WO2023127793A1 - ジルコニア焼結体及びその製造方法 - Google Patents

ジルコニア焼結体及びその製造方法 Download PDF

Info

Publication number
WO2023127793A1
WO2023127793A1 PCT/JP2022/047908 JP2022047908W WO2023127793A1 WO 2023127793 A1 WO2023127793 A1 WO 2023127793A1 JP 2022047908 W JP2022047908 W JP 2022047908W WO 2023127793 A1 WO2023127793 A1 WO 2023127793A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
sintered body
particle size
powder
stabilizer
Prior art date
Application number
PCT/JP2022/047908
Other languages
English (en)
French (fr)
Inventor
貴広 丹羽
信介 樫木
貴理博 中野
承央 伊藤
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Priority to KR1020247021928A priority Critical patent/KR20240110088A/ko
Publication of WO2023127793A1 publication Critical patent/WO2023127793A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics

Definitions

  • the present invention relates to a zirconia sintered body and a manufacturing method thereof. Specifically, the present invention relates to a zirconia sintered body that has both high translucency and high strength and can be suitably used for anterior teeth and canine teeth (especially central incisors and lateral central incisors), and a method for producing the same. .
  • Ceramic sintering is generally a mass transfer phenomenon that reduces the free energy of the system.
  • the primary particles contained in the powder undergo particle growth with decreasing surface area and interface with firing time, depending on the particle size and firing temperature. It is known that grain growth is more likely to occur when the particle size contained in the powder is small and the difference between the particle size and the particle size of the material transfer destination is large.
  • zirconia has high strength and high toughness, so a zirconia sintered body ( hereinafter referred to as “partially stabilized zirconia (sometimes referred to as “sintered body”) is used.
  • a partially stabilized zirconia sintered body As a dental material, not only from the viewpoint of mechanical properties such as high strength and high toughness, but also from the viewpoint of aesthetics peculiar to dental applications, optical properties such as translucency and color tone characteristics are also required.
  • partially stabilized zirconia sintered bodies studies have been made so far on zirconia sintered bodies having high strength and toughness and aesthetic properties for the purpose of mimicking natural teeth.
  • Patent Documents 1 and 2 can be cited.
  • Patent Document 1 in a cross-sectional photograph of a zirconia sintered body, the cross-sectional area of each zirconia particle is calculated, and from the cross-sectional area, the equivalent particle size of each zirconia particle is calculated assuming that each zirconia particle is circular. Then, the zirconia particle size is classified into three classes of less than 0.4 ⁇ m, 0.4 ⁇ m or more and less than 0.76 ⁇ m, and 0.76 ⁇ m or more, and the cross-sectional area ratio of zirconia particles with an equivalent particle size of less than 0.4 ⁇ m is 4%.
  • the cross-sectional area ratio of zirconia particles with a converted particle size of 0.4 ⁇ m or more and less than 0.76 ⁇ m is 24% or more and 57% or less, and the cross-sectional area ratio of zirconia particles with a converted particle size of 0.76 ⁇ m or more is 16%.
  • a zirconia sintered body having a content of 62% or more is disclosed. Further, it is disclosed that the zirconia sintered body has high bending strength and fracture toughness and moderate transparency, and Example 1 discloses that the transmittance is 30%.
  • Patent Document 2 it contains yttria of more than 4.0 mol% and 6.5 mol% or less and alumina of less than 0.1 wt%, has a relative density of 99.82% or more, and has a thickness of 1.0 mm.
  • a translucent zirconia sintered body having a total light transmittance of 37% or more and less than 40% for light with a wavelength of 600 nm and a bending strength of 500 MPa or more is disclosed.
  • the zirconia sintered body of Patent Document 1 has moderate transparency, but the translucency required for anterior teeth and canine teeth (especially central incisors and lateral central incisors) is gradually increasing. and higher translucency (for example, the transmittance required for central incisors is about 40% or more) is becoming necessary. There is room for further improvement in the translucency of the zirconia sintered body in order to manufacture products for electronic devices.
  • the zirconia sintered body of Patent Document 2 has low biaxial bending strength, and there is room for further improvement in terms of strength.
  • the present invention provides a zirconia sintered body that has both high translucency and high strength and can be suitably used for anterior teeth and canine teeth (especially central incisors and lateral central incisors), and a method for producing the same. With the goal.
  • the present inventors have made intensive studies to solve the above problems, and as a result, the crystal grains of the zirconia sintered body have a particle size of 0.45 ⁇ m or more and less than 1 ⁇ m in the number-based particle size distribution.
  • the present inventors have found that high light transmittance and high strength can be achieved at the same time by containing 20 to 50% of the titanium oxide.
  • the present invention includes the following inventions.
  • a zirconia sintered body containing zirconia and a stabilizer capable of suppressing the phase transition of zirconia The crystal particles of the zirconia sintered body contain particles having a particle size of 0.45 ⁇ m or more and less than 1 ⁇ m in a number-based particle size distribution at a rate of 20 to 50%, The zirconia sintered body, wherein the particle size is a diameter passing through the center of gravity of the particle.
  • ft/(t+c) 100 ⁇ I t /(I t +I c ) (1)
  • a method for producing a zirconia sintered body containing zirconia and a stabilizer capable of suppressing the phase transition of zirconia Using a raw material powder containing zirconia powder and a stabilizer powder capable of suppressing the phase transition of zirconia, The stabilizer powder has at least one peak top in the particle size distribution range of 0.05 to 0.40 ⁇ m in the volume-based particle size distribution, and the particle size is in the range of 0.5 ⁇ m or more. comprising a powder having at least one peak top;
  • the method for producing a zirconia sintered body according to any one of [1] to [8].
  • the frequency (A) of the peak top in the range of particle size 0.05 to 0.40 ⁇ m and the peak in the range of particle size 0.5 ⁇ m or more The method for producing a zirconia sintered body according to [9], wherein the ratio (A):(B) to the top frequency (B) is 40:60 to 85:15.
  • [15] The method for producing a zirconia sintered body according to [13] or [14], wherein the zirconia molded body or the zirconia calcined body is fired.
  • a method for producing a calcined zirconia body containing zirconia and a stabilizer capable of suppressing the phase transition of zirconia Using a raw material powder containing zirconia powder and a stabilizer powder capable of suppressing the phase transition of zirconia, The stabilizer powder has at least one peak top in the particle size distribution range of 0.05 to 0.40 ⁇ m in the volume-based particle size distribution, and the particle size is in the range of 0.5 ⁇ m or more.
  • a method for producing a calcined zirconia body comprising a powder having at least one peak top; A method for producing a calcined zirconia body. [17] The method for producing a calcined zirconia body according to [16], wherein the raw material powder is molded to produce a zirconia molded body. [18] The method for producing a calcined zirconia body according to [17], wherein the zirconia molded body is calcined.
  • a method for producing a zirconia-containing composition containing zirconia and a stabilizer capable of suppressing the phase transition of zirconia pulverizing the zirconia raw material to prepare zirconia powder, pulverizing the raw material of the stabilizer to prepare a stabilizer powder, Mixing the zirconia powder and the stabilizer powder to prepare a zirconia composition as a raw material powder,
  • the stabilizer powder has at least one peak top in the particle size distribution range of 0.05 to 0.40 ⁇ m in the volume-based particle size distribution, and the particle size is in the range of 0.5 ⁇ m or more. comprising a powder having at least one peak top;
  • a method for producing a zirconia-containing composition A method for producing a zirconia-containing composition.
  • a zirconia sintered body having both high translucency and high strength that can be suitably used for anterior teeth and canine teeth (especially central incisors and lateral central incisors) and a method for producing the same are provided.
  • anterior teeth and canine teeth especially central incisors and lateral central incisors
  • a method for producing the same are provided.
  • FIG. 1 shows the particle size distribution (volume basis) of the yttria powder used as the raw material powder of Examples 1-14.
  • FIG. 2 shows an electron microscope observation image of the zirconia sintered body according to Example 5.
  • FIG. 3 shows an electron microscope observation image of the zirconia sintered body according to Comparative Example 1.
  • FIG. 4 shows an electron microscope observation image of the zirconia sintered body according to Comparative Example 4.
  • the method for measuring the number-based particle size distribution is as described in Examples below.
  • the measurement site is not particularly limited, and may be the surface of the zirconia sintered body or the cross section of the zirconia sintered body.
  • the upper limit and lower limit of the numerical range (content of each component, value calculated from each component, each physical property, etc.) can be appropriately combined.
  • the number standard is used as the particle size distribution.
  • Patent Document 1 as shown in Table 2, the particle size distribution is studied on the basis of area, in which the total area is calculated and the ratio of the area is selected.
  • medium particles particles having a particle diameter of 0.45 ⁇ m or more and less than 1 ⁇ m when examined on a number basis
  • the area ratio since the area ratio is used for calculation, the area ratio changes greatly when the number of particles having a large particle diameter increases by one.
  • the present invention since the number ratio of particles is evaluated, it is possible to more efficiently increase the translucency and strength resulting from the existence ratio of particles of each size.
  • the crystal grains contain 20 to 50% of the grains having a grain size of 0.45 ⁇ m or more and less than 1 ⁇ m in the number-based grain size distribution.
  • the number-based particle size distribution by setting the ratio of medium particles to a predetermined ratio, the translucency mainly due to particles having a particle size of 1 ⁇ m or more is further enhanced, and the particle size is less than 0.45 ⁇ m.
  • the strength, which is mainly due to the particles, can be increased.
  • the proportion of medium particles is preferably 21% or more, more preferably 22% or more, further preferably 23% or more, and 24 % or more is particularly preferable.
  • the proportion of medium particles is preferably 49% or less, more preferably 40% or less, and even more preferably 36% or less, from the viewpoint of translucency and strength of the zirconia sintered body. , 30% or less.
  • a preferable range of the ratio of medium particles can be appropriately combined from the above upper limit and lower limit, and may be, for example, 21 to 49%, 22 to 40%, or 23 to 36%. may
  • the ratio of the medium particles exceeds 50% in the particle size distribution, the strength and translucency of the zirconia sintered body will decrease, which is not preferable.
  • the ratio of medium particles is less than 20% in the particle size distribution, particles having a particle size of less than 0.45 ⁇ m (hereinafter also referred to as “small particles”) and particles having a particle size of 1 ⁇ m or more
  • An increase in the difference in refractive index from particles (hereinafter also referred to as “large particles”) may scatter light and significantly reduce the overall translucency, which is not preferable.
  • the presence of the medium particles in a predetermined proportion buffers the refractive index difference and suppresses the scattering of light when the light is transmitted from the small particles to the large particles.
  • the crystal grains preferably contain particles having a particle size of less than 0.45 ⁇ m at a rate of 20 to 70% in the number-based particle size distribution.
  • the proportion of small particles is more preferably 22% or more, still more preferably 30% or more, and particularly preferably 35% or more.
  • the proportion of small particles is more preferably 69% or less, further preferably 68.5% or less, even more preferably 68% or less, from the viewpoint of further improving the strength of the zirconia sintered body. Especially preferred.
  • the crystal grains preferably contain particles having a particle size of 1 ⁇ m or more at a rate of 6 to 35% in the number-based particle size distribution.
  • the proportion of large particles is more preferably 6.5% or more, further preferably 7% or more, and 8% or more. Especially preferred.
  • the proportion of large particles is more preferably 33% or less, further preferably 30% or less, and 20% or less. Especially preferred.
  • the blending balance of each particle may be adjusted from the viewpoint of superior translucency and strength.
  • the proportion of small particles is the largest among the three particles in the number-based particle size distribution (%) from the viewpoint of being superior in translucency and strength. More preferably, the ratio is 1.5 times or more the ratio of medium particles.
  • the zirconia sintered body of the present invention preferably has the smallest ratio of large particles in terms of superior translucency and strength, and the ratio of large particles is 0.8 times or less than the ratio of medium particles. It is more preferable to have
  • the main crystal system of the zirconia sintered body of the present invention may be either a tetragonal system or a cubic system. are preferably mixed at a constant ratio.
  • the main crystal system means the crystal system with the highest ratio compared to other crystal systems with respect to the total amount of all crystal systems (monoclinic system, tetragonal system and cubic system) in zirconia. do.
  • the ratio of tetragonal system / (tetragonal system + cubic system) is less than 80% It is preferably 70% or less, more preferably 65% or less, and particularly 50% or less from the viewpoint of better translucency and strength of the zirconia sintered body. preferable. In addition, it is preferably 0% or more, more preferably 30% or more from the viewpoint of excellent strength of the zirconia sintered body, and 40% from the viewpoint of excellent translucency and strength of the zirconia sintered body. It is more preferably 41% or more, and particularly preferably 41% or more.
  • the preferred range of the ratio of the tetragonal system to the total of the tetragonal system and the cubic system can be appropriately combined from the above upper limit and lower limit, for example, it may be 40% or more and 65% or less, or 41% or more. It may be 50% or less.
  • the ratio of the tetragonal system to the total of the tetragonal system and the cubic system in the crystal system of zirconia is calculated by the following formula (1).
