WO2023130625A1 - 电芯采样电路、电路故障预警方法及电池管理*** - Google Patents

电芯采样电路、电路故障预警方法及电池管理*** Download PDF

Info

Publication number
WO2023130625A1
WO2023130625A1 PCT/CN2022/089552 CN2022089552W WO2023130625A1 WO 2023130625 A1 WO2023130625 A1 WO 2023130625A1 CN 2022089552 W CN2022089552 W CN 2022089552W WO 2023130625 A1 WO2023130625 A1 WO 2023130625A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
impedance
sampling
unit
Prior art date
Application number
PCT/CN2022/089552
Other languages
English (en)
French (fr)
Inventor
蔡艺华
高菲丹
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022548239A priority Critical patent/JP2024509653A/ja
Priority to KR1020227027721A priority patent/KR20230107470A/ko
Priority to EP22743435.4A priority patent/EP4239346A4/en
Priority to US17/940,354 priority patent/US20230221378A1/en
Publication of WO2023130625A1 publication Critical patent/WO2023130625A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells

Definitions

  • the present application relates to the technical field of battery management, in particular to a battery sampling circuit, a circuit failure warning method and a battery management system.
  • the battery management system In order to detect the abnormality of the battery pack in time, the battery management system (Battery Management System, BMS) generally collects state data such as the voltage and temperature of the cells in the battery pack through the cell sampling circuit.
  • state data such as the voltage and temperature of the cells in the battery pack through the cell sampling circuit.
  • the communication of the cell sampling circuit will be interrupted, and the communication interruption will cause the status data of the cell to be unable to be collected.
  • the state data of the battery cells cannot be collected, in order to ensure the safety of the battery cells, the high-voltage circuit of the battery pack will be quickly disconnected to ensure that the battery pack enters a safe state.
  • this application proposes a battery sampling circuit, a circuit fault early warning method and a battery management system, the main purpose of which is to provide early warning of abnormalities in the battery sampling circuit.
  • the present application provides a cell sampling circuit.
  • the cell sampling circuit includes: a plurality of target units connected in series through a daisy chain communication method, and each two adjacent target units are connected to each other.
  • the cell sampling circuit includes a plurality of target units connected in series through daisy chain communication, wherein the target unit ranked first in the series connection is the main control unit, and the rest of the target units are all cells sampling unit.
  • a transformer unit is connected between every two adjacent target units. Each target unit is used to obtain the impedance of the transformer unit connected to it respectively, and judge whether to carry out an early warning of circuit abnormality based on the obtained impedance.
  • the impedance obtained by the target unit can reflect the excessive pull-up of the winding of the transformer unit connected to it, and can reflect the risk of disconnection of the winding of the transformer unit.
  • the target unit passes The way of detecting the impedance of the transformer unit connected to it can detect the abnormal situation of the transformer unit in time, so that when the transformer unit is abnormal and the disconnection fault has not occurred, an early warning of circuit abnormality is given, so that the user can proceed in advance according to the early warning of circuit abnormality. Circuit exception handling.
  • the upstream target unit is connected to the transformer unit's variable voltage input module
  • the downstream target unit is connected to the transformer unit's variable voltage output module; each The target units are respectively used to obtain the impedance of the target modules connected to them, and judge whether to perform an early warning of circuit abnormality based on the obtained impedance, wherein the target modules are determined based on the connection relationship between the target unit and the transformer unit .
  • the target module when the target unit is a cell sampling unit, the target module includes a variable voltage output module connected to it and a variable voltage input module connected to it, and the acquired impedance includes a first impedance and a second impedance , the first impedance is the impedance of the variable voltage output module connected thereto, and the second impedance is the impedance of the variable voltage input module connected thereto.
  • the target module when the target unit is the main control unit, the target module includes a variable voltage input module connected to it, and the obtained impedance is the second impedance, and the second impedance is the variable voltage input connected to it module impedance.
  • each of the target units is configured to perform a circuit abnormality warning when it is determined that the acquired impedance of the target module reaches an impedance threshold corresponding to the target module.
  • each of the target units is respectively used to determine an abnormal transformer unit, and issue a circuit abnormal warning for the abnormal transformer unit, where the abnormal transformer unit is located where the target module whose impedance reaches the corresponding impedance threshold Transformer unit.
  • variable voltage output module includes: a first winding, a first switch element, a second switch element, a first connection circuit, and a second connection circuit; the first end of the first winding passes through the The first connection circuit is connected to the first end of the first switch element, and the second end is connected to the first end of the second switch element through the second connection circuit; the second end of the first switch element and the second end of the second switching element are respectively connected to the cell sampling unit.
  • the cell sampling unit includes: a first voltage sampling circuit, a second voltage sampling circuit, a first voltage regulation circuit and a control chip; the first terminal of the first voltage regulation circuit and the first node connected, the second end is connected to the ground wire; the first end of the first voltage sampling circuit is connected to the first node, and the second end is connected to the first pin of the control chip; the second voltage sampling circuit The first end of the circuit is connected to the second node, and the second end is connected to the second pin of the control chip; the first node is connected to the second end of the first switching element, and is connected to the control chip connected to the third pin of the second node; the second node is connected to the second end of the second switching element, and is connected to the fourth pin of the control chip. .
  • control chip is configured to collect the first sampling voltage corresponding to the first voltage sampling circuit and the second sampling voltage corresponding to the second voltage sampling circuit, based on the first sampling voltage, The second sampling voltage and the first resistance of the first voltage regulating circuit determine the first impedance.
  • the cell sampling unit further includes: a second voltage regulating circuit and a third voltage sampling circuit; the first terminal of the second voltage regulating circuit is connected to the second node, and the second terminal is connected to the second node. The first end of the third voltage sampling circuit is connected; the second end of the third voltage sampling circuit is connected to the fifth pin of the control chip.
  • control chip is configured to acquire the second sampling voltage corresponding to the second voltage sampling circuit and the third sampling voltage corresponding to the third voltage sampling circuit, based on the second sampling voltage , the third sampling voltage, the first resistance of the first voltage adjustment circuit, and the second resistance of the second voltage adjustment circuit, determine the first impedance.
  • control chip is configured to acquire the first sampling voltage corresponding to the first voltage sampling circuit and the third sampling voltage corresponding to the third voltage sampling circuit, based on the first sampling voltage , the third sampling voltage, the first resistance of the first voltage adjustment circuit, and the second resistance of the second voltage adjustment circuit, determine the first impedance.
  • the first impedance is the impedance of the first winding in the variable voltage output module, the impedance of the first switching element, the impedance of the second switching element, and the impedance of the first connection circuit under the daisy chain communication. and the sum of the impedance of the second connecting circuit.
  • variable voltage input module includes: a second winding, a third switching element, and a fourth switching element; the first end of the second winding is connected to the first end of the third switching element, The second end is connected to the first end of the fourth switching element; the second end of the third switching element and the second end of the fourth switching element are respectively connected to the target unit.
  • the target unit includes: a fourth voltage sampling circuit, a fifth voltage sampling circuit, a third voltage regulation circuit, and a control chip; the first end of the third voltage regulation circuit is connected to the third node, The second end is connected to the ground wire; the first end of the fourth voltage sampling circuit is connected to the third node, and the second end is connected to the sixth pin of the control chip; the fifth voltage sampling circuit The first end is connected to the fourth node, the second end is connected to the seventh pin of the control chip; the third node is connected to the second end of the third switching element, and connected to the first end of the control chip The eight pins are connected; the fourth node is connected to the second end of the fourth switching element, and is connected to the ninth pin of the control chip.
  • control chip is configured to collect the fourth sampling voltage corresponding to the fourth voltage sampling circuit and the fifth sampling voltage corresponding to the fifth voltage sampling circuit, based on the fourth sampling voltage, The fifth sampling voltage and the third resistor of the third voltage regulating circuit determine the second impedance.
  • the target unit further includes: a fourth voltage regulation circuit and a sixth voltage sampling circuit; the first terminal of the fourth voltage regulation circuit is connected to the fourth node, and the second terminal is connected to the The first terminal of the sixth voltage sampling circuit is connected; the second terminal of the sixth voltage sampling circuit is connected to the tenth pin of the control chip.
  • control chip is configured to collect the sixth sampling voltage corresponding to the sixth voltage sampling circuit and the fifth sampling voltage corresponding to the fifth voltage sampling circuit, based on the sixth sampling voltage, The fifth sampling voltage, the third resistor of the third voltage regulating circuit, and the corresponding fourth resistor of the fourth voltage regulating circuit determine the second impedance.
  • control chip is configured to collect the sixth sampling voltage corresponding to the sixth voltage sampling circuit and the fourth sampling voltage corresponding to the fourth voltage sampling circuit, based on the fourth sampling voltage,
  • the second impedance is determined by the sixth sampling voltage, the third resistance of the third voltage adjustment circuit, and the corresponding fourth resistance of the fourth voltage adjustment circuit.
  • the second impedance is the sum of the impedance of the second winding, the impedance of the third switching element, and the impedance of the fourth switching element in the variable voltage input module under the daisy chain communication.
  • the present application provides a circuit fault early warning method, which is applied to the battery sampling circuit, and the battery sampling circuit includes: a plurality of target units connected in series through the daisy chain communication method, every two adjacent A transformer unit is connected between the target units; the first target unit in the series connection is the main control unit, and the rest of the target units are cell sampling units, and the method includes: executing for each target unit : Obtain the impedance of the transformer unit connected to it; judge whether to perform an early warning of circuit abnormality based on the obtained impedance.
  • the present application provides a battery management system, the battery management system comprising the cell sampling circuit according to any one of the first aspect.
  • the present application provides a battery, which includes the battery management system as described in the third aspect.
  • the present application provides an electric device, the electric device includes the battery as described in the fourth aspect.
  • the present application provides a computer-readable storage medium, the storage medium includes a stored program, wherein, when the program is running, the device where the storage medium is located is controlled to execute any one of the programs described in the second aspect. circuit fault early warning method.
  • FIG. 1 is a schematic diagram of a cell sampling circuit in some embodiments of the present application.
  • Fig. 2 is a schematic diagram of the connection relationship between a cell sampling circuit and the cell in some embodiments of the present application;
  • Fig. 3 is a flow chart of a circuit fault early warning method according to some embodiments of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • a battery pack is usually composed of multiple cells connected in series and in parallel, and the state of the cells directly affects the safety of the battery.
  • abnormal conditions such as short circuit, overcharge, overdischarge, and poor voltage consistency occur in the battery cell, the battery performance and life of the battery pack will decline, and in severe cases, the battery pack will smoke, catch fire, explode, etc., which will seriously damage the battery pack. Groups are safe to use. Therefore, in order to ensure the safety of the battery pack, it is necessary to detect the status data of each battery cell in the battery pack in real time during the use of the battery pack, such as voltage and temperature, so as to accurately control and monitor the charging and discharging process of the battery pack based on these status data. protection.
  • the battery management system collects the state data of the battery through the battery sampling circuit.
  • the current battery sampling circuit mostly adopts a distributed scheme. Multiple battery sampling units in the battery sampling circuit are responsible for collecting the state data of the battery cells.
  • the main control unit in the battery sampling circuit is responsible for collecting data collected by the battery sampling units State parameters are processed and controlled. Once the cell sampling circuit fails during actual use, the communication of the cell sampling circuit will be interrupted, and the communication interruption will cause the status data such as the voltage and temperature of the cell to be unable to be collected.
