WO2023082194A1 - 一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质 - Google Patents

一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质 Download PDF

Info

Publication number
WO2023082194A1
WO2023082194A1 PCT/CN2021/130412 CN2021130412W WO2023082194A1 WO 2023082194 A1 WO2023082194 A1 WO 2023082194A1 CN 2021130412 W CN2021130412 W CN 2021130412W WO 2023082194 A1 WO2023082194 A1 WO 2023082194A1
Authority
WO
WIPO (PCT)
Prior art keywords
ris
array
time slot
index
reflected
Prior art date
Application number
PCT/CN2021/130412
Other languages
English (en)
French (fr)
Inventor
池连刚
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180103211.6A priority Critical patent/CN118216197A/zh
Priority to PCT/CN2021/130412 priority patent/WO2023082194A1/zh
Publication of WO2023082194A1 publication Critical patent/WO2023082194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a beam processing method, device, user equipment, RIS array, base station, and storage medium.
  • the communication between the base station and UE can be realized based on the RIS (Reconfigurable Intelligent Surface) array.
  • the phase shift matrix of the RIS array will be adjusted so that the RIS array can reflect and/or transmit the incident beam transmitted from the base station to the RIS array to the UE in different directions to construct an intelligent programmable
  • the signal strength of the signal received by the UE is enhanced to realize the control of the channel.
  • how to control the RIS array to reflect and/or transmit beams in a specific time slot and in a specific direction is an urgent problem to be solved.
  • the beam processing method, device, user equipment, RIS array, base station and storage medium proposed in the present disclosure are used to realize "reflecting and/or transmitting an incident beam to a UE in a specific time slot and in a specific direction".
  • the beam processing method proposed in an embodiment of the present disclosure is applied to a RIS array, including:
  • the beam information includes a set of reflected beams supported by the RIS array and/or a set of transmitted beams supported by the RIS array; wherein the set of reflected beams includes at least one set of reflected beams supported by the RIS array corresponding to an angle range and a beam index, the transmission beam set includes an angle range and a beam index corresponding to at least one transmission beam supported by the RIS array;
  • the reverse direction of the incident beam determine the phase shift matrix of the target beam corresponding to the target beam index, and perform reflection and/or transmission operations on the incident beam sent by the base station based on the time slot position information and the actual phase shift matrix.
  • the beam processing method proposed in another embodiment of the present disclosure is applied to a base station, including:
  • the beam information of the RIS array includes a set of reflected beams supported by the RIS array and/or a set of transmitted beams supported by the RIS array;
  • the set of reflected beams includes the angular range and beam corresponding to at least one reflected beam supported by the RIS array
  • An index the set of transmitted beams includes an angle range and a beam index corresponding to at least one transmitted beam supported by the RIS array;
  • the RIS array sending the at least one target beam index and at least one time slot position information to the RIS array, wherein one time slot position information corresponds to at least one target beam index, and the time slot position information is used to indicate: the corresponding target The position of the used time slot of the target beam corresponding to the beam index;
  • the beam processing method proposed in the embodiment is applied to the UE, including:
  • Receive beams reflected and/or transmitted by the RIS array and perform beam measurements on the received beams.
  • the beam processing device proposed by the embodiment includes:
  • a sending module configured to send beam information of the RIS array to the base station, where the beam information includes a set of reflected beams supported by the RIS array and/or a set of transmitted beams supported by the RIS array; wherein the set of reflected beams includes at least an angular range and a beam index corresponding to a reflected beam, and the transmitted beam set includes an angular range and a beam index corresponding to at least one transmitted beam supported by the RIS array;
  • An acquisition module configured to acquire at least one target beam index sent by the base station, and determine at least one time slot position information, wherein one time slot position information corresponds to at least one target beam index, and the time slot position information is used to indicate: the corresponding The position of the used time slot of the target beam corresponding to the target beam index;
  • a processing module configured to determine the phase shift matrix of the target beam corresponding to the target beam index according to the direction of the incident beam, and reflect and/or reflect the incident beam sent by the base station based on the time slot position information and the phase shift matrix Transmission operation.
  • the beam processing device proposed by the embodiment includes:
  • An acquisition module configured to acquire beam information sent by the RIS array, where the beam information includes a set of reflected beams supported by the RIS array and/or a set of transmitted beams supported by the RIS array; the set of reflected beams includes at least one reflected beam supported by the RIS array Corresponding angle range and beam index, the transmission beam set includes the angle range and beam index corresponding to at least one transmission beam supported by the RIS array;
  • a first determining module configured to determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams
  • a sending module configured to send the at least one target beam index and at least one time slot position information to the RIS array, where one time slot position information corresponds to at least one target beam index, and the time slot position information is used to indicate: The position of the used time slot of the target beam corresponding to the target beam index;
  • the above sending module is also used to send incident beams to the RIS array
  • the second determination module is configured to determine time-frequency resources used for beam measurement, number the time slots used for beam measurement in the time-frequency resources to obtain a time slot index, and indicate to the user equipment UE that the time slots used for beam measurement A time-frequency resource for beam measurement and the time-frequency index.
  • the beam processing device proposed by the embodiment includes:
  • the measurement module is configured to receive beams reflected and/or transmitted by the RIS array, and perform beam measurement on the received beams.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the above embodiment of another aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the above yet another aspect.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in another embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in the embodiment according to another aspect.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the RIS array can send the beam information of the RIS array to the base station, and then obtain at least one beam information sent by the base station.
  • the RIS array reflects and/or transmits the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 1 is a schematic flowchart of a beam processing method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a beam processing device provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a beam processing device provided by another embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a beam processing device provided by another embodiment of the present disclosure.
  • Fig. 16 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 17 is a block diagram of a base station provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • the RIS array can send the beam information of the RIS array to the base station, and then obtain at least one target beam index sent by the base station , and determine at least one time slot position information, and then determine the phase shift matrix of the target beam corresponding to the target beam index according to the direction of the incident beam, and reflect and/or reflect the incident beam sent by the base station based on the time slot position information and the phase shift matrix Transmission operation. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 1 is a schematic flowchart of a beam processing method provided by an embodiment of the present disclosure, which is applied to a RIS array. As shown in FIG. 1, the beam processing method may include the following steps:
  • Step 101 sending beam information of the RIS array to the base station.
  • the beam information may include a reflected beam set supported by the RIS array and/or a transmitted beam set supported by the RIS array.
  • the reflected beam set may include an angle range and a beam index corresponding to at least one reflected beam supported by the RIS array.
  • the transmitted beam set may include an angle range and a beam index corresponding to at least one transmitted beam supported by the RIS array.
  • the beam information may include at least one of the following:
  • the above-mentioned angle range may include a first-dimensional angle range and a second-dimensional angle range.
  • the first-dimensional angle range may be a horizontal azimuth angle range.
  • the second-dimensional angle range may be a vertical azimuth angle range.
  • the foregoing beam index may be a two-dimensional index.
  • the aforementioned beam index may be a one-dimensional index.
  • Step 102 acquire at least one target beam index sent by the base station, and determine at least one time slot position information.
  • the above-mentioned at least one target beam index may be sent to the RIS array by the base station through signaling, and the above-mentioned target beam index is specifically the set of reflected beams and/or transmitted beams obtained by the base station
  • the beam index corresponding to a certain beam selected in the set, that is, the above-mentioned target beam index is essentially the beam index of a certain beam among the reflected beams and/or transmitted beams supported by the RIS array.
  • one piece of time slot position information corresponds to at least one target beam index
  • the time slot position information is used to indicate the position of the used time slot of the target beam corresponding to the corresponding target beam index.
  • the method for the RIS array to determine the location information of at least one time slot may include at least one of the following:
  • the RIS array can be configured as a periodic reflected beam and/or a periodic transmitted beam; in another embodiment of the present disclosure, the RIS array can also be configured as Aperiodic reflected beams and/or aperiodic transmitted beams.
  • the configuration of the RIS array is different, the content included in the slot position information is also different, wherein, the detailed introduction about the content included in the slot position information under different configurations will be in The description of the examples follows.
  • Step 103 Determine the phase shift matrix of the target beam corresponding to the target beam index according to the direction of the incident beam, and perform reflection and/or transmission operations on the incident beam sent by the base station based on the time slot position information and the phase shift matrix.
  • the method for determining the phase shift matrix of the target beam corresponding to the target beam index may include:
  • Step a setting an initial incident angle, and determining an initial phase shift matrix corresponding to each reflected beam and/or each transmitted beam supported by the RIS array based on the initial incident angle.
  • the initial incident angle may be set before the RIS array actually receives the incident beam sent by the base station.
  • the initial incident angle can be any angle.
  • the initial incident angle may be 0°.
  • the above-mentioned phase shift matrix is a diagonal matrix composed of phase shift angles of each RIS unit in the RIS array as diagonal elements.
  • different phase shift matrices can cause the RIS array to reflect and/or transmit incident beams in different directions.
  • the main function of the initial phase shift matrix corresponding to each reflected beam and/or transmitted beam supported by the RIS array is: assuming that the incident direction of the incident beam is the initial incident angle, at this time, if The RIS array is made to reflect and/or transmit the incident beam based on each initial phase shift matrix, so that each reflected beam and/or transmitted beam supported by the RIS array can be correspondingly obtained.
  • the RIS array supports a reflected beam 1 and a transmitted beam 2, wherein the reflection direction of the reflected beam 1 is a, corresponding to the initial phase shift matrix 1; the transmission of the transmitted beam 2 The direction is b, corresponding to the initial phase shift matrix 2.
  • the incident direction of the incident beam is the initial incident angle
  • Step b Determine the actual incident angle of the incident beam sent by the base station to the RIS array.
  • the actual incident angle may be the aforementioned initial incident angle. In another embodiment of the present disclosure, the actual incident angle may not be the aforementioned initial incident angle.
  • Step c adjusting the initial phase shift matrix of the target beam corresponding to the target beam index based on the initial incident angle and the actual incident angle to obtain a phase shift matrix.
  • the target beam corresponding to the target beam index indicated by the base station is substantially a reflection beam or transmission beam supported by the RIS array.
  • the main function of the phase shift matrix of the target beam obtained based on the initial phase shift matrix of the target beam is: when the incident direction of the incident beam is the actual incident angle, if the RIS array Based on the phase shift matrix reflecting and/or transmitting the incident beam, the target beam can be obtained.
  • the method for adjusting the initial phase shift matrix may specifically be: adjusting the initial phase shift of the target beam corresponding to the target beam index based on the angle difference between the initial incident angle and the actual incident angle matrix to get the phase shift matrix of the above target beam.
  • the phase shift matrix of the target beam can be obtained after the RIS array reflects and/or transmits the incident beam.
  • the RIS array after the RIS array determines the phase shift matrix of the target beam corresponding to the target beam index, it can perform a phase shift matrix-based phase shift matrix on the specific time slot indicated by the time slot position information.
  • the incident beam is reflected and/or transmitted to obtain the above-mentioned target beam, so that the RIS array realizes the operation of "reflecting and/or transmitting the incident beam in a specific time slot and in a specific direction".
  • the RIS array can send the beam information of the RIS array to the base station, and then obtain at least one target beam index sent by the base station, and determine at least one time slot position information, Then, according to the direction of the incident beam, the phase shift matrix of the target beam corresponding to the target beam index is determined, and the incident beam sent by the base station is reflected and/or transmitted based on the time slot position information and the phase shift matrix. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 2 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a RIS array. As shown in FIG. 2 , the beam processing method may include the following steps:
  • Step 201 determine the first-dimensional angular range of each reflected beam and/or each transmitted beam supported by the RIS array in the first dimension, and the first-dimensional angle range of each reflected beam and/or each transmitted beam supported by the RIS array in the second dimension 2D angle range.
  • the first dimension may be a horizontal dimension
  • the second dimension may be a vertical dimension
  • the first-dimensional angular range of each reflected beam supported by the RIS array in the first dimension may include: angular range 1: 0°-30°, angular range 2: 30° ° ⁇ 60°, angle range 3: 60° ⁇ 90°;
  • the second dimension angle range of each reflected beam supported by the RIS array in the second dimension may include: angle range 4: 0° ⁇ 30°, angle range 5: 30° ⁇ 60°, angle range 6: 60° ⁇ 90°.
  • Step 202 Combining the angle range of the first dimension and the angle range of the second dimension to determine each reflected beam and/or each transmitted beam supported by the RIS array.
  • angle ranges in two dimensions may determine a beam direction. Based on this, each first-dimensional angular range and second-dimensional angular range can be combined in pairs to obtain each reflected beam and/or each transmitted beam supported by the RIS array. And, it should be noted that, in one embodiment of the present disclosure, when the first-dimensional angle range and the second-dimensional angle range are combined in pairs, the first-dimensional angle range and the second-dimensional angle range of the pairwise combination should belong to the same type, for example, both belong to the angle range corresponding to the reflected beam, or both belong to the angle range corresponding to the transmitted beam.
  • angle range 1 and angle range 4 can determine the reflected beam 1
  • angle range 1 and angle range 5 can determine the reflection beam 2
  • angle range 1 and angle range 6 can be The reflected beam three is determined, and exhaustively performed to obtain each reflected beam and/or each transmitted beam supported by the RIS array.
  • Step 203 Number each first-dimensional angle range and second-dimensional angle range to obtain two-dimensional beam indexes (i, j) corresponding to each reflected beam and/or each transmitted beam supported by the RIS array.
  • i in the above index is used to indicate the number of the first-dimensional angle range of the reflected beam and/or transmitted beam
  • j is used to indicate the second angle range of the reflected beam and/or transmitted beam. The number of the angle range of the dimension.
  • the first-dimensional angle range Angle range 1: 0°-30°, Angle range 2: 30°-60°, Angle range 3: 60° ⁇ 90° are respectively numbered as 1, 2, and 3.
  • the second dimension angle range of each reflected beam of the RIS array angle range 4: 0° ⁇ 30°, angle range 5: 30° ⁇ 60°, angle range 6: 60° ⁇ 90° are respectively numbered as 1, 2, 3.
  • the two-dimensional beam index corresponding to the above-mentioned reflected beam one should be (1, 1)
  • the two-dimensional beam index corresponding to the above-mentioned reflected beam two should be (1, 2)
  • the above-mentioned two-dimensional beam index corresponding to the three reflected beam The beam index should be (1, 3), and so on to obtain the two-dimensional index of each reflected beam.
  • Step 204 Establish a reflected beam set and/or a transmitted beam set based on the angle range corresponding to the reflected beam and/or the transmitted beam and the two-dimensional beam index.
  • Step 205 sending beam information of the RIS array to the base station.
  • Step 206 acquire at least one target beam index sent by the base station, and determine at least one time slot position information.
  • one piece of time slot position information corresponds to at least one target beam index, and the time slot position information is used to indicate the position of the used time slot of the target beam corresponding to the corresponding target beam index.
  • Step 207 Determine the phase shift matrix of the target beam corresponding to the target beam index according to the direction of the incident beam, and perform reflection and/or transmission operations on the incident beam sent by the base station based on the time slot position information and the phase shift matrix.
  • the RIS array can send the beam information of the RIS array to the base station, and then obtain at least one target beam index sent by the base station, and determine at least one time slot position information, Then, according to the direction of the incident beam, the phase shift matrix of the target beam corresponding to the target beam index is determined, and the incident beam sent by the base station is reflected and/or transmitted based on the time slot position information and the phase shift matrix. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 3 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to an RIS array. As shown in FIG. 3 , the beam processing method may include the following steps:
  • Step 301 determine the first-dimensional angular range of each reflected beam and/or each transmitted beam supported by the RIS array in the first dimension, and the first-dimensional angle range of each reflected beam and/or each transmitted beam supported by the RIS array in the second dimension 2D angle range.
  • the first dimension may be a horizontal dimension
  • the second dimension may be a vertical dimension
  • the first-dimensional angular range of each reflected beam supported by the RIS array in the first dimension may include: angular range 1: 0°-30°, angular range 2: 30° ° ⁇ 60°, angle range 3: 60° ⁇ 90°;
  • the second dimension angle range of each reflected beam supported by the RIS array in the second dimension may include: angle range 4: 0° ⁇ 30°, angle range 5: 30° ⁇ 60°, angle range 6: 60° ⁇ 90°.
  • Step 302 Combining the angle range of the first dimension and the angle range of the second dimension to determine each reflected beam and/or each transmitted beam supported by the RIS array.
  • angle ranges in two dimensions may determine a beam direction. Based on this, each first-dimensional angular range and second-dimensional angular range can be combined in pairs to obtain each reflected beam and/or each transmitted beam supported by the RIS array. And, it should be noted that, in one embodiment of the present disclosure, when the first-dimensional angle range and the second-dimensional angle range are combined in pairs, the first-dimensional angle range and the second-dimensional angle range of the pairwise combination should belong to the same type, for example, both belong to the angle range corresponding to the reflected beam, or both belong to the angle range corresponding to the transmitted beam.
  • angle range 1 and angle range 4 can determine the reflected beam 1
  • angle range 1 and angle range 5 can determine the reflection beam 2
  • angle range 1 and angle range 6 can be The reflected beam three is determined, and exhaustively performed to obtain each reflected beam and/or each transmitted beam supported by the RIS array.
  • Step 303 Number each reflected beam and/or each transmitted beam supported by the RIS array to obtain a one-dimensional beam index corresponding to each reflected beam and/or each transmitted beam supported by the RIS array.
  • each reflected beam and/or each transmitted beam supported by the RIS array can be The numbering is done sequentially to obtain a one-dimensional index of each reflected beam and/or each transmitted beam.
  • the above-mentioned reflected beam 1, reflected beam 2, and reflected beam 3 may be respectively numbered as 1, 2, and 3. Then, at this time, the one-dimensional beam index corresponding to reflected beam 1 should be 1, the one-dimensional beam index corresponding to reflected beam two should be 2, the one-dimensional beam index corresponding to reflected beam three should be 3, and so on to obtain each reflected beam beam index.
  • Step 304 Establish a reflected beam set and/or a transmitted beam set based on the angle range corresponding to the reflected beam and/or the transmitted beam and the one-dimensional beam index.
  • Step 305 sending beam information of the RIS array to the base station.
  • Step 306 acquire at least one target beam index sent by the base station, and determine at least one time slot position information.
  • one piece of time slot position information corresponds to at least one target beam index, and the time slot position information is used to indicate the position of the used time slot of the target beam corresponding to the corresponding target beam index.
  • Step 307 Determine the phase shift matrix of the target beam corresponding to the target beam index according to the direction of the incident beam, and perform reflection and/or transmission operations on the incident beam sent by the base station based on the time slot position information and the phase shift matrix.
  • the RIS array can send the beam information of the RIS array to the base station, and then obtain at least one target beam index sent by the base station, and determine at least one time slot position information, Then, according to the direction of the incident beam, the phase shift matrix of the target beam corresponding to the target beam index is determined, and the incident beam sent by the base station is reflected and/or transmitted based on the time slot position information and the phase shift matrix. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 4 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a RIS array. As shown in FIG. 4, the beam processing method may include the following steps:
  • Step 401 Send beam information of an RIS array to a base station, and the RIS array is configured to periodically reflect beams and/or periodically transmit beams.
  • Step 402 Obtain at least one target beam index sent by the base station, and determine at least one time slot position information.
  • the content of the time slot position information may be: the arrangement position of each time slot occupied in one cycle.
  • one time slot position information corresponds to at least one target beam index.
  • the time slot position information is specifically used to indicate: the position of the used time slot of the target beam corresponding to the target beam index.
  • the content of the time slot position information may be: The arrangement position of the time slot.
  • time slot 1 for indicating the first time slot (i.e. slot 1) in the cycle
  • time slot position information 1 for indicating the second time slot (i.e. slot 1) in the cycle.
  • Time slot position information 2 used to indicate the third time slot (ie, slot 3) in the period.
  • the time slot position information 1 is mainly used to indicate: the position of the used time slot of the target beam corresponding to the corresponding target beam index is the first time slot in each cycle;
  • the time slot position information 2 is mainly used Indicates that the position of the used time slot of the target beam corresponding to the corresponding target beam index is the second time slot in each cycle;
  • the time slot position information 3 is mainly used to indicate: the target beam corresponding to the corresponding target beam index
  • the position of the used time slot of the beam is the third time slot in each period.
  • Step 403 Determine the phase shift matrix of the target beam corresponding to the target beam index according to the direction of the incident beam, and perform reflection and/or transmission operations on the incident beam sent by the base station based on the time slot position information and the phase shift matrix.
  • phase shift matrix For the manner of determining the phase shift matrix, reference may be made to the descriptions in the foregoing embodiments, and the embodiments of the present disclosure will not repeat them here.
  • At least one target beam index sent by the base station obtained in the above step 402 is the target beam index (1, 1), target beam index (1 , 2); and the determined slot position information is the above slot position information 1, where the slot position information 1 corresponds to the target beam index (1, 1) and the target beam index (1, 2).
  • the phase shift matrix of the target beam corresponding to the target beam index (1, 1) is determined as the phase shift matrix 1, and the phase shift of the target beam corresponding to the target beam index (1, 2)
  • the matrix is the phase shift matrix2.
  • the incident beam sent by the base station is reflected and/or transmitted based on the time slot position information and the phase shift matrix, it is mainly: on the first time slot of each cycle, at the same time according to the phase shift matrix 1 and the phase shift matrix 2 to reflect the incident beam to simultaneously obtain the target beam corresponding to the target beam index (1, 1) and the target beam corresponding to the target beam index (1, 2).
  • the RIS array can send the beam information of the RIS array to the base station, and then obtain at least one target beam index sent by the base station, and determine at least one time slot position information, Then, according to the direction of the incident beam, the phase shift matrix of the target beam corresponding to the target beam index is determined, and the incident beam sent by the base station is reflected and/or transmitted based on the time slot position information and the phase shift matrix. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 5 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a RIS array. As shown in FIG. 5, the beam processing method may include the following steps:
  • Step 501 Send beam information of an RIS array to a base station, where the RIS array is configured as an aperiodic reflected beam and/or an aperiodic transmitted beam.
  • Step 502 obtain at least one target beam index sent by the base station, and determine at least one time slot position information, the time slot position information may include a time slot value, and the time slot value is specifically used to indicate: the use time of the target beam corresponding to the target beam index The number of slots to delay the slot relative to the current slot.
  • one time slot position information corresponds to at least one target beam index
  • the time slot position information is specifically used to indicate: the position of the used time slot of the target beam corresponding to the corresponding target beam index .
  • the time slot position information may include a time slot value, which is specifically used to indicate : the number of delayed time slots of the used time slot of the target beam corresponding to the target beam index relative to the current time slot, where the current time slot is the time slot occupied by the base station when sending at least one target beam index.
  • the at least one slot position information may be only one slot position information, and the slot value of the one slot position information may be n+k, where n and k are both integers, where , n is the time slot number of the current time slot, and k is used to indicate the number of delayed time slots.
  • the used time slot indicated by the position information of the time slot is: the numbered n+kth time slot.
  • the at least one slot position information may be multiple slot position information, and the slot values of the multiple slot position information may be n+k+[m 1 , m 2 , ..., m T ], wherein, [m1, m2, ..., m T ] is an integer sequence greater than or equal to 0, and T is a positive integer.
  • the used time slots indicated by the multiple time slot position information can be: number They are time slots of n+k, n+k+m 1 , n+k+m 1 +m 2 ,...n+k+m 1 +m 2 +...+m T , respectively.
  • Step 503 Determine the phase shift matrix of the target beam corresponding to the target beam index according to the direction of the incident beam, and perform reflection and/or transmission operations on the incident beam sent by the base station based on the time slot position information and the phase shift matrix.
  • the RIS array can send the beam information of the RIS array to the base station, and then obtain at least one target beam index sent by the base station, and determine at least one time slot position information, Then, according to the direction of the incident beam, the phase shift matrix of the target beam corresponding to the target beam index is determined, and the incident beam sent by the base station is reflected and/or transmitted based on the time slot position information and the phase shift matrix. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 6 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 6, the beam processing method may include the following steps:
  • Step 601 acquiring beam information of the RIS array.
  • the beam information may include a set of reflected beams supported by the RIS array and/or a set of transmitted beams supported by the RIS array, and the set of reflected beams may include an angle corresponding to at least one reflected beam supported by the RIS array Range and beam index, the transmission beam set may include an angle range and a beam index corresponding to at least one transmission beam supported by the RIS array.
  • the beam index may be a two-dimensional beam index. In another embodiment of the present disclosure, the beam index may be a one-dimensional beam index.
  • the above beam information may be reported by the RIS array.
  • the beam information may also be obtained by the base station in an offline manner.
  • Step 602. Determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams.
  • the base station may select a beam index corresponding to a certain beam from the reflected beam set and/or the transmitted beam set as the target beam index, that is, the target beam index is the RIS array
  • the target beam index is the RIS array
  • Step 603 sending at least one target beam index and at least one time slot position information to the RIS array.
  • the base station may send at least one target beam index to the RIS array through signaling.
  • one piece of time slot position information corresponds to at least one target beam index, and the time slot position information is used to indicate the position of the used time slot of the target beam corresponding to the corresponding target beam index.
  • the RIS array can be configured as a periodic reflected beam and/or a periodic transmitted beam; in another embodiment of the present disclosure, the RIS array can be configured as an aperiodic reflected beams and/or transmitted beams aperiodically.
  • the configuration of the RIS array is different, the content included in the time slot position information is also different, wherein, for the detailed introduction of the content included in the time slot position information under different configurations, please refer to the above Embodiments are described, and the embodiments of the present disclosure are not described in detail here.
  • Step 604 sending incident beams to the RIS array.
  • the RIS array can determine the phase shift matrix of the target beam corresponding to the target beam index according to the direction of the incident beam, and based on the time slot position information and The phase shift matrix performs reflection and/or transmission operations on the incident beam sent by the base station.
  • Step 605 Determine the time-frequency resource used for beam measurement, number the time slots used for beam measurement in the time-frequency resource to obtain a time slot index, and indicate the time-frequency resource and time-frequency used for beam measurement to the UE index.
  • the base station determines the time-frequency resource used for beam measurement, and the method for numbering the time slots used for beam measurement in the time-frequency resource to obtain the time slot index may include: Based on the periodic time window for beam measurement, time slots used for beam measurement in the periodic time window are numbered to obtain a time slot index.
  • the base station after the base station determines the time-frequency resource and time slot index for beam measurement, it can indicate the time-frequency resource and time-frequency index for beam measurement to the UE, so that the UE The beam measurement may be performed on the beam on the time-frequency resource used for beam measurement to obtain the measurement result.
  • the beam measurement may include at least one of the following:
  • Measure RSRP Reference Signal Receiving Power, reference signal receiving power
  • Measure RSRQ Reference Signal Receiving Quality, reference signal receiving quality
  • SINR Signal to Interference plus Noise Ratio
  • the base station can obtain the beam information of the RIS array, and determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams, and then send The RIS array sends at least one target beam index and at least one time slot position information, and sends the incident beam to the RIS array, determines the time-frequency resources used for beam measurement, and numbers the time slots used for beam measurement in the time-frequency resources The time slot index is obtained, and the time-frequency resource used for beam measurement and the time-frequency index are indicated to the UE.
  • the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station
  • the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 7 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 7, the beam processing method may include the following steps:
  • Step 701 acquire beam information of an RIS array, and the RIS array is configured to periodically reflect beams and/or periodically transmit beams.
  • the beam information may include a set of reflected beams supported by the RIS array and/or a set of transmitted beams supported by the RIS array, and the set of reflected beams may include an angle corresponding to at least one reflected beam supported by the RIS array Range and beam index, the transmission beam set may include an angle range and a beam index corresponding to at least one transmission beam supported by the RIS array.
  • Step 702. Determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams.
  • Step 703 Send at least one target beam index and at least one time slot position information to the RIS array, where the time slot position information includes: the arrangement position of each time slot occupied in one period.
  • one time slot position information corresponds to at least one target beam index.
  • the time slot position information is specifically used to indicate: the position of the used time slot of the target beam corresponding to the target beam index.
  • the RIS array is configured as a periodic reflection beam and/or a periodic transmission beam
  • the detailed introduction of the content included in the time slot position information can refer to the description of the above embodiments, and the embodiments of the present disclosure will not be repeated here.
  • Step 704 sending incident beams to the RIS array.
  • Step 705 Determine the time-frequency resource used for beam measurement, number the time slots used for beam measurement in the time-frequency resource to obtain a time slot index, and indicate the time-frequency resource and time-frequency used for beam measurement to the UE index.
  • the base station can obtain the beam information of the RIS array, and determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams, and then send The RIS array sends at least one target beam index and at least one time slot position information, and sends the incident beam to the RIS array, determines the time-frequency resources used for beam measurement, and numbers the time slots used for beam measurement in the time-frequency resources The time slot index is obtained, and the time-frequency resource used for beam measurement and the time-frequency index are indicated to the UE.
  • the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station
  • the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 8 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 8, the beam processing method may include the following steps:
  • Step 801 acquire beam information of an RIS array, and the RIS array is configured as an aperiodic reflected beam and/or an aperiodic transmitted beam.
  • the beam information may include a set of reflected beams supported by the RIS array and/or a set of transmitted beams supported by the RIS array, and the set of reflected beams may include an angle corresponding to at least one reflected beam supported by the RIS array Range and beam index, the transmission beam set may include an angle range and a beam index corresponding to at least one transmission beam supported by the RIS array.
  • Step 802. Determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams.
  • Step 803 Send at least one target beam index and at least one time slot position information to the RIS array, the time slot position information may include a time slot value, and the time slot value is specifically used to indicate: the use time slot of the target beam corresponding to the target beam index The number of delayed time slots relative to the current time slot, where the current time slot is a time slot occupied by the base station when sending at least one target beam index.
  • one piece of time slot position information corresponds to at least one target beam index
  • the time slot position information is specifically used to indicate: the position of the used time slot of the target beam corresponding to the corresponding target beam index.
  • the RIS array when configured as an aperiodic reflected beam and/or an aperiodic transmitted beam, the details of what the time slot position information may include can refer to the above-mentioned embodiment description, the embodiments of the present disclosure will not be repeated here.
  • Step 804 sending incident beams to the RIS array.
  • Step 805 Determine the time-frequency resource used for beam measurement, number the time slots used for beam measurement in the time-frequency resource to obtain a time slot index, and indicate the time-frequency resource and time-frequency used for beam measurement to the UE index.
