WO2023130397A1 - 一种预编码方法/装置/设备及存储介质 - Google Patents

一种预编码方法/装置/设备及存储介质 Download PDF

Info

Publication number
WO2023130397A1
WO2023130397A1 PCT/CN2022/070853 CN2022070853W WO2023130397A1 WO 2023130397 A1 WO2023130397 A1 WO 2023130397A1 CN 2022070853 W CN2022070853 W CN 2022070853W WO 2023130397 A1 WO2023130397 A1 WO 2023130397A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmi
precoding
information
present disclosure
ues
Prior art date
Application number
PCT/CN2022/070853
Other languages
English (en)
French (fr)
Inventor
池连刚
杨立
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000026.9A priority Critical patent/CN116830471A/zh
Priority to PCT/CN2022/070853 priority patent/WO2023130397A1/zh
Publication of WO2023130397A1 publication Critical patent/WO2023130397A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a precoding method/apparatus/equipment and a storage medium.
  • the incident signal transmitted by the base station to the RIS (Reconfigurable Intelligent Surface) or Smart Repeater (smart repeater) is reflected to the UE in a specific direction by introducing precoding technology (User Equipment, end-user equipment) to build an intelligent programmable wireless environment, so as to enhance the signal strength of the signal received by the UE and realize the control of the channel.
  • precoding technology User Equipment, end-user equipment
  • the precoding of Smart Repeater (Intelligent Repeater)/RIS and base station is jointly designed mainly through alternate optimization technology.
  • different algorithms need to be used when the joint design of Smart Repeater/RIS and base station precoding is performed through alternate optimization technology, and the complexity is too high.
  • the precoding method/apparatus/equipment and storage medium proposed in the present disclosure are used to solve the technical problem of excessive complexity of the precoding method in the related art.
  • auxiliary communication device including:
  • the incident beams are precoded based on the precoding information to form composite beams, and the composite beams are transmitted.
  • the precoding method proposed in an embodiment of the present disclosure is applied to a network side device, including:
  • the precoding method proposed by an embodiment of the present disclosure is applied to the UE, including:
  • An acquisition module configured to acquire precoding information sent by the network side device
  • a processing module configured to precode the incident beam based on the precoding information to form a composite beam, and transmit the composite beam.
  • An acquisition module configured to acquire PMI information from at least two UEs
  • a determining module configured to determine precoding information based on the PMI information
  • a sending module configured to send the precoding information to the auxiliary communication device.
  • the sending module is configured to send PMI information to the network side device.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the above embodiment of another aspect.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in another embodiment.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then, based on the precoding information, the incident beam Precoding is performed to form composite beams, and the composite beams are transmitted. Therefore, in the embodiment of the present disclosure, the auxiliary communication device performs precoding on the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • FIG. 1 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a precoding method provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a precoding device provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a precoding device provided by another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a precoding device provided by another embodiment of the present disclosure.
  • Fig. 13 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 14 is a block diagram of a network side device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure, wherein the method provided by an embodiment of the present disclosure can be applied to a multi-UE scenario, and the method is performed by an auxiliary communication device.
  • the precoding An encoding method may include the following steps:
  • Step 101 Obtain precoding information sent by a network side device.
  • the above-mentioned auxiliary communication device may be a smart repeater (Smart Repeater) and/or an RIS array.
  • the precoding information may include at least one of the following:
  • At least one specific PMI Precoding Matrix Index, precoding matrix index
  • a weighting coefficient set corresponding to each specific PMI wherein, the weighting coefficient set includes at least one weighting coefficient, and the weighting coefficient set corresponding to each specific PMI is determined by the weighting coefficient corresponding to each specific PMI and at least one UE.
  • the above precoding information may be determined by the network side device based on PMI information from at least two UEs. That is, the precoding information may be determined by the network side device according to PMI information of at least two UEs.
  • the PMI information may include multiple PMI information, wherein the multiple PMI information may correspond to two or more UEs; one UE may correspond to one or more PMI information .
  • the PMI information of the at least two UEs includes: PMIs sent by the at least two UEs.
  • the PMI information of the at least two UEs may further include: each PMI corresponds to a weighting coefficient of each of the at least two UEs.
  • the PMIs include M PMIs with the best channel quality and/or N PMIs with the worst channel quality corresponding to the UE, where M and N are integers greater than or equal to 0.
  • the weight coefficient corresponding to the PMI is positively correlated with the deviation degree of the composite beam obtained by precoding the incident beam by using the PMI and the UE.
  • the precoding codebook includes N precoding matrices
  • the optimal precoding matrix W calculated by the UE uses a linear combination of X precoding matrices in the codebook to approximate the optimal precoding matrix
  • the weighting coefficient is the weighting coefficient of the linear combination.
  • the best beam precoding matrix calculated by the UE is not among the candidate precoding matrices, so the 10 candidate precoding matrices can be used Approximate all or part of (compared to several candidate precoding matrices closer to the best beam precoding matrix) to determine the weighting coefficients of the candidate precoding matrix; that is, the closer the candidate precoding matrix is to the best beam precoding matrix, The higher the weighting coefficient is.
  • the above PMI information may be directly sent by the UE to the network side device, and in another embodiment of the present disclosure, the above PMI information may be forwarded by the UE to the network side device through the auxiliary communication device
  • the network-side device that is, the UE first sends the PMI information to the auxiliary communication device, and then the auxiliary communication device forwards the PMI information to the network-side device.
  • the auxiliary communication device may be an exemplary Smart Repeater (intelligent repeater)/RIS.
  • the UE when sending the PMIs in the PMI information, may send the PMIs sequentially in a specific order.
  • the specific order may be: according to the order of the PMI index from small to large; in another embodiment of the present disclosure, the specific order may be: according to the PMI corresponding channel quality from The order from best to worst, in another embodiment of the present disclosure, the specific order may be: according to the order of channel quality corresponding to PMI from worst to best.
  • the UE may include one or more PMIs in sending PMI information; if only one PMI is sent, no sorting is required; if multiple PMIs are sent, sorting may be performed in the above manner or in any possible manner.
  • the PMI information sent by a certain UE to the network side device includes two PMIs, which are PMI-1 with the worst channel quality corresponding to the UE, and PMI-1 with the best channel quality. PMI-2.
  • the order in which the UE sends the two PMIs can be sent according to the order of the PMI index from small to large, that is: send PMI-1 and PMI-2 in sequence; or, the order in which the UE sends the two PMIs can be In order according to the channel quality corresponding to the PMI from the best to the worst, that is: send PMI-2, PMI-1 in sequence; or, the order in which the UE sends the two PMIs can be from worst to worst according to the channel quality corresponding to the PMI A good sequence, namely: send PMI-1, PMI-2 in sequence.
  • the above-mentioned weighting coefficient corresponding to the PMI and the UE is an optional option, that is, the UE can send each PMI sent by the UE and the weight coefficient to the network side device.
  • Each PMI of the UE and the weighting coefficient corresponding to the UE may also not send each PMI of the UE to the weighting coefficient corresponding to the UE, but only the PMI.
  • each PMI of the UE is associated with a weighting coefficient corresponding to the UE, and the weighting coefficient corresponding to the PMI is positively correlated with the degree to which the composite beam obtained by precoding the incident beam by using the PMI is biased to the UE corresponding to the PMI.
  • the precoding information may be that the network side device selects at least one specific PMI from all the PMIs corresponding to the received PMI information sent by each UE, and based on the weighting corresponding to the at least one specific PMI
  • the coefficients determine a set of weighted coefficients for each specific PMI; then, determine at least one specific PMI and/or a set of weighted coefficients corresponding to each specific PMI as precoding information.
  • the weighting coefficient set includes at least one weighting coefficient, and the weighting coefficient set corresponding to each specific PMI is determined by the weighting coefficient corresponding to each specific PMI and at least one UE.
  • different UEs correspond to different weighting coefficients; the weighting coefficient set corresponding to the PMI may be generated according to the weighting coefficients corresponding to all or part of the UEs.
  • the selected specific PMI when selecting a specific PMI, it is mainly determined based on the target UE corresponding to the auxiliary communication device, where the target UE is to receive the reflection and /or the UE of the composite beam obtained after transmitting the incident beam. And, the selected specific PMI should satisfy the following condition: after the incident beam is precoded by using the specific PMI to obtain a composite beam, the composite beam can be accurately received by the target UE.
  • the specific PMI may include at least one of the following:
  • At least one PMI with the best channel quality corresponding to the target UE At least one PMI with the best channel quality corresponding to the target UE
  • At least one PMI with the worst channel quality corresponding to the non-target UE At least one PMI with the worst channel quality corresponding to the non-target UE.
  • the weighting coefficients of all UEs corresponding to the specific PMI may be directly determined as the weighting coefficient set of the specific PMI.
  • the network side device may also modify the weighting coefficients corresponding to the specific PMI, and determine the modified weighting coefficients as the weighting coefficient set of the specific PMI.
  • the PMI information sent by UE-1 to the base station is: PMI with the best quality- 1.
  • the PMI information sent by UE-2 to the base station is: the worst quality PMI-3, the worst quality Good PMI-4 and PMI-3 correspond to weighting coefficient c, and PMI-4 corresponds to weighting coefficient d.
  • the network side equipment can determine PMI-1 and PMI-3 as specific PMI, and can determine the weighting coefficient a as the weighting coefficient set of specific PMI-1, and determine the weighting coefficient c as A set of weighting coefficients for a specific PMI-3.