  • the state data of the battery cells cannot be collected, in order to ensure the safety of the battery pack, the high-voltage circuit of the battery pack will be quickly disconnected to ensure that the battery pack enters a safe state.
  • this method ensures the safety of the battery pack, it gives The user's use of the battery pack causes inconvenience and affects the user experience.
  • the transformer unit is mainly used to realize electrical isolation between components in the cell sampling circuit. Due to the limitation of the manufacturing process of the transformer unit, faults such as transformer disconnection often occur in the actual use of the cell sampling circuit. The fault of the transformer will cause the communication interruption of the cell sampling circuit, and the state data such as the voltage and temperature of the cell cannot be collected. At present, the occurrence of a transformer fault is only sensed after the battery pack enters a safe state, and the battery pack entering a safe state will directly cause the user to be unable to use the battery pack, causing inconvenience to the user when using the battery pack.
  • a battery sampling circuit can be designed so that the abnormality occurs in the transformer unit, and the abnormality has not yet caused the communication interruption of the battery sampling circuit Previously, the circuit abnormality was warned in advance to give the user a circuit abnormality warning, so that the user can handle the abnormality based on the warning in advance.
  • the cell sampling circuit includes: multiple target units connected in series through a daisy chain communication method, and every two adjacent target units A transformer unit is connected between the units; the first target unit in the series connection is the main control unit, and the rest of the target units are cell sampling units; each target unit is used to obtain the voltage of the transformer unit connected to it. Impedance, and based on the obtained impedance, it is judged whether to carry out early warning of circuit abnormality.
  • An embodiment of the present application discloses a battery management system provided with a cell sampling circuit, so that the battery management system performs battery control and association based on the data collected by the cell sampling circuit.
  • a battery equipped with a battery management system disclosed in the embodiments of the present application can be used in electrical devices such as vehicles, ships, or aircraft, but not limited to.
  • the power supply system that comprises the battery disclosed in this application can be used to form the electrical device.
  • the abnormality of the circuit is warned in advance, so as to Give the user a circuit abnormality warning, so that the user can handle the abnormality based on the warning in advance.
  • the embodiment of the present application provides an electric device using a battery as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • the embodiment of the present application provides a cell sampling circuit
  • the cell sampling circuit includes: a plurality of target units sequentially connected in series through a daisy chain communication method, the first target unit in the series connection is The main control unit 11 and the rest of the target units are cell sampling units 12; a transformer unit 13 is connected between every two adjacent target units. Each target unit is used to acquire the impedance of the transformer unit 13 connected to it respectively, and judge whether to perform an early warning of circuit abnormality based on the acquired impedance.
  • the main control unit 11 and at least one cell sampling unit 12 are both target units, and are serially connected together in sequence by means of daisy chain communication.
  • the main control unit 11 is at the head of the serial connection.
  • the first target unit is the master control unit 11 .
  • the other target units are cell sampling units 12 and are connected in series behind the main control unit 11 . Since the daisy chain communication mode is adopted between the target units, a transformer unit 13 is connected between every two adjacent target units, so that the electrical isolation between the target units can be realized by using the transformer unit 13 .
  • the main reason for the failure of the battery sampling circuit is the failure of the transformer unit 13 in the battery sampling circuit. Therefore, it is necessary to monitor the transformer unit 13, so as to detect its abnormality in time and give an early warning of circuit abnormality when there is an abnormality in it but no fault occurs.
  • the fault of the transformer unit 13 is mainly a disconnection fault.
  • Broken wire faults are usually caused by excessive stretching of the windings of the transformer when the transformer structure expands or contracts due to temperature changes.
  • the transformer structure expands or shrinks, the winding is pulled up excessively, which will inevitably cause the impedance of the transformer unit 13 to increase. Therefore, by obtaining the impedance of the transformer unit 13, it can be determined whether to perform an early warning of circuit abnormality.
  • the work of obtaining the impedance of the transformer unit 13 is done by the target unit.
  • Each target unit is respectively used to obtain the impedance of the transformer unit 13 connected to it.
  • the impedance obtained by the target unit can reflect that the winding wire of the transformer unit 13 connected to it is over-stretched, which can reflect the risk of disconnection of the winding wire of the transformer unit 13 . Therefore, the target unit can determine whether to perform an early warning of circuit abnormality according to the acquired impedance of the transformer unit 13 connected to it. Once the target unit determines that there is a risk of open circuit in the cell sampling circuit based on the obtained impedance, it will issue a circuit abnormality warning, so that the user can deal with it in time according to the warning.
  • the cell sampling circuit includes a plurality of target units connected in series through daisy chain communication, wherein the target unit ranked first in the series connection is the main control unit, and the rest of the target units are all cells sampling unit.
  • a transformer unit is connected between every two adjacent target units. Each target unit is used to obtain the impedance of the transformer unit connected to it respectively, and judge whether to carry out an early warning of circuit abnormality based on the obtained impedance.
  • the impedance obtained by the target unit can reflect the excessive pull-up of the winding of the transformer unit connected to it, and can reflect the risk of disconnection of the winding of the transformer unit.
  • the target unit passes The way of detecting the impedance of the transformer unit connected to it can detect the abnormal situation of the transformer unit in time, so that when the transformer unit is abnormal and the disconnection fault has not occurred, an early warning of circuit abnormality is given, so that the user can proceed in advance according to the early warning of circuit abnormality. Circuit exception handling.
  • the target unit located upstream is connected to the transformer unit 13 input module 131 of the transformer unit, and the target unit located downstream is connected to the transformer unit 13. output module 132 .
  • Each target unit is used to obtain the impedance of the target module connected to it, and judge whether to perform an early warning of circuit abnormality based on the obtained impedance, wherein the target module is determined based on the connection relationship between the target unit and the transformer unit 13 .
  • the transformer unit 13 includes a transformed voltage input module 131 and a transformed voltage output module 132 .
  • the upstream target unit is connected to the variable voltage input module 131 of the transformer unit 13
  • the downstream target unit is connected to the variable voltage output module 132 of the transformer unit 13 .
  • Upstream and downstream are determined based on the communication direction between the main control chip 11 and each battery sampling unit 12, and the communication direction from the main control chip 11 to the last battery sampling unit 12 is defined as from upstream to downstream.
  • one target unit is the main control unit 11, and the other target unit is the cell sampling unit 12, then the main control unit 11 is the upstream target. unit, and the cell sampling unit 12 is the downstream target unit.
  • the cell sampling unit 12 close to the main control unit 11 is the target unit located upstream
  • the other cell sampling unit 12 is the target located upstream. unit.
  • each target unit In order to discover the abnormality of the transformer unit 13 in time, each target unit needs to obtain the impedance of the transformer unit 13 connected to it. When acquiring impedance, each target unit only acquires the impedance of the target module connected to it. For a target unit, its corresponding target module is determined based on its access relationship with the transformer unit 13 .
  • the target modules connected thereto include the transformer input module 131 connected thereto.
  • the target unit is the main control unit 11
  • its target module is the variable voltage input module 131 in the transformer unit 13 connected to it.
  • the main control unit 11 can monitor the abnormality of the transformer unit 13 by acquiring the impedance of the transformer input module 131 connected thereto.
  • the connected target modules include the connected variable voltage output module 132 and the connected variable voltage input module 131 .
  • the target unit is the cell sampling unit 12 adjacent to the main control unit 11 .
  • Both sides of the cell sampling unit 12 are connected to a transformer unit 13, so the target module connected to it includes two: one is the transformer output module 132 in the transformer unit 13 connected to its upstream, and the other is The variable voltage input module 131 in the transformer unit 13 connected thereto downstream.
  • the target module connected to it includes the variable voltage output module 132 connected to it and the variable voltage input module 131 connected to it, and the obtained impedance Including the first impedance and the second impedance.
  • the first impedance is the impedance of the variable voltage output module 132 connected thereto
  • the second impedance is the impedance of the variable voltage input module 131 connected thereto.
  • the first impedance can reflect that the winding of the transformer output module 132 in the transformer unit 13 is over-stretched, and can reflect the risk of disconnection of the winding of the transformer output module 132 .
  • the second impedance can reflect that the winding of the transformer input module 131 in the transformer unit 13 is over-stretched, and can reflect the risk of disconnection of the winding of the transformer input module 131 . Therefore, the cell sampling unit 12 can determine the risk of disconnection of the winding of the transformer output module 132 connected to it through the size of the first impedance collected, and when the risk is determined to be high, issue an early warning of circuit abnormality to activate the transformer unit.
  • the target module connected to it includes a variable voltage input module 131 connected thereto, and the obtained impedance is the second impedance, and the second impedance is the impedance of the variable voltage input module 131 connected thereto.
  • a transformer unit 13 is connected to one side of the main control unit 11 , which can monitor the condition of the transformer unit 13 connected to it. Therefore, the main control unit 11 needs to obtain the second impedance of the variable voltage input module 131 connected to it.
  • the second impedance can reflect that the winding of the transformer input module 131 in the transformer unit 13 is over-stretched, and can reflect the risk of disconnection of the winding of the transformer input module 131 .
  • the main control unit 11 can determine the risk of disconnection of the winding of the transformer input module 131 connected to it through the acquired second impedance, and when the risk is determined to be high, issue a circuit abnormality warning to cause an abnormality in the transformer unit , when a disconnection fault has not occurred, a circuit abnormal warning is given for the user to process the circuit abnormality in advance according to the circuit abnormal warning.
  • each target unit is respectively configured to perform an early warning of circuit abnormality when it is determined that the acquired impedance of the target module reaches an impedance threshold corresponding to the target module.
  • the target modules connected to it all have their corresponding impedance thresholds.
  • this impedance threshold is the upper limit of the impedance of the winding of the target module. Once the impedance of the target module reaches this impedance threshold, the possibility of disconnection increases. Therefore, after the target unit acquires the impedance of the target module, it needs to compare the acquired impedance of the target module with the impedance threshold corresponding to the target module.
  • the target unit determines that the acquired impedance of the target module reaches the corresponding impedance threshold of the target module, it means that the stretching of the winding wire of the target module has caused a greater risk of disconnection. In order to enable users to give early warning of the open circuit risk of the cell sampling circuit.
  • the target unit determines that the acquired impedance of the target module does not reach the corresponding impedance threshold of the target module, it means that the stretching of the winding wire of the target module has not caused a high risk of disconnection, and there is no need for a circuit abnormality warning for the target module.
  • the target unit when the target unit is the main control unit 11, if it determines that an early warning of circuit abnormality is required, it can directly perform early warning processing. If the target unit is the cell sampling unit 12, in order to reduce the processing capacity of the cell sampling unit 12, when the cell sampling unit 12 determines that a circuit abnormal warning is required, it can transmit the demand for circuit abnormal warning through daisy chain communication For the main control unit 11, the main control unit 11 performs the pre-warning process of the abnormality of the circuit.
  • each target unit is respectively used to determine an abnormal transformer unit, and issue a circuit abnormal warning for the abnormal transformer unit, wherein the abnormal transformer unit is a target module whose impedance reaches a corresponding impedance threshold The transformer unit 13 where it is located.
  • the target unit determines the abnormal transformer unit when it is determined that the acquired impedance of the target module reaches the impedance threshold corresponding to the target module, and sends a message for the abnormal transformer unit. Circuit abnormality warning.
  • connection circuit 25 the first end of the first winding 21 is connected to the first end of the first switch element 22 through the first connection circuit 24, and the second end is connected to the first end of the second switch element 23 through the second connection circuit 25 ;
  • the second end of the first switching element 22 and the second end of the second switching element 23 are respectively connected to the cell sampling unit 11 .
