の中心軸は、中心軸C2といい、内輪30の中心軸は、中心軸C3という。外輪20の中心軸C2と内輪30の中心軸C3とは、内輪組立体35と外輪20とを組み合せた状態にある玉軸受10の中心軸C1と一致する。以下の説明では、玉軸受10の中心軸C1に沿った一の方向を軸方向の第1の側と称し、玉軸受10の中心軸に沿った軸方向の第1の側とは180°反対側の方向を軸方向の第2の側と称する。また、以下の説明では、玉軸受10の中心軸C1を含む断面において、中心軸C1に垂直な一の方向を径方向の第1の側と称し、中心軸C1に垂直な径方向の第1の側とは180°反対側の方向を径方向の第2の側と称する。
(内輪組立体)
 図2は、内輪組立体を示す断面図である。内輪組立体35は、内輪30と、複数の第1の玉41と、複数の第2の玉42と、第1の保持器51と、第2の保持器52と、を備える。
 図2に示す内輪30は、高炭素クロム軸受鋼や炭素鋼、合金鋼等の鋼材でできている。内輪30は、円筒状である。内輪30は、軸方向の第1の側から第2の側に向けて、第1の肩と、第1の内輪軌道31と、第2の肩と、第2の内輪軌道32と、第3の肩と、を外周面に有する。第1の肩は、外周面が円筒面である。第1の内輪軌道31は、後述する第1の玉41の直径の半分より少し大きい溝半径を有する軌道溝である。第2の肩は、外周面が軸方向の第1の側から第2の側に向けて直径が拡大する円すい面とそれに続く円筒面である。第2の内輪軌道32は、後述する第2の玉42の直径の半分より少し大きい溝半径を有する軌道溝である。第3の肩は、外周面が円筒面である。第1の内輪軌道31の軌道接触直径は、第2の内輪軌道32の軌道接触直径よりも小さい。第1の肩の直径は、第1の内輪軌道31の軌道接触直径よりも大きく、第2の肩の直径よりも小さい。第2の肩の直径は、第2の内輪軌道32の直径よりも大きく、第3の肩の直径よりも小さい。第1の玉41は、高炭素クロム軸受鋼等の鋼材でできている。第2の玉42は、高炭素クロム軸受鋼等の鋼材でできている。第1の玉41の直径は、第2の玉42の直径よりも小さい。
 第1の保持器51は、環状に形成されている。第1の保持器51は、第1の環状体51aと、第2の環状体51bと、複数の第1の柱51cとを有する。第1の環状体51aは、複数の第1の柱51cの軸方向の第1の側にある。第2の環状体51bは、複数の第1の柱51cの軸方向の第2の側にある。複数の第1の柱51cは、第1の環状体51aに第1の環状体51aの軸方向の第2の側につながる。複数の第1の柱51cは、第2の環状体51bに第2の環状体51bの軸方向の第1の側につながる。複数の第1の柱51cは、第1の環状体51aの周方向に等間隔で配置される。第1の環状体51aの外周面の直径は、第2の環状体51bの外周面の直径よりも小さい。第1の環状体51aの内周面の直径は、第2の環状体51bの内周面の直径よりも小さい。第1の環状体51aと第2の環状体51bと周方向に隣り合う第1の柱51cとにより囲まれている領域が、第1の玉41を保持する複数の第1のポケット53を構成する。第1の保持器51の複数の第1のポケット53の径方向の外側の開口の内接円の直径は、第1の玉41の直径よりも小さい。第1の保持器51は、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、フェノール樹脂等の合成樹脂製である。
 第2の保持器52は、環状に形成されている。第2の保持器52は、第3の環状体52bと、第4の環状体52aと、複数の第2の柱52cとを有する。第3の環状体52bは、複数の第2の柱52cの軸方向の第1の側にある。第4の環状体52aは、複数の第2の柱52cの軸方向の第2の側にある。複数の第2の柱52cは、第3の環状体52bに第3の環状体52bの軸方向の第2の側につながる。複数の第2の柱52cは、第4の環状体52aに第4の環状体52aの軸方向の第1の側につながる。複数の第2の柱52cは、第3の環状体52bの周方向に等間隔で配置される。第3の環状体52bの外周面の直径は、第4の環状体52aの外周面の直径よりも小さい。第3の環状体52bの内周面の直径は、第4の環状体52aの内周面の直径よりも小さい。第3の環状体52bと第4の環状体52aと周方向に隣り合う第2の柱52cとにより囲まれている領域が、第2の玉42を保持する複数の第2のポケット54を構成する。第2の保持器52の複数の第2のポケット54の径方向の外側の開口の内接円の直径は、第2の玉42の直径よりも小さい。第2の保持器52は、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、フェノール樹脂等の合成樹脂製である。
 図2に示すように、第1の玉41の列を構成する複数の第1の玉41は、内輪30の第1の内輪軌道31に転動可能に配置される。複数の第1の玉41は、第1の保持器51の複数の第1のポケット53に摺動可能に配置される。第1のポケット53は、周方向に沿って複数形成されており、これにより、第1の保持器51は、複数の第1の玉41を周方向に沿って等間隔で保持することができる。第1の保持器51の複数の第1のポケット53の径方向の外側の開口の内接円の直径は、第1の玉41の直径よりも小さいので、第1の玉41は、第1の保持器51の第1のポケット53から径方向の外側に脱落しない。また、第1の肩の外周面の円筒面の直径は、第1の内輪軌道31の軌道接触直径よりも大きい。また、第2の肩の外周面の円すい面の最小の直径は、第1の内輪軌道31の軌道接触直径よりも大きい。このため、複数の第1の玉41をそれぞれ第1の保持器51の各第1のポケット53に配置して第1の内輪軌道31に配置したとき、内輪30と、複数の第1の玉41と、第1の保持器51と、は分離しない。
 第2の玉42の列を構成する複数の第2の玉42は、内輪30の第2の内輪軌道32に転動可能に配置される。複数の第2の玉42は、第2の保持器52の複数の第2のポケット54に摺動可能に配置される。第2のポケット54は、周方向に沿って複数形成されており、これにより、第2の保持器52は、複数の第2の玉42を周方向に沿って等間隔で保持することができる。第2の保持器52の複数の第2のポケット54の径方向の外側の開口の内接円の直径は、第2の玉42の直径よりも小さいので、第2の玉42は、第2の保持器52の第2のポケット54から径方向の外側に脱落しない。また、第2の肩の外周面の円筒面の直径は、第2の内輪軌道32の軌道接触直径よりも大きい。また、第3の肩の外周面の円筒面の直径は、第2の内輪軌道32の軌道接触直径よりも大きい。このため、複数の第2の玉42をそれぞれ第2の保持器52の各第2のポケット54に配置して第2の内輪軌道32に配置したとき、内輪30と、複数の第2の玉42と、第2の保持器52と、は分離しない。