  • the network side device can determine the precoding information, and then send the precoding information to the auxiliary communication device.
  • the network side device when it sends the precoding information to the auxiliary communication device, it may optionally send a weighting coefficient set corresponding to a specific PMI or part of the specific PMI to the auxiliary communication device.
  • the weighting coefficient set corresponding to the PMI that is, the network side device may send the weighting coefficient set corresponding to each specific PMI to the auxiliary communication device, or may not send the weighting coefficient set corresponding to each specific PMI to the auxiliary communication device, but only one A specific PMI or several specific PMIs are sufficient.
  • Step 102 Perform precoding on the incident beam based on the precoding information to form a composite beam, and transmit the composite beam.
  • the auxiliary communication device when it precodes the incident beam based on the precoding information, it may specifically be: determining a composite beam based on a specific PMI and/or a weighting coefficient set corresponding to the specific PMI. In a possible implementation manner, based on the specific PMI and/or the weighting coefficient set corresponding to the specific PMI, the incident beam may be reflected and/or transmitted in a specific direction to obtain a composite beam.
  • the method may further include: transmitting the composite beam to the UE.
  • the network device may transmit the composite beam to one UE, or may transmit the composite beam to multiple UE devices.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in the embodiment of the present disclosure, the auxiliary communication device precodes the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • Fig. 2 is a schematic flow chart of a precoding method provided by an embodiment of the present disclosure, the method is executed by an auxiliary communication device, and the auxiliary communication device may be a Smart Repeater; as shown in Fig. 2 , the precoding method may include the following steps :
  • Step 201 Obtain precoding information sent by a network side device.
  • Step 202 Determine the composite beam based on the precoding information, and transmit the composite beam.
  • the target vector may be determined based on a specific PMI and/or a weighting coefficient set corresponding to the specific PMI.
  • step 202 may be specifically: step 202, determine a target vector based on precoding information, reflect and/or transmit an incident beam based on the target vector to form a composite beam, and transmit the composite beam.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in the embodiment of the present disclosure, the auxiliary communication device performs precoding on the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • FIG. 3 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure. The method is executed by an auxiliary communication device, and the auxiliary communication device is a RIS. As shown in FIG. 3 , the precoding method may include the following steps:
  • Step 301 Acquire precoding information sent by a network side device.
  • Step 302 acquiring incident angle information of the incident beam sent by the network side device.
  • Step 303 Determine the composite beam based on the precoding information and the incident angle information, and transmit the composite beam to the UE.
  • the target offset phase angle may be determined based on a specific PMI and/or a weighting coefficient set corresponding to the specific PMI.
  • step 303 may specifically be: determine the target offset phase angle based on the precoding information and the incident angle information, determine the target phase shift matrix based on the target offset phase angle, and determine the target phase shift matrix based on the target phase shift matrix reflection and/or transmission
  • a beam is injected to form a composite beam, and the composite beam is transmitted.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in the embodiment of the present disclosure, the auxiliary communication device performs precoding on the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • Fig. 4 is a schematic flow chart of a precoding method provided by an embodiment of the present disclosure, the method is executed by an auxiliary communication device, the auxiliary communication device is a Smart Repeater or RIS, as shown in Fig. 4, the precoding method may include the following step:
  • Step 401 acquire PMI information sent by at least two UEs.
  • the PMI information may include at least one PMI sent by the UE and each PMI sent by the UE and a weighting coefficient corresponding to the UE, where the at least one PMI may include the channel quality corresponding to the UE The best M PMIs and/or the worst N PMIs, where M and N are integers greater than or equal to 0.
  • Step 402 forward the PMI information to the network side device.
  • Step 403 Obtain precoding information sent by the network side device.
  • Step 404 Perform precoding on the incident beam based on the precoding information to form a composite beam, and transmit the composite beam.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in the embodiment of the present disclosure, the auxiliary communication device performs precoding on the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • Fig. 5 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure, the method is executed by a network side device, as shown in Fig. 5, the precoding method may include the following steps:
  • Step 501 acquire PMI information from at least two UEs.
  • the PMI information may include multiple PMI information, wherein the multiple PMI information may correspond to two or more UEs; one UE may correspond to one or more PMI information .
  • the PMI information of the at least two UEs includes: PMIs sent by the at least two UEs. Further, the PMI information of the at least two UEs may further include: each PMI corresponds to a weighting coefficient of each of the at least two UEs.
  • the PMIs include M PMIs with the best channel quality and/or N PMIs with the worst channel quality corresponding to the UE, where M and N are integers greater than or equal to 0.
  • the weight coefficient corresponding to the PMI is positively correlated with the deviation degree of the composite beam obtained by precoding the incident beam by using the PMI and the UE.
  • the precoding codebook includes N precoding matrices
  • the optimal precoding matrix W calculated by the UE uses a linear combination of X precoding matrices in the codebook to approximate the optimal precoding matrix
  • the weighting coefficient is the weighting coefficient of the linear combination.
  • the best beam precoding matrix calculated by the UE is not among the candidate precoding matrices, so the 10 candidate precoding matrices can be used Approximate all or part of (compared to several candidate precoding matrices closer to the best beam precoding matrix) to determine the weighting coefficients of the candidate precoding matrix; that is, the closer the candidate precoding matrix is to the best beam precoding matrix, The higher the weighting coefficient is.
  • the PMI information of the at least two UEs may be sent by the at least two UEs to the network side device, or may be sent by the at least two UEs to the network side device through the auxiliary communication device.
  • Step 502. Determine precoding information based on the PMI information.
  • the method for determining precoding information based on PMI information may include:
  • the weighting coefficient set includes at least one weighting coefficient, and the weighting coefficient set corresponding to each specific PMI is determined by the weighting coefficient corresponding to each specific PMI and at least one UE;
  • Step 503 Send precoding information to the auxiliary communication device.
  • the precoding information may be determined by a network side device according to PMI information of at least two UEs. That is, the precoding information can be determined through the following steps:
  • step a the network side device acquires PMI information from each UE.
  • the PMI information may include multiple PMI information, wherein the multiple PMI information may correspond to two or more UEs; one UE may correspond to one or more PMI information .
  • the PMI information of the at least two UEs includes: PMIs sent by the at least two UEs. Further, the PMI information of the at least two UEs may further include: each PMI corresponds to a weighting coefficient of each of the at least two UEs.
  • the PMIs include M PMIs with the best channel quality and/or N PMIs with the worst channel quality corresponding to the UE, where M and N are integers greater than or equal to 0.
  • the weight coefficient corresponding to the PMI is positively correlated with the deviation degree of the composite beam obtained by precoding the incident beam by using the PMI and the UE.
  • the precoding codebook includes N precoding matrices
  • the optimal precoding matrix W calculated by the UE uses a linear combination of X precoding matrices in the codebook to approximate the optimal precoding matrix
  • the weighting coefficient is the weighting coefficient of the linear combination.
  • the best beam precoding matrix calculated by the UE is not among the candidate precoding matrices, so the 10 candidate precoding matrices can be used Approximate all or part of (compared to several candidate precoding matrices closer to the best beam precoding matrix) to determine the weighting coefficients of the candidate precoding matrix; that is, the closer the candidate precoding matrix is to the best beam precoding matrix, The higher the weighting coefficient is.
  • the above PMI information may be directly sent by the UE to the network side device, and in another embodiment of the present disclosure, the above PMI information may be forwarded by the UE to the network side device through the auxiliary communication device
  • the network-side device that is, the UE first sends the PMI information to the auxiliary communication device, and then the auxiliary communication device forwards the PMI information to the network-side device.
  • the auxiliary communication device may be an exemplary Smart Repeater (intelligent repeater)/RIS.
  • the UE when sending the PMIs in the PMI information, may send the PMIs sequentially in a specific order.
  • the specific order may be: according to the order of the PMI index from small to large; in another embodiment of the present disclosure, the specific order may be: according to the PMI corresponding channel quality from The order from best to worst, in another embodiment of the present disclosure, the specific order may be: according to the order of channel quality corresponding to PMI from worst to best.
  • the UE may include one or more PMIs in sending PMI information; if only one PMI is sent, no sorting is required; if multiple PMIs are sent, sorting may be performed in the above manner or in any possible manner. For details, reference may be made to the examples in the foregoing embodiments.
  • the above-mentioned weighting coefficient corresponding to the PMI and the UE is an optional option, that is, the UE can send each PMI sent by the UE and the weight coefficient to the network side device.
  • Each PMI of the UE and the weighting coefficient corresponding to the UE may also not send each PMI of the UE to the weighting coefficient corresponding to the UE, but only the PMI.
  • each PMI of the UE is associated with a weighting coefficient corresponding to the UE, and the weighting coefficient corresponding to the PMI is positively correlated with the degree to which the composite beam obtained by precoding the incident beam by using the PMI is biased to the UE corresponding to the PMI.
  • step b the network side device determines the above precoding information based on the PMI information of each UE.
  • the precoding information may be that the network side device selects at least one specific PMI from all the PMIs corresponding to the received PMI information sent by each UE, and based on the weighting corresponding to the at least one specific PMI
  • the coefficients determine a set of weighted coefficients for each specific PMI; then, determine at least one specific PMI and/or a set of weighted coefficients corresponding to each specific PMI as precoding information.
  • the weighting coefficient set includes at least one weighting coefficient, and the weighting coefficient set corresponding to each specific PMI is determined by the weighting coefficient corresponding to each specific PMI and at least one UE.
