WO2023127591A1 - Sensor-equipped vacuum heat insulation material - Google Patents

Sensor-equipped vacuum heat insulation material Download PDF

Info

Publication number
WO2023127591A1
WO2023127591A1 PCT/JP2022/046828 JP2022046828W WO2023127591A1 WO 2023127591 A1 WO2023127591 A1 WO 2023127591A1 JP 2022046828 W JP2022046828 W JP 2022046828W WO 2023127591 A1 WO2023127591 A1 WO 2023127591A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
thermoelectric conversion
conversion member
insulating material
sensor
Prior art date
Application number
PCT/JP2022/046828
Other languages
French (fr)
Japanese (ja)
Inventor
一聡 鈴木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023127591A1 publication Critical patent/WO2023127591A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the present invention relates to a vacuum insulation material with a sensor.
  • Such a vacuum heat insulating material is used, for example, as a heat insulating material for cold storage containers.
  • Cooling containers are used, for example, for transporting and storing vaccines that are inactivated at room temperature.
  • the present invention provides a sensor-equipped vacuum insulation material that can process signals from sensors installed in packaging materials.
  • the present invention [1] provides a heat insulating material having a predetermined thickness, a packaging material for vacuum packaging the heat insulating material, and a filamentous first thermoelectric conversion member arranged inside the packaging material, wherein the heat insulating material and a first thermoelectric conversion member having a portion having a predetermined length in the thickness direction of the heat insulating material and generating an electromotive force due to a temperature difference in the thickness direction of the heat insulating material; and a circuit arranged inside the packaging material and operated by the electromotive force of the first thermoelectric conversion member, the circuit processing a signal from the sensor.
  • a heat insulating material having a predetermined thickness
  • a packaging material for vacuum packaging the heat insulating material and a filamentous first thermoelectric conversion member arranged inside the packaging material, wherein the heat insulating material and a first thermoelectric conversion member having a portion having a predetermined length in the thickness direction of the heat insulating material and generating an electromotive force due to a temperature difference in the thickness direction of
  • the heat insulating material, the filamentous first thermoelectric conversion member, the sensor, and the circuit for processing the signal from the sensor are arranged inside the packaging material.
  • the first thermoelectric conversion member has a portion arranged inside the heat insulating material.
  • the portion arranged inside the heat insulating material has a predetermined length in the thickness direction.
  • the first thermoelectric conversion member can generate a large electromotive force using the temperature difference ensured by the heat insulating material.
  • the circuit that processes the signal from the sensor is operated by the electromotive force of the first thermoelectric conversion member.
  • the signal from the sensor installed inside the packaging material can be processed by a circuit operated by the electromotive force of the first thermoelectric conversion member.
  • the present invention [2] includes the vacuum heat insulating material with a sensor according to [1] above, wherein the sensor is a vacuum sensor that operates by the electromotive force of the first thermoelectric conversion member.
  • a decrease in the degree of vacuum inside the packaging material is detected as an "abnormality of the vacuum insulation material with a sensor" that leads to a decrease in insulation performance, without the need for power supply from the outside of the packaging material. can.
  • the present invention [3] includes the vacuum heat insulating material with a sensor of [1] above, wherein the sensor is a temperature sensor that operates by the electromotive force of the first thermoelectric conversion member.
  • the present invention [4] includes the vacuum heat insulating material with a sensor of [1] above, wherein the sensor is a temperature sensor composed of a second thermoelectric conversion member independent of the first thermoelectric conversion member.
  • the electromotive force of the second thermoelectric conversion member can be used as "a signal from the sensor".
  • the temperature inside the packaging material can be detected as an "abnormality of the vacuum insulation material with a sensor" that leads to the deterioration of the insulation performance. can detect excessive fluctuations in
  • the present invention [5] is a vacuum heat insulating material having a plurality of sensors, the plurality of sensors being operated by the electromotive force of the first thermoelectric conversion member, the first thermoelectric conversion member. and a temperature sensor comprising a second thermoelectric conversion member independent of the first thermoelectric conversion member.
  • the present invention [6] includes a wireless module arranged inside the packaging material and capable of transmitting a signal from the sensor processed by the circuit. Includes vacuum insulation.
  • the signal from the sensor processed by the circuit can be wirelessly transmitted to the outside.
  • the present invention [7] includes the sensor-equipped vacuum heat insulating material of [6] above, which includes a control device capable of controlling the wireless module.
  • the present invention [8] includes the vacuum heat insulating material with a sensor according to [7] above, wherein the wireless module and the control device are operated by the electromotive force of the first thermoelectric conversion member.
  • the wireless module and the control device can also be installed inside the packaging material.
  • the present invention is a vacuum heat insulating material with a sensor according to any one of [1] to [8] above, wherein the heat insulating material contains at least one of glass wool, rock wool, fumed silica, and foamed polymer. including.
  • the present invention is a vacuum heat insulating material with a sensor according to any one of [1] to [9] above, wherein the first thermoelectric conversion member contains carbon nanotubes and a binder that binds the carbon nanotubes. including.
  • the present invention [11] includes the vacuum heat insulating material with a sensor of [10] above, wherein the first thermoelectric conversion member further contains a dopant.
  • the present invention [12] includes the vacuum heat insulating material with a sensor according to any one of [1] to [11] above, wherein the surface of the first thermoelectric conversion member is coated.
  • the coating can improve the strength and wear resistance of the first thermoelectric conversion member. Moreover, the coating can suppress deterioration of the first thermoelectric conversion member due to oxygen and moisture.
  • the present invention [13] includes the vacuum heat insulating material with a sensor according to any one of [1] to [12] above, wherein the first thermoelectric conversion member has a diameter of 150 ⁇ m or more.
  • the vacuum heat insulating material with a sensor of the present invention it is possible to process the signal from the sensor installed inside the packaging material.
  • FIG. 1 is a perspective view of one embodiment of the vacuum heat insulating material with a sensor of the present invention.
  • 2 is a cross-sectional view of the heat insulating material shown in FIG. 1.
  • FIG. 3 is a block diagram of the vacuum heat insulating material with a sensor shown in FIG. 1.
  • FIG. 4 is a perspective view showing a first modification of the vacuum heat insulating material with a sensor.
  • 5 is a block diagram of the vacuum heat insulating material with a sensor shown in FIG. 4.
  • FIG. FIG. 6 is a perspective view showing a second modification of the vacuum heat insulating material with a sensor.
  • FIG. 7 is a cross-sectional view showing a third modification of the vacuum heat insulating material with a sensor.
  • FIG. 8 is a cross-sectional view showing a fourth modification of the vacuum heat insulating material with a sensor.
  • Vacuum Heat Insulating Material with Sensor An embodiment of a vacuum heat insulating material 1 with a sensor will be described with reference to FIGS. 1 to 3 .
  • the sensor-equipped vacuum heat insulating material 1 includes a heat insulating material 2, a packaging material 3, at least one thermoelectric conversion member 4, and a circuit board 5.
  • the thermoelectric conversion member 4 is an example of a first thermoelectric conversion member.
  • the heat insulating material 2 has a predetermined thickness.
  • the heat insulating material 2 has a substantially rectangular flat plate shape.
  • the shape of the heat insulating material 2 is not limited.
  • the heat insulating material 2 has one surface S1 and the other surface S2 in the thickness direction of the heat insulating material 2. As shown in FIG. In the following description, the thickness direction of the heat insulating material 2 is referred to as "thickness direction".
  • the one surface S1 and the other surface S2 extend in the planar direction.
  • the plane direction intersects with the thickness direction.
  • the surface direction is perpendicular to the thickness direction.
  • the heat insulating material 2 has heat insulating performance and insulating performance.
  • the heat insulation performance of the heat insulating material 2 can be defined by the thermal conductivity of the heat insulating material 2 .
  • the insulation performance of the heat insulating material 2 can be defined by the resistance value of the heat insulating material 2 .
  • the thermal conductivity of the heat insulating material 2 is, for example, 1 W/m ⁇ K or less, preferably 0.5 W/m ⁇ K or less.
  • the thermal conductivity of the heat insulating material 2 is equal to or less than the above upper limit, a temperature difference can be ensured in the thickness direction, and an increase in the obtained electromotive force can be achieved.
  • the lower limit of the thermal conductivity of the heat insulating material 2 is not limited.
  • the thermal conductivity of the heat insulating material 2 is, for example, 0.01 W/m ⁇ K or more.
  • the resistance value of the heat insulating material 2 is not limited as long as the short circuit of the thermoelectric conversion member 4 can be prevented.
  • Examples of materials for the heat insulating material 2 include glass wool, rock wool, fumed silica, foamed polymer, polystyrene, polyethylene, urethane resin, melamine resin, phenolic resin, foamed glass, calcium silicate, perlite, cellulose fiber, alumina fiber, and ceramics. fiber, carbon fiber, and the like.
  • Materials for the heat insulating material 2 preferably include glass wool, rock wool, fumed silica, and foamed polymer, and more preferably glass wool.
  • the heat insulating material 2 contains at least one of glass wool, rock wool, fumed silica, and foamed polymer. If the heat insulating material 2 contains at least one of glass wool, rock wool, fumed silica, and foamed polymer, the heat insulating property of the heat insulating material 2 can be improved. Thereby, a temperature difference can be ensured in the thickness direction, and an increase in the obtained electromotive force can be achieved.
  • the insulation 2 comprises a layer of at least one of glass wool, rock wool, fumed silica and foamed polymer. More preferably, the heat insulating material 2 is made of glass wool.
  • the thickness of the heat insulating material 2 is, for example, 3 mm or more, preferably 10 mm or more.
  • a temperature difference can be ensured in the thickness direction, and an increase in the obtained electromotive force can be achieved.
  • the upper limit of the thickness of the heat insulating material 2 is not limited.
  • the thickness of the heat insulating material 2 is, for example, 100 mm or less.
  • the apparent density of the heat insulating material 2 is, for example, 200 kg/m 3 or less, preferably 100 kg/m 3 or less.
  • the weight of the vacuum heat insulating material 1 with a sensor can be reduced. Also, flexibility can be ensured in the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
  • the apparent density of the heat insulating material 2 is, for example, 10 kg/m 3 or more, preferably 24 kg/m 3 or more.
  • the apparent density of the heat insulating material 2 is equal to or higher than the above lower limit, a sufficient temperature difference can be ensured in the thickness direction.
  • the strength of the heat insulating material 2 can be ensured to the extent that the heat insulating material 2 can withstand the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
  • the apparent density of the heat insulating material 2 is, for example, 450 kg/m 3 or less, preferably 300 kg/m 3 or less.
  • the weight of the vacuum heat insulating material 1 with a sensor can be reduced. Also, flexibility can be ensured in the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
  • the apparent density of the heat insulating material 2 is, for example, 150 kg/m 3 or more, preferably 200 kg/m 3 or more.
  • the apparent density of the heat insulating material 2 is equal to or higher than the above lower limit, a sufficient temperature difference can be ensured in the thickness direction.
  • the strength of the heat insulating material 2 can be ensured to the extent that the heat insulating material 2 can withstand the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
  • the apparent density of the heat insulating material 2 is, for example, 60 kg/m 3 or less, preferably 45 kg/m 3 or less when the heat insulating material 2 is made of foamed polymer.
  • the weight of the vacuum heat insulating material 1 with a sensor can be reduced. Also, flexibility can be ensured in the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
  • the apparent density of the heat insulating material 2 is, for example, 5 kg/m 3 or more, preferably 20 kg/m 3 or more.
  • the apparent density of the heat insulating material 2 is equal to or higher than the above lower limit, a sufficient temperature difference can be ensured in the thickness direction.
  • the strength of the heat insulating material 2 can be ensured to the extent that the heat insulating material 2 can withstand the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
  • the packaging material 3 wraps the heat insulating material 2 .
  • the inside of the packaging material 3 is a vacuum. That is, the packaging material 3 vacuum-packages the heat insulating material 2 .
  • Vacuum refers to the state in a space filled with gas at a pressure lower than normal atmospheric pressure (JIS Z 8126-1: 1999). More specifically, the term “vacuum” refers to a state within a space filled with gas at a pressure lower than standard atmospheric pressure.
  • the degree of vacuum inside the packaging material 3 is, for example, 600 Pa or less, preferably 300 Pa or less.
  • the degree of vacuum in the packaging material 3 is equal to or less than the above upper limit, the heat insulating properties of the vacuum heat insulating material 1 with a sensor can be ensured.
  • the lower limit of the degree of vacuum inside the packaging material 3 is not limited.
  • the degree of vacuum inside the packaging material 3 is, for example, 1 Pa or more.
  • the packaging material 3 is made of a material that can transmit radio waves from a wireless module 54 (see FIG. 3), which will be described later.
  • a material for the packaging material 3 a conventionally known vacuum packaging material can be used.
  • thermoelectric conversion member 4 is used as a power source for the circuit board 5 .
  • thermoelectric conversion member 4 is arranged inside the packaging material 3 .
  • the thermoelectric conversion member 4 generates an electromotive force due to a temperature difference in the thickness direction.
  • the thermoelectric conversion member 4 has a plurality of P-type portions 41A, 41B and a plurality of N-type portions 42A, 42B.
  • the P-type portion 41A behaves as a P-type semiconductor.
  • the P-type portion 41A extends in the thickness direction. In this embodiment, the P-shaped portion 41A penetrates the heat insulating material 2 .
  • the P-shaped portion 41A has one end portion 411A, the other end portion 412A, and a body portion 413A. 411 A of one end parts are arrange
  • the one end portion 411A is arranged on one surface S1 of the heat insulating material 2 .
  • the other end 412A is arranged outside the heat insulating material 2 .
  • the other end portion 412A is arranged on the other surface S2 of the heat insulating material 2 .
  • the body portion 413A is arranged between the one end portion 411A and the other end portion 412A.
  • the body portion 413A is arranged inside the heat insulating material 2 . That is, the thermoelectric conversion member 4 has a portion (main body portion 413A) arranged inside the heat insulating material 2 .
  • 413 A of main-body parts have the same length as the thickness of the heat insulating material 2 in the thickness direction. That is, the body portion 413A has a predetermined length in the thickness direction. Note that the body portion 413A does not have to extend along the thickness direction.
  • the body portion 413A may be inclined with respect to the thickness direction.
  • the N-type portion 42A behaves as an N-type semiconductor.
  • the N-type portion 42A extends in the thickness direction. In this embodiment, the N-shaped portion 42A penetrates the heat insulating material 2 .
  • the N-type portion 42A has one end portion 421A, the other end portion 422A, and a body portion 423A. 421 A of one end parts are arrange
  • the one end portion 421A is arranged on one surface S1 of the heat insulating material 2 .
  • the other end 422A is arranged outside the heat insulating material 2 .
  • the other end portion 422A is arranged on the other surface S2 of the heat insulating material 2 .
  • the body portion 423A is arranged between the one end portion 421A and the other end portion 422A.
  • the body portion 423A is arranged inside the heat insulating material 2 .
  • 423 A of main-body parts have the same length as the thickness of the heat insulating material 2 in the thickness direction.
  • One end 421A of the N-type portion 42A is electrically connected to one end 411A of the P-type portion 41A.
  • one cell structure 4A of the ⁇ -type thermoelectric conversion element is formed from the P-type portion 41A and the N-type portion 42A.
  • the P-type portion 41B and the N-type portion 42B form one cell structure 4B of the ⁇ -type thermoelectric conversion element.
  • the other end 422A of the N-type portion 42A is electrically connected to the other end 412B of the P-type portion 41B. Thereby, the cell structure 4A and the cell structure 4B are connected in series.
  • the thermoelectric conversion member 4 is filamentous and has P-type portions 41 and N-type portions 42 alternately.
  • the thermoelectric conversion member 4 is sewn into the heat insulating material 2 so that the connecting portion between the P-type portion 41 and the N-type portion 42 is arranged on the surface of the heat insulating material 2 .
  • the thermoelectric conversion member 4 extends in the surface direction of the heat insulating material 2 while being folded.
  • the diameter of the thermoelectric conversion member 4 is, for example, 150 ⁇ m or more, preferably 300 ⁇ m or more. When the diameter of the thermoelectric conversion member 4 is equal to or greater than the above lower limit value, the electromotive force of the thermoelectric conversion member 4 can be increased.