 図2に示すように、内輪組立体35は、内輪30と、複数の第1の玉41と、複数の第2の玉42と、第1の保持器51と、第2の保持器52と、が分離しないように構成される。換言すると、玉軸受10から外輪20を取り外したものが、内輪組立体35である。内輪組立体35の、複数の第1の玉41が構成する第1の玉41の列の玉セットのピッチ径は、複数の第2の玉42が構成する第2の玉42の列の玉セットのピッチ径よりも小さい。
 図3に示すように、説明の便宜上、第1の仮想トーラスT1及び第2の仮想トーラスT2を規定する。第1の仮想トーラスT1は、第1の内輪軌道31に転動可能に配置された複数の第1の玉41の転動領域を表す仮想の立体形状である。第1の仮想トーラスT1は、内輪組立体35と外輪20とを組み付けた時に第1の内輪軌道31に、各第1の玉41が配置され接触された時の、各第1の玉41の中心を含む断面の外形である第1の小円SC1の半径を第1の小半径Sr1とし、各第1の玉41の中心を結ぶ仮想円である第1の大円BC1の半径を第1の大半径Br1として規定される。換言すると、第1の小半径Sr1は、第1の玉41の半径であり、第1の玉41の直径の半分であり、第1の大半径Br1は、複数の第1の玉41によって構成されている第1の玉41の列の玉セットのピッチ径の半分である。複数の第1の玉41の各第1の玉41の中心は第1の大円BC1上に位置する。なお、本説明では、第1の内輪軌道31に配置された第1の玉41を基準として第1の仮想トーラスT1を規定しているが、第1の仮想トーラスT1は、内輪組立体35と外輪20とを組み付けた時に第1の外輪軌道21に、各第1の玉41が配置され接触された時の、第1の玉41を基準として規定してもよい。
 第2の仮想トーラスT2は、第2の内輪軌道32に転動可能に配置された複数の第2の玉42の転動領域を表す仮想の立体形状である。第2の仮想トーラスT2は、内輪組立体35と外輪20とを組み付けた時に第2の内輪軌道32に、各第2の玉42が配置され接触された時の、各第2の玉42の中心を含む断面の外形である第2の小円SC2の半径を第2の小半径Sr2とし、各第2の玉42の中心を結ぶ仮想円である第2の大円BC2の半径を第2の大半径Br2として規定される。換言すると、第2の小半径Sr2は、第2の玉42の半径であり、第2の玉42の直径の半分であり、第2の大半径Br2は、複数の第2の玉42によって構成されている第2の玉42の列の玉セットのピッチ径の半分である。複数の第2の玉42の各第2の玉42の中心は第2の大円BC2上に位置する。なお、本説明では、第2の内輪軌道32に配置された第2の玉42を基準として第2の仮想トーラスT2を規定しているが、第2の仮想トーラスT2は、内輪組立体35と外輪20とを組み付けた時に第2の外輪軌道22に、各第2の玉42が配置され接触された時の、第2の玉42を基準として規定してもよい。
 図2に示すように、内輪組立体35について、説明の便宜上、第1の直線L1を規定する。第1の直線L1は、内輪30の中心軸C3を含む断面において、中心軸C3と、径方向の第1の側の第1の大円BC1と、径方向の第2の側の第2の大円BC2と、に交差する直線である。径方向の第1の側は、内輪30の中心軸C3を含む断面における一つの径方向の方向で、径方向の第2の側は、内輪30の中心軸C3を含む断面における径方向の第1の側とは内輪30の中心軸C3を中心に周方向に180°反対側の径方向の方向である。
 図2に示すように、内輪組立体35について、説明の便宜上、点a及び点bを規定する。点a(第1の端点)は、内輪30の中心軸C3を含む断面において、第1の直線L1と、径方向の第2の側の第2の仮想トーラスT2の径方向の第2の側の表面との交点である。点b(第2の端点)は、内輪30の中心軸C3を含む断面において、第1の直線L1と、径方向の第1の側の第1の仮想トーラスT1の径方向の第1の側の表面との交点である。以下の説明では、点a(第1の端点)及び点b(第2の端点)を端点とする線分を第1の線分abと称する。第1の線分abは、第1の直線L1の一部分である。内輪組立体35の周方向において、点a及び点bの位相は180°異なっている。
(外輪の詳細形状)
 図4は、第1実施形態に係る外輪を示す断面図である。図5は、外輪20の内周面に形成された各傾斜面を示す断面図である。外輪20は、高炭素クロム軸受鋼や炭素鋼、合金鋼等の鋼材でできている。外輪20は、軸方向の第1の側から第2の側に向かって、第4の肩と、第1の外輪軌道21と、第1の傾斜面23と、第2の傾斜面24と、第2の外輪軌道22と、第3の傾斜面25と、を内周面に有する。外輪20の内周面は、第1の外輪軌道21から第3の傾斜面25まで直径が縮小することなく拡大する。第1の外輪軌道21の軌道接触直径は、第2の外輪軌道22の軌道接触直径よりも小さい。
 第1の傾斜面23は、外輪20の内周面における第1の外輪軌道21の軸方向の第2の側に形成され、軸方向の第1の側から第2の側に向かって拡径する円すい面である。第2の傾斜面24は、外輪20の内周面における第1の傾斜面23の軸方向の第2の側であって第2の外輪軌道22の軸方向の第1の側に形成され、軸方向の第1の側から第2の側に向かって拡径する円すい面である。第3の傾斜面25は、外輪20の内周面における第2の外輪軌道22の軸方向の第2の側に形成され、外輪20の正面に隣接し、軸方向の第1の側から第2の側に向かって拡径する円すい面である。第2の傾斜面24の軸方向の長さは、第1の傾斜面23の軸方向の長さの1/10~1/2が好ましい。第3の傾斜面25の軸方向の長さは、第1の傾斜面23の軸方向の長さの1/10~1/2が好ましい。