  • different UEs correspond to different weighting coefficients; the weighting coefficient set corresponding to the PMI may be generated according to the weighting coefficients corresponding to all or part of the UEs.
  • the selected specific PMI when selecting a specific PMI, it is mainly determined based on the target UE corresponding to the auxiliary communication device, where the target UE is to receive the incident beam reflected and/or transmitted by the auxiliary communication device After getting the UE of the composite beam. And, the selected specific PMI should satisfy the following condition: after the incident beam is precoded by using the specific PMI to obtain a composite beam, the composite beam can be accurately received by the target UE.
  • the specific PMI may include at least one of the following:
  • At least one PMI with the best channel quality corresponding to the target UE At least one PMI with the best channel quality corresponding to the target UE
  • At least one PMI with the worst channel quality corresponding to the non-target UE At least one PMI with the worst channel quality corresponding to the non-target UE.
  • the weighting coefficients of all UEs corresponding to the specific PMI may be directly determined as the weighting coefficient set of the specific PMI.
  • the network side device may also modify the weighting coefficients corresponding to the specific PMI, and determine the modified weighting coefficients as the weighting coefficient set of the specific PMI. For details, reference may be made to the examples in the foregoing embodiments.
  • the network side device when it sends the precoding information to the auxiliary communication device, it may optionally send a weighting coefficient set corresponding to a specific PMI or part of the specific PMI to the auxiliary communication device.
  • the weighting coefficient set corresponding to the PMI that is, the network side device may send the weighting coefficient set corresponding to each specific PMI to the auxiliary communication device, or may not send the weighting coefficient set corresponding to each specific PMI to the auxiliary communication device, but only one A specific PMI or several specific PMIs are sufficient.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in the embodiment of the present disclosure, the auxiliary communication device performs precoding on the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • FIG. 6 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in FIG. 6, the precoding method may include the following steps:
  • Step 601 Send configuration signaling to at least one UE, where the configuration signaling includes the number of PMIs that the UE needs to send.
  • the number of PMIs sent by the UE to the network side device may be configured by the base station.
  • Step 602 acquire PMI information from at least two UEs.
  • the PMI information may include multiple PMI information, wherein the multiple PMI information may correspond to two or more UEs; one UE may correspond to one or more PMI information .
  • the PMI information of the at least two UEs includes: PMIs sent by the at least two UEs. Further, the PMI information of the at least two UEs may further include: each PMI corresponds to a weighting coefficient of each of the at least two UEs.
  • the PMIs include M PMIs with the best channel quality and/or N PMIs with the worst channel quality corresponding to the UE, where M and N are integers greater than or equal to 0.
  • the weight coefficient corresponding to the PMI is positively correlated with the deviation degree of the composite beam obtained by precoding the incident beam by using the PMI and the UE.
  • the precoding codebook includes N precoding matrices
  • the optimal precoding matrix W calculated by the UE uses a linear combination of X precoding matrices in the codebook to approximate the optimal precoding matrix
  • the weighting coefficient is the weighting coefficient of the linear combination.
  • the best beam precoding matrix calculated by the UE is not among the candidate precoding matrices, so the 10 candidate precoding matrices can be used Approximate all or part of (compared to several candidate precoding matrices closer to the best beam precoding matrix) to determine the weighting coefficients of the candidate precoding matrix; that is, the closer the candidate precoding matrix is to the best beam precoding matrix, The higher the weighting coefficient is.
  • the number of PMIs included in the above PMI information should be the same as the number configured in the configuration information in step 601 .
  • configuration signaling may be sent to some UEs to indicate the number of PMIs that the UEs need to send; while other parts of the UEs may determine the number of PMIs that need to be sent according to the communication protocol or the UE determines the number of PMIs that need to be sent.
  • configuration signaling may be sent to all UEs to indicate the number of PMIs that the UE needs to send.
  • specific configuration information can be sent to the UE to configure the number of PMIs that the UE needs to send, that is, the number of PMIs that need to be sent corresponding to different UEs can be the same or different. It may also be configured that all UEs corresponding to the configuration information send the same number of PMIs.
  • the method for acquiring PMI information from at least two UEs may include at least one of the following:
  • Method 1 Obtain PMI information sent by at least two UEs.
  • Method 2 Acquiring PMI information of at least two UEs forwarded by the auxiliary communication device.
  • Step 603 Determine precoding information based on the PMI information.
  • Step 604 Send precoding information to the auxiliary communication device.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in the embodiment of the present disclosure, the auxiliary communication device performs precoding on the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • FIG. 7 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in FIG. 7 , the precoding method may include the following steps:
  • Step 701 acquire PMI information from at least two UEs.
  • Step 702. Determine precoding information based on the PMI information.
  • Step 703 Send precoding information to the auxiliary communication device.
  • Step 704 Send the incident angle information of the incident beam to the auxiliary communication device.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in the embodiment of the present disclosure, the auxiliary communication device performs precoding on the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • FIG. 8 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 8 , the precoding method may include the following steps:
  • Step 801 sending PMI information to the network side device.
  • a UE may be a device that provides voice and/or data connectivity to a user.
  • UE can communicate with one or more core networks via RAN (Radio Access Network, wireless access network).
  • RAN Radio Access Network, wireless access network
  • UE can be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the computer of the terminal for example, may be a fixed, portable, pocket, hand-held, computer-built-in or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the PMI information includes at least one of the following:
  • the PMI sent by the UE includes the best M PMIs and/or the worst N PMIs corresponding to the channel quality of the UE, where M and N are integers greater than or equal to 0;
  • Each PMI is associated with a weighting coefficient corresponding to each of the at least two UEs.
  • the method for sending PMI information to the network side device may include at least one of the following:
  • Method 1 Send PMI information directly to the network side device.
  • Method 2 Send the PMI information to the network side device through the auxiliary communication device.
  • step 801 For other detailed introductions about step 801, reference may be made to the descriptions of the foregoing embodiments, and details are not described here in the embodiments of the present disclosure.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in the embodiment of the present disclosure, the auxiliary communication device performs precoding on the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • FIG. 9 is a schematic flowchart of a precoding method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 9, the precoding method may include the following steps:
  • Step 901 Determine the number of PMIs to be sent according to the communication protocol or the configuration signaling sent by the network side device.
  • Step 902 sending PMI information to the network side device.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in the embodiment of the present disclosure, the auxiliary communication device performs precoding on the incident beam based on the precoding information sent by the network side device, so the complexity is low and the applicability is high.
  • FIG. 10 is a structural diagram of a precoding device provided by an embodiment of the present disclosure, which is configured in an auxiliary communication device. As shown in FIG. 10 , the precoding device may include:
  • An acquisition module configured to acquire precoding information sent by the network side device
  • a processing module configured to precode the incident beam based on the precoding information to form a composite beam, and transmit the composite beam.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in an embodiment of the present disclosure, a precoding method is proposed, which enables multiple PMIs to precode beams reflected at the auxiliary communication device, so as to ensure that the complexity of precoding is reduced.
  • the precoding information includes at least one of the following:
  • At least one specific PMI At least one specific PMI
  • a weighting coefficient set corresponding to each specific PMI wherein, the weighting coefficient set includes at least one weighting coefficient, and the weighting coefficient set corresponding to each specific PMI is determined by the weighting coefficient corresponding to each specific PMI and at least one UE.
  • the auxiliary communication device is a Smart Repeater.
  • the processing module is further configured to:
  • a target vector is determined based on the precoding information, and the incident beam is reflected and/or transmitted based on the target vector to form a composite beam.
  • the auxiliary communication device is a RIS.
  • the device is also used for:
  • the processing module is further configured to:
  • the device is also used for:
  • the PMI information includes a plurality of PMI information, and the plurality of PMI information corresponds to two or more UEs; wherein, one UE corresponds to one or more PMI information; and,
  • the PMI information of the at least two UEs includes at least one of the following: PMIs sent by at least two UEs, and the PMIs include M PMIs with the best channel quality and/or worst N PMIs corresponding to the UE, wherein, M and N are integers greater than or equal to 0; each PMI is a weighting coefficient corresponding to each UE in at least two UEs;
  • FIG. 11 is a structural diagram of a precoding device provided by an embodiment of the present disclosure, which is configured in a network side device. As shown in FIG. 11 , the precoding device may include:
  • An acquisition module configured to acquire PMI information from at least two UEs
  • a determining module configured to determine precoding information based on the PMI information
  • a sending module configured to send the precoding information to the auxiliary communication device.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in an embodiment of the present disclosure, a precoding method is proposed, which enables multiple PMIs to precode beams reflected at the auxiliary communication device, so as to ensure that the complexity of precoding is reduced.
  • the PMI information includes multiple PMI information, and the multiple PMI information corresponds to two or more UEs; wherein, one UE corresponds to one or more PMI information information; and, the PMI information of the at least two UEs includes at least one of the following: PMIs sent by at least two UEs, the PMIs include the M PMIs with the best channel quality and/or the worst N PMIs corresponding to the UEs PMI, where M and N are integers greater than or equal to 0; each PMI is a weighting coefficient corresponding to each of the at least two UEs.
  • the device is also used for:
  • the acquiring module is further configured to:
  • the determining module is further configured to:
  • the weighting coefficient set includes At least one weighting coefficient, the weighting coefficient set corresponding to each specific PMI is determined by the weighting coefficient corresponding to each specific PMI and at least one UE;
  • the device is also used for:
  • the incident angle information of the incident beam is sent to the auxiliary communication device.