  • the base station can obtain the beam information of the RIS array, and determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams, and then send The RIS array sends at least one target beam index and at least one time slot position information, and sends the incident beam to the RIS array, determines the time-frequency resources used for beam measurement, and numbers the time slots used for beam measurement in the time-frequency resources The time slot index is obtained, and the time-frequency resource used for beam measurement and the time-frequency index are indicated to the UE.
  • the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station
  • the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 9 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 9, the beam processing method may include the following steps:
  • Step 901 acquiring beam information of the RIS array.
  • Step 902. Determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams.
  • Step 903 sending at least one target beam index and at least one time slot position information to the RIS array.
  • Step 904 sending incident beams to the RIS array.
  • Step 905 Determine the time-frequency resource used for beam measurement, number the time slots used for beam measurement in the time-frequency resource to obtain a time slot index, and indicate the time-frequency resource and time-frequency used for beam measurement to the UE index.
  • Step 906 Obtain the measurement result sent by the UE and the target slot index corresponding to the measurement result.
  • the target time slot index corresponding to the measurement result is: the time slot index corresponding to the measurement time slot for performing the measurement process corresponding to the measurement result.
  • the base station can obtain the beam information of the RIS array, and determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams, and then send The RIS array sends at least one target beam index and at least one time slot position information, and sends the incident beam to the RIS array, determines the time-frequency resources used for beam measurement, and numbers the time slots used for beam measurement in the time-frequency resources The time slot index is obtained, and the time-frequency resource used for beam measurement and the time-frequency index are indicated to the UE.
  • the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station
  • the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 10 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 10 , the beam processing method may include the following steps:
  • Step 1001 Receive beams reflected and/or transmitted by the RIS array, and perform beam measurement on the received beams.
  • the beam reflected and/or transmitted by the RIS array received by the UE is the "incident beam sent by the RIS array to the base station based on the time slot position information and the phase shift matrix" described in the above embodiment. Beams are subjected to reflection and/or transmission operations" resulting in beams.
  • the beam measurement may include at least one of the following:
  • the UE may receive beams reflected and/or transmitted by the RIS array, and perform beam measurement on the received beams. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 11 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 11 , the beam processing method may include the following steps:
  • Step 1101 receiving beams reflected and/or transmitted by the RIS array.
  • Step 1102 acquire the time-frequency resource indicated by the base station for beam measurement.
  • the UE may also obtain the time slot index corresponding to the time slot used for beam measurement in the time-frequency resource indicated by the base station for beam measurement, so that the UE may Find the time slot used for beam measurement in the time-frequency resource.
  • Step 1103 Perform beam measurement on the beam based on the time-frequency resource to obtain a measurement result.
  • the method of performing beam measurement on beams based on time-frequency resources to obtain measurement results may include: performing beam measurement on a time slot used for beam measurement in the time slot resource to obtain measurement results.
  • the UE may receive beams reflected and/or transmitted by the RIS array, and perform beam measurement on the received beams. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 12 is a schematic flowchart of a beam processing method provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 12 , the beam processing method may include the following steps:
  • Step 1201 receiving beams reflected and/or transmitted by the RIS array, and performing beam measurement on the received beams.
  • Step 1202 sending the measurement result and the target time slot index corresponding to the measurement result to the base station.
  • the UE may only send the measurement result satisfying the first condition and the target slot index corresponding to the measurement result satisfying the first condition to the base station, where the first condition may include: the measurement result greater than the first threshold.
  • the first threshold is configured by the base station to the UE.
  • the UE may receive beams reflected and/or transmitted by the RIS array, and perform beam measurement on the received beams. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • FIG. 13 is a schematic structural diagram of a beam processing device provided by an embodiment of the present disclosure. As shown in FIG. 13 , the device 1300 may include:
  • the sending module 1301 is configured to send beam information of the RIS array to the base station, where the beam information includes a set of reflected beams supported by the RIS array and/or a set of transmitted beams supported by the RIS array; wherein, the set of reflected beams includes at least one reflected beam supported by the RIS array Corresponding angular range and beam index, the transmitted beam set includes the angular range and beam index corresponding to at least one transmitted beam supported by the RIS array;
  • the obtaining module 1302 is configured to obtain at least one target beam index sent by the base station, and determine at least one time slot position information, wherein one time slot position information corresponds to at least one target beam index, and the time slot position information is used to indicate: the corresponding target beam index The position of the used time slot of the target beam corresponding to the beam index;
  • the processing module 1303 is configured to determine the phase shift matrix of the target beam corresponding to the target beam index according to the direction of the incident beam, and perform reflection and/or transmission operations on the incident beam sent by the base station based on the time slot position information and the phase shift matrix.
  • the RIS array can send the beam information of the RIS array to the base station, and then obtain at least one target beam index sent by the base station, and determine at least one time slot position information, Then, according to the direction of the incident beam, the phase shift matrix of the target beam corresponding to the target beam index is determined, and the incident beam sent by the base station is reflected and/or transmitted based on the time slot position information and the phase shift matrix. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • the beam information includes at least one of the following:
  • the angle range includes a first-dimensional angle range and a second-dimensional angle range;
  • the beam index is a two-dimensional beam index;
  • the above device is also used for:
  • each first-dimensional angular range and second-dimensional angular range to obtain a two-dimensional beam index (i, j) corresponding to each reflected beam and/or each transmitted beam supported by the RIS array, where i is used to indicate reflection The number of the first-dimensional angular range of the beam and/or the transmitted beam, j is used to indicate the number of the second-dimensional angular range of the reflected beam and/or the transmitted beam;
  • a reflected beam set and/or a transmitted beam set is established based on the angle range and the two-dimensional beam index corresponding to the reflected beam and/or the transmitted beam.
  • the angle range includes a first-dimensional angle range and a second-dimensional angle range;
  • the beam index is a one-dimensional beam index;
  • the above device is also used for:
  • a reflected beam set and/or a transmitted beam set is established based on the angle range corresponding to the reflected beam and/or the transmitted beam and the one-dimensional beam index.
  • the RIS array is configured as a periodic reflection beam and/or a periodic transmission beam;
  • the time slot position information of the target beam includes: the arrangement of each time slot occupied in a cycle Location;
  • the RIS array is configured as an aperiodic reflection beam and/or an aperiodic transmission beam;
  • the time slot position information of the target beam includes a time slot value, and the time slot value is used to indicate : the number of delayed time slots of the used time slot of the target beam corresponding to the target beam index relative to the current time slot, and the current time slot is the time slot occupied by the base station when sending at least one target beam index.
  • the method for determining the location information of at least one time slot includes at least one of the following:
  • FIG. 14 is a schematic structural diagram of a beam processing device provided by another embodiment of the present disclosure. As shown in FIG. 14 , the device 1400 may include:
  • the acquiring module 1401 is configured to acquire beam information sent by the RIS array, where the beam information includes a set of reflected beams supported by the RIS array and/or a set of transmitted beams supported by the RIS array; the set of reflected beams includes an angle corresponding to at least one reflected beam supported by the RIS array range and beam index, the transmission beam set includes the angle range and beam index corresponding to at least one transmission beam supported by the RIS array;
  • a first determining module 1402 configured to determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams;
  • the sending module 1303 is configured to send at least one target beam index and at least one time slot position information to the RIS array, wherein one time slot position information corresponds to at least one target beam index, and the time slot position information is used to indicate: the corresponding target beam index The position of the used time slot of the corresponding target beam;
  • the above-mentioned sending module 1403 is also configured to send incident beams to the RIS array;
  • the second determination module 1404 is configured to determine the time-frequency resource used for beam measurement, number the time slots used for beam measurement in the time-frequency resource to obtain a time slot index, and indicate to the user equipment UE that it is used for beam measurement The time-frequency resource and time-frequency index of .
  • the base station can acquire the beam information of the RIS array, and determine at least one target beam index from the set of reflected beams and/or the set of transmitted beams, and then send The RIS array sends at least one target beam index and at least one time slot position information, and sends the incident beam to the RIS array, determines the time-frequency resources used for beam measurement, and numbers the time slots used for beam measurement in the time-frequency resources The time slot index is obtained, and the time-frequency resource used for beam measurement and the time-frequency index are indicated to the UE.
  • the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station
  • the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • the RIS array is configured as a periodic reflection beam and/or a periodic transmission beam;
  • the time slot position information of the target beam includes: the arrangement position of each time slot occupied in a period.
  • the RIS array is configured as an aperiodic reflection beam and/or an aperiodic transmission beam;
  • the time slot position information of the target beam includes a time slot value, and the time slot value is used to indicate : the number of delayed time slots of the used time slot of the beam corresponding to the target beam index relative to the current time slot, and the current time slot is the time slot occupied by the base station when sending at least one target beam index.
  • the above-mentioned device is also used for:
  • determining the time-frequency resource used for beam measurement, and numbering the time slots used for beam measurement in the time-frequency resource to obtain a time slot index includes:
  • a periodic time window for beam measurement is determined, and time slots used for beam measurement within the periodic time window are numbered to obtain a time slot index.
  • the beam measurement includes at least one of the following:
  • FIG. 15 is a schematic structural diagram of a beam processing device provided by another embodiment of the present disclosure. As shown in FIG. 14 , the device 1500 may include:
  • the measurement module 1501 is configured to receive beams reflected and/or transmitted by the RIS array, and perform beam measurement on the received beams.
  • the UE may receive beams reflected and/or transmitted by the RIS array, and perform beam measurement on the received beams. It can be seen that, in the embodiment of the present disclosure, the RIS array performs reflection and/or transmission operations on the incident beam based on the phase shift matrix and time slot position information.
  • the phase shift matrix is a matrix that makes the direction of the beam reflected and/or transmitted by the RIS array be the direction of the target beam indicated by the base station, and the time slot position information is the position of the used time slot of the target beam, that is,
  • the RIS array can realize the operation of "reflecting and/or transmitting the incident beam to the UE in a specific time slot and in a specific direction" based on the instruction of the base station, so the flexibility of beam processing is high.
  • the measurement module 1501 is also used for:
  • the beam measurement is performed on the beam based on the time-frequency resource to obtain the measurement result.
  • the above-mentioned device is also used for:
  • the above-mentioned device is also used for:
  • the base station Send the measurement result satisfying the first condition and the target slot index corresponding to the measurement result satisfying the first condition to the base station, where the first condition includes: the measurement result is greater than a first threshold.
  • the first threshold is configured by the base station to the UE.
  • the beam measurement includes at least one of the following:
  • Fig. 16 is a block diagram of a user equipment UE1600 provided by an embodiment of the present disclosure.
  • the UE 1600 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1600 may include at least one of the following components: a processing component 1602, a memory 1604, a power supply component 1606, a multimedia component 1608, an audio component 1610, an input/output (I/O) interface 1612, a sensor component 1613, and a communication component 1616.
  • Processing component 1602 generally controls the overall operations of UE 1600, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1602 may include at least one processor 1620 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • processing component 1602 can include at least one module that facilitates interaction between processing component 1602 and other components.
  • processing component 1602 may include a multimedia module to facilitate interaction between multimedia component 1608 and processing component 1602 .
  • the memory 1604 is configured to store various types of data to support operations at the UE 1600 . Examples of such data include instructions for any application or method operating on UE1600, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1604 can be realized by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1606 provides power to various components of the UE 1600.
  • Power component 1606 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1600 .
  • the multimedia component 1608 includes a screen providing an output interface between the UE 1600 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1608 includes a front camera and/or a rear camera. When UE1600 is in operation mode, such as shooting mode or video mode, the front camera and/or rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1610 is configured to output and/or input audio signals.
  • the audio component 1610 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1600 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1604 or sent via communication component 1616 .
  • the audio component 1610 also includes a speaker for outputting audio signals.
  • the I/O interface 1612 provides an interface between the processing component 1602 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1613 includes at least one sensor for providing various aspects of status assessment for the UE 1600 .
  • the sensor component 1613 can detect the open/close state of the device 1600, the relative positioning of components, such as the display and the keypad of the UE1600, the sensor component 1613 can also detect the position change of the UE1600 or a component of the UE1600, and the user and Presence or absence of UE1600 contact, UE1600 orientation or acceleration/deceleration and temperature change of UE1600.
  • the sensor assembly 1613 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1613 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1613 may also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1616 is configured to facilitate wired or wireless communications between UE 1600 and other devices.
  • UE1600 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or their combination.
  • the communication component 1616 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1616 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • UE 1600 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • FIG. 17 is a block diagram of a base station 1700 provided by an embodiment of the present application.
  • base station 1700 may be provided as a base station.
  • the base station 1700 includes a processing component 1711 , which further includes at least one processor, and a memory resource represented by a memory 1732 for storing instructions executable by the processing component 1722 , such as application programs.
  • the application programs stored in memory 1732 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1715 is configured to execute instructions, so as to execute any of the foregoing methods applied to the base station, for example, the method shown in FIG. 1 .
  • Base station 1700 may also include a power component 1726 configured to perform power management of base station 1700, a wired or wireless network interface 1750 configured to connect base station 1700 to a network, and an input-output (I/O) interface 1758.
  • the base station 1700 can operate based on an operating system stored in the memory 1732, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the base station, UE, and RIS array respectively.
  • the base station and the UE may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the base station, UE, and RIS array respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the above method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program that processes data for a computer program.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the above method embodiment): the processor is configured to execute any of the methods shown in FIG. 11-FIG. 13 .
  • the communication device is a network device: the transceiver is used to execute the method shown in any one of Fig. 7-Fig. 10 .
  • the communication device is an RIS array: the transceiver is used to execute the method shown in any one of Fig. 1-Fig. 6 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (Gas), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar CMOS
  • SiGe silicon germanium
  • Gas gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the above method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be affected by limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the above embodiment and a communication device as a network device, Alternatively, the system includes a communication device serving as a terminal device in the above embodiment (such as the first terminal device in the above method embodiment) and a communication device serving as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种波束处理方法、装置、用户设备、RIS阵列、基站及存储介质,属于通信技术领域。其中,该方法包括:RIS阵列可以向基站发送RIS阵列的波束信息,然后获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,再根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。由此,本公开提出的波束处理方法可以基于基站的指示实现"在特定时隙按照特定方向将入射波束反射和/或透射至UE"的操作,则波束处理的灵活性较高。