  • the first winding 21 , the first switch element 22 , the second switch element 23 , the first connection circuit 24 and the second connection circuit 25 form a voltage-transforming output module 132 .
  • the first winding 21 , the first connection circuit 24 and the second connection circuit 25 will all be excessively stretched during the use of the cell sampling circuit, and there is a risk of disconnection.
  • the transition stretch described here is caused by the expansion or contraction of the transformer structure caused by the temperature change during the use of the cell sampling circuit.
  • the first impedance Rn corresponding to the variable voltage output module 132 is the impedance Rt1 of the first winding 21 in the variable voltage output module 132, the impedance Rmos of the first switching element 22, the impedance Rmos of the second switching element 23, and the impedance Rmos of the first connecting circuit 24.
  • the sum of the impedance Rj1 and the impedance Rj2 of the second connection circuit 25, that is, Rn Rj2+Rt1+Rj1+2Rmos.
  • the first winding 21 , the first connection circuit 24 and the second connection circuit 25 may all be excessively stretched, and there is a risk of disconnection.
  • the cell sampling unit 12 includes: a first voltage sampling circuit 31 , a second voltage sampling circuit 32 , a first voltage regulating circuit 33 and a control chip 34 ;
  • the first end of the first voltage regulating circuit 33 is connected to the first node A, and the second end is connected to the ground line GND;
  • the first end of the first voltage sampling circuit 31 is connected to the first node A, and the second end is connected to the control chip 34 connected to the first pin of the second voltage sampling circuit 32;
  • the first end of the second voltage sampling circuit 32 is connected to the second node B, and the second end is connected to the second pin of the control chip 34;
  • the first node A is connected to the first switch element 34
  • the two terminals are connected and connected with the third pin of the control chip 34 ;
  • the second node B is connected with the second end of the second switch element 23 and connected with the fourth pin of the control chip 34 .
  • the control chip 34 is used to acquire the first impedance Rn of the transformer output module 132 connected thereto.
  • the first voltage sampling circuit 31 , the second voltage sampling circuit 32 and the first voltage regulating circuit 33 are all used to assist the control chip 34 in acquiring the first impedance Rn.
  • the magnitude of the impedance of the transformer output module 132 will cause the voltage in the second voltage sampling circuit 32 to change.
  • the first voltage regulating circuit 33 includes a voltage regulating resistor 331 for regulating the voltage.
  • the control chip 34 is configured to collect the first sampling voltage U1 corresponding to the first voltage sampling circuit 31 and the second sampling voltage U1 corresponding to the second voltage sampling circuit 32 .
  • the voltage U2 determines the first impedance Rn based on the first sampling voltage U1 , the second sampling voltage U2 , and the first resistor R1 of the first voltage regulating circuit 33 .
  • the first impedance Rn can be determined through the above formula.
  • the cell sampling unit 12 further includes: a second voltage regulation circuit 35 and a third voltage sampling circuit 36; the first terminal of the second voltage regulation circuit 35 It is connected to the second node B, and the second terminal is connected to the first terminal of the third voltage sampling circuit 36 ; the second terminal of the third voltage sampling circuit 36 is connected to the fifth pin of the control chip 34 .
  • Both the second voltage regulating circuit 35 and the third voltage sampling circuit 36 are used to assist the control chip 34 in obtaining the first impedance Rn.
  • the second voltage regulating circuit 35 includes a voltage regulating resistor 351 for regulating the voltage.
  • the impedance of the transformer output module 132 will cause the voltage in the third voltage sampling circuit 36 to change.
  • the control chip 34 is configured to acquire the second sampling voltage U2 corresponding to the second voltage sampling circuit 32 and the third sampling voltage corresponding to the third voltage sampling circuit 36 .
  • the sampling voltage U3 determines the first impedance Rn based on the second sampling voltage U2 , the third sampling voltage U3 , the first resistor R1 of the first voltage regulating circuit 33 and the second resistor R2 of the second voltage regulating circuit 35 .
  • the control chip 34 is configured to acquire the first sampling voltage U1 corresponding to the first voltage sampling circuit 31 and the sampling voltage corresponding to the third voltage sampling circuit 36.
  • the third sampling voltage U3 determines the first impedance Rn based on the first sampling voltage U1 , the third sampling voltage U3 , the first resistor R1 of the first voltage regulating circuit 33 and the second resistor R2 of the second voltage regulating circuit 35 .
  • the first impedance Rn can be determined through the above formula.
  • the first impedance is the impedance of the first winding 21 in the variable voltage output module 132, the impedance of the first switching element 22, the second The sum of the impedance of the switching element 23 , the impedance of the first connection circuit 24 , and the impedance of the second connection circuit 25 .
  • the first impedance Rn corresponding to the variable voltage output module 132 is the impedance of the first winding 21 in the variable voltage output module 132, the impedance of the first switching element 22, the impedance of the second switching element 23, the impedance of the first connecting circuit 24 and the impedance of the second switching element 23.
  • variable voltage input module 131 includes: a second winding 41, a third switching element 42, and a fourth switching element 43; It is connected to the first end of the third switching element 42 and the second end is connected to the fourth switching element 43; the second end of the third switching element 42 and the second end of the fourth switching element 43 are respectively connected to the target unit.
  • both the main control unit 31 and the cell sampling unit 32 need their respective corresponding variable voltage input modules 131, the second end of the third switching element 42 and the fourth switching element
  • the target unit connected to the second end of 43 is the main control unit 31 or the cell sampling unit 32 in a specific connection scenario. Specifically shown in Figure 1.
  • the second winding 41 , the third switch element 42 , and the fourth switch element 43 constitute a voltage-transformation input module 131 .
  • the second winding 41 will be excessively stretched during the use of the cell sampling circuit, and there is a risk of disconnection.
  • the transition stretch described here is caused by the expansion or contraction of the transformer structure caused by the temperature change during the use of the cell sampling circuit.
  • the target unit includes: a fourth voltage sampling circuit 51, a fifth voltage sampling circuit 52, a third voltage regulating circuit 53 and a control chip 34; the third voltage The first end of the regulating circuit 53 is connected to the third node C, and the second end is connected to the ground GND; the first end of the fourth voltage sampling line 51 is connected to the third node C, and the second end is connected to the sixth node of the control chip 54.
  • the first end of the fifth voltage sampling circuit 52 is connected to the fourth node D, and the second end is connected to the seventh pin of the control chip 34;
  • the third node C is connected to the second end of the third switching element 42 , and is connected to the eighth pin of the control chip 34 ;
  • the fourth node D is connected to the second end of the fourth switching element 43 , and is connected to the ninth pin of the control chip 34 .
  • the target unit described here includes the main control unit 11 and the cell sampling unit 12, and the control chip 34 included in the target unit has the same function in the main control unit 11 and the cell sampling unit 12, and the same function is to obtain the first part of the transformer input module 131.
  • the control chip 34 is used to obtain the second impedance Rm of the transformer input module 131 connected thereto.
  • the fourth voltage sampling circuit 51 , the fifth voltage sampling circuit 52 and the third voltage regulating circuit 53 are all used to assist the control chip 34 in acquiring the second impedance Rm.
  • the magnitude of the impedance of the transformer input module 131 will cause voltage changes in the fourth voltage sampling circuit 51 and the fifth voltage sampling circuit 52 .
  • the third voltage regulating circuit 53 includes a voltage regulating resistor 531 for regulating the voltage.
  • control chip 54 is configured to collect the fourth sampling voltage U4 corresponding to the fourth voltage sampling circuit 51 and the fifth sampling voltage U5 corresponding to the fifth voltage sampling circuit 52, based on the fourth The sampling voltage U4, the fifth sampling voltage U5, and the third resistor R3 of the third voltage regulating circuit 53 determine the second impedance Rm.
  • the second impedance Rm can be determined through the above formula.
  • the target unit further includes: a fourth voltage regulation circuit 54 and a sixth voltage sampling circuit 55; the first terminal of the fourth voltage regulation circuit 54 is connected to the fourth node D The second terminal is connected to the first terminal of the sixth voltage sampling circuit 55; the second terminal of the sixth voltage sampling circuit 55 is connected to the tenth pin of the control chip 54.
  • Both the fourth voltage regulating circuit 54 and the sixth voltage sampling circuit 55 are used to assist the control chip 34 in obtaining the second impedance Rm.
  • the fourth voltage regulating circuit 54 includes a voltage regulating resistor 541 for regulating voltage. The magnitude of the impedance of the transformer input module 131 will cause the voltage in the sixth voltage sampling circuit 55 to change.
  • control chip 54 is configured to collect the sixth sampling voltage U6 corresponding to the sixth voltage sampling circuit 55 and the fifth sampling voltage U5 corresponding to the fifth voltage sampling circuit 52, based on the sixth The sampling voltage U6, the fifth sampling voltage U5, the third resistor R3 of the third voltage regulating circuit 53 and the corresponding fourth resistor R4 of the fourth voltage regulating circuit 54 determine the second impedance Rm.
  • the second impedance Rm can be determined through the above formula.
  • control chip 54 is configured to collect the sixth sampling voltage U6 corresponding to the sixth voltage sampling circuit 55 and the fourth sampling voltage U4 corresponding to the fourth voltage sampling circuit 51, based on the fourth The sampling voltage U4, the sixth sampling voltage U6, the third resistor R3 of the third voltage regulating circuit 53, and the corresponding fourth resistor R4 of the fourth voltage regulating circuit 54 determine the second impedance Rm.
  • the second impedance Rm can be determined through the above formula.
  • the second impedance Rm is the impedance of the second winding 41 in the variable voltage input module 131, the impedance of the third switching element 42, and the impedance of the fourth switching element 43 under the daisy chain communication.
  • the second impedance Rm corresponding to the variable voltage input module 131 is the sum of the impedance of the second winding 41 , the impedance of the third switching element 42 , and the impedance of the fourth switching element 43 in the variable voltage input module 131 . After the second winding 41 is stretched, its corresponding impedance will become larger. Therefore, the second impedance Rm can reflect whether there is a risk of disconnection in the second winding 41, and can be used as a basis for judging an early warning of circuit abnormality.
  • each cell sampling unit 12 in the cell sampling circuit has at least one cell D corresponding to it, and communicates with the corresponding cell D through a line.
  • the cells D are connected to collect state data such as the voltage and temperature of the corresponding cell D, and transmit the state data to the main control unit 11 .
  • the main control unit 11 is used for battery management based on the voltage state data collected by the cell sampling unit 12 .
  • the cell sampling circuit in Figure 2 can not only monitor the state of the cells in the battery pack in real time, but the main control unit and the cell sampling unit can also detect the impedance of the transformer unit connected to it in time. Abnormal situation, when the transformer unit is abnormal and the disconnection fault has not occurred, an early warning of circuit abnormality is given, so that the user can handle the abnormal circuit in advance according to the early warning of circuit abnormality.
  • the battery sampling circuit includes: sequentially connected in series through daisy chain communication Multiple target units, a transformer unit is connected between every two adjacent target units; the first target unit in the series connection is the main control unit, and the rest of the target units are cell sampling units.
  • This method mainly include:
  • the circuit fault early warning method provided by the embodiment of the present application is applied to the battery sampling circuit.
  • the abnormal situation of the transformer unit can be detected in time, so that the abnormality of the transformer unit has not occurred yet.
  • an early warning of circuit abnormality is given for users to handle circuit abnormalities in advance according to the early warning of circuit abnormality.
  • another embodiment of the present application also provides a battery management system, the battery management system includes the battery sampling circuit as described above.
  • the cell sampling circuit included in the battery management system provided in the embodiment of the present application can detect the abnormality of the transformer unit in time by detecting the impedance of the transformer unit connected to each target unit, so that when the abnormality occurs in the transformer unit, the disconnection has not occurred.
  • a circuit abnormality warning is given for the user to process the circuit abnormality in advance according to the circuit abnormality warning.
  • another embodiment of the present application further provides a battery, where the battery includes the battery management system as described above.
  • another embodiment of the present application also provides an electric device, the electric device includes the above-mentioned battery.
  • another embodiment of the present application also provides a computer-readable storage medium, wherein the storage medium includes a stored program, wherein when the program is running, the control The device where the storage medium is located executes the above-mentioned circuit fault early warning method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电芯采样电路,涉及电池管理技术领域,电芯采样电路包括:通过菊花链通信方式依次串联连接的多个目标单元(11、12),每两个相邻的目标单元之间均接入一个变压器单元(13);串联连接中排在首位的目标单元为主控单元(11),其余的目标单元均为电芯采样单元(12);每一个所述目标单元(11、12),分别用于获取与其相连的变压器单元(13)的阻抗,并基于所获取的阻抗判断是否进行电路异常预警。一种电路故障预警方法及电池管理***。