 外輪20の中心軸C2を含む断面において、第1の傾斜面23と外輪20の中心軸C2(図5においては、外輪20の中心軸C2を中心とする円筒面)とがなす第1の劣角θ1は、外輪20の中心軸C2を含む断面において第2の傾斜面24と外輪20の中心軸C2(図5においては、外輪20の中心軸C2を中心とする円筒面)とがなす第2の劣角θ2よりも小さい。外輪20の中心軸C2を含む断面において、第1の劣角θ1は、第3の傾斜面25と外輪20の中心軸C2(図5においては、外輪20の中心軸C2を中心とする円筒面)とがなす第3の劣角θ3よりも小さい。第1の劣角θ1は、12°以下が好ましい。第2の劣角θ2は、25°以上75°以下が好ましい。第3の劣角θ3は、25°以上75°以下が好ましい。
 図4に示すように、外輪20について、説明の便宜上、第2の直線L2を規定する。図4では、外輪20に第1の仮想トーラスT1及び第2の仮想トーラスT2を配置している。第1の仮想トーラスT1は、内輪組立体35と外輪20とを組み付けた時の第1の外輪軌道21に配置された複数の第1の玉41の中心が第1の大円BC1上に一致するよう配置している。第2の仮想トーラスT2は、内輪組立体35と外輪20とを組み付けた時の第2の外輪軌道22に配置された複数の第2の玉42の中心が第2の大円BC2上に一致するよう配置している。第2の直線L2は、外輪20の中心軸C2を含む断面において、中心軸C2と、径方向の第2の側の第2の外輪軌道22の最も軸方向の第2の側と、径方向の第1の側の第1の傾斜面23の最も軸方向の第2の側と、に交差する直線である。
 図4に示すように、外輪20について、説明の便宜上、点c、点dを規定する。点c(第3の端点)は、外輪20の中心軸C2を含む断面において、第2の直線L2と、第2の外輪軌道22の最も軸方向の第2の側とが交差する点である。点d(第4の端点)は、外輪20の中心軸C2を含む断面において、第2の直線L2と、第1の傾斜面23の最も軸方向の第2の側とが交差する点である。以下の説明では、点c(第3の端点)と点d(第4の端点)とを端点とする線分を第2の線分cdと称する。第2の線分cdは、第2の直線L2の一部分である。外輪20の周方向において、点c及び点dの位相は180°異なっている。点cの位相は、点aの位相と同じであり、点dの位相は、点bの位相と同じである。
(第1実施形態に係る玉軸受)
 図6は、第1実施形態に係る玉軸受の内輪組立体に対する外輪の組付状況を示す断面図である。図1及び図6には、第1実施形態に係る玉軸受10である第1の玉軸受10Aを示している。第1の玉軸受10Aは、第1実施形態に係る外輪20である第1の外輪20Aを有している。なお、本説明では、第1の外輪20Aにおける第1の外輪軌道21を第1の外輪軌道21A、第2の外輪軌道22を第2の外輪軌道22A、第1の傾斜面23を第1の傾斜面23A、第2の傾斜面24を第2の傾斜面24A、第3の傾斜面25を第3の傾斜面25A、とそれぞれ称する。本説明では、第1の玉軸受10Aを単に玉軸受10Aとも称し、第1の外輪20Aを単に外輪20Aとも称する。
 図1に示すように、第1の玉軸受10Aは、内輪組立体35と第1の外輪20Aとを組み合わせてなる。複数の第1の玉41は第1の外輪軌道21Aに転動可能に配置される。複数の第2の玉42は第2の外輪軌道22Aに転動可能に配置される。第1の内輪軌道31の呼び接触点は第1の外輪軌道21Aの呼び接触点より軸方向の第2の側に位置する。第2の内輪軌道32の呼び接触点は第2の外輪軌道22Aの呼び接触点より軸方向の第2の側に位置する。内輪30の軸方向の第1の側の側面が内輪30の正面であり、内輪30の軸方向の第2の側の側面が内輪30の背面である。外輪20Aの軸方向の第1の側の側面が外輪20Aの背面であり、外輪20Aの軸方向の第2の側の側面が外輪20Aの正面である。
 図6に示すように、第1の玉軸受10Aでは、第1の線分abの長さが、第2の線分cdの長さに比べて大きい。
 図6に示す第1の外輪20A及び内輪組立体35は、第1の外輪20Aの中心軸C2及び内輪30の中心軸C3を含む断面において、点a(第1の端点)と点c(第3の端点)とが一致する状態で配置されている。この状態から点c(第3の端点)を通る第2の外輪軌道22Aの最も軸方向の第2の側の接線を中心として内輪組立体35を回転させた場合、第1の線分abの長さが、第2の線分cdの長さに比べて大きいため、径方向の第1の側の第1の玉41は、第1の傾斜面23Aに入り込むことができない。つまり、第1の玉軸受10Aは、第1の外輪20Aの中心軸C2に対して、内輪30の中心軸C3が傾斜している状態では、第1の外輪20Aと内輪組立体35とを組付けることが困難である。このため、内輪組立体35に第1の外輪20Aを組み付ける際に、第1の玉41が第1の傾斜面23Aに接して引っ掛かる可能性が低い。つまり、このような構成の第1の玉軸受10Aでは、第1の外輪20Aの中心軸C2に対して、内輪30の中心軸C3が傾斜している状態では、第1の外輪20A及び内輪組立体35を組付けることが困難である。また、このような構成では、第1の外輪20Aを内輪組立体35に無理に押し込む必要が生じにくく、径方向の第1の側の第1の玉41が第1の傾斜面23Aに擦れて傷つく可能性を低く抑えることができる。本開示では、外輪20と内輪組立体35とを組み付ける際に第1の玉41を傷つける可能性が低い場合に、組付け性が優れていると評価する。このため、第1の玉軸受10Aは、組付け性に優れていると評価できる。
(第2実施形態に係る玉軸受)
 図7は、第2実施形態に係る玉軸受の全体構成を示す断面図である。図8は、第2実施形態に係る外輪を示す断面図である。図9は、第2実施形態に係る玉軸受の内輪組立体に対する外輪の組付状況を示す断面図である。図7には、第2実施形態に係る玉軸受10である第2の玉軸受10Bを示している。第2の玉軸受10Bは、第2実施形態に係る外輪20である第2の外輪20B(図8参照)を有している点で、第1の玉軸受10Aと異なっている。なお、本説明では、第2の外輪20Bにおける第1の外輪軌道21を第1の外輪軌道21B、第2の外輪軌道22を第2の外輪軌道22B、第1の傾斜面23を第1の傾斜面23B、第2の傾斜面24を第2の傾斜面24B、第3の傾斜面25を第3の傾斜面25B、とそれぞれ称する。本説明では、第2の玉軸受10Bを単に玉軸受10Bとも称し、第2の外輪20Bを単に外輪20Bとも称する。