  • FIG. 12 is a structural diagram of a precoding device provided by an embodiment of the present disclosure, which is configured in a UE. As shown in FIG. 12 , the precoding device may include:
  • the sending module is configured to send PMI information to the network side device.
  • the auxiliary communication device will obtain the precoding information sent by the network side device, and then precode the incident beam based on the precoding information to form a composite beam. and emit composite beams. Therefore, in an embodiment of the present disclosure, a precoding method is proposed, which enables multiple PMIs to precode beams reflected at the auxiliary communication device, so as to ensure that the complexity of precoding is reduced.
  • the PMI information includes at least one of the following:
  • the PMI sent by the UE includes the best M PMIs and/or the worst N PMIs corresponding to the channel quality of the UE, where M and N are integers greater than or equal to 0;
  • Each PMI is associated with a weighting coefficient corresponding to each of the at least two UEs.
  • the device is also used for:
  • the number of PMIs to be sent is determined according to the communication protocol or the configuration signaling sent by the network side device.
  • the sending module is further configured to:
  • Fig. 13 is a block diagram of a user equipment UE1300 provided by an embodiment of the present disclosure.
  • the UE 1300 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1300 may include at least one of the following components: a processing component 1302, a memory 1304, a power supply component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1313, and a communication component 1316.
  • a processing component 1302 a memory 1304, a power supply component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1313, and a communication component 1316.
  • the processing component 1302 generally controls the overall operations of the UE 1300, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1302 may include at least one processor 1320 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • processing component 1302 can include at least one module to facilitate interaction between processing component 1302 and other components.
  • processing component 1302 may include a multimedia module to facilitate interaction between multimedia component 1308 and processing component 1302 .
  • the memory 1304 is configured to store various types of data to support operations at the UE 1300 . Examples of such data include instructions for any application or method operating on UE1300, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1304 can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1306 provides power to various components of the UE 1300.
  • Power component 1306 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1300 .
  • the multimedia component 1308 includes a screen providing an output interface between the UE 1300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1308 includes a front camera and/or a rear camera. When the UE1300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1310 is configured to output and/or input audio signals.
  • the audio component 1310 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1300 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1304 or sent via communication component 1316 .
  • the audio component 1310 also includes a speaker for outputting audio signals.
  • the I/O interface 1312 provides an interface between the processing component 1302 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1313 includes at least one sensor for providing various aspects of state assessment for the UE 1300 .
  • the sensor component 1313 can detect the open/closed state of the device 1300, the relative positioning of components, such as the display and the keypad of the UE1300, the sensor component 1313 can also detect the position change of the UE1300 or a component of the UE1300, and the user and Presence or absence of UE1300 contact, UE1300 orientation or acceleration/deceleration and temperature change of UE1300.
  • the sensor assembly 1313 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1313 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1313 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1316 is configured to facilitate wired or wireless communications between UE 1300 and other devices.
  • UE1300 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1316 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • UE 1300 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • Fig. 14 is a block diagram of a network side device 1400 provided by an embodiment of the present disclosure.
  • the network side device 1400 may be provided as a network side device.
  • the network side device 1400 includes a processing component 1411, which further includes at least one processor, and a memory resource represented by a memory 1432 for storing instructions executable by the processing component 1422, such as application programs.
  • the application programs stored in memory 1432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1410 is configured to execute instructions, so as to execute any of the aforementioned methods applied to the network side device, for example, the method shown in FIG. 1 .
  • the network side device 1400 may also include a power supply component 1426 configured to perform power management of the network side device 1400, a wired or wireless network interface 1450 configured to connect the network side device 1400 to the network, and an input/output (I/O ) interface 1458.
  • the network side device 1400 can operate based on the operating system stored in the memory 1432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device and the UE respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device and the UE respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the foregoing method embodiments), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as network-side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.), execute A computer program that processes data for a computer program.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the foregoing method embodiments): the processor is configured to execute any of the methods shown in FIGS. 1-4 .
