WO2016151634A1 - Functional element having cell series structure of π-type thermoelectric conversion elements, and method for manufacturing same - Google Patents

Functional element having cell series structure of π-type thermoelectric conversion elements, and method for manufacturing same Download PDF

Info

Publication number
WO2016151634A1
WO2016151634A1 PCT/JP2015/001704 JP2015001704W WO2016151634A1 WO 2016151634 A1 WO2016151634 A1 WO 2016151634A1 JP 2015001704 W JP2015001704 W JP 2015001704W WO 2016151634 A1 WO2016151634 A1 WO 2016151634A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
spun yarn
functional element
base material
insulating base
Prior art date
Application number
PCT/JP2015/001704
Other languages
French (fr)
Japanese (ja)
Inventor
中村 雅一
光洋 伊藤
Original Assignee
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人奈良先端科学技術大学院大学 filed Critical 国立大学法人奈良先端科学技術大学院大学
Priority to JP2017507112A priority Critical patent/JP6529097B2/en
Priority to PCT/JP2015/001704 priority patent/WO2016151634A1/en
Publication of WO2016151634A1 publication Critical patent/WO2016151634A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a functional element that can constitute a flexible thermoelectric device and a manufacturing technique thereof.
  • thermoelectric conversion technology that recovers heat and converts it into electrical energy. This is because about 70% of the total amount of energy used around us is exhausted without being utilized.
  • conventional thermoelectric elements with a high unit area price have so far been limited in use because of the difficulty of obtaining economic benefits. Therefore, the use of large area flexible thermoelectric devices that can be used at a low cost for large areas, can be applied to various shapes of surfaces, and is lightweight has the potential to broaden the application. is there. For example, it can be expected to be used as a distributed self-sustained power source in a sensor network used in a smart building or the like, or a power source for driving a small electric device by body temperature.
  • thermoelectric materials have begun to attract attention as promising thermoelectric materials, and their performance has greatly improved with the development of research.
  • many organic materials have been originally developed with the use of electrodes, transistors, and solar cell materials in mind. Therefore, the use with a thin film is common, and it is not easy to obtain a high-quality thermoelectric conversion material having a sufficient thickness necessary for a thermoelectric device.
  • is the Seebeck coefficient
  • is the conductivity
  • is the thermal conductivity
  • T is the absolute temperature.
  • the power factor PF corresponds to the electric power obtained from the thermoelectric conversion material
  • the dimensionless figure of merit ZT corresponds to the energy conversion efficiency. The larger the value of both, the better the performance as the thermoelectric conversion material.
  • the conversion efficiency of the thermoelectric conversion element is ideally determined only by ZT and does not depend on the device structure.
  • thermoelectric material in a steady state with a temperature difference ⁇ T.
  • ⁇ T is not only a material but also a device structure.
  • ⁇ T increases as the thickness increases. That is, the dimensionless figure of merit ZT is a value that does not depend on the device structure, but the output and efficiency of the actual thermoelectric device greatly depend on the device structure. For example, if a device with a thermal conductivity of 0.1 W / mK is attached to an interface with a temperature difference of 15 ° C. with a body temperature of 37 ° C. and an outside air temperature of 22 ° C., A thickness of about 5 mm is required.
  • the thickness is as small as about 200 ⁇ m, the temperature is only about 1 ° C. Since the efficiency and temperature difference of the thermoelectric device have a substantially linear relationship near room temperature, the relationship between the thickness of the thermoelectric device and the thermoelectric efficiency approaches 15 ° C. as the thickness increases, and the thermoelectric efficiency is saturated. . In order to obtain high thermoelectric efficiency, a sufficient film thickness is necessary for the thermoelectric device.
  • thermoelectromotive force generated by the Seebeck effect is proportional to the temperature difference between the low temperature side and the high temperature side of the device, it is important to give a sufficient temperature difference to the device.
  • thermoelectromotive force generated by the Seebeck effect is proportional to the temperature difference between the low temperature side and the high temperature side of the device.
  • the heat flow from the high temperature side is blocked, and there is almost no temperature difference in the thin film shape (several hundred ⁇ m). is there.
  • thermoelectric device for example, see Non-Patent Document 1
  • a temperature difference is made in the thickness direction of the thermoelectric device by stacking thin films (for example, (Refer nonpatent literature 2).
  • Many use the former that is, the method of creating a temperature difference in the in-plane direction, but this method can be used as a distributed power source for medical monitoring and smart buildings that can be considered as a flexible thermoelectric device application. There is a problem that the usage is limited.
  • thermoelectric devices that form woven structures are known.
  • thermocouple-containing fabric that is used as a fabric for heat-resistant protective clothing such as fire-fighting clothing and that can quantitatively measure the environmental temperature (see Patent Document 1).
  • a thermocouple-containing fabric that is, a thermocouple wire is woven between the woven yarns.
  • thermoelectric structure formed by a network of a plurality of wires substantially facing the weft direction (see Patent Document 2).
  • thermoelectric device of Patent Document 1 since an electrode must be formed and a metal wire is used, there is a problem that the thermoelectric efficiency is greatly reduced.
  • thermoelectric structure of patent document 2 since the use as a thermocouple is assumed and it does not have a type
  • both the thermoelectric device of Patent Document 1 and the thermoelectric structure of Patent Document 2 have a structure in which a temperature difference is applied in the in-plane direction, and are not structures that are provided in the thickness direction.
  • thermoelectromotive force is proportional to the temperature difference between the low temperature side and the high temperature side of the device, so it is important to make a sufficient temperature difference between the devices.
  • the thin film shape of about 100 ⁇ m has a problem that there is almost no temperature difference.
  • the present invention provides a structure for obtaining a flexible thermoelectric device having a sufficient thickness for obtaining a temperature difference, and a yarn composed of a thermoelectric material and having sufficient flexibility and mechanical strength is heated. It is an object of the present invention to provide a functional element having a fabric structure sewn on a flexible insulating base material having a low conductivity and a method for manufacturing the functional element.
  • the functional element of the present invention is an element in which a spun yarn made of a conductive fibrous material is sewn into a sheet-like or strip-like insulating base material, and the spun yarn is insulative.
  • a cell series structure of ⁇ -type thermoelectric conversion elements is formed by sewing so as to alternately penetrate the front surface and the back surface of the base material.
  • the conventional flexible thermoelectric device using a conductive thin film material or a material whose thickness is controlled by stacking thin films has a problem that a sufficient temperature difference cannot be obtained and the efficiency is remarkably lowered.
  • the fibrous substance is sewn so as to alternately penetrate the front and back surfaces of the insulating base material, thereby forming a cell series structure of ⁇ -type thermoelectric conversion elements. Since the thickness of the element can be controlled with respect to the temperature difference direction depending on the thickness of the conductive material, a sufficient temperature difference can be provided between the front and the back, and a flexible thermoelectric conversion element with no reduction in efficiency can be provided.
  • the conductive fibrous material is partially doped, and an insulating base material such as felt having a low thermal conductivity is sewn with one conductive fibrous material.
  • the conductive fibrous substance has P-type characteristics and N-type characteristics that are alternately repeated in the longitudinal direction, and is sewn so as to alternately penetrate the front and back surfaces of the insulating base material. P type and N type are switched when folded back. Thereby, a three-dimensional flexible thermoelectric conversion element is realizable.
  • the spun yarn made of conductive fibrous materials includes carbon nanotubes (CNT), carbon nanofibers (CNF), graphene, graphene nanoribbons, fullerene nano whisker, and inorganic semiconductors. It is possible to use a composite material of one or more conductive nanofibers selected from the group of Whisker and an insulating or conductive flexible polymer.
  • Graphene nanoribbons are described, for example, in the literature (H. Sakaguchi et al., “Width-Controlled Sub-Nanometer Graphene Nanoribbon Films Synthesized by Radical-Polymerized Chemical Vapor Deposition”, Advanced Materials, Volume 26, Issue 24, pp. 4134-4138, 2014) discloses production methods and physical properties.
  • a twisted yarn (hereinafter referred to as “CNT spun yarn”) in which a plurality of fibers made of carbon nanotubes (CNT) having a diameter of 0.1 to 100 ⁇ m are twisted is preferably used. It can.
  • the diameter of one CNT is 1 to 2 nm, and may be up to about 10 nm as the thinnest when CNT is used as a fiber. From the viewpoint of mechanical strength, a CNT spun yarn having a diameter of at least 0.1 ⁇ m or more is used. .
  • CNT spun yarn with a diameter of 100 ⁇ m or more can be realized by twisting many, but it is necessary to sew alternately on the front and back surfaces of the insulating base material. Use.
  • CNT and composite materials thereof can be formed into a thread shape by taking advantage of the flexibility and high aspect ratio of CNT.
  • CNT spun yarn By using CNT spun yarn, a three-dimensional structure device can be produced without using a substrate, and the length of the device with respect to the temperature difference direction can be freely controlled. Furthermore, it is expected that the conductivity and Seebeck coefficient will be improved due to the alignment of the CNTs in the longitudinal direction.
  • shape of the spun yarn a wide range of applications can be expected as a material for textile electronics such as sewing directly on clothes.
  • the cocoon protein is inserted in the joint part of CNT with the fiber which consists of CNT.
  • thermoelectric conversion efficiency can be improved.
  • the insulating base material preferably has flexibility, and specifically, any of cloth, paper, foamed polymer, elastomer, and gel film can be suitably used.
  • the cloth is a product obtained by processing a large number of fibers into a thin and wide plate, and includes woven fabric, knitted fabric (knitted fabric), lace, felt, non-woven fabric, silk fabric, and wool fabric.
  • a method for producing a functional element according to a first aspect of the present invention is a method for producing a functional element that forms a cell series structure of continuous ⁇ -type thermoelectric conversion elements using a spun yarn made of a conductive fibrous material.
  • the spun yarn is cyclically repeated alternately with P-type characteristics and N-type characteristics in the longitudinal direction, and then the spun yarn is made into a sheet-like or strip-like insulating property. Threading is performed so as to alternately penetrate the front and back surfaces of the base material, and a step of sewing is performed so that the P-type and the N-type are switched when folded back in the thickness direction of the insulating base material.
  • Step 1) When the conductive fibrous material has P-type characteristics, the part that leaves the P-type characteristics in the spun yarn at the same time as the process of immersing the spun yarn in the solvent containing the N-type dopant is a solvent that is non-affinity with the solvent.
  • Step 2) In the case where the conductive fibrous material has P-type characteristics, before the treatment of immersing the spun yarn in the solvent containing the N-type doping agent, the portion that leaves the P-type characteristics in the spun yarn is Step 3) If the conductive fibrous material has N-type characteristics, impregnate in a non-affinity solvent and then immerse the spun yarn in the solvent containing N-type doping agent.
  • the portion of the spun yarn that retains the N-type characteristics is impregnated with a solvent that is incompatible with the solvent.
  • a P-type doping agent is contained.
  • the conductive fibrous material is spun into a flexible yarn, and formed so that the P-type semiconductor portion and the N-type semiconductor portion appear alternately after spinning.
  • the manufacturing process of alternately arranging the respective materials and connecting them with electrodes can be omitted.
  • Such an element structure makes it easy to produce flexible thermoelectric devices with sufficient thickness, and applications of flexible thermoelectric devices that tend to be limited to heat dissipation to the atmosphere (such as pasting on the human body or building) ), It is easy to obtain a sufficient temperature difference between both surfaces of the element, and high conversion efficiency can be obtained.
  • the P-type and N-type coating pitches of thermoelectric yarns and the thickness of the base material to be sewn can be selected relatively freely, and the thickness of about 1 mm is suitable for use in clothes, car skins, etc. From a device to a device having a thickness of about 10 cm for use as a heat insulating material for buildings, it can be used for a method for producing a scalable thermoelectric device and for a wide range of applications.
  • a method for producing a functional element according to a second aspect of the present invention is a method for producing a functional element that forms a cell series structure of continuous ⁇ -type thermoelectric conversion elements using a spun yarn made of a conductive fibrous material.
  • the P-type characteristics and the N-type characteristics are alternately and periodically repeated and folded back in the thickness direction of the insulating base material, the P-type characteristics and the N-type characteristics are switched.