Description

电芯采样电路、电路故障预警方法及电池管理***
相关申请的交叉引用
本申请要求享有于2022年01月07日提交的名称为“电芯采样电路、电路故障预警方法及电池管理***”的中国专利申请202210018432.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池管理技术领域,特别是涉及一种电芯采样电路、电路故障预警方法及电池管理***。
背景技术
电池管理***(Battery Management System,BMS)为了及时发现电池组的异常,一般通过电芯采样电路采集电池组中电芯的电压和温度等状态数据。
目前,电芯采样电路实际使用过程中一旦发生故障,电芯采样电路通信便会中断,通信中断会造成电芯的状态数据无法采集到。在电芯的状态数据无法采集到的情况下,为保证电芯的安全,会快速断开电池组的高压回路以确保电池组进入安全状态,此种方式虽然保证了电池组的安全,但是给用户使用电池组造成了不便,影响用户体验感。
发明内容
鉴于上述问题,本申请提出了一种电芯采样电路、电路故障预警方法及电池管理***,主要目的在于对电芯采样电路中的异常进行提前预警。
第一方面,本申请提供了一种电芯采样电路,所述电芯采样电路包括:通过菊花链通信方式依次串联连接的多个目标单元,每两个相邻的目标单元之间均接入一个变压器单元;串联连接中排在首位的目标单元为主控单元,其余的目标单元均为电芯采样单元;每一个所述目标单元,分别用于获取与其各自相连的变压器单元的阻抗,并基于所获取的阻抗判断是否进行电路异常预警。
本申请实施例提供的电芯采样电路包括有通过菊花链通信方式依次串联连接的多个目标单元,其中,串联连接中排在首位的目标单元为主控单元,其余的目标单元均为电芯采样单元。每两个相邻的目标单元之间均接入一个变压器单元。每一个目标单元分别用于获取与其各自相连的变压器单元的阻抗,并基于所获取的阻抗判断是否进行电路异常预警。目标单元所获取的阻抗能够反映出与其相连的变压器单元的绕线被过度拉升的情况,能够体现出变压器单元的绕线的断线风险大小,因此本申请实施例提供的方案中目标单元通过检测与其相连的变压器单元的阻抗的方式,能够及时发现变压器单元的异常情况,以在变压器单元发生异常,还未发生断线故障时,给出电路异常预警,以供用户根据电路异常预警提前进行电路异常处理。
在一些实施例中,两个相邻的目标单元中位于上游的目标单元接入所述变压器单元的变压输入模块,位于下游的目标单元接入所述变压器单元的变压输出模块;每一个所述目标单元,分别用于获取与其连接的目标模块的阻抗,并基于所获取的阻抗判断是否进行电路异常预警,其中,所述目标模块基于所述目标单元与变压器单元的接入关系而定。
在一些实施例中,所述目标单元为电芯采样单元时,所述目标模块包括其连接的变压输出模块和其连接的变压输入模块,所获取的阻抗包括第一阻抗和第二阻抗,所述第一阻抗为与其连接的变压输出模块的阻抗,所述第二阻抗为与其连接的变压输入模块的阻抗。
在一些实施例中,所述目标单元为主控单元时,所述目标模块包括其连接的变压输入模块,所获取的阻抗为第二阻抗,所述第二阻抗为与其连接的变压输入模块的阻抗。
在一些实施例中,每一个所述目标单元,分别用于在确定所获取的目标模块的阻抗达到所 述目标模块对应的阻抗阈值时,进行电路异常预警。
在一些实施例中,每一个所述目标单元,分别用于确定异常变压器单元,发出针对所述异常变压器单元的电路异常预警,所述异常变压器单元为阻抗达到对应的阻抗阈值的目标模块所在的变压器单元。
在一些实施例中,所述变压输出模块包括:第一绕组、第一开关元件、第二开关元件、第一连接电路和第二连接电路;所述第一绕组的第一端通过所述第一连接电路与所述第一开关元件的第一端连接,第二端通过所述第二连接电路与所述第二开关元件的第一端连接;所述第一开关元件的第二端和所述第二开关元件的第二端分别与所述电芯采样单元连接。
在一些实施例中,所述电芯采样单元包括:第一电压采样线路、第二电压采样电路、第一电压调节电路和控制芯片;所述第一电压调节电路的第一端与第一节点连接,第二端与地线连接;所述第一电压采样电路的第一端与所述第一节点连接,第二端与所述控制芯片的第一引脚连接;所述第二电压采样电路的第一端与第二节点连接,第二端与所述控制芯片的第二引脚连接;所述第一节点与所述第一开关元件的第二端连接,且与所述控制芯片的第三引脚连接;所述第二节点与所述第二开关元件的第二端连接,且与所述控制芯片的第四引脚连接。。
在一些实施例中,所述控制芯片,用于采集所述第一电压采样电路对应的第一采样电压以及所述第二电压采样电路对应的第二采样电压,基于所述第一采样电压、所述第二采样电压、所述第一电压调节电路的第一电阻,确定所述第一阻抗。
在一些实施例中,所述电芯采样单元还包括:第二电压调节电路和第三电压采样电路;所述第二电压调节电路的第一端与所述第二节点连接,第二端与所述第三电压采样电路的第一端连接;所述第三电压采样电路的第二端与所述控制芯片的第五引脚连接。
在一些实施例中,所述控制芯片,用于采集所述第二电压采样电路对应的第二采样电压以及采集所述第三电压采样电路对应的第三采样电压,基于所述第二采样电压、所述第三采样电压、所述第一电压调节电路的第一电阻和所述第二电压调节电路的第二电阻,确定所述第一阻抗。
在一些实施例中,所述控制芯片,用于采集所述第一电压采样电路对应的第一采样电压以及采集所述第三电压采样电路对应的第三采样电压,基于所述第一采样电压、所述第三采样电压、所述第一电压调节电路的第一电阻和所述第二电压调节电路的第二电阻,确定所述第一阻抗。
在一些实施例中,所述第一阻抗为菊花链通信下,所述变压输出模块中第一绕组的阻抗、第一开关元件的阻抗、第二开关元件的阻抗、第一连接电路的阻抗和第二连接电路的阻抗的总和。
在一些实施例中,所述变压输入模块包括:第二绕组、第三开关元件、第四开关元件;所述第二绕组的第一端与所述第三开关元件的第一端连接,第二端与所述第四开关元件的第一端连接;所述第三开关元件的第二端和所述第四开关元件的第二端分别与所述目标单元连接。
在一些实施例中,所述目标单元包括:第四电压采样线路、第五电压采样电路、第三电压调节电路和控制芯片;所述第三电压调节电路的第一端与第三节点连接,第二端与地线连接;所述第四电压采样电路的第一端与所述第三节点连接,第二端与所述控制芯片的第六引脚连接;所述第五电压采样电路的第一端与第四节点连接,第二端与所述控制芯片的第七引脚连接;所述第三节点与所述第三开关元件的第二端连接,且与所述控制芯片的第八引脚连接;所述第四节点与所述第四开关元件的第二端连接,且与所述控制芯片的第九引脚连接。
在一些实施例中,所述控制芯片,用于采集所述第四电压采样电路对应的第四采样电压以及所述第五电压采样电路对应的第五采样电压,基于所述第四采样电压、所述第五采样电压、所述第三电压调节电路的第三电阻,确定所述第二阻抗。
在一些实施例中,所述目标单元还包括:第四电压调节电路和第六电压采样电路;所述第四电压调节电路的第一端与所述第四节点连接,第二端与所述第六电压采样电路的第一端连接;所述第六电压采样电路的第二端与所述控制芯片的第十引脚连接。
在一些实施例中,所述控制芯片,用于采集所述第六电压采样电路对应的第六采样电压以 及所述第五电压采样电路对应的第五采样电压,基于所述第六采样电压、所述第五采样电压、所述第三电压调节电路的第三电阻以及所述第四电压调节电路对应的第四电阻,确定所述第二阻抗。
在一些实施例中,所述控制芯片,用于采集所述第六电压采样电路对应的第六采样电压以及所述第四电压采样电路对应的第四采样电压,基于所述第四采样电压、所述第六采样电压、所述第三电压调节电路的第三电阻和所述第四电压调节电路对应的第四电阻,确定所述第二阻抗。
在一些实施例中,所述第二阻抗为菊花链通信下,所述变压输入模块中第二绕组的阻抗、第三开关元件的阻抗、第四开关元件的阻抗的总和。
第二方面,本申请提供了一种电路故障预警方法,应用于电芯采样电路,所述电芯采样电路包括:通过菊花链通信方式依次串联连接的多个目标单元,每两个相邻的目标单元之间均接入一个变压器单元;串联连接中排在首位的目标单元为主控单元,其余的目标单元均为电芯采样单元,所述方法包括:对于每一个所述目标单元均执行:获取与其相连的变压器单元的阻抗;基于所获取的阻抗判断是否进行电路异常预警。
第三方面,本申请提供了一种电池管理***,所述电池管理***包括如第一方面中任一项所述的电芯采样电路。
第四方面,本申请提供了一种电池,所述电池包括如第三方面所述的电池管理***。
第五方面,本申请提供了一种用电装置,所述用电装置包括如第四方面所述的电池。
第六方面,本申请提供了一种计算机可读存储介质,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行第二方面中任意一项所述的电路故障预警方法。
上述说明仅是本实用新型实施例技术方案的概述,为了能够更清楚了解本实用新型实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本实用新型实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本实用新型的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例的一种电芯采样电路的示意图;
图2为本申请一些实施例的一种电芯采样电路与电芯之间连接关系的示意图;
图3为本申请一些实施例的一种电路故障预警方法的流程图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不 是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
电池组通常由多个电芯串并联组成,电芯的状态直接影响着电池的使用安全。电芯出现短路、过充、过放、电压一致性差等异常情况时,会造成电池组的电池性能下降和寿命衰减,严重的会使电池组出现冒烟、起火、***等情况,严重危害电池组的使用安全。因此,为了保证电池组的安全,在电池组使用过程中需要实时检测电池组中各电芯的诸如电压和温度等状态数据,以便基于这些状态数据对电池组的充放电过程进行精确的控制和防护。
目前,电池管理***通过电芯采样电路采集电芯的状态数据。当前的电芯采样电路多采用分布式方案,电芯采样电路中的多个电芯采样单元负责电芯的状态数据的采集,电芯采样电路中的主控单元负责根据电芯采样单元采集的状态参数进行处理和控制。电芯采样电路实际使用过程中一旦发生故障,电芯采样电路通信便会中断,通信中断会造成电芯的电压和温度等状态数据无法采集到。在电芯的状态数据无法采集到的情况下,为保证电池组的安全,会快速断开电池组的高压回路以确保电池组进入安全状态,此种方式虽然保证了电池组的安全,但是给用户使用电池组造成了不便,影响用户体验感。
本申请人注意到,电芯采样电路发生故障的主要原因是由电芯采样电路中的变压器单元的故障导致的。变压器单元主要用于实现电芯采样电路中各部件之间电器隔离。受限于变压器单元的制造工艺,电芯采样电路实际使用过程中经常出现变压器断线等故障,变压器的故障会导致电芯采样电路通信中断,电芯的电压和温度等状态数据无法采集到。目前,变压器故障的发生仅有电池组进入安全状态后,才被感知到,而电池组进入安全状态会直接导致用户不能使用电池组,给用户使用电池组造成不便。
为了在电芯采样电路通信中断前,及时发现变压器单元的异常,申请人研究发现,可以设计一种电芯采样电路,以在变压器单元出现异常,且异常还未导致电芯采样电路通信出现中断之前,提前预警电路异常,以给用户一个电路异常预警,使用户提前基于预警进行异常处理。
基于以上考虑,申请人经过深入研究,设计了一种电芯采样电路,具体为,该电芯采样电路包括:通过菊花链通信方式依次串联连接的多个目标单元,每两个相邻的目标单元之间均接入一个变压器单元;串联连接中排在首位的目标单元为主控单元,其余的目标单元均为电芯采样单元;每一个目标单元,分别用于获取与其相连的变压器单元的阻抗,并基于所获取的阻抗判断是否进行电路异常预警。