  • f t/(t+c) 100 ⁇ I t /(I t +I c ) (1)
  • the ratio of the tetragonal system to the total of the tetragonal system and the cubic system can be calculated by the formula (1) using the X-ray diffraction (XRD; X-Ray Diffraction) measurement.
  • the biaxial bending strength of the zirconia sintered body of the present invention is preferably 550 MPa or more, more preferably 600 MPa or more, still more preferably 650 MPa or more, and particularly preferably 700 MPa or more.
  • Biaxial bending strength can be measured according to JIS T 6526:2012. Specifically, it can be measured by the method described in Examples below.
  • Translucency ( ⁇ L * (WB)) of the zirconia sintered body of the present invention is a prosthesis having a color tone close to that of natural teeth, especially anterior teeth and canine teeth (e.g., central incisors, lateral central incisors). is preferably 13 or more, more preferably 14, and even more preferably 15, from the viewpoint of easily fabricating a prosthesis having a color tone closer to that of the anterior teeth.
  • Translucency ( ⁇ L * (W ⁇ B)) is measured using a spectrophotometer manufactured by Olympus Corporation (trade name “Crystal Eye”), measurement mode: 7 band LED light source, chromaticity is measured against a white background.
  • the stabilizer capable of suppressing the phase transition of zirconia is preferably capable of forming partially stabilized zirconia.
  • examples of the stabilizer include calcium oxide (CaO), magnesium oxide (MgO), yttria (yttrium oxide; Y 2 O 3 ), cerium oxide (CeO 2 ), scandium oxide (Sc 2 O 3 ), and niobium oxide.
  • a stabilizer may be used individually by 1 type, and may use 2 or more types together.
  • the content of the stabilizer in the zirconia sintered body of the present invention can be measured, for example, by inductively coupled plasma (ICP) emission spectroscopic analysis, fluorescent X-ray analysis, or the like.
  • ICP inductively coupled plasma
  • the content of the stabilizer is preferably 0.1 to 18 mol%, more preferably 1 to 15 mol%, more preferably 1.5, based on the total mol of zirconia and stabilizer. ⁇ 10 mol% is more preferred.
  • the content of yttria with respect to the total mol of zirconia and yttria is 3.
  • the content is preferably 0 mol % or more, more preferably 4.5 mol % or more, and further preferably 5.0 mol % or more from the viewpoint of superior translucency and strength of the zirconia sintered body.
  • the content of yttria is preferably 7.5 mol % or less, and 7.0 mol % or less, relative to the total mol of zirconia and yttria, from the viewpoint of the translucency and strength of the zirconia sintered body.
  • yttria is more preferably 6.5 mol % or less.
  • a preferable range of the content of yttria can be appropriately combined from within the range of the upper limit and the lower limit. It may be 5 mol % or less. In some embodiments, the yttria content may be 4.0 mol % or more.
  • a raw material powder containing zirconia powder and a stabilizer powder capable of suppressing the phase transition of zirconia is used, and the stabilizer powder has a volume-based particle size distribution.
  • a zirconia firing containing a powder having at least one peak top in a particle size range of 0.05 to 0.40 ⁇ m and having at least one peak top in a particle size range of 0.5 ⁇ m or more A method for manufacturing a body can be mentioned.
  • Volume-based particle size distribution is measured by, for example, using a laser diffraction/scattering particle size distribution analyzer (trade name “Partica LA-950”) manufactured by Horiba, Ltd., and irradiating a slurry diluted with water with ultrasonic waves for 30 minutes. and then measured on a volumetric basis while applying ultrasound.
  • a laser diffraction/scattering particle size distribution analyzer (trade name “Partica LA-950”) manufactured by Horiba, Ltd., and irradiating a slurry diluted with water with ultrasonic waves for 30 minutes. and then measured on a volumetric basis while applying ultrasound.
  • the stabilizer that can suppress the phase transition of zirconia in the manufacturing method of the zirconia sintered body is the same as the type and content rate described for the zirconia sintered body.
  • the zirconia sintered body after firing contains a powder having at least one peak top in the range of 0.40 ⁇ m to 0.40 ⁇ m and having at least one peak top in the range of particle diameter of 0.5 ⁇ m or more.
  • a particle size distribution as shown in the results of Examples described later (FIG. 1) is preferable.
  • the zirconia sintered body after firing can easily obtain the above-described desired ratio of medium particles, large particles, and small particles, so that the phase transition between zirconia powder and zirconia can be suppressed.
  • a raw material powder containing a stabilizer powder wherein the stabilizer powder has a volume-based particle size distribution and has one peak top in a range of particle sizes from 0.05 to 0.40 ⁇ m, and a method for producing a zirconia sintered body containing a powder having one peak top in a range of particle diameters of 0.5 ⁇ m or more.
  • the ratio (A):(B) is preferably 40:60 to 85:15, more preferably 45:55 to 82:18, in order to obtain the desired ratio of medium particles, large particles, and small particles. and more preferably 50:50 to 80:20.
  • the ratio (A):(B) is calculated from the following two formulas.
  • Ratio (A) Frequency of peak top (A)/(Frequency of peak top (A)+Frequency of peak top (B)) ⁇ 100
  • Ratio (B) Frequency of peak top (B)/(Frequency of peak top (A)+Frequency of peak top (B)) ⁇ 100
  • the peak top frequency (A) represents the peak top frequency (%) in the particle diameter range of 0.05 to 0.40 ⁇ m
  • the peak top frequency (B) is the particle diameter of 0.5 ⁇ m or more. represents the peak top frequency (%) in the range of
  • the frequency of peak tops (A) and the frequency of peak tops (B) can be confirmed as peak heights in FIG. 1, for example.
  • the particle size range may be 0.1 to 0.40 ⁇ m.
  • a raw material powder containing zirconia powder and a stabilizer powder capable of suppressing the phase transition of zirconia is used, and the stabilizer powder has a volume-based particle size distribution
  • a zirconia firing containing a powder having at least one peak top in a particle size range of 0.1 to 0.40 ⁇ m and having at least one peak top in a particle size range of 0.5 ⁇ m or more A method for manufacturing a body can be mentioned.
  • the method for producing the zirconia sintered body preferably includes a step of molding raw material powder to produce a zirconia molded body.
  • the molding method is not particularly limited, and a known method (for example, press molding, etc.) can be used to mold into a desired desired shape (block, disk, etc.).
  • the biaxial bending strength of the zirconia molded body is preferably in the range of 2 to 10 MPa, more preferably in the range of 5 to 8 MPa, from the viewpoint of handleability.
  • the biaxial bending strength of the zirconia molded body can be measured according to JIS T 6526:2012.
  • the method for producing a zirconia sintered body preferably includes a step of calcining a zirconia compact to produce a zirconia calcined body.
  • a zirconia calcined body is a semi-sintered body in which zirconia particles (powder) are necked (fixed) and blocked in a state that is not completely sintered.
  • the density of the zirconia calcined body of the present invention is preferably 2.75 g/cm 3 or more, more preferably 2.85 g/cm 3 or more, and 2.95 g. /cm 3 or more is more preferable.
  • the flexural strength of the zirconia calcined body of the present invention is preferably 15 MPa or more in order to ensure the strength that enables machining. Moreover, the bending strength of the calcined body is preferably 70 MPa or less, more preferably 60 MPa or less, in order to facilitate machining.
  • the flexural strength can be measured in accordance with ISO 6872:2015 (Dentistry-Ceramic materials). Measurement is performed using The face and C face of the specimen (the face where the corner of the specimen is chamfered at a 45° angle) are longitudinally finished with 600 grit sandpaper. The test piece is arranged so that the widest surface faces the vertical direction (load direction). In the three-point bending test measurement, the distance between fulcrums (span) is 30 mm, and the crosshead speed is 0.5 mm/min.
  • the zirconia calcined body of the present invention may contain additives other than zirconia and a stabilizer as long as the effects of the present invention are exhibited.
  • additives include colorants (including pigments, composite pigments and fluorescent agents), binders, dispersants, antifoaming agents, plasticizers, alumina (Al 2 O 3 ), titanium oxide (TiO 2 ), silica (SiO 2 ) and the like.
  • An additive may be used individually by 1 type, and may use 2 or more types together.
  • Pigments are selected from the group of Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Sn, Sb, Bi, Ce, Pr, Sm, Eu, Gd, Tb and Er, for example. and oxides of at least one element (specifically, NiO, Cr 2 O 3, etc.).
  • composite pigments include (Zr, V) O 2 , Fe(Fe, Cr) 2 O 4 , (Ni, Co, Fe) (Fe, Cr) 2 O 4 ⁇ ZrSiO 4 , (Co, Zn) Al Composite oxides such as 2 O 4 can be mentioned.
  • fluorescent agents examples include Y2SiO5 :Ce, Y2SiO5 :Tb, (Y,Gd , Eu ) BO3 , Y2O3 : Eu , YAG:Ce, ZnGa2O4 :Zn, and BaMgAl . 10 O 17 :Eu and the like.
  • binders include organic binders.
  • organic binders include acrylic binders, paraffin binders, fatty acid binders, polyvinyl alcohol binders, and the like.
  • Dispersants include, for example, ammonium polycarboxylate (triammonium citrate, etc.), ammonium polyacrylate, acrylic copolymer resin, acrylic acid ester copolymer, polyacrylic acid, bentonite, carboxymethylcellulose, anionic surfactant agents (for example, polyoxyethylene alkyl ether phosphates such as polyoxyethylene lauryl ether phosphates), nonionic surfactants, olein glycerides, amine salt surfactants, oligosaccharide alcohols, stearic acid, etc.
  • anionic surfactant agents for example, polyoxyethylene alkyl ether phosphates such as polyoxyethylene lauryl ether phosphates
  • nonionic surfactants for example, polyoxyethylene alkyl ether phosphates such
  • Antifoaming agents include, for example, alcohols, polyethers, silicones, waxes, and the like.
  • plasticizers include polyethylene glycol, glycerin, propylene glycol, dibutyl phthalate and the like.
  • the calcination temperature is, for example, preferably 800°C or higher, more preferably 900°C or higher, and even more preferably 950°C or higher, in order to ensure block formation. Further, the calcination temperature is preferably 1200° C. or lower, more preferably 1150° C. or lower, and even more preferably 1100° C. or lower, in order to improve dimensional accuracy. A temperature of 800° C. to 1200° C. is preferable as the method for producing the zirconia calcined body. It is considered that the solid solution of the stabilizer does not progress at such a firing temperature.
  • the calcination is not particularly limited, and a known calcination furnace can be used.
  • the zirconia calcined body of the present invention can be machined to produce a machined body.
  • the cutting method is not limited to a specific method, and a suitable method can be appropriately selected according to the purpose.
  • the disk can be cut into the shape of a dental product (eg, a crown-shaped prosthesis) using a CAD/CAM system to produce a machined body.
  • dental products include copings, frameworks, crowns, crown bridges, abutments, implants, implant screws, implant fixtures, implant bridges, implant bars, brackets, denture bases, inlays, onlays, orthodontic wires, laminate veneers. etc.
  • the method for producing the zirconia sintered body preferably includes a step of firing the zirconia molded body or the zirconia calcined body.
  • a zirconia sintered body can be produced by firing a zirconia molded body or a zirconia calcined body at a temperature at which zirconia particles are sintered (sintering step).
  • the sintering temperature (maximum sintering temperature) can be appropriately changed according to the components of the zirconia molded body or the zirconia calcined body, and is not particularly limited. More preferred. Although the upper limit of the firing temperature is not particularly limited, it is preferably 1700° C. or lower, more preferably 1650° C. or lower, and even more preferably 1600° C. or lower. The firing is not particularly limited, and a known firing furnace can be used.
  • the holding time at the sinterable temperature is preferably 120 minutes or less, more preferably 90 minutes or less, even more preferably 75 minutes or less, even more preferably 60 minutes or less, and 45 minutes or less. is particularly preferred, and 30 minutes or less is most preferred.
  • the holding time can be 25 minutes or less, 20 minutes or less, or 15 minutes or less for shorter firing times.
  • the retention time is preferably 1 minute or longer, more preferably 5 minutes or longer, and even more preferably 10 minutes or longer. According to the present invention, even with such a short firing time, the produced zirconia sintered body can be prevented from lowering its translucency and can maintain high strength. Moreover, by shortening the baking time, the production efficiency can be improved and the energy cost can be reduced.
  • the temperature increase rate and temperature decrease rate in the sintering process are preferably set so as to shorten the time required for the sintering process, and are not particularly limited.
  • a method for producing a calcined zirconia body containing zirconia and a stabilizer capable of suppressing the phase transition of zirconia, wherein the zirconia powder and the phase transition of the zirconia are suppressed possible stabilizer powder, and the stabilizer powder has at least one peak top in a volume-based particle size distribution with a particle size in the range of 0.05 to 0.40 ⁇ m. and a powder having at least one peak top in the range of 0.5 ⁇ m or more in particle size.
  • the type and content of the stabilizer capable of suppressing the phase transition of zirconia in the zirconia calcined body manufacturing method are the same as those described for the zirconia sintered body.
  • the method for manufacturing the zirconia calcined body includes a step of molding raw material powder to produce a zirconia molded body.
  • the shaping method is not particularly limited, and a known method (for example, press molding, etc.) can be used to shape the desired desired shape (block shape, disc shape, etc.).
  • the method for producing the zirconia calcined body preferably includes a step of calcining the zirconia molded body to produce the zirconia calcined body.
  • the calcination in the method for manufacturing the zirconia calcined body is the same as the calcination temperature and the firing furnace in the method for manufacturing the zirconia sintered body.
  • a method for producing a zirconia-containing composition containing zirconia and a stabilizer capable of suppressing the phase transition of zirconia wherein the zirconia raw material is pulverized to produce a zirconia powder. is prepared, the raw material of the stabilizer is pulverized to prepare a stabilizer powder, the zirconia powder and the stabilizer powder are mixed to prepare a zirconia composition that is a raw material powder, and the stabilizer
  • the agent powder has at least one peak top in the particle size range of 0.05 to 0.40 ⁇ m in the volume-based particle size distribution, and has at least one peak in the range of the particle size of 0.5 ⁇ m or more.