  • the dopant solutions are alternately and quickly discharged in order to soak both dopant solutions as soon as possible.
  • a blank solution not containing a doping agent and the other P-type or N-type dopant solution are alternately and quickly discharged in accordance with the stitches after stitching. Impregnating the solution in the thickness direction of the substrate
  • the spun yarn is first sewn so as to alternately penetrate the front and back surfaces of the insulating base material, and then doped according to the stitches after the stitching. Since the processing is performed, the pitch of the seam can be freely changed, and the sewing method and the sewing position can be freely changed.
  • P-type and N-type portions can be alternately produced by performing partial doping on one thread-like conductive fibrous material.
  • the step of sewing the spun yarn so as to alternately penetrate the front surface and the back surface of the insulating base material P is set in accordance with the stitches after the sewing.
  • the P-type dopant solution and the N-type dopant solution and the non-affinity solvent are applied to the front and back surfaces of the insulating base material, and the spun yarn and the insulating property It is preferable to fix the substrate.
  • a method for producing a functional element according to a third aspect of the present invention is a method for producing a functional element that forms a cell series structure of continuous ⁇ -type thermoelectric conversion elements using a spun yarn made of a conductive fibrous material.
  • the following steps a) to c) are provided, and when the spun yarn is periodically repeated with the P-type characteristics and the N-type characteristics alternately in the longitudinal direction and folded back in the thickness direction of the insulating substrate, the P-type And N type are switched.
  • the spun yarn is first sewn so as to alternately penetrate the front and back surfaces of the insulating base material, and then sewn. Since the doping process is performed in accordance with the subsequent seam, the pitch of the seam can be freely changed, and the sewing method and the sewing position can be freely changed.
  • the spun yarn is coated with moisture or gas barrier. It is preferable to further comprise a step of applying an agent. For example, by coating a polymer, passivation can be performed and atmospheric stability can be enhanced.
  • thermoelectric device having a sufficient thickness for obtaining a temperature difference can be provided.
  • FIG. 1 Schematic diagram of functional element of the present invention Image of CNT spun yarn production method Thermoelectric measurement results of the produced CNT spun yarn, (1) is Seebeck measurement, (2) is IV measurement Illustration of ⁇ -type thermoelectric conversion element Correlation graph of immersion time, conductivity and Seebeck coefficient when carrier doping of CNT spun yarn using PEI Characteristics of CNT spun yarn before carrier doping Illustration of carrier doping for CNT spun yarn (1) Characteristics of CNT spun yarn after carrier doping (1) Illustration of carrier doping for CNT spun yarn (2) Characteristics of CNT spun yarn after carrier doping (2) Schematic diagram of functional element Functional device fabrication flow chart (1) Functional device fabrication flow diagram (2) Schematic diagram of manufacturing method of first functional element Manufacturing flow chart of manufacturing method of first functional element Schematic diagram of manufacturing method of second functional element Manufacturing flow chart of manufacturing method of second functional element Schematic diagram of manufacturing method of third functional element Manufacturing flow diagram of third functional element manufacturing method Schematic diagram of fourth functional element fabrication method Manufacturing flow diagram of fourth functional element manufacturing method Schematic diagram of fifth functional element manufacturing method Manufacturing flow diagram of fifth functional element manufacturing
  • FIG. 1 shows a schematic diagram of a functional element of the present invention.
  • a spun yarn of conductive nanofibers is sewn so as to alternately penetrate the front and back surfaces of an insulating substrate 3 such as a nonwoven fabric such as felt.
  • a structure in which the mold yarns 2 appear alternately and repeatedly is formed, thereby forming a cell series structure of ⁇ -type thermoelectric conversion elements.
  • a CNT spun yarn will be described as a spun yarn of conductive nanofibers.
  • FIG. 2 shows an image of a method for producing CNT spun yarn. Stretch spinning was performed hydrodynamically by discharging the dispersion liquid of CNT put in the dispenser to the agglomerated liquid placed on the turntable. As the aggregating liquid, a 5 wt% PVA (Polyvinyl alcohol) aqueous solution was used.
  • SDS sodium Dodecyl Sulfate
  • the rotation speed was about 50 rpm, and the nozzle orientation and position were adjusted to be parallel to the water flow at a distance of about 3 cm from the central axis, and the CNT dispersion was discharged. Thereafter, the solvent was replaced with pure water, and the spun yarn was pulled up from one end and dried in the air to prepare a CNT spun yarn.
  • the diameter of the obtained CNT spun yarn was about 10 to 30 ⁇ m.
  • Thermoelectric measurement was performed on the obtained CNT spun yarn.
  • the measurement results are shown in Table 1 below.
  • Table 1 shows the measurement results of the non-oriented CNT thin film produced under the same dispersion conditions as the CNT spun yarn for comparison. All measurements were performed in the atmosphere.
  • the CNT spun yarn showed a decrease in conductivity compared to the CNT thin film, but the power factor increased 2.9 times compared to the CNT thin film due to an increase in Seebeck coefficient.
  • the conductivity decreased. This is presumed to be due to the decrease in the number of carriers due to the movement of holes to PVA, and the fact that PVA, which is an insulator, entered between the CNTs when forming the spun yarn.
  • the Seebeck coefficient of CNT spun yarn is greatly increased, similarly, there is a possibility that PVA entering between CNTs causes a Seebeck effect at the CNT junction with the movement of holes to PVA. .
  • Carrier doping of CNT spun yarn was performed using PEI (Polyethyleneimine) known as an N-type dopant.
  • the N-type doping was performed by immersing the CNT spun yarn in a 1 wt% PEI aqueous solution (solvent: methanol) for a certain period of time.
  • solvent methanol
  • the relationship between immersion time, electrical conductivity, and Seebeck coefficient is shown in FIG.
  • the Seebeck coefficient is changed to N-type, and it can be seen that PEI functions as a donor.
  • the Seebeck coefficient S is a sum of Seebeck coefficients having the weights of the conductivity of each of electrons and holes, as in the following Equation 1.
  • S e is the electron Seebeck coefficient
  • S h is the Seebeck coefficient of the Hall
  • [delta] e is the electron conductivity
  • the [delta] h is the conductivity of the hole.
  • the change in Seebeck coefficient before and after doping will be described with reference to the graph. While the Seebeck coefficient of the CNT spun yarn before doping was about 38 ( ⁇ V / K) (see FIG. 6), as shown in FIG. 7, only 1 cm of the CNT spun yarn was immersed in PEI and N As a result of the type doping, the Seebeck coefficient on the doped side was ⁇ 26.5 ( ⁇ V / K), and the undoped side was ⁇ 17.8 ( ⁇ V / K) (FIG. 8).
  • the Seebeck coefficient obtained as a whole decreased as ⁇ Vpn (see FIG. 4) canceled out and became a small value of ⁇ 6.2 ( ⁇ V / K).
  • the reason for this is considered that the PEI solution was sucked up by the CNT spun yarn and reached the undoped side.
  • the Seebeck coefficient on the doped side is ⁇ 17.8 ( ⁇ V / K).
  • the side where no doping was performed showed 15.5 ( ⁇ V / K) (see FIG. 10).
  • P-type and N-type respectively, the Seebeck coefficient obtained as a whole is as large as 32.0 ( ⁇ V / K), and a CNT spun yarn having both P-type and N-type characteristics is obtained. It was.
  • 50 CNT spun yarns and a diameter of 25 mm are alternately sewn at an interval of 1 mm on the front and back of felt (0.04 W / mK) having a thickness of 3 mm and a length and width of 10 cm.
  • a structure in which the P-type CNT spun yarn 16 and the N-type CNT spun yarn 17 appear alternately and repeatedly is assumed, and a cell series structure of ⁇ -type thermoelectric conversion elements is assumed, and the obtained output is estimated.
  • a method for manufacturing a functional element will be described.
  • the manufacturing method of the functional element is roughly divided into two methods. First, an outline of these two methods will be described with reference to the flowcharts of FIGS. 12 and 13, and then a specific manufacturing method will be described as another embodiment.
  • a CNT spun yarn is prepared (S01), and after partial doping is performed on the CNT spun yarn, the CNT spun yarn is dyed separately in a P-type N-type stripe shape. (S02), the CNT spun yarn is sewn into the insulating base material so that the front and back are alternately turned out (S03) by matching the dyeing period and the stitch pitch.
  • S04 a cell series structure of ⁇ -type thermoelectric conversion elements is formed
  • a CNT spun yarn is produced (S11), and the CNT spun yarn is sewn into an insulating base material so that the front and back alternately come out (S12). Then, the CNT spun yarn is partially doped while being sewn into the insulating base material (S13).
  • a cell series structure of ⁇ -type thermoelectric conversion elements is formed (S14).
  • FIG. 14 is a schematic diagram of a manufacturing method of the first functional element
  • FIG. 15 is a manufacturing flow diagram of the manufacturing method of the first functional element.
  • the CNT spun yarn 10 is produced (S21).
  • the production method of the CNT spun yarn 10 is performed by the method shown in the above-described Example 1.
  • the above-mentioned partial N-type doping is performed only on the upper part of the CNT spun yarn having a length of about 10 cm wound in a square shape while the lower part is immersed in methanol. .
  • the CNT spun yarn 10 is dyed into P-type N-type stripes alternately with portions for N-type doping and portions immersed in a blank solvent.
  • the P-type CNT spun yarn 11 and the N-type CNT spun yarn 12 appear alternately.
  • the CNT spun yarn 13 in which the P-type and N-type appear alternately It is produced (S22).
  • a functional element is manufactured by sewing on a cloth having a thickness of about 4 mm so that the N-doped portion is positioned in the thickness direction.
  • the CNT spun yarn 13 in which the P-type and the N-type alternately appear is matched with the dyeing cycle and the pitch of the seam so that the yarns come out alternately on the front and back sides.
  • Sewing into the material 15 S23.
  • a cell series structure of ⁇ -type thermoelectric conversion elements is formed (S24). It has been confirmed that a thermoelectromotive force of approximately 2.5 mV is generated by body temperature when the functional element thermoelectric device thus manufactured is touched by hand in the atmosphere (about 21 ° C.).
  • FIG. 16 shows a schematic diagram of a method for manufacturing the second functional element
  • FIG. 17 shows a manufacturing flowchart of the method for manufacturing the second functional element.
  • the CNT spun yarn 10 is produced (S31).
  • the production method of the CNT spun yarn 10 is performed by the method shown in the above-described Example 1.
  • the polymer 21 having a low affinity with the solvent is impregnated into a portion that is not dyed every predetermined pitch (batching dyeing) (S32).
  • the CNT spun yarn is immersed in an N-type doping agent (S33).
  • a CNT spun yarn 13 in which P-type CNT spun yarn 11 and N-type CNT spun yarn 12 appear alternately is obtained (FIG. 16 (4)). Then, as shown in FIG. 16 (5), the CNT spun yarn is sewn into the insulating base material 15 so that the yarn comes out alternately on the front and back sides by matching the dyeing period and the stitch pitch (S34), A cell serial structure of the thermoelectric conversion element is formed (S35).
  • FIG. 18 shows a schematic diagram of a method for manufacturing the third functional element
  • FIG. 19 shows a manufacturing flow diagram of the method for manufacturing the third functional element.
  • the CNT spun yarn 10 is produced by the method shown in the above-described Example 1 (S41), and the insulating base material 15 has the yarn alternately appearing on the front and back sides.
  • the CNT spun yarn 10 is sewn into the insulating base material 15 (S42).
  • the P-type doping agent 30 and the N-type doping agent 31 are discharged in accordance with the stitches (S43).
  • An ink jet method is used for ejection.
  • FIG. 20 shows a schematic diagram of a method for manufacturing the fourth functional element
  • FIG. 21 shows a manufacturing flow diagram of the method for manufacturing the fourth functional element.
  • the CNT spun yarn 10 is produced by the method shown in the above-described Example 1 (S51), and the insulating base material 15 has the yarn alternately appearing on the front and back sides.
  • the CNT spun yarn 10 is sewn into the insulating base material 15 (S52).
  • the polymer 40 having a low affinity with the solvent is discharged in a single manner according to the stitches (S53).
  • An ink jet method is used for ejection. Then, as shown in FIG.
  • FIG. 22 shows a schematic diagram of a fifth functional element manufacturing method
  • FIG. 23 shows a manufacturing flow diagram of the fifth functional element manufacturing method.
  • the CNT spun yarn 10 is produced by the method shown in the above-described Example 1 (S 61), so that the yarn comes out alternately on the front and back of the insulating substrate 15.
  • the CNT spun yarn 10 is sewn into the insulating base material 15 (S62).
  • the front surface 51 and the back surface 52 of the insulating base material 15 are batched using a coating device 50 such as a roller (S63).
  • the batik dyeing is performed in order to prevent unnecessary penetration of the doping agent, fix the base material and the yarn, prevent yarn displacement, and prevent a phase shift. Then, as shown in FIG. 22 (4), the P-type dopant and the N-type dopant are discharged from the gap in accordance with the seam (S64). As a result, a cell series structure of ⁇ -type thermoelectric conversion elements is formed (S65). An image of the formed functional element is shown in FIG.
  • the functional element of the present invention is a distributed power source for forming a sensor matrix for smart houses and smart buildings, and a thermoelectric element for reusing exhaust heat energy in houses, offices and automobiles as energy harvesting elements, It can be used as a power source for sticker-type biological information measuring devices (body temperature, pulse, electrocardiogram monitor, etc.).