本申请实施例公开的一种设置有电芯采样电路的电池管理***,以使电池管理***基于电芯采样电路所采集的数据进行电池控制和关联。
本申请实施例公开的一种设置有电池管理***的电池可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池等组成该用电装置的电源***,这样,在电芯采样电路的变压器出现异常,且异常还未导致电芯采样电路通信出现中断之前,提前预警电路异常,以给用户一个电路异常预警,使用户提前基于预警进行异常处理。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
如图1所示,本申请实施例提供了一种电芯采样电路,该电芯采样电路包括:通过菊花链通信方式依次串联连接的多个目标单元,串联连接中排在首位的目标单元为主控单元11,其余的目标单元均为电芯采样单元12;每两个相邻的目标单元之间均接入一个变压器单元13。每一个目标单元,分别用于获取与其各自相连的变压器单元13的阻抗,并基于所获取的阻抗判断是否进行电路异常预警。
主控单元11和至少一个电芯采样单元12均为目标单元,采用菊花链通信方式依次串联连接在一起。主控单元11位于串联连接中的首位。如图1所示,图1中仅显示了串联连接的多个目标单元中的两个目标单元,其余目标单元未显示。其中,位于首位的目标单元为主控单元11。其他的目标单元均为电芯采样单元12,且串联连接在主控单元11之后。各目标单元之间由于采用菊花链通信方式,因此每两个相邻的目标单元之间均接入一个变压器单元13,以利用变压器单元13实现各目标单元之间的电气隔离。
电芯采样电路发生故障的主要原因是由电芯采样电路中的变压器单元13故障导致的。因此需要对变压器单元13进行监控,以在其存在异常,但未发生故障的情况下及时发现其异常并进行电路异常预警。
变压器单元13的故障主要是断线故障。断线故障通常是由于温度变化导致的变压器结构的膨胀或收缩时变压器的绕线被过度拉升而导致的。变压器结构的膨胀或收缩时绕线被过度拉升必然会导致变压器单元13的阻抗呈现增大趋势,因此通过获取变压器单元13的阻抗即可确定是否进行电路异常预警。
获取变压器单元13阻抗的工作由目标单元来完成。每一个目标单元分别用于获取与其相连的变压器单元13的阻抗。目标单元所获取的阻抗能够反映出与其相连的变压器单元13的绕线被过度拉升情况,其能够体现出变压器单元13的绕线的断线风险大小。因此,目标单元可通过所获取与其相连的变压器单元13的阻抗判断是否进行电路异常预警。一旦目标单元基于其所获取的阻抗确定电芯采样电路存在断路风险,则发出电路异常预警,以使用户及时根据该预警进行处理。
本申请实施例提供的电芯采样电路包括有通过菊花链通信方式依次串联连接的多个目标单元,其中,串联连接中排在首位的目标单元为主控单元,其余的目标单元均为电芯采样单元。每两个相邻的目标单元之间均接入一个变压器单元。每一个目标单元分别用于获取与其各自相连的变压器单元的阻抗,并基于所获取的阻抗判断是否进行电路异常预警。目标单元所获取的阻抗能够反映出与其相连的变压器单元的绕线被过度拉升的情况,能够体现出变压器单元的绕线的断线风险大小,因此本申请实施例提供的方案中目标单元通过检测与其相连的变压器单元的阻抗的方式,能够及时发现变压器单元的异常情况,以在变压器单元发生异常,还未发生断线故障时,给出电路异常预警,以供用户根据电路异常预警提前进行电路异常处理。
根据本申请的一些实施例,可选地,两个相邻的目标单元中位于上游的目标单元接入变压器单元13的变压输入模块131,位于下游的目标单元接入变压器单元13的变压输出模块132。每一个目标单元,分别用于获取与其连接的目标模块的阻抗,并基于所获取的阻抗判断是否进行电路异常预警,其中,目标模块基于目标单元与变压器单元13的接入关系而定。
变压器单元13包括有变压输入模块131和变压输出模块132。两个相邻的目标单元中位于上游的目标单元接入变压器单元13的变压输入模块131,位于下游的目标单元接入变压器单元13的变压输出模块132。上游和下游是基于主控芯片11和各电芯采样单元12的通信方向确定的, 主控芯片11至最后一个电芯采样单元12的通信方向定义为从上游到下游。
从图1中可以看出,在两个相邻的目标单元中一个目标单元为主控单元11,另一个目标单元为电芯采样单元12的情况下,则主控单元11为位于上游的目标单元,电芯采样单元12为位于下游的目标单元。在两个相邻的目标单元均为电芯采样单元12的情况下,则靠近主控单元11的电芯采样单元12为位于上游的目标单元,另一个电芯采样单元12为位于上游的目标单元。
为了及时发现变压器单元13的异常,则每一个目标单元都需要对其所连接的变压器单元13进行阻抗的获取。每一个目标单元在获取阻抗时,仅获取与其连接的目标模块的阻抗。对于一个目标单元来说,其对应的目标模块基于其与变压器单元13的接入关系而定。
目标单元为电芯采样单元12时,由于其仅一侧接入了变压器单元13,因此,其连接的目标模块包括其连接的变压输入模块131。示例性的,从图1中可以看出,目标单元为主控单元11,则其目标模块为与其相连的变压器单元13中的变压输入模块131。主控单元11获取与其连接的变压输入模块131的阻抗即可对变压器单元13的异常进行监控。
目标单元为电芯采样单元12时,由于其两侧均接入了变压器单元13,因此,其连接的目标模块包括其连接的变压输出模块132和其连接的变压输入模块131。示例性的,从图1中可以看出,目标单元为与主控单元11相邻的电芯采样单元12。该电芯采样单元12两侧均接入了一个变压器单元13,因此其连接的目标模块包括有两个:一个是在其上游与其相连的变压器单元13中的变压输出模块132,另一个是在其下游与其相连的变压器单元13中的变压输入模块131。
根据本申请的一些实施例,可选地,目标单元为电芯采样单元12时,与其连接的目标模块包括其连接的变压输出模块132和其连接的变压输入模块131,所获取的阻抗包括第一阻抗和第二阻抗。其中,第一阻抗为与其连接的变压输出模块132的阻抗,第二阻抗为与其连接的变压输入模块131的阻抗。
如图1所示,电芯采样单元12的两侧均接入了变压器单元13,因此其可同时监测两个变压器单元13的情况。因此,电芯采样单元12需要获取与其连接的变压输出模块132的第一阻抗以及获取其连接的变压输入模块131的第二阻抗。
第一阻抗可反映出变压器单元13中的变压输出模块132的绕线被过度拉升情况,能够体现出变压输出模块132的绕线的断线风险大小。第二阻抗可反映出变压器单元13中的变压输入模块131的绕线被过度拉升情况,能够体现出变压输入模块131的绕线的断线风险大小。因此电芯采样单元12可通过所采集获取的第一阻抗的大小确定与其相连的变压输出模块132的绕线的断线风险大小,并在确定风险大时,发出电路异常预警以在变压器单元发生异常,还未发生断线故障时,给出电路异常预警,以供用户根据电路异常预警提前进行电路异常处理。同样的,电芯采样单元12可通过所采集获取的第二阻抗的大小确定与其相连的变压输入模块131的绕线的断线风险大小,并在确定风险大时,发出电路异常预警以在变压器单元发生异常,还未发生断线故障时,给出电路异常预警,以供用户根据电路异常预警提前进行电路异常处理。
根据本申请的一些实施例,可选地,目标单元为主控单元11时,与其连接的目标模块包括其连接的变压输入模块131,所获取的阻抗为第二阻抗,所述第二阻抗为与其连接的变压输入模块131的阻抗。
如图1所示,主控单元11的一侧接入了变压器单元13,其可监测与其连接的变压器单元13的情况。因此,主控单元11需要获取其连接的变压输入模块131的第二阻抗。
第二阻抗可反映出变压器单元13中的变压输入模块131的绕线被过度拉升情况,能够体现出变压输入模块131的绕线的断线风险大小。主控单元11可通过所采集获取的第二阻抗的大小确定与其相连的变压输入模块131的绕线的断线风险大小,并在确定风险大时,发出电路异常预警以在变压器单元发生异常,还未发生断线故障时,给出电路异常预警,以供用户根据电路异常预警提前进行电路异常处理。
根据本申请的一些实施例,可选地,每一个目标单元,分别用于在确定所获取的目标模块的阻抗达到目标模块对应的阻抗阈值时,进行电路异常预警。
对于一个目标单元来说,其连接的目标模块均具有其各自对应的阻抗阈值。
对于一个目标模块来说,这个阻抗阈值是目标模块的绕线的阻抗上限,一旦目标模块的阻抗达到这个阻抗阈值,其断线可能性增大。因此,目标单元在获取到目标模块的阻抗之后,需要将所获取的目标模块的阻抗与目标模块对应的阻抗阈值进行比对。
目标单元在确定所获取的目标模块的阻抗达到目标模块对应的阻抗阈值时,说明目标模块的绕线的拉伸已导致断线的风险较大,因此,需要针对该目标模块进行电路异常预警,以使用户提前预警电芯采样电路的断路风险。
目标单元在确定所获取的目标模块的阻抗未达到目标模块对应的阻抗阈值时,说明目标模块的绕线的拉伸还未使得断线风险较大,无需针对该目标模块进行电路异常预警。
需要说明的是,目标单元为主控单元11时,若其确定需要进行电路异常预警,则其可直接进行预警处理。若目标单元为电芯采样单元12,为了减少电芯采样单元12的处理量,则电芯采样单元12确定需要进行电路异常预警时,其可将电路异常预警的需求通过菊花链通信的方式传输给主控单元11,由主控单元11进行具有的电路异常预警处理。
根据本申请的一些实施例,可选地,每一个目标单元,分别用于确定异常变压器单元,发出针对异常变压器单元的电路异常预警,其中,异常变压器单元为阻抗达到对应的阻抗阈值的目标模块所在的变压器单元13。
为了实现发生故障的变压器单元13的精确定位,方便维修,减少维修时间,则目标单元在确定所获取的目标模块的阻抗达到目标模块对应的阻抗阈值时,确定异常变压器单元,发出针对异常变压器单元的电路异常预警。
异常变压器单元为阻抗达到对应的阻抗阈值的目标模块所在的变压器单元13,也就是说,异常变压器单元由于温度变化导致的变压器结构的膨胀或收缩时目标模块的绕线被过度拉升,存在断线风险。为了实现发生故障的变压器单元13的精确定位,发出针对异常变压器单元的电路异常预警,以便维修人员精确了解到哪个变压器单元13存在断线风险,从而可以快速的有针对性的对其进行维修和更换,从而提高维修效率。
根据本申请的一些实施例,可选地,如图1所示,变压输出模块132包括:第一绕组21、第一开关元件22、第二开关元件23、第一连接电路24和第二连接电路25;第一绕组21的第一端通过第一连接电路24与第一开关元件22的第一端连接,第二端通过第二连接电路25与第二开关元件23的第一端连接;第一开关元件22的第二端和第二开关元件23的第二端分别与电芯采样单元11连接。
第一绕组21、第一开关元件22、第二开关元件23、第一连接电路24和第二连接电路25组成了变压输出模块132。其中,第一绕组21、第一连接电路24和第二连接电路25在电芯采样电路的使用过程均会被过渡拉伸,存在断线风险。这里所述的过渡拉伸是由于电芯采样电路使用过程的温度变化导致的变压器结构的膨胀或收缩导致的。
变压输出模块132对应的第一阻抗Rn是变压输出模块132中第一绕组21的阻抗Rt1、第一开关元件22的阻抗Rmos、第二开关元件23的阻抗Rmos、第一连接电路24的阻抗Rj1和第二连接电路25的阻抗Rj2的总和,即Rn=Rj2+Rt1+Rj1+2Rmos。在温度变化导致的变压器结构的膨胀或收缩的场景下,第一绕组21、第一连接电路24和第二连接电路25均可能被过渡拉伸,存在断线风险。第一绕组21、第一连接电路24和第二连接电路25被拉伸后,其各自对应的阻抗均会变大,因此,第一阻抗Rn是可以体现出第一绕组21、第一连接电路24和第二连接电路25是否存在断线风险的,可以作为电路异常预警的判定依据。
根据本申请的一些实施例,可选地,如图1所示,电芯采样单元12包括:第一电压采样线路31、第二电压采样电路32、第一电压调节电路33和控制芯片34;第一电压调节电路33的第一端与第一节点A连接,第二端与地线GND连接;第一电压采样电路31的第一端与第一节点A连接,第二端与控制芯片34的第一引脚连接;第二电压采样电路32的第一端与第二节点B连接,第二端与控制芯片34的第二引脚连接;第一节点A与第一开关元件34的第二端连接,且与控制芯 片34的第三引脚连接;第二节点B与第二开关元件23的第二端连接,且与控制芯片34的第四引脚连接。