  • a method of making a zirconia-containing composition comprising a powder having two peak tops.
  • the type and content of the stabilizer capable of suppressing the phase transition of zirconia in the method for producing the zirconia-containing composition are the same as those described for the zirconia sintered body.
  • the yttria raw material is pulverized by a known method (e.g., ball mill), and the pulverization time of the yttria raw material is preferably 30 hours or less, more preferably 20 hours or less, further preferably 15 hours or less, and 10 hours. The following are particularly preferred. Further, the grinding time of the yttria raw material is preferably 1 hour or longer, more preferably 2 hours or longer, and even more preferably 5 hours or longer.
  • the stabilizer powder has at least one peak top in the particle size range of 0.05 to 0.40 ⁇ m in the volume-based particle size distribution, and has a particle size of 0.40 ⁇ m.
  • a powder containing at least one peak top in the range of 5 ⁇ m or more is obtained.
  • the pulverization time can be appropriately adjusted so as to obtain the yttria powder having the desired peak top.
  • the zirconia sintered body after firing can obtain the above-described desired proportions of medium particles, large particles, and small particles.
  • the zirconia raw material is pulverized to produce a zirconia powder.
  • the reason why the yttria raw material and the zirconia raw material are pulverized separately is that the yttria raw material and the zirconia raw material have different particle sizes in order to make the yttria raw material yttria powder having a desired peak top. This is because it is preferable to differentiate the grinding conditions, such as the use of different materials and different grinding times.
  • the average particle size (average primary particle size) of the yttria raw material for obtaining the yttria powder having the desired particle size distribution after pulverization is determined by using the raw material powder obtained by mixing the yttria powder and the zirconia powder.
  • the particle size is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, because the desired proportions of medium particles, large particles, and small particles can be obtained.
  • the zirconia sintered body after firing can obtain the above-described desired ratio of medium particles, large particles, and small particles.
  • the average particle size can be measured, for example, by using a laser diffraction/scattering particle size distribution analyzer (trade name “Partica LA-950”) manufactured by Horiba, Ltd., and irradiating a slurry diluted with water with ultrasonic waves for 30 minutes. , which can then be measured on a volumetric basis while applying ultrasound.
  • a laser diffraction/scattering particle size distribution analyzer (trade name “Partica LA-950”) manufactured by Horiba, Ltd., and irradiating a slurry diluted with water with ultrasonic waves for 30 minutes. , which can then be measured on a volumetric basis while applying ultrasound.
  • the average particle size (average primary particle size) of the zirconia raw material for obtaining the zirconia powder after pulverization can be reduced by using the raw material powder obtained by mixing the yttria powder and the zirconia powder. It is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and even more preferably 0.1 ⁇ m or more, in order to obtain a desired ratio of medium particles, large particles, and small particles.
  • the average particle size of the zirconia raw material is preferably less than 1 ⁇ m, more preferably 0.6 ⁇ m or less, and even more preferably 0.4 ⁇ m or less.
  • the average particle size of the zirconia raw material can be measured in the same manner as the average particle size of the yttria raw material.
  • the ratio fm of the monoclinic system in the zirconia raw material is preferably 60% or more with respect to the total amount of the monoclinic system, the tetragonal system and the cubic system. From the standpoint of superior properties, it is more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and particularly preferably 95% or more.
  • the ratio fm of monoclinic system is calculated by the following formula (2).
  • fm Im /( Im + It + Ic ) x 100
  • f m the ratio (%) of the monoclinic system in the zirconia raw material
  • the ratio fm of the monoclinic system in the zirconia raw material By setting the ratio fm of the monoclinic system in the zirconia raw material to the above ratio, the same ratio fm of the monoclinic system can be obtained in the obtained zirconia compact and the calcined zirconia body.
  • the zirconia-containing composition of the present invention may contain additives other than zirconia and a stabilizer as long as the effects of the present invention are exhibited.
  • additives include colorants (including pigments, composite pigments and fluorescent agents), binders, dispersants, antifoaming agents, alumina (Al 2 O 3 ), titanium oxide (TiO 2 ), silica (SiO 2 ) and the like.
  • An additive may be used individually by 1 type, and may use 2 or more types together.
  • the zirconia-containing composition of the present invention may be in a dry state, a state containing a liquid, or a state contained in a liquid.
  • the zirconia-containing composition can take the form of powder, paste, slurry, or the like.
  • the present invention includes embodiments in which the above configurations are combined in various ways within the scope of the technical idea of the present invention as long as the effects of the present invention are exhibited.
  • zirconia raw material and the yttria raw material the following raw materials 1, 2 and 3 were used.
  • raw material 1 zirconia powder having a monoclinic system of 99% or more, an average primary particle size of 100 nm, and secondary particles having an average particle size of 11 ⁇ m was used.
  • raw material 2 yttria powder having an average particle size of about 3200 nm was used.
  • raw material 3 zirconia powder “Zpex Smile (registered trademark)” manufactured by Tosoh Corporation was used.
  • Example 1 to 14 ⁇ Production of zirconia slurry> A zirconia raw material (raw material 1) was put into water. This and zirconia beads were placed in a rotating container, and the raw material was pulverized (crushed) by ball milling so that the particles contained in the slurry had a desired average particle size (about 100 nm). The particle size is measured by using a laser diffraction/scattering particle size distribution analyzer (trade name “Partica LA-950”) manufactured by Horiba, Ltd., and irradiating a slurry diluted with water with ultrasonic waves for 30 minutes, followed by ultrasonic measurement. It was measured on a volume basis while applying sound waves. A desired zirconia slurry was obtained with a ball mill treatment time of about 20 hours.
  • yttria raw material (raw material 2) was added to the water. Put this and zirconia beads in a rotating container and grind the raw material by ball milling so that the particles contained in the slurry have the desired particle size (peak top frequency (A) in the range of 0.05 to 0.40 ⁇ m and pulverized so that the peak top frequency (B) and the ratio (A):(B) in the range of 0.50 ⁇ m or more are 50:50 to 79:21).
  • the particle size is measured by using a laser diffraction/scattering particle size distribution analyzer (trade name “Partica LA-950”) manufactured by Horiba, Ltd., and irradiating a slurry diluted with water with ultrasonic waves for 30 minutes, followed by ultrasonic measurement. It was measured on a volume basis while applying sound waves. The desired yttria slurry was obtained with a ball milling time of about 6 to 20 hours.
  • the obtained zirconia slurry and the obtained yttria slurry were mixed, an organic binder was added, and the mixture was stirred with a rotary blade.
  • the slurry after stirring was dried and granulated with a spray dryer to obtain a powder.
  • the average particle size of the powder was 40 ⁇ m.
  • This powder was poured into a columnar mold, uniaxially pressed at a pressure of 33 MPa, and further subjected to CIP treatment at 170 MPa to obtain a compact.
  • the compact is placed in an electric furnace, heated from room temperature at a rate of 10° C./min, held at 500° C. for 2 hours to degrease the organic component, held at 1000° C.
  • the obtained zirconia calcined body was heated to the firing temperature (maximum firing temperature) shown in Table 1 at a rate of 10° C./min and held for the time shown in Table 1 to obtain a zirconia sintered body.
  • the particle size is measured by using a laser diffraction/scattering particle size distribution analyzer (trade name “Partica LA-950”) manufactured by Horiba, Ltd., and irradiating a slurry diluted with water with ultrasonic waves for 30 minutes, followed by ultrasonic measurement. It was measured on a volume basis while applying sound waves.
  • a laser diffraction/scattering particle size distribution analyzer (trade name “Partica LA-950”) manufactured by Horiba, Ltd., and irradiating a slurry diluted with water with ultrasonic waves for 30 minutes, followed by ultrasonic measurement. It was measured on a volume basis while applying sound waves.
  • the large particle size powder and the small particle size powder were mixed.
  • the mixing ratio of the large particle size powder and the small particle size powder was set to 1:2 to 2:1.
  • Titanium oxide, aluminum oxide and an organic binder were added to the resulting slurry and stirred with a rotary blade.
  • the slurry after stirring was dried and granulated with a spray dryer to obtain a powder.
  • the average particle size of the powder was 40 ⁇ m.
  • This powder was poured into a columnar mold, uniaxially pressed at a pressure of 33 MPa, and further subjected to CIP treatment at 170 MPa to obtain a compact.
  • the compact is placed in an electric furnace, heated from room temperature at a rate of 10° C./min, held at 500° C.
  • the obtained zirconia calcined body was heated to the firing temperature (maximum firing temperature) shown in Table 1 at a rate of 10° C./min and held for the time shown in Table 1 to obtain a zirconia sintered body.
  • Zirconia powder "Zpex Smile (registered trademark)" (raw material 3) manufactured by Tosoh Corporation is poured into a columnar mold, uniaxially pressed at a pressure of 33 MPa, and then further CIP-treated at 170 MPa to obtain a compact. rice field.
  • the compact is placed in an electric furnace, heated from room temperature at a rate of 10° C./min, held at 500° C. for 2 hours to degrease the organic component, held at 1000° C. for 2 hours, and maintained at ⁇ 0.4° C./min. to obtain a zirconia calcined body.
  • the obtained zirconia calcined body was heated to the firing temperature (maximum firing temperature) shown in Table 1 at a rate of 10° C./min and held for the time shown in Table 1 to obtain a zirconia sintered body.
  • the characteristics of the zirconia sintered bodies produced in each example and comparative example were measured by the following methods.
  • Particles that do not overlap the edges of the image are the objects of measurement.
  • the term "particles that do not overlap the edges of the image” means particles excluding particles whose outlines do not fit within the screen of the SEM photograph image (particles whose outlines are interrupted on the upper, lower, left, and right boundaries).
  • the grain size of all particles not overhanging the image edge was selected in Image-Pro Plus with the option to exclude all borderline particles.
  • the particle size of each particle in three fields of view was obtained for one sample of each example and comparative example. 2 shows an SEM image of the zirconia sintered body of Example 5.
  • FIG. 3 shows an SEM image of the zirconia sintered body of Comparative Example 1
  • FIG. 4 shows an SEM image of the zirconia sintered body of Comparative Example 4. As shown in FIG.
  • the particle size data of each particle obtained for each example and comparative example is classified into three classes of less than 0.45 ⁇ m, 0.45 ⁇ m or more and less than 1.0 ⁇ m, and 1.0 ⁇ m or more, and the total number of data is 100 for each. %, the number ratio of the number of data in each particle size range was calculated.
  • ⁇ Method for measuring translucency of sintered body The obtained zirconia sintered body was ground into a flat plate sample having a thickness of 1.20 mm.
  • measurement mode 7 band LED light source, lightness (L W * ) when chromaticity is measured against a white background.
  • Table 1 shows the average values of the measured values.
  • Translucency ⁇ L * (WB) was evaluated as “ ⁇ ” when 15 or more, “ ⁇ ” when 13 or more and less than 15, and “X” when less than 13.
  • ⁇ L * (WB) is preferably 13 or more, more preferably 14 or more, and 15 or more. is more preferred.
  • ⁇ Method for measuring biaxial bending strength of sintered body A sample having a diameter of 15 mm and a thickness of 1.2 mm was obtained from the obtained zirconia sintered body.
  • the sintered body of the obtained sample was measured in accordance with JIS T 6526: 2012 using a universal precision testing machine Autograph manufactured by Shimadzu Corporation (trade name "AG-I 100 kN") at a crosshead speed of 1.
  • the biaxial bending strength was evaluated as " ⁇ " when 550 MPa or more, and as " ⁇ " when less than 550 MPa.
  • ⁇ Method for measuring tetragonal/cubic crystal system ratio The surface of the zirconia sintered body was mirror-finished and subjected to X-ray diffraction (XRD; X-Ray Diffraction) measurement.
  • XRD X-ray diffraction
  • f t/(t+c) 100 ⁇ I t /(I t +I c ) (1)
  • f t / (t + c) represents the ratio of tetragonal system / (tetragonal system + cubic system) in the zirconia sintered body
  • the zirconia sintered body of the present invention can achieve both high translucency that can be suitably used for front teeth and canine teeth (especially central incisors and lateral central incisors) and high strength. .
  • it is fired in a short time, it has excellent translucency, and compared to normal firing (fired at the maximum firing temperature for 120 minutes), the strength is higher, and even in a short time firing, it has high transparency. It was confirmed that both brightness and strength were achieved.
  • Comparative Examples 1 to 3 the proportion of medium particles as in the Examples was not obtained. Therefore, in Comparative Examples 1 to 3, the ratio of medium particles was not obtained as in Examples, and high translucency was not obtained.
  • Comparative Example 4 corresponding to Patent Document 2 since the yttria raw material was not separated as a raw material, yttria was dissolved in zirconia, and the proportion of medium particles as in the example could not be obtained, resulting in high strength. was not obtained.
  • Comparative Examples 1 to 3 correspond to Examples 24, 26 and 1 of Patent Document 1 (International Publication No. 2014/142080), respectively.
  • the zirconia sintered body of the present invention can be suitably used for dental applications.
  • the zirconia sintered body of the present invention is useful as a dental prosthesis for anterior teeth and canine teeth (especially central incisors and lateral central incisors).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本発明は、前歯及び犬歯(特に、中切歯、側中切歯)にも好適に使用できる高い透光性と、高い強度とを両立させたジルコニア焼結体及びその製造方法を提供する。本発明は、ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア焼結体であって、前記ジルコニア焼結体の結晶粒子が、個数基準の粒子径分布において、粒子径が0.45μm以上1μm未満である粒子を20~50%の割合で含み、前記粒子径が、粒子の重心を通る直径である、ジルコニア焼結体に関する。