Description

一种波束处理方法、装置、用户设备、RIS阵列、基站及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种波束处理方法、装置、用户设备、RIS阵列、基站及存储介质。
背景技术
在通信***中,可以基于RIS(Reconfigurable Intelligent Surface,可重构智能表面)阵列实现基站和UE(User Equipment)之间的通信。其中,在基于RIS阵列通信时,会通过调整RIS阵列的相移矩阵,以使得RIS阵列能够将基站传输至RIS阵列的入射波束按照不同的方向反射和/或透射至UE,以构建智能可编程无线环境,增强UE端接收信号的信号强度,实现对信道的控制。但是,如何控制RIS阵列在特定时隙按照特定方向反射和/或透射波束是亟需解决的问题。
发明内容
本公开提出的波束处理方法、装置、用户设备、RIS阵列、基站及存储介质,以实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”。
本公开一方面实施例提出的波束处理方法,应用于RIS阵列,包括:
向基站发送RIS阵列的波束信息,所述波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;其中,所述反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,所述透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,所述时隙位置信息用于指示:对应的所述目标波束索引所对应的目标波束的使用时隙的位置;
根据入射波束的反向,确定所述目标波束索引对应的目标波束的相移矩阵,基于所述时隙位置信息和实际相移矩阵对所述基站发送的入射波束进行反射和/或透射操作。
本公开另一方面实施例提出的波束处理方法,应用于基站,包括:
获取RIS阵列的波束信息,所述波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;所述反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,所述透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
从所述反射波束集合和/或所述透射波束集合中确定至少一个目标波束索引;
向所述RIS阵列发送所述至少一个目标波束索引和至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,所述时隙位置信息用于指示:对应的所述目标波束索引所对应的目标波束的使用时隙的位置;
向所述RIS阵列发送入射波束;
确定用于进行波束测量的时频资源,对所述时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向用户设备UE指示所述用于进行波束测量的时频资源和所述时频索引。
本公开又一方面实施例提出的波束处理方法,应用于UE,包括:
接收RIS阵列反射和/或透射的波束,对接收到的波束进行波束测量。
本公开又一方面实施例提出的波束处理装置,包括:
发送模块,用于向基站发送RIS阵列的波束信息,所述波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;其中,所述反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,所述透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
获取模块,用于获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,所述时隙位置信息用于指示:对应的所述目标波束索引所 对应的目标波束的使用时隙的位置;
处理模块,用于根据入射波束的方向,确定所述目标波束索引对应的目标波束的相移矩阵,基于所述时隙位置信息和相移矩阵对所述基站发送的入射波束进行反射和/或透射操作。
本公开又一方面实施例提出的波束处理装置,包括:
获取模块,用于获取RIS阵列发送的波束信息,所述波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;所述反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,所述透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
第一确定模块,用于从所述反射波束集合和/或所述透射波束集合中确定至少一个目标波束索引;
发送模块,用于向所述RIS阵列发送所述至少一个目标波束索引和至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,所述时隙位置信息用于指示:对应的所述目标波束索引所对应的目标波束的使用时隙的位置;
上述发送模块,还用于向所述RIS阵列发送入射波束;
第二确定模块,用于确定用于进行波束测量的时频资源,对所述时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向用户设备UE指示所述用于进行波束测量的时频资源和所述时频索引。
本公开又一方面实施例提出的波束处理装置,包括:
测量模块,用于接收RIS阵列反射和/或透射的波束,对接收到的波束进行波束测量。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上又一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如又一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如又一方面实施例提出的方法被实现。
综上所述,在本公开实施例提供的波束处理方法、装置、用户设备、RIS阵列、基站及存储介质之中,RIS阵列可以向基站发送RIS阵列的波束信息,然后获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,再根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。由此可知,在本公开实施 例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的波束处理方法的流程示意图;
图2为本公开另一个实施例所提供的波束处理方法的流程示意图;
图3为本公开再一个实施例所提供的波束处理方法的流程示意图;
图4为本公开又一个实施例所提供的波束处理方法的流程示意图;
图5为本公开又一个实施例所提供的波束处理方法的流程示意图;
图6为本公开又一个实施例所提供的波束处理方法的流程示意图;
图7为本公开又一个实施例所提供的波束处理方法的流程示意图;
图8为本公开又一个实施例所提供的波束处理方法的流程示意图;
图9为本公开又一个实施例所提供的波束处理方法的流程示意图;
图10为本公开又一个实施例所提供的波束处理方法的流程示意图;
图11为本公开又一个实施例所提供的波束处理方法的流程示意图;
图12为本公开又一个实施例所提供的波束处理方法的流程示意图;
图13为本公开一个实施例所提供的波束处理装置的结构示意图;
图14为本公开另一个实施例所提供的波束处理装置的结构示意图;
图15为本公开又一个实施例所提供的波束处理装置的结构示意图;
图16是本公开一个实施例所提供的一种用户设备的框图;
图17为本公开一个实施例所提供的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
其中,在本公开实施例提供的波束处理方法、装置、用户设备、RIS阵列、基站及存储介质之中, RIS阵列可以向基站发送RIS阵列的波束信息,然后获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,再根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
下面参考附图对本公开提供的波束处理方法、装置、用户设备、RIS阵列、基站及存储介质进行详细描述。
图1为本公开实施例所提供的一种波束处理方法的流程示意图,应用于RIS阵列,如图1所示,该波束处理方法可以包括以下步骤:
步骤101、向基站发送RIS阵列的波束信息。
需要说明的是,在本公开的一个实施例之中,波束信息可以包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合。其中,在本公开的一个实施例之中,反射波束集合可以包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引。以及,在本公开的一个实施例之中,透射波束集合可以包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引。
在本公开的另一个实施例之中,波束信息可以包括以下至少一种:
RIS阵列支持的反射波束集合;
RIS阵列支持的透射波束集合;
RIS阵列能够同时支持的反射波束的数量;
RIS阵列能够同时支持的透射波束的数量。
以及,在本公开的一个实施例之中,上述角度范围可以包括第一维角度范围和第二维角度范围。具体的,在本公开的一个实施例之中,第一维角度范围可以是水平方位角范围。在本公开的一个实施例之中,第二维角度范围可以是垂直方位角范围。
进一步地,在本公开的一个实施例之中,上述波束索引可以是二维索引。在本公开的另一个实施例之中,上述波束索引可以是一维索引。其中,关于上述角度范围和波束索引会在后续的实施例中详细介绍。
步骤102、获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息。
其中,在本公开的一个实施例之中,上述的至少一个目标波束索引可以是基站通过信令发送至RIS阵列的,以及,上述的目标波束索引具体为基站从反射波束集合和/或透射波束集合中选择的某一个波束对应的波束索引,也即是,上述的目标波束索引实质为RIS阵列所支持的反射波束和/或透射波束中某一波束的波束索引。
以及,在本公开的一个实施例之中,一个时隙位置信息对应至少一个目标波束索引,时隙位置信息用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置。
进一步地,在本公开的一个实施例之中,RIS阵列确定至少一个时隙位置信息的方法可以包括以下至少一种:
获取基站发送(例如通过信令发送)的至少一个时隙位置信息;
基于协议约定确定至少一个时隙位置信息。
再进一步地,在本公开的一个实施例之中,RIS阵列可以被配置为周期性反射波束和/或周期性透射波束;在本公开的另一个实施例之中,RIS阵列也可以被配置为非周期性反射波束和/或非周期性透射波束。以及,在本公开的一个实施例之中,当RIS阵列的配置不同,时隙位置信息所包括的内容也不相同,其中,关于不同配置下时隙位置信息所包括的内容的详细介绍会在后续实施例描述。
步骤103、根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。
其中,在本公开的一个实施例之中,根据入射波束的方向,确定目标波束索引对应的目标波束的相 移矩阵的方法可以包括:
步骤a、设定一初始入射角,基于该初始入射角确定RIS阵列支持的各个反射波束和/或各个透射波束对应的初始相移矩阵。
其中,在本公开的一个实施例之中,可以是在RIS阵列实际接收到基站发送的入射波束之前,设定该初始入射角。该初始入射角可以为任一角度。示例的,在本公开的一个实施例之中,该初始入射角可以为0°。
以及,在本公开的一个实施例之中,上述的相移矩阵为:RIS阵列中的各个RIS单元的相位偏移角作为对角元素而构成的对角矩阵。其中,不同的相移矩阵可以使得RIS阵列按照不同的方向反射和/或透射入射波束。
进一步地,在本公开的一个实施例之中,RIS阵列支持的各个反射波束和/或透射波束对应的初始相移矩阵主要作用为:假定入射波束的入射方向为初始入射角,此时,若使得RIS阵列基于各个初始相移矩阵反射和/或透射该入射波束,即可对应得到RIS阵列所支持的各个反射波束和/或透射波束。
示例的,在本公开的一个实施例之中,假设RIS阵列支持一反射波束1和透射波束2,其中,该反射波束1的反射方向为a、对应初始相移矩阵1;透射波束2的透射方向为b、对应初始相移矩阵2。此时,假定入射波束的入射方向为初始入射角的前提下,若使得RIS阵列基于初始相移矩阵1来反射入射波束,则可得到反射波束1;若使得RIS阵列基于初始相移矩阵2来透射入射波束,则可得到透射波束2。
步骤b、确定基站发送至RIS阵列的入射波束的实际入射角。
其中,在本公开的一个实施例之中,该实际入射角可能为上述的初始入射角。在本公开的另一个实施例之中,该实际入射角也可能不为上述的初始入射角。
步骤c、基于初始入射角和实际入射角调整目标波束索引对应的目标波束的初始相移矩阵以得到相移矩阵。
由上述内容可知,本公开的一个实施例之中,基站指示的目标波束索引对应的目标波束实质为RIS阵列支持的某一反射波束或透射波束。
以及,在本公开的一个实施例之中,基于目标波束的初始相移矩阵得到的目标波束的相移矩阵主要作用为:在入射波束的入射方向为实际入射角的情况下,若使得RIS阵列基于该相移矩阵反射和/或透射该入射波束,则可得到该目标波束。
进一步地,在本公开的一个实施例之中,调整初始相移矩阵的方法具体可以为:基于初始入射角和实际入射角之间的角度差来调整目标波束索引对应的目标波束的初始相移矩阵以得到上述目标波束的相移矩阵。
由此可知,通过执行上述步骤a-c即可确定出“在入射波束的入射方向为实际入射角的情况下,RIS阵列反射和/或透射该入射波束后能够得到目标波束的相移矩阵”。以及,在本公开的一个实施例之中,RIS阵列在确定目标波束索引对应的目标波束的相移矩阵之后,可以在时隙位置信息所指示的特定时隙上基于相移矩阵对基站发送的入射波束进行反射和/或透射操作以得到上述的目标波束,则使得RIS阵列实现了“在特定时隙上按照特定方向对入射波束进行反射和/或透射”的操作。
综上所述,在本公开实施例提供的波束处理方法之中,RIS阵列可以向基站发送RIS阵列的波束信息,然后获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,再根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图2为本公开另一个实施例所提供的一种波束处理方法的流程示意图,应用于RIS阵列,如图2所示,该波束处理方法可以包括以下步骤:
步骤201、确定RIS阵列在第一维度所支持的各个反射波束和/或各个透射波束的第一维角度范围,以及RIS阵列在第二维度所支持的各个反射波束和/或各个透射波束的第二维角度范围。
其中,在本公开的一个实施例之中,第一维度可以为水平维度,第二维度可以为垂直维度。
示例的,在本公开的一个实施例之中,假设RIS阵列在第一维度所支持的各个反射波束的第一维角度范围可以包括:角度范围1:0°~30°、角度范围2:30°~60°、角度范围3:60°~90°;RIS阵列在第二维度所支持的各个反射波束的第二维角度范围可以包括:角度范围4:0°~30°、角度范围5:30°~60°、角度范围6:60°~90°。
步骤202、组合第一维角度范围和第二维角度范围以确定RIS阵列所支持的各个反射波束和/或各个透射波束。
其中,在本公开的一个实施例之中,两个维度的角度范围可以确定一波束方向。基于此,可以将各个第一维角度范围和第二维角度范围两两组合以得到RIS阵列所支持的各个反射波束和/或各个透射波束。以及,需要说明的是,在本公开的一个实施例之中,在两两组合第一维角度范围和第二维角度范围时,该两两组合的第一维角度范围和第二维角度范围应当属于同一类型,例如,两者均属于反射波束对应的角度范围,或者,两者均属于透射波束对应的角度范围。
示例的,在本公开的一个实施例之中,上述角度范围1和角度范围4可以确定出反射波束一、角度范围1和角度范围5可以确定出反射波束二、角度范围1和角度范围6可以确定出反射波束三,以此进行穷举以得到RIS阵列所支持的各个反射波束和/或各个透射波束。
步骤203、对各个第一维角度范围和第二维角度范围进行编号以得到RIS阵列所支持的各个反射波束和/或各个透射波束对应的二维波束索引(i,j)。
其中,在本公开的一个实施例之中,上述索引中的i用于指示反射波束和/或透射波束的第一维角度范围的编号,j用于指示反射波束和/或透射波束的第二维角度范围的编号。
示例的,在本公开的一个实施例之中,对RIS阵列的各个反射波束第一维角度范围:角度范围1:0°~30°,角度范围2:30°~60°,角度范围3:60°~90°分别进行编号为1,2,3。对RIS阵列的各个反射波束第二维角度范围:角度范围4:0°~30°,角度范围5:30°~60°,角度范围6:60°~90°分别进行编号为1,2,3,则上述的反射波束一对应的二维波束索引应当为(1,1)、上述的反射波束二对应的二维波束索引应当为(1,2)、上述的反射波束三对应的二维波束索引应当为(1,3)、以此类推得到各个反射波束的二维索引。
步骤204、基于反射波束和/或透射波束对应的角度范围和二维波束索引建立反射波束集合和/或透射波束集合。
步骤205、向基站发送RIS阵列的波束信息。
步骤206、获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息。
其中,在本公开的一个实施例之中,一个时隙位置信息对应至少一个目标波束索引,时隙位置信息用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置。
步骤207、根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。
其中,在本公开的一个实施例之中,关于步骤205~207的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的波束处理方法之中,RIS阵列可以向基站发送RIS阵列的波束信息,然后获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,再根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图3为本公开再一个实施例所提供的一种波束处理方法的流程示意图,应用于RIS阵列,如图3所示,该波束处理方法可以包括以下步骤:
步骤301、确定RIS阵列在第一维度所支持的各个反射波束和/或各个透射波束的第一维角度范围,以及RIS阵列在第二维度所支持的各个反射波束和/或各个透射波束的第二维角度范围。
其中,在本公开的一个实施例之中,第一维度可以为水平维度,第二维度可以为垂直维角。
示例的,在本公开的一个实施例之中,假设RIS阵列在第一维度所支持的各个反射波束的第一维角度范围可以包括:角度范围1:0°~30°、角度范围2:30°~60°、角度范围3:60°~90°;RIS阵列在第二维度所支持的各个反射波束的第二维角度范围可以包括:角度范围4:0°~30°、角度范围5:30°~60°、角度范围6:60°~90°。
步骤302、组合第一维角度范围和第二维角度范围以确定RIS阵列所支持的各个反射波束和/或各个透射波束。