控制芯片34用于获取与其连接的变压器输出模块132的第一阻抗Rn。第一电压采样线路31、第二电压采样电路32、第一电压调节电路33均用于辅助控制芯片34获取第一阻抗Rn。变压器输出模块132阻抗的大小会引起第二电压采样电路32中电压的变化。第一电压调节电路33中包括一个调压电阻331,用于调节电压。
根据本申请的一些实施例,可选地,如图1所示,控制芯片34,用于采集第一电压采样线路31对应的第一采样电压U1以及第二电压采样电路32对应的第二采样电压U2,基于第一采样电压U1、第二采样电压U2、第一电压调节电路33的第一电阻R1,确定第一阻抗Rn。
在确定第一阻抗Rn时,依据是电流相等原则建立如下公式:
Figure PCTCN2022089552-appb-000001
由于上述公式中的第一采样电压U1、第二采样电压U2均可采集,第一电阻R1是预先已知的,因此通过上述公式便可确定第一阻抗Rn。
根据本申请的一些实施例,可选地,如图1所示,电芯采样单元12还包括:第二电压调节电路35和第三电压采样电路36;第二电压调节电路35的第一端与第二节点B连接,第二端与第三电压采样电路36的第一端连接;第三电压采样电路36的第二端与控制芯片34的第五引脚连接。
第二电压调节电路35和第三电压采样电路36均用于辅助控制芯片34获取第一阻抗Rn。第二电压调节电路35中包括一个调压电阻351,用于调节电压。变压器输出模块132阻抗的大小会引起第三电压采样电路36中电压的变化。
根据本申请的一些实施例,可选地,如图1所示,控制芯片34,用于采集第二电压采样电路32对应的第二采样电压U2以及采集第三电压采样电路36对应的第三采样电压U3,基于第二采样电压U2、第三采样电压U3、第一电压调节电路33的第一电阻R1和第二电压调节电路35的第二电阻R2,确定第一阻抗Rn。
在确定第一阻抗Rn时,依据是电流相等原则建立如下公式:
Figure PCTCN2022089552-appb-000002
由于上述公式中的第三采样电压U3、第二采样电压U2均可采集,第一电阻R1和第二电阻R2是预先已知的,因此通过上述公式便可确定第一阻抗Rn。
根据本申请的一些实施例,可选地,如图1所示,控制芯片34,用于采集所述第一电压采样线路31对应的第一采样电压U1以及采集第三电压采样电路36对应的第三采样电压U3,基于第一采样电压U1、第三采样电压U3、第一电压调节电路33的第一电阻R1和第二电压调节电路35的第二电阻R2,确定第一阻抗Rn。
在确定第一阻抗Rn时,依据是电流相等原则建立如下公式:
Figure PCTCN2022089552-appb-000003
由于上述公式中的第三采样电压U3、第一采样电压U1均可采集,第一电阻R1和第二电阻R2是预先已知的,因此通过上述公式便可确定第一阻抗Rn。
根据本申请的一些实施例,可选地,如图1所示,第一阻抗为菊花链通信下,变压输出模块132中第一绕组21的阻抗、第一开关元件22的阻抗、第二开关元件23的阻抗、第一连接电路24的阻抗和第二连接电路25的阻抗的总和。
变压输出模块132对应的第一阻抗Rn是变压输出模块132中第一绕组21的阻抗、第一开关元件22的阻抗、第二开关元件23的阻抗、第一连接电路24的阻抗和第二连接电路25的阻抗的 总和。第一绕组21、第一连接电路24和第二连接电路25被拉伸后,其各自对应的阻抗均会变大,因此,第一阻抗Rn是可以体现出第一绕组21、第一连接电路24和第二连接电路25是否存在断线风险的,可以作为电路异常预警的判定依据。
根据本申请的一些实施例,可选地,如图1所示,变压输入模块131包括:第二绕组41、第三开关元件42、第四开关元件43;第二绕组41的第一端与第三开关元件42的第一端连接,第二端与第四开关元件43连接;第三开关元件42的第二端和第四开关元件43的第二端分别与目标单元连接。
需要说明的是,由于在电芯采样电路中,主控单元31和电芯采样单元32均需要与其各自对应的变压输入模块131,因此第三开关元件42的第二端和第四开关元件43的第二端所连接的目标单元,在具体的连接场景下,其是主控单元31或电芯采样单元32。具体如图1所示。
第二绕组41、第三开关元件42、第四开关元件43组成了变压输入模块131。其中,第二绕组41在电芯采样电路的使用过程会被过渡拉伸,存在断线风险。这里所述的过渡拉伸是由于电芯采样电路使用过程的温度变化导致的变压器结构的膨胀或收缩导致的。
变压输入模块131对应的第二阻抗Rm是变压输入模块131中第二绕组41的阻抗Rt2、第三开关元件42的阻抗Rmos、第四开关元件43的阻抗Rmos的总和,即Rm=Rt2+2Rmos。第二绕组41被拉伸后,其对应的阻抗会变大,因此,第二阻抗Rm是可以体现出第二绕组41是否存在断线风险的,可以作为电路异常预警的判定依据。
根据本申请的一些实施例,可选地,如图1所示,目标单元包括:第四电压采样线路51、第五电压采样电路52、第三电压调节电路53和控制芯片34;第三电压调节电路53的第一端与第三节点C连接,第二端与地线GND连接;第四电压采样线路51的第一端与第三节点C连接,第二端与控制芯片54的第六引脚连接;第五电压采样电路52的第一端与第四节点D连接,第二端与控制芯片34的第七引脚连接;第三节点C与第三开关元件42的第二端连接,且与控制芯片34的第八引脚连接;第四节点D与第四开关元件43的第二端连接,且与控制芯片34的第九引脚连接。
这里所述的目标单元包括主控单元11和电芯采样单元12,目标单元包括的控制芯片34在主控单元11和电芯采样单元12有相同作用,作用同为获取变压器输入模块131的第二阻抗Rm,并基于第二阻抗Rm判断是否进行电路异常预警,但是其也有不同的作用,比如,主控单元中的主控芯片用于基于电芯采样单元12采集的电压状态数据进行电池管理,而电芯采样单元12用于采集电芯的状态数据。
控制芯片34用于获取与其连接的变压器输入模块131的第二阻抗Rm。第四电压采样线路51、第五电压采样电路52、第三电压调节电路53均用于辅助控制芯片34获取第二阻抗Rm。变压器输入模块131阻抗的大小会引起第四电压采样线路51、第五电压采样电路52中电压的变化。第三电压调节电路53中包括一个调压电阻531,用于调节电压。
根据本申请的一些实施例,可选地,控制芯片54,用于采集第四电压采样线路51对应的第四采样电压U4以及第五电压采样电路52对应的第五采样电压U5,基于第四采样电压U4、第五采样电压U5、第三电压调节电路53的第三电阻R3,确定第二阻抗Rm。
在确定第二阻抗Rm时,依据是电流相等原则建立如下公式:
Figure PCTCN2022089552-appb-000004
由于上述公式中的第四采样电压U4、第五采样电压U5均可采集,第三电阻R3是预先已知的,因此通过上述公式便可确定第二阻抗Rm。
根据本申请的一些实施例,可选地,所述目标单元还包括:第四电压调节电路54和第六电压采样电路55;第四电压调节电路54的第一端与所述第四节点D连接,第二端与第六电压采样电路55的第一端连接;第六电压采样电路55的第二端与控制芯片54的第十引脚连接。
第四电压调节电路54和第六电压采样电路55均用于辅助控制芯片34获取第二阻抗Rm。第四电压调节电路54中包括一个调压电阻541,用于调节电压。变压器输入模块131阻抗的大小会 引起第六电压采样电路55中电压的变化。
根据本申请的一些实施例,可选地,控制芯片54,用于采集第六电压采样电路55对应的第六采样电压U6以及第五电压采样电路52对应的第五采样电压U5,基于第六采样电压U6、第五采样电压U5、第三电压调节电路53的第三电阻R3以及第四电压调节电路54对应的第四电阻R4,确定第二阻抗Rm。
在确定第二阻抗Rm时,依据是电流相等原则建立如下公式:
Figure PCTCN2022089552-appb-000005
由于上述公式中的第六采样电压U6、第五采样电压U5均可采集,第三电阻R3和第四电阻R4是预先已知的,因此通过上述公式便可确定第二阻抗Rm。
根据本申请的一些实施例,可选地,控制芯片54,用于采集第六电压采样电路55对应的第六采样电压U6以及第四电压采样线路51对应的第四采样电压U4,基于第四采样电压U4、第六采样电压U6、第三电压调节电路53的第三电阻R3以及第四电压调节电路54对应的第四电阻R4,确定第二阻抗Rm。
在确定第二阻抗Rm时,依据是电流相等原则建立如下公式:
Figure PCTCN2022089552-appb-000006
由于上述公式中的第四采样电压U4、第六采样电压U6均可采集,第三电阻R3和第四电阻R4是预先已知的,因此通过上述公式便可确定第二阻抗Rm。
根据本申请的一些实施例,可选地,第二阻抗Rm为菊花链通信下,变压输入模块131中第二绕组41的阻抗、第三开关元件42的阻抗、第四开关元件43的阻抗的总和。
变压输入模块131对应的第二阻抗Rm是变压输入模块131中第二绕组41的阻抗、第三开关元件42的阻抗、第四开关元件43的阻抗的总和。第二绕组41被拉伸后,其对应的阻抗会变大,因此,第二阻抗Rm是可以体现出第二绕组41是否存在断线风险的,可以作为电路异常预警的判定依据。
根据本申请的一些实施例,可选地,如图2所示,电芯采样电路中的各电芯采样单元12均存在有其各自对应的至少一个电芯D,并通过线路与对应的电芯D相连,用于采集对应的电芯D的电压和温度等状态数据,并将状态数据传输给主控单元11。主控单元11用于基于电芯采样单元12采集的电压状态数据进行电池管理。
图2中的这种电芯采样电路,不仅可以实时监控电池组中电芯的状态,主控单元和电芯采样单元还能够通过检测与其相连的变压器单元的阻抗的方式,及时发现变压器单元的异常情况,以在变压器单元发生异常,还未发生断线故障时,给出电路异常预警,以供用户根据电路异常预警提前进行电路异常处理。
进一步的,本申请的另一个实施例还提供了一种电路故障预警方法,如图3所示,应用于电芯采样电路,所述电芯采样电路包括:通过菊花链通信方式依次串联连接的多个目标单元,每两个相邻的目标单元之间均接入一个变压器单元;串联连接中排在首位的目标单元为主控单元,其余的目标单元均为电芯采样单元,该方法主要包括:
601、对于每一个所述目标单元均执行:获取与其相连的变压器单元的阻抗。
602、基于所获取的阻抗判断是否进行电路异常预警。
本申请实施例提供的电路故障预警方法应用于电芯采样电路,通过检测与各目标单元相连的变压器单元的阻抗的方式,及时发现变压器单元的异常情况,以在变压器单元发生异常,还未发生断线故障时,给出电路异常预警,以供用户根据电路异常预警提前进行电路异常处理。
进一步的,依据上述方法实施例,本申请的另一个实施例还提供了一种电池管理***,所述电池管理***包括如上述所述的电芯采样电路。
本申请实施例提供的电池管理***包括的电芯采样电路能够通过检测与各目标单元相连的变压器单元的阻抗的方式,及时发现变压器单元的异常情况,以在变压器单元发生异常,还未发生断线故障时,给出电路异常预警,以供用户根据电路异常预警提前进行电路异常处理。
进一步的,依据上述方法实施例,本申请的另一个实施例还提供了一种电池,所述电池包括如上述所述的电池管理***。
进一步的,依据上述方法实施例,本申请的另一个实施例还提供了一种用电装置,所述用电装置包括如上述所述的电池。
进一步的,依据上述方法实施例,本申请的另一个实施例还提供了一种计算机可读存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行上述所述的电路故障预警方法。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
可以理解的是,上述方法及装置中的相关特征可以相互参考。另外,上述实施例中的“第一”、“第二”等是用于区分各实施例,而并不代表各实施例的优劣。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (25)