Description

ジルコニア焼結体及びその製造方法
 本発明は、ジルコニア焼結体及びその製造方法に関する。詳しくは、本発明は、前歯及び犬歯(特に、中切歯、側中切歯)にも好適に使用できる高い透光性と、高い強度とを両立させたジルコニア焼結体及びその製造方法に関する。
 セラミックの焼結とは、一般的に、系の自由エネルギーが減少する方向の物質移動現象である。セラミックス粉末を固相焼結する場合、粉末に含まれる一次粒子は、その粒子径と焼成温度に依存して、焼成時間とともに、表面積及び界面が減少しながら粒成長する。粒成長は粉末に含まれる粒子径が小さく、かつ物質移動先の粒径との差が大きいほど起きやすいことが知られている。
 また、セラミックス焼結体は、一般的に、焼結体に含まれる粒径が小さいほど粒界面積が増加し高強度及び高靭性となる傾向にあることが知られている。さらに、セラミックス焼結体は、焼結体に含まれる粒径として可視光線の波長より十分に大きい粒子が多く含まれるほど、粒子による光の散乱が抑えられ、焼結体の透光性が高くなる傾向にあることも知られている。したがって、セラミックスの強度と透光性の両立には、焼結体に含まれる粒径が小さいものと、十分に大きい粒子とが、存在していることが求められている。
 セラミックスとして、例えば、ジルコニアは、高強度、かつ高靭性を有するため、安定化剤としてイットリア(酸化イットリウム;Y)を少量固溶させたジルコニア焼結体(以下、「部分安定化ジルコニア焼結体」と称する場合もある)が用いられている。
 部分安定化ジルコニア焼結体を歯科材料として使用する場合、高強度、及び高靱性という機械的特性の観点からのみならず、歯科用途特有の審美性の観点から、透光性、色調等の光学的特性も求められている。これまでに、部分安定化ジルコニア焼結体において、焼結体の強度及び靭性が高く、天然歯の模倣を目的とした審美性を有するジルコニア焼結体に関する検討がなされてきた。
 例えば、特許文献1、2が挙げられる。特許文献1では、ジルコニア焼結体の断面写真において、各ジルコニア粒子の断面積を算出し、該断面積から、各ジルコニア粒子が円形であると仮定した場合の各ジルコニア粒子の換算粒径を算出し、ジルコニア粒子径を0.4μm未満、0.4μm以上0.76μm未満、及び0.76μm以上の3クラスに分類し、換算粒径が0.4μm未満のジルコニア粒子の断面積割合が4%以上35%以下、換算粒径が0.4μm以上0.76μm未満のジルコニア粒子の断面積割合が24%以上57%以下、換算粒径が0.76μm以上のジルコニア粒子の断面積割合が16%以上62%以下であるジルコニア焼結体が開示されている。さらに、前記ジルコニア焼結体は、高い曲げ強度及び破壊靭性を有し、適度な透明度を有することが開示されており、実施例1では透過率が30%であることが開示されている。
 また、特許文献2では、4.0mol%を超え6.5mol%以下のイットリアと、0.1wt%未満のアルミナを含有し、相対密度が99.82%以上であり、厚さ1.0mmにおける600nm波長の光に対する全光線透過率が37%以上40%未満であり、かつ曲げ強度が500MPa以上である透光性ジルコニア焼結体が開示されている。
国際公開2014/142080号 特開2015-143178号公報
 本発明者らが確認したところ、特許文献1のジルコニア焼結体は、適度な透明度を有するものの、前歯及び犬歯(特に、中切歯、側中切歯)に要求される透光性も次第に高まっており、より高い透光性(例えば、中切歯などで求められる透過率は40%程度以上等)が必要になってきていることから、そのような要求を満たす前歯及び犬歯用の歯科用製品を製造するために、ジルコニア焼結体の透光性についてはさらなる改善の余地があった。
 また、本発明者らが確認したところ、特許文献2のジルコニア焼結体は、2軸曲げ強さが低く、強度について、さらなる改善の余地があった。
 本発明は、前歯及び犬歯(特に、中切歯、側中切歯)にも好適に使用できる高い透光性と、高い強度とを両立させたジルコニア焼結体及びその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ジルコニア焼結体の結晶粒子が、個数基準の粒子径分布において、粒子径が0.45μm以上1μm未満である粒子を20~50%の割合で含むことによって、高い透光性と、高い強度とを両立できることを見い出し、この知見に基づいてさらに研究を進め、本発明を完成するに至った。
 すなわち、本発明は以下の発明を包含する。
[1]ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア焼結体であって、
 前記ジルコニア焼結体の結晶粒子が、個数基準の粒子径分布において、粒子径が0.45μm以上1μm未満である粒子を20~50%の割合で含み、
 前記粒子径が、粒子の重心を通る直径である、ジルコニア焼結体。
[2]前記ジルコニア焼結体の結晶粒子が、個数基準の粒子径分布において、粒子径が0.45μm未満である粒子を20~70%の割合で含む、[1]に記載のジルコニア焼結体。
[3]前記ジルコニア焼結体の結晶粒子が、個数基準の粒子径分布において、粒子径が1μm以上である粒子を6~35%の割合で含む、[1]又は[2]に記載のジルコニア焼結体。
[4]前記ジルコニアの結晶系において、以下の式(1)で算出される、正方晶系と立方晶系の合計に対する正方晶系の割合が、0~70%である、[1]~[3]のいずれかに記載のジルコニア焼結体。
 ft/(t+c)=100×I/(I+I)   (1)
 (式中、ft/(t+c)はX線回折で測定されるジルコニア焼結体における正方晶系/(正方晶系+立方晶系)の比率を表し、Iは2θ=30.2°付近のピーク(正方晶系に基づくピーク)の高さを表し、Iは2θ=30.1°付近のピーク(立方晶系に基づくピーク)の高さを表す。)
[5]前記正方晶系と立方晶系の合計に対する正方晶系の割合が、40~65%である、[4]に記載のジルコニア焼結体。
[6]JIS T 6526:2012に準拠して測定された2軸曲げ強さが、550MPa以上である、[1]~[5]のいずれかに記載のジルコニア焼結体。
[7]前記安定化剤が、イットリアである、[1]~[6]のいずれかに記載のジルコニア焼結体。
[8]イットリアの含有率が、ジルコニアとイットリアの合計molに対して、3.0~7.5mol%である、[7]に記載のジルコニア焼結体。
[9]ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア焼結体の製造方法であって、
 ジルコニア粉末と、ジルコニアの相転移を抑制可能な安定化剤粉末とを含む原料粉末を使用し、
 前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、
[1]~[8]のいずれかに記載のジルコニア焼結体の製造方法。
[10]前記安定化剤粉末の体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲におけるピークトップの頻度(A)と、粒子径0.5μm以上の範囲におけるピークトップの頻度(B)との比率(A):(B)が40:60~85:15である、[9]に記載のジルコニア焼結体の製造方法。
[11]前記安定化剤が、イットリアである、[9]又は[10]に記載のジルコニア焼結体の製造方法。
[12]イットリアの含有率が、ジルコニアとイットリアの合計molに対して、3.0~7.5mol%である、[11]に記載のジルコニア焼結体の製造方法。
[13]前記原料粉末を成形してジルコニア成形体を作製する、[9]~[12]のいずれかに記載のジルコニア焼結体の製造方法。
[14]前記ジルコニア成形体を仮焼してジルコニア仮焼体を作製する、[13]に記載のジルコニア焼結体の製造方法。
[15]前記ジルコニア成形体又は前記ジルコニア仮焼体を焼成する、[13]又は[14]に記載のジルコニア焼結体の製造方法。
[16]ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア仮焼体の製造方法であって、
 ジルコニア粉末と、ジルコニアの相転移を抑制可能な安定化剤粉末とを含む原料粉末を使用し、
 前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、
ジルコニア仮焼体の製造方法。
[17]前記原料粉末を成形してジルコニア成形体を作製する、[16]に記載のジルコニア仮焼体の製造方法。
[18]前記ジルコニア成形体を仮焼する、[17]に記載のジルコニア仮焼体の製造方法。
[19]ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア含有組成物の製造方法であって、
 前記ジルコニアの原料を粉砕してジルコニア粉末を作製し、
 前記安定化剤の原料を粉砕して安定化剤粉末を作製し、
 前記ジルコニア粉末と、前記安定化剤粉末とを混合して原料粉末であるジルコニア組成物を作製し、
 前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、
ジルコニア含有組成物の製造方法。
[20]前記安定化剤の原料の粉砕時間が30時間以下である、[19]に記載のジルコニア含有組成物の製造方法。
[21]前記ジルコニアの原料の粉砕時間が20時間以上である、[19]又は[20]に記載のジルコニア含有組成物の製造方法。
[22]前記安定化剤が、イットリアである、[19]~[21]のいずれかに記載のジルコニア含有組成物の製造方法。
 本発明によれば、前歯及び犬歯(特に、中切歯、側中切歯)にも好適に使用できる高い透光性と、高い強度とを両立させたジルコニア焼結体及びその製造方法を提供できる。また、本発明の製造方法によれば、短時間で焼成した場合においても、高い透光性と、高い強度とを両立させたジルコニア焼結体を提供できる。
図1は、実施例1~14の原料粉末に用いるイットリア粉末の粒子径分布(体積基準)を表す。 図2は、実施例5に係るジルコニア焼結体の電子顕微鏡による観察画像を表す。 図3は、比較例1に係るジルコニア焼結体の電子顕微鏡による観察画像を表す。 図4は、比較例4に係るジルコニア焼結体の電子顕微鏡による観察画像を表す。
 本発明のジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア焼結体であって、前記ジルコニア焼結体の結晶粒子が、個数基準の粒子径分布において、粒子径が0.45μm以上1μm未満である粒子を20~50%の割合で含む。また、前記粒子径は、粒子の重心を通る直径を意味する。個数基準の粒子径分布の測定方法は、後記する実施例に記載のとおりである。測定部位は、特に限定されず、ジルコニア焼結体の表面であってもよく、ジルコニア焼結体の断面であってもよい。
 なお、本明細書において、数値範囲(各成分の含有量、各成分から算出される値及び各物性等)の上限値及び下限値は適宜組み合わせ可能である。
 本発明において、粒子径分布としては、個数基準を用いる。例えば、特許文献1では、表2に示されるように、合計面積を算出し、面積の割合を選択する面積基準で粒子径分布が検討されている。しかしながら、本発明者らの検討によれば、個数基準で検討した際の粒子径が0.45μm以上1μm未満である粒子(以下、「中粒子」とも称する。)が、安定化剤の影響との関係で、割合によっては、透光性と強度を低下させる方向に作用することが見い出された。特許文献1では面積割合で算出しているため、粒子径が大きい粒子が1つ増えるだけで面積割合が大きく変わってしまう。それに対して、本発明では、粒子の個数割合を評価するため、各サイズの粒子の存在比に起因する透光性及び強度をより効率的に高めることができる。
 本発明のジルコニア焼結体では、結晶粒子は、個数基準の粒子径分布において、粒子径が0.45μm以上1μm未満である粒子を20~50%の割合で含む。個数基準の粒子径分布において、中粒子の割合を所定の割合とすることで、粒子径が1μm以上である粒子に主に起因する透光性をより高め、粒子径が0.45μm未満である粒子に主に起因する強度を高めることができる。