 第2の外輪20Bについて、説明の便宜上、点eを規定する(図8参照)。点e(第5の端点)は、第2の外輪20Bの中心軸C2を含む断面において、径方向の第1の側の第1の傾斜面23上に位置する点であって、点c(第3の端点)との距離が最短となる点である。以下の説明では、点c(第3の端点)と点e(第5の端点)とを端点とする線分を第3の線分ceと称する。外輪20の周方向において、点c及び点eの位相は180°異なっている。点eの位相は、点dの位相と同じである。
 第2の外輪20Bについて、説明の便宜上、さらに点fを規定する(図8参照)。図8では、外輪20Bに第1の仮想トーラスT1及び第2の仮想トーラスT2を配置している。第1の仮想トーラスT1は、内輪組立体35と外輪20Bとを組み付けた時の第1の外輪軌道21Bに配置された複数の第1の玉41の中心が第1の大円BC1上に一致するよう配置している。第2の仮想トーラスT2は、内輪組立体35と外輪20Bとを組み付けた時の第2の外輪軌道22Bに配置された複数の第2の玉42の中心が第2の大円BC2上に一致するよう配置している。
 点f(第6の端点)は、第2の外輪20Bの中心軸C2を含む断面において、第1の直線L1と、径方向の第2の側の第2の大円BC2との交点である。点f(第6の端点)は、第2の玉42の中心をこの中心軸C3を含む断面上に示した時の第2の玉42の中心である。以下の説明では、点f及び点bを端点とする線分を第4の線分fbと称する。以下の説明では、点f及び点eを端点とする線分を第5の線分feと称する。内輪組立体35の周方向において、点fの位相は、点a及び点cの位相と同じである。
 第2の玉軸受10Bでは、第1の線分abの長さが、第2の線分cdの長さに比べて小さく、かつ、第3の線分ceの長さに比べて小さい。さらに、第2の玉軸受10Bでは、第4の線分fbの長さが、第5の線分feの長さに比べて小さい。
 図9に示す第2の外輪20B及び内輪組立体35は、第2の外輪20Bの中心軸C2及び内輪30の中心軸C3を含む断面において、点a(第1の端点)と点c(第3の端点)とが一致する状態で配置されている。この状態から点c(第3の端点)を通る第2の外輪軌道22Bの最も軸方向の第2の側の接線を中心として内輪組立体35を回転させた場合、第1の玉41は、第1の線分abの長さが、第2の線分cdの長さに比べて小さく、かつ、第3の線分ceの長さに比べて小さいため、第1の傾斜面23Bに入り込むことができる。さらに点c(第3の端点)を通る第2の外輪軌道22Bの最も軸方向の第2の側の接線を中心として内輪組立体35を回転させると、径方向の第2の側の第2の玉42が第2の外輪軌道22Bにはまり込む。この後、内輪組立体35は、点f(第6の端点)を通る第2の大円BC2の接線を中心として回転する。この時に、第1の玉41は、第4の線分fbの長さが、第5の線分feの長さに比べて小さいため、第1の傾斜面23Bを超えて、第1の外輪軌道21Bに入り込むことができる。つまり、第2の玉軸受10Bでは、内輪組立体35に外輪20Bを組み付ける際に、第1の玉41が第1の傾斜面23Bに接して引っ掛かる可能性が低い。つまり、このような構成の第2の玉軸受10Bでは、第2の外輪20Bの中心軸C2に対して、内輪30の中心軸C3が傾斜している状態で、第2の外輪20B及び内輪組立体35を組付けたとしても、引っ掛かることなく容易に組付けることができる。また、第2の外輪20Bが内輪組立体35に引っ掛かる可能性が低いため、第2の外輪20Bを内輪組立体35に無理に押し込む必要が生じにくく、第1の玉41が第1の傾斜面23Bに擦れて傷つく可能性を低く抑えることができる。このため、第2の玉軸受10Bは、組付け性に優れていると評価できる。
(第1比較例に係る玉軸受)
 図10は、第1比較例に係る玉軸受の全体構成を示す断面図である。図11は、第1比較例に係る外輪を示す断面図である。図12は、第1比較例に係る玉軸受の内輪組立体に対する外輪の組付状況を示す断面図である。図10には、第1比較例に係る玉軸受60である第3の玉軸受60Aを示している。図10に示す第3の玉軸受60Aは、第3の外輪70Aを有している点で、本開示の玉軸受10と異なっている。なお、第3の玉軸受60Aは、本開示の玉軸受10と共通する内輪組立体35を備えている。以下の説明において、第3の玉軸受60Aの中心軸は、中心軸C4という。同様に、第3の外輪70Aの中心軸は、中心軸C5といい、内輪30の中心軸は、中心軸C3という。第3の外輪70Aの中心軸C5と内輪30の中心軸C3とは、内輪組立体35と第3の外輪70Aとを組み合せた状態にある第3の玉軸受60Aの中心軸C4と一致する。
 図10及び図11に示すように、第3の外輪70Aの内周面には、第1の外輪軌道71及び第2の外輪軌道72の他に、第1の傾斜面73及び第2の傾斜面74が形成されている。なお、本説明では、第3の外輪70Aにおける第1の外輪軌道71を第1の外輪軌道71A、第2の外輪軌道72を第2の外輪軌道72A、第1の傾斜面73を第1の傾斜面73A、第2の傾斜面74を第2の傾斜面74A、第3の傾斜面75を第3の傾斜面75A、とそれぞれ称する。本説明では、第3の玉軸受60Aを単に玉軸受60Aとも称し、第3の外輪70Aを単に外輪70Aとも称する。
 第1の傾斜面73Aは、第3の外輪70Aの内周面における第1の外輪軌道71Aの軸方向の第2の側に形成され、軸方向の第1の側から第2の側に向かって拡径する円すい面である。第2の傾斜面74Aは、第3の外輪70Aの内周面における第1の傾斜面73Aの軸方向の第2の側であって第2の外輪軌道72Aの軸方向の第1の側に形成され、軸方向の第1の側から第2の側に向かって拡径する円すい面である。第3の傾斜面75Aは、第3の外輪70Aの内周面における第2の外輪軌道72Aの軸方向の第2の側に形成され、第3の外輪70Aの正面に隣接し、軸方向の第1の側から第2の側に向かって拡径する円すい面である。
 第3の外輪70Aの中心軸C5を含む断面において、第1の傾斜面73Aと外輪70Aの中心軸C5とがなす第1の劣角は、外輪70Aの中心軸C5を含む断面において第2の傾斜面74Aと第3の外輪70Aの中心軸C5とがなす第2の劣角よりも小さい。第3の外輪70Aの中心軸C5を含む断面において、第1の劣角は、第3の傾斜面75Aと第3の外輪70Aの中心軸C5とがなす第3の劣角よりも小さい。
 第3の外輪70Aについて、第2の外輪20B(図8参照)と同様の点d、点eを規定する(図11参照)。