Abstract

[Problem] To provide: a functional element having, as a structure for obtaining a flexible thermoelectric device having adequate thickness for obtaining a temperature difference, a woven structure in which a yarn composed of a thermoelectric material is woven into a flexible insulating base material having low thermal conductivity; and a method for manufacturing said functional element. [Solution] A functional element in which a spun yarn comprising an electroconductive fibrous substance is woven into an insulating base material that assumes the form of a sheet or band, wherein the spun yarn is composed of an electroconductive fibrous substance, and is woven in so as to pass alternately through the front and rear surfaces of the insulating base material to form a cell series structure of π-type thermoelectric conversion elements. In the electroconductive fibrous substance, p-type characteristics and n-type characteristics are repeated in an alternating fashion in the longitudinal direction, such that the p-type and n-type switch when the spun yarn is alternatingly woven into the front and rear surfaces of the insulating base material and doubled back in the thickness direction of the base material.

Description

π型熱電変換素子のセル直列構造を有する機能性素子及びその作製方法Functional element having cell series structure of π-type thermoelectric conversion element and method for producing the same
 本発明は、フレキシブル熱電デバイスを構成できる機能性素子ならびにその作製技術に関するものである。 The present invention relates to a functional element that can constitute a flexible thermoelectric device and a manufacturing technique thereof.
 近年、身の周りの未利用のエネルギーを回収して利用する、エナジーハーベスティングが注目を集めている。このような技術の中でも、熱を回収して電気エネルギーに変換する熱電変換技術への期待が大きい。身の回りで利用されているエネルギー全体量の約70%が活用されることなく排熱となっているからである。
 しかし、従来の面積単価の高い熱電素子では経済的メリットが得にくいとう理由から、これまでのところ限定的な利用に留っている。そこで、大面積に対して低コストで利用でき、様々な形状の表面に対応できる柔軟性があり軽量化が図られた大面積フレキシブル熱電デバイスを実現することにより、使用用途が大きく広がる可能性がある。例えば、スマートビルディングなどで用いるセンサーネットワークにおける分散型自立電源や、体温による小型電気デバイスの駆動電源などに用いることが期待できる。
In recent years, energy harvesting, which collects and uses unused energy around us, has attracted attention. Among such technologies, there is a great expectation for a thermoelectric conversion technology that recovers heat and converts it into electrical energy. This is because about 70% of the total amount of energy used around us is exhausted without being utilized.
However, conventional thermoelectric elements with a high unit area price have so far been limited in use because of the difficulty of obtaining economic benefits. Therefore, the use of large area flexible thermoelectric devices that can be used at a low cost for large areas, can be applied to various shapes of surfaces, and is lightweight has the potential to broaden the application. is there. For example, it can be expected to be used as a distributed self-sustained power source in a sensor network used in a smart building or the like, or a power source for driving a small electric device by body temperature.
 このような背景から有機材料や有機無機複合材料が有望な熱電材料として注目され始め、研究の発展とともにその性能は大きく向上してきた。しかし、多くの有機材料はもともと電極やトランジスタ、太陽電池材料として使用することを念頭に開発されてきた。そのため、薄膜での利用が一般的であり、熱電デバイスに必要な十分な厚みの高品質な熱電変換材料を得ることは容易ではない。 From this background, organic materials and organic-inorganic composite materials have begun to attract attention as promising thermoelectric materials, and their performance has greatly improved with the development of research. However, many organic materials have been originally developed with the use of electrodes, transistors, and solar cell materials in mind. Therefore, the use with a thin film is common, and it is not easy to obtain a high-quality thermoelectric conversion material having a sufficient thickness necessary for a thermoelectric device.
 一般に、熱電変換材料の性能は、パワーファクターPF(=α2σ)及び無次元性能指数ZT(=α2σT/κ)で評価される。ここで、αはゼーベック係数、σは導電率、κは熱伝導率、Tは絶対温度である。パワーファクターPFは、熱電変換材料から得られる電力に対応し、無次元性能指数ZTは、エネルギー変換効率に対応しており、共に値が大きい方が熱電変換材料としての性能が良い。熱電変換素子の変換効率は、理想的にはZTのみで決まり、デバイス構造に依存しない。 In general, the performance of a thermoelectric conversion material is evaluated by a power factor PF (= α 2 σ) and a dimensionless figure of merit ZT (= α 2 σT / κ). Where α is the Seebeck coefficient, σ is the conductivity, κ is the thermal conductivity, and T is the absolute temperature. The power factor PF corresponds to the electric power obtained from the thermoelectric conversion material, and the dimensionless figure of merit ZT corresponds to the energy conversion efficiency. The larger the value of both, the better the performance as the thermoelectric conversion material. The conversion efficiency of the thermoelectric conversion element is ideally determined only by ZT and does not depend on the device structure.
 これは温度差ΔTがついた定常状態において、全ての熱流が熱電材料を通じて低温側に流れているという仮定のもとに導出された指標であり、実際のデバイスではΔTは材料だけではなくデバイス構造にも依存し、厚みが厚いほどΔTは大きくなる。つまり、無次元性能指数ZTはデバイス構造に依存しない値であるが、実際の熱電デバイスの出力や効率はデバイス構造に大きく依存することになる。
 例えば、体温37℃、外気温22℃の15℃の温度差がついた界面に対して、熱伝導率が0.1W/mKのデバイスを貼り付けるとすると、温度差を10℃つけるためには5mm程度の厚みが必要となる。仮に200μm程度の小さい厚みでは、1℃程度の温度差しかつかない。室温付近では熱電デバイスの効率と温度差には、ほぼ線形の関係があることから、熱電デバイスの厚みと熱電効率の関係は、厚みが大きくなると温度差は15℃に近づき、熱電効率が飽和する。高い熱電効率を得るためには、熱電デバイスに十分な膜厚が必要なのである。
This is an index derived under the assumption that all heat flows to the low temperature side through the thermoelectric material in a steady state with a temperature difference ΔT. In an actual device, ΔT is not only a material but also a device structure. Also, ΔT increases as the thickness increases. That is, the dimensionless figure of merit ZT is a value that does not depend on the device structure, but the output and efficiency of the actual thermoelectric device greatly depend on the device structure.
For example, if a device with a thermal conductivity of 0.1 W / mK is attached to an interface with a temperature difference of 15 ° C. with a body temperature of 37 ° C. and an outside air temperature of 22 ° C., A thickness of about 5 mm is required. If the thickness is as small as about 200 μm, the temperature is only about 1 ° C. Since the efficiency and temperature difference of the thermoelectric device have a substantially linear relationship near room temperature, the relationship between the thickness of the thermoelectric device and the thermoelectric efficiency approaches 15 ° C. as the thickness increases, and the thermoelectric efficiency is saturated. . In order to obtain high thermoelectric efficiency, a sufficient film thickness is necessary for the thermoelectric device.
 特に、ゼーベック効果によって生じる熱起電力はデバイスの低温側と高温側の温度差に比例することから、デバイスに十分な温度差をつけることが重要となる。
 しかしながら、デバイスの低温側と大気中との界面には対流熱抵抗が存在しているため、高温側からの熱流がせき止められ、薄膜形状(数百μm)では殆ど温度差がつかないという実態がある。また、薄膜材料でミリメートルオーダーの膜厚を成膜するのは困難である。従来のフレキシブル熱電デバイスは、薄膜材料を使用していることから、その厚みは200μm程度以下であり、実用的な高出力が得られ難いという問題点があった。
In particular, since the thermoelectromotive force generated by the Seebeck effect is proportional to the temperature difference between the low temperature side and the high temperature side of the device, it is important to give a sufficient temperature difference to the device.
However, since there is convective thermal resistance at the interface between the low temperature side of the device and the atmosphere, the heat flow from the high temperature side is blocked, and there is almost no temperature difference in the thin film shape (several hundred μm). is there. Moreover, it is difficult to form a film thickness on the order of millimeters with a thin film material. Since the conventional flexible thermoelectric device uses a thin film material, its thickness is about 200 μm or less, and there is a problem that it is difficult to obtain a practical high output.
 そのため、熱電デバイスの面内方向に対して温度差をつける(例えば、非特許文献1を参照)、或は、薄膜をスタックすることによって熱電デバイスの厚み方向に温度差をつけている(例えば、非特許文献2を参照)。多くが前者、すなわち、面内方向に対して温度差をつける方法を用いているが、この方法ではフレキシブル熱電デバイスの用途として考えられる医療用モニタリングやスマートビルディングなどの分散型電源として使用することができず、使用用途が限定されてしまうといった問題がある。また、後者、すなわち、厚み方向に温度差をつける方法では、膜厚制御が困難であり、また基板が必要となることから、熱流の多くが基板を通じて流れるため、効率が低下してしまうといった問題がある。 Therefore, a temperature difference is made with respect to the in-plane direction of the thermoelectric device (for example, see Non-Patent Document 1), or a temperature difference is made in the thickness direction of the thermoelectric device by stacking thin films (for example, (Refer nonpatent literature 2). Many use the former, that is, the method of creating a temperature difference in the in-plane direction, but this method can be used as a distributed power source for medical monitoring and smart buildings that can be considered as a flexible thermoelectric device application. There is a problem that the usage is limited. Further, in the latter case, that is, the method in which the temperature difference is made in the thickness direction, it is difficult to control the film thickness, and since a substrate is required, a large amount of heat flow flows through the substrate, resulting in a decrease in efficiency. There is.
 一方、織物構造体を形成する熱電デバイスが知られている。例えば、消防衣服などの耐熱防護服用の生地として用いられ、環境温度を定量的に測定することが可能な熱電対含有織物がある(特許文献1を参照)。これは、複数の経糸と複数の緯糸とが交差して織られ、経糸同士の間又は緯糸同士の間に、少なくとも一対の第一の熱電対素線と第二の熱電対素線が織り込まれている熱電対含有織物である。すなわち、織糸の間に熱電対素線を織り込んだものである。また、実質的に横糸方向を向くような複数のワイヤの網状組織により形成される熱電構造体がある(特許文献2を参照)。
 特許文献1の熱電デバイスの場合、電極を形成しなければならず、金属線を利用していることから熱電効率が大きく低下することが問題である。また、特許文献2の熱電構造体の場合、熱電対としての使用を想定しており、型構造をもっていないことから熱電効率が悪いことが問題である。さらに、特許文献1の熱電デバイスと特許文献2の熱電構造体の両方とも、温度差を面内方向につける構造になっており、厚さ方向につける構造になっていない。
On the other hand, thermoelectric devices that form woven structures are known. For example, there is a thermocouple-containing fabric that is used as a fabric for heat-resistant protective clothing such as fire-fighting clothing and that can quantitatively measure the environmental temperature (see Patent Document 1). This is because a plurality of warp yarns and a plurality of weft yarns are woven in an intersecting manner, and at least a pair of first thermocouple wires and second thermocouple wires are woven between warp yarns or between weft yarns. A thermocouple-containing fabric. That is, a thermocouple wire is woven between the woven yarns. In addition, there is a thermoelectric structure formed by a network of a plurality of wires substantially facing the weft direction (see Patent Document 2).
In the case of the thermoelectric device of Patent Document 1, since an electrode must be formed and a metal wire is used, there is a problem that the thermoelectric efficiency is greatly reduced. Moreover, in the case of the thermoelectric structure of patent document 2, since the use as a thermocouple is assumed and it does not have a type | mold structure, it is a problem that thermoelectric efficiency is bad. Furthermore, both the thermoelectric device of Patent Document 1 and the thermoelectric structure of Patent Document 2 have a structure in which a temperature difference is applied in the in-plane direction, and are not structures that are provided in the thickness direction.
特開2010-090492号公報JP 2010-090492 A 特開2007-329456号公報JP 2007-329456 A
 上述の如く、従来のフレキシブル熱電デバイスでは、熱起電力はデバイスの低温側と高温側の温度差に比例することから、デバイスに十分な温度差をつけることが重要であるにも関わらず、数百μm程度の薄膜形状では殆ど温度差がつかないという問題があった。
 また、熱電デバイスを構成するP型とN型の半導体層とは別に、それらを直列に多数接続する電極を形成する必要があり、界面抵抗の増加による熱電効率の低下、経時劣化、プロセスの複雑化などの問題があった。
As described above, in the conventional flexible thermoelectric device, the thermoelectromotive force is proportional to the temperature difference between the low temperature side and the high temperature side of the device, so it is important to make a sufficient temperature difference between the devices. The thin film shape of about 100 μm has a problem that there is almost no temperature difference.
In addition to the P-type and N-type semiconductor layers that make up the thermoelectric device, it is necessary to form a large number of electrodes connected in series, resulting in a decrease in thermoelectric efficiency due to an increase in interface resistance, deterioration over time, and complexity of the process. There were problems such as conversion.
 上記状況に鑑みて、本発明は、温度差を得るための十分な厚みがあるフレキシブル熱電デバイスを得るための構造として、熱電材料によって構成され十分な柔軟性と機械的強度を持つ糸が、熱伝導率の小さいフレキシブルな絶縁性基材に縫い込まれた織物構造を有する機能性素子およびその作製方法を提供することを目的とする。 In view of the above situation, the present invention provides a structure for obtaining a flexible thermoelectric device having a sufficient thickness for obtaining a temperature difference, and a yarn composed of a thermoelectric material and having sufficient flexibility and mechanical strength is heated. It is an object of the present invention to provide a functional element having a fabric structure sewn on a flexible insulating base material having a low conductivity and a method for manufacturing the functional element.
 上記目的を達成すべく、本発明の機能性素子は、導電性繊維状物質から成る紡績糸が、シート状もしくは帯状の絶縁性基材に縫い込まれた素子であって、紡績糸が絶縁性基材の表面と裏面を交互に貫通するように縫い込まれ、π型熱電変換素子のセル直列構造が形成されたものである。 In order to achieve the above object, the functional element of the present invention is an element in which a spun yarn made of a conductive fibrous material is sewn into a sheet-like or strip-like insulating base material, and the spun yarn is insulative. A cell series structure of π-type thermoelectric conversion elements is formed by sewing so as to alternately penetrate the front surface and the back surface of the base material.