  • the “diameter of the thermoelectric conversion member 4" is the minimum length of the thermoelectric conversion member 4 in the direction perpendicular to the extending direction of the thermoelectric conversion member 4 (radial direction of the thermoelectric conversion member 4). Specifically, when the cross section of the thermoelectric conversion member 4 in the radial direction is circular, the “diameter of the thermoelectric conversion member 4" refers to the diameter of the circle. When the cross section of the thermoelectric conversion member 4 in the radial direction is elliptical, the “diameter of the thermoelectric conversion member 4" refers to the length of the minor axis of the ellipse. When the thermoelectric conversion member 4 is ribbon-shaped, the “diameter of the thermoelectric conversion member 4 ” refers to the thickness of the thermoelectric conversion member 4 .
  • the diameter of the thermoelectric conversion member 4 is, for example, 3000 ⁇ m or less, preferably 1500 ⁇ m or less, more preferably 1000 ⁇ m. If the diameter of the thermoelectric conversion member 4 is equal to or less than the above upper limit value, it is possible to prevent the heat insulating performance of the heat insulating material 2 from deteriorating due to the thermoelectric converting member 4 sewn into the heat insulating material 2 .
  • the tensile strength of the thermoelectric conversion member 4 is, for example, 200 mN or more, preferably 400 mN or more. When the tensile strength of the thermoelectric conversion member 4 is equal to or higher than the above lower limit, breakage of the thermoelectric conversion member 4 can be suppressed in the step of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
  • the tensile strength of the thermoelectric conversion member 4 is measured by pulling the thermoelectric conversion member 4 with a length of 65 mm at a speed of 1 mm/minute using a tensile tester (EZ-S manufactured by Shimadzu Corporation).
  • the upper limit of the tensile strength of the thermoelectric conversion member 4 is not limited.
  • the tensile strength of the thermoelectric conversion member 4 is, for example, 3000 mN or less.
  • thermoelectric conversion member 4 contains a conductive material, a binder, and, if necessary, a dopant.
  • a conductive material has conductivity.
  • the conductive material gives conductivity to the thermoelectric conversion member 4 .
  • Conductive materials include, for example, semiconductor materials, carbon materials, and conductive polymers.
  • semiconductor materials include bismuth (Bi), tellurium (Te), antimony (Sb), cobalt (Co), zinc (Zn), silicon (Si), germanium (Ge), iridium (Ir), and lead (Pb). , and alloys thereof, skutterudite, constantan.
  • a semiconductor material may contain a metal element, but has a higher resistance value than a metal and behaves as a semiconductor depending on the crystal structure, the combination of elements in the alloy, or the like.
  • the semiconductor material may be a semiconductor whisker.
  • carbon materials include carbon nanotubes, carbon nanofibers, graphene, graphene nanoribbons, and fullerene nanowhiskers.
  • Conductive polymers such as polyacetylene, poly(p-phenylene vinylene), polypyrrole, polythiophene, polyaniline, poly(p-phenylene sulfide), poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid composites (PEDOT:PSS), a composite of poly(3,4-ethylenedioxythiophene) and methylpolypropylsulfonate siloxane (PEDOT:PSiPS), poly(3,4-ethylenedioxythiophene) and paratoluenesulfonic acid and a composite (PEDOT: Tos).
  • the conductive material is preferably a carbon material, more preferably a carbon nanotube. That is, the thermoelectric conversion member 4 contains carbon nanotubes, a binder, and, if necessary, a dopant. If the conductive material is a carbon nanotube, the thermoelectric conversion member 4 can be efficiently manufactured by utilizing the electrical properties of the carbon nanotube as a P-type semiconductor.
  • the binder binds the conductive substances together.
  • the binder binds the carbon nanotubes.
  • Examples of binders include insulating resins and conductive resins.
  • insulating resins include polyethylene glycol, epoxy resin, acrylic resin, urethane resin, polystyrene resin, and polyvinyl resin.
  • Polyvinyl resins include, for example, polyvinyl chloride, polyvinylpyrrolidone, polyvinyl alcohol, and polyvinyl acetate.
  • Examples of conductive resins include polyacetylene, poly(p-phenylene vinylene), polypyrrole, polythiophene, polyaniline, poly(p-phenylene sulfide), and poly(3,4-ethylenedioxythiophene).
  • the binder is preferably an insulating resin, more preferably polyethylene glycol.
  • the dopant gives the thermoelectric conversion member 4 electric properties of a semiconductor.
  • Dopants include P-type dopants and N-type dopants.
  • the P-type dopant gives the thermoelectric conversion member 4 electrical properties of a P-type semiconductor.
  • the thermoelectric conversion member 4 does not need to contain a P-type dopant because the carbon nanotube has electrical properties of a P-type semiconductor.
  • the N-type dopant gives the thermoelectric conversion member 4 electrical properties of an N-type semiconductor.
  • N-type dopants include 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF 6 ), polyethyleneimine (PEI), ethylenediaminetetrakis(propoxylate-block-ethoxylate) tetrol (trade name: Tetronic ( 1107), reduced benzylviologen (reduced BV), diphenylphosphine (dpp), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,4-bis(diphenylphosphino)butane (dppb), bis(diphenylphosphinomethyl)phenylphosphine (dpmp), bis(diphenylphosphinoethyl)phenylphosphine (ppmdp), bis[(diphenylphosphinomethyl)phenyl Phosphino]methane (dpmppm),
  • thermoelectric conversion member 4 may be coated.
  • the thermoelectric conversion member 4 may have a core containing a conductive material, a binder, and a dopant, and a coat layer coating the surface of the core.
  • Materials for the coat layer include, for example, resins, carbon fibers, metals, metal oxides, and silicon compounds.
  • resins include epoxy resin, acrylic resin, urethane resin, fluorine resin, polyvinyl alcohol, ethylene vinyl alcohol, polybutylene terephthalate, polyamide, polyimide, polyvinyl acetal, polysilsesquioxane, polysilazane, and parylene.
  • carbon fibers include carbon nanofibers.
  • metals include aluminum and chromium.
  • metal oxides include smectite, indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), and zinc tin oxide (ZTO).
  • Silicon compounds include, for example, silica fine particles, silicon dioxide, and silicon nitride.
  • the coat layer can improve the strength and wear resistance of the thermoelectric conversion member 4 . Further, the coating layer can suppress deterioration of the thermoelectric conversion member 4 due to oxygen and moisture.
  • thermoelectric conversion member 4 To manufacture the thermoelectric conversion member 4, first, a mixture of a conductive material and a binder is formed into a filament.
  • a dopant is applied to the obtained molding.
  • the molding is immersed in a solution containing the dopant.
  • the conductive material is a carbon nanotube
  • an N-type dopant is applied to the portion of the molding that is desired to be the N-type portion 42 .
  • the portion provided with the N-type dopant becomes the N-type portion 42, and the portion not provided with the N-type dopant becomes the P-type portion 41 due to the electrical properties of the carbon nanotube.
  • a P-type dopant may be applied to a portion of the molded article that is desired to be the P-type portion 41 .
  • thermoelectric conversion member 4 is obtained.
  • the obtained thermoelectric conversion member 4 is sewn into the heat insulating material 2 so that the connecting portion between the P-type portion 41 and the N-type portion 42 is arranged on the surface of the heat insulating material 2 .
  • the ratio of the conductive material to the weight of the thermoelectric conversion member 4 can be increased by a method of forming a mixture of the conductive material and the binder into a filament. Therefore, the thermoelectric conversion member 4 capable of obtaining a large electromotive force can be manufactured.
  • thermoelectric conversion member 4 may be manufactured by a method other than forming a mixture of a conductive material and a binder into a filament.
  • the thermoelectric conversion member 4 can be manufactured by supporting or impregnating a conductive material in plant fibers or synthetic fibers, and adding dopants and binders as necessary.
  • Plant fibers include, for example, cotton, hemp, and pulp.
  • Synthetic fibers include, for example, polypropylene and polyethylene.
  • the circuit board 5 is arranged inside the packaging material 3 .
  • a circuit board 5 is attached to the surface of the heat insulating material 2 .
  • the circuit board 5 may be embedded in the heat insulating material 2 .
  • the circuit board 5 has a sensor 51 , a conversion circuit 52 as an example of a circuit, a wireless module 54 and a control device 53 . That is, the sensor 51 , conversion circuit 52 , wireless module 54 and control device 53 are arranged inside the packaging material 3 .
  • the sensor-equipped vacuum heat insulating material 1 also includes a sensor 51 , a conversion circuit 52 , a control device 53 , and a wireless module 54 .
  • the circuit board 5 is electrically connected to the thermoelectric conversion member 4 . Thereby, the circuit board 5 is operated by the electromotive force of the thermoelectric conversion member 4 . That is, the sensor 51 , the conversion circuit 52 , the wireless module 54 and the control device 53 are operated by the electromotive force of the thermoelectric conversion member 4 .
  • the sensor 51 is a vacuum sensor.
  • a sensor 51 measures the degree of vacuum inside the packaging material 3 .
  • Sensor 51 is electrically connected to conversion circuit 52 .
  • the conversion circuit 52 processes signals from the sensor 51 . Specifically, the conversion circuit 52 converts the analog signal from the sensor 51 into a digital signal.
  • the conversion circuit 52 includes an AFE (Analog Front End) circuit and an analog-to-digital conversion circuit. The conversion circuit 52 adjusts the analog signal from the sensor 51 with the AFE circuit and converts it into a digital signal with the analog-digital conversion circuit.
  • AFE Analog Front End
  • the control device 53 is electrically connected to the conversion circuit 52 and the wireless module 54 .
  • the controller 53 has a processor and memory.
  • the control device 53 can record the signal from the sensor 51 processed by the conversion circuit 52 in a memory.
  • the control device 53 can control the wireless module 54 .
  • the control device 53 causes the wireless module 54 to transmit the signal recorded in the memory.
  • the control device 53 may cause the wireless module 54 to transmit all the signals recorded in the memory. If the signal recorded in the memory is an abnormal value, the control device 53 may cause the wireless module 54 to transmit the abnormal value.
  • the wireless module 54 is controlled by the control device 53 to convert the signal from the sensor 51 converted by the conversion circuit 52 (specifically, the signal is converted by the conversion circuit 52 and stored in the memory of the control device 53). recorded signal) can be emitted. That is, the wireless module 54 can transmit the signal from the sensor 51 processed by the conversion circuit 52 .
  • the communication standard of the wireless module 54 is not limited. Radio module 54 has at least a transmitting antenna.
  • the circuit board 5 has a sensor 51 and a conversion circuit 52 that processes signals from the sensor 51 .
  • thermoelectric conversion member 4 has a body portion 413 arranged inside the heat insulating material 2 .
  • the body portion 413 has a predetermined length in the thickness direction.
  • thermoelectric conversion member 4 can use the temperature difference ensured by the heat insulating material 2 to generate a large electromotive force.
  • the circuit board 5 is operated by the electromotive force of the thermoelectric conversion member 4 .
  • the signal from the sensor 51 installed inside the packaging material 3 can be processed by the conversion circuit 52 that operates by the electromotive force of the thermoelectric conversion member 4 .
  • the sensor 51 is a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4 .
  • the wireless module 54 is arranged inside the packaging material 3 and can transmit a signal from the sensor 51 processed by the conversion circuit 52 .
  • the signal from the sensor 51 processed by the conversion circuit 52 can be wirelessly transmitted to the outside.
  • the wireless module 54 and the control device 53 are also operated by the electromotive force of the thermoelectric conversion member 4, as shown in FIG.
  • the wireless module 54 and the control device 53 can also be installed inside the packaging material 3.
  • thermoelectric conversion member 4 According to the vacuum heat insulating material 1 with a sensor, the surface of the thermoelectric conversion member 4 is coated.
  • the coating can improve the strength and wear resistance of the thermoelectric conversion member 4 . Moreover, the coating can suppress deterioration of the thermoelectric conversion member 4 due to oxygen and moisture.
  • the sensor 51 may be a temperature sensor.
  • the temperature sensor may operate by the electromotive force of the thermoelectric conversion member 4 . In this case, without requiring power supply from the outside of the packaging material 3, excessive fluctuations in the temperature inside the packaging material 3 can be detected as "abnormality of the vacuum insulation material 1 with a sensor" that leads to a decrease in insulation performance. .
  • the vacuum heat insulating material 1 with a sensor may include a temperature sensor comprising a thermoelectric conversion member 100.
  • FIG. Thermoelectric conversion member 100 is an example of a second thermoelectric conversion member.
  • the thermoelectric conversion member 100 is independent of the thermoelectric conversion member 4 .
  • Thermoelectric conversion member 100 is not electrically connected to thermoelectric conversion member 4 .
  • the thermoelectric conversion member 100 is independent of the circuit board 5 and electrically connected to the conversion circuit 52 of the circuit board 5 .
  • thermoelectric conversion member 100 has the same structure and components as the thermoelectric conversion member 4. That is, the thermoelectric conversion member 100 has a portion (main body portion) arranged inside the heat insulating material 2 . The body portion of the thermoelectric conversion member 100 has a predetermined length in the thickness direction. Therefore, like the thermoelectric conversion member 4, the thermoelectric conversion member 100 generates an electromotive force due to the temperature difference in the thickness direction.
  • the conversion circuit 52 converts the electromotive force of the thermoelectric conversion member 100 into a digital signal. That is, in this modified example, the electromotive force of the thermoelectric conversion member 100 is the "signal from the sensor".
  • thermoelectric conversion member 100 As the "signal from the sensor”, the electric power from the outside of the packaging material 3 and the electromotive force of the thermoelectric conversion member 4 can be used. Excessive fluctuations in the temperature inside the packaging material 3 can be detected as "abnormalities in the vacuum heat insulating material 1 with a sensor" that lead to deterioration of the heat insulating performance.
  • the sensor-equipped vacuum heat insulating material 1 may include a plurality of sensors.
  • the plurality of sensors include at least two of a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4, a temperature sensor operated by the electromotive force of the thermoelectric conversion member 4, and a temperature sensor composed of the thermoelectric conversion member 100. may contain.
  • the sensor-equipped vacuum heat insulating material 1 may include a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4 and a temperature sensor operated by the electromotive force of the thermoelectric conversion member 4 .
  • the sensor-equipped vacuum heat insulating material 1 may include a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4 and a temperature sensor composed of the thermoelectric conversion member 100 .
  • the sensor-equipped vacuum heat insulating material 1 may include a temperature sensor operated by the electromotive force of the thermoelectric conversion member 4 and a temperature sensor composed of the thermoelectric conversion member 100 .
  • the vacuum heat insulating material 1 with a sensor may include a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4, a temperature sensor operated by the electromotive force of the thermoelectric conversion member 4, and a temperature sensor composed of the thermoelectric conversion member 100. good.
  • a decrease in the degree of vacuum inside the packaging material 3 is detected as an "abnormality in the vacuum insulation material 1 with a sensor" that leads to a decrease in insulation performance. , and at least one of excessive fluctuations in the temperature inside the packaging material 3 can be detected.
  • the sensor-equipped vacuum heat insulating material 1 is a P-type thermoelectric conversion member consisting only of the P-type portion 41 instead of the thermoelectric conversion member 4 having the P-type portion 41 and the N-type portion 42. 101 and an N-type thermoelectric conversion member 102 consisting only of the N-type portion 42 .
  • One end of the P-type thermoelectric conversion member 101 in the thickness direction and one end of the N-type thermoelectric conversion member 102 in the thickness direction may be electrically connected by a conductive paste 103 or the like.
  • each of the P-type thermoelectric conversion member 101 and the N-type thermoelectric conversion member 102 may be thread-like and sewn into the heat insulating material 2 .
  • the sensor-equipped vacuum heat insulating material 1 may have cover layers 110A and 110B that cover the connecting portion between the P-type portion 41 and the N-type portion 42 .
  • Examples of materials for the cover layers 110A and 110B include the materials for the heat insulating material 2 described above.
  • the cover layers 110A and 110B may have coat layers. Examples of the material for the coat layer include the material for the coat layer of the thermoelectric conversion member 3 described above.
  • thermoelectric conversion member 4 may be arranged inside the heat insulating material 2 .
  • the thermoelectric conversion member 4 may consist of only the portion arranged inside the heat insulating material 2 .
  • the control device 53 does not have to control the wireless module 54.
  • the circuit board 5 has a nonvolatile memory, and the control device 53 may record data in the nonvolatile memory. The data recorded in the non-volatile memory may be read by an external reader via the wireless module 54 .
  • the sensor 51 may be independent from the circuit board 5.
  • the radio module 54 may also be independent from the circuit board 5 .
  • the vacuum heat insulating material with a sensor of the present invention can be used, for example, as a heat insulating material for cold storage containers.
  • thermoelectric conversion member 1 vacuum heat insulating material with sensor 2 heat insulating material 3 packaging material 4 thermoelectric conversion member (first thermoelectric conversion member) 51 sensor 52 conversion circuit (circuit for processing signals from the sensor) 53 Control Device 54 Wireless Module 100 Thermoelectric Conversion Member (Second Thermoelectric Conversion Member) 101 P-type thermoelectric conversion member (first thermoelectric conversion member) 102 N-type thermoelectric conversion member (first thermoelectric conversion member)