 第3の玉軸受60Aは、第1の線分abの長さが、第2の線分cdの長さに比べて小さく、かつ、第3の線分ceの長さに比べて大きい。第3の玉軸受60Aは、このような寸法関係を有する点で、本開示の玉軸受10(第1の玉軸受10A及び第2の玉軸受10B)と異なっている。比較例に係る第3の玉軸受60Aは、本開示の玉軸受10には含まれない。
 図12に示す第3の外輪70A及び内輪組立体35は、第3の外輪70Aの中心軸C5及び内輪30の中心軸C3を含む断面において、点a(第1の端点)と点c(第3の端点)とが一致する状態で配置されている。この状態から点c(第3の端点)を通る第2の外輪軌道72Aの最も軸方向の第2の側の接線を中心として内輪組立体35を回転させた場合、径方向の第1の側の第1の玉41は、第1の傾斜面73Aに入り込むことはできるものの、第1の傾斜面73Aを超えて、第1の外輪軌道71Aに入り込むことができない。つまり、比較例に係る第3の玉軸受60Aでは、内輪組立体35に第3の外輪70Aを組み付ける際に、第1の玉41が第1の傾斜面73Aに接して引っ掛かる可能性がある。また、引っ掛かった状態の第3の外輪70Aを内輪組立体35に無理に押し込んだ場合には、第1の玉41が第1の傾斜面73Aに擦れて傷つく可能性がある。このため、第3の玉軸受60Aは、組付け性が良くないと評価できる。
(第2比較例に係る玉軸受)
 図13は、第2比較例に係る玉軸受の全体構成を示す断面図である。図14は、第2比較例に係る外輪を示す断面図である。図15は、第2比較例に係る玉軸受の内輪組立体に対する外輪の組付状況を示す断面図である。図13には、第2比較例に係る玉軸受60である第4の玉軸受60Bを示している。図13に示す第4の玉軸受60Bは、第4の外輪70Bを有している点で、本開示の玉軸受10と異なっている。なお、第4の玉軸受60Bは、本開示の玉軸受10と共通する内輪組立体35を備えている。以下の説明において、第4の玉軸受60Bの中心軸は、中心軸C4という。同様に、第4の外輪70Bの中心軸は、中心軸C5といい、内輪30の中心軸は、中心軸C3という。第4の外輪70Bの中心軸C5と内輪30の中心軸C3とは、内輪組立体35と第4の外輪70Bとを組み合せた状態にある第4の玉軸受60Bの中心軸C4と一致する。
 図13及び図14に示すように、第4の外輪70Bの内周面には、第1の外輪軌道71及び第2の外輪軌道72の他に、第1の傾斜面73及び第2の傾斜面74が形成されている。なお、本説明では、第4の外輪70Bにおける第1の外輪軌道71を第1の外輪軌道71B、第2の外輪軌道72を第2の外輪軌道72B、第1の傾斜面73を第1の傾斜面73B、第2の傾斜面74を第2の傾斜面74B、第3の傾斜面75を第3の傾斜面75B、とそれぞれ称する。本説明では、第4の玉軸受60Bを単に玉軸受60Bとも称し、第4の外輪70Bを単に外輪70Bとも称する。
 第1の傾斜面73Bは、第4の外輪70Bの内周面における第1の外輪軌道71Bの軸方向の第2の側に形成され、軸方向の第1の側から第2の側に向かって拡径する円すい面である。第2の傾斜面74Bは、第4の外輪70Bの内周面における第1の傾斜面73Bの軸方向の第2の側であって第2の外輪軌道72Bの軸方向の第1の側に形成され、軸方向の第1の側から第2の側に向かって拡径する円すい面である。第3の傾斜面75Bは、第4の外輪70Bの内周面における第2の外輪軌道72Bの軸方向の第2の側に形成され、第4の外輪70Bの正面に隣接し、軸方向の第1の側から第2の側に向かって拡径する円すい面である。
 第4の外輪70Bの中心軸C5を含む断面において、第1の傾斜面73Bと第4の外輪70Bの中心軸C5とがなす第1の劣角は、第4の外輪70Bの中心軸C5を含む断面において第2の傾斜面74Bと第4の外輪70Bの中心軸C5とがなす第2の劣角よりも小さい。第4の外輪70Bの中心軸C5を含む断面において、第1の劣角は、第3の傾斜面75と第4の外輪70Bの中心軸C5とがなす第3の劣角よりも小さい。
 第4の外輪70Bについて、第2の外輪20B(図8参照)と同様の点d、点e、点fを規定する(図14参照)。
 第4の玉軸受60Bは、第1の線分abの長さが、第2の線分cdの長さに比べて小さいが、第4の線分fbの長さが、第5の線分feの長さに比べて大きい。第4の玉軸受60Bは、このような寸法関係を有する点で、本開示の玉軸受10(第1の玉軸受10A及び第2の玉軸受10B)と異なっている。第2比較例に係る第4の玉軸受60は、本開示の玉軸受10には含まれない。
 図15に示す第4の外輪70B及び内輪組立体35は、第4の外輪70Bの中心軸C5及び内輪30の中心軸C3を含む断面において、点a(第1の端点)と点c(第3の端点)とが一致する状態で配置されている。この状態から点c(第3の端点)を通る第2の外輪軌道72Bの最も軸方向の第2の側の接線を中心として内輪組立体35を回転させた場合、第1の玉41は、第1の線分abの長さが、第2の線分cdの長さに比べて小さく、かつ、第3の線分ceの長さに比べて小さいため、第1の傾斜面73Bに入り込むことができる。さらに点c(第3の端点)を通る第2の外輪軌道72Bの最も軸方向の第2の側の接線を中心として内輪組立体35を回転させると、径方向の第2の側の第2の玉42が第2の外輪軌道72Bにはまり込む。この後、内輪組立体35は、点f(第6の端点)を通る第2の大円BC2の接線を中心として回転する。この時に、第1の玉41は、第4の線分fbの長さが、第5の線分feの長さに比べて大きいため、第1の傾斜面73Bを超えて、第1の外輪軌道71Bに入り込むことができない。つまり、第2比較例に係る第4の玉軸受60Bでは、内輪組立体35に第4の外輪70Bを組み付ける際に、第1の玉41が第1の傾斜面73Bに接して引っ掛かる可能性がある。また、引っ掛かった状態の第4の外輪70Bを内輪組立体35に無理に押し込んだ場合には、第1の玉41が第1の傾斜面73Bに擦れて傷つく可能性がある。このため、第4の玉軸受60Bは、組付け性が良くないと評価できる。
[実施形態の作用効果]