 従来の導電性薄膜材料や薄膜をスタックして厚みを制御した材料を用いるフレキシブル熱電デバイスでは、十分な温度差がつかず効率が著しく低下してしまうという問題があった。上記構成の機能性素子によれば、繊維状物質が絶縁性基材の表面と裏面を交互に貫通するように縫い込まれることで、π型熱電変換素子のセル直列構造を形成するため、絶縁性材料の厚さによって、温度差方向に対する素子の厚み制御ができるため、表と裏で十分な温度差をつけることができ、効率の低下がないフレキシブル熱電変換素子を提供することができる。 The conventional flexible thermoelectric device using a conductive thin film material or a material whose thickness is controlled by stacking thin films has a problem that a sufficient temperature difference cannot be obtained and the efficiency is remarkably lowered. According to the functional element having the above configuration, the fibrous substance is sewn so as to alternately penetrate the front and back surfaces of the insulating base material, thereby forming a cell series structure of π-type thermoelectric conversion elements. Since the thickness of the element can be controlled with respect to the temperature difference direction depending on the thickness of the conductive material, a sufficient temperature difference can be provided between the front and the back, and a flexible thermoelectric conversion element with no reduction in efficiency can be provided.
 また、導電性繊維状物質に対して部分ドーピングを行い、熱伝導率が小さいフェルトなどの絶縁性基材が1本の導電性繊維状物質で縫い込まれることがよい。プロセスの簡素化が図れ、それに伴う製造コストが低減できるからである。
 導電性繊維状物質は、長手方向にP型特性とN型特性が交互に繰り返されるものであり、絶縁性基材の表面と裏面を交互に貫通するように縫い込まれ、基材の厚み方向に折り返される際に、P型とN型が切り替わるようにする。これにより、3次元のフレキシブル熱電変換素子が実現できる。
Further, it is preferable that the conductive fibrous material is partially doped, and an insulating base material such as felt having a low thermal conductivity is sewn with one conductive fibrous material. This is because the process can be simplified and the manufacturing cost associated therewith can be reduced.
The conductive fibrous substance has P-type characteristics and N-type characteristics that are alternately repeated in the longitudinal direction, and is sewn so as to alternately penetrate the front and back surfaces of the insulating base material. P type and N type are switched when folded back. Thereby, a three-dimensional flexible thermoelectric conversion element is realizable.
 ここで、導電性繊維状物質から成る紡績糸は、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、グラフェン(Graphene)、グラフェンナノリボン(Graphene Nanoribbon)、フラーレンナノウィスカー(Fullerene Nano Whisker)及び無機半導体ウィスカー(Whisker)の群から選択される1種以上の導電性ナノファイバーと、絶縁性もしくは導電性の柔軟性ポリマーとの複合材料から成るものを用いることができる。
 グラフェンナノリボンは、例えば、文献(H.Sakaguchi et al., "Width-Controlled Sub-Nanometer Graphene Nanoribbon Films Synthesized by Radical-Polymerized Chemical Vapor Deposition", Advanced Materials, Volume 26, Issue 24, pp.4134-4138, 2014)に作製方法や物性が開示されている。
 フラーレンナノウィスカーは、例えば、文献(宮澤薫一, ”フラーレンナノウィスカーの合成と性質”, 表面科学 Vol. 28, No. 1, pp. 34―39, 2007)に作製方法や物性が開示されている。
Here, the spun yarn made of conductive fibrous materials includes carbon nanotubes (CNT), carbon nanofibers (CNF), graphene, graphene nanoribbons, fullerene nano whisker, and inorganic semiconductors. It is possible to use a composite material of one or more conductive nanofibers selected from the group of Whisker and an insulating or conductive flexible polymer.
Graphene nanoribbons are described, for example, in the literature (H. Sakaguchi et al., “Width-Controlled Sub-Nanometer Graphene Nanoribbon Films Synthesized by Radical-Polymerized Chemical Vapor Deposition”, Advanced Materials, Volume 26, Issue 24, pp. 4134-4138, 2014) discloses production methods and physical properties.
Fullerene nanowhiskers, for example, have been disclosed in the literature (Junichi Miyazawa, “Synthesis and Properties of Fullerene Nanowhiskers”, Surface Science Vol. 28, No. 1, pp. 34-39, 2007) and their physical properties. Yes.
 また、導電性繊維状物質から成る紡績糸は、0.1~100μmの径のカーボンナノチューブ(CNT)から成る繊維を複数撚り合せた撚糸(以下「CNT紡績糸」という)を好適に用いることができる。
 CNT1本の直径は、1~2nmであり、CNTを繊維にする場合に最も細いものとして10nm程度まであり得るが、機械的強度の観点から、少なくとも0.1μm以上の径のCNT紡績糸を用いる。また、多く撚り合せることにより100μm以上の径のCNT紡績糸も実現可能であるが、絶縁性基材の表面と裏面に交互に縫い込めることが必要であり、100μm以下の径のCNT紡績糸を用いる。
As the spun yarn made of a conductive fibrous material, a twisted yarn (hereinafter referred to as “CNT spun yarn”) in which a plurality of fibers made of carbon nanotubes (CNT) having a diameter of 0.1 to 100 μm are twisted is preferably used. it can.
The diameter of one CNT is 1 to 2 nm, and may be up to about 10 nm as the thinnest when CNT is used as a fiber. From the viewpoint of mechanical strength, a CNT spun yarn having a diameter of at least 0.1 μm or more is used. . In addition, CNT spun yarn with a diameter of 100 μm or more can be realized by twisting many, but it is necessary to sew alternately on the front and back surfaces of the insulating base material. Use.
 CNTやその複合材料は、CNTの柔軟性や高いアスペクト比を生かすことによって、糸状に形成することができる。CNT紡績糸を用いることにより、基板を使用することなく3次元構造デバイスを作製することができ、温度差方向に対するデバイスの長さも自由に制御することが可能となる。さらに、CNTの配向が長手方向にそろうことによる導電率やゼーベック係数の向上も見込まれる。また、紡績糸の形状を活かすことにより、服に直接縫い付けるといったテクスタイルエレクトロニクスの素材として幅広い応用が期待できる。
 なお、CNTから成る繊維は、CNTとCNTの接合部に籠状タンパク質が挿入されることが好ましい。CNTとCNTの接合部に籠状タンパク質が挿入されることにより、接合部の絶縁性のシェル部によって局所的なフォノン(格子振動)反射が生じ、熱電変換材料全体としての熱伝導率が低くなり、熱電変換効率を向上させることができるからである。
CNT and composite materials thereof can be formed into a thread shape by taking advantage of the flexibility and high aspect ratio of CNT. By using CNT spun yarn, a three-dimensional structure device can be produced without using a substrate, and the length of the device with respect to the temperature difference direction can be freely controlled. Furthermore, it is expected that the conductivity and Seebeck coefficient will be improved due to the alignment of the CNTs in the longitudinal direction. In addition, by utilizing the shape of the spun yarn, a wide range of applications can be expected as a material for textile electronics such as sewing directly on clothes.
In addition, it is preferable that the cocoon protein is inserted in the joint part of CNT with the fiber which consists of CNT. By inserting rod-like protein into the junction of CNT and CNT, local phonon (lattice vibration) reflection occurs due to the insulating shell portion of the junction, and the thermal conductivity of the entire thermoelectric conversion material is lowered. This is because the thermoelectric conversion efficiency can be improved.
 絶縁性基材は、柔軟性を有することが好ましく、具体的には、布、紙、発砲ポリマー、エラストマー、ゲル状膜の何れかを好適に用いることができる。ここで、布とは、多数の繊維を薄く広い板状に加工したものであり、織物、編み物(メリヤス生地)、レース、フェルト、不織布、絹織物、毛織物が含まれる。 The insulating base material preferably has flexibility, and specifically, any of cloth, paper, foamed polymer, elastomer, and gel film can be suitably used. Here, the cloth is a product obtained by processing a large number of fibers into a thin and wide plate, and includes woven fabric, knitted fabric (knitted fabric), lace, felt, non-woven fabric, silk fabric, and wool fabric.
 次に、本発明の機能性素子の作製方法について説明する。
 本発明の第1の観点の機能性素子の作製方法は、導電性繊維状物質から成る紡績糸を用いて連続π型熱電変換素子のセル直列構造を形成する機能性素子の作製方法であって、下記1)~4)の何れかのステップにより、紡績糸が、長手方向にP型特性とN型特性が交互に周期的に繰り返され、その後、紡績糸を、シート状もしくは帯状の絶縁性基材の表面と裏面を交互に貫通するように糸を通し、絶縁性基材の厚み方向に折り返される際に、P型とN型が切り替わるように縫い込むステップを備える。
Next, a method for manufacturing the functional element of the present invention will be described.
A method for producing a functional element according to a first aspect of the present invention is a method for producing a functional element that forms a cell series structure of continuous π-type thermoelectric conversion elements using a spun yarn made of a conductive fibrous material. In any one of the following steps 1) to 4), the spun yarn is cyclically repeated alternately with P-type characteristics and N-type characteristics in the longitudinal direction, and then the spun yarn is made into a sheet-like or strip-like insulating property. Threading is performed so as to alternately penetrate the front and back surfaces of the base material, and a step of sewing is performed so that the P-type and the N-type are switched when folded back in the thickness direction of the insulating base material.
1)導電性繊維状物質がP型特性を有する場合、N型ドーピング剤を含有する溶媒に紡績糸を浸す処理と同時に、紡績糸におけるP型特性を残す部分を、溶媒と非親和性の溶剤に含浸させるステップ
2)導電性繊維状物質がP型特性を有する場合、N型ドーピング剤を含有する溶媒に紡績糸を浸す処理の前に、紡績糸におけるP型特性を残す部分を、溶媒と非親和性の溶剤に含浸させ、その後、N型ドーピング剤を含有する溶媒に紡績糸を浸すステップ
3)導電性繊維状物質がN型特性を有する場合、P型ドーピング剤を含有する溶媒に紡績糸を浸す処理と同時に、紡績糸におけるN型特性を残す部分を、溶媒と非親和性の溶剤に含浸させるステップ
4)導電性繊維状物質がN型特性を有する場合、P型ドーピング剤を含有する溶媒に紡績糸を浸す処理の前に、紡績糸におけるN型特性を残す部分を、溶媒と非親和性の溶剤に含浸させ、その後、P型ドーピング剤を含有する溶媒に紡績糸を浸すステップ
1) When the conductive fibrous material has P-type characteristics, the part that leaves the P-type characteristics in the spun yarn at the same time as the process of immersing the spun yarn in the solvent containing the N-type dopant is a solvent that is non-affinity with the solvent. Step 2) In the case where the conductive fibrous material has P-type characteristics, before the treatment of immersing the spun yarn in the solvent containing the N-type doping agent, the portion that leaves the P-type characteristics in the spun yarn is Step 3) If the conductive fibrous material has N-type characteristics, impregnate in a non-affinity solvent and then immerse the spun yarn in the solvent containing N-type doping agent. At the same time as the process of dipping the yarn, the portion of the spun yarn that retains the N-type characteristics is impregnated with a solvent that is incompatible with the solvent. Step 4) If the conductive fibrous material has N-type characteristics, a P-type doping agent is contained. Spinning yarn into solvent Steps before the process of soaking, the portion to leave N-type characteristics in the spun yarn, is impregnated with a solvent and phobic solvent, then immersing the spun yarn in a solvent containing a P-type doping agent
 上記の作製方法よって、導電性繊維状物質を紡糸し、柔軟性を持った糸状にし、紡糸後にP型半導体部とN型半導体部が交互に現れるように形成することで、P型とN型の各材料を交互に配置し電極によって接続するという作製プロセスを省略することができる。紡績糸を、電気的および熱的に絶縁性を有する布状の基材に縫い込むだけで、単一の熱電変換セルだけにとどまらず、熱電変換セルを多数直列接続する構造を簡単に形成することができる。このような素子構造によって、十分な厚みを持ったフレキシブル熱電デバイスを作製することが容易となり、大気への放熱に制限されがちなフレキシブル熱電デバイスの応用(人体に貼り付ける、建造物に作り付ける等)において、素子の両面間に十分な温度差を得ることが容易で、高い変換効率が得られるようになる。
 また、熱電糸のP型N型の塗り分けのピッチと縫い込む基材の厚みを比較的自由に選ぶことができ、衣服や車のシートの表皮などに用いる場合に適した1mm程度の厚みの素子から、建築用断熱材料に用いるための10cm程度の厚みの素子までスケーラブルな熱電デバイスの作製方法、幅広い用途に用いることができる。
By the above manufacturing method, the conductive fibrous material is spun into a flexible yarn, and formed so that the P-type semiconductor portion and the N-type semiconductor portion appear alternately after spinning. The manufacturing process of alternately arranging the respective materials and connecting them with electrodes can be omitted. By simply sewing the spun yarn into a cloth-like base material that is electrically and thermally insulating, not only a single thermoelectric conversion cell but also a structure in which a large number of thermoelectric conversion cells are connected in series can be easily formed. be able to. Such an element structure makes it easy to produce flexible thermoelectric devices with sufficient thickness, and applications of flexible thermoelectric devices that tend to be limited to heat dissipation to the atmosphere (such as pasting on the human body or building) ), It is easy to obtain a sufficient temperature difference between both surfaces of the element, and high conversion efficiency can be obtained.
In addition, the P-type and N-type coating pitches of thermoelectric yarns and the thickness of the base material to be sewn can be selected relatively freely, and the thickness of about 1 mm is suitable for use in clothes, car skins, etc. From a device to a device having a thickness of about 10 cm for use as a heat insulating material for buildings, it can be used for a method for producing a scalable thermoelectric device and for a wide range of applications.
 本発明の第2の観点の機能性素子の作製方法は、導電性繊維状物質から成る紡績糸を用いて連続π型熱電変換素子のセル直列構造を形成する機能性素子の作製方法であって、紡績糸を、シート状もしくは帯状の絶縁性基材の表面と裏面を交互に貫通するように縫い込むステップと、下記A)、或は、B)のステップを備え、紡績糸が、長手方向にP型特性とN型特性が交互に周期的に繰り返され、絶縁性基材の厚み方向に折り返される際に、P型とN型が切り替わるようにする。なお、一方のドーパントが不要なところまでしみ出すことが問題になるので、なるべく早く両方のドーパント溶液を染み込ませるため、ドーパント溶液を交互かつ速やかに吐出す。 A method for producing a functional element according to a second aspect of the present invention is a method for producing a functional element that forms a cell series structure of continuous π-type thermoelectric conversion elements using a spun yarn made of a conductive fibrous material. A step of sewing the spun yarn so as to alternately pass through the front and back surfaces of the sheet-like or strip-like insulating base material, and the following step A) or B). When the P-type characteristics and the N-type characteristics are alternately and periodically repeated and folded back in the thickness direction of the insulating base material, the P-type characteristics and the N-type characteristics are switched. In addition, since it poses a problem that one dopant oozes out to an unnecessary place, the dopant solutions are alternately and quickly discharged in order to soak both dopant solutions as soon as possible.
A)縫い込んだ後の縫い目に合せて、P型ドーパント溶液とN型ドーパント溶液を交互かつ速やかに吐出し、縫い目から基材の厚み方向に溶液を含浸させるステップ
B)導電性繊維状物質がP型あるいはN型特性の一方を有する場合、縫い込んだ後の縫い目に合せて、ドーピング剤を含有しないブランク溶液と、他方のP型あるいはN型ドーパント溶液を交互かつ速やかに吐出し、縫い目から基材の厚み方向に溶液を含浸させるステップ
A) A step of impregnating the solution in the thickness direction of the base material from the seam B and discharging the P-type dopant solution and the N-type dopant solution alternately and quickly in accordance with the stitches after the stitching. When having one of the P-type and N-type characteristics, a blank solution not containing a doping agent and the other P-type or N-type dopant solution are alternately and quickly discharged in accordance with the stitches after stitching. Impregnating the solution in the thickness direction of the substrate
 第2の観点の機能性素子の作製方法によれば、先に紡績糸を絶縁性基材の表面と裏面を交互に貫通するように縫い込み、その後、縫い込んだ後の縫い目に合せてドーピング処理を施すことから、縫い目のピッチを自由に変更可能で、縫い方や縫い位置を自由に変更することができる。
 また、一本の糸状の導電性繊維状物質に部分ドーピングを行うことで、P型とN型の部分を交互に作製できる。