Abstract

A sensor-equipped vacuum heat insulation material 1 is provided with: a heat insulation material 2; a packaging material 3 for vacuum-packaging the heat insulation material 2; a thread-like thermoelectric conversion member 4; and a circuit board 5. A body 413 of the thermoelectric conversion member 4 is disposed inside the heat insulation material 2 and has a prescribed length in the thickness direction of the heat insulation material 2. The circuit board 5 is disposed inside the packaging material 3 and is provided with a sensor 51 and a conversion circuit 52 for processing a signal from the sensor 51. The circuit board 5 operates by the electromotive force from the thermoelectric conversion member 4.

Description

センサ付き真空断熱材Vacuum insulation with sensor
 本発明は、センサ付き真空断熱材に関する。 The present invention relates to a vacuum insulation material with a sensor.
 従来、芯材と、芯材を包む外被材とを有し、外被材の内部が減圧された真空断熱材が知られている(下記特許文献1参照)。 Conventionally, there has been known a vacuum heat insulating material that has a core material and an outer covering material that wraps the core material, and in which the inside of the outer covering material is depressurized (see Patent Document 1 below).
 このような真空断熱材は、例えば、保冷容器の断熱材として使用される。保冷容器は、例えば、常温で失活するワクチンの搬送および保管などの目的に使用される。 Such a vacuum heat insulating material is used, for example, as a heat insulating material for cold storage containers. Cooling containers are used, for example, for transporting and storing vaccines that are inactivated at room temperature.
特開2020-176651号公報JP 2020-176651 A
 上記した特許文献1に記載されるような真空断熱材において、断熱性能の低下に繋がる真空断熱材の異常を検知するために、外被材の内部にセンサを設置したいという要望がある。 In the vacuum insulation material described in Patent Document 1 above, there is a demand to install a sensor inside the outer covering material in order to detect an abnormality in the vacuum insulation material that leads to deterioration of the insulation performance.
 しかし、外被材内にセンサを設置したとしても、外被材の内部に電源を設けることが困難であるため、センサからの信号を処理することが困難である。 However, even if the sensor is installed inside the outer covering material, it is difficult to provide a power supply inside the outer covering material, so it is difficult to process the signal from the sensor.
 本発明は、包装材内に設置されたセンサからの信号を処理できるセンサ付き真空断熱材を提供する。 The present invention provides a sensor-equipped vacuum insulation material that can process signals from sensors installed in packaging materials.
 本発明[1]は、所定の厚みを有する断熱材と、前記断熱材を真空包装する包装材と、前記包装材の内側に配置される糸状の第1熱電変換部材であって、前記断熱材の内部に配置され前記断熱材の厚み方向において所定の長さを有する部分を有し、前記断熱材の厚み方向において、温度差によって起電力を生じる第1熱電変換部材と、前記包装材の内側に配置されるセンサと、前記包装材の内側に配置され、前記第1熱電変換部材の起電力により動作する回路であって、前記センサからの信号を処理する回路とを備える、センサ付き真空断熱材を含む。 The present invention [1] provides a heat insulating material having a predetermined thickness, a packaging material for vacuum packaging the heat insulating material, and a filamentous first thermoelectric conversion member arranged inside the packaging material, wherein the heat insulating material and a first thermoelectric conversion member having a portion having a predetermined length in the thickness direction of the heat insulating material and generating an electromotive force due to a temperature difference in the thickness direction of the heat insulating material; and a circuit arranged inside the packaging material and operated by the electromotive force of the first thermoelectric conversion member, the circuit processing a signal from the sensor. Including wood.
 このような構成によれば、包装材の内部に、断熱材と、糸状の第1熱電変換部材と、センサと、センサからの信号を処理する回路とが配置されている。 According to such a configuration, the heat insulating material, the filamentous first thermoelectric conversion member, the sensor, and the circuit for processing the signal from the sensor are arranged inside the packaging material.
 第1熱電変換部材は、断熱材の内部に配置される部分を有している。断熱材の内部に配置される部分は、厚み方向において所定の長さを有する。 The first thermoelectric conversion member has a portion arranged inside the heat insulating material. The portion arranged inside the heat insulating material has a predetermined length in the thickness direction.
 そのため、第1熱電変換部材は、断熱材によって確保された温度差を利用して、大きな起電力を生み出すことができる。 Therefore, the first thermoelectric conversion member can generate a large electromotive force using the temperature difference ensured by the heat insulating material.
 そして、センサからの信号を処理する回路は、第1熱電変換部材の起電力により動作する。 Then, the circuit that processes the signal from the sensor is operated by the electromotive force of the first thermoelectric conversion member.
 そのため、包装材内に設置されたセンサからの信号を、第1熱電変換部材の起電力により動作する回路で、処理できる。 Therefore, the signal from the sensor installed inside the packaging material can be processed by a circuit operated by the electromotive force of the first thermoelectric conversion member.
 本発明[2]は、前記センサが、前記第1熱電変換部材の起電力により動作する真空度センサである、上記[1]のセンサ付き真空断熱材を含む。 The present invention [2] includes the vacuum heat insulating material with a sensor according to [1] above, wherein the sensor is a vacuum sensor that operates by the electromotive force of the first thermoelectric conversion member.
 このような構成によれば、包装材の外部からの電力供給を必要とせずに、断熱性能の低下に繋がる「センサ付き真空断熱材の異常」として、包装材の内部の真空度の低下を検知できる。 According to such a configuration, a decrease in the degree of vacuum inside the packaging material is detected as an "abnormality of the vacuum insulation material with a sensor" that leads to a decrease in insulation performance, without the need for power supply from the outside of the packaging material. can.
 本発明[3]は、前記センサが、前記第1熱電変換部材の起電力により動作する温度センサである、上記[1]のセンサ付き真空断熱材を含む。 The present invention [3] includes the vacuum heat insulating material with a sensor of [1] above, wherein the sensor is a temperature sensor that operates by the electromotive force of the first thermoelectric conversion member.
 このような構成によれば、包装材の外部からの電力供給を必要とせずに、断熱性能の低下に繋がる「センサ付き真空断熱材の異常」として、包装材の内部の温度の過度な変動を検知できる。 According to such a configuration, without the need for power supply from the outside of the packaging material, excessive fluctuations in the temperature inside the packaging material can be detected as "abnormalities in the vacuum insulation material with a sensor" that lead to a decrease in insulation performance. detectable.
 本発明[4]は、前記センサが、第1熱電変換部材とは独立した第2熱電変換部材からなる温度センサである、上記[1]のセンサ付き真空断熱材を含む。 The present invention [4] includes the vacuum heat insulating material with a sensor of [1] above, wherein the sensor is a temperature sensor composed of a second thermoelectric conversion member independent of the first thermoelectric conversion member.
 このような構成によれば、第2熱電変換部材の起電力を「センサからの信号」として利用できる。 According to such a configuration, the electromotive force of the second thermoelectric conversion member can be used as "a signal from the sensor".
 これにより、包装材の外部からの電力、および、第1熱電変換部材の起電力を使用せずに、断熱性能の低下に繋がる「センサ付き真空断熱材の異常」として、包装材の内部の温度の過度な変動を検知できる。 As a result, without using the electric power from the outside of the packaging material and the electromotive force of the first thermoelectric conversion member, the temperature inside the packaging material can be detected as an "abnormality of the vacuum insulation material with a sensor" that leads to the deterioration of the insulation performance. can detect excessive fluctuations in
 本発明[5]は、前記センサ付き真空断熱材が、複数の前記センサを備え、複数の前記センサが、前記第1熱電変換部材の起電力により動作する真空度センサ、前記第1熱電変換部材の起電力により動作する温度センサ、および、第1熱電変換部材とは独立した第2熱電変換部材からなる温度センサの少なくとも2つを含む、上記[1]のセンサ付き真空断熱材を含む。 The present invention [5] is a vacuum heat insulating material having a plurality of sensors, the plurality of sensors being operated by the electromotive force of the first thermoelectric conversion member, the first thermoelectric conversion member. and a temperature sensor comprising a second thermoelectric conversion member independent of the first thermoelectric conversion member.
 このような構成によれば、包装材の外部からの電力供給を必要とせずに、断熱性能の低下に繋がる「センサ付き真空断熱材の異常」として、包装材の内部の真空度の低下、および、包装材の内部の温度の過度な変動の少なくとも1つを検知できる。 According to such a configuration, without the need for power supply from the outside of the packaging material, as an "abnormality of the vacuum insulation material with a sensor" that leads to a decrease in insulation performance, a decrease in the degree of vacuum inside the packaging material, and , at least one of excessive fluctuations in the temperature inside the packaging material.
 本発明[6]は、前記包装材の内側に配置され、前記回路が処理した前記センサからの信号を発信可能な無線モジュールを備える、上記[1]から[5]のいずれか1つのセンサ付き真空断熱材を含む。 The present invention [6] includes a wireless module arranged inside the packaging material and capable of transmitting a signal from the sensor processed by the circuit. Includes vacuum insulation.
 このような構成によれば、回路が処理したセンサからの信号を、無線で外部に送信できる。 According to such a configuration, the signal from the sensor processed by the circuit can be wirelessly transmitted to the outside.
 本発明[7]は、前記無線モジュールを制御可能な制御装置を備える、上記[6]のセンサ付き真空断熱材を含む。 The present invention [7] includes the sensor-equipped vacuum heat insulating material of [6] above, which includes a control device capable of controlling the wireless module.
 本発明[8]は、前記無線モジュールおよび前記制御装置が、前記第1熱電変換部材の起電力により動作する、上記[7]のセンサ付き真空断熱材を含む。 The present invention [8] includes the vacuum heat insulating material with a sensor according to [7] above, wherein the wireless module and the control device are operated by the electromotive force of the first thermoelectric conversion member.
 このような構成によれば、無線モジュールおよび制御装置も包装材の内部に設置できる。 According to such a configuration, the wireless module and the control device can also be installed inside the packaging material.
 本発明[9]は、前記断熱材が、グラスウール、ロックウール、ヒュームドシリカ、および、発泡ポリマーの少なくとも1つを含む、上記[1]から[8]のいずれか1つのセンサ付き真空断熱材を含む。 The present invention [9] is a vacuum heat insulating material with a sensor according to any one of [1] to [8] above, wherein the heat insulating material contains at least one of glass wool, rock wool, fumed silica, and foamed polymer. including.
 本発明[10]は、前記第1熱電変換部材が、カーボンナノチューブと、前記カーボンナノチューブを結着するバインダーとを含有する、上記[1]から[9]のいずれか1つのセンサ付き真空断熱材を含む。 The present invention [10] is a vacuum heat insulating material with a sensor according to any one of [1] to [9] above, wherein the first thermoelectric conversion member contains carbon nanotubes and a binder that binds the carbon nanotubes. including.
 本発明[11]は、前記第1熱電変換部材がドーパントをさらに含有する、上記[10]のセンサ付き真空断熱材を含む。 The present invention [11] includes the vacuum heat insulating material with a sensor of [10] above, wherein the first thermoelectric conversion member further contains a dopant.
 本発明[12]は、前記第1熱電変換部材の表面が、コーティングされている、上記[1]から[11]のいずれか1つのセンサ付き真空断熱材を含む。 The present invention [12] includes the vacuum heat insulating material with a sensor according to any one of [1] to [11] above, wherein the surface of the first thermoelectric conversion member is coated.
 このような構成によれば、コーティングにより、第1熱電変換部材の強度および耐摩耗性の向上を図ることができる。また、コーティングにより、酸素や水分による第1熱電変換部材の劣化を抑制できる。 With such a configuration, the coating can improve the strength and wear resistance of the first thermoelectric conversion member. Moreover, the coating can suppress deterioration of the first thermoelectric conversion member due to oxygen and moisture.
 本発明[13]は、前記第1熱電変換部材の径が、150μm以上である、上記[1]から[12]のいずれか1つのセンサ付き真空断熱材を含む。 The present invention [13] includes the vacuum heat insulating material with a sensor according to any one of [1] to [12] above, wherein the first thermoelectric conversion member has a diameter of 150 μm or more.
 本発明のセンサ付き真空断熱材によれば、包装材内に設置されたセンサからの信号を処理できる。 According to the vacuum heat insulating material with a sensor of the present invention, it is possible to process the signal from the sensor installed inside the packaging material.
図1は、本発明のセンサ付き真空断熱材の一実施形態の斜視図である。FIG. 1 is a perspective view of one embodiment of the vacuum heat insulating material with a sensor of the present invention. 図2は、図1に示す断熱材の断面図である。2 is a cross-sectional view of the heat insulating material shown in FIG. 1. FIG. 図3は、図1に示すセンサ付き真空断熱材のブロック図である。3 is a block diagram of the vacuum heat insulating material with a sensor shown in FIG. 1. FIG. 図4は、センサ付き真空断熱材の第1の変形例を示す斜視図である。FIG. 4 is a perspective view showing a first modification of the vacuum heat insulating material with a sensor. 図5は、図4に示すセンサ付き真空断熱材のブロック図である。5 is a block diagram of the vacuum heat insulating material with a sensor shown in FIG. 4. FIG. 図6は、センサ付き真空断熱材の第2の変形例を示す斜視図である。FIG. 6 is a perspective view showing a second modification of the vacuum heat insulating material with a sensor. 図7は、センサ付き真空断熱材の第3の変形例を示す断面図である。FIG. 7 is a cross-sectional view showing a third modification of the vacuum heat insulating material with a sensor. 図8は、センサ付き真空断熱材の第4の変形例を示す断面図である。FIG. 8 is a cross-sectional view showing a fourth modification of the vacuum heat insulating material with a sensor.
 1.センサ付き真空断熱材
 図1から図3を参照して、センサ付き真空断熱材1の一実施形態について説明する。
1. Vacuum Heat Insulating Material with Sensor An embodiment of a vacuum heat insulating material 1 with a sensor will be described with reference to FIGS. 1 to 3 .
 図1に示すように、センサ付き真空断熱材1は、断熱材2と、包装材3と、少なくとも1つの熱電変換部材4と、回路基板5とを備える。熱電変換部材4は、第1熱電変換部材の一例である。 As shown in FIG. 1, the sensor-equipped vacuum heat insulating material 1 includes a heat insulating material 2, a packaging material 3, at least one thermoelectric conversion member 4, and a circuit board 5. The thermoelectric conversion member 4 is an example of a first thermoelectric conversion member.
 (1)断熱材
 断熱材2は、所定の厚みを有する。本実施形態では、断熱材2は、略矩形の平板形状を有する。なお、断熱材2の形状は、限定されない。
(1) Heat Insulating Material The heat insulating material 2 has a predetermined thickness. In this embodiment, the heat insulating material 2 has a substantially rectangular flat plate shape. In addition, the shape of the heat insulating material 2 is not limited.
 図2に示すように、断熱材2は、断熱材2の厚み方向において、一方面S1と他方面S2とを有する。以下の説明において、断熱材2の厚み方向を、「厚み方向」と記載する。一方面S1および他方面S2は、面方向に延びる。面方向は、厚み方向と交差する。好ましくは、面方向は、厚み方向と直交する。 As shown in FIG. 2, the heat insulating material 2 has one surface S1 and the other surface S2 in the thickness direction of the heat insulating material 2. As shown in FIG. In the following description, the thickness direction of the heat insulating material 2 is referred to as "thickness direction". The one surface S1 and the other surface S2 extend in the planar direction. The plane direction intersects with the thickness direction. Preferably, the surface direction is perpendicular to the thickness direction.
 断熱材2は、断熱性能と絶縁性能とを有する。断熱材2の断熱性能は、断熱材2の熱伝導率によって定義できる。断熱材2の絶縁性能は、断熱材2の抵抗値によって定義できる。 The heat insulating material 2 has heat insulating performance and insulating performance. The heat insulation performance of the heat insulating material 2 can be defined by the thermal conductivity of the heat insulating material 2 . The insulation performance of the heat insulating material 2 can be defined by the resistance value of the heat insulating material 2 .
 断熱材2の熱伝導率は、例えば、1W/m・K以下、好ましくは、0.5W/m・K以下である。断熱材2の熱伝導率が上記上限値以下であると、厚み方向において温度差を確保でき、得られる起電力の増大を図ることができる。 The thermal conductivity of the heat insulating material 2 is, for example, 1 W/m·K or less, preferably 0.5 W/m·K or less. When the thermal conductivity of the heat insulating material 2 is equal to or less than the above upper limit, a temperature difference can be ensured in the thickness direction, and an increase in the obtained electromotive force can be achieved.
