WO2018143178A1 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
WO2018143178A1
WO2018143178A1 PCT/JP2018/002913 JP2018002913W WO2018143178A1 WO 2018143178 A1 WO2018143178 A1 WO 2018143178A1 JP 2018002913 W JP2018002913 W JP 2018002913W WO 2018143178 A1 WO2018143178 A1 WO 2018143178A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion element
type thermoelectric
heat
conversion module
Prior art date
Application number
PCT/JP2018/002913
Other languages
French (fr)
Japanese (ja)
Inventor
内田 秀樹
聡 阿部
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018565554A priority Critical patent/JP7183794B2/en
Publication of WO2018143178A1 publication Critical patent/WO2018143178A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a thermoelectric conversion module.
  • thermoelectric conversion modules that convert heat into electricity using temperature differences have attracted attention.
  • a thermoelectric conversion module a thermoelectric conversion module including a joined body formed by joining a p (Positive) type semiconductor material and an n (Negative) type semiconductor material has attracted attention because of its large electromotive force. ing.
  • the thermoelectric conversion module is anticipated as an effective means for utilizing an unused thermal energy.
  • thermoelectric conversion module there is a thermoelectric conversion module having a structure including a thermoelectric conversion element configured by alternately arranging p-type elements and n-type elements in a plane and an outer layer member having a plurality of convex portions. It has been proposed (see, for example, Patent Document 1).
  • the convex portion of the outer layer member is thermally coupled to a position corresponding to the connection portion of the p-type element and the n-type element.
  • Patent Document 1 discloses a plurality of p-type elements and n-type elements in which convex portions made of a material having high thermal conductivity are alternately arranged on both upper and lower sides with respect to the plane of the thermoelectric conversion element.
  • thermoelectric conversion element A structure is disclosed in which heat and cold are alternately transmitted to the connecting portion. According to such a structure, heat is recovered from the heat source by the outer layer member arranged on the high temperature side and transferred to the thermoelectric conversion element via the convex portion, and cold is obtained by the outer layer member arranged on the low temperature side, It was possible to transmit to the thermoelectric conversion element via the part.
  • thermoelectric conversion module is required to have high flexibility so as to be compatible with various mounting modes as well as high thermoelectric conversion efficiency.
  • the heat transfer from the high temperature side and the cold heat transfer from the low temperature side are used in combination to increase the temperature difference in the PN connection direction of the thermoelectric conversion element.
  • an object of the present invention is to provide a thermoelectric conversion module that can achieve both thermoelectric conversion efficiency and flexibility.
  • thermoelectric conversion module of the present invention is a thermoelectric conversion module that converts heat from a heat source into electric power in one direction in a plane.
  • a film-like thermoelectric conversion element body having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element bonded along a certain bonding direction, and a first surface of the thermoelectric conversion element body for receiving heat from a heat source
  • thermoelectric conversion module has a structure including the heat conductor bonded to the bonding portion of the thermoelectric conversion element body only on the first surface that receives heat from the heat source, the thermoelectric conversion efficiency of the thermoelectric conversion module is obtained. And flexibility can be achieved.
  • the film-shaped thermoelectric conversion element body is formed by continuously joining at least two pairs of p-type thermoelectric conversion elements and n-type thermoelectric conversion elements, and the thermal conductor is At least two or more pairs of the p-type thermoelectric conversion elements and the n-type thermoelectric conversion elements are joined to every other joint, and the joints to which the thermal conductors are joined are electrically conductive and It is preferable to comprise a metal material having thermal conductivity.
  • the joint portion to which the heat conductor is bonded contains a metal material having conductivity and heat conductivity, the heat transfer efficiency is increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module can be further increased. .
  • thermoelectric conversion module of the present invention the p-type thermoelectric conversion element and the n-type thermoelectric conversion element may be directly bonded to a bonding portion to which the thermal conductor is not coupled among the plurality of bonding portions. preferable.
  • the joint where the thermal conductor is not bonded is formed by directly joining thermoelectric conversion elements of different conductivity types, the temperature difference in the joining direction of the thermoelectric conversion element body is further expanded. The thermoelectric conversion efficiency of the thermoelectric conversion module can be further increased.
  • thermoelectric conversion element body has at least one thermoelectric conversion element body substrate, and the thermoelectric conversion element body substrate has at least one vent hole. .
  • the thermoelectric conversion module if the thermoelectric conversion element body is supported by the thermoelectric conversion element body substrate having a vent, the strength of the thermoelectric conversion element body is increased and the temperature difference in the joining direction of the thermoelectric conversion element body is further expanded. be able to.
  • thermoelectric conversion module of the present invention it is preferable that the p-type thermoelectric conversion element and the n-type thermoelectric conversion element each have a length in the joining direction of 5 mm or more. If the joining direction length of each thermoelectric conversion element constituting the thermoelectric conversion element body is 5 mm or more, the temperature difference in the joining direction of the thermoelectric conversion element body can be further expanded, and the thermoelectric conversion efficiency of the thermoelectric conversion module is further increased. Can be increased.