According to the method for producing a functional element of the second aspect, the spun yarn is first sewn so as to alternately penetrate the front and back surfaces of the insulating base material, and then doped according to the stitches after the stitching. Since the processing is performed, the pitch of the seam can be freely changed, and the sewing method and the sewing position can be freely changed.
In addition, P-type and N-type portions can be alternately produced by performing partial doping on one thread-like conductive fibrous material.
 本発明の第2の観点の機能性素子の作製方法において、絶縁性基材の表面と裏面を交互に貫通するように紡績糸を縫い込むステップの後、縫い込んだ後の縫い目に合せてP型ドーパント溶液とN型ドーパント溶液を交互に吐出す前に、P型ドーパント溶液およびN型ドーパント溶液と非親和性の溶剤を、絶縁性基材の表面と裏面に塗布し、紡績糸と絶縁性基材を固定することが好ましい。 In the method for producing a functional element according to the second aspect of the present invention, after the step of sewing the spun yarn so as to alternately penetrate the front surface and the back surface of the insulating base material, P is set in accordance with the stitches after the sewing. Before alternately discharging the N-type dopant solution and the N-type dopant solution, the P-type dopant solution and the N-type dopant solution and the non-affinity solvent are applied to the front and back surfaces of the insulating base material, and the spun yarn and the insulating property It is preferable to fix the substrate.
 本発明の第3の観点の機能性素子の作製方法は、導電性繊維状物質から成る紡績糸を用いて連続π型熱電変換素子のセル直列構造を形成する機能性素子の作製方法であって、下記a)~c)のステップを備え、紡績糸が、長手方向にP型特性とN型特性が交互に周期的に繰り返され、絶縁性基材の厚み方向に折り返される際に、P型とN型が切り替わるようにする。 A method for producing a functional element according to a third aspect of the present invention is a method for producing a functional element that forms a cell series structure of continuous π-type thermoelectric conversion elements using a spun yarn made of a conductive fibrous material. The following steps a) to c) are provided, and when the spun yarn is periodically repeated with the P-type characteristics and the N-type characteristics alternately in the longitudinal direction and folded back in the thickness direction of the insulating substrate, the P-type And N type are switched.
a)紡績糸を、シート状もしくは帯状の絶縁性基材の表面と裏面を交互に貫通するように縫い込むステップ
b)導電性繊維状物質がP型あるいはN型特性の一方を有する場合、他方のP型あるいはN型ドーピング剤を含有する溶媒に紡績糸を浸す処理の前に、縫い込んだ後の縫い目の一つ飛ばしに、溶媒と非親和性の溶液を吐出し、縫い目から基材の厚み方向に溶液を含浸させるステップ
c)他方のP型あるいはN型ドーパント溶液に紡績糸を浸すステップ
a) a step of sewing a spun yarn so as to alternately penetrate the front and back surfaces of a sheet-like or strip-like insulating base material; b) when the conductive fibrous material has one of P-type and N-type characteristics; Before the process of immersing the spun yarn in the solvent containing the P-type or N-type doping agent, a solution having a non-affinity with the solvent is discharged on one of the stitches after sewing, Step of impregnating the solution in the thickness direction c) Step of immersing the spun yarn in the other P-type or N-type dopant solution
 第3の観点の機能性素子の作製方法によれば、第2の観点と同様、先に紡績糸を絶縁性基材の表面と裏面を交互に貫通するように縫い込み、その後、縫い込んだ後の縫い目に合せてドーピング処理を施すことから、縫い目のピッチを自由に変更可能で、縫い方や縫い位置を自由に変更することができる。 According to the method for producing a functional element of the third aspect, as in the second aspect, the spun yarn is first sewn so as to alternately penetrate the front and back surfaces of the insulating base material, and then sewn. Since the doping process is performed in accordance with the subsequent seam, the pitch of the seam can be freely changed, and the sewing method and the sewing position can be freely changed.
 本発明の第1の観点の機能性素子の作製方法において、P型あるいはN型ドーピング剤を含有する溶媒に紡績糸を浸すステップの後、紡績糸に対して、防湿性あるいはガスバリア性を有するコーティング剤を塗布するステップを更に備えることが好ましい。
 例えば、ポリマーをコーティングすることにより、パッシベイションを行い、大気安定を高めることができる。
In the method for producing a functional element according to the first aspect of the present invention, after the step of immersing the spun yarn in a solvent containing a P-type or N-type dopant, the spun yarn is coated with moisture or gas barrier. It is preferable to further comprise a step of applying an agent.
For example, by coating a polymer, passivation can be performed and atmospheric stability can be enhanced.
 本発明によれば、温度差を得るために十分な厚みがあるフレキシブル熱電デバイスを提供できるといった効果を有する。 According to the present invention, there is an effect that a flexible thermoelectric device having a sufficient thickness for obtaining a temperature difference can be provided.
本発明の機能性素子の模式図Schematic diagram of functional element of the present invention CNT紡績糸の作製方法のイメージ図Image of CNT spun yarn production method 作製したCNT紡績糸の熱電測定結果、(1)はゼーベック測定、(2)はI-V測定Thermoelectric measurement results of the produced CNT spun yarn, (1) is Seebeck measurement, (2) is IV measurement π型熱電変換素子の説明図Illustration of π-type thermoelectric conversion element PEIを用いてCNT紡績糸のキャリアドーピングを行った場合の浸漬時間と導電率及びゼーベック係数の相関グラフCorrelation graph of immersion time, conductivity and Seebeck coefficient when carrier doping of CNT spun yarn using PEI キャリアドーピング前のCNT紡績糸の特性図Characteristics of CNT spun yarn before carrier doping CNT紡績糸に対するキャリアドーピングの説明図(1)Illustration of carrier doping for CNT spun yarn (1) キャリアドーピング後のCNT紡績糸の特性図(1)Characteristics of CNT spun yarn after carrier doping (1) CNT紡績糸に対するキャリアドーピングの説明図(2)Illustration of carrier doping for CNT spun yarn (2) キャリアドーピング後のCNT紡績糸の特性図(2)Characteristics of CNT spun yarn after carrier doping (2) 機能性素子の模式図Schematic diagram of functional element 機能性素子の作製フロー図(1)Functional device fabrication flow chart (1) 機能性素子の作製フロー図(2)Functional device fabrication flow diagram (2) 第1の機能性素子の作製方法の模式図Schematic diagram of manufacturing method of first functional element 第1の機能性素子の作製方法の作製フロー図Manufacturing flow chart of manufacturing method of first functional element 第2の機能性素子の作製方法の模式図Schematic diagram of manufacturing method of second functional element 第2の機能性素子の作製方法の作製フロー図Manufacturing flow chart of manufacturing method of second functional element 第3の機能性素子の作製方法の模式図Schematic diagram of manufacturing method of third functional element 第3の機能性素子の作製方法の作製フロー図Manufacturing flow diagram of third functional element manufacturing method 第4の機能性素子の作製方法の模式図Schematic diagram of fourth functional element fabrication method 第4の機能性素子の作製方法の作製フロー図Manufacturing flow diagram of fourth functional element manufacturing method 第5の機能性素子の作製方法の模式図Schematic diagram of fifth functional element manufacturing method 第5の機能性素子の作製方法の作製フロー図Manufacturing flow diagram of fifth functional element manufacturing method
 以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The scope of the present invention is not limited to the following examples and illustrated examples, and many changes and modifications can be made.
 図1は、本発明の機能性素子の模式図を示している。本発明の機能性素子は、導電性ナノファイバーの紡績糸が、フェルトなどの不織布などの絶縁性基材3の表面と裏面を交互に貫通するように縫い込まれ、P型の糸1とN型の糸2が交互に繰り返して現れる構造を成し、これによりπ型熱電変換素子のセル直列構造が形成されている。以下では、導電性ナノファイバーの紡績糸として、CNT紡績糸について説明する。 FIG. 1 shows a schematic diagram of a functional element of the present invention. In the functional element of the present invention, a spun yarn of conductive nanofibers is sewn so as to alternately penetrate the front and back surfaces of an insulating substrate 3 such as a nonwoven fabric such as felt. A structure in which the mold yarns 2 appear alternately and repeatedly is formed, thereby forming a cell series structure of π-type thermoelectric conversion elements. Hereinafter, a CNT spun yarn will be described as a spun yarn of conductive nanofibers.
<CNT紡績糸の作製方法>
 CNTは、HiPco法を用いて作られたNanoIntegris社のものを使用した。超音波分散させ、3重量%のSDS(Sodium Dodecyl Sulfate)水溶液に分散させた。図2にCNT紡績糸の作製方法のイメージを示す。
 ディスペンサーに入れたCNTの分散液を回転台に乗せた凝集液に吐出することによって、流体力学的に延伸紡糸を行った。凝集液は、5重量%のPVA(Polyvinyl alcohol)水溶液を用いた。回転速度は約50rpm、中心軸から3cm程度離れたところで水流に対し、並行になるようにノズルの向きと位置を調整して、CNTの分散液の吐出を行った。その後、溶媒を純水に置換して、紡績糸を一方の端から引き上げ、大気中で乾燥させることにより、CNT紡績糸を作製した。得られたCNT紡績糸の直径は、10~30μm程度であった。
<Method for producing CNT spun yarn>
As the CNT, NanoIntegris manufactured by HiPco method was used. Ultrasonically dispersed and dispersed in a 3% by weight aqueous solution of SDS (Sodium Dodecyl Sulfate). FIG. 2 shows an image of a method for producing CNT spun yarn.
Stretch spinning was performed hydrodynamically by discharging the dispersion liquid of CNT put in the dispenser to the agglomerated liquid placed on the turntable. As the aggregating liquid, a 5 wt% PVA (Polyvinyl alcohol) aqueous solution was used. The rotation speed was about 50 rpm, and the nozzle orientation and position were adjusted to be parallel to the water flow at a distance of about 3 cm from the central axis, and the CNT dispersion was discharged. Thereafter, the solvent was replaced with pure water, and the spun yarn was pulled up from one end and dried in the air to prepare a CNT spun yarn. The diameter of the obtained CNT spun yarn was about 10 to 30 μm.
 得られたCNT紡績糸について熱電測定を行った。測定結果を下記表1に示す。表1には、CNT紡績糸と同じ分散条件で作製した無配向のCNT薄膜の測定結果を比較用として示している。なお、測定は全て大気中で行った。 Thermoelectric measurement was performed on the obtained CNT spun yarn. The measurement results are shown in Table 1 below. Table 1 shows the measurement results of the non-oriented CNT thin film produced under the same dispersion conditions as the CNT spun yarn for comparison. All measurements were performed in the atmosphere.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から、CNT紡績糸では、CNT薄膜と比較し、導電率が減少したものの、ゼーベック係数が増加したことにより、パワーファクターはCNT薄膜と比べて2.9倍に増加した。CNT紡績糸では、長手方向が電流方向により配向していると考えられるにも関わらず導電率は減少した結果となった。この要因として、PVAへの正孔移動によるキャリア数の減少と、紡績糸を形成する際に絶縁体であるPVAがCNT間に入り込んだことによるものと推察する。また、CNT紡績糸のゼーベック係数が大きく増加していることについては、同様に、PVAへの正孔移動と共に、CNT間に入り込んだPVAがCNT接合部でゼーベック効果を起こしている可能性がある。つまり、適切な凝集剤を選択することで、CNTのキャリアや界面を制御することが可能であり、適切な凝集剤を選択することで更なる熱電性能の向上が図れる可能性があることがわかる。 From the results in Table 1 above, the CNT spun yarn showed a decrease in conductivity compared to the CNT thin film, but the power factor increased 2.9 times compared to the CNT thin film due to an increase in Seebeck coefficient. In the CNT spun yarn, although the longitudinal direction was considered to be oriented in the current direction, the conductivity decreased. This is presumed to be due to the decrease in the number of carriers due to the movement of holes to PVA, and the fact that PVA, which is an insulator, entered between the CNTs when forming the spun yarn. In addition, regarding the fact that the Seebeck coefficient of CNT spun yarn is greatly increased, similarly, there is a possibility that PVA entering between CNTs causes a Seebeck effect at the CNT junction with the movement of holes to PVA. . In other words, it is possible to control the CNT carrier and interface by selecting an appropriate flocculant, and there is a possibility of further improving thermoelectric performance by selecting an appropriate flocculant. .
<CNT紡績糸に対するキャリアドーピングについて>
 N型ドーパントとして知られているPEI(Polyethyleneimine)を用いて、CNT紡績糸のキャリアドーピングを行った。N型ドーピングは1重量%のPEI水溶液(溶媒:メタノール)に対して、CNT紡績糸を一定時間浸すことで行った。浸漬時間と、導電率及びゼーベック係数の関係を図5に示す。
 CNT紡績糸をPEIに浸漬して十分な時間ドーピングを行うと、ゼーベック係数がN型に変化しており、PEIがドナーとして機能していることがわかる。導電率の時間変化については、ドーピング当初は、ドナー分子によって電子が注入されると、CNTに本来存在するホールを打ち消し、真性に近づき導電率がいったん減少するが、ドーピングが更に進行すると電子が多数キャリアとなって導電率が増加する。
 ゼーベック係数Sは、下記数式1のように、電子とホールの各々の導電率の重みをもったゼーベック係数の和となる。
<About carrier doping for CNT spun yarn>
Carrier doping of CNT spun yarn was performed using PEI (Polyethyleneimine) known as an N-type dopant. The N-type doping was performed by immersing the CNT spun yarn in a 1 wt% PEI aqueous solution (solvent: methanol) for a certain period of time. The relationship between immersion time, electrical conductivity, and Seebeck coefficient is shown in FIG.
When the CNT spun yarn is immersed in PEI and doped for a sufficient time, the Seebeck coefficient is changed to N-type, and it can be seen that PEI functions as a donor. Regarding the change in conductivity over time, at the beginning of doping, when electrons are injected by the donor molecule, the holes originally present in the CNT are canceled out, approaching the intrinsicity, and the conductivity once decreases. It becomes a carrier and conductivity increases.
The Seebeck coefficient S is a sum of Seebeck coefficients having the weights of the conductivity of each of electrons and holes, as in the following Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Sは電子のゼーベック係数、Sはホールのゼーベック係数、δは電子の導電率、δはホールの導電率である。ドーピングを行う前は、δ<<δであるため、S=Sである。ドーピングによりホールの導電率が減少するため、電子のゼーベック効果を影響が無視できなくなり、全体のゼーベック係数が減少する。さらに、ドーピングが進むと、δ>>δとなり、S=Sとなる。このことから、作製したCNT紡績糸は、従来のCNT薄膜と同様にドーパントによるキャリア制御が可能であることがわかる。 Here, S e is the electron Seebeck coefficient, S h is the Seebeck coefficient of the Hall, [delta] e is the electron conductivity, the [delta] h is the conductivity of the hole. Prior to doping, S = S h because δ e << δ h . Since the hole conductivity is reduced by doping, the influence of the electron Seebeck effect cannot be ignored, and the overall Seebeck coefficient is reduced. Further, as doping progresses, δ e >> δ h and S = S e . From this, it can be seen that the produced CNT spun yarn is capable of carrier control by the dopant as in the conventional CNT thin film.
 作製した2cm程度のCNT紡績糸に関して、ドーピング前後のゼーベック係数の変化についてグラフを参照して説明する。ドーピング前のCNT紡績糸のゼーベック係数は、38(μV/K)程度(図6参照)であったのに対して、図7に示すように、CNT紡績糸の半分1cmだけをPEIに浸しN型ドーピングを行った結果、ドーピングを行った側のゼーベック係数は、-26.5(μV/K)となり、ドーピングを行わなかった側は、-17.8(μV/K)を示した(図8参照)。 Regarding the produced CNT spun yarn of about 2 cm, the change in Seebeck coefficient before and after doping will be described with reference to the graph. While the Seebeck coefficient of the CNT spun yarn before doping was about 38 (μV / K) (see FIG. 6), as shown in FIG. 7, only 1 cm of the CNT spun yarn was immersed in PEI and N As a result of the type doping, the Seebeck coefficient on the doped side was −26.5 (μV / K), and the undoped side was −17.8 (μV / K) (FIG. 8).