  • the communication device is a network device: the transceiver is used to execute the method shown in any one of Fig. 5-Fig. 7 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the foregoing embodiments and a communication device as a network device, Alternatively, the system includes the communication device as the terminal device in the foregoing embodiments (such as the first terminal device in the foregoing method embodiment) and the communication device as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • Said computer program product comprises one or more computer programs.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种基于UE能力的模型处理方法/装置/设备及存储介质,属于通信技术领域。获取网络侧设备发送的预编码信息;基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。在本公开提供的方法可以降低预编码的复杂度。

Description

一种预编码方法/装置/设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种预编码方法/装置/设备及存储介质。
背景技术
在无线通信***中,为了提升服务质量,通过引入预编码技术,来将基站传输至RIS(Reconfigurable Intelligent Surface,智能超表面)或Smart Repeater(智能中继器)的入射信号按照特定方向反射至UE(User Equipment,终用户设备),以构建智能可编程无线环境,从而增强UE端接收信号的信号强度,实现对信道的控制。
相关技术中,主要通过交替优化技术对Smart Repeater(智能中继器)/RIS和基站的预编码进行联合设计。但是,相关技术中,在通过交替优化技术对Smart Repeater/RIS和基站的预编码进行联合设计时需要分别使用不同的算法,复杂度过高。
发明内容
本公开提出的预编码方法/装置/设备及存储介质,以解决相关技术中预编码方法的复杂度过高的技术问题。
本公开一方面实施例提出的预编码方法,应用于辅助通信设备,包括:
获取网络侧设备发送的预编码信息;
基于所述预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。
本公开一方面实施例提出的预编码方法,应用于网络侧设备,包括:
获取来自至少两个UE的PMI信息;
基于所述PMI信息确定预编码信息;
向辅助通信设备发送所述预编码信息。
本公开一方面实施例提出的预编码方法,应用于UE,包括:
向网络侧设备发送PMI信息。
本公开又一方面实施例提出的一种预编码装置,包括:
获取模块,用于获取网络侧设备发送的预编码信息;
处理模块,用于基于所述预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。
本公开又一方面实施例提出的一种预编码装置,包括:
获取模块,用于获取来自至少两个UE的PMI信息;
确定模块,用于基于所述PMI信息确定预编码信息;
发送模块,用于向辅助通信设备发送所述预编码信息。
本公开又一方面实施例提出的一种预编码装置,包括:
发送模块,用于向网络侧设备发送PMI信息。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
综上所述,在本公开实施例提供的预编码方法/装置设备/基站及存储介质之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性较低,适用性较高。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的预编码方法的流程示意图;
图2为本公开另一个实施例所提供的预编码方法的流程示意图;
图3为本公开再一个实施例所提供的预编码方法的流程示意图;
图4为本公开又一个实施例所提供的预编码方法的流程示意图;
图5为本公开又一个实施例所提供的预编码方法的流程示意图;
图6为本公开又一个实施例所提供的预编码方法的流程示意图;
图7为本公开又一个实施例所提供的预编码方法的流程示意图;
图8为本公开又一个实施例所提供的预编码方法的流程示意图;
图9为本公开又一个实施例所提供的预编码方法的流程示意图;
图10为本公开一个实施例所提供的预编码装置的结构示意图;
图11为本公开另一个实施例所提供的预编码装置的结构示意图;
图12为本公开再一个实施例所提供的预编码装置的结构示意图;
图13是本公开一个实施例所提供的一种用户设备的框图;
图14为本公开一个实施例所提供的一种网络侧设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列 出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面参考附图对本公开实施例所提供的预编码测量方法/装置/设备及存储介质进行详细描述。
图1为本公开实施例所提供的一种预编码方法的流程示意图,其中,本公开实施例提供的方法可以应用至多UE场景,该方法由辅助通信设备执行,如图1所示,该预编码方法可以包括以下步骤:
步骤101、获取网络侧设备发送的预编码信息。
其中,在本公开的一个实施例之中,上述辅助通信设备可以为智能中继器(Smart Repeater)和/或RIS阵列。
其中,在本公开的一个实施例之中,该预编码信息可以包括以下至少一种:
至少一个特定PMI(Precoding Matrix Index,预编码矩阵索引);
每个特定PMI对应的加权系数集;其中,加权系数集包括至少一个加权系数,每个特定PMI对应的加权系数集由每个特定PMI与至少一个UE对应的加权系数确定。
需要说明的是,在本公开的一个实施例之中,上述的预编码信息可以是网络侧设备基于来自至少两个UE的PMI信息确定的。即,所述预编码信息可以是网络侧设备根据至少两个UE的PMI信息确定的。其中,在本公开的一个实施例之中,该PMI信息可以包括多个PMI信息,其中这多个PMI信息可以对应于两个或两个以上UE;其中一个UE可以对应一个或多个PMI信息。在本公开实施中,所述至少两个UE的PMI信息包括:至少两个UE发送的PMI。进一步的,该至少两个UE的PMI信息还可以包括:每个PMI与至少两个UE中的每一个UE对应的加权系数。其中,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数。以及,该PMI对应的加权系数与利用该PMI对入射波束进行预编码得到的复合波束与UE的偏向程度呈正相关。例如,示例性的,预编码码本包含N个预编码矩阵,UE计算出的最佳预编码矩阵W,使用码本中的X个预编码矩阵的线性组合对最优预编码矩阵进行逼近,加权系数即为线性组合的加权系数。在一个可能的示例中,假设有10个候选预编码矩阵(X=10),UE计算出来的最佳波束预编码矩阵并不在候选预编码矩阵之中,因此可以用10个候选预编码矩阵中的所有或部分(比较靠近最佳波束预编码矩阵的几个候选预编码矩阵)进行逼近,从而确定候选预编码矩阵的加权系数;即,越逼近最佳波束预编码矩阵的候选预编码矩阵,其加权系数越高。
以及,在本公开的一个实施例之中,上述的PMI信息可以是UE直接发送至网络侧设备,在本公开的另一个实施例之中,上述的PMI信息可以是UE通过辅助通信设备转发至网络侧设备的,即:UE先将该PMI信息发送至辅助通信设备,再由辅助通信设备将PMI信息转发至网络侧设备。在本公开实施例中,辅助通信设备示例性的可以为Smart Repeater(智能中继器)/RIS。
此外,在本公开的一个实施例之中,UE在发送PMI信息中的PMI时,可以是按照特定顺序来依次发送该PMI的。其中,在本公开的一个实施例之中,该特定顺序可以为:按照PMI索引从小到大的顺序,在本公开的另一个实施例之中,该特定顺序可以为:按照PMI对应信道质量从最好到最坏的顺序,在本公开的又一个实施例之中,该特定顺序可以为:按照PMI对应信道质量从最坏到最好的顺序。当然,UE在发送PMI信息中可以包括一个或多个PMI;若只发送一个PMI,则无需进行排序;若发送多个PMI,则可以按照上述方式或是任何可能的方式进行排序。
示例的,在本公开的一个实施例之中,假设某UE向网络侧设备发送的PMI信息中包括两个PMI,分别为该UE对应的信道质量最坏的PMI-1、以及信道质量最好的PMI-2。此时,该UE发送该两个PMI的顺序可以为按照PMI索引的由小到大的顺序发送,即:依次发送PMI-1、PMI-2;或者,该UE发送该两个PMI的顺序可以为按照PMI对应信道质量从最好到最坏的顺序,即:依次发送PMI-2、PMI-1;或者,该UE发送该两个PMI的顺序可以为按照PMI对应信道质量从最坏到最好的顺序,即:依次发 送PMI-1、PMI-2。
还需要说明的是,在本公开的一个实施例之中,上述的PMI与UE对应的加权系数是一可选选项,即,UE可以向网络侧设备发送该UE所发送的每个PMI以及该UE的每个PMI与UE对应的加权系数,也可以不向网络侧设备发送该UE的每个PMI与UE对应的加权系数,而仅发送PMI即可。如前所述的,该UE的每个PMI与UE对应的加权系数,PMI对应的加权系数与利用该PMI对入射波束进行预编码得到的复合波束偏向于该PMI对应的UE的程度呈正相关。
在本公开的一个实施例之中,所述预编码信息可以是网络侧设备根据接收到的各个UE发送的PMI信息对应的所有PMI中选择至少一个特定PMI,并基于至少一个特定PMI对应的加权系数确定每个特定PMI的加权系数集;之后,将至少一个特定PMI和/或每个特定PMI对应的加权系数集确定为预编码信息。其中,该加权系数集包括至少一个加权系数,每个特定PMI对应的加权系数集由每个特定PMI与至少一个UE对应的加权系数确定。在本公开实施例中,针对每一个PMI,不同的UE对应不同的加权系数;可以根据其中全部或部分UE对应的加权系数,生成该PMI所对应的加权系数集。
需要说明的是,在本公开的一个实施例之中,在选择特定PMI时,主要是基于该辅助通信设备对应的目标UE确定的,其中,该目标UE即为要接收该辅助通信设备反射和/或透射入射波束后得到的复合波束的UE。以及,所选择的特定PMI应当满足以下条件:利用该特定PMI对入射波束进行预编码得到复合波束后,该复合波束能够被该目标UE准确接收。
基于此,该特定PMI可以包括以下至少一种:
目标UE对应的信道质量最好的至少一个PMI;
非目标UE对应的信道质量最差的至少一个PMI。
以及,需要说明的是,在本公开的一个实施例之中,当确定了特定PMI之后,可以直接将特定PMI对应的所有UE的加权系数,确定为特定PMI的加权系数集。在本公开的另一个实施例之中,当确定了特定PMI之后,网络侧设备还可以对该特定PMI对应的加权系数进行更改,并将更改之后的加权系数确定为特定PMI的加权系数集。
示例的,在本公开的一个实施例之中,假设当前具备有两个UE,分别为UE-1、UE-2,其中,UE-1发送至基站的PMI信息为:质量最好的PMI-1、PMI-1对应的加权系数a、质量最坏的PMI-2、以及PMI-2对应的加权系数b;UE-2发送至基站的PMI信息为:质量最坏的PMI-3、质量最好的PMI-4、PMI-3对应的加权系数c、PMI-4对应的加权系数d。其中,目标UE为UE-1,则网络侧设备可以将PMI-1、PMI-3确定为特定PMI,以及,可以将加权系数a确定为特定PMI-1的加权系数集、将加权系数c确定为特定PMI-3的加权系数集。
则通过执行上述步骤,网络侧设备即可确定出预编码信息,之后,可以将预编码信息发送至辅助通信设备。
需要说明的是,在本公开的一个实施例之中,网络侧设备在向辅助通信设备发送预编码信息时,可以可选性地向辅助通信设备发送一个特定PMI对应的加权系数集或部分特定PMI对应的加权系数集;即,网络侧设备可以向辅助通信设备发送每个特定PMI对应的加权系数集,也可以不向辅助通信设备发送每个特定PMI对应的加权系数集,而仅发送一个特定PMI或是几个特定PMI即可。
步骤102、基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。
其中,在本公开的一个实施例之中,辅助通信设备基于预编码信息对入射波束进行预编码时具体可以是:基于特定PMI和/或特定PMI对应的加权系数集确定复合波束。在一种可能的实现方式中,可以基于特定PMI和/或特定PMI对应的加权系数集,按照特定方向反射和/或透射入射波束,得到复合波束。
进一步的,该方法中还可以包括:向UE发射该复合波束。具体的,该网络设备可以向一个UE发射该复合波束,也可以向多个UE设备发射该复合波束。
综上所述,在本公开实施例提供的预编码方法之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性 较低,适用性较高。