 以上に説明した実施形態における玉軸受10A、10Bは、内輪組立体35と、外輪20A、20Bと、を備えている。内輪組立体35は、内輪30と、複数の第1の玉41と、複数の第2の玉42と、第1の保持器51と、第2の保持器52と、を備えている。内輪30は、軸方向の第1の側に第1の内輪軌道31と、第1の内輪軌道31の軸方向の第2の側に第2の内輪軌道32と、を外周面に有している。第1の内輪軌道31の軌道接触直径は、第2の内輪軌道32の軌道接触直径よりも小さい。複数の第1の玉41は、第1の内輪軌道31に転動可能に配置されている。第1の保持器51は、複数の第1のポケット53を有している。複数の第1の玉41は、第1のポケット53に摺動可能に配置されている。複数の第2の玉42は、第2の内輪軌道32に転動可能に配置されている。第2の保持器52は、複数の第2のポケット54を有している。複数の第2の玉42は、第2のポケット54に摺動可能に配置されている。内輪30と、複数の第1の玉41と、複数の第2の玉42と、第1の保持器51と、第2の保持器52と、が分離しないよう構成されている。内輪組立体35の、複数の第1の玉41が構成する第1の玉41の列の玉セットのピッチ径は、複数の第2の玉42が構成する第2の玉42の列の玉セットのピッチ径よりも小さい。外輪20A、20Bは、軸方向の第1の側から第2の側に向かって第1の外輪軌道21A、21Bと、第1の傾斜面23A、23Bと、第2の傾斜面24A、24Bと、第2の外輪軌道22A、22Bと、を内周面に有している。外輪20A、20Bの内周面は、第1の外輪軌道21A、21Bから第2の外輪軌道22A、22Bまで直径が縮小することなく拡大し、第1の外輪軌道21A、21Bの軌道接触直径は、第2の外輪軌道22A、22Bの軌道接触直径よりも小さい。複数の第1の玉41の直径は、複数の第2の玉42の直径よりも小さい。複数の第1の玉41は、第1の外輪軌道21A、21Bに転動可能に配置される。複数の第2の玉42は、第2の外輪軌道22A、22Bに転動可能に配置される。第1の内輪軌道31の呼び接触点は、第1の外輪軌道21A、21Bの呼び接触点より軸方向の第2の側に位置する。第2の内輪軌道32の呼び接触点は、第2の外輪軌道22A、22Bの呼び接触点より軸方向の第2の側に位置する。第1の傾斜面23A、23Bは、外輪20A、20Bの内周面における第1の外輪軌道21A、21Bの軸方向の第2の側に形成され、軸方向の第1の側から第2の側に向かって拡径する傾斜面である。第2の傾斜面24A、24Bは、外輪20A、20Bの内周面における第1の傾斜面23A、23Bの軸方向の第2の側であって第2の外輪軌道22A、22Bの軸方向の第1の側に形成され、軸方向の第1の側から第2の側に向かって拡径する傾斜面である。外輪20A、20Bの中心軸C2を含む断面において第1の傾斜面23A、23Bと外輪20A、20Bの中心軸C2とがなす第1の劣角θ1が、外輪20A、20Bの中心軸C2を含む断面において第2の傾斜面24A、24Bと外輪20A、20Bの中心軸C2とがなす第2の劣角θ2よりも小さい。複数の第1の玉41を第1の内輪軌道31に配置し接触させた時に、複数の第1の玉41の各第1の玉41の中心が第1の大円BC1上にあり、第1の玉41の直径の半分を第1の小円SC1の半径である第1の小半径Sr1とし、第1の玉41の列の玉セットのピッチ径の半分を第1の大円BC1の半径である第1の大半径Br1とするトーラスを第1の仮想トーラスT1と、定義する。複数の第2の玉42を第2の内輪軌道32に配置し接触させた時に、複数の第2の玉42の各第2の玉42の中心が第2の大円BC2上にあり、第2の玉42の直径の半分を第2の小円SC2の半径である第2の小半径Sr2とし、第2の玉42の列の玉セットのピッチ径の半分を第2の大円BC2の半径である第2の大半径Br2とするトーラスを第2の仮想トーラスT2と、定義する。中心軸C1を含む断面において、径方向の第1の側と径方向の第1の側とは周方向に180°反対側である径方向の第2の側とを定義する。径方向の第1の側の第1の大円BC1と径方向の第2の側の第2の大円BC2とを通る第1の直線L1と径方向の第2の側の第2の仮想トーラスT2の径方向の第2の側の表面との交点を第1の端点aとする。径方向の第1の側の第1の大円BC1と径方向の第2の側の第2の大円BC2とを通る第1の直線L1と径方向の第1の側の第1の仮想トーラスT1の径方向の第1の側の表面との交点を第2の端点bとする。径方向の第2の側の第2の外輪軌道22A、22Bの最も軸方向の第2の側を第3の端点cとする。径方向の第1の側の第1の傾斜面23A、23Bの最も軸方向の第2の側を第4の端点dとする。径方向の第1の側の第1の傾斜面23A、23Bに位置し最も第3の端点との距離が小さい点を第5の端点eとする。径方向の第2の側の第2の仮想トーラスT2の大円を第6の端点fとする。第1の端点aと第2の端点bとを結ぶ線分を第1の線分abとする。第3の端点cと第4の端点dとを結ぶ線分を第2の線分cdとする。第3の端点cと第5の端点eとを結ぶ線分を第3の線分ceとする。第6の端点fと第2の端点bとを結ぶ線分を第4の線分fbとする。第6の端点fと第5の端点eとを結ぶ線分を第5の線分feとする。玉軸受10A、10Bの特徴は、第1の線分abの長さが第2の線分cdの長さに比べて大きい。又は、玉軸受10A、10Bの特徴は、第1の線分abの長さが第2の線分cdの長さに比べて小さく、かつ、第1の線分abの長さが第3の線分ceの長さに比べて小さく、かつ、第4の線分fbの長さが第5の線分feの長さに比べて小さい。
 このような構成の玉軸受10A、10Bでは、内輪組立体35に対して外輪20を組み付ける際に、外輪20の第1の傾斜面23に第1の玉41が接触することがなく、第1の傾斜面23に第1の玉41が接触した状態で外輪20が引っ掛かって止まってしまうのを抑制することができる。このため、上記実施形態で示した玉軸受10A、10Bによれば、内輪組立体35に対する外輪20の組付け性を向上させることができる。
 また、玉軸受10A、10Bにおいて、外輪20A、20Bは、内周面に軸方向の第1の側から第2の側に向かって、第1の外輪軌道21A、21Bと、第1の傾斜面23A、23Bと、第2の傾斜面24A、24Bと、第2の外輪軌道22A、22Bと、さらに第3の傾斜面25A、25Bを有し、外輪20A、20Bの内周面は、第1の外輪軌道21A、21Bから第3の傾斜面25A、25Bまで直径が縮小することなく拡大し、第1の劣角θ1が、外輪20A、20Bの中心軸C2を含む断面において第3の傾斜面25A、25Bと外輪20A、20Bの中心軸C2とがなす第3の劣角θ3よりも小さい。このような構成の玉軸受10A、10Bによれば、内輪組立体35に対する外輪20の組付け性を向上させることができる。