 両方がN型を示したことで、全体として得られるゼーベック係数は、ΔVpn(図4参照)が打ち消し合うことにより減少して、-6.2(μV/K)と小さい値となった。この理由としては、PEI溶液がCNT紡績糸に吸い上げられ、ドーピングを行っていない側まで到達したためと考えられる。これを防ぐために、図9に示すように、ドーピングを行っていない側をメタノールに浸した状態でドーピングを行った結果、ドーピングを行った側のゼーベック係数は、-17.8(μV/K)、ドーピングを行わなかった側は、15.5(μV/K)を示した(図10参照)。それぞれがP型、N型を示したことで、全体として得られるゼーベック係数は、32.0(μV/K)と大きい値となり、P型とN型の両方の特性を有するCNT紡績糸が得られた。 Since both showed N-type, the Seebeck coefficient obtained as a whole decreased as ΔVpn (see FIG. 4) canceled out and became a small value of −6.2 (μV / K). The reason for this is considered that the PEI solution was sucked up by the CNT spun yarn and reached the undoped side. In order to prevent this, as shown in FIG. 9, as a result of performing doping in a state where the undoped side is immersed in methanol, the Seebeck coefficient on the doped side is −17.8 (μV / K). The side where no doping was performed showed 15.5 (μV / K) (see FIG. 10). By showing P-type and N-type respectively, the Seebeck coefficient obtained as a whole is as large as 32.0 (μV / K), and a CNT spun yarn having both P-type and N-type characteristics is obtained. It was.
 例えば、図11に示すように、CNT紡績糸を50本束ねて直径25mmとした糸を、厚み3mm、縦横10cmのフェルト(0.04W/mK)の表と裏に1mm間隔で交互に縫い込み、P型CNT紡績糸16とN型CNT紡績糸17が交互に繰り返して現れる構造を作り、π型熱電変換素子のセル直列構造を形成したものを想定し、得られる出力を推定した。材料として、ゼーベック係数150(μV/K)、導電率100(S/cm)、熱伝導率0.13(W/mK)のものを使用した場合、体温37℃、外気温22℃の15℃の温度差がついた界面で、凡そ350μWの出力が得られた。これは小型電子デバイスを動作させるのに十分な出力である。 For example, as shown in FIG. 11, 50 CNT spun yarns and a diameter of 25 mm are alternately sewn at an interval of 1 mm on the front and back of felt (0.04 W / mK) having a thickness of 3 mm and a length and width of 10 cm. A structure in which the P-type CNT spun yarn 16 and the N-type CNT spun yarn 17 appear alternately and repeatedly is assumed, and a cell series structure of π-type thermoelectric conversion elements is assumed, and the obtained output is estimated. When a material having a Seebeck coefficient of 150 (μV / K), an electrical conductivity of 100 (S / cm), and a thermal conductivity of 0.13 (W / mK) is used as a material, the body temperature is 37 ° C., and the external temperature is 22 ° C. An output of about 350 μW was obtained at the interface where the temperature difference was. This is an output sufficient to operate a small electronic device.
 次に、機能性素子の作製方法について説明する。機能性素子の作製方法は、大きく分けて2つの方法に分けられる。まず、これらの2つの方法の概要を図12及び図13のフローを参照して説明し、その後、具体的な作製方法については、他の実施例として説明する。
 1つ目の方法としては、図12に示されるように、CNT紡績糸を作製し(S01)、CNT紡績糸に部分ドーピングを行った上で、P型N型ストライプ状に染め分けたCNT紡績糸を作製した後(S02)、染め分け周期と縫い目のピッチを合せて、CNT紡績糸を表裏交互に糸が出るように絶縁性基材に縫い込む(S03)。このような方法により、π型熱電変換素子のセル直列構造を形成する(S04)。
Next, a method for manufacturing a functional element will be described. The manufacturing method of the functional element is roughly divided into two methods. First, an outline of these two methods will be described with reference to the flowcharts of FIGS. 12 and 13, and then a specific manufacturing method will be described as another embodiment.
As the first method, as shown in FIG. 12, a CNT spun yarn is prepared (S01), and after partial doping is performed on the CNT spun yarn, the CNT spun yarn is dyed separately in a P-type N-type stripe shape. (S02), the CNT spun yarn is sewn into the insulating base material so that the front and back are alternately turned out (S03) by matching the dyeing period and the stitch pitch. By such a method, a cell series structure of π-type thermoelectric conversion elements is formed (S04).
 2つ目の方法としては、図13に示されるように、CNT紡績糸を作製し(S11)、CNT紡績糸を表裏交互に糸が出るように絶縁性基材に縫い込んだ後(S12)、絶縁性基材に縫い込まれた状態でCNT紡績糸に部分ドーピングを行う(S13)。このような方法により、π型熱電変換素子のセル直列構造を形成する(S14)。 As the second method, as shown in FIG. 13, a CNT spun yarn is produced (S11), and the CNT spun yarn is sewn into an insulating base material so that the front and back alternately come out (S12). Then, the CNT spun yarn is partially doped while being sewn into the insulating base material (S13). By such a method, a cell series structure of π-type thermoelectric conversion elements is formed (S14).
 図14は、第1の機能性素子の作製方法の模式図を示しており、図15は、第1の機能性素子の作製方法の作製フロー図を示している。
 まず、図14(1)に示されるように、CNT紡績糸10を作製する(S21)。CNT紡績糸10の作製方法は上述の実施例1で示した方法で行う。次に、図14(2)に示されるように、長さ10cm程度のCNT紡績糸を四角状に巻きつけたものの下部をメタノールに浸した状態で、上部のみを上述の部分N型ドーピングを行う。これにより、CNT紡績糸10を、N型ドーピングを行う部分とブランク溶剤に浸す部分を交互にして、P型N型ストライプ状に染め分ける。その結果、図14(3)に示されるように、P型CNT紡績糸11とN型CNT紡績糸12が交互に現れる状態となった、P型とN型が交互に現れるCNT紡績糸13が作製される(S22)。
FIG. 14 is a schematic diagram of a manufacturing method of the first functional element, and FIG. 15 is a manufacturing flow diagram of the manufacturing method of the first functional element.
First, as shown in FIG. 14A, the CNT spun yarn 10 is produced (S21). The production method of the CNT spun yarn 10 is performed by the method shown in the above-described Example 1. Next, as shown in FIG. 14 (2), the above-mentioned partial N-type doping is performed only on the upper part of the CNT spun yarn having a length of about 10 cm wound in a square shape while the lower part is immersed in methanol. . As a result, the CNT spun yarn 10 is dyed into P-type N-type stripes alternately with portions for N-type doping and portions immersed in a blank solvent. As a result, as shown in FIG. 14 (3), the P-type CNT spun yarn 11 and the N-type CNT spun yarn 12 appear alternately. The CNT spun yarn 13 in which the P-type and N-type appear alternately It is produced (S22).
 N型ドーピングをされた部分が厚み方向に位置するように、厚みが4mm程度の布に縫うことで機能性素子を作製する。この際、図14(4)に示されるように、P型とN型が交互に現れるCNT紡績糸13を、染め分け周期と縫い目のピッチを合せて、表裏交互に糸が出るように絶縁性基材15に縫い込む(S23)。これにより、π型熱電変換素子のセル直列構造が形成される(S24)。
 このように作製した機能性素子の熱電デバイスに対して、大気中(約21℃)で、手で触れたところ、体温によって凡そ2.5mVの熱起電力が発生することを確認している。
A functional element is manufactured by sewing on a cloth having a thickness of about 4 mm so that the N-doped portion is positioned in the thickness direction. At this time, as shown in FIG. 14 (4), the CNT spun yarn 13 in which the P-type and the N-type alternately appear is matched with the dyeing cycle and the pitch of the seam so that the yarns come out alternately on the front and back sides. Sewing into the material 15 (S23). As a result, a cell series structure of π-type thermoelectric conversion elements is formed (S24).
It has been confirmed that a thermoelectromotive force of approximately 2.5 mV is generated by body temperature when the functional element thermoelectric device thus manufactured is touched by hand in the atmosphere (about 21 ° C.).
 図16は、第2の機能性素子の作製方法の模式図を示しており、図17は、第2の機能性素子の作製方法の作製フロー図を示している。
 まず、図16(1)に示されるように、CNT紡績糸10を作製する(S31)。CNT紡績糸10の作製方法は上述の実施例1で示した方法で行う。次に、図16(2)に示されるように、スポイド20を用いて、溶媒と親和性の低いポリマー21を所定ピッチ毎に染めない部分に含浸させる(ろうけつ染め)(S32)。図16(3)に示されるように、CNT紡績糸をN型ドーピング剤に浸す(S33)。P型CNT紡績糸11とN型CNT紡績糸12が交互に現れるCNT紡績糸13が得られる(図16(4))。
 そして、図16(5)に示されるように、染め分け周期と縫い目のピッチを合せて、CNT紡績糸を表裏交互に糸が出るように絶縁性基材15に縫い込む(S34)ことにより、π型熱電変換素子のセル直列構造が形成される(S35)。
FIG. 16 shows a schematic diagram of a method for manufacturing the second functional element, and FIG. 17 shows a manufacturing flowchart of the method for manufacturing the second functional element.
First, as shown in FIG. 16A, the CNT spun yarn 10 is produced (S31). The production method of the CNT spun yarn 10 is performed by the method shown in the above-described Example 1. Next, as shown in FIG. 16 (2), the polymer 21 having a low affinity with the solvent is impregnated into a portion that is not dyed every predetermined pitch (batching dyeing) (S32). As shown in FIG. 16 (3), the CNT spun yarn is immersed in an N-type doping agent (S33). A CNT spun yarn 13 in which P-type CNT spun yarn 11 and N-type CNT spun yarn 12 appear alternately is obtained (FIG. 16 (4)).
Then, as shown in FIG. 16 (5), the CNT spun yarn is sewn into the insulating base material 15 so that the yarn comes out alternately on the front and back sides by matching the dyeing period and the stitch pitch (S34), A cell serial structure of the thermoelectric conversion element is formed (S35).
 図18は、第3の機能性素子の作製方法の模式図を示しており、図19は、第3の機能性素子の作製方法の作製フロー図を示している。
 まず、図18(1)(2)に示されるように、上述の実施例1で示した方法でCNT紡績糸10を作製し(S41)、絶縁性基材15の表裏交互に糸が出るように、CNT紡績糸10を絶縁性基材15に縫い込む(S42)。
 次に、図18(3)に示されるように、縫い目に合せてP型ドーピング剤30とN型ドーピング剤31の吐出しを行う(S43)。吐出しにはインクジェット法を用いる。この場合、CNT紡績糸が本来P型特性を有することから、P型ドーピング剤の替わりにブランク溶剤を用いてもよい。これにより、π型熱電変換素子のセル直列構造が形成される(S44)。形成された機能性素子のイメージを図18(4)に示す。
FIG. 18 shows a schematic diagram of a method for manufacturing the third functional element, and FIG. 19 shows a manufacturing flow diagram of the method for manufacturing the third functional element.
First, as shown in FIGS. 18 (1) and 18 (2), the CNT spun yarn 10 is produced by the method shown in the above-described Example 1 (S41), and the insulating base material 15 has the yarn alternately appearing on the front and back sides. Next, the CNT spun yarn 10 is sewn into the insulating base material 15 (S42).
Next, as shown in FIG. 18 (3), the P-type doping agent 30 and the N-type doping agent 31 are discharged in accordance with the stitches (S43). An ink jet method is used for ejection. In this case, since the CNT spun yarn originally has P-type characteristics, a blank solvent may be used instead of the P-type dopant. Thereby, a cell series structure of π-type thermoelectric conversion elements is formed (S44). An image of the formed functional element is shown in FIG.
 図20は、第4の機能性素子の作製方法の模式図を示しており、図21は、第4の機能性素子の作製方法の作製フロー図を示している。
 まず、図20(1)(2)に示されるように、上述の実施例1で示した方法でCNT紡績糸10を作製し(S51)、絶縁性基材15の表裏交互に糸が出るように、CNT紡績糸10を絶縁性基材15に縫い込む(S52)。
 次に、図20(3)に示されるように、縫い目に合せて1つとばしに溶媒と親和性の低いポリマー40の吐出しを行う(S53)。吐出しにはインクジェット法を用いる。
 そして、図20(4)に示されるように、CNT紡績糸が縫い込まれた絶縁性基材15を、N型ドーピング剤23に浸す(S54)。これにより、π型熱電変換素子のセル直列構造が形成される(S55)。形成された機能性素子のイメージを図20(5)に示す。
FIG. 20 shows a schematic diagram of a method for manufacturing the fourth functional element, and FIG. 21 shows a manufacturing flow diagram of the method for manufacturing the fourth functional element.
First, as shown in FIGS. 20 (1) and (2), the CNT spun yarn 10 is produced by the method shown in the above-described Example 1 (S51), and the insulating base material 15 has the yarn alternately appearing on the front and back sides. Next, the CNT spun yarn 10 is sewn into the insulating base material 15 (S52).
Next, as shown in FIG. 20 (3), the polymer 40 having a low affinity with the solvent is discharged in a single manner according to the stitches (S53). An ink jet method is used for ejection.
Then, as shown in FIG. 20 (4), the insulating base material 15 on which the CNT spun yarn is sewn is immersed in the N-type doping agent 23 (S54). As a result, a cell series structure of π-type thermoelectric conversion elements is formed (S55). An image of the formed functional element is shown in FIG.
 図22は、第5の機能性素子の作製方法の模式図を示しており、図23は、第5の機能性素子の作製方法の作製フロー図を示している。
 まず、図22(1)(2)に示されるように、上述の実施例1で示した方法でCNT紡績糸10を作製し(S61)、絶縁性基材15の表裏交互に糸が出るように、CNT紡績糸10を絶縁性基材15に縫い込む(S62)。
 次に、図22(3)に示されるように、ローラなどの塗布機器50を用いて、絶縁性基材15の表面51と裏面52をろうけつ染めにする(S63)。ろうけつ染めは、ドーピング剤の不要な浸透を防ぐと共に、基材と糸を固定し、糸ずれを防ぎ、位相がずれないようにするために行う。
 そして、図22(4)に示されるように、縫い目に合せて隙間から、P型ドーピング剤とN型ドーピング剤の吐出しを行う(S64)。これにより、π型熱電変換素子のセル直列構造が形成される(S65)。形成された機能性素子のイメージを図22(5)に示す。
FIG. 22 shows a schematic diagram of a fifth functional element manufacturing method, and FIG. 23 shows a manufacturing flow diagram of the fifth functional element manufacturing method.
First, as shown in FIGS. 22 (1) and (2), the CNT spun yarn 10 is produced by the method shown in the above-described Example 1 (S 61), so that the yarn comes out alternately on the front and back of the insulating substrate 15. Then, the CNT spun yarn 10 is sewn into the insulating base material 15 (S62).
Next, as shown in FIG. 22 (3), the front surface 51 and the back surface 52 of the insulating base material 15 are batched using a coating device 50 such as a roller (S63). The batik dyeing is performed in order to prevent unnecessary penetration of the doping agent, fix the base material and the yarn, prevent yarn displacement, and prevent a phase shift.
Then, as shown in FIG. 22 (4), the P-type dopant and the N-type dopant are discharged from the gap in accordance with the seam (S64). As a result, a cell series structure of π-type thermoelectric conversion elements is formed (S65). An image of the formed functional element is shown in FIG.
 本発明の機能性素子は、スマートハウスやスマートビルディングのためのセンサマトリックスを形成するための分散電源や、エナジーハーベスティング素子として、住宅、オフィス、自動車における排出熱エネルギーの再利用を図る熱電素子、ステッカー型の生体情報計測器(体温、脈拍、心電モニターなど)の電源などに利用できる。 The functional element of the present invention is a distributed power source for forming a sensor matrix for smart houses and smart buildings, and a thermoelectric element for reusing exhaust heat energy in houses, offices and automobiles as energy harvesting elements, It can be used as a power source for sticker-type biological information measuring devices (body temperature, pulse, electrocardiogram monitor, etc.).
 1,11,16 P型CNT紡績糸
 2,12,17 N型CNT紡績糸
 3,15 絶縁性基材
 10 CNT紡績糸
 13 P型N型が交互に現れるCNT紡績糸
 20 スポイド
 21,40 ポリマー
 23,30 N型ドーピング剤
 31 P型ドーピング剤
 50 塗布機器
 51 表面
 52 裏面
 60 CNT
 61 CNT分散剤
 62 ディスペンサー
 63 回転台
 64 容器
 65 凝集液
 66 紡糸状CNT
1,11,16 P-type CNT spun yarn 2,12,17 N-type CNT spun yarn 3,15 Insulating base material 10 CNT spun yarn 13 CNT spun yarn in which P-type N-type appears alternately 20 Spoid 21, 40 Polymer 23 , 30 N-type doping agent 31 P-type doping agent 50 Application equipment 51 Front surface 52 Rear surface 60 CNT
61 CNT dispersant 62 Dispenser 63 Turntable 64 Container 65 Aggregate 66 Spinned CNT