图2为本公开实施例所提供的一种预编码方法的流程示意图,该方法由辅助通信设备执行,该辅助通信设备可以为Smart Repeater;如图2所示,该预编码方法可以包括以下步骤:
步骤201、获取网络侧设备发送的预编码信息。
步骤202、基于预编码信息确定复合波束,并发射复合波束。
其中,在本公开的一个实施例之中,具体可以是基于特定PMI和/或特定PMI对应的加权系数集来确定出目标向量。以及,关于步骤201-202的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
在本公开实施例中,步骤202可以具体为:步骤202、基于预编码信息确定目标向量,基于目标向量反射和/或透射入射波束以形成复合波束,并发射复合波束。
综上所述,在本公开实施例提供的预编码方法之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性较低,适用性较高。
图3为本公开实施例所提供的一种预编码方法的流程示意图,该方法由辅助通信设备执行,该辅助通信设备为RIS,如图3所示,该预编码方法可以包括以下步骤:
步骤301、获取网络侧设备发送的预编码信息。
步骤302、获取网络侧设备发送的入射波束的入射角信息。
步骤303、基于预编码信息和入射角信息确定复合波束,并向UE发射复合波束。
其中,在本公开的一个实施例之中,具体可以是基于特定PMI和/或特定PMI对应的加权系数集来确定出目标偏移相角。以及,关于步骤301-302的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
在本公开实施例中,步骤303可以具体为:基于预编码信息和入射角信息确定目标偏移相角,基于目标偏移相角确定目标相移矩阵,基于目标相移矩阵反射和/或透射入射波束以形成复合波束,并发射复合波束。
综上所述,在本公开实施例提供的预编码方法之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性较低,适用性较高。
图4为本公开实施例所提供的一种预编码方法的流程示意图,该方法由辅助通信设备执行,该辅助通信设备为Smart Repeater或RIS,如图4所示,该预编码方法可以包括以下步骤:
步骤401、获取至少两个UE发送的PMI信息。
其中,在本公开的一个实施例之中,该PMI信息可以包括UE发送的至少一个PMI以及UE发送的每个PMI与UE对应的加权系数,其中,该至少一个PMI可以包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数。
步骤402、将PMI信息转发至网络侧设备。
步骤403、获取网络侧设备发送的预编码信息。
步骤404、基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。
关于步骤401-404的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的预编码方法之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性较低,适用性较高。
图5为本公开实施例所提供的一种预编码方法的流程示意图,该方法由网络侧设备执行,如图5所示,该预编码方法可以包括以下步骤:
步骤501、获取来自至少两个UE的PMI信息。
其中,在本公开的一个实施例之中,该PMI信息可以包括多个PMI信息,其中这多个PMI信息可以对应于两个或两个以上UE;其中一个UE可以对应一个或多个PMI信息。在本公开实施中,所述至少两个UE的PMI信息包括:至少两个UE发送的PMI。进一步的,该至少两个UE的PMI信息还可以包括:每个PMI与至少两个UE中的每一个UE对应的加权系数。其中,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数。以及,该PMI对应的加权系数与利用该PMI对入射波束进行预编码得到的复合波束与UE的偏向程度呈正相关。例如,示例性的,预编码码本包含N个预编码矩阵,UE计算出的最佳预编码矩阵W,使用码本中的X个预编码矩阵的线性组合对最优预编码矩阵进行逼近,加权系数即为线性组合的加权系数。在一个可能的示例中,假设有10个候选预编码矩阵(X=10),UE计算出来的最佳波束预编码矩阵并不在候选预编码矩阵之中,因此可以用10个候选预编码矩阵中的所有或部分(比较靠近最佳波束预编码矩阵的几个候选预编码矩阵)进行逼近,从而确定候选预编码矩阵的加权系数;即,越逼近最佳波束预编码矩阵的候选预编码矩阵,其加权系数越高。
在本公开实施例中,该至少两个UE的PMI信息可以是至少两个UE发送给网络侧设备的,也可以是至少两个UE通过辅助通信设备发送给网络侧设备的。
步骤502、基于PMI信息确定预编码信息。
其中,在本公开的一个实施例之中,基于PMI信息确定预编码信息的方法可以包括:
从所有PMI中确定至少一个特定PMI,并基于所述至少一个特定PMI对应的加权系数确定每个特定PMI的加权系数集,将所述至少一个特定PMI和/或每个特定PMI对应的加权系数集确定为所述预编码信息。其中,所述加权系数集包括至少一个加权系数,每个特定PMI对应的加权系数集由每个特定PMI与至少一个UE对应的加权系数确定;
步骤503、向辅助通信设备发送预编码信息。
关于步骤501-503的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
在本公开实施例中,所述预编码信息可以是网络侧设备根据至少两个UE的PMI信息确定的。即,可以通过以下步骤确定预编码信息:
步骤a、网络侧设备获取来自各个UE的PMI信息。
其中,在本公开的一个实施例之中,该PMI信息可以包括多个PMI信息,其中这多个PMI信息可以对应于两个或两个以上UE;其中一个UE可以对应一个或多个PMI信息。在本公开实施中,所述至少两个UE的PMI信息包括:至少两个UE发送的PMI。进一步的,该至少两个UE的PMI信息还可以包括:每个PMI与至少两个UE中的每一个UE对应的加权系数。其中,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数。以及,该PMI对应的加权系数与利用该PMI对入射波束进行预编码得到的复合波束与UE的偏向程度呈正相关。例如,示例性的,预编码码本包含N个预编码矩阵,UE计算出的最佳预编码矩阵W,使用码本中的X个预编码矩阵的线性组合对最优预编码矩阵进行逼近,加权系数即为线性组合的加权系数。在一个可能的示例中,假设有10个候选预编码矩阵(X=10),UE计算出来的最佳波束预编码矩阵并不在候选预编码矩阵之中,因此可以用10个候选预编码矩阵中的所有或部分(比较靠近最佳波束预编码矩阵的几个候选预编码矩阵)进行逼近,从而确定候选预编码矩阵的加权系数;即,越逼近最佳波束预编码矩阵的候选预编码矩阵,其加权系数越高。
以及,在本公开的一个实施例之中,上述的PMI信息可以是UE直接发送至网络侧设备,在本公开的另一个实施例之中,上述的PMI信息可以是UE通过辅助通信设备转发至网络侧设备的,即:UE先将该PMI信息发送至辅助通信设备,再由辅助通信设备将PMI信息转发至网络侧设备。在本公开实施例中,辅助通信设备示例性的可以为Smart Repeater(智能中继器)/RIS。
此外,在本公开的一个实施例之中,UE在发送PMI信息中的PMI时,可以是按照特定顺序来依次发送该PMI的。其中,在本公开的一个实施例之中,该特定顺序可以为:按照PMI索引从小到大的顺序,在本公开的另一个实施例之中,该特定顺序可以为:按照PMI对应信道质量从最好到最坏的顺 序,在本公开的又一个实施例之中,该特定顺序可以为:按照PMI对应信道质量从最坏到最好的顺序。当然,UE在发送PMI信息中可以包括一个或多个PMI;若只发送一个PMI,则无需进行排序;若发送多个PMI,则可以按照上述方式或是任何可能的方式进行排序。具体可以参见前述实施例中的示例。
还需要说明的是,在本公开的一个实施例之中,上述的PMI与UE对应的加权系数是一可选选项,即,UE可以向网络侧设备发送该UE所发送的每个PMI以及该UE的每个PMI与UE对应的加权系数,也可以不向网络侧设备发送该UE的每个PMI与UE对应的加权系数,而仅发送PMI即可。如前所述的,该UE的每个PMI与UE对应的加权系数,PMI对应的加权系数与利用该PMI对入射波束进行预编码得到的复合波束偏向于该PMI对应的UE的程度呈正相关。
步骤b、网络侧设备基于各个UE的PMI信息确定上述预编码信息。
在本公开的一个实施例之中,所述预编码信息可以是网络侧设备根据接收到的各个UE发送的PMI信息对应的所有PMI中选择至少一个特定PMI,并基于至少一个特定PMI对应的加权系数确定每个特定PMI的加权系数集;之后,将至少一个特定PMI和/或每个特定PMI对应的加权系数集确定为预编码信息。其中,该加权系数集包括至少一个加权系数,每个特定PMI对应的加权系数集由每个特定PMI与至少一个UE对应的加权系数确定。在本公开实施例中,针对每一个PMI,不同的UE对应不同的加权系数;可以根据其中全部或部分UE对应的加权系数,生成该PMI所对应的加权系数集。
在本公开的一个实施例之中,在选择特定PMI时,主要是基于该辅助通信设备对应的目标UE确定的,其中,该目标UE即为要接收该辅助通信设备反射和/或透射入射波束后得到的复合波束的UE。以及,所选择的特定PMI应当满足以下条件:利用该特定PMI对入射波束进行预编码得到复合波束后,该复合波束能够被该目标UE准确接收。
基于此,该特定PMI可以包括以下至少一种:
目标UE对应的信道质量最好的至少一个PMI;
非目标UE对应的信道质量最差的至少一个PMI。
在本公开的一个实施例之中,当确定了特定PMI之后,可以直接将特定PMI对应的所有UE的加权系数,确定为特定PMI的加权系数集。在本公开的另一个实施例之中,当确定了特定PMI之后,网络侧设备还可以对该特定PMI对应的加权系数进行更改,并将更改之后的加权系数确定为特定PMI的加权系数集。具体可以参见前述实施例中的示例。
需要说明的是,在本公开的一个实施例之中,网络侧设备在向辅助通信设备发送预编码信息时,可以可选性地向辅助通信设备发送一个特定PMI对应的加权系数集或部分特定PMI对应的加权系数集;即,网络侧设备可以向辅助通信设备发送每个特定PMI对应的加权系数集,也可以不向辅助通信设备发送每个特定PMI对应的加权系数集,而仅发送一个特定PMI或是几个特定PMI即可。
综上所述,在本公开实施例提供的预编码方法之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性较低,适用性较高。
图6为本公开实施例所提供的一种预编码方法的流程示意图,该方法由网络侧设备执行,如图6所示,该预编码方法可以包括以下步骤:
步骤601、向至少一个UE发送配置信令,配置信令包括UE所需发送的PMI个数。
在本公开的一个实施例之中,UE向网络侧设备发送的PMI的个数可以是由基站配置的。
步骤602、获取来自至少两个UE的PMI信息。
其中,在本公开的一个实施例之中,该PMI信息可以包括多个PMI信息,其中这多个PMI信息可以对应于两个或两个以上UE;其中一个UE可以对应一个或多个PMI信息。在本公开实施中,所述至少两个UE的PMI信息包括:至少两个UE发送的PMI。进一步的,该至少两个UE的PMI信息还可以包括:每个PMI与至少两个UE中的每一个UE对应的加权系数。其中,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数。以及,该PMI 对应的加权系数与利用该PMI对入射波束进行预编码得到的复合波束与UE的偏向程度呈正相关。例如,示例性的,预编码码本包含N个预编码矩阵,UE计算出的最佳预编码矩阵W,使用码本中的X个预编码矩阵的线性组合对最优预编码矩阵进行逼近,加权系数即为线性组合的加权系数。在一个可能的示例中,假设有10个候选预编码矩阵(X=10),UE计算出来的最佳波束预编码矩阵并不在候选预编码矩阵之中,因此可以用10个候选预编码矩阵中的所有或部分(比较靠近最佳波束预编码矩阵的几个候选预编码矩阵)进行逼近,从而确定候选预编码矩阵的加权系数;即,越逼近最佳波束预编码矩阵的候选预编码矩阵,其加权系数越高。
需要说明的是,在本公开的一个实施例之中,上述的PMI信息中包括的PMI个数应当与步骤601中配置信息所配置的个数相同。
在本公开实施中,可以向部分UE发送配置信令以指示UE所需发送的PMI个数;而其他部分UE可以根据通信协议确定或是UE确定所需发送的PMI个数。在本公开实施中,可以向所有UE发送配置信令以指示UE所需发送的PMI个数。本领域内技术人员都可以理解,可以向UE发送特定的配置信息以配置该UE所需发送的PMI个数,即不同UE对应的所需发送的PMI个数可以相同或不同。还可以配置所有对应于该配置信息的UE都发送相同给的PMI个数。
进一步地,在本公开的一个实施例之中,该获取来自至少两个UE的PMI信息的方法可以包括以下至少一种:
方法一:获取至少两个UE发送的PMI信息。
方法二:获取由辅助通信设备转发的至少两个UE的PMI信息。
步骤603、基于PMI信息确定预编码信息。
步骤604、向辅助通信设备发送预编码信息。
关于步骤601-604的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的预编码方法之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性较低,适用性较高。
图7为本公开实施例所提供的一种预编码方法的流程示意图,该方法由网络侧设备执行,如图7所示,该预编码方法可以包括以下步骤:
步骤701、获取来自至少两个UE的PMI信息。
步骤702、基于PMI信息确定预编码信息。
步骤703、向辅助通信设备发送预编码信息。
步骤704、向辅助通信设备发送入射波束的入射角信息。
关于步骤701-704的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的预编码方法之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性较低,适用性较高。