 中粒子の割合は、ジルコニア焼結体の透光性及び強度の点から、21%以上であることが好ましく、22%以上であることがより好ましく、23%以上であることがさらに好ましく、24%以上であることが特に好ましい。また、中粒子の割合は、ジルコニア焼結体の透光性及び強度の点から、49%以下であることが好ましく、40%以下であることがより好ましく、36%以下であることがさらに好ましく、30%以下であることが特に好ましい。中粒子の割合の好ましい範囲は、前記上限値及び下限値から適宜組み合わせ可能であり、例えば、21~49%であってもよく、22~40%であってもよく、23~36%であってもよい。
 中粒子の割合が、粒子径分布において、50%を超えると、ジルコニア焼結体の強度と透光性が低下するため、好ましくない。また、中粒子の割合が、粒子径分布において、20%未満であると、粒子径が0.45μm未満である粒子(以下、「小粒子」とも称する。)と、粒子径が1μm以上である粒子(以下、「大粒子」とも称する。)との屈折率差が大きくなることによって光が散乱し、全体の透光性が著しく低下するおそれがあるため、好ましくない。中粒子の割合が所定の割合で存在することで、屈折率差が緩衝され、光が小粒子から大粒子へ透過する際の光の散乱が抑制される。
 また、本発明のジルコニア焼結体では、結晶粒子は、個数基準の粒子径分布において、粒子径が0.45μm未満である粒子を20~70%の割合で含むことが好ましい。小粒子の割合は、ジルコニア焼結体の強度をより向上させる点から、22%以上であることがより好ましく、30%以上であることがさらに好ましく、35%以上であることが特に好ましい。また、小粒子の割合は、ジルコニア焼結体の強度をより向上させる点から、69%以下であることがより好ましく、68.5%以下であることがさらに好ましく、68%以下であることが特に好ましい。
 また、本発明のジルコニア焼結体では、結晶粒子は、個数基準の粒子径分布において、粒子径が1μm以上である粒子を6~35%の割合で含むことが好ましい。大粒子の割合は、ジルコニア焼結体の透光性をより向上させる点から、6.5%以上であることがより好ましく、7%以上であることがさらに好ましく、8%以上であることが特に好ましい。また、大粒子の割合は、ジルコニア焼結体の透光性をより向上させる点から、33%以下であることがより好ましく、30%以下であることがさらに好ましく、20%以下であることが特に好ましい。
 また、本発明のジルコニア焼結体では、透光性及び強度により優れる点から、上記中粒子、小粒子、及び大粒子の割合に加えて、各粒子の配合バランスを調整してもよい。本発明のジルコニア焼結体としては、透光性及び強度により優れる点から、個数基準の粒子径分布(%)において、小粒子の割合が3つの粒子で一番多いことが好ましく、小粒子の割合が中粒子の割合の1.5倍以上であることがより好ましい。また、本発明のジルコニア焼結体としては、透光性及び強度により優れる点から、大粒子の割合が一番少ないことが好ましく、大粒子の割合が中粒子の割合の0.8倍以下であることがより好ましい。
 本発明のジルコニア焼結体の主たる結晶系は、正方晶系及び立方晶系のいずれであってもよいが、ジルコニア焼結体の透光性及び強度の点から、正方晶系と立方晶系が一定の割合で混在していることが好ましい。主たる結晶系とは、ジルコニア中のすべての結晶系(単斜晶系、正方晶系及び立方晶系)の総量に対して、他の結晶系に比べて、一番割合が高い結晶系を意味する。
 当該ジルコニア焼結体において、正方晶系/(正方晶系+立方晶系)の比率(以下、「正方晶系と立方晶系の合計に対する正方晶系の割合」ともいう。)が80%未満であることが好ましく、ジルコニア焼結体の透光性及び強度がより優れる点から、70%以下であることがより好ましく、65%以下であることがさらに好ましく、50%以下であることが特に好ましい。また、0%以上であることが好ましく、ジルコニア焼結体の強度が優れる点から、30%以上であることがより好ましく、ジルコニア焼結体の透光性及び強度がより優れる点から、40%以上であることがさらに好ましく、41%以上であることが特に好ましい。正方晶系と立方晶系の合計に対する正方晶系の割合の好ましい範囲は、前記上限値及び下限値から適宜組み合わせ可能であり、例えば、40%以上65%以下であってもよく、41%以上50%以下であってもよい。
 本発明のジルコニア焼結体では、ジルコニアが有する結晶系において、正方晶系と立方晶系の合計に対する正方晶系の割合は、以下の式(1)で算出される。
 ft/(t+c)=100×I/(I+I)   (1)
 (式中、ft/(t+c)はX線回折で測定されるジルコニア焼結体における正方晶系/(正方晶系+立方晶系)の比率を表し、Iは2θ=30.2°付近のピーク(正方晶系に基づくピーク)の高さを表し、Iは2θ=30.1°付近のピーク(立方晶系に基づくピーク)の高さを表す。)
 前記正方晶系と立方晶系の合計に対する正方晶系の割合は、X線回折(XRD;X-Ray Diffraction)測定を行い、測定結果を用いて式(1)で算出することができる。
 本発明のジルコニア焼結体の2軸曲げ強さは、550MPa以上であることが好ましく、600MPa以上であることがより好ましく、650MPa以上であることがさらに好ましく、700MPa以上であることが特に好ましい。2軸曲げ強さは、JIS T 6526:2012に準拠して測定できる。具体的には、後記する実施例に記載の方法で測定できる。
 本発明のジルコニア焼結体の透光性(ΔL(W-B))は、天然歯のうち、特に前歯及び犬歯(例えば、中切歯、側中切歯)に近い色調を有する補綴物を作製する観点から、13以上であることが好ましく、特に前歯により近い色調を有する補綴物を作製しやすい点から、14であることがより好ましく、15であることがさらに好ましい。
 透光性(ΔL(W-B))は、オリンパス株式会社製の分光測色計(商品名「クリスタルアイ」)を用いて、測定モード:7band LED光源で、白背景にて色度を測定した場合の明度(L )と、同じ試料を用いて、同じ測定装置、測定モード、光源で黒背景にて色度を測定した場合の明度(L )を測定し、両者の差(ΔL=(L )-(L ))として算出される。試験片のサイズ等、測定条件は後記する実施例に記載のとおりである。
 ジルコニアの相転移を抑制可能な安定化剤(以下、単に「安定化剤」とも称する。)は、部分安定化ジルコニアを形成可能なものが好ましい。該安定化剤としては、例えば、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、イットリア(酸化イットリウム;Y)、酸化セリウム(CeO)、酸化スカンジウム(Sc)、酸化ニオブ(Nb)、酸化ランタン(La)、酸化エルビウム(Er)、酸化プラセオジム(Pr11、Pr)、酸化サマリウム(Sm)、酸化ユウロピウム(Eu)及び酸化ツリウム(Tm)等の酸化物が挙げられ、イットリアが好ましい。安定化剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 本発明のジルコニア焼結体中の安定化剤の含有率は、例えば、誘導結合プラズマ(ICP;Inductively Coupled Plasma)発光分光分析、蛍光X線分析等によって測定することができる。
 本発明のジルコニア焼結体において、該安定化剤の含有率は、ジルコニアと安定化剤の合計molに対して、0.1~18mol%が好ましく、1~15mol%がより好ましく、1.5~10mol%がさらに好ましい。
 本発明のジルコニア焼結体において、安定化剤がイットリアである場合、イットリアの含有率は、ジルコニアとイットリアの合計molに対して、ジルコニア焼結体の透光性及び強度の点から、3.0mol%以上であることが好ましく、4.5mol%以上であることがより好ましく、ジルコニア焼結体の透光性及び強度により優れる点から、5.0mol%以上であることがさらに好ましい。
 また、イットリアの含有率は、ジルコニアとイットリアの合計molに対して、ジルコニア焼結体の透光性及び強度の点から、7.5mol%以下であることが好ましく、7.0mol%以下であることがより好ましく、6.5mol%以下であることがさらに好ましい。イットリアの含有率の好ましい範囲は、前記上限値及び下限値の範囲内から適宜組み合わせ可能であり、例えば、3.0mol%以上7.5mol%以下であってもよく、4.5mol%以上6.5mol%以下であってもよい。ある実施形態においては、イットリアの含有率は、4.0mol%以上であってもよい。
 また、本発明の他の実施形態としては、ジルコニア粉末と、ジルコニアの相転移を抑制可能な安定化剤粉末とを含む原料粉末を使用し、前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、ジルコニア焼結体の製造方法が挙げられる。
 体積基準の粒子径分布は、例えば、株式会社堀場製作所製のレーザー回折/散乱式粒子径分布測定装置(商品名「Partica LA-950」)を用い、水で希釈したスラリーを30分間超音波照射して、その後、超音波を当てながら体積基準で測定することができる。
 ジルコニア焼結体の製造方法におけるジルコニアの相転移を抑制可能な安定化剤については、ジルコニア焼結体で説明した種類及び含有率と同様である。
 焼成後のジルコニア焼結体において、上記した所望の中粒子、大粒子、小粒子の割合が得られることから、前記安定化剤粉末は、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む。例えば、後記する実施例の結果(図1)のような粒子径分布が好ましい。
 ある好適な実施形態としては、焼成後のジルコニア焼結体において、上記した所望の中粒子、大粒子、小粒子の割合が得られやすい点から、ジルコニア粉末と、ジルコニアの相転移を抑制可能な安定化剤粉末とを含む原料粉末を使用し、前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に1つのピークトップを有する粉末を含む、ジルコニア焼結体の製造方法が挙げられる。
 前記安定化剤粉末の粒子径分布において、粒子径0.05~0.40μmの範囲におけるピークトップの頻度(A)と、粒子径0.5μm以上の範囲におけるピークトップの頻度(B)との比率(A):(B)は、上記した所望の中粒子、大粒子、小粒子の割合が得られることから、40:60~85:15であることが好ましく、45:55~82:18であることがより好ましく、50:50~80:20であることがさらに好ましい。前記比率(A):(B)は、以下の2つの式から算出される。
比率(A)=ピークトップの頻度(A)/(ピークトップの頻度(A)+ピークトップの頻度(B))×100
比率(B)=ピークトップの頻度(B)/(ピークトップの頻度(A)+ピークトップの頻度(B))×100
(式中、ピークトップの頻度(A)は、粒子径0.05~0.40μmの範囲におけるピークトップの頻度(%)を表し、ピークトップの頻度(B)は、粒子径0.5μm以上の範囲におけるピークトップの頻度(%)を表す。)
 ピークトップの頻度(A)及びピークトップの頻度(B)は、例えば、図1では、ピークの高さとしてそれぞれ確認できる。
 また、前記したいずれの実施形態においても、粒子径の範囲を0.1~0.40μmの範囲としてもよい。例えば、他のある好適な実施形態としては、ジルコニア粉末と、ジルコニアの相転移を抑制可能な安定化剤粉末とを含む原料粉末を使用し、前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.1~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、ジルコニア焼結体の製造方法が挙げられる。