 断熱材2の熱伝導率の下限値は、限定されない。断熱材2の熱伝導率は、例えば、0.01W/m・K以上である。 The lower limit of the thermal conductivity of the heat insulating material 2 is not limited. The thermal conductivity of the heat insulating material 2 is, for example, 0.01 W/m·K or more.
 断熱材2の抵抗値は、熱電変換部材4の短絡を防止できれば、限定されない。 The resistance value of the heat insulating material 2 is not limited as long as the short circuit of the thermoelectric conversion member 4 can be prevented.
 断熱材2の材料として、例えば、グラスウール、ロックウール、ヒュームドシリカ、発泡ポリマー、ポリスチレン、ポリエチレン、ウレタン樹脂、メラミン樹脂、フェノール樹脂、発泡ガラス、ケイ酸カルシウム、パーライト、セルロースファイバー、アルミナファイバー、セラミックファイバー、カーボンファイバーなどが挙げられる。断熱材2の材料として、好ましくは、グラスウール、ロックウール、ヒュームドシリカ、および、発泡ポリマーが挙げられ、より好ましくは、グラスウールが挙げられる。 Examples of materials for the heat insulating material 2 include glass wool, rock wool, fumed silica, foamed polymer, polystyrene, polyethylene, urethane resin, melamine resin, phenolic resin, foamed glass, calcium silicate, perlite, cellulose fiber, alumina fiber, and ceramics. fiber, carbon fiber, and the like. Materials for the heat insulating material 2 preferably include glass wool, rock wool, fumed silica, and foamed polymer, and more preferably glass wool.
 断熱材2は、グラスウール、ロックウール、ヒュームドシリカ、および、発泡ポリマーの少なくとも1つを含む。断熱材2がグラスウール、ロックウール、ヒュームドシリカ、および、発泡ポリマーの少なくとも1つを含んでいると、断熱材2の断熱性の向上を図ることができる。これにより、厚み方向において温度差を確保でき、得られる起電力の増大を図ることができる。好ましくは、断熱材2は、グラスウール、ロックウール、ヒュームドシリカ、および、発泡ポリマーの少なくとも1つからなる層を含む。より好ましくは、断熱材2は、グラスウールからなる。 The heat insulating material 2 contains at least one of glass wool, rock wool, fumed silica, and foamed polymer. If the heat insulating material 2 contains at least one of glass wool, rock wool, fumed silica, and foamed polymer, the heat insulating property of the heat insulating material 2 can be improved. Thereby, a temperature difference can be ensured in the thickness direction, and an increase in the obtained electromotive force can be achieved. Preferably, the insulation 2 comprises a layer of at least one of glass wool, rock wool, fumed silica and foamed polymer. More preferably, the heat insulating material 2 is made of glass wool.
 断熱材2の厚みは、例えば、3mm以上、好ましくは、10mm以上である。断熱材2の厚みが上記下限値以上であると、厚み方向において温度差を確保でき、得られる起電力の増大を図ることができる。 The thickness of the heat insulating material 2 is, for example, 3 mm or more, preferably 10 mm or more. When the thickness of the heat insulating material 2 is equal to or more than the above lower limit value, a temperature difference can be ensured in the thickness direction, and an increase in the obtained electromotive force can be achieved.
 断熱材2の厚みの上限値は、限定されない。断熱材2の厚みは、例えば、100mm以下である。 The upper limit of the thickness of the heat insulating material 2 is not limited. The thickness of the heat insulating material 2 is, for example, 100 mm or less.
 断熱材2の見かけ密度は、断熱材2がグラスウールまたはロックウールからなる場合、例えば、200kg/m以下、好ましくは、100kg/m以下である。断熱材2の見かけ密度が上記上限値以下であると、センサ付き真空断熱材1の軽量化を図ることができる。また、熱電変換部材4を断熱材2に縫い込む工程において柔軟性を確保できる。 When the heat insulating material 2 is made of glass wool or rock wool, the apparent density of the heat insulating material 2 is, for example, 200 kg/m 3 or less, preferably 100 kg/m 3 or less. When the apparent density of the heat insulating material 2 is equal to or less than the above upper limit value, the weight of the vacuum heat insulating material 1 with a sensor can be reduced. Also, flexibility can be ensured in the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
 断熱材2の見かけ密度は、断熱材2がグラスウールまたはロックウールからなる場合、例えば、10kg/m以上、好ましくは、24kg/m以上である。断熱材2の見かけ密度が上記下限値以上であると、厚み方向において十分な温度差を確保できる。また、熱電変換部材4を断熱材2に縫い込む工程に断熱材2が耐えられる程度に、断熱材2の強度を確保できる。 When the heat insulating material 2 is made of glass wool or rock wool, the apparent density of the heat insulating material 2 is, for example, 10 kg/m 3 or more, preferably 24 kg/m 3 or more. When the apparent density of the heat insulating material 2 is equal to or higher than the above lower limit, a sufficient temperature difference can be ensured in the thickness direction. In addition, the strength of the heat insulating material 2 can be ensured to the extent that the heat insulating material 2 can withstand the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
 断熱材2の見かけ密度は、断熱材2がヒュームドシリカからなる場合、例えば、450kg/m以下、好ましくは、300kg/m以下である。断熱材2の見かけ密度が上記上限値以下であると、センサ付き真空断熱材1の軽量化を図ることができる。また、熱電変換部材4を断熱材2に縫い込む工程において柔軟性を確保できる。 When the heat insulating material 2 is made of fumed silica, the apparent density of the heat insulating material 2 is, for example, 450 kg/m 3 or less, preferably 300 kg/m 3 or less. When the apparent density of the heat insulating material 2 is equal to or less than the above upper limit value, the weight of the vacuum heat insulating material 1 with a sensor can be reduced. Also, flexibility can be ensured in the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
 断熱材2の見かけ密度は、断熱材2がヒュームドシリカからなる場合、例えば、150kg/m以上、好ましくは、200kg/m以上である。断熱材2の見かけ密度が上記下限値以上であると、厚み方向において十分な温度差を確保できる。また、熱電変換部材4を断熱材2に縫い込む工程に断熱材2が耐えられる程度に、断熱材2の強度を確保できる。 When the heat insulating material 2 is made of fumed silica, the apparent density of the heat insulating material 2 is, for example, 150 kg/m 3 or more, preferably 200 kg/m 3 or more. When the apparent density of the heat insulating material 2 is equal to or higher than the above lower limit, a sufficient temperature difference can be ensured in the thickness direction. In addition, the strength of the heat insulating material 2 can be ensured to the extent that the heat insulating material 2 can withstand the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
 断熱材2の見かけ密度は、断熱材2が発泡ポリマーからなる場合、例えば、60kg/m以下、好ましくは、45kg/m以下である。断熱材2の見かけ密度が上記上限値以下であると、センサ付き真空断熱材1の軽量化を図ることができる。また、熱電変換部材4を断熱材2に縫い込む工程において柔軟性を確保できる。 The apparent density of the heat insulating material 2 is, for example, 60 kg/m 3 or less, preferably 45 kg/m 3 or less when the heat insulating material 2 is made of foamed polymer. When the apparent density of the heat insulating material 2 is equal to or less than the above upper limit value, the weight of the vacuum heat insulating material 1 with a sensor can be reduced. Also, flexibility can be ensured in the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
 断熱材2の見かけ密度は、断熱材2が発泡ポリマーからなる場合、例えば、5kg/m以上、好ましくは、20kg/m以上である。断熱材2の見かけ密度が上記下限値以上であると、厚み方向において十分な温度差を確保できる。また、熱電変換部材4を断熱材2に縫い込む工程に断熱材2が耐えられる程度に、断熱材2の強度を確保できる。 When the heat insulating material 2 is made of foamed polymer, the apparent density of the heat insulating material 2 is, for example, 5 kg/m 3 or more, preferably 20 kg/m 3 or more. When the apparent density of the heat insulating material 2 is equal to or higher than the above lower limit, a sufficient temperature difference can be ensured in the thickness direction. In addition, the strength of the heat insulating material 2 can be ensured to the extent that the heat insulating material 2 can withstand the process of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
 (2)包装材
 包装材3は、断熱材2を包装する。包装材3の内部は、真空である。すなわち、包装材3は、断熱材2を真空包装する。
(2) Packaging Material The packaging material 3 wraps the heat insulating material 2 . The inside of the packaging material 3 is a vacuum. That is, the packaging material 3 vacuum-packages the heat insulating material 2 .
 なお、「真空」とは、通常の大気圧より低い圧力の気体で満たされた空間内の状態(JIS Z 8126-1:1999)をいう。より詳しくは、「真空」とは、標準気圧より低い圧力の気体で満たされた空間内の状態をいう。 "Vacuum" refers to the state in a space filled with gas at a pressure lower than normal atmospheric pressure (JIS Z 8126-1: 1999). More specifically, the term "vacuum" refers to a state within a space filled with gas at a pressure lower than standard atmospheric pressure.
 包装材3内の真空度は、例えば、600Pa以下、好ましくは、300Pa以下である。包装材3内の真空度が上記上限値以下であると、センサ付き真空断熱材1の断熱性を確保できる。 The degree of vacuum inside the packaging material 3 is, for example, 600 Pa or less, preferably 300 Pa or less. When the degree of vacuum in the packaging material 3 is equal to or less than the above upper limit, the heat insulating properties of the vacuum heat insulating material 1 with a sensor can be ensured.
 包装材3内の真空度の下限値は、限定されない。包装材3内の真空度は、例えば、1Pa以上である。 The lower limit of the degree of vacuum inside the packaging material 3 is not limited. The degree of vacuum inside the packaging material 3 is, for example, 1 Pa or more.
 包装材3は、後述する無線モジュール54(図3参照)からの電波を透過できる材料からなる。包装材3の材料としては、従来公知の真空包装可能な材料を使用できる。 The packaging material 3 is made of a material that can transmit radio waves from a wireless module 54 (see FIG. 3), which will be described later. As a material for the packaging material 3, a conventionally known vacuum packaging material can be used.
 (3)第1熱電変換部材
 熱電変換部材4は、回路基板5の電源として使用される。
(3) First thermoelectric conversion member The thermoelectric conversion member 4 is used as a power source for the circuit board 5 .
 熱電変換部材4は、包装材3の内側に配置される。熱電変換部材4は、厚み方向において、温度差によって起電力を生じる。熱電変換部材4は、複数のP型部分41A、41Bと、複数のN型部分42A、42Bとを有する。 The thermoelectric conversion member 4 is arranged inside the packaging material 3 . The thermoelectric conversion member 4 generates an electromotive force due to a temperature difference in the thickness direction. The thermoelectric conversion member 4 has a plurality of P- type portions 41A, 41B and a plurality of N- type portions 42A, 42B.
 P型部分41Aは、P型半導体として挙動する。P型部分41Aは、厚み方向に延びる。本実施形態では、P型部分41Aは、断熱材2を貫通する。P型部分41Aは、一端部411Aと、他端部412Aと、本体部413Aとを有する。一端部411Aは、断熱材2の外部に配置される。一端部411Aは、断熱材2の一方面S1上に配置される。他端部412Aは、断熱材2の外部に配置される。他端部412Aは、断熱材2の他方面S2上に配置される。本体部413Aは、一端部411Aと他端部412Aとの間に配置される。本体部413Aは、断熱材2の内部に配置される。つまり、熱電変換部材4は、断熱材2の内部に配置される部分(本体部413A)を有する。本体部413Aは、厚み方向において、断熱材2の厚みと同じ長さを有する。つまり、本体部413Aは、厚み方向において、所定の長さを有する。なお、本体部413Aは、厚み方向に沿って延びていなくてもよい。本体部413Aは、厚み方向に対して傾斜してもよい。 The P-type portion 41A behaves as a P-type semiconductor. The P-type portion 41A extends in the thickness direction. In this embodiment, the P-shaped portion 41A penetrates the heat insulating material 2 . The P-shaped portion 41A has one end portion 411A, the other end portion 412A, and a body portion 413A. 411 A of one end parts are arrange|positioned at the exterior of the heat insulating material 2. As shown in FIG. The one end portion 411A is arranged on one surface S1 of the heat insulating material 2 . The other end 412A is arranged outside the heat insulating material 2 . The other end portion 412A is arranged on the other surface S2 of the heat insulating material 2 . The body portion 413A is arranged between the one end portion 411A and the other end portion 412A. The body portion 413A is arranged inside the heat insulating material 2 . That is, the thermoelectric conversion member 4 has a portion (main body portion 413A) arranged inside the heat insulating material 2 . 413 A of main-body parts have the same length as the thickness of the heat insulating material 2 in the thickness direction. That is, the body portion 413A has a predetermined length in the thickness direction. Note that the body portion 413A does not have to extend along the thickness direction. The body portion 413A may be inclined with respect to the thickness direction.
 N型部分42Aは、N型半導体として挙動する。N型部分42Aは、厚み方向に延びる。本実施形態では、N型部分42Aは、断熱材2を貫通する。N型部分42Aは、一端部421Aと、他端部422Aと、本体部423Aとを有する。一端部421Aは、断熱材2の外部に配置される。一端部421Aは、断熱材2の一方面S1上に配置される。他端部422Aは、断熱材2の外部に配置される。他端部422Aは、断熱材2の他方面S2上に配置される。本体部423Aは、一端部421Aと他端部422Aとの間に配置される。本体部423Aは、断熱材2の内部に配置される。本体部423Aは、厚み方向において、断熱材2の厚みと同じ長さを有する。 The N-type portion 42A behaves as an N-type semiconductor. The N-type portion 42A extends in the thickness direction. In this embodiment, the N-shaped portion 42A penetrates the heat insulating material 2 . The N-type portion 42A has one end portion 421A, the other end portion 422A, and a body portion 423A. 421 A of one end parts are arrange|positioned outside the heat insulating material 2. As shown in FIG. The one end portion 421A is arranged on one surface S1 of the heat insulating material 2 . The other end 422A is arranged outside the heat insulating material 2 . The other end portion 422A is arranged on the other surface S2 of the heat insulating material 2 . The body portion 423A is arranged between the one end portion 421A and the other end portion 422A. The body portion 423A is arranged inside the heat insulating material 2 . 423 A of main-body parts have the same length as the thickness of the heat insulating material 2 in the thickness direction.
 そして、N型部分42Aの一端部421Aは、P型部分41Aの一端部411Aと電気的に接続される。これにより、P型部分41AとN型部分42Aとから、π型熱電変換素子の1つのセル構造4Aが形成される。 One end 421A of the N-type portion 42A is electrically connected to one end 411A of the P-type portion 41A. As a result, one cell structure 4A of the π-type thermoelectric conversion element is formed from the P-type portion 41A and the N-type portion 42A.
 また、P型部分41AとN型部分42Aと同様に、P型部分41BとN型部分42Bとから、π型熱電変換素子の1つのセル構造4Bが形成される。 As with the P-type portion 41A and the N-type portion 42A, the P-type portion 41B and the N-type portion 42B form one cell structure 4B of the π-type thermoelectric conversion element.
 そして、N型部分42Aの他端部422Aは、P型部分41Bの他端部412Bと電気的に接続される。これにより、セル構造4Aとセル構造4Bとが直列接続される。 The other end 422A of the N-type portion 42A is electrically connected to the other end 412B of the P-type portion 41B. Thereby, the cell structure 4A and the cell structure 4B are connected in series.
 熱電変換部材4は、P型部分41とN型部分42とを交互に有する糸状である。熱電変換部材4は、P型部分41とN型部分42との接続部分が断熱材2の表面上に配置されるように、断熱材2に縫い込まれている。熱電変換部材4は、折り返されながら断熱材2の面方向に延びる。 The thermoelectric conversion member 4 is filamentous and has P-type portions 41 and N-type portions 42 alternately. The thermoelectric conversion member 4 is sewn into the heat insulating material 2 so that the connecting portion between the P-type portion 41 and the N-type portion 42 is arranged on the surface of the heat insulating material 2 . The thermoelectric conversion member 4 extends in the surface direction of the heat insulating material 2 while being folded.
 熱電変換部材4の径は、例えば、150μm以上、好ましくは、300μm以上である。熱電変換部材4の径が上記下限値以上であると、熱電変換部材4の起電力の増大を図ることができる。 The diameter of the thermoelectric conversion member 4 is, for example, 150 μm or more, preferably 300 μm or more. When the diameter of the thermoelectric conversion member 4 is equal to or greater than the above lower limit value, the electromotive force of the thermoelectric conversion member 4 can be increased.
 なお、「熱電変換部材4の径」とは、熱電変換部材4が延びる方向と直交する方向(熱電変換部材4の径方向)における、熱電変換部材4の最小の長さである。具体的には、径方向における熱電変換部材4の断面が円形である場合、「熱電変換部材4の径」は、円の直径を指す。径方向における熱電変換部材4の断面が楕円形である場合、「熱電変換部材4の径」は、楕円の短軸の長さを指す。熱電変換部材4がリボン形状である場合、「熱電変換部材4の径」は、熱電変換部材4の厚みを指す。 The "diameter of the thermoelectric conversion member 4" is the minimum length of the thermoelectric conversion member 4 in the direction perpendicular to the extending direction of the thermoelectric conversion member 4 (radial direction of the thermoelectric conversion member 4). Specifically, when the cross section of the thermoelectric conversion member 4 in the radial direction is circular, the "diameter of the thermoelectric conversion member 4" refers to the diameter of the circle. When the cross section of the thermoelectric conversion member 4 in the radial direction is elliptical, the "diameter of the thermoelectric conversion member 4" refers to the length of the minor axis of the ellipse. When the thermoelectric conversion member 4 is ribbon-shaped, the “diameter of the thermoelectric conversion member 4 ” refers to the thickness of the thermoelectric conversion member 4 .