Claims (13)

  1.  導電性繊維状物質から成る紡績糸が、シート状もしくは帯状の絶縁性基材に縫い込まれた機能性素子であって、
     前記紡績糸が前記絶縁性基材の表面と裏面を交互に貫通するように縫い込まれ、π型熱電変換素子のセル直列構造が形成されたことを特徴とする機能性素子。
    A functional element in which a spun yarn made of a conductive fibrous material is sewn into a sheet-like or strip-like insulating base material,
    A functional element, wherein the spun yarn is sewn so as to alternately pass through the front surface and the back surface of the insulating base material to form a cell series structure of π-type thermoelectric conversion elements.
  2.  前記紡績糸は、長手方向にP型特性とN型特性が交互に繰り返されるものであり、基材の厚み方向に折り返される際に、P型とN型が切り替わるようにされたことを特徴とする請求項1に記載の機能性素子。 The spun yarn is such that P-type characteristics and N-type characteristics are alternately repeated in the longitudinal direction, and the P-type and N-type are switched when folded back in the thickness direction of the base material. The functional element according to claim 1.
  3.  前記紡績糸は、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、グラフェン、グラフェンナノリボン、フラーレンナノウィスカー及び無機半導体ウィスカーの群から選択される1種以上の導電性ナノファイバーと、絶縁性もしくは導電性の柔軟性ポリマーとの複合材料から成ることを特徴とする請求項1又は2に記載の機能性素子。 The spun yarn includes at least one conductive nanofiber selected from the group consisting of carbon nanotube (CNT), carbon nanofiber (CNF), graphene, graphene nanoribbon, fullerene nanowhisker and inorganic semiconductor whisker, and insulating or conductive The functional element according to claim 1, wherein the functional element is made of a composite material with a flexible polymer.
  4.  前記紡績糸は、0.1~100μmの径のCNTから成る繊維を複数撚り合せた撚糸であることを特徴とする請求項3に記載の機能性素子。 The functional element according to claim 3, wherein the spun yarn is a twisted yarn obtained by twisting a plurality of fibers made of CNTs having a diameter of 0.1 to 100 µm.
  5.  前記繊維は、CNTとCNTの接合部に、籠状タンパク質が挿入されたものであることを特徴とする請求項4に記載の機能性素子。 The functional element according to claim 4, wherein the fiber is obtained by inserting a rod-like protein into a joint portion between CNTs and CNTs.
  6.  前記絶縁性基材が柔軟性を有することを特徴とする請求項1~5の何れかに記載の機能性素子。 The functional element according to any one of claims 1 to 5, wherein the insulating substrate has flexibility.
  7.  前記絶縁性基材は、布、紙、発砲ポリマー、エラストマー、ゲル状膜の何れかであることを特徴とする請求項6に記載の機能性素子。 The functional element according to claim 6, wherein the insulating base material is any one of cloth, paper, foamed polymer, elastomer, and gel film.
  8.  導電性繊維状物質から成る紡績糸を用いて連続π型熱電変換素子のセル直列構造を形成する機能性素子の作製方法であって、
     前記導電性繊維状物質がP型特性を有する場合、N型ドーピング剤を含有する溶媒に前記紡績糸を浸す処理の前に、前記紡績糸におけるP型特性を残す部分を、前記溶媒と非親和性の溶剤に含浸させ、その後、N型ドーピング剤を含有する溶媒に前記紡績糸を浸すステップ、
     或は、
     前記導電性繊維状物質がN型特性を有する場合、P型ドーピング剤を含有する溶媒に前記紡績糸を浸す処理の前に、前記紡績糸におけるN型特性を残す部分を、前記溶媒と非親和性の溶剤に含浸させ、その後、P型ドーピング剤を含有する溶媒に前記紡績糸を浸すステップ、
     上記の何れかのステップにより、前記紡績糸が、長手方向にP型特性とN型特性が交互に周期的に繰り返され、
     その後、前記紡績糸を、シート状もしくは帯状の絶縁性基材の表面と裏面を交互に貫通するように糸を通し、前記絶縁性基材の厚み方向に折り返される際に、P型とN型が切り替わるように縫い込むステップ、
     を備えたことを特徴とする機能性素子の作製方法。
    A method for producing a functional element that forms a cell series structure of continuous π-type thermoelectric conversion elements using a spun yarn made of a conductive fibrous material,
    When the conductive fibrous material has P-type characteristics, before the treatment of immersing the spun yarn in a solvent containing an N-type doping agent, a portion that retains the P-type characteristics in the spun yarn is not compatible with the solvent. Impregnating with an organic solvent, and then immersing the spun yarn in a solvent containing an N-type doping agent;
    Or
    When the conductive fibrous material has N-type characteristics, before the treatment of immersing the spun yarn in a solvent containing a P-type doping agent, a portion that leaves the N-type characteristics in the spun yarn is not compatible with the solvent. Impregnating in a solvent, and then immersing the spun yarn in a solvent containing a P-type dopant;
    By any one of the above steps, the spun yarn is periodically periodically repeated with P-type characteristics and N-type characteristics in the longitudinal direction,
    After that, when the spun yarn passes through the front and back surfaces of the sheet-like or belt-like insulating base material alternately and is folded back in the thickness direction of the insulating base material, the P type and the N type Step to sew so that
    A method for manufacturing a functional element comprising:
  9.  導電性繊維状物質から成る紡績糸を用いて連続π型熱電変換素子のセル直列構造を形成する機能性素子の作製方法であって、
     前記紡績糸を、シート状もしくは帯状の絶縁性基材の表面と裏面を交互に貫通するように縫い込むステップ、
     縫い込んだ後の縫い目に合せて、P型ドーパント溶液とN型ドーパント溶液を交互に吐出し、縫い目から基材の厚み方向に溶液を含浸させるステップ、
     或は、
     前記導電性繊維状物質がP型あるいはN型特性の一方を有する場合、縫い込んだ後の縫い目に合せて、ドーピング剤を含有しないブランク溶液と、他方のP型あるいはN型ドーパント溶液を交互に吐出し、縫い目から基材の厚み方向に溶液を含浸させるステップ、
     を備え、
     前記紡績糸が、長手方向にP型特性とN型特性が交互に周期的に繰り返され、前記絶縁性基材の厚み方向に折り返される際に、P型とN型が切り替わるようにしたことを特徴とする機能性素子の作製方法。
    A method for producing a functional element that forms a cell series structure of continuous π-type thermoelectric conversion elements using a spun yarn made of a conductive fibrous material,
    Sewing the spun yarn so as to alternately penetrate the front and back surfaces of the sheet-like or strip-like insulating base material;
    A step of alternately discharging a P-type dopant solution and an N-type dopant solution in accordance with the stitches after sewing, and impregnating the solution in the thickness direction of the base material from the stitches;
    Or
    When the conductive fibrous material has one of P-type and N-type characteristics, a blank solution not containing a doping agent and the other P-type or N-type dopant solution are alternately used in accordance with the stitches after sewing. Discharging, impregnating the solution in the thickness direction of the base material from the seam,
    With
    In the spun yarn, when the P-type characteristics and the N-type characteristics are alternately and periodically repeated in the longitudinal direction, and when the spun yarn is folded back in the thickness direction of the insulating base material, the P-type and N-type are switched. A method for manufacturing a functional element.
  10.  前記絶縁性基材の表面と裏面に前記紡績糸を交互に縫い込むステップの後、縫い込んだ後の縫い目に合せてP型ドーパント溶液とN型ドーパント溶液を交互に吐出す前に、
     P型ドーパント溶液およびN型ドーパント溶液と非親和性の溶剤を、前記絶縁性基材の表面と裏面とに塗布し、前記紡績糸と前記絶縁性基材を固定することを特徴とする請求項9に記載の機能性素子の作製方法。
    After the step of alternately sewing the spun yarn on the front and back surfaces of the insulating base material, before alternately discharging the P-type dopant solution and the N-type dopant solution in accordance with the stitches after sewing,
    A solvent having a non-affinity with a P-type dopant solution and an N-type dopant solution is applied to the front and back surfaces of the insulating base material, and the spun yarn and the insulating base material are fixed. A method for producing the functional element according to 9.
  11.  導電性繊維状物質から成る紡績糸を用いて連続π型熱電変換素子のセル直列構造を形成する機能性素子の作製方法であって、
     前記紡績糸を、シート状もしくは帯状の絶縁性基材の表面と裏面を交互に貫通するように縫い込むステップ、
     前記導電性繊維状物質がP型あるいはN型特性の一方を有する場合、他方のP型あるいはN型ドーピング剤を含有する溶媒に前記紡績糸を浸す処理の前に、縫い込んだ後の縫い目の一つ飛ばしに、前記溶媒と非親和性の溶液を吐出し、縫い目から基材の厚み方向に溶液を含浸させるステップ、
     他方のP型あるいはN型ドーパント溶液に前記紡績糸を浸すステップ、
     を備え、
     前記紡績糸が、長手方向にP型特性とN型特性が交互に周期的に繰り返され、前記絶縁性基材の厚み方向に折り返される際に、P型とN型が切り替わるようにしたことを特徴とする機能性素子の作製方法。
    A method for producing a functional element that forms a cell series structure of continuous π-type thermoelectric conversion elements using a spun yarn made of a conductive fibrous material,
    Sewing the spun yarn so as to alternately penetrate the front and back surfaces of the sheet-like or strip-like insulating base material;
    When the conductive fibrous material has one of P-type and N-type characteristics, the stitches after sewing are processed before the process of immersing the spun yarn in a solvent containing the other P-type or N-type dopant. In one step, discharging the solvent and the non-affinity solution, impregnating the solution in the thickness direction of the base material from the seam,
    Immersing the spun yarn in the other P-type or N-type dopant solution;
    With
    In the spun yarn, when the P-type characteristics and the N-type characteristics are alternately and periodically repeated in the longitudinal direction, and when the spun yarn is folded back in the thickness direction of the insulating base material, the P-type and N-type are switched. A method for manufacturing a functional element.
  12.  P型あるいはN型ドーピング剤を含有する溶媒に前記紡績糸を浸すステップの後、
     前記紡績糸に対して、防湿性あるいはガスバリア性を有するコーティング剤を塗布するステップを更に備えることを特徴とする請求項8に記載の機能性素子の作製方法。
    After immersing the spun yarn in a solvent containing a P-type or N-type dopant,
    The method for producing a functional element according to claim 8, further comprising a step of applying a moisture-proof or gas barrier coating agent to the spun yarn.
  13.  前記紡績糸は、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、グラフェン、グラフェンナノリボン、フラーレンナノウィスカー及び無機半導体ウィスカーの群から選択される1種以上の導電性ナノファイバーと、絶縁性もしくは導電性の柔軟性ポリマーとの複合材料から成ることを特徴とする請求項8~12の何れかに記載の機能性素子の作製方法。 The spun yarn includes at least one conductive nanofiber selected from the group consisting of carbon nanotube (CNT), carbon nanofiber (CNF), graphene, graphene nanoribbon, fullerene nanowhisker and inorganic semiconductor whisker, and insulating or conductive The method for producing a functional element according to any one of claims 8 to 12, comprising a composite material with a flexible polymer.
PCT/JP2015/001704 2015-03-25 2015-03-25 Functional element having cell series structure of π-type thermoelectric conversion elements, and method for manufacturing same WO2016151634A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017507112A JP6529097B2 (en) 2015-03-25 2015-03-25 Functional element having cell series structure of π-type thermoelectric conversion element and method of manufacturing the same
PCT/JP2015/001704 WO2016151634A1 (en) 2015-03-25 2015-03-25 Functional element having cell series structure of π-type thermoelectric conversion elements, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001704 WO2016151634A1 (en) 2015-03-25 2015-03-25 Functional element having cell series structure of π-type thermoelectric conversion elements, and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016151634A1 true WO2016151634A1 (en) 2016-09-29