其中,在本公开的一个实施例之中,两个维度的角度范围可以确定一波束方向。基于此,可以将各个第一维角度范围和第二维角度范围两两组合以得到RIS阵列所支持的各个反射波束和/或各个透射波束。以及,需要说明的是,在本公开的一个实施例之中,在两两组合第一维角度范围和第二维角度范围时,该两两组合的第一维角度范围和第二维角度范围应当属于同一类型,例如,两者均属于反射波束对应的角度范围,或者,两者均属于透射波束对应的角度范围。
示例的,在本公开的一个实施例之中,上述角度范围1和角度范围4可以确定出反射波束一、角度范围1和角度范围5可以确定出反射波束二、角度范围1和角度范围6可以确定出反射波束三,以此进行穷举以得到RIS阵列所支持的各个反射波束和/或各个透射波束。
步骤303、对RIS阵列所支持的各个反射波束和/或各个透射波束进行编号以得到RIS阵列所支持的各个反射波束和/或各个透射波束对应的一维波束索引。
其中,在本公开的一个实施例之中,在上述步骤302中得到RIS阵列所支持的各个反射波束和/或各个透射波束后,可以对RIS阵列所支持的各个反射波束和/或各个透射波束依次进行编号以得到各个反射波束和/或各个透射波束的一维索引。
示例的,在本公开的一个实施例之中,可以将上述的反射波束一、反射波束二、反射波束三分别编号为1、2、3。则此时,反射波束一对应的一维波束索引应当为1、反射波束二对应的一维波束索引应当为2、反射波束三对应的一维波束索引应当为3、以此类推得到各个反射波束的波束索引。
步骤304、基于反射波束和/或所述透射波束对应的角度范围和一维波束索引建立反射波束集合和/或透射波束集合。
步骤305、向基站发送RIS阵列的波束信息。
步骤306、获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息。
其中,在本公开的一个实施例之中,一个时隙位置信息对应至少一个目标波束索引,时隙位置信息用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置。
步骤307、根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。
其中,在本公开的一个实施例之中,关于步骤305~307的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的波束处理方法之中,RIS阵列可以向基站发送RIS阵列的波束信息,然后获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,再根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图4为本公开又一个实施例所提供的一种波束处理方法的流程示意图,应用于RIS阵列,如图4所示,该波束处理方法可以包括以下步骤:
步骤401、向基站发送RIS阵列的波束信息,RIS阵列被配置为周期性反射波束和/或周期性透射波束。
步骤402、获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,时隙位置信息所包括的内容可以为:一个周期内所占用的各个时隙的排列位置。
其中,在本公开的一个实施例之中,一个时隙位置信息对应至少一个目标波束索引。该时隙位置信息具体用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置。
其中,关于目标波束索引和时隙位置的其他介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
进一步地,在本公开的一个实施例之中,当RIS阵列被配置为周期性反射波束和/或周期性透射波束时,时隙位置信息所包括的内容可以为:一个周期内所占用的各个时隙的排列位置。
示例的,在本公开的一个实施例之中,假设RIS阵列被配置的周期性反射和/或周期性透射的周期内有3个时隙,依次为时隙1、时隙2、时隙3。此时,所确定的至少一个时隙位置信息应当为:用于指示周期内第一个时隙(即时隙1)的时隙位置信息1、用于指示周期内第二个时隙(即时隙2)的时隙位置信息2、用于指示周期内第三个时隙(即时隙3)的时隙位置信息3。
以及,此时,时隙位置信息1主要用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置为每个周期内的第一个时隙;时隙位置信息2主要用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置为每个周期内的第二个时隙;时隙位置信息3主要用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置为每个周期内的第三个时隙。
步骤403、根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。
其中,关于相移矩阵的确定方式可以参考上述实施例描述,本公开实施例在此不做赘述。
以及,示例的,在本公开的一个实施例之中,假设上述步骤402中获取到基站发送的至少一个目标波束索引为上述实施例中的目标波束索引(1,1)、目标波束索引(1,2);以及确定出的时隙位置信息为上述时隙位置信息1,其中,时隙位置信息1对应目标波束索引(1,1)、目标波束索引(1,2)。以及,假设本步骤403中根据入射波束方向确定出目标波束索引(1,1)对应的目标波束的相移矩阵为相移矩阵1、目标波束索引(1,2)对应的目标波束的相移矩阵为相移矩阵2。则此时,当基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作时主要是为:在每个周期的第一个时隙上,同时按照相移矩阵1和相移矩阵2反射入射波束,以同时得到目标波束索引(1,1)对应的目标波束和目标波束索引(1,2)对应的目标波束。
以及,在本公开的一个实施例之中,关于步骤401~403的其他内容可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的波束处理方法之中,RIS阵列可以向基站发送RIS阵列的波束信息,然后获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,再根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图5为本公开又一个实施例所提供的一种波束处理方法的流程示意图,应用于RIS阵列,如图5所示,该波束处理方法可以包括以下步骤:
步骤501、向基站发送RIS阵列的波束信息,RIS阵列被配置为非周期性反射波束和/或非周期性透射波束。
步骤502、获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,时隙位置信息可以包括时隙值,时隙值具体用于指示:目标波束索引对应的目标波束的使用时隙相对于当前时隙的延迟时隙数。
其中,在本公开的一个实施例之中,一个时隙位置信息对应至少一个目标波束索引,该时隙位置信息具体用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置。
其中,关于目标波束索引和时隙位置的其他介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
以及,在本公开的一个实施例之中,当RIS阵列被配置为非周期性反射波束和/或非周期性透射波束时,时隙位置信息可以包括时隙值,时隙值具体用于指示:目标波束索引对应的目标波束的使用时隙相对于当前时隙的延迟时隙数,其中,当前时隙为基站发送至少一个目标波束索引时所占用的时隙。
在本公开的一个实施例之中,该至少一个时隙位置信息可以仅为一个时隙位置信息,该一个时隙位置信息的时隙值可以为n+k,n和k均为整数,其中,n为当前时隙的时隙编号,k用于指示延迟时隙数,此时,该一个时隙位置信息所指示的使用时隙为:编号为第n+k的时隙。
示例的,在本公开的一个实施例之中,假设确定出一个时隙位置信息,该一个时隙位置信息中的k为2,且假设当前时隙的时隙编号为3。由此可以确定该一个时隙位置信息所指示的使用时隙应当为:编号为3+2=5的时隙。
在本公开的另一个实施例之中,该至少一个时隙位置信息可以为多个时隙位置信息,该多个时隙位置信息的时隙值可以为n+k+[m 1,m 2,…,m T],其中,[m1,m2,…,m T]是大于等于0的整数序列,T为正整数,此时,该多个时隙位置信息所指示的使用时隙可以:编号分别为n+k、n+k+m 1、n+k+m 1+m 2、…n+k+m 1+m 2+…+m T的时隙。
示例的,在本公开的一个实施例之中,假设确定出多个时隙位置信息,该多个时隙位置信息的k为2、[m 1,m 2]=[1,2],且假设当前时隙的时隙编号为3。由此可以确定该多个时隙位置信息所指示的使用时隙应当为:编号分别为3+2=5、3+2+1=6、3+2+1+2=8的时隙。
步骤503、根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。
其中,在本公开的一个实施例之中,关于步骤501~503的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的波束处理方法之中,RIS阵列可以向基站发送RIS阵列的波束信息,然后获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,再根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图6为本公开又一个实施例所提供的一种波束处理方法的流程示意图,应用于基站,如图6所示,该波束处理方法可以包括以下步骤:
步骤601、获取RIS阵列的波束信息。
其中,在本公开的一个实施例之中,波束信息可以包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合,反射波束集合可以包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,透射波束集合可以包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引。其中,在本公开的一个实施例之中,该波束索引可以为二维波束索引。在本公开的另一个实施例之中,该波束索引可以为一维波束索引。
以及,在本公开的一个实施例之中,上述的波束信息可以由RIS阵列上报的。在本公开的另一个实施例之中,该波束信息也可以是基站通过离线的方式获得。
此外,关于波束信息的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤602、从反射波束集合和/或透射波束集合中确定至少一个目标波束索引。
其中,在本公开的一个实施例之中,基站可以从反射波束集合和/或透射波束集合中选择的某一个波束对应的波束索引作为目标波束索引,也即是,该目标波束索引为RIS阵列所支持的反射波束和/或透射波束中某一波束的波束索引。
步骤603、向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息。
在本公开的一个实施例之中,基站可以通过信令向RIS阵列发送至少一个目标波束索引。以及,在本公开的一个实施例之中,一个时隙位置信息对应至少一个目标波束索引,时隙位置信息用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置。
进一步地,在本公开的一个实施例之中,RIS阵列可以被配置为周期性反射波束和/或周期性透射波束;在本公开的另一个实施例之中,RIS阵列可以被配置为非周期性反射波束和/或非周期性透射波束。以及,在本公开的一个实施例之中,当RIS阵列的配置不同,时隙位置信息所包括内容也不相同,其中,关于不同配置下时隙位置信息所包括的内容的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤604、向RIS阵列发送入射波束。
其中,在本公开的一个实施例之中,基站向RIS阵列发送入射波束之后,RIS阵列可以根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,并基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。
步骤605、确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向UE指示用于进行波束测量的时频资源和时频索引。
其中,在本公开的一个实施例之中,基站确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引的方法可以包括:确定用于进行波束测量的周期性时间窗口,对周期性时间窗口内用于进行波束测量的时隙进行编号得到时隙索引。
以及,在本公开的一个实施例之中,基站确定出用于进行波束测量的时频资源和时隙索引之后,可以向UE指示用于进行波束测量的时频资源和时频索引,以便UE可以在用于进行波束测量的时频资源上对波束进行波束测量以得到测量结果。
其中,在本公开的一个实施例之中,波束测量可以包括以下至少一种:
测量RSRP(Reference Signal Receiving Power,参考信号接收功率);
测量RSRQ(Reference Signal Receiving Quality,参考信号接收质量);
测量SINR(Signal to Interference plus Noise Ratio,信干噪比);
测量RSSI(Received Signal Strength Indication,接收的信号强度指示)。
综上所述,在本公开实施例提供的波束处理方法之中,基站可以获取RIS阵列的波束信息,并从反射波束集合和/或所述透射波束集合中确定至少一个目标波束索引,再向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息,并向RIS阵列发送入射波束,确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向UE指示用于进行波束测量的时频资源和所述时频索引。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图7为本公开又一个实施例所提供的一种波束处理方法的流程示意图,应用于基站,如图7所示,该波束处理方法可以包括以下步骤:
步骤701、获取RIS阵列的波束信息,RIS阵列被配置为周期性反射波束和/或周期性透射波束。
其中,在本公开的一个实施例之中,波束信息可以包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合,反射波束集合可以包括RIS阵列支持的至少一个反射波束对应的角度范围和 波束索引,透射波束集合可以包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引。
以及,在本公开的一个实施例之中,关于波束信息的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤702、从反射波束集合和/或透射波束集合中确定至少一个目标波束索引。
步骤703、向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息,该时隙位置信息包括:一个周期内所占用的各个时隙的排列位置。
其中,在本公开的一个实施例之中,一个时隙位置信息对应至少一个目标波束索引。该时隙位置信息具体用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置。
以及,关于RIS阵列被配置为周期性反射波束和/或周期性透射波束时,时隙位置信息所包括的内容的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤704、向RIS阵列发送入射波束。
步骤705、确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向UE指示用于进行波束测量的时频资源和时频索引。
其中,在本公开的一个实施例之中,关于步骤704~705的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的波束处理方法之中,基站可以获取RIS阵列的波束信息,并从反射波束集合和/或所述透射波束集合中确定至少一个目标波束索引,再向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息,并向RIS阵列发送入射波束,确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向UE指示用于进行波束测量的时频资源和所述时频索引。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图8为本公开又一个实施例所提供的一种波束处理方法的流程示意图,应用于基站,如图8所示,该波束处理方法可以包括以下步骤:
步骤801、获取RIS阵列的波束信息,RIS阵列被配置为非周期性反射波束和/或非周期性透射波束。
其中,在本公开的一个实施例之中,波束信息可以包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合,反射波束集合可以包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,透射波束集合可以包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引。
以及,在本公开的一个实施例之中,关于波束信息的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤802、从反射波束集合和/或透射波束集合中确定至少一个目标波束索引。
步骤803、向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息,时隙位置信息可以包括时隙值,该时隙值具体用于指示:目标波束索引对应的目标波束的使用时隙相对于当前时隙的延迟时隙数,其中,当前时隙为基站发送至少一个目标波束索引时所占用的时隙。
其中,在本公开的一个实施例之中,一个时隙位置信息对应至少一个目标波束索引,时隙位置信息具体用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置。
以及,在本公开的一个实施例之中,关于RIS阵列被配置为非周期性反射波束和/或非周期性透射波束时,时隙位置信息可以所包括的内容的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤804、向RIS阵列发送入射波束。
步骤805、确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向UE指示用于进行波束测量的时频资源和时频索引。