 熱電変換部材4の径は、例えば、3000μm以下、好ましくは、1500μm以下、より好ましくは、1000μmである。熱電変換部材4の径が上記上限値以下であると、断熱材2に縫い込まれた熱電変換部材4によって断熱材2の断熱性能が低下してしまうことを抑制できる。 The diameter of the thermoelectric conversion member 4 is, for example, 3000 μm or less, preferably 1500 μm or less, more preferably 1000 μm. If the diameter of the thermoelectric conversion member 4 is equal to or less than the above upper limit value, it is possible to prevent the heat insulating performance of the heat insulating material 2 from deteriorating due to the thermoelectric converting member 4 sewn into the heat insulating material 2 .
 熱電変換部材4の引張強度は、例えば、200mN以上、好ましくは、400mN以上である。熱電変換部材4の引張強度が上記下限値以上であると、熱電変換部材4を断熱材2に縫い込む工程において、熱電変換部材4の破断を抑制できる。 The tensile strength of the thermoelectric conversion member 4 is, for example, 200 mN or more, preferably 400 mN or more. When the tensile strength of the thermoelectric conversion member 4 is equal to or higher than the above lower limit, breakage of the thermoelectric conversion member 4 can be suppressed in the step of sewing the thermoelectric conversion member 4 into the heat insulating material 2 .
 熱電変換部材4の引張強度は、長さ65mmの熱電変換部材4を、引張試験機(島津製作所社製 EZ-S)を用いて、1mm/1分の速度で引っ張ることにより、測定される。 The tensile strength of the thermoelectric conversion member 4 is measured by pulling the thermoelectric conversion member 4 with a length of 65 mm at a speed of 1 mm/minute using a tensile tester (EZ-S manufactured by Shimadzu Corporation).
 熱電変換部材4の引張強度の上限値は、限定されない。熱電変換部材4の引張強度は、例えば、3000mN以下である。 The upper limit of the tensile strength of the thermoelectric conversion member 4 is not limited. The tensile strength of the thermoelectric conversion member 4 is, for example, 3000 mN or less.
 熱電変換部材4は、導電性材料と、バインダーと、必要により、ドーパントとを含有する。 The thermoelectric conversion member 4 contains a conductive material, a binder, and, if necessary, a dopant.
 導電性材料は、導電性を有する。導電性材料は、熱電変換部材4に導電性を与える。導電性材料として、例えば、半導体材料、炭素材料、および、導電性ポリマーが挙げられる。 A conductive material has conductivity. The conductive material gives conductivity to the thermoelectric conversion member 4 . Conductive materials include, for example, semiconductor materials, carbon materials, and conductive polymers.
 半導体材料として、例えば、ビスマス(Bi)、テルル(Te)、アンチモン(Sb)、コバルト(Co)、亜鉛(Zn)、ケイ素(Si)、ゲルマニウム(Ge)、イリジウム(Ir)、鉛(Pb)、および、これらの合金、スクッテルダイト、コンスタンタンが挙げられる。なお、半導体材料は、金属元素を含有する場合があるが、結晶構造、または、合金中の元素の組み合わせなどによって、金属よりも高い抵抗値を有し、半導体としてふるまう。半導体材料は、半導体ウィスカーであってもよい。 Examples of semiconductor materials include bismuth (Bi), tellurium (Te), antimony (Sb), cobalt (Co), zinc (Zn), silicon (Si), germanium (Ge), iridium (Ir), and lead (Pb). , and alloys thereof, skutterudite, constantan. A semiconductor material may contain a metal element, but has a higher resistance value than a metal and behaves as a semiconductor depending on the crystal structure, the combination of elements in the alloy, or the like. The semiconductor material may be a semiconductor whisker.
 炭素材料として、例えば、カーボンナノチューブ、カーボンナノファイバー、グラフェン、グラフェンナノリボン、フラーレンナノウィスカーが挙げられる。 Examples of carbon materials include carbon nanotubes, carbon nanofibers, graphene, graphene nanoribbons, and fullerene nanowhiskers.
 導電性ポリマーとして、例えば、ポリアセチレン、ポリ(p-フェニレンビニレン)、ポリピロール、ポリチオフェン、ポリアニリン、ポリ(p-フェニレンスルフィド)、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合物(PEDOT:PSS)、ポリ(3,4-エチレンジオキシチオフェン)とポリプロピルスルホン酸メチルシロキサンとの複合物(PEDOT:PSiPS)、ポリ(3,4-エチレンジオキシチオフェン)とパラトルエンスルホン酸との複合物(PEDOT:Tos)が挙げられる。 Conductive polymers such as polyacetylene, poly(p-phenylene vinylene), polypyrrole, polythiophene, polyaniline, poly(p-phenylene sulfide), poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid composites (PEDOT:PSS), a composite of poly(3,4-ethylenedioxythiophene) and methylpolypropylsulfonate siloxane (PEDOT:PSiPS), poly(3,4-ethylenedioxythiophene) and paratoluenesulfonic acid and a composite (PEDOT: Tos).
 導電性材料として、好ましくは、炭素材料、より好ましくは、カーボンナノチューブが挙げられる。つまり、熱電変換部材4は、カーボンナノチューブと、バインダーと、必要により、ドーパントとを含有する。導電性材料がカーボンナノチューブであると、カーボンナノチューブのP型半導体としての電気特性を利用して、効率よく熱電変換部材4を製造できる。 The conductive material is preferably a carbon material, more preferably a carbon nanotube. That is, the thermoelectric conversion member 4 contains carbon nanotubes, a binder, and, if necessary, a dopant. If the conductive material is a carbon nanotube, the thermoelectric conversion member 4 can be efficiently manufactured by utilizing the electrical properties of the carbon nanotube as a P-type semiconductor.
 バインダーは、導電性物質を結着する。導電性物質がカーボンナノチューブである場合、バインダーは、カーボンナノチューブを結着する。バインダーとして、例えば、絶縁性樹脂、および、導電性樹脂が挙げられる。 The binder binds the conductive substances together. When the conductive material is carbon nanotubes, the binder binds the carbon nanotubes. Examples of binders include insulating resins and conductive resins.
 絶縁性樹脂として、例えば、ポリエチレングリコール、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、ポリスチレン樹脂、ポリビニル樹脂が挙げられる。ポリビニル樹脂として、例えば、ポリ塩化ビニル、ポリビニルピロリドン、ポリビニルアルコール、ポリ酢酸ビニルが挙げられる。 Examples of insulating resins include polyethylene glycol, epoxy resin, acrylic resin, urethane resin, polystyrene resin, and polyvinyl resin. Polyvinyl resins include, for example, polyvinyl chloride, polyvinylpyrrolidone, polyvinyl alcohol, and polyvinyl acetate.
 導電性樹脂として、例えば、ポリアセチレン、ポリ(p-フェニレンビニレン)、ポリピロール、ポリチオフェン、ポリアニリン、ポリ(p-フェニレンスルフィド)、ポリ(3,4-エチレンジオキシチオフェン)が挙げられる。 Examples of conductive resins include polyacetylene, poly(p-phenylene vinylene), polypyrrole, polythiophene, polyaniline, poly(p-phenylene sulfide), and poly(3,4-ethylenedioxythiophene).
 バインダーとして、好ましくは、絶縁性樹脂、より好ましくは、ポリエチレングリコールが挙げられる。 The binder is preferably an insulating resin, more preferably polyethylene glycol.
 ドーパントは、熱電変換部材4に半導体の電気特性を与える。ドーパントとして、P型ドーパント、および、N型ドーパントが挙げられる。P型ドーパントは、熱電変換部材4にP型半導体の電気特性を与える。なお、導電性物質がカーボンナノチューブである場合、カーボンナノチューブがP型半導体の電気特性を有するため、熱電変換部材4は、P型ドーパントを含有しなくてもよい。N型ドーパントは、熱電変換部材4にN型半導体の電気特性を与える。N型ドーパントとして、例えば、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート(BMIM-PF)、ポリエチレンイミン(PEI)、エチレンジアミンテトラキス(プロポキシレート-ブロック-エトキシレート)テトロール(商品名:Tetronic(登録商標) 1107)、還元ベンジルビオロゲン(reduced BV)、ジフェニルホスフィン(dpp)、1,2-ビス(ジフェニルホスフィノ)エタン(dppe)、1,3-ビス(ジフェニルホスフィノ)プロパン(dppp)、1,4-ビス(ジフェニルホスフィノ)ブタン(dppb)、ビス(ジフェニルホスフィノメチル)フェニルホスフィン(dpmp)、ビス(ジフェニルホスフィノエチル)フェニルホスフィン(ppmdp)、ビス[(ジフェニルホスフィノメチル)フェニルホスフィノ]メタン(dpmppm)、トリフェニルホスフィン(tpp)、トリス(p-フルオロフェニル)ホスフィン(F-tpp)、トリス(p-クロロフェニル)ホスフィン(Cl-tpp)、トリス(p-メトキシフェニル)ホスフィン(MeO-tpp)、トリス(4-メトキシ-3,5-ジメチルフェニル)ホスフィン(tmdp)、インドール(Id)、ポリビニルピロール(PVPy)、ポリビニルピロリドン(PVP)、1,3-ジメチル-2-(o-メトキシフェニル)ベンゾイミダゾール(o-MeO-DMBI)、ヒドラジン一水和物(HH)、フェニルヒドラジン(MPH)、1,2-ジフェニルヒドラジン(DPH)が挙げられる。 The dopant gives the thermoelectric conversion member 4 electric properties of a semiconductor. Dopants include P-type dopants and N-type dopants. The P-type dopant gives the thermoelectric conversion member 4 electrical properties of a P-type semiconductor. When the conductive substance is a carbon nanotube, the thermoelectric conversion member 4 does not need to contain a P-type dopant because the carbon nanotube has electrical properties of a P-type semiconductor. The N-type dopant gives the thermoelectric conversion member 4 electrical properties of an N-type semiconductor. Examples of N-type dopants include 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF 6 ), polyethyleneimine (PEI), ethylenediaminetetrakis(propoxylate-block-ethoxylate) tetrol (trade name: Tetronic ( 1107), reduced benzylviologen (reduced BV), diphenylphosphine (dpp), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,4-bis(diphenylphosphino)butane (dppb), bis(diphenylphosphinomethyl)phenylphosphine (dpmp), bis(diphenylphosphinoethyl)phenylphosphine (ppmdp), bis[(diphenylphosphinomethyl)phenyl Phosphino]methane (dpmppm), triphenylphosphine (tpp), tris(p-fluorophenyl)phosphine (F-tpp), tris(p-chlorophenyl)phosphine (Cl-tpp), tris(p-methoxyphenyl)phosphine (MeO-tpp), tris(4-methoxy-3,5-dimethylphenyl)phosphine (tmdp), indole (Id), polyvinylpyrrole (PVPy), polyvinylpyrrolidone (PVP), 1,3-dimethyl-2-( o-Methoxyphenyl)benzimidazole (o-MeO-DMBI), hydrazine monohydrate (HH), phenylhydrazine (MPH), 1,2-diphenylhydrazine (DPH).
 熱電変換部材4の表面は、コーティングされていてもよい。言い換えると、熱電変換部材4は、導電性材料とバインダーとドーパントとを含有する芯部と、芯部の表面をコーティングするコート層とを有してもよい。コート層の材料として、例えば、樹脂、炭素繊維、金属、金属酸化物、ケイ素化合物が挙げられる。樹脂として、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フッ素樹脂、ポリビニルアルコール、エチレンビニルアルコール、ポリブチレンテレフタラート、ポリアミド、ポリイミド、ポリビニルアセタール、ポリシルセスキオキサン、ポリシラザン、パリレンが挙げられる。炭素繊維として、例えば、カーボンナノファイバーが挙げられる。金属として、例えば、アルミニウム、クロムが挙げられる。金属酸化物として、例えば、スメクタイト、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化アルミニウム亜鉛(AZO)、酸化亜鉛スズ(ZTO)が挙げられる。ケイ素化合物として、例えば、シリカ微粒子、二酸化ケイ素、窒化ケイ素が挙げられる。コート層により、熱電変換部材4の強度および耐摩耗性の向上を図ることができる。また、コート層により、酸素や水分による熱電変換部材4の劣化を抑制できる。 The surface of the thermoelectric conversion member 4 may be coated. In other words, the thermoelectric conversion member 4 may have a core containing a conductive material, a binder, and a dopant, and a coat layer coating the surface of the core. Materials for the coat layer include, for example, resins, carbon fibers, metals, metal oxides, and silicon compounds. Examples of resins include epoxy resin, acrylic resin, urethane resin, fluorine resin, polyvinyl alcohol, ethylene vinyl alcohol, polybutylene terephthalate, polyamide, polyimide, polyvinyl acetal, polysilsesquioxane, polysilazane, and parylene. Examples of carbon fibers include carbon nanofibers. Examples of metals include aluminum and chromium. Examples of metal oxides include smectite, indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), and zinc tin oxide (ZTO). Silicon compounds include, for example, silica fine particles, silicon dioxide, and silicon nitride. The coat layer can improve the strength and wear resistance of the thermoelectric conversion member 4 . Further, the coating layer can suppress deterioration of the thermoelectric conversion member 4 due to oxygen and moisture.
 熱電変換部材4を製造するには、まず、導電性材料とバインダーとの混合物を糸状に成形する。 To manufacture the thermoelectric conversion member 4, first, a mixture of a conductive material and a binder is formed into a filament.
 次に、得られた成形物にドーパントを付与する。ドーパントを付与するには、例えば、ドーパントを含有する溶液に、成形物を浸漬する。導電性材料がカーボンナノチューブである場合、成形物においてN型部分42にしたい部分に、N型ドーパントを付与する。 Next, a dopant is applied to the obtained molding. To apply the dopant, for example, the molding is immersed in a solution containing the dopant. If the conductive material is a carbon nanotube, an N-type dopant is applied to the portion of the molding that is desired to be the N-type portion 42 .
 これにより、成形物において、N型ドーパントを付与された部分がN型部分42になり、N型ドーパントを付与されていない部分が、カーボンナノチューブの電気特性によって、P型部分41になる。なお、成形物においてP型部分41にしたい部分に、P型ドーパントを付与してもよい。 As a result, in the molded product, the portion provided with the N-type dopant becomes the N-type portion 42, and the portion not provided with the N-type dopant becomes the P-type portion 41 due to the electrical properties of the carbon nanotube. In addition, a P-type dopant may be applied to a portion of the molded article that is desired to be the P-type portion 41 .
 これにより、熱電変換部材4が得られる。得られた熱電変換部材4は、P型部分41とN型部分42との接続部分が断熱材2の表面上に配置されるように、断熱材2に縫い込まれる。 Thus, the thermoelectric conversion member 4 is obtained. The obtained thermoelectric conversion member 4 is sewn into the heat insulating material 2 so that the connecting portion between the P-type portion 41 and the N-type portion 42 is arranged on the surface of the heat insulating material 2 .
 導電性材料とバインダーとの混合物を糸状に成形する方法であれば、熱電変換部材4の重量当たりの導電性材料の比率を高めることができる。そのため、大きな起電力を得ることができる熱電変換部材4を、製造できる。 The ratio of the conductive material to the weight of the thermoelectric conversion member 4 can be increased by a method of forming a mixture of the conductive material and the binder into a filament. Therefore, the thermoelectric conversion member 4 capable of obtaining a large electromotive force can be manufactured.
 なお、熱電変換部材4は、導電性材料とバインダーとの混合物を糸状に成形する以外の方法で製造してもよい。例えば、植物繊維または合成繊維に導電性材料を担持または含侵させ、必要に応じてドーパントやバインダーを付加して、熱電変換部材4を製造することもできる。植物繊維として、例えば、木綿、麻、および、パルプが挙げられる。合成繊維として、例えば、ポリプロピレン、および、ポリエチレンが挙げられる。 Note that the thermoelectric conversion member 4 may be manufactured by a method other than forming a mixture of a conductive material and a binder into a filament. For example, the thermoelectric conversion member 4 can be manufactured by supporting or impregnating a conductive material in plant fibers or synthetic fibers, and adding dopants and binders as necessary. Plant fibers include, for example, cotton, hemp, and pulp. Synthetic fibers include, for example, polypropylene and polyethylene.
 (4)回路基板
 回路基板5は、包装材3の内側に配置される。回路基板5は、断熱材2の表面に取り付けられる。なお、回路基板5は、断熱材2内に埋め込まれていてもよい。
(4) Circuit board The circuit board 5 is arranged inside the packaging material 3 . A circuit board 5 is attached to the surface of the heat insulating material 2 . In addition, the circuit board 5 may be embedded in the heat insulating material 2 .
 回路基板5は、センサ51と、回路の一例としての変換回路52と、無線モジュール54と、制御装置53とを有する。つまり、センサ51、変換回路52、無線モジュール54、および、制御装置53は、包装材3の内側に配置される。また、センサ付き真空断熱材1は、センサ51と、変換回路52と、制御装置53と、無線モジュール54とを備える。 The circuit board 5 has a sensor 51 , a conversion circuit 52 as an example of a circuit, a wireless module 54 and a control device 53 . That is, the sensor 51 , conversion circuit 52 , wireless module 54 and control device 53 are arranged inside the packaging material 3 . The sensor-equipped vacuum heat insulating material 1 also includes a sensor 51 , a conversion circuit 52 , a control device 53 , and a wireless module 54 .
 回路基板5は、熱電変換部材4と電気的に接続される。これにより、回路基板5は、熱電変換部材4の起電力により動作する。つまり、センサ51、変換回路52、無線モジュール54、および、制御装置53は、熱電変換部材4の起電力により動作する。 The circuit board 5 is electrically connected to the thermoelectric conversion member 4 . Thereby, the circuit board 5 is operated by the electromotive force of the thermoelectric conversion member 4 . That is, the sensor 51 , the conversion circuit 52 , the wireless module 54 and the control device 53 are operated by the electromotive force of the thermoelectric conversion member 4 .
 (4-1)センサ
 センサ51は、真空度センサである。センサ51は、包装材3内の真空度を測定する。センサ51は、変換回路52と電気的に接続される。
(4-1) Sensor The sensor 51 is a vacuum sensor. A sensor 51 measures the degree of vacuum inside the packaging material 3 . Sensor 51 is electrically connected to conversion circuit 52 .
 (4-2)変換回路
 変換回路52は、センサ51からの信号を処理する。詳しくは、変換回路52は、センサ51からのアナログ信号を、デジタル信号に変換する。変換回路52は、AFE(アナログ・フロント・エンド)回路と、アナログ-デジタル変換回路とを含む。変換回路52は、センサ51からのアナログ信号を、AFE回路によって調整し、アナログ-デジタル変換回路によってデジタル信号に変換する。
(4-2) Conversion Circuit The conversion circuit 52 processes signals from the sensor 51 . Specifically, the conversion circuit 52 converts the analog signal from the sensor 51 into a digital signal. The conversion circuit 52 includes an AFE (Analog Front End) circuit and an analog-to-digital conversion circuit. The conversion circuit 52 adjusts the analog signal from the sensor 51 with the AFE circuit and converts it into a digital signal with the analog-digital conversion circuit.
 (4-3)制御装置
 制御装置53は、変換回路52および無線モジュール54と電気的に接続される。制御装置53は、プロセッサと、メモリとを有する。制御装置53は、変換回路52が処理したセンサ51からの信号を、メモリに記録可能である。制御装置53は、無線モジュール54を制御可能である。制御装置53は、メモリに記録された信号を、無線モジュール54に発信させる。制御装置53は、メモリに記録された信号を、全て、無線モジュール54に発信させてもよい。制御装置53は、メモリに記録された信号が異常値である場合に、その異常値を、無線モジュール54に発信させてもよい。