 また、前記ジルコニア焼結体の製造方法は、原料粉末を成形してジルコニア成形体を作製する工程を含むことが好ましい。成形方法は特に限定されず、公知の方法(例えば、プレス成形等)を用いて、目的とする所望の形状(ブロック状、円盤状等)に成形することができる。
 ジルコニア成形体は、取り扱い性の観点などから、2軸曲げ強さが、2~10MPaの範囲内であることが好ましく、5~8MPaの範囲内であることがより好ましい。なお、ジルコニア成形体の2軸曲げ強さは、JIS T 6526:2012に準拠して測定することができる。
 また、前記ジルコニア焼結体の製造方法は、ジルコニア成形体を仮焼してジルコニア仮焼体を作製する工程を含むことが好ましい。
 本明細書において、ジルコニア仮焼体とは、ジルコニア粒子(粉末)がネッキング(固着)し、完全には焼結していない状態でブロック化した半焼結体である。
 本発明のジルコニア仮焼体の密度は、ジルコニア焼結体の透光性及び強度を高める観点から、2.75g/cm以上が好ましく、2.85g/cm以上がより好ましく、2.95g/cm以上がさらに好ましい。
 本発明のジルコニア仮焼体の曲げ強さは、機械加工を可能にする強度を確保するために、15MPa以上が好ましい。また、仮焼体の曲げ強さは、機械加工を容易にするために、70MPa以下が好ましく、60MPa以下がより好ましい。
 前記曲げ強さは、ISO 6872:2015(Dentistry-Ceramic materials)に準拠して測定することができるが、試験片の大きさの条件のみを変えて、5mm×10mm×50mmの大きさの試験片を用いて測定を行う。該試験片の面及びC面(試験片の角を45°の角度で面取りした面)は、600番のサンドペーパーで長手方向に面仕上げする。該試験片は、最も広い面が鉛直方向(荷重方向)を向くように配置する。3点曲げ試験測定において、支点間距離(スパン)は30mm、クロスヘッドスピードは0.5mm/分とする。
 本発明のジルコニア仮焼体は、本発明の効果を奏する限り、ジルコニア及び安定化剤以外の添加物を含有してもよい。該添加物としては、例えば、着色剤(顔料、複合顔料及び蛍光剤を含む)、バインダ、分散剤、消泡剤、可塑剤、アルミナ(Al)、酸化チタン(TiO)、シリカ(SiO)等が挙げられる。添加物は、1種を単独で使用してもよく、2種以上を併用してもよい。
 顔料としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Sb、Bi、Ce、Pr、Sm、Eu、Gd、Tb及びErの群から選択される少なくとも1つの元素の酸化物(具体的には、NiO、Cr等)が挙げられる。
 複合顔料としては、例えば、(Zr,V)O、Fe(Fe,Cr)、(Ni,Co,Fe)(Fe,Cr)・ZrSiO、(Co,Zn)Al等の複合酸化物が挙げられる。
 蛍光剤としては、例えば、YSiO:Ce、YSiO:Tb、(Y,Gd,Eu)BO、Y:Eu、YAG:Ce、ZnGa:Zn、BaMgAl1017:Eu等が挙げられる。
 バインダとしては、例えば、有機バインダが挙げられる。有機バインダとしては、例えば、アクリル系バインダ、パラフィン系バインダ、脂肪酸系バインダ、ポリビニルアルコール系バインダ等が挙げられる。
 分散剤としては、例えば、ポリカルボン酸アンモニウム(クエン酸三アンモニウム等)、ポリアクリル酸アンモニウム、アクリル共重合体樹脂、アクリル酸エステル共重合体、ポリアクリル酸、ベントナイト、カルボキシメチルセルロース、アニオン系界面活性剤(例えば、ポリオキシエチレンラウリルエーテルリン酸エステル等のポリオキシエチレンアルキルエーテルリン酸エステル等)、非イオン系界面活性剤、オレイングリセリド、アミン塩型界面活性剤、オリゴ糖アルコール、ステアリン酸などが挙げられる。
 消泡剤としては、例えば、アルコール、ポリエーテル、シリコーン、ワックスなどが挙げられる。
 可塑剤としては、例えば、ポリエチレングリコール、グリセリン、プロピレングリコール、ジブチルフタル酸等が挙げられる。
 仮焼温度は、ブロック化を確実にするため、例えば、800℃以上が好ましく、900℃以上がより好ましく、950℃以上がさらに好ましい。また、仮焼温度は、寸法精度を高めるため、例えば、1200℃以下が好ましく、1150℃以下がより好ましく、1100℃以下がさらに好ましい。ジルコニア仮焼体の製造方法としては、800℃~1200℃であることが好ましい。このような焼成温度であれば、安定化剤の固溶は進行しないと考えられる。仮焼には、特に限定されず、公知の焼成炉を使用することができる。
 本発明のジルコニア仮焼体は切削加工して切削加工体を作製することができる。切削加工方法は特定の方法に限定されず、目的に応じて適宜好適な方法を選択することができる。例えば、ジルコニア仮焼体がディスクの形状である場合、当該ディスクをCAD/CAMシステムで歯科用製品(例えば歯冠形状の補綴物)の形状に切削加工して切削加工体を作製することができる。歯科用製品としては、例えば、コーピング、フレームワーク、クラウン、クラウンブリッジ、アバットメント、インプラント、インプラントスクリュー、インプラントフィクスチャー、インプラントブリッジ、インプラントバー、ブラケット、義歯床、インレー、オンレー、矯正用ワイヤー、ラミネートベニア等が挙げられる。
 また、前記ジルコニア焼結体の製造方法は、ジルコニア成形体又はジルコニア仮焼体を焼成する工程を含むことが好ましい。ジルコニア焼結体は、ジルコニア粒子が焼結に至る温度でジルコニア成形体又はジルコニア仮焼体を焼成して作製することができる(焼結工程)。
 焼成温度(最高焼成温度)は、ジルコニア成形体又は前記ジルコニア仮焼体の成分等に応じて適宜変更でき、特に限定されないが、1350℃以上が好ましく、1450℃以上がより好ましく、1500℃以上がさらに好ましい。焼成温度の上限は、特に限定されないが、例えば1700℃以下が好ましく、1650℃以下がより好ましく、1600℃以下がさらに好ましい。焼成には、特に限定されず、公知の焼成炉を使用することができる。
 焼結工程において、焼結可能温度(最高焼成温度)における保持時間は、120分以下が好ましく、90分以下がより好ましく、75分以下がさらに好ましく、60分以下がよりさらに好ましく、45分以下が特に好ましく、30分以下が最も好ましい。さらに、該保持時間は、より短時間の焼成とする場合、25分以下、20分以下、又は15分以下とすることもできる。また、該保持時間は1分以上が好ましく、5分以上がより好ましく、10分以上がさらに好ましい。本発明によれば、このような短い焼成時間であっても、作製されるジルコニア焼結体の透光性の低下を抑制することができ、高い強度も維持できる。また、焼成時間を短縮することにより、生産効率を高めるとともに、エネルギーコストを低減させることができる。
 焼結工程における昇温速度及び降温速度は、焼結工程に要する時間が短くなるように設定することが好ましく、特に限定されない。
 また、本発明の他の実施形態としては、ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア仮焼体の製造方法であって、ジルコニア粉末と、ジルコニアの相転移を抑制可能な安定化剤粉末とを含む原料粉末を使用し、前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、ジルコニア仮焼体の製造方法が挙げられる。
 ジルコニア仮焼体の製造方法におけるジルコニアの相転移を抑制可能な安定化剤については、ジルコニア焼結体で説明した種類及び含有率と同様である。また、安定化剤粉末のピークトップ、粒子径が0.05~0.40μmである範囲におけるピークトップの頻度(A)と、粒子径0.5μm以上の範囲におけるピークトップの頻度(B)との比率(A):(B)については、ジルコニア焼結体の製造方法におけるものと同様である。
 また、前記ジルコニア仮焼体の製造方法は、原料粉末を成形してジルコニア成形体を作製する工程を含むことが好ましい。形方法は特に限定されず、公知の方法(例えば、プレス成形等)を用いて、目的とする所望の形状(ブロック状、円盤状等)に成形することができる。
 また、前記ジルコニア仮焼体の製造方法は、ジルコニア成形体を仮焼してジルコニア仮焼体を作製する工程を含むことが好ましい。
 ジルコニア仮焼体の製造方法における仮焼については、ジルコニア焼結体の製造方法における仮焼温度及び焼成炉と同様である。
 さらに、本発明の他の実施形態としては、ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア含有組成物の製造方法であって、前記ジルコニアの原料を粉砕してジルコニア粉末を作製し、前記安定化剤の原料を粉砕して安定化剤粉末を作製し、前記ジルコニア粉末と、前記安定化剤粉末とを混合して原料粉末であるジルコニア組成物を作製し、前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、ジルコニア含有組成物の製造方法が挙げられる。
 ジルコニア含有組成物の製造方法におけるジルコニアの相転移を抑制可能な安定化剤については、ジルコニア焼結体で説明した種類及び含有率と同様である。
 安定化剤がイットリアである場合を例に挙げて、以下に説明する。
 イットリア原料を、公知の方法(例えば、ボールミル)で粉砕し、イットリア原料の粉砕時間が30時間以下であることが好ましく、20時間以下であることがより好ましく、15時間以下がさらに好ましく、10時間以下が特に好ましい。
 また、イットリア原料の粉砕時間は、1時間以上が好ましく、2時間以上がより好ましく、5時間以上がさらに好ましい。このような粉砕処理によって、安定化剤粉末は、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含むものが得られる。
 粉砕時間は、前記した所望のピークトップを有するイットリア粉末が得られるように、適宜調整できる。
 ジルコニア含有組成物が前記安定化剤粉末を含むことによって、焼成後のジルコニア焼結体において、上記した所望の中粒子、大粒子、小粒子の割合が得られる。
 また、イットリア原料とは別に、ジルコニアの原料を粉砕してジルコニア粉末を作製する。
 イットリア原料の粉砕とジルコニアの原料の粉砕とを別々にする理由は、イットリア原料を所望のピークトップを有するイットリア粉末とするために、イットリア原料とジルコニアの原料について、原料の粒子の大きさが異なるものを使用する、粉砕時間を分ける等の粉砕条件を区別したほうが好ましいためである。
 粉砕後に所望の粒子径分布を有するイットリア粉末を得るためのイットリア原料の平均粒子径(平均一次粒子径)は、イットリア粉末とジルコニア粉末を混合した原料粉末を用いることで焼成後のジルコニア焼結体において、上記した所望の中粒子、大粒子、小粒子の割合が得られることから、1.0μm以上であることが好ましく、2.0μm以上であることがより好ましい。また、イットリア原料の平均粒子径は、イットリア粉末とジルコニア粉末を混合した原料粉末を用いることで焼成後のジルコニア焼結体において、上記した所望の中粒子、大粒子、小粒子の割合が得られることから、10μm未満であることが好ましく、8μm以下であることがより好ましい。前記平均粒子径は、例えば、株式会社堀場製作所製のレーザー回折/散乱式粒子径分布測定装置(商品名「Partica LA-950」)を用い、水で希釈したスラリーを30分間超音波照射して、その後、超音波を当てながら体積基準で測定することができる。
 また、粉砕後にジルコニア粉末を得るためのジルコニアの原料の平均粒子径(平均一次粒子径)は、イットリア粉末とジルコニア粉末を混合した原料粉末を用いることで焼成後のジルコニア焼結体において、上記した所望の中粒子、大粒子、小粒子の割合が得られることから、0.01μm以上であることが好ましく、0.05μm以上であることがより好ましく、0.1μm以上であることがさらに好ましい。また、ジルコニアの原料の平均粒子径は、1μm未満であることが好ましく、0.6μm以下であることがより好ましく、0.4μm以下であることがさらに好ましい。ジルコニアの原料の平均粒子径は、イットリア原料の平均粒子径と同様の方法で測定できる。