 また、玉軸受10A、10Bは、複数の第2の玉42と、外輪20A、20Bの軸方向の第2の側の正面を含み当該外輪20A、20Bの中心軸に垂直な仮想平面とが、軸方向において重なっている。この場合、外輪20A、20Bから第2の玉42の一部が径方向に露出する形態を有する玉軸受10A、10Bについて、内輪組立体35に対する外輪20A、20Bの組付け性を向上させることができる。
 今回開示した実施形態はすべての点で例示であって制限的なものではない。本発明の権利範囲は、上述の実施形態に限定されるものではなく、請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。
 10、10A、10B、60、110、210:玉軸受
 20、20A、20B、70、120、220:外輪
 21、21A、21B、71、121、221:第1の外輪軌道
 22、22A、22B、72、122、222:第2の外輪軌道
 23、23A、23B、73、123:第1の傾斜面
 24、24A、24B、74、124:第2の傾斜面
 25、25A、25B、75、125:第3の傾斜面
 30、130:内輪
 31、131:第1の内輪軌道
 32、132:第2の内輪軌道
 35、135:内輪組立体
 41、141:第1の玉
 42、142:第2の玉
 51:第1の保持器
 52:第2の保持器
 53:第1のポケット
 54:第2のポケット
 θ1:第1の劣角
 θ2:第2の劣角
 θ3:第3の劣角
 T1:第1の仮想トーラス
 T2:第2の仮想トーラス
 SC1:第1の小円
 SC2:第2の小円
 BC1:第1の大円
 BC2:第2の大円
 Sr1:第1の小半径
 Sr2:第2の小半径
 Br1:第1の大半径
 Br2:第2の大半径
 L1:第1の直線
 a:第1の端点
 b:第2の端点
 c:第3の端点
 d:第4の端点
 e:第5の端点
 f:第6の端点
 ab:第1の線分
 cd:第2の線分
 ce:第3の線分
 fb:第4の線分
 fe:第5の線分
 

Claims (3)

  1.  内輪組立体と、外輪と、を備え、
     前記内輪組立体は、内輪と、複数の第1の玉と、複数の第2の玉と、第1の保持器と、第2の保持器と、を備え、
     前記内輪は、軸方向の第1の側に第1の内輪軌道と、前記第1の内輪軌道の軸方向の第2の側に第2の内輪軌道と、を外周面に有し、
     前記第1の内輪軌道の軌道接触直径は、前記第2の内輪軌道の軌道接触直径よりも小さく、
     前記複数の第1の玉は、前記第1の内輪軌道に転動可能に配置され、
     前記第1の保持器は、複数の第1のポケットを有し、
     前記複数の第1の玉は、前記第1のポケットに摺動可能に配置され、
     前記複数の第2の玉は、前記第2の内輪軌道に転動可能に配置され、
     前記第2の保持器は、複数の第2のポケットを有し、
     前記複数の第2の玉は、前記第2のポケットに摺動可能に配置され、
     前記内輪と、前記複数の第1の玉と、前記複数の第2の玉と、前記第1の保持器と、前記第2の保持器と、が分離しないよう構成され、
     前記内輪組立体の、前記複数の第1の玉が構成する当該第1の玉の列の玉セットのピッチ径は、前記複数の第2の玉が構成する当該第2の玉の列の玉セットのピッチ径よりも小さく、
     前記外輪は、軸方向の第1の側から第2の側に向かって、第1の外輪軌道と、第1の傾斜面と、第2の傾斜面と、第2の外輪軌道と、を内周面に有し、
     前記外輪の内周面は、前記第1の外輪軌道から前記第2の外輪軌道まで直径が縮小することなく拡大し、
     前記第1の外輪軌道の軌道接触直径は、前記第2の外輪軌道の軌道接触直径よりも小さく、
     前記複数の第1の玉の直径は、前記複数の第2の玉の直径よりも小さく、
     前記複数の第1の玉は、前記第1の外輪軌道に転動可能に配置され、前記複数の第2の玉は、前記第2の外輪軌道に転動可能に配置され、
     前記第1の内輪軌道の呼び接触点は、前記第1の外輪軌道の呼び接触点より軸方向の第2の側に位置し、
     前記第2の内輪軌道の呼び接触点は、前記第2の外輪軌道の呼び接触点より軸方向の第2の側に位置し、
     前記第1の傾斜面は、前記外輪の内周面における前記第1の外輪軌道の軸方向の第2の側に形成され、軸方向の第1の側から第2の側に向かって拡径する傾斜面であり、
     前記第2の傾斜面は、前記外輪の内周面における前記第1の傾斜面の軸方向の第2の側であって前記第2の外輪軌道の軸方向の第1の側に形成され、軸方向の第1の側から第2の側に向かって拡径する傾斜面であり、
     前記外輪の中心軸を含む断面において前記第1の傾斜面と前記外輪の中心軸とがなす第1の劣角が、前記外輪の中心軸を含む断面において前記第2の傾斜面と前記外輪の中心軸とがなす第2の劣角よりも小さく、かつ、
     前記複数の第1の玉を前記第1の内輪軌道に配置し接触させた時に、前記複数の第1の玉の各第1の玉の中心が第1の大円上にあり、前記第1の玉の直径の半分を第1の小円の半径である第1の小半径とし、前記第1の玉の列の玉セットのピッチ径の半分を前記第1の大円の半径である第1の大半径とするトーラスを第1の仮想トーラスと、定義し、
     前記複数の第2の玉を前記第2の内輪軌道に配置し接触させた時に、前記複数の第2の玉の各第2の玉の中心が第2の大円上にあり、前記第2の玉の直径の半分を第2の小円の半径である第2の小半径とし、前記第2の玉の列の玉セットのピッチ径の半分を前記第2の大円の半径である第2の大半径とするトーラスを第2の仮想トーラスと、定義し、
     軸受中心軸を含む断面において、径方向の第1の側と径方向の第1の側とは周方向に180°反対側である径方向の第2の側とを定義し、
     径方向の第1の側の前記第1の大円と径方向の第2の側の前記第2の大円とを通る直線と径方向の第2の側の前記第2の仮想トーラスの径方向の第2の側の表面との交点を第1の端点とし、
     径方向の第1の側の前記第1の大円と径方向の第2の側の前記第2の大円とを通る直線と径方向の第1の側の前記第1の仮想トーラスの径方向の第1の側の表面との交点を第2の端点とし、