其中,在本公开的一个实施例之中,关于步骤804~805的详细介绍可以参考上述实施例中的相关介 绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的波束处理方法之中,基站可以获取RIS阵列的波束信息,并从反射波束集合和/或所述透射波束集合中确定至少一个目标波束索引,再向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息,并向RIS阵列发送入射波束,确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向UE指示用于进行波束测量的时频资源和所述时频索引。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图9为本公开又一个实施例所提供的一种波束处理方法的流程示意图,应用于基站,如图9所示,该波束处理方法可以包括以下步骤:
步骤901、获取RIS阵列的波束信息。
步骤902、从反射波束集合和/或透射波束集合中确定至少一个目标波束索引。
步骤903、向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息。
步骤904、向RIS阵列发送入射波束。
步骤905、确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向UE指示用于进行波束测量的时频资源和时频索引。
其中,在本公开的一个实施例之中,关于步骤901~905的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤906、获取UE发送的测量结果和测量结果对应的目标时隙索引。
其中,在本公开的一个实施例中,该测量结果对应的目标时隙索引为:用于执行该测量结果所对应的测量过程的测量时隙所对应的时隙索引。
综上所述,在本公开实施例提供的波束处理方法之中,基站可以获取RIS阵列的波束信息,并从反射波束集合和/或所述透射波束集合中确定至少一个目标波束索引,再向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息,并向RIS阵列发送入射波束,确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向UE指示用于进行波束测量的时频资源和所述时频索引。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图10为本公开又一个实施例所提供的一种波束处理方法的流程示意图,应用于UE,如图10所示,该波束处理方法可以包括以下步骤:
步骤1001、接收RIS阵列反射和/或透射的波束,对接收到的波束进行波束测量。
其中,在本公开的一个实施例之中,UE接收到的RIS阵列反射和/或透射的波束即为上述实施例中描述的“RIS阵列基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作”所得到的波束。
以及,在本公开的一个实施例之中,波束测量可以包括以下至少一种:
测量RSRP;
测量RSRQ;
测量SINR;
测量RSSI。
综上所述,在本公开实施例提供的波束处理方法之中,UE可以接收RIS阵列反射和/或透射的波束,对接收的波束进行波束测量。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息 对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图11为本公开又一个实施例所提供的一种波束处理方法的流程示意图,应用于UE,如图11所示,该波束处理方法可以包括以下步骤:
步骤1101、接收RIS阵列反射和/或透射的波束。
步骤1102、获取基站指示的用于进行波束测量的时频资源。
其中,在本公开的一个实施例之中,UE还可以获取基站指示的用于进行波束测量的时频资源中用于进行波束测量的时隙对应的时隙索引,以便UE可以根据时隙索引找到该时频资源中用于进行波束测量的时隙。
步骤1103、基于时频资源对波束进行波束测量得到测量结果。
其中,在本公开的一个实施例之中,基于时频资源对波束进行波束测量得到测量结果的方法可以包括:在该时隙资源中的用于进行波束测量的时隙上进行波束测量以得到测量结果。
综上所述,在本公开实施例提供的波束处理方法之中,UE可以接收RIS阵列反射和/或透射的波束,对接收的波束进行波束测量。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图12为本公开又一个实施例所提供的一种波束处理方法的流程示意图,应用于UE,如图12所示,该波束处理方法可以包括以下步骤:
步骤1201、接收RIS阵列反射和/或透射的波束,对接收到的波束进行波束测量。
步骤1202、向基站发送测量结果和测量结果对应的目标时隙索引。
在本公开的一个实施例之中,UE可以仅向基站发送满足第一条件的测量结果以及该满足第一条件的测量结果对应的目标时隙索引,其中,该第一条件可以包括:测量结果大于第一阈值。以及,在本公开的一个实施例之中,第一阈值由基站配置至UE。
综上所述,在本公开实施例提供的波束处理方法之中,UE可以接收RIS阵列反射和/或透射的波束,对接收的波束进行波束测量。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
图13本公开一个实施例所提供的一种波束处理装置的结构示意图,如图13所示,装置1300可以包括:
发送模块1301,用于向基站发送RIS阵列的波束信息,波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;其中,反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
获取模块1302,用于获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,时隙位置信息用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置;
处理模块1303,用于根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。
综上所述,在本公开实施例提供的波束处理装置之中,RIS阵列可以向基站发送RIS阵列的波束信 息,然后获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,再根据入射波束的方向,确定目标波束索引对应的目标波束的相移矩阵,基于时隙位置信息和相移矩阵对基站发送的入射波束进行反射和/或透射操作。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
在本公开一个实施例之中,波束信息包括以下至少一种:
RIS阵列支持的反射波束集合;
RIS阵列支持的透射波束集合;
RIS阵列能够同时支持的反射波束的数量;
RIS阵列能够同时支持的透射波束的数量。
进一步地,在本公开另一个实施例之中,角度范围包括第一维角度范围和第二维角度范围;所述波束索引为二维波束索引;
上述装置还用于:
确定RIS阵列在第一维度所支持的各个反射波束和/或各个透射波束的第一维角度范围,以及RIS阵列在第二维度所支持的各个反射波束和/或各个透射波束的第二维角度范围;
组合第一维角度范围和第二维角度范围以确定RIS阵列所支持的各个反射波束和/或各个透射波束;
对各个第一维角度范围和第二位角度范围进行编号以得到RIS阵列所支持的各个反射波束和/或各个透射波束对应的二维波束索引(i,j),其中,i用于指示反射波束和/或透射波束的第一维角度范围的编号,j用于指示反射波束和/或透射波束的第二维角度范围的编号;
基于反射波束和/或透射波束对应的角度范围和二维波束索引建立反射波束集合和/或透射波束集合。
进一步地,在本公开另一个实施例之中,角度范围包括第一维角度范围和第二维角度范围;所述波束索引为一维波束索引;
上述装置还用于:
确定RIS阵列在第一维度所支持的各个反射波束和/或各个透射波束的第一维角度范围,以及RIS阵列在第二维度所支持的各个反射波束和/或各个透射波束的第二维角度范围;
组合第一维角度范围和第二维角度范围以确定RIS阵列所支持的各个反射波束和/或各个透射波束;
对RIS阵列所支持的各个反射波束和/或各个透射波束进行编号以得到RIS阵列所支持的各个反射波束和/或各个透射波束对应的一维波束索引;
基于反射波束和/或透射波束对应的角度范围和一维波束索引建立反射波束集合和/或透射波束集合。
进一步地,在本公开另一个实施例之中,RIS阵列被配置为周期性反射波束和/或周期性透射波束;目标波束的时隙位置信息包括:一个周期内所占用的各个时隙的排列位置;
进一步地,在本公开另一个实施例之中,RIS阵列被配置为非周期性反射波束和/或非周期性透射波束;目标波束的时隙位置信息包括时隙值,时隙值用于指示:目标波束索引对应的目标波束的使用时隙相对于当前时隙的延迟时隙数,当前时隙为基站发送至少一个目标波束索引时所占用的时隙。
进一步地,在本公开另一个实施例之中,确定至少一个时隙位置信息的方法包括以下的至少一种:
获取基站发送的至少一个时隙位置信息;
基于协议约定确定至少一个时隙位置信息。
图14为本公开另一个实施例所提供的一种波束处理装置的结构示意图,如图14所示,装置1400可以包括:
获取模块1401,用于获取RIS阵列发送的波束信息,波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度 范围和波束索引,透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
第一确定模块1402,用于从反射波束集合和/或透射波束集合中确定至少一个目标波束索引;
发送模块1303,用于向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,时隙位置信息用于指示:对应的目标波束索引所对应的目标波束的使用时隙的位置;
上述发送模块1403,还用于向RIS阵列发送入射波束;
第二确定模块1404,用于确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向用户设备UE指示用于进行波束测量的时频资源和时频索引。
综上所述,在本公开实施例提供的波束处理装置之中,基站可以获取RIS阵列的波束信息,并从反射波束集合和/或所述透射波束集合中确定至少一个目标波束索引,再向RIS阵列发送至少一个目标波束索引和至少一个时隙位置信息,并向RIS阵列发送入射波束,确定用于进行波束测量的时频资源,对时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向UE指示用于进行波束测量的时频资源和所述时频索引。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
在本公开一个实施例之中,RIS阵列被配置为周期性反射波束和/或周期性透射波束;目标波束的时隙位置信息包括:一个周期内所占用的各个时隙的排列位置。
进一步地,在本公开另一个实施例之中,RIS阵列被配置为非周期性反射波束和/或非周期性透射波束;目标波束的时隙位置信息包括时隙值,时隙值用于指示:目标波束索引对应的波束的使用时隙相对于当前时隙的延迟时隙数,当前时隙为基站发送至少一个目标波束索引时所占用的时隙。
进一步地,在本公开另一个实施例之中,上述装置还用于:
获取UE发送的测量结果和测量结果对应的目标时隙索引。
进一步地,在本公开另一个实施例之中,确定用于进行波束测量的时频资源,对所述时频资源中用于进行波束测量的时隙进行编号得到时隙索引,包括:
确定用于进行波束测量的周期性时间窗口,对所述周期性时间窗口内用于进行波束测量的时隙进行编号得到时隙索引。
进一步地,在本公开另一个实施例之中,波束测量包括以下至少一种:
测量RSRP;
测量RSRQ;
测量SINR;
测量RSSI。
图15为本公开又一个实施例所提供的一种波束处理装置的结构示意图,如图14所示,装置1500可以包括:
测量模块1501,用于接收RIS阵列反射和/或透射的波束,对接收到的波束进行波束测量。
综上所述,在本公开实施例提供的波束处理装置之中,UE可以接收RIS阵列反射和/或透射的波束,对接收的波束进行波束测量。由此可知,在本公开实施例中,RIS阵列是基于相移矩阵和时隙位置信息对入射波束进行反射和/或透射操作的。其中,该相移矩阵即为使得RIS阵列反射和/或透射的波束的方向为基站指示的目标波束的方向的矩阵,该时隙位置信息即为目标波束的使用时隙的位置,也即,本公开实施例中,RIS阵列可以基于基站的指示实现“在特定时隙按照特定方向将入射波束反射和/或透射至UE”的操作,则波束处理的灵活性较高。
在本公开一个实施例之中,上述测量模块1501还用于:
获取基站指示的用于进行波束测量的时频资源;
基于时频资源对波束进行波束测量得到测量结果。
进一步地,在本公开另一个实施例之中,上述装置还用于:
向基站发送测量结果和测量结果对应的目标时隙索引。
进一步地,在本公开另一个实施例之中,上述装置还用于:
向基站发送满足第一条件的测量结果以及满足第一条件的测量结果对应的目标时隙索引,第一条件包括:测量结果大于第一阈值。
进一步地,在本公开另一个实施例之中,第一阈值由基站配置至UE。
进一步地,在本公开另一个实施例之中,波束测量包括以下至少一种:
测量RSRP;
测量RSRQ;
测量SINR;
测量RSSI。
图16是本公开一个实施例所提供的一种用户设备UE1600的框图。例如,UE1600可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图16,UE1600可以包括以下至少一个组件:处理组件1602,存储器1604,电源组件1606,多媒体组件1608,音频组件1610,输入/输出(I/O)的接口1612,传感器组件1613,以及通信组件1616。
处理组件1602通常控制UE1600的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1602可以包括至少一个处理器1620来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1602可以包括至少一个模块,便于处理组件1602和其他组件之间的交互。例如,处理组件1602可以包括多媒体模块,以方便多媒体组件1608和处理组件1602之间的交互。
存储器1604被配置为存储各种类型的数据以支持在UE1600的操作。这些数据的示例包括用于在UE1600上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1606为UE1600的各种组件提供电力。电源组件1606可以包括电源管理***,至少一个电源,及其他与为UE1600生成、管理和分配电力相关联的组件。
多媒体组件1608包括在所述UE1600和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1608包括一个前置摄像头和/或后置摄像头。当UE1600处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件1610被配置为输出和/或输入音频信号。例如,音频组件1610包括一个麦克风(MIC),当UE1600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1604或经由通信组件1616发送。在一些实施例中,音频组件1610还包括一个扬声器,用于输出音频信号。
I/O接口1612为处理组件1602和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1613包括至少一个传感器,用于为UE1600提供各个方面的状态评估。例如,传感器组件1613可以检测到设备1600的打开/关闭状态,组件的相对定位,例如所述组件为UE1600的显示器和小键盘,传感器组件1613还可以检测UE1600或UE1600一个组件的位置改变,用户与UE1600接触的存在或不存在,UE1600方位或加速/减速和UE1600的温度变化。传感器组件1613可以包括接 近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1613还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1613还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1616被配置为便于UE1600和其他设备之间有线或无线方式的通信。UE1600可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1616经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1600可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图17是本申请实施例所提供的一种基站1700的框图。例如,基站1700可以被提供为一基站。参照图17,基站1700包括处理组件1711,其进一步包括至少一个处理器,以及由存储器1732所代表的存储器资源,用于存储可由处理组件1722的执行的指令,例如应用程序。存储器1732中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1715被配置为执行指令,以执行上述方法上述应用在所述基站的任意方法,例如,如图1所示方法。
基站1700还可以包括一个电源组件1726被配置为执行基站1700的电源管理,一个有线或无线网络接口1750被配置为将基站1700连接到网络,和一个输入输出(I/O)接口1758。基站1700可以操作基于存储在存储器1732的操作***,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从基站、UE、RIS阵列的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,基站和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从基站、UE、RIS阵列的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如上述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如上述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如上述方法实施例中的终端设备):处理器用于执行图11-图13任一所示的方法。
通信装置为网络设备:收发器用于执行图7-图10任一所示的方法。
通信装置为RIS阵列:收发器用于执行图1-图6任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现上述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(Gas)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如上述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的***,该***包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该***包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (30)