(4-3) Control Device The control device 53 is electrically connected to the conversion circuit 52 and the wireless module 54 . The controller 53 has a processor and memory. The control device 53 can record the signal from the sensor 51 processed by the conversion circuit 52 in a memory. The control device 53 can control the wireless module 54 . The control device 53 causes the wireless module 54 to transmit the signal recorded in the memory. The control device 53 may cause the wireless module 54 to transmit all the signals recorded in the memory. If the signal recorded in the memory is an abnormal value, the control device 53 may cause the wireless module 54 to transmit the abnormal value.
 (4-4)無線モジュール
 無線モジュール54は、制御装置53によって制御されて、変換回路52が変換したセンサ51からの信号(具体的には、変換回路52によって変換され、制御装置53のメモリに記録された信号)を、発信可能である。すなわち、無線モジュール54は、変換回路52が処理したセンサ51からの信号を発信可能である。なお、無線モジュール54の通信規格は、限定されない。無線モジュール54は、少なくとも、送信アンテナを有する。
(4-4) Wireless module The wireless module 54 is controlled by the control device 53 to convert the signal from the sensor 51 converted by the conversion circuit 52 (specifically, the signal is converted by the conversion circuit 52 and stored in the memory of the control device 53). recorded signal) can be emitted. That is, the wireless module 54 can transmit the signal from the sensor 51 processed by the conversion circuit 52 . Note that the communication standard of the wireless module 54 is not limited. Radio module 54 has at least a transmitting antenna.
 2.作用効果
 (1)センサ付き真空断熱材1によれば、図1に示すように、包装材3の内部に、断熱材2と、糸状の熱電変換部材4と、回路基板5とが配置されている。図3に示すように、回路基板5は、センサ51と、センサ51からの信号を処理する変換回路52とを有する。
2. 1. Functions and Effects (1) According to the vacuum heat insulating material 1 with a sensor, as shown in FIG. there is As shown in FIG. 3, the circuit board 5 has a sensor 51 and a conversion circuit 52 that processes signals from the sensor 51 .
 図2に示すように、熱電変換部材4は、断熱材2の内部に配置される本体部413を有している。本体部413は、厚み方向において所定の長さを有する。 As shown in FIG. 2, the thermoelectric conversion member 4 has a body portion 413 arranged inside the heat insulating material 2 . The body portion 413 has a predetermined length in the thickness direction.
 そのため、熱電変換部材4は、断熱材2によって確保された温度差を利用して、大きな起電力を生み出すことができる。 Therefore, the thermoelectric conversion member 4 can use the temperature difference ensured by the heat insulating material 2 to generate a large electromotive force.
 そして、図3に示すように、回路基板5は、熱電変換部材4の起電力により動作する。 Then, as shown in FIG. 3 , the circuit board 5 is operated by the electromotive force of the thermoelectric conversion member 4 .
 そのため、包装材3内に設置されたセンサ51からの信号を、熱電変換部材4の起電力により動作する変換回路52で、処理できる。 Therefore, the signal from the sensor 51 installed inside the packaging material 3 can be processed by the conversion circuit 52 that operates by the electromotive force of the thermoelectric conversion member 4 .
 (2)センサ付き真空断熱材1によれば、センサ51は、熱電変換部材4の起電力により動作する真空度センサである。 (2) According to the sensor-equipped vacuum heat insulating material 1 , the sensor 51 is a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4 .
 そのため、包装材3の外部からの電力供給を必要とせずに、断熱性能の低下に繋がる「センサ付き真空断熱材1の異常」として、包装材3の内部の真空度の低下を検知できる。 Therefore, it is possible to detect a decrease in the degree of vacuum inside the packaging material 3 as an "abnormality of the vacuum insulation material 1 with a sensor" that leads to a decrease in insulation performance, without requiring power supply from the outside of the packaging material 3.
 (3)センサ付き真空断熱材1によれば、図3に示すように、無線モジュール54を備える。無線モジュール54は、包装材3の内側に配置され、変換回路52が処理したセンサ51からの信号を発信可能である。 (3) According to the vacuum heat insulating material 1 with a sensor, as shown in FIG. The wireless module 54 is arranged inside the packaging material 3 and can transmit a signal from the sensor 51 processed by the conversion circuit 52 .
 そのため、変換回路52が処理したセンサ51からの信号を、無線で外部に送信できる。 Therefore, the signal from the sensor 51 processed by the conversion circuit 52 can be wirelessly transmitted to the outside.
 (4)センサ付き真空断熱材1によれば、図3に示すように、無線モジュール54および制御装置53も、熱電変換部材4の起電力により動作する。 (4) According to the sensor-equipped vacuum heat insulating material 1, the wireless module 54 and the control device 53 are also operated by the electromotive force of the thermoelectric conversion member 4, as shown in FIG.
 そのため、無線モジュール54および制御装置53も包装材3の内部に設置できる。 Therefore, the wireless module 54 and the control device 53 can also be installed inside the packaging material 3.
 (5)センサ付き真空断熱材1によれば、熱電変換部材4の表面は、コーティングされている。 (5) According to the vacuum heat insulating material 1 with a sensor, the surface of the thermoelectric conversion member 4 is coated.
 そのため、コーティングにより、熱電変換部材4の強度および耐摩耗性の向上を図ることができる。また、コーティングにより、酸素や水分による熱電変換部材4の劣化を抑制できる。 Therefore, the coating can improve the strength and wear resistance of the thermoelectric conversion member 4 . Moreover, the coating can suppress deterioration of the thermoelectric conversion member 4 due to oxygen and moisture.
 3.変形例
 センサ付き真空断熱材1の変形例について説明する。変形例の説明において、上記した実施形態と同様の部材には同じ符号を付し、説明を省略する。
3. Modifications Modifications of the sensor-equipped vacuum heat insulating material 1 will be described. In the description of the modified example, the same reference numerals are given to the same members as in the above-described embodiment, and the description thereof is omitted.
 (1)センサ51は、温度センサであってもよい。温度センサは、熱電変換部材4の起電力により動作してもよい。この場合、包装材3の外部からの電力供給を必要とせずに、断熱性能の低下に繋がる「センサ付き真空断熱材1の異常」として、包装材3の内部の温度の過度な変動を検知できる。 (1) The sensor 51 may be a temperature sensor. The temperature sensor may operate by the electromotive force of the thermoelectric conversion member 4 . In this case, without requiring power supply from the outside of the packaging material 3, excessive fluctuations in the temperature inside the packaging material 3 can be detected as "abnormality of the vacuum insulation material 1 with a sensor" that leads to a decrease in insulation performance. .
 (2)図4および図5に示すように、センサ付き真空断熱材1は、熱電変換部材100からなる温度センサを備えてもよい。熱電変換部材100は、第2熱電変換部材の一例である。熱電変換部材100は、熱電変換部材4とは独立している。熱電変換部材100は、熱電変換部材4とは電気的に接続されていない。熱電変換部材100は、回路基板5から独立しており、回路基板5の変換回路52と電気的に接続されている。 (2) As shown in FIGS. 4 and 5, the vacuum heat insulating material 1 with a sensor may include a temperature sensor comprising a thermoelectric conversion member 100. FIG. Thermoelectric conversion member 100 is an example of a second thermoelectric conversion member. The thermoelectric conversion member 100 is independent of the thermoelectric conversion member 4 . Thermoelectric conversion member 100 is not electrically connected to thermoelectric conversion member 4 . The thermoelectric conversion member 100 is independent of the circuit board 5 and electrically connected to the conversion circuit 52 of the circuit board 5 .
 熱電変換部材100は、熱電変換部材4と同じ構造および成分を有する。つまり、熱電変換部材100は、断熱材2の内部に配置される部分(本体部)を有する。熱電変換部材100の本体部は、厚み方向において所定の長さを有する。そのため、熱電変換部材100は、熱電変換部材4と同様に、厚み方向において、温度差によって起電力を生じる。 The thermoelectric conversion member 100 has the same structure and components as the thermoelectric conversion member 4. That is, the thermoelectric conversion member 100 has a portion (main body portion) arranged inside the heat insulating material 2 . The body portion of the thermoelectric conversion member 100 has a predetermined length in the thickness direction. Therefore, like the thermoelectric conversion member 4, the thermoelectric conversion member 100 generates an electromotive force due to the temperature difference in the thickness direction.
 そして、変換回路52は、熱電変換部材100の起電力を、デジタル信号に変換する。つまり、この変形例では、熱電変換部材100の起電力が、「センサからの信号」である。 Then, the conversion circuit 52 converts the electromotive force of the thermoelectric conversion member 100 into a digital signal. That is, in this modified example, the electromotive force of the thermoelectric conversion member 100 is the "signal from the sensor".
 そのため、この変形例によれば、熱電変換部材100の起電力を「センサからの信号」として利用することにより、包装材3の外部からの電力、および、熱電変換部材4の起電力を使用せずに、断熱性能の低下に繋がる「センサ付き真空断熱材1の異常」として、包装材3の内部の温度の過度な変動を検知できる。 Therefore, according to this modification, by using the electromotive force of the thermoelectric conversion member 100 as the "signal from the sensor", the electric power from the outside of the packaging material 3 and the electromotive force of the thermoelectric conversion member 4 can be used. Excessive fluctuations in the temperature inside the packaging material 3 can be detected as "abnormalities in the vacuum heat insulating material 1 with a sensor" that lead to deterioration of the heat insulating performance.
 (3)センサ付き真空断熱材1は、複数のセンサを備えてもよい。この場合、複数のセンサは、熱電変換部材4の起電力により動作する真空度センサ、熱電変換部材4の起電力により動作する温度センサ、および、熱電変換部材100からなる温度センサの少なくとも2つを含んでもよい。 (3) The sensor-equipped vacuum heat insulating material 1 may include a plurality of sensors. In this case, the plurality of sensors include at least two of a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4, a temperature sensor operated by the electromotive force of the thermoelectric conversion member 4, and a temperature sensor composed of the thermoelectric conversion member 100. may contain.
 つまり、センサ付き真空断熱材1は、熱電変換部材4の起電力により動作する真空度センサと、熱電変換部材4の起電力により動作する温度センサとを備えてもよい。センサ付き真空断熱材1は、熱電変換部材4の起電力により動作する真空度センサと、熱電変換部材100からなる温度センサとを備えてもよい。 That is, the sensor-equipped vacuum heat insulating material 1 may include a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4 and a temperature sensor operated by the electromotive force of the thermoelectric conversion member 4 . The sensor-equipped vacuum heat insulating material 1 may include a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4 and a temperature sensor composed of the thermoelectric conversion member 100 .
 また、センサ付き真空断熱材1は、熱電変換部材4の起電力により動作する温度センサと、熱電変換部材100からなる温度センサを備えてもよい。センサ付き真空断熱材1は、熱電変換部材4の起電力により動作する真空度センサと、熱電変換部材4の起電力により動作する温度センサと、熱電変換部材100からなる温度センサとを備えてもよい。 Further, the sensor-equipped vacuum heat insulating material 1 may include a temperature sensor operated by the electromotive force of the thermoelectric conversion member 4 and a temperature sensor composed of the thermoelectric conversion member 100 . The vacuum heat insulating material 1 with a sensor may include a vacuum sensor operated by the electromotive force of the thermoelectric conversion member 4, a temperature sensor operated by the electromotive force of the thermoelectric conversion member 4, and a temperature sensor composed of the thermoelectric conversion member 100. good.
 この変形例によれば、包装材3の外部からの電力供給を必要とせずに、断熱性能の低下に繋がる「センサ付き真空断熱材1の異常」として、包装材3の内部の真空度の低下、および、包装材3の内部の温度の過度な変動の少なくとも1つを検知できる。 According to this modification, without the need for power supply from the outside of the packaging material 3, a decrease in the degree of vacuum inside the packaging material 3 is detected as an "abnormality in the vacuum insulation material 1 with a sensor" that leads to a decrease in insulation performance. , and at least one of excessive fluctuations in the temperature inside the packaging material 3 can be detected.
 (4)図6に示すように、センサ付き真空断熱材1は、P型部分41とN型部分42とを有する熱電変換部材4の代わりに、P型部分41のみからなるP型熱電変換部材101と、N型部分42のみからなるN型熱電変換部材102とを有してもよい。そして、厚み方向におけるP型熱電変換部材101の一端部と、厚み方向におけるN型熱電変換部材102の一端部とが、導電ペースト103などによって、電気的に接続されてもよい。 (4) As shown in FIG. 6, the sensor-equipped vacuum heat insulating material 1 is a P-type thermoelectric conversion member consisting only of the P-type portion 41 instead of the thermoelectric conversion member 4 having the P-type portion 41 and the N-type portion 42. 101 and an N-type thermoelectric conversion member 102 consisting only of the N-type portion 42 . One end of the P-type thermoelectric conversion member 101 in the thickness direction and one end of the N-type thermoelectric conversion member 102 in the thickness direction may be electrically connected by a conductive paste 103 or the like.
 この場合、P型熱電変換部材101およびN型熱電変換部材102のそれぞれは、糸状であり、断熱材2に縫い込まれていてもよい。 In this case, each of the P-type thermoelectric conversion member 101 and the N-type thermoelectric conversion member 102 may be thread-like and sewn into the heat insulating material 2 .
 (5)図7に示すように、センサ付き真空断熱材1は、P型部分41とN型部分42との接続部分を覆うカバー層110A,110Bを有してもよい。カバー層110A,110Bの材料として、例えば、上記した断熱材2の材料が挙げられる。カバー層110A,110Bは、コート層を有してもよい。コート層の材料として、例えば、上記した熱電変換部材3のコート層の材料が挙げられる。 (5) As shown in FIG. 7, the sensor-equipped vacuum heat insulating material 1 may have cover layers 110A and 110B that cover the connecting portion between the P-type portion 41 and the N-type portion 42 . Examples of materials for the cover layers 110A and 110B include the materials for the heat insulating material 2 described above. The cover layers 110A and 110B may have coat layers. Examples of the material for the coat layer include the material for the coat layer of the thermoelectric conversion member 3 described above.
 また、図8に示すように、熱電変換部材4の全部は、断熱材2の内部に配置されていてもよい。言い換えると、熱電変換部材4は、断熱材2の内部に配置される部分のみからなってもよい。 Also, as shown in FIG. 8, the entire thermoelectric conversion member 4 may be arranged inside the heat insulating material 2 . In other words, the thermoelectric conversion member 4 may consist of only the portion arranged inside the heat insulating material 2 .
 (6)制御装置53は、無線モジュール54を制御しなくてもよい。この場合、回路基板5は、不揮発メモリを有し、制御装置53は、不揮発メモリにデータを記録してもよい。不揮発メモリに記録されたデータは、無線モジュール54を介して、外部のリーダで読み取り可能であればよい。 (6) The control device 53 does not have to control the wireless module 54. In this case, the circuit board 5 has a nonvolatile memory, and the control device 53 may record data in the nonvolatile memory. The data recorded in the non-volatile memory may be read by an external reader via the wireless module 54 .
 (7)センサ51は、回路基板5から独立していてもよい。無線モジュール54も、回路基板5から独立していてもよい。 (7) The sensor 51 may be independent from the circuit board 5. The radio module 54 may also be independent from the circuit board 5 .
 (8)上記した変形例でも、実施形態と同様の作用効果を得ることができる。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
(8) Even in the modified example described above, the same effect as the embodiment can be obtained.
It should be noted that although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an illustration and should not be construed as a limitation. Variations of the invention that are obvious to those skilled in the art are included in the following claims.
 本発明のセンサ付き真空断熱材は、例えば、保冷容器の断熱材として利用可能である。 The vacuum heat insulating material with a sensor of the present invention can be used, for example, as a heat insulating material for cold storage containers.
 1   センサ付き真空断熱材
 2   断熱材
 3   包装材
 4   熱電変換部材(第1熱電変換部材)
 51  センサ
 52  変換回路(センサからの信号を処理する回路)
 53  制御装置
 54  無線モジュール
 100 熱電変換部材(第2熱電変換部材)
 101 P型熱電変換部材(第1熱電変換部材)
 102 N型熱電変換部材(第1熱電変換部材)
1 vacuum heat insulating material with sensor 2 heat insulating material 3 packaging material 4 thermoelectric conversion member (first thermoelectric conversion member)
51 sensor 52 conversion circuit (circuit for processing signals from the sensor)
53 Control Device 54 Wireless Module 100 Thermoelectric Conversion Member (Second Thermoelectric Conversion Member)
101 P-type thermoelectric conversion member (first thermoelectric conversion member)
102 N-type thermoelectric conversion member (first thermoelectric conversion member)