图8为本公开实施例所提供的一种预编码方法的流程示意图,该方法由UE执行,如图8所示,该预编码方法可以包括以下步骤:
步骤801、向网络侧设备发送PMI信息。
在本公开的一个实施例之中,UE可以是指向用户提供语音和/或数据连通性的设备。UE可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者, UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,该PMI信息包括以下至少一种:
所述UE发送的PMI,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数;
每个PMI与至少两个UE中的每一个UE对应的加权系数。
以及,在本公开的一个实施例之中,向网络侧设备发送PMI信息的方法可以包括以下至少一种:
方法一:直接向网络侧设备发送PMI信息。
方法二:通过辅助通信设备向网络侧设备发送PMI信息。
关于步骤801的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的预编码方法之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性较低,适用性较高。
图9为本公开实施例所提供的一种预编码方法的流程示意图,该方法由UE执行,如图9所示,该预编码方法可以包括以下步骤:
步骤901、根据通信协议或是网络侧设备发送的配置信令,确定所需发送的PMI个数。
步骤902、向网络侧设备发送PMI信息。
关于步骤901-902的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的预编码方法之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,辅助通信设备是基于网络侧设备发送的预编码信息对入射波束进行预编码的,则复杂性较低,适用性较高。
图10为本公开实施例所提供的一种预编码装置结构图,被配置于辅助通信设备中,如图10所示,该预编码装置可以包括:
获取模块,用于获取网络侧设备发送的预编码信息;
处理模块,用于基于所述预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。
综上所述,在本公开实施例提供的预编码装置之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,提出了一种预编码方法,该方法能够使多个PMI对辅助通信设备处反射的波束进行预编码,以确保降低预编码的复杂度。
可选地,在本公开的一个实施例之中,所述预编码信息包括以下至少一种:
至少一个特定PMI;
每个特定PMI对应的加权系数集;其中,所述加权系数集包括至少一个加权系数,每个特定PMI对应的加权系数集由每个特定PMI与至少一个UE对应的加权系数确定。
可选地,在本公开的一个实施例之中,所述辅助通信设备为Smart Repeater。
可选地,在本公开的一个实施例之中,所述处理模块,还用于:
基于所述预编码信息确定目标向量,基于所述目标向量反射和/或透射所述入射波束以形成复合波束。
可选地,在本公开的一个实施例之中,所述辅助通信设备为RIS。
可选地,在本公开的一个实施例之中,所述装置,还用于:
获取所述网络侧设备发送的所述入射波束的入射角信息。
可选地,在本公开的一个实施例之中,所述处理模块,还用于:
基于所述预编码信息和所述入射角信息确定目标偏移相角,基于所述目标偏移相角确定目标相移矩 阵,基于目标相移矩阵反射和/或透射所述入射波束以形成复合波束。
可选地,在本公开的一个实施例之中,所述装置,还用于:
获取至少两个UE发送的PMI信息;所述PMI信息包括多个PMI信息,所述多个PMI信息对应于两个或两个以上UE;其中,一个UE对应一个或多个PMI信息;以及,所述至少两个UE的PMI信息包括以下至少一种:至少两个UE发送的PMI,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数;每个PMI与至少两个UE中的每一个UE对应的加权系数;
将所述PMI信息转发至所述网络侧设备。
图11为本公开实施例所提供的一种预编码装置结构图,被配置于网络侧设备中,如图11所示,该预编码装置可以包括:
获取模块,用于获取来自至少两个UE的PMI信息;
确定模块,用于基于所述PMI信息确定预编码信息;
发送模块,用于向辅助通信设备发送所述预编码信息。
综上所述,在本公开实施例提供的预编码装置之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,提出了一种预编码方法,该方法能够使多个PMI对辅助通信设备处反射的波束进行预编码,以确保降低预编码的复杂度。
可选地,在本公开的一个实施例之中,所述PMI信息包括多个PMI信息,所述多个PMI信息对应于两个或两个以上UE;其中,一个UE对应一个或多个PMI信息;以及,所述至少两个UE的PMI信息包括以下至少一种:至少两个UE发送的PMI,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数;每个PMI与至少两个UE中的每一个UE对应的加权系数。
可选地,在本公开的一个实施例之中,所述装置,还用于:
向至少一个UE发送配置信令,所述配置信令包括UE所需发送的PMI个数。
可选地,在本公开的一个实施例之中,所述获取模块,还用于:
获取至少两个UE发送的所述PMI信息;
获取由辅助通信设备转发的所述至少两个UE的PMI信息。
可选地,在本公开的一个实施例之中,所述确定模块,还用于:
接收到的各个UE发送的PMI信息对应的所有PMI中选择至少一个特定PMI,并基于所述至少一个特定PMI对应的加权系数确定每个特定PMI的加权系数集,其中,所述加权系数集包括至少一个加权系数,每个特定PMI对应的加权系数集由每个特定PMI与至少一个UE对应的加权系数确定;
将所述至少一个特定PMI和/或每个特定PMI对应的加权系数集确定为所述预编码信息。
可选地,在本公开的一个实施例之中,所述装置,还用于:
向所述辅助通信设备发送入射波束的入射角信息。
图12为本公开实施例所提供的一种预编码装置结构图,被配置于UE中,如图12所示,该预编码装置可以包括:
发送模块,用于向网络侧设备发送PMI信息。
综上所述,在本公开实施例提供的预编码装置之中,辅助通信设备会获取网络侧设备发送的预编码信息,之后,会基于预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。由此,在本公开实施例中,提出了一种预编码方法,该方法能够使多个PMI对辅助通信设备处反射的波束进行预编码,以确保降低预编码的复杂度。
可选地,在本公开的一个实施例之中,所述PMI信息包括包括以下至少一种:
所述UE发送的PMI,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数;
每个PMI与至少两个UE中的每一个UE对应的加权系数。
可选地,在本公开的一个实施例之中,所述装置,还用于:
根据通信协议或是网络侧设备发送的配置信令,确定所需发送的PMI个数。
可选地,在本公开的一个实施例之中,所述发送模块,还用于:
直接向所述网络侧设备发送所述PMI信息;
通过辅助通信设备向所述网络侧设备发送所述PMI信息。
图13是本公开一个实施例所提供的一种用户设备UE1300的框图。例如,UE1300可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,UE1300可以包括以下至少一个组件:处理组件1302,存储器1304,电源组件1306,多媒体组件1308,音频组件1310,输入/输出(I/O)的接口1312,传感器组件1313,以及通信组件1316。
处理组件1302通常控制UE1300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1302可以包括至少一个处理器1320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1302可以包括至少一个模块,便于处理组件1302和其他组件之间的交互。例如,处理组件1302可以包括多媒体模块,以方便多媒体组件1308和处理组件1302之间的交互。
存储器1304被配置为存储各种类型的数据以支持在UE1300的操作。这些数据的示例包括用于在UE1300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1306为UE1300的各种组件提供电力。电源组件1306可以包括电源管理***,至少一个电源,及其他与为UE1300生成、管理和分配电力相关联的组件。
多媒体组件1308包括在所述UE1300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1308包括一个前置摄像头和/或后置摄像头。当UE1300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件1310被配置为输出和/或输入音频信号。例如,音频组件1310包括一个麦克风(MIC),当UE1300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1304或经由通信组件1316发送。在一些实施例中,音频组件1310还包括一个扬声器,用于输出音频信号。
I/O接口1312为处理组件1302和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1313包括至少一个传感器,用于为UE1300提供各个方面的状态评估。例如,传感器组件1313可以检测到设备1300的打开/关闭状态,组件的相对定位,例如所述组件为UE1300的显示器和小键盘,传感器组件1313还可以检测UE1300或UE1300一个组件的位置改变,用户与UE1300接触的存在或不存在,UE1300方位或加速/减速和UE1300的温度变化。传感器组件1313可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1313还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1313还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1316被配置为便于UE1300和其他设备之间有线或无线方式的通信。UE1300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1316经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通 信组件1316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1300可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图14是本公开实施例所提供的一种网络侧设备1400的框图。例如,网络侧设备1400可以被提供为一网络侧设备。参照图14,网络侧设备1400包括处理组件1411,其进一步包括至少一个处理器,以及由存储器1432所代表的存储器资源,用于存储可由处理组件1422的执行的指令,例如应用程序。存储器1432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1410被配置为执行指令,以执行上述方法前述应用在所述网络侧设备的任意方法,例如,如图1所示方法。
网络侧设备1400还可以包括一个电源组件1426被配置为执行网络侧设备1400的电源管理,一个有线或无线网络接口1450被配置为将网络侧设备1400连接到网络,和一个输入输出(I/O)接口1458。网络侧设备1400可以操作基于存储在存储器1432的操作***,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如前述方法实施例中的终端设备):处理器用于执行图1-图4任一所示的方法。
通信装置为网络设备:收发器用于执行图5-图7任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的***,该***包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该***包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程 序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (30)

  1. 一种预编码方法,其特征在于,应用于辅助通信设备,包括:
    获取网络侧设备发送的预编码信息;
    基于所述预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。
  2. 如权利要求1所述的方法,其特征在于,所述预编码信息包括以下至少一种:
    至少一个特定预编码矩阵索引PMI;
    每个特定PMI对应的加权系数集;其中,所述加权系数集包括至少一个加权系数,每个特定PMI对应的加权系数集由每个特定PMI与至少一个UE对应的加权系数确定。
  3. 如权利要求2所述的方法,其特征在于,所述辅助通信设备为智能中继器Smart Repeater。
  4. 如权利要求3所述的方法,其特征在于,所述基于所述预编码信息对入射波束进行预编码以形成复合波束,包括:
    基于所述预编码信息确定目标向量,基于所述目标向量反射和/或透射所述入射波束以形成复合波束。
  5. 如权利要求2所述的方法,其特征在于,所述辅助通信设备为可重构智能表面RIS。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    获取所述网络侧设备发送的所述入射波束的入射角信息。