  1. 一种波束处理方法,其特征在于,应用于可重构智能表面RIS阵列,包括:
    向基站发送RIS阵列的波束信息,所述波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;其中,所述反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,所述透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
    获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,所述时隙位置信息用于指示:对应的所述目标波束索引所对应的目标波束的使用时隙的位置;
    根据入射波束的方向,确定所述目标波束索引对应的目标波束的相移矩阵,基于所述时隙位置信息和相移矩阵对所述基站发送的入射波束进行反射和/或透射操作。
  2. 如权利要求1所述的方法,其特征在于,所述波束信息包括以下至少一种:
    RIS阵列支持的反射波束集合;
    RIS阵列支持的透射波束集合;
    RIS阵列能够同时支持的反射波束的数量;
    RIS阵列能够同时支持的透射波束的数量。
  3. 如权利要求1所述的方法,其特征在于,所述角度范围包括第一维角度范围和第二维角度范围;所述波束索引为二维波束索引;
    所述方法还包括:
    确定所述RIS阵列在第一维度所支持的各个反射波束和/或各个透射波束的第一维角度范围,以及所述RIS阵列在第二维度所支持的各个反射波束和/或各个透射波束的第二维角度范围;
    组合第一维角度范围和第二维角度范围以确定所述RIS阵列所支持的各个反射波束和/或各个透射波束;
    对各个第一维角度范围和第二位角度范围进行编号以得到所述RIS阵列所支持的各个反射波束和/或各个透射波束对应的二维波束索引(i,j),其中,i用于指示所述反射波束和/或所述透射波束的第一维角度范围的编号,j用于指示所述反射波束和/或所述透射波束的第二维角度范围的编号;
    基于所述反射波束和/或所述透射波束对应的角度范围和二维波束索引建立所述反射波束集合和/或透射波束集合。
  4. 如权利要求1所述的方法,其特征在于,所述角度范围包括第一维角度范围和第二维角度范围;所述波束索引为一维波束索引;
    所述方法还包括:
    确定所述RIS阵列在第一维度所支持的各个反射波束和/或各个透射波束的第一维角度范围,以及所述RIS阵列在第二维度所支持的各个反射波束和/或各个透射波束的第二维角度范围;
    组合第一维角度范围和第二维角度范围以确定所述RIS阵列所支持的各个反射波束和/或各个透射波束;
    对所述RIS阵列所支持的各个反射波束和/或各个透射波束进行编号以得到所述RIS阵列所支持的各个反射波束和/或各个透射波束对应的一维波束索引;
    基于所述反射波束和/或所述透射波束对应的角度范围和一维波束索引建立所述反射波束集合和/或透射波束集合。
  5. 如权利要求1所述的方法,其特征在于,所述RIS阵列被配置为周期性反射波束和/或周期性透射波束;所述目标波束的时隙位置信息包括:一个周期内所占用的各个时隙的排列位置;
    所述确定至少一个时隙位置信息的方法包括以下的至少一种:
    获取所述基站发送的所述至少一个时隙位置信息;
    基于协议约定确定所述至少一个时隙位置信息。
  6. 如权利要求1所述的方法,其特征在于,所述RIS阵列被配置为非周期性反射波束和/或非周期性透射波束;所述目标波束的时隙位置信息包括时隙值,所述时隙值用于指示:所述目标波束索引对应 的目标波束的使用时隙相对于当前时隙的延迟时隙数,所述当前时隙为所述基站发送所述至少一个目标波束索引时所占用的时隙;
    所述确定至少一个时隙位置信息的方法包括以下的至少一种:
    获取所述基站发送的所述至少一个时隙位置信息;
    基于协议约定确定所述至少一个时隙位置信息。
  7. 一种波束处理方法,其特征在于,应用于基站,包括:
    获取RIS阵列的波束信息,所述波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;所述反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,所述透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
    从所述反射波束集合和/或所述透射波束集合中确定至少一个目标波束索引;
    向所述RIS阵列发送所述至少一个目标波束索引和至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,所述时隙位置信息用于指示:对应的所述目标波束索引所对应的目标波束的使用时隙的位置;
    向所述RIS阵列发送入射波束;
    确定用于进行波束测量的时频资源,对所述时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向用户设备UE指示所述用于进行波束测量的时频资源和所述时频索引。
  8. 如权利要求7所述的方法,其特征在于,所述RIS阵列被配置为周期性反射波束和/或周期性透射波束;所述目标波束的时隙位置信息包括:一个周期内所占用的各个时隙的排列位置。
  9. 如权利要求7所述的方法,其特征在于,所述RIS阵列被配置为非周期性反射波束和/或非周期性透射波束;所述目标波束的时隙位置信息包括时隙值,所述时隙值用于指示:所述目标波束索引对应的波束的使用时隙相对于当前时隙的延迟时隙数,所述当前时隙为所述基站发送所述至少一个目标波束索引时所占用的时隙。
  10. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    获取所述UE发送的测量结果和所述测量结果对应的目标时隙索引。
  11. 如权利要求7所述的方法,其特征在于,所述确定用于进行波束测量的时频资源,对所述时频资源中用于进行波束测量的时隙进行编号得到时隙索引,包括:
    确定用于进行波束测量的周期性时间窗口,对所述周期性时间窗口内用于进行波束测量的时隙进行编号得到时隙索引。
  12. 如权利要求7所述的方法,其特征在于,所述波束测量包括以下至少一种:
    测量参考信号接收功率RSRP;
    测量参考信号接收质量RSRQ;
    测量信干噪比SINR;
    测量接收的信号强度指示RSSI。
  13. 一种波束处理方法,其特征在于,应用于UE,包括:
    接收RIS阵列反射和/或透射的波束,对接收到的波束进行波束测量。
  14. 如权利要求13所述的方法,其特征在于,所述对接收到的波束进行波束测量,包括:
    获取基站指示的用于进行波束测量的时频资源;
    基于所述时频资源对所述波束进行波束测量得到测量结果。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    向所述基站发送所述测量结果和所述测量结果对应的目标时隙索引。
  16. 如权利要求15所述的方法,其特征在于,所述向所述基站发送所述测量结果和所述测量结果对应的目标时隙索引,包括:
    向所述基站发送满足第一条件的测量结果以及所述满足第一条件的测量结果对应的目标时隙索引,所述第一条件包括:测量结果大于第一阈值。
  17. 如权利要求16所述的方法,其特征在于,所述第一阈值由所述基站配置至所述UE。
  18. 如权利要求13所述的方法,其特征在于,所述波束测量包括以下至少一种:
    测量RSRP;
    测量RSRQ;
    测量SINR;
    测量RSSI。
  19. 一种波束处理装置,其特征在于,包括:
    发送模块,用于向基站发送RIS阵列的波束信息,所述波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;其中,所述反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,所述透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
    获取模块,用于获取基站发送的至少一个目标波束索引,并确定至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,所述时隙位置信息用于指示:对应的所述目标波束索引所对应的目标波束的使用时隙的位置;
    处理模块,用于根据入射波束的方向,确定所述目标波束索引对应的目标波束的相移矩阵,基于所述时隙位置信息和相移矩阵对所述基站发送的入射波束进行反射和/或透射操作。
  20. 一种波束处理装置,其特征在于,包括:
    获取模块,用于获取RIS阵列发送的波束信息,所述波束信息包括RIS阵列支持的反射波束集合和/或RIS阵列支持的透射波束集合;所述反射波束集合包括RIS阵列支持的至少一个反射波束对应的角度范围和波束索引,所述透射波束集合包括RIS阵列支持的至少一个透射波束对应的角度范围和波束索引;
    第一确定模块,用于从所述反射波束集合和/或所述透射波束集合中确定至少一个目标波束索引;
    发送模块,用于向所述RIS阵列发送所述至少一个目标波束索引和至少一个时隙位置信息,其中,一个时隙位置信息对应至少一个目标波束索引,所述时隙位置信息用于指示:对应的所述目标波束索引所对应的目标波束的使用时隙的位置;
    上述发送模块,还用于向所述RIS阵列发送入射波束;
    第二确定模块,用于确定用于进行波束测量的时频资源,对所述时频资源中用于进行波束测量的时隙进行编号得到时隙索引,并向用户设备UE指示所述用于进行波束测量的时频资源和所述时频索引。
  21. 一种波束处理装置,其特征在于,包括:
    测量模块,用于接收RIS阵列反射和/或透射的波束,对接收到的波束进行波束测量。
  22. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至6中任一项所述的方法。
  23. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求7至12中任一项所述的方法。
  24. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至18中任一项所述的方法。
  25. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至6中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求7至12任一所述的方法。
  27. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13至18任一所述的方法。
  28. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现。
  29. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求7至12中任一项所述的方法被实现。
  30. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13至18中任一项所述的方法被实现。
PCT/CN2021/130412 2021-11-12 2021-11-12 一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质 WO2023082194A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180103211.6A CN118216197A (zh) 2021-11-12 2021-11-12 一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质
PCT/CN2021/130412 WO2023082194A1 (zh) 2021-11-12 2021-11-12 一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130412 WO2023082194A1 (zh) 2021-11-12 2021-11-12 一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质