Claims (13)

  1.  所定の厚みを有する断熱材と、
     前記断熱材を真空包装する包装材と、
     前記包装材の内側に配置される糸状の第1熱電変換部材であって、前記断熱材の内部に配置され前記断熱材の厚み方向において所定の長さを有する部分を有し、前記断熱材の厚み方向において、温度差によって起電力を生じる第1熱電変換部材と、
     前記包装材の内側に配置されるセンサと、
     前記包装材の内側に配置され、前記第1熱電変換部材の起電力により動作する回路であって、前記センサからの信号を処理する回路と
    を備える、センサ付き真空断熱材。
    a heat insulating material having a predetermined thickness;
    A packaging material for vacuum packaging the heat insulating material;
    A filamentous first thermoelectric conversion member arranged inside the packaging material, and having a portion arranged inside the heat insulating material and having a predetermined length in the thickness direction of the heat insulating material, a first thermoelectric conversion member that generates an electromotive force due to a temperature difference in the thickness direction;
    a sensor disposed inside the packaging material;
    A vacuum heat insulating material with a sensor, comprising a circuit arranged inside the packaging material and operated by the electromotive force of the first thermoelectric conversion member, the circuit processing a signal from the sensor.
  2.  前記センサは、前記第1熱電変換部材の起電力により動作する真空度センサである、請求項1に記載のセンサ付き真空断熱材。 The vacuum heat insulating material with a sensor according to claim 1, wherein the sensor is a vacuum sensor operated by the electromotive force of the first thermoelectric conversion member.
  3.  前記センサは、前記第1熱電変換部材の起電力により動作する温度センサである、請求項1に記載のセンサ付き真空断熱材。 The vacuum heat insulating material with a sensor according to claim 1, wherein the sensor is a temperature sensor that operates by the electromotive force of the first thermoelectric conversion member.
  4.  前記センサは、第1熱電変換部材とは独立した第2熱電変換部材からなる温度センサである、請求項1に記載のセンサ付き真空断熱材。 The vacuum heat insulating material with a sensor according to claim 1, wherein the sensor is a temperature sensor composed of a second thermoelectric conversion member independent of the first thermoelectric conversion member.
  5.  前記センサ付き真空断熱材は、複数の前記センサを備え、
     複数の前記センサは、前記第1熱電変換部材の起電力により動作する真空度センサ、前記第1熱電変換部材の起電力により動作する温度センサ、および、第1熱電変換部材とは独立した第2熱電変換部材からなる温度センサの少なくとも2つを含む、請求項1に記載のセンサ付き真空断熱材。
    The sensor-equipped vacuum insulation material includes a plurality of the sensors,
    The plurality of sensors include a vacuum sensor operated by the electromotive force of the first thermoelectric conversion member, a temperature sensor operated by the electromotive force of the first thermoelectric conversion member, and a second thermoelectric conversion member independent of the first thermoelectric conversion member. 2. The vacuum heat insulating material with a sensor according to claim 1, comprising at least two temperature sensors comprising thermoelectric conversion members.
  6.  前記包装材の内側に配置され、前記回路が処理した前記センサからの信号を発信可能な無線モジュールを備える、請求項1に記載のセンサ付き真空断熱材。 The vacuum insulation material with a sensor according to claim 1, comprising a wireless module arranged inside the packaging material and capable of transmitting a signal from the sensor processed by the circuit.
  7.  前記無線モジュールを制御可能な制御装置を備える、請求項6に記載のセンサ付き真空断熱材。 The vacuum heat insulating material with a sensor according to claim 6, comprising a control device capable of controlling said wireless module.
  8.  前記無線モジュールおよび前記制御装置は、前記第1熱電変換部材の起電力により動作する、請求項7に記載のセンサ付き真空断熱材。 The vacuum heat insulating material with a sensor according to claim 7, wherein the wireless module and the control device are operated by the electromotive force of the first thermoelectric conversion member.
  9.  前記断熱材は、グラスウール、ロックウール、ヒュームドシリカ、および、発泡ポリマーの少なくとも1つを含む、請求項1に記載のセンサ付き真空断熱材。 The sensor-equipped vacuum insulation material according to claim 1, wherein the heat insulating material includes at least one of glass wool, rock wool, fumed silica, and foamed polymer.
  10.  前記第1熱電変換部材は、カーボンナノチューブと、前記カーボンナノチューブを結着するバインダーとを含有する、請求項1に記載のセンサ付き真空断熱材。 The vacuum heat insulating material with a sensor according to claim 1, wherein the first thermoelectric conversion member contains carbon nanotubes and a binder that binds the carbon nanotubes.
  11.  前記第1熱電変換部材は、ドーパントをさらに含有する、請求項10に記載のセンサ付き真空断熱材。 The vacuum heat insulating material with a sensor according to claim 10, wherein said first thermoelectric conversion member further contains a dopant.
  12.  前記第1熱電変換部材の表面は、コーティングされている、請求項1に記載のセンサ付き真空断熱材。 The vacuum heat insulating material with a sensor according to claim 1, wherein the surface of the first thermoelectric conversion member is coated.
  13.  前記第1熱電変換部材の径は、150μm以上である、請求項1に記載のセンサ付き真空断熱材。 The vacuum heat insulating material with a sensor according to claim 1, wherein the first thermoelectric conversion member has a diameter of 150 µm or more.
PCT/JP2022/046828 2021-12-28 2022-12-20 Sensor-equipped vacuum heat insulation material WO2023127591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214741 2021-12-28
JP2021214741 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127591A1 true WO2023127591A1 (en) 2023-07-06