     径方向の第2の側の前記第2の外輪軌道の最も軸方向の第2の側を第3の端点とし、
     径方向の第1の側の前記第1の傾斜面の最も軸方向の第2の側を第4の端点とし、
     径方向の第1の側の前記第1の傾斜面に位置し最も前記第3の端点との距離が小さい点を第5の端点とし、
     径方向の第2の側の前記第2の仮想トーラスの大円を第6の端点とし、
     前記第1の端点と前記第2の端点とを結ぶ線分を第1の線分とし、
     前記第3の端点と前記第4の端点とを結ぶ線分を第2の線分とし、
     前記第3の端点と前記第5の端点とを結ぶ線分を第3の線分とし、
     前記第6の端点と前記第2の端点とを結ぶ線分を第4の線分とし、
     前記第6の端点と前記第5の端点とを結ぶ線分を第5の線分とし、特徴は、
     前記第1の線分の長さが前記第2の線分の長さに比べて大きい、
     又は、
     前記第1の線分の長さが前記第2の線分の長さに比べて小さく、かつ、
     前記第1の線分の長さが前記第3の線分の長さに比べて小さく、かつ、
     前記第4の線分の長さが前記第5の線分の長さに比べて小さい、玉軸受。
  2.  前記外輪は、内周面に軸方向の第1の側から第2の側に向かって、前記第1の外輪軌道と、前記第1の傾斜面と、前記第2の傾斜面と、前記第2の外輪軌道と、さらに第3の傾斜面を有し、
     前記外輪の内周面は、前記第1の外輪軌道から前記第3の傾斜面まで直径が縮小することなく拡大し、
     前記第1の劣角が、前記外輪の中心軸を含む断面において前記第3の傾斜面と前記外輪の中心軸とがなす第3の劣角よりも小さい、請求項1に記載の玉軸受。
  3.  前記複数の第2の玉と、前記外輪の軸方向の第2の側の正面を含み当該外輪の中心軸に垂直な仮想平面とが、軸方向において重なっている、請求項1又は請求項2に記載の玉軸受。
PCT/JP2022/000652 2022-01-12 2022-01-12 玉軸受 WO2023135669A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000652 WO2023135669A1 (ja) 2022-01-12 2022-01-12 玉軸受

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000652 WO2023135669A1 (ja) 2022-01-12 2022-01-12 玉軸受

Publications (1)

Publication Number Publication Date
WO2023135669A1 true WO2023135669A1 (ja) 2023-07-20

Family

ID=87278592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000652 WO2023135669A1 (ja) 2022-01-12 2022-01-12 玉軸受

Country Status (1)

Country Link
WO (1) WO2023135669A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278324A (ja) * 2006-04-03 2007-10-25 Jtekt Corp ピニオン軸支持用複列転がり軸受およびこれを備えた転がり軸受装置
JP2009036348A (ja) * 2007-08-03 2009-02-19 Ntn Corp タンデム型複列アンギュラ玉軸受及びピニオン軸用軸受装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278324A (ja) * 2006-04-03 2007-10-25 Jtekt Corp ピニオン軸支持用複列転がり軸受およびこれを備えた転がり軸受装置
JP2009036348A (ja) * 2007-08-03 2009-02-19 Ntn Corp タンデム型複列アンギュラ玉軸受及びピニオン軸用軸受装置

Similar Documents

Publication Publication Date Title
US20110222807A1 (en) Tandem angular ball bearing
JP7485948B2 (ja) 自動調心ころ軸受用保持器
JP2007278406A (ja) 保持器付ころ軸受
WO2023135669A1 (ja) 玉軸受
WO2023135667A1 (ja) 玉軸受
JP2007024292A (ja) 回転支持部
JP2012202453A (ja) 自動調心ころ軸受
JP2008267400A (ja) 玉軸受
JP6544000B2 (ja) 自動調心ころ軸受
TWI712750B (zh) 滾子軸承
US20090016663A1 (en) Thrust roller bearing
WO2023135668A1 (ja) 玉軸受
WO2019151456A1 (ja) 玉軸受及び軸受ユニット
JP7243278B2 (ja) 傾斜型保持器及びアンギュラ玉軸受
JP2010025191A (ja) 自動調心ころ軸受
WO2014171405A1 (ja) 円すいころ軸受
JP2021143739A (ja) アンギュラ玉軸受用保持器及びアンギュラ玉軸受
JP5262142B2 (ja) 自動調心ころ軸受
JP2007085542A (ja) 保持器付自動調心ころ軸受及び自動調心ころ軸受用保持器の製造方法
WO2023084964A1 (ja) 軸受
JP7369109B2 (ja) ころ軸受用保持器およびころ軸受
JP7383909B2 (ja) アンギュラ玉軸受及び車輪用軸受装置
JP5810627B2 (ja) タンデムアンギュラ型玉軸受及びタンデムアンギュラ型玉軸受用外輪側組立品
JP6236754B2 (ja) タンデム型複列アンギュラ玉軸受、デファレンシャル装置、及び、自動車
WO2022074862A1 (ja) 円すいころ軸受及び保持器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573686

Country of ref document: JP