Publications (1)

Publication Number Publication Date
WO2023082194A1 true WO2023082194A1 (zh) 2023-05-19

Family

ID=86334828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130412 WO2023082194A1 (zh) 2021-11-12 2021-11-12 一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质

Country Status (2)

Country Link
CN (1) CN118216197A (zh)
WO (1) WO2023082194A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168957A (zh) * 2017-01-09 2019-08-23 索尼移动通讯有限公司 基站控制的波束管理
CN113382419A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 测量配置方法、终端及网络侧设备
WO2021198202A1 (en) * 2020-03-31 2021-10-07 Sony Group Corporation Repetitive transmissions and re-configurable reflective devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168957A (zh) * 2017-01-09 2019-08-23 索尼移动通讯有限公司 基站控制的波束管理
CN113382419A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 测量配置方法、终端及网络侧设备
WO2021198202A1 (en) * 2020-03-31 2021-10-07 Sony Group Corporation Repetitive transmissions and re-configurable reflective devices

Also Published As

Publication number Publication date
CN118216197A (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2023082194A1 (zh) 一种波束处理方法、装置、用户设备、ris阵列、基站及存储介质
WO2023133686A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023000178A1 (zh) 一种信号接收方法、装置、用户设备、基站及存储介质
WO2023028849A1 (zh) 参考信号测量方法、装置、用户设备、网络侧设备及存储介质
WO2023092602A1 (zh) 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质
WO2023206176A1 (zh) 测量报告发送方法、测量报告接收方法、装置
WO2023070407A1 (zh) 一种预编码方法、装置、用户设备、可重构智能表面ris阵列及存储介质
WO2023206177A1 (zh) Ai波束模型确定方法、装置
WO2023108374A1 (zh) 一种测量方法/装置/用户设备/网络侧设备及存储介质
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2023082279A1 (zh) 一种波束测量方法、装置、用户设备、网络侧设备及存储介质
WO2023155053A1 (zh) 一种辅助通信设备的发送方法及设备/存储介质/装置
WO2023184373A1 (zh) 一种信号处理方法、装置、设备及存储介质
WO2023130397A1 (zh) 一种预编码方法/装置/设备及存储介质
WO2023164850A1 (zh) 一种功率确定方法/装置/用户设备/网络侧设备及存储介质
WO2023178568A1 (zh) 一种测量方法及设备/存储介质/装置
WO2023236161A1 (zh) 波束管理方法、装置
WO2023216079A1 (zh) 资源配置方法/装置/用户设备/网络侧设备及存储介质
WO2023193278A1 (zh) 一种阈值确定方法/装置/设备及存储介质
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置
WO2023173254A1 (zh) 一种定时调整方法/装置/设备及存储介质
WO2023133694A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023155200A1 (zh) 一种测量放松方法及设备、存储介质、装置
WO2023150990A1 (zh) 一种定位方法/装置/设备及存储介质
WO2023173338A1 (zh) 一种测量指示方法及设备/存储介质/装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021963642

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021963642

Country of ref document: EP

Effective date: 20240612