Family

ID=86998941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046828 WO2023127591A1 (en) 2021-12-28 2022-12-20 Sensor-equipped vacuum heat insulation material

Country Status (2)

Country Link
TW (1) TW202332853A (en)
WO (1) WO2023127591A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239039A (en) * 2008-03-27 2009-10-15 Oki Denki Bosai Kk Electrothermal conversion temperature sensor and method for manufacturing the same
JP2012089604A (en) * 2010-10-18 2012-05-10 Nec Corp Thermoelectric conversion device, method of manufacturing the same, and thermoelectric conversion unit
JP2012235088A (en) * 2011-04-22 2012-11-29 Panasonic Corp Thermoelectric conversion module and manufacturing method thereof
JP2015526879A (en) * 2012-06-04 2015-09-10 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Method for manufacturing thermoelectric components and thermoelectric components
WO2016151634A1 (en) * 2015-03-25 2016-09-29 国立大学法人奈良先端科学技術大学院大学 Functional element having cell series structure of π-type thermoelectric conversion elements, and method for manufacturing same
JP2017034110A (en) * 2015-08-03 2017-02-09 積水化学工業株式会社 Thermoelectric transducer and thermoelectric conversion device including the same
WO2018047882A1 (en) * 2016-09-06 2018-03-15 国立大学法人奈良先端科学技術大学院大学 FUNCTIONAL ELEMENT HAVING CELL SERIAL STRUCTURE OF π-TYPE THERMOELECTRIC CONVERSION ELEMENTS, AND METHOD FOR FABRICATING SAME
CN108103634A (en) * 2017-10-30 2018-06-01 东华镜月(苏州)纺织技术研究有限公司 The preparation method of textile structural thermoelectric conversion element
JP2019065995A (en) * 2017-10-03 2019-04-25 旭ファイバーグラス株式会社 Vacuum heat insulating material
JP2020176981A (en) * 2019-04-22 2020-10-29 東洋インキScホールディングス株式会社 Temperature sensor
JP2020181845A (en) * 2019-04-23 2020-11-05 東洋インキScホールディングス株式会社 Thermoelectric conversion member, thermoelectric conversion element, and thermoelectric conversion device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239039A (en) * 2008-03-27 2009-10-15 Oki Denki Bosai Kk Electrothermal conversion temperature sensor and method for manufacturing the same
JP2012089604A (en) * 2010-10-18 2012-05-10 Nec Corp Thermoelectric conversion device, method of manufacturing the same, and thermoelectric conversion unit
JP2012235088A (en) * 2011-04-22 2012-11-29 Panasonic Corp Thermoelectric conversion module and manufacturing method thereof
JP2015526879A (en) * 2012-06-04 2015-09-10 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Method for manufacturing thermoelectric components and thermoelectric components
WO2016151634A1 (en) * 2015-03-25 2016-09-29 国立大学法人奈良先端科学技術大学院大学 Functional element having cell series structure of π-type thermoelectric conversion elements, and method for manufacturing same
JP2017034110A (en) * 2015-08-03 2017-02-09 積水化学工業株式会社 Thermoelectric transducer and thermoelectric conversion device including the same
WO2018047882A1 (en) * 2016-09-06 2018-03-15 国立大学法人奈良先端科学技術大学院大学 FUNCTIONAL ELEMENT HAVING CELL SERIAL STRUCTURE OF π-TYPE THERMOELECTRIC CONVERSION ELEMENTS, AND METHOD FOR FABRICATING SAME
JP2019065995A (en) * 2017-10-03 2019-04-25 旭ファイバーグラス株式会社 Vacuum heat insulating material
CN108103634A (en) * 2017-10-30 2018-06-01 东华镜月(苏州)纺织技术研究有限公司 The preparation method of textile structural thermoelectric conversion element
JP2020176981A (en) * 2019-04-22 2020-10-29 東洋インキScホールディングス株式会社 Temperature sensor
JP2020181845A (en) * 2019-04-23 2020-11-05 東洋インキScホールディングス株式会社 Thermoelectric conversion member, thermoelectric conversion element, and thermoelectric conversion device

Also Published As

Publication number Publication date
TW202332853A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
KR102089604B1 (en) Composite nanofiber sheet
KR20180085609A (en) Electronic device having stacking structure comprising two dimensional material
US20100147505A1 (en) Power cable for high temperature environments
US20100238020A1 (en) Embedded Power Cable Sensor Array
Hewitt et al. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites
ATE522795T1 (en) DETECTOR WITH NANOTHREAD THERMOMETER FOR ELECTROMAGNETIC RADIATION AND IMPLEMENTATION METHOD
KR20150128874A (en) Flexible electronic fiber-reinforced composite materials
WO2023127591A1 (en) Sensor-equipped vacuum heat insulation material
WO2009066561A1 (en) Organic electroluminescent device and method for manufacturing the same
WO2018143185A1 (en) Thermoelectric conversion module
US20100051331A1 (en) Circuit substrate for mounting electronic component and circuit substrate assembly having same
TW200943546A (en) Thermally stabilized electrode structure
JP2008223922A (en) Vacuum heat insulating material
WO2013065856A1 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2019102665A (en) Electromagnetic wave absorber
WO2017038525A1 (en) Thermoelectric conversion device
US8564178B2 (en) Micro electric generator, method of providing the same, and electric generating device
WO2018159696A1 (en) Thermoelectric conversion module provided with photothermal conversion substrate
Al Naim et al. New high mechanically flexible and bendable nanocomposite Ag@ NCDots/PEDOT: PSS/PVA films with high thermoelectric power performance and generator
CN104538090A (en) Wire, preparing method and application thereof
KR100902402B1 (en) Heating Cable For Preventing Frozen Rupture
KR101245461B1 (en) Plane heater having vacuum insulation panel and method for fabricating the same
WO2023127590A1 (en) Thermoelectric conversion element and sensor module
WO2018143178A1 (en) Thermoelectric conversion module
JP2015534731A (en) Ceramic part provided with protective layer and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915815

Country of ref document: EP

Kind code of ref document: A1