  1. 一种电芯采样电路,其特征在于,所述电芯采样电路包括:
    通过菊花链通信方式依次串联连接的多个目标单元,每两个相邻的目标单元之间均接入一个变压器单元;串联连接中排在首位的目标单元为主控单元,其余的目标单元均为电芯采样单元;
    每一个所述目标单元,分别用于获取与其各自相连的变压器单元的阻抗,并基于所获取的阻抗判断是否进行电路异常预警。
  2. 根据权利要求1所述的电芯采样电路,其特征在于,两个相邻的目标单元中位于上游的目标单元接入所述变压器单元的变压输入模块,位于下游的目标单元接入所述变压器单元的变压输出模块;
    每一个所述目标单元,分别用于获取与其连接的目标模块的阻抗,并基于所获取的阻抗判断是否进行电路异常预警,其中,所述目标模块基于所述目标单元与变压器单元的接入关系而定。
  3. 根据权利要求2所述的电芯采样电路,其特征在于,所述目标单元为电芯采样单元时,所述目标模块包括其连接的变压输出模块和其连接的变压输入模块,所获取的阻抗包括第一阻抗和第二阻抗,所述第一阻抗为与其连接的变压输出模块的阻抗,所述第二阻抗为与其连接的变压输入模块的阻抗。
  4. 根据权利要求3所述的电芯采样电路,其特征在于,所述目标单元为主控单元时,所述目标模块包括其连接的变压输入模块,所获取的阻抗为第二阻抗,所述第二阻抗为与其连接的变压输入模块的阻抗。
  5. 根据权利要求2-4中任一所述的电芯采样电路,其特征在于,每一个所述目标单元,分别用于在确定所获取的目标模块的阻抗达到所述目标模块对应的阻抗阈值时,进行电路异常预警。
  6. 根据权利要求5所述的电芯采样电路,其特征在于,每一个所述目标单元,分别用于确定异常变压器单元,发出针对所述异常变压器单元的电路异常预警,所述异常变压器单元为阻抗达到对应的阻抗阈值的目标模块所在的变压器单元。
  7. 根据权利要求4所述的电芯采样电路,其特征在于,所述变压输出模块包括:第一绕组、第一开关元件、第二开关元件、第一连接电路和第二连接电路;
    所述第一绕组的第一端通过所述第一连接电路与所述第一开关元件的第一端连接,第二端通过所述第二连接电路与所述第二开关元件的第一端连接;
    所述第一开关元件的第二端和所述第二开关元件的第二端分别与所述电芯采样单元连接。
  8. 根据权利要求7所述的电芯采样电路,其特征在于,所述电芯采样单元包括:第一电压采样线路、第二电压采样电路、第一电压调节电路和控制芯片;
    所述第一电压调节电路的第一端与第一节点连接,第二端与地线连接;
    所述第一电压采样电路的第一端与所述第一节点连接,第二端与所述控制芯片的第一引脚连接;
    所述第二电压采样电路的第一端与第二节点连接,第二端与所述控制芯片的第二引脚连接;
    所述第一节点与所述第一开关元件的第二端连接,且与所述控制芯片的第三引脚连接;
    所述第二节点与所述第二开关元件的第二端连接,且与所述控制芯片的第四引脚连接。
  9. 根据权利要求8所述的电芯采样电路,其特征在于,所述控制芯片,用于采集所述第一电压采样电路对应的第一采样电压以及所述第二电压采样电路对应的第二采样电压,基于所述第一采样电压、所述第二采样电压、所述第一电压调节电路的第一电阻,确定所述第一阻抗。
  10. 根据权利要求8所述的电芯采样电路,其特征在于,所述电芯采样单元还包括:第二电压调节电路和第三电压采样电路;
    所述第二电压调节电路的第一端与所述第二节点连接,第二端与所述第三电压采样电路的第一端连接;
    所述第三电压采样电路的第二端与所述控制芯片的第五引脚连接。
  11. 根据权利要求10所述的电芯采样电路,其特征在于,所述控制芯片,用于采集所述第二电压采样电路对应的第二采样电压以及采集所述第三电压采样电路对应的第三采样电压,基于所述第二采样电压、所述第三采样电压、所述第一电压调节电路的第一电阻和所述第二电压调节电路的第二电阻,确定所述第一阻抗。
  12. 根据权利要求10所述的电芯采样电路,其特征在于,所述控制芯片,用于采集所述第一电压采样电路对应的第一采样电压以及采集所述第三电压采样电路对应的第三采样电压,基于所述第一采样电压、所述第三采样电压、所述第一电压调节电路的第一电阻和所述第二电压调节电路的第二电阻,确定所述第一阻抗。
  13. 根据权利要求7-12中任一所述的电芯采样电路,其特征在于,所述第一阻抗为菊花链通信下,所述变压输出模块中第一绕组的阻抗、第一开关元件的阻抗、第二开关元件的阻抗、第一连接电路的阻抗和第二连接电路的阻抗的总和。
  14. 根据权利要求4所述的电芯采样电路,其特征在于,所述变压输入模块包括:第二绕组、第三开关元件、第四开关元件;
    所述第二绕组的第一端与所述第三开关元件的第一端连接,第二端与所述第四开关元件的第一端连接;
    所述第三开关元件的第二端和所述第四开关元件的第二端分别与所述目标单元连接。
  15. 根据权利要求14所述的电芯采样电路,其特征在于,所述目标单元包括:第四电压采样线路、第五电压采样电路、第三电压调节电路和控制芯片;
    所述第三电压调节电路的第一端与第三节点连接,第二端与地线连接;
    所述第四电压采样电路的第一端与所述第三节点连接,第二端与所述控制芯片的第六引脚连接;
    所述第五电压采样电路的第一端与第四节点连接,第二端与所述控制芯片的第七引脚连接;
    所述第三节点与所述第三开关元件的第二端连接,且与所述控制芯片的第八引脚连接;
    所述第四节点与所述第四开关元件的第二端连接,且与所述控制芯片的第九引脚连接。
  16. 根据权利要求15所述的电芯采样电路,其特征在于,所述控制芯片,用于采集所述第四电压采样电路对应的第四采样电压以及所述第五电压采样电路对应的第五采样电压,基于所述第四采样电压、所述第五采样电压、所述第三电压调节电路的第三电阻,确定所述第二阻抗。
  17. 根据权利要求15所述的电芯采样电路,其特征在于,所述目标单元还包括:第四电压调节电路和第六电压采样电路;
    所述第四电压调节电路的第一端与所述第四节点连接,第二端与所述第六电压采样电路的第一端连接;
    所述第六电压采样电路的第二端与所述控制芯片的第十引脚连接。
  18. 根据权利要求17所述的电芯采样电路,其特征在于,所述控制芯片,用于采集所述第六电压采样电路对应的第六采样电压以及所述第五电压采样电路对应的第五采样电压,基于所述第六采样电压、所述第五采样电压、所述第三电压调节电路的第三电阻以及所述第四电压调节电路对应的第四电阻,确定所述第二阻抗。
  19. 根据权利要求17所述的电芯采样电路,其特征在于,所述控制芯片,用于采集所述第六电压采样电路对应的第六采样电压以及所述第四电压采样电路对应的第四采样电压,基于所述第四采样电压、所述第六采样电压、所述第三电压调节电路的第三电阻和所述第四电压调节电路对应的第四电阻,确定所述第二阻抗。
  20. 根据权利要求14-19中任一所述的电芯采样电路,其特征在于,所述第二阻抗为菊花链通信下,所述变压输入模块中第二绕组的阻抗、第三开关元件的阻抗、第四开关元件的阻抗的总和。
  21. 一种电路故障预警方法,其特征在于,应用于电芯采样电路,所述电芯采样电路包括:通过菊花链通信方式依次串联连接的多个目标单元,每两个相邻的目标单元之间均接入一个变压器单元;串联连接中排在首位的目标单元为主控单元,其余的目标单元均为电芯采样单元,所述方法包括:
    对于每一个所述目标单元均执行:获取与其相连的变压器单元的阻抗;
    基于所获取的阻抗判断是否进行电路异常预警。
  22. 一种电池管理***,其特征在于,所述电池管理***包括如权利要求1-20中任一项所述的电芯采样电路。
  23. 一种电池,其特征在于,所述电池包括如权利要求22所述的电池管理***。
  24. 一种用电装置,其特征在于,所述用电装置包括如权利要求23所述的电池。
  25. 一种计算机可读存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求21所述的电路故障预警方法。
PCT/CN2022/089552 2022-01-07 2022-04-27 电芯采样电路、电路故障预警方法及电池管理*** WO2023130625A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022548239A JP2024509653A (ja) 2022-01-07 2022-04-27 セルサンプリング回路、回路故障警告方法及び電池管理システム
KR1020227027721A KR20230107470A (ko) 2022-01-07 2022-04-27 셀 샘플링 회로, 회로 고장 조기 경보 방법 및 전지 관리 시스템
EP22743435.4A EP4239346A4 (en) 2022-01-07 2022-04-27 BATTERY CELL SAMPLING CIRCUIT, CIRCUIT FAILURE EARLY WARNING METHOD, AND BATTERY MANAGEMENT SYSTEM
US17/940,354 US20230221378A1 (en) 2022-01-07 2022-09-08 Cell sampling circuit, circuit fault early warning method, and battery management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210018432.X 2022-01-07
CN202210018432.XA CN115825794B (zh) 2022-01-07 2022-01-07 电芯采样电路、电路故障预警方法及电池管理***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/940,354 Continuation US20230221378A1 (en) 2022-01-07 2022-09-08 Cell sampling circuit, circuit fault early warning method, and battery management system