 ジルコニアの原料としては、短時間で焼成した場合にも、強度を維持しつつ、透光性に優れる点から、単斜晶系を含むことが好ましい。ジルコニアの原料における単斜晶系の割合fは、単斜晶系、正方晶系及び立方晶系の総量に対して60%以上であることが好ましく、短時間で焼成した場合にも透光性により優れる点から、70%以上であることがより好ましく、80%以上であることがさらに好ましく、90%以上であることがよりさらに好ましく、95%以上であることが特に好ましい。
 単斜晶系の割合fは、以下の式(2)で算出される。
 f = I/(I+I+I)×100   (2)
(式中、fはジルコニアの原料の単斜晶系の割合(%)を表し、XRD測定において、Iは2θ=28°付近の単斜晶系のピーク強度を表し、Iは2θ=30.2°付近の正方晶系のピーク強度を表し、Iは2θ=30.1°付近の立方晶系のピーク強度を表す。)
 ジルコニアの原料の単斜晶系の割合fが前記割合であることで、得られるジルコニア成形体、ジルコニア仮焼体でも同様の単斜晶系の割合fが得られる。
 本発明のジルコニア含有組成物は、本発明の効果を奏する限り、ジルコニア及び安定化剤以外の添加物を含有してもよい。該添加物としては、例えば、着色剤(顔料、複合顔料及び蛍光剤を含む)、バインダ、分散剤、消泡剤、アルミナ(Al)、酸化チタン(TiO)、シリカ(SiO)等が挙げられる。添加物は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明のジルコニア含有組成物は、乾燥した状態であってもよいし、液体を含む状態又は液体に含まれる状態であってもよい。例えば、ジルコニア含有組成物は、パウダー状、ペースト状、スラリー状等の形態を採ることができる。
 本発明は、本発明の効果を奏する限り、本発明の技術的思想の範囲内において、上記の構成を種々組み合わせた実施形態を含む。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、本発明の技術的思想の範囲内で多くの変形が当分野において通常の知識を有する者により可能である。
[原料]
 ジルコニアの原料、及びイットリア原料としては、以下の原料1、2、3を使用した。
原料1は、単斜晶系が99%以上であって、平均一次粒子径が100nmであり、平均粒子径が11μmの二次粒子であるジルコニア粉末を使用した。
原料2は、平均粒子径が約3200nmのイットリア粉末を使用した。
原料3は、東ソー株式会社製のジルコニア粉末「Zpex Smile(登録商標)」を使用した。
[実施例1~14]
<ジルコニアスラリーの作製>
 ジルコニアの原料(原料1)を水に投入した。これとジルコニア製ビーズとを回転型の容器に入れて、ボールミル粉砕により、原料を、スラリーに含まれる粒子が所望の平均粒子径(約100nm)になるように粉砕処理(解砕処理)した。粒子径は、株式会社堀場製作所製のレーザー回折/散乱式粒子径分布測定装置(商品名「Partica LA-950」)を用い、水で希釈したスラリーを30分間超音波照射して、その後、超音波を当てながら体積基準で測定した。ボールミル処理時間が約20時間で所望のジルコニアスラリーを得た。
<イットリアスラリーの作製>
 次に、イットリア原料(原料2)を水に投入した。これとジルコニア製ビーズとを回転型の容器に入れて、ボールミル粉砕により、原料を、スラリーに含まれる粒子が所望の粒子径(0.05~0.40μmの範囲でのピークトップ頻度(A)と0.50μm以上の範囲でのピークトップ頻度(B)と比率(A):(B)が50:50~79:21)になるように粉砕処理した。粒子径は、株式会社堀場製作所製のレーザー回折/散乱式粒子径分布測定装置(商品名「Partica LA-950」)を用い、水で希釈したスラリーを30分間超音波照射して、その後、超音波を当てながら体積基準で測定した。ボールミル処理時間が約6~20時間で所望のイットリアスラリーを得た。
 続いて、得られたジルコニアスラリーと得られたイットリアスラリーを混合し、有機バインダを添加し、回転翼で撹拌した。撹拌後のスラリーを、スプレードライヤで乾燥造粒して粉末を得た。粉末の平均粒子径は40μmであった。この粉末を、柱状の金型に流し込み、33MPaの圧力で一軸加圧プレスした後、170MPaでさらにCIP処理して成形体を得た。成形体を電気炉に入れて、室温から10℃/分にて昇温して500℃で2時間係留して有機成分を脱脂し、1000℃で2時間保持し、-0.4℃/分にて徐冷してジルコニア仮焼体を得た。得られたジルコニア仮焼体を、表1に記載の焼成温度(最高焼成温度)まで10℃/分で昇温して表1に記載の時間係留してジルコニア焼結体を得た。
[比較例1~3]
 ジルコニアの原料(原料1)とイットリア原料(原料2)を水に投入した。これらとジルコニア製ビーズとを回転型の容器に入れて、ボールミルで粉砕した。このとき、ボールミル処理の時間を調整して、平均粒子径の大きい大粒径粉末(平均粒子径0.4μm)と、平均粒子径の小さい小粒径粉末(0.08μm)と、を作製した。粒子径は、株式会社堀場製作所製のレーザー回折/散乱式粒子径分布測定装置(商品名「Partica LA-950」)を用い、水で希釈したスラリーを30分間超音波照射して、その後、超音波を当てながら体積基準で測定した。
 続いて、大粒径粉末と小粒径粉末とを混合した。大粒径粉末と小粒径粉末の混合比を1:2~2:1とした。得られたスラリーに酸化チタン、酸化アルミニウム、有機バインダを添加し、回転翼で撹拌した。撹拌後のスラリーを、スプレードライヤで乾燥造粒して粉末を得た。粉末の平均粒子径は40μmであった。この粉末を、柱状の金型に流し込み、33MPaの圧力で一軸加圧プレスした後、170MPaでさらにCIP処理して成形体を得た。成形体を電気炉に入れて、室温から10℃/分にて昇温して500℃で2時間係留して有機成分を脱脂し、1000℃で2時間保持し、-0.4℃/分にて徐冷してジルコニア仮焼体を得た。得られたジルコニア仮焼体を、表1に記載の焼成温度(最高焼成温度)まで10℃/分で昇温して表1に記載の時間係留してジルコニア焼結体を得た。
[比較例4]
 東ソー株式会社製のジルコニア粉末「Zpex Smile(登録商標)」(原料3)を、柱状の金型に流し込み、33MPaの圧力で一軸加圧プレスした後、170MPaでさらにCIP処理して成形体を得た。成形体を電気炉に入れて、室温から10℃/分にて昇温して500℃で2時間係留して有機成分を脱脂し、1000℃で2時間保持し、-0.4℃/分にて徐冷してジルコニア仮焼体を得た。得られたジルコニア仮焼体を、表1に記載の焼成温度(最高焼成温度)まで10℃/分で昇温して表1に記載の時間係留してジルコニア焼結体を得た。
 各実施例及び比較例で製造されたジルコニア焼結体について、以下の方法で各特性を測定した。
<粒子径個数割合の測定方法>
 各実施例、又は比較例で得られた焼結体において、走査電子顕微鏡(商品名「VE-9800」、株式会社キーエンス製)にて表面の撮像(SEM像)を得た。
 得られた像に各結晶粒子の粒界を記載した後、画像解析にて結晶粒径を算出した。
 粒子径の計測には画像解析ソフトウェア(商品名「Image-Pro Plus ver. 7.0.1」、伯東株式会社製)を用い、取り込んだSEM像を二値化して、粒界が鮮明となるように輝度範囲を調節し、視野(領域)から粒子を認識させた。
 Image-Pro Plusで得られる粒子径とは、粒子の重心を通る直径であり、粒子径は、粒子の外形線から求まる重心を通る外形線同士を結んだ線分の長さを、重心を中心として2度刻みに測定して、測定した数値(180個)を平均化したものである。
 画像端にかかっていない粒子を計測の対象とした。「画像端にかかっていない粒子」とは、SEM写真像の画面内に、外形線が入りきらない粒子(上下左右の境界線上で外形線が途切れる粒子)を除いた粒子を意味する。
 画像端にかかっていない粒子全ての結晶粒径は、Image-Pro Plusにおいて、すべての境界線上の粒子を除外するオプションで選択した。
 各実施例及び比較例の1つのサンプルについて3視野の各粒子の粒子径を得た。
 図2は、実施例5のジルコニア焼結体のSEM像を示す。図3は比較例1のジルコニア焼結体のSEM像を示し、図4は、比較例4のジルコニア焼結体のSEM像を示す。
 各実施例、比較例ごとにそれぞれ得られた各粒子の粒子径データを0.45μm未満、0.45μm以上1.0μm未満、1.0μm以上の3クラスに分類し、それぞれ全データ数を100%とした際、それぞれの粒子径範囲のデータ数の個数割合を算出した。
<焼結体の透光性の測定方法>
 得られたジルコニア焼結体について、厚み1.20mmの平板試料に研磨加工した。当該試料について、オリンパス株式会社製の分光測色計(商品名「クリスタルアイ」)を用いて、測定モード:7band LED光源で、白背景にて色度を測定した場合の明度(L )と、同じ試料で、同じ測定装置、測定モード、光源で黒背景にて色度を測定した場合の明度(L )を測定し、両者の差(ΔL=(L )-(L ))を透光性(ΔL(W-B))とした(n=3)。
 測定値の平均値を表1に示す。透光性ΔL(W-B)は、15以上を「〇」、13以上15未満を「△」、13未満を「×」として評価した。天然歯(特に前歯及び犬歯)に近い色調を有する補綴物を作製する観点から、ΔL(W-B)が13以上であることが好ましく、14以上であることがより好ましく、15以上であることがさらに好ましい。
<焼結体の2軸曲げ強さの測定方法>
 得られたジルコニア焼結体について、直径15mm、厚さ1.2mmの試料を得た。得られた試料の焼結体を、JIS T 6526:2012に準拠して、島津製作所株式会社製の万能精密試験機オートグラフ(商品名「AG-I 100kN」)を用いて、クロスヘッドスピード1.0mm/分にて、2軸曲げ強さを測定した(n=5)。2軸曲げ強さは、550MPa以上を「○」、550MPa未満を「×」として評価した。
<正方晶系/立方晶系の結晶系比の測定方法>
 ジルコニア焼結体の表面を鏡面加工し、X線回折(XRD;X-Ray Diffraction)測定を行い、以下の式により求めた。
  ft/(t+c)=100×I/(I+I)   (1)
 ここで、ft/(t+c)はジルコニア焼結体における正方晶系/(正方晶系+立方晶系)の比率を表し、Iは2θ=30.2°付近のピーク(正方晶系に基づくピーク)の高さを表し、Iは2θ=30.1°付近のピーク(立方晶系に基づくピーク)の高さを表す。
Figure JPOXMLDOC01-appb-T000001
 上記結果から、本発明のジルコニア焼結体は、前歯及び犬歯(特に、中切歯、側中切歯)にも好適に使用できる高い透光性と、高い強度とを両立できることが確認できた。また、短時間で焼成するにもかかわらず、透光性に優れ、通常の焼成(最高焼成温度にて120分保持する焼成)に比べて、強度が高くなり、短時間焼成においても、高い透光性と強度を両立することが確認された。
 これに対して、比較例1~3では、実施例のような中粒子の割合が得られなかった。そのため、比較例1~3では実施例のような中粒子の割合が得られず、高い透光性が得られなかった。また、特許文献2に相当する比較例4では、原料として、イットリア原料を分けていないため、イットリアがジルコニアに固溶しており、実施例のような中粒子の割合が得られず、高い強度が得られなかった。
 上記比較例1~3は、下記表2に示すとおり、それぞれ特許文献1(国際公開2014/142080号)の実施例24、26及び1に相当する。
Figure JPOXMLDOC01-appb-T000002
 本発明のジルコニア焼結体は、歯科用途に好適に使用できる。特に、本発明のジルコニア焼結体は、前歯及び犬歯(特に、中切歯、側中切歯)の歯科用補綴物として有用である。