  7. 如权利要求6所述的方法,其特征在于,所述基于所述预编码信息对入射波束进行预编码以形成复合波束,包括:
    基于所述预编码信息和所述入射角信息确定目标偏移相角,基于所述目标偏移相角确定目标相移矩阵,基于目标相移矩阵反射和/或透射所述入射波束以形成复合波束。
  8. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    获取至少两个UE发送的PMI信息;所述PMI信息包括多个PMI信息,所述多个PMI信息对应于两个或两个以上UE;其中,一个UE对应一个或多个PMI信息;以及,所述至少两个UE的PMI信息包括以下至少一种:至少两个UE发送的PMI,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数;每个PMI与至少两个UE中的每一个UE对应的加权系数;
    将所述PMI信息转发至所述网络侧设备。
  9. 一种预编码方法,其特征在于,应用于网络侧设备,包括:
    获取来自至少两个UE的PMI信息;
    基于所述PMI信息确定预编码信息;
    向辅助通信设备发送所述预编码信息。
  10. 如权利要求9所述的方法,其特征在于,所述PMI信息包括多个PMI信息,所述多个PMI信息对应于两个或两个以上UE;其中,一个UE对应一个或多个PMI信息;以及,所述至少两个UE的PMI信息包括以下至少一种:至少两个UE发送的PMI,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数;每个PMI与至少两个UE中的每一个UE对应的加权系数。
  11. 如权利要求9或10所述的方法,其特征在于,所述方法还包括:
    向至少一个UE发送配置信令,所述配置信令包括UE所需发送的PMI个数。
  12. 如权利要求9-11任一所述的方法,其特征在于,所述获取来自至少两个UE的PMI信息的方法包括以下至少一种:
    获取至少两个UE发送的所述PMI信息;
    获取由辅助通信设备转发的所述至少两个UE的PMI信息。
  13. 如权利要求9或10所述的方法,其特征在于,所述基于所述PMI信息确定预编码信息,包括:
    从接收到的各个UE发送的PMI信息对应的所有PMI中选择至少一个特定PMI,并基于所述至少一个特定PMI对应的加权系数确定每个特定PMI的加权系数集,其中,所述加权系数集包括至少一个 加权系数,每个特定PMI对应的加权系数集由每个特定PMI与至少一个UE对应的加权系数确定;
    将所述至少一个特定PMI和/或每个特定PMI对应的加权系数集确定为所述预编码信息。
  14. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    向所述辅助通信设备发送入射波束的入射角信息。
  15. 一种预编码方法,其特征在于,应用于UE,包括:
    向网络侧设备发送PMI信息。
  16. 如权利要求15所述的方法,其特征在于,所述PMI信息包括以下至少一种:
    所述UE发送的PMI,所述PMI包括UE对应的信道质量最好的M个PMI和/或最坏的N个PMI,其中,M、N为大于等于0的整数;
    每个PMI与至少两个UE中的每一个UE对应的加权系数。
  17. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    根据通信协议或是网络侧设备发送的配置信令,确定所需发送的PMI个数。
  18. 如权利要求15-17任一所述的方法,其特征在于,所述向网络侧设备发送PMI信息的方法包括以下至少一种:
    直接向所述网络侧设备发送所述PMI信息;
    通过辅助通信设备向所述网络侧设备发送所述PMI信息。
  19. 一种预编码装置,其特征在于,包括:
    获取模块,用于获取网络侧设备发送的预编码信息;
    处理模块,用于基于所述预编码信息对入射波束进行预编码以形成复合波束,并发射复合波束。
  20. 一种预编码装置,其特征在于,包括:
    获取模块,用于获取来自至少两个UE的PMI信息;
    确定模块,用于基于所述PMI信息确定预编码信息;
    发送模块,用于向辅助通信设备发送所述预编码信息。
  21. 一种预编码装置,其特征在于,包括:
    发送模块,用于向网络侧设备发送PMI信息。
  22. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至8中任一项所述的方法。
  23. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求9至14中任一项所述的方法。
  24. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求15至18中任一项所述的方法。
  25. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至8中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求9至14中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求15至18中任一项所述的方法。
  28. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至8中任一项所述的方法被实现。
  29. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求9至14中任一项所述的方法被实现。
  30. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求15至18中任一项所述的方法被实现。
PCT/CN2022/070853 2022-01-07 2022-01-07 一种预编码方法/装置/设备及存储介质 WO2023130397A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000026.9A CN116830471A (zh) 2022-01-07 2022-01-07 一种预编码方法/装置/设备及存储介质
PCT/CN2022/070853 WO2023130397A1 (zh) 2022-01-07 2022-01-07 一种预编码方法/装置/设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070853 WO2023130397A1 (zh) 2022-01-07 2022-01-07 一种预编码方法/装置/设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023130397A1 true WO2023130397A1 (zh) 2023-07-13

Family

ID=87072761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070853 WO2023130397A1 (zh) 2022-01-07 2022-01-07 一种预编码方法/装置/设备及存储介质

Country Status (2)

Country Link
CN (1) CN116830471A (zh)
WO (1) WO2023130397A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801456A (zh) * 2012-08-29 2012-11-28 东南大学 单小区中继移动通信蜂窝***的联合下行预编码方法
WO2018032492A1 (zh) * 2016-08-19 2018-02-22 华为技术有限公司 一种下行传输方法及网络设备
CN112383332A (zh) * 2020-11-03 2021-02-19 电子科技大学 一种基于智能反射表面的蜂窝基站通信***
CN113078932A (zh) * 2021-03-29 2021-07-06 东南大学 一种智能反射表面辅助的下行传输预编码设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801456A (zh) * 2012-08-29 2012-11-28 东南大学 单小区中继移动通信蜂窝***的联合下行预编码方法
WO2018032492A1 (zh) * 2016-08-19 2018-02-22 华为技术有限公司 一种下行传输方法及网络设备
CN112383332A (zh) * 2020-11-03 2021-02-19 电子科技大学 一种基于智能反射表面的蜂窝基站通信***
CN113078932A (zh) * 2021-03-29 2021-07-06 东南大学 一种智能反射表面辅助的下行传输预编码设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (QUALCOMM): "Email discussion for RAN4 R17 non-spectrum work areas: Smart Repeaters", 3GPP DRAFT; RP-201830, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20200914 - 20200918, 7 September 2020 (2020-09-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051932516 *
PEILAN WANG; JUN FANG; XIAOJUN YUAN; ZHI CHEN; HUIPING DUAN; HONGBIN LI: "Intelligent Reflecting Surface-Assisted Millimeter Wave Communications: Joint Active and Passive Precoding Design", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 18 October 2020 (2020-10-18), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081789192, DOI: 10.1109/TVT.2020.3031657 *

Also Published As

Publication number Publication date
CN116830471A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2023130397A1 (zh) 一种预编码方法/装置/设备及存储介质
WO2023159614A1 (zh) 一种预编码矩阵确定方法及设备/存储介质/装置
CN115997470A (zh) 会话区分方法、装置
WO2023155053A1 (zh) 一种辅助通信设备的发送方法及设备/存储介质/装置
WO2023092602A1 (zh) 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质
WO2023050153A1 (zh) 一种上报方法、装置、用户设备、网路侧设备及存储介质
WO2023070407A1 (zh) 一种预编码方法、装置、用户设备、可重构智能表面ris阵列及存储介质
WO2023065339A1 (zh) 一种按需定位参考信号prs请求方法、装置、用户设备、网络侧设备及存储介质
WO2023130283A1 (zh) 一种映射方式确定方法/装置/设备及存储介质
WO2023108435A1 (zh) 一种预编码方法及设备/存储介质/装置
WO2023082194A1 (zh) 一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质
WO2023193276A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023173254A1 (zh) 一种定时调整方法/装置/设备及存储介质
WO2024103409A1 (zh) Pucch-sri指示方法、装置
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2023178567A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023108374A1 (zh) 一种测量方法/装置/用户设备/网络侧设备及存储介质
WO2023206298A1 (zh) 一种协商方法/装置/设备及存储介质
WO2023082279A1 (zh) 一种波束测量方法、装置、用户设备、网络侧设备及存储介质
WO2023102944A1 (zh) 一种非竞争随机接入cfra中阈值确定方法及设备/存储介质/装置
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置
WO2023077472A1 (zh) 一种信息更新方法、装置、用户设备、基站及存储介质
WO2023206177A1 (zh) Ai波束模型确定方法、装置
WO2024016290A1 (zh) Sl prs资源激活方法、装置
WO2023077525A1 (zh) 一种信号发送方法、装置、用户设备、ris阵列及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000026.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917869

Country of ref document: EP

Kind code of ref document: A1