Publications (1)

Publication Number Publication Date
WO2023130625A1 true WO2023130625A1 (zh) 2023-07-13

Family

ID=84981417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089552 WO2023130625A1 (zh) 2022-01-07 2022-04-27 电芯采样电路、电路故障预警方法及电池管理***

Country Status (2)

Country Link
CN (1) CN115825794B (zh)
WO (1) WO2023130625A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319189A (zh) * 1998-07-21 2001-10-24 梅特里克斯有限公司 信令***
JP2014147138A (ja) * 2013-01-25 2014-08-14 Keihin Corp 蓄電池システム
CN104603627A (zh) * 2012-09-10 2015-05-06 瑞萨电子株式会社 半导体装置和电池电压监视装置
CN106383508A (zh) * 2016-08-26 2017-02-08 北京长城华冠汽车科技股份有限公司 一种电动汽车电池管理***从控模块及其测试***
CN111756349A (zh) * 2019-03-29 2020-10-09 恩智浦有限公司 电隔离电路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254930A (en) * 1992-06-10 1993-10-19 Digital Equipment Corporation Fault detector for a plurality of batteries in battery backup systems
JP3818302B2 (ja) * 2004-07-23 2006-09-06 日新電機株式会社 無停電電源装置
CN101409455B (zh) * 2008-11-19 2011-10-26 华为终端有限公司 一种电池***的电压平衡装置及电压平衡方法
US8570047B1 (en) * 2009-02-12 2013-10-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Battery fault detection with saturating transformers
CN104316826B (zh) * 2014-11-17 2018-07-20 国家电网公司 一种检测变压器绕组故障类型的方法及***
CN106816905B (zh) * 2015-11-30 2019-09-13 比亚迪股份有限公司 电动汽车以及电池管理***及其故障检测方法
CN205982571U (zh) * 2016-07-20 2017-02-22 深圳市沃特玛电池有限公司 一种电池断线检测电路
CN206114822U (zh) * 2016-10-12 2017-04-19 国网辽宁省电力有限公司电力科学研究院 一种电力变压器绕组形变状态多信息检测装置
KR101856066B1 (ko) * 2016-10-24 2018-05-09 현대오트론 주식회사 배터리 진단 장치 및 방법
CN108172912B (zh) * 2017-11-30 2020-09-29 宁德时代新能源科技股份有限公司 电芯采样电路
US10785065B2 (en) * 2018-03-12 2020-09-22 Nxp B.V. Isolation circuit and method therefor
CN110967648A (zh) * 2019-02-26 2020-04-07 宁德时代新能源科技股份有限公司 采样电路及其控制方法
CN211417022U (zh) * 2019-09-30 2020-09-04 蜂巢能源科技有限公司 电池管理***及车辆
CN111537916B (zh) * 2020-05-28 2022-09-30 上海金脉汽车电子有限公司 电压采样芯片供电地断线故障诊断方法、装置及设备
CN112986835A (zh) * 2021-03-25 2021-06-18 东风汽车集团股份有限公司 动力电池的模拟前端监测电路
CN215180734U (zh) * 2021-04-19 2021-12-14 华电电力科学研究院有限公司 直流***蓄电池故障监测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319189A (zh) * 1998-07-21 2001-10-24 梅特里克斯有限公司 信令***
CN104603627A (zh) * 2012-09-10 2015-05-06 瑞萨电子株式会社 半导体装置和电池电压监视装置
JP2014147138A (ja) * 2013-01-25 2014-08-14 Keihin Corp 蓄電池システム
CN106383508A (zh) * 2016-08-26 2017-02-08 北京长城华冠汽车科技股份有限公司 一种电动汽车电池管理***从控模块及其测试***
CN111756349A (zh) * 2019-03-29 2020-10-09 恩智浦有限公司 电隔离电路

Also Published As

Publication number Publication date
CN115825794A (zh) 2023-03-21
CN115825794B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
WO2020220880A1 (zh) 热失控检测电路及方法
JP6831281B2 (ja) 電池監視システムおよび電池監視装置
JP4196122B2 (ja) 電池パック
US9404977B2 (en) Bidirectional DC converter-based battery simulator
WO2021060761A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차
CN110979097A (zh) 一种电池组被动均衡控制电路和方法及其失效检测补救电路和方法
WO2023130625A1 (zh) 电芯采样电路、电路故障预警方法及电池管理***
WO2022198469A1 (zh) 储能***、电池监控方法以及储能设备
US9941714B2 (en) Battery system and motor vehicle with battery system
US20230221378A1 (en) Cell sampling circuit, circuit fault early warning method, and battery management system
CN111384751A (zh) 一种锂电池组充放电管理***
WO2023065243A1 (zh) 一种电池包控制***的放电控制方法及充电控制方法
CN111326804A (zh) 一种锂电池bms安全链控制***
CN105480106A (zh) 电动汽车锂电池管理装置及控制方法
TWI683212B (zh) 鋰離子電池全方位安全監控系統及其方法
Harakare et al. Design of Battery Management System for an Autonomous Underwater Vehicle
JP3825577B2 (ja) 電池の温度上昇監視装置
KR20130101247A (ko) 절연 저항 검출 장치 및 이의 진단 장치
CN106100104A (zh) 一种风电机组后备电源
TWM578023U (zh) Lithium-ion battery comprehensive safety monitoring system
CN220857678U (zh) 一种储能***
CN210898517U (zh) 一种充电电池保护电路
CN112820889B (zh) 串联式电池激活方法及使用其的电池激活电路
CN215498376U (zh) 一种用于超级电容***中电容单体管理的控制***
CN220368495U (zh) 多电池包并联控制电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022548239

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022743435

Country of ref document: EP

Effective date: 20220801