Family

ID=56977575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001704 WO2016151634A1 (en) 2015-03-25 2015-03-25 Functional element having cell series structure of π-type thermoelectric conversion elements, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6529097B2 (en)
WO (1) WO2016151634A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190982A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Carbon nanotube composite material and method for manufacturing the same
JP2017034110A (en) * 2015-08-03 2017-02-09 積水化学工業株式会社 Thermoelectric transducer and thermoelectric conversion device including the same
WO2018047882A1 (en) * 2016-09-06 2018-03-15 国立大学法人奈良先端科学技術大学院大学 FUNCTIONAL ELEMENT HAVING CELL SERIAL STRUCTURE OF π-TYPE THERMOELECTRIC CONVERSION ELEMENTS, AND METHOD FOR FABRICATING SAME
JP2018186260A (en) * 2017-04-25 2018-11-22 国立大学法人横浜国立大学 Electro-thermal power generation device and heat transport device
CN109524533A (en) * 2018-12-04 2019-03-26 东华大学 A kind of coiled type thermoelectric unit, fabric construction thermo-electric device and its preparation and application
CN109944063A (en) * 2019-03-04 2019-06-28 东华大学 A kind of preparation method of heat to electricity conversion space fabric
CN112461291A (en) * 2020-11-11 2021-03-09 大连海事大学 Modularization concatenation formula is from energy supply device and marine biosensor system
WO2023127591A1 (en) * 2021-12-28 2023-07-06 日東電工株式会社 Sensor-equipped vacuum heat insulation material
WO2023127590A1 (en) * 2021-12-28 2023-07-06 日東電工株式会社 Thermoelectric conversion element and sensor module
WO2023127592A1 (en) * 2021-12-28 2023-07-06 日東電工株式会社 Thermoelectric conversion module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130813A (en) * 2006-11-21 2008-06-05 Tokai Rika Co Ltd Thermal power generating device
JP2010537410A (en) * 2007-08-14 2010-12-02 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructured material-based thermoelectric generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130718A (en) * 2006-11-20 2008-06-05 Tokai Rika Co Ltd Thermoelectric conversion device and manufacturing method thereof
FR2919431B1 (en) * 2007-07-23 2010-08-27 Commissariat Energie Atomique THERMOELECTRIC MEDIUM AND FABRIC TYPE STRUCTURE INTEGRATING SUCH A MEANS.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130813A (en) * 2006-11-21 2008-06-05 Tokai Rika Co Ltd Thermal power generating device
JP2010537410A (en) * 2007-08-14 2010-12-02 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructured material-based thermoelectric generator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190982A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Carbon nanotube composite material and method for manufacturing the same
JP2017034110A (en) * 2015-08-03 2017-02-09 積水化学工業株式会社 Thermoelectric transducer and thermoelectric conversion device including the same
WO2018047882A1 (en) * 2016-09-06 2018-03-15 国立大学法人奈良先端科学技術大学院大学 FUNCTIONAL ELEMENT HAVING CELL SERIAL STRUCTURE OF π-TYPE THERMOELECTRIC CONVERSION ELEMENTS, AND METHOD FOR FABRICATING SAME
JP2018186260A (en) * 2017-04-25 2018-11-22 国立大学法人横浜国立大学 Electro-thermal power generation device and heat transport device
CN109524533A (en) * 2018-12-04 2019-03-26 东华大学 A kind of coiled type thermoelectric unit, fabric construction thermo-electric device and its preparation and application
CN109524533B (en) * 2018-12-04 2020-10-20 东华大学 Coil-shaped thermoelectric unit, fabric-structure thermoelectric device, preparation and application thereof
CN109944063A (en) * 2019-03-04 2019-06-28 东华大学 A kind of preparation method of heat to electricity conversion space fabric
CN112461291A (en) * 2020-11-11 2021-03-09 大连海事大学 Modularization concatenation formula is from energy supply device and marine biosensor system
WO2023127591A1 (en) * 2021-12-28 2023-07-06 日東電工株式会社 Sensor-equipped vacuum heat insulation material
WO2023127590A1 (en) * 2021-12-28 2023-07-06 日東電工株式会社 Thermoelectric conversion element and sensor module
WO2023127592A1 (en) * 2021-12-28 2023-07-06 日東電工株式会社 Thermoelectric conversion module

Also Published As

Publication number Publication date
JPWO2016151634A1 (en) 2018-03-08
JP6529097B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6529097B2 (en) Functional element having cell series structure of π-type thermoelectric conversion element and method of manufacturing the same
Ito et al. From materials to device design of a thermoelectric fabric for wearable energy harvesters
WO2018047882A1 (en) FUNCTIONAL ELEMENT HAVING CELL SERIAL STRUCTURE OF π-TYPE THERMOELECTRIC CONVERSION ELEMENTS, AND METHOD FOR FABRICATING SAME
Soleimani et al. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials
Kim et al. Wet-spinning and post-treatment of CNT/PEDOT: PSS composites for use in organic fiber-based thermoelectric generators
KR101944390B1 (en) Flexible thermoelement comprising carbon nanotube strand, preparation method thereof
Khoso et al. Enhanced thermoelectric performance of graphene based nanocomposite coated self-powered wearable e-textiles for energy harvesting from human body heat
CN113265880B (en) Super-flexible self-generating yarn, full-fiber-based super-flexible temperature difference self-generating fabric and preparation method thereof
Shen et al. Review on fiber-based thermoelectrics: materials, devices, and textiles
CN113280838B (en) Full-fiber-based self-powered sensor
Wang et al. Rational design of stretchable and highly aligned organic/inorganic hybrid nanofiber films for multidirectional strain sensors and solar-driven thermoelectrics
JP2016018867A (en) Flexible thermoelectric conversion device
Li et al. Recent development in flexible organic thermoelectric fibers for wearable devices
Wu et al. Thermoelectric textile materials
El-Shamy Review on the recent advance in PEDOT: PSS/Carbonic fillers based nanocomposite for flexible thermoelectric devices and Sensors
Jiang et al. Facile fabrication of cotton-based thermoelectric yarns for the construction of textile generator with high performance in human heat harvesting
JP5908291B2 (en) Carbon nanotube-containing body
Ünsal et al. Energy-generating textiles
JP2019149494A (en) Fullerene-containing body and semiconductor device
JP7402485B2 (en) Method for producing composite material containing fullerene nanowhiskers
Kadam et al. Fiber-based thermoelectric generators and their substrate materials
Jiao Flexible thermoelectrics and thermoelectric textiles
JP2018186260A (en) Electro-thermal power generation device and heat transport device
Wang et al. Materials and Processes for Stretchable and Wearable e‐Textile Devices
JP2021111664A (en) Thermoelectric conversion element and manufacturing method therefor, and thermoelectric conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507112

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886191

Country of ref document: EP

Kind code of ref document: A1