Claims (22)

  1.  ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア焼結体であって、
     前記ジルコニア焼結体の結晶粒子が、個数基準の粒子径分布において、粒子径が0.45μm以上1μm未満である粒子を20~50%の割合で含み、
     前記粒子径が、粒子の重心を通る直径である、ジルコニア焼結体。
  2.  前記ジルコニア焼結体の結晶粒子が、個数基準の粒子径分布において、粒子径が0.45μm未満である粒子を20~70%の割合で含む、請求項1に記載のジルコニア焼結体。
  3.  前記ジルコニア焼結体の結晶粒子が、個数基準の粒子径分布において、粒子径が1μm以上である粒子を6~35%の割合で含む、請求項1又は2に記載のジルコニア焼結体。
  4.  前記ジルコニアの結晶系において、以下の式(1)で算出される、正方晶系と立方晶系の合計に対する正方晶系の割合が、0~70%である、請求項1~3のいずれか1項に記載のジルコニア焼結体。
     ft/(t+c)=100×I/(I+I)   (1)
     (式中、ft/(t+c)はX線回折で測定されるジルコニア焼結体における正方晶系/(正方晶系+立方晶系)の比率を表し、Iは2θ=30.2°付近のピーク(正方晶系に基づくピーク)の高さを表し、Iは2θ=30.1°付近のピーク(立方晶系に基づくピーク)の高さを表す。)
  5.  前記正方晶系と立方晶系の合計に対する正方晶系の割合が、40~65%である、請求項4に記載のジルコニア焼結体。
  6.  JIS T 6526:2012に準拠して測定された2軸曲げ強さが、550MPa以上である、請求項1~5のいずれか1項に記載のジルコニア焼結体。
  7.  前記安定化剤が、イットリアである、請求項1~6のいずれか1項に記載のジルコニア焼結体。
  8.  イットリアの含有率が、ジルコニアとイットリアの合計molに対して、3.0~7.5mol%である、請求項7に記載のジルコニア焼結体。
  9.  ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア焼結体の製造方法であって、
     ジルコニア粉末と、ジルコニアの相転移を抑制可能な安定化剤粉末とを含む原料粉末を使用し、
     前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、
    請求項1~8のいずれか1項に記載のジルコニア焼結体の製造方法。
  10.  前記安定化剤粉末の体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲におけるピークトップの頻度(A)と、粒子径0.5μm以上の範囲におけるピークトップの頻度(B)との比率(A):(B)が40:60~85:15である、請求項9に記載のジルコニア焼結体の製造方法。
  11.  前記安定化剤が、イットリアである、請求項9又は10に記載のジルコニア焼結体の製造方法。
  12.  イットリアの含有率が、ジルコニアとイットリアの合計molに対して、3.0~7.5mol%である、請求項11に記載のジルコニア焼結体の製造方法。
  13.  前記原料粉末を成形してジルコニア成形体を作製する、請求項9~12のいずれか1項に記載のジルコニア焼結体の製造方法。
  14.  前記ジルコニア成形体を仮焼してジルコニア仮焼体を作製する、請求項13に記載のジルコニア焼結体の製造方法。
  15.  前記ジルコニア成形体又は前記ジルコニア仮焼体を焼成する、請求項13又は14に記載のジルコニア焼結体の製造方法。
  16.  ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア仮焼体の製造方法であって、
     ジルコニア粉末と、ジルコニアの相転移を抑制可能な安定化剤粉末とを含む原料粉末を使用し、
     前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、
    ジルコニア仮焼体の製造方法。
  17.  前記原料粉末を成形してジルコニア成形体を作製する、請求項16に記載のジルコニア仮焼体の製造方法。
  18.  前記ジルコニア成形体を仮焼する、請求項17に記載のジルコニア仮焼体の製造方法。
  19.  ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含むジルコニア含有組成物の製造方法であって、
     前記ジルコニアの原料を粉砕してジルコニア粉末を作製し、
     前記安定化剤の原料を粉砕して安定化剤粉末を作製し、
     前記ジルコニア粉末と、前記安定化剤粉末とを混合して原料粉末であるジルコニア組成物を作製し、
     前記安定化剤粉末が、体積基準の粒子径分布で、粒子径が0.05~0.40μmである範囲に少なくとも1つのピークトップを有し、かつ粒子径が0.5μm以上である範囲に少なくとも1つのピークトップを有する粉末を含む、
    ジルコニア含有組成物の製造方法。
  20.  前記安定化剤の原料の粉砕時間が30時間以下である、請求項19に記載のジルコニア含有組成物の製造方法。
  21.  前記ジルコニアの原料の粉砕時間が20時間以上である、請求項19又は20に記載のジルコニア含有組成物の製造方法。
  22.  前記安定化剤が、イットリアである、請求項19~21のいずれか1項に記載のジルコニア含有組成物の製造方法。
PCT/JP2022/047908 2021-12-27 2022-12-26 ジルコニア焼結体及びその製造方法 WO2023127793A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247021928A KR20240110088A (ko) 2021-12-27 2022-12-26 지르코니아 소결체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-213271 2021-12-27
JP2021213271 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127793A1 true WO2023127793A1 (ja) 2023-07-06

Family

ID=86998909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047908 WO2023127793A1 (ja) 2021-12-27 2022-12-26 ジルコニア焼結体及びその製造方法

Country Status (2)

Country Link
KR (1) KR20240110088A (ja)
WO (1) WO2023127793A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269812A (ja) * 2008-04-09 2009-11-19 Tosoh Corp 透光性ジルコニア焼結体及びその製造方法並びに用途
JP2010514665A (ja) * 2006-12-29 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー ジルコニア体及び方法
JP2011073907A (ja) * 2009-09-29 2011-04-14 World Lab:Kk ジルコニア焼結体及びその製造方法
WO2014142080A1 (ja) * 2013-03-11 2014-09-18 クラレノリタケデンタル株式会社 ジルコニア焼結体、並びにジルコニアの組成物及び仮焼体
JP2015143178A (ja) * 2013-12-24 2015-08-06 東ソー株式会社 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
WO2018056330A1 (ja) * 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 ジルコニア組成物、仮焼体及び焼結体、並びにそれらの製造方法
WO2022138881A1 (ja) * 2020-12-24 2022-06-30 クラレノリタケデンタル株式会社 ジルコニア仮焼体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514665A (ja) * 2006-12-29 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー ジルコニア体及び方法
JP2009269812A (ja) * 2008-04-09 2009-11-19 Tosoh Corp 透光性ジルコニア焼結体及びその製造方法並びに用途
JP2011073907A (ja) * 2009-09-29 2011-04-14 World Lab:Kk ジルコニア焼結体及びその製造方法
WO2014142080A1 (ja) * 2013-03-11 2014-09-18 クラレノリタケデンタル株式会社 ジルコニア焼結体、並びにジルコニアの組成物及び仮焼体
JP2015143178A (ja) * 2013-12-24 2015-08-06 東ソー株式会社 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
WO2018056330A1 (ja) * 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 ジルコニア組成物、仮焼体及び焼結体、並びにそれらの製造方法
WO2022138881A1 (ja) * 2020-12-24 2022-06-30 クラレノリタケデンタル株式会社 ジルコニア仮焼体

Also Published As

Publication number Publication date
KR20240110088A (ko) 2024-07-12

Similar Documents

Publication Publication Date Title
JP6688838B2 (ja) ジルコニア焼結体、並びにジルコニアの組成物及び仮焼体
JP7198667B2 (ja) ジルコニア組成物、仮焼体及び焼結体、並びにそれらの製造方法
KR102411223B1 (ko) 지르코니아 조성물, 가소체 및 소결체 그리고 이들의 제조 방법, 그리고 적층체
JP7213829B2 (ja) 歯科用に好適なジルコニア仮焼体
JP7213268B2 (ja) 歯科用に好適なジルコニア仮焼体
JP6912689B1 (ja) 加工性ジルコニア複合焼結体の製造方法、加工性ジルコニア複合焼結体の原料組成物及び加工性ジルコニア複合仮焼体
WO2021020582A1 (ja) ジルコニア焼結体の製造方法
JP6920573B1 (ja) ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びにそれらの製造方法
JP7001310B1 (ja) 歯科用に好適なジルコニア仮焼体
WO2020218541A1 (ja) 歯科用に好適なジルコニア仮焼体及びその製造方法
WO2021125351A1 (ja) ジルコニア焼結体の製造方法
WO2022071348A1 (ja) 良切削性のジルコニア仮焼体
WO2023127793A1 (ja) ジルコニア焼結体及びその製造方法
WO2023127792A1 (ja) ジルコニア焼結体及びその製造方法
WO2023234400A1 (ja) 歯科用被加工体及びその製造方法
WO2023127564A1 (ja) 歯科用アルミナ被加工体
WO2024127666A1 (ja) 歯科用アルミナ被加工体
WO2023234399A1 (ja) ジルコニア複合焼結体及びその製造方法
WO2023234398A1 (ja) ジルコニア複合焼結体及びその製造方法
WO2023127562A1 (ja) 高透光性アルミナ焼結体となる歯科用アルミナ仮焼体
WO2024127664A1 (ja) 高透光性アルミナ焼結体となる歯科用アルミナ仮焼体
KR20240116794A (ko) 지르코니아 소결체 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023571005

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247021928

Country of ref document: KR

Kind code of ref document: A