  • the thermoelectric conversion module of the present invention preferably includes a heat insulating region adjacent to both sides of the heat conductor in the joining direction, and further includes a radiation reflector and / or a radiation preventer in the heat insulating region. . If the radiation reflector and / or the radiation preventing body are disposed in the heat insulation on both sides of the heat conductor in the joining direction, the temperature difference in the joining direction of the thermoelectric conversion element body can be further expanded, and the thermoelectric conversion module thermoelectric module The conversion efficiency can be further increased.
  • thermoelectric conversion module of the present invention it is preferable that the p-type thermoelectric conversion element and the n-type thermoelectric conversion element constituting the film-like thermoelectric conversion element body are arranged in a meandering manner. If the continuous joined body of the plurality of thermoelectric conversion elements constituting the thermoelectric conversion element body is arranged in a meandering manner, the thermoelectric conversion elements can be efficiently integrated and arranged in a limited space. The conversion efficiency can be further increased.
  • thermoelectric conversion module of the present invention a plurality of thermal conductors coupled to the continuous assembly arranged in a meandering manner are interconnected in a direction perpendicular to the joining direction in the plane. It is preferable to become. If a plurality of heat conductors coupled to a meandering continuous joined body are interconnected in a direction perpendicular to the joining direction, flexibility in the joining direction and perpendicular to the joining direction are obtained. It is possible to achieve both strength in the direction.
  • thermoelectric conversion module of the present invention it is preferable that each of the plurality of thermal conductors coupled to the continuous arrangement of the serpentine arrangement is separated from other thermal conductors. If the plurality of thermal conductors coupled to the meandering continuous joined body are spaced apart from each other, the flexibility of the thermoelectric conversion module can be further enhanced.
  • each p-type thermoelectric conversion element or n-type thermoelectric conversion element arranged at each end in the joining direction of the continuous assembly arranged in a meandering manner has each end.
  • thermoelectric conversion module that can achieve both thermoelectric conversion efficiency and flexibility can be provided.
  • thermoelectric conversion module of this invention It is sectional drawing which shows an example of schematic structure of the thermoelectric conversion module of this invention. It is a top view which shows another example of schematic structure of the thermoelectric conversion module of this invention. It is a top view which shows another example of schematic structure of the thermoelectric conversion module of this invention. It is a top view which shows another example of schematic structure of the thermoelectric conversion module of this invention.
  • thermoelectric conversion module of the present invention is not particularly limited, and is a temperature control element that can be used in a cold storage or the like, a power generation element for waste heat power generation or snow ice power generation, and a lithium ion battery or the like. Can be used as an electrode. Moreover, it does not specifically limit as a heat source of the thermoelectric conversion module of this invention, For example, it can be heat sources, such as an electric equipment, and cold heat sources, such as liquefied natural gas, snow, and ice.
  • the temperature of the heat source is higher than the temperature on the high temperature side of the temperature gradient to be formed in the thermoelectric conversion element, that is, the heat source is a heat source other than the cold heat source. I will explain.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a thermoelectric conversion module 100 according to an example of the present invention.
  • one surface is a first surface that receives heat from a heat source, and the other surface is a second surface opposite to the first surface.
  • the first surface is a high temperature side surface facing a high temperature atmosphere
  • the second surface is a low temperature side surface facing a low temperature atmosphere.
  • the high temperature side surface of the thermoelectric conversion module 100 may be disposed adjacent to the heat source 200.
  • the lower side is shown as the high temperature side
  • the upper side is shown as the low temperature side.
  • the thermoelectric conversion module 100 includes a film-like thermoelectric conversion element body 10 in which the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 are joined along a joining direction that is one direction in the plane.
  • the thermoelectric conversion element body 10 is shown as having three pairs of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2.
  • the thermoelectric conversion element body 10 is not limited to this, It is only necessary to have a pair of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2.
  • the thermoelectric conversion element body 10 has one surface as a high-temperature side surface that receives heat from a heat source, the other surface as a low-temperature side surface, and only the high-temperature side surface, and the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2.
  • the thermal conductor 4 coupled to the joint 3A is provided.
  • region 5 is arrange
  • the thermoelectric conversion module 100 having such a structure can achieve both thermoelectric conversion efficiency and flexibility at a high level. The reason for this is not clear, but is presumed to be as follows.
  • thermoelectric conversion module In the structure in which the heat conductor is arranged on both sides of the film-like thermoelectric conversion element body, the flexibility of the thermoelectric conversion module cannot be sufficiently increased due to the presence of the heat conductor arranged on both sides. there were.
  • thermoelectric conversion module having a structure in which heat conductors are arranged on both sides of the film-like thermoelectric conversion element body the materials of the constituent members, the size of the module, the temperature of the heat source, etc. It became clear that depending on the combination of various conditions, there may be cases where radiant heat from the heat source is conducted to the heat conductor disposed on the low temperature side surface. If the heat conductor arranged on the low temperature side is warmed, the temperature difference generated in the folded thermoelectric conversion element body is narrowed.
  • the inventors of the present invention have a structure in which the heat conductor 4 is bonded to the film-shaped thermoelectric conversion element body 10 only at the joint portion on the high temperature side surface without arranging the heat conductor on the low temperature side surface.
  • the temperature difference generated in the thermoelectric conversion element body 10 was narrowed, and to create a structure capable of suppressing an excessive decrease in flexibility of the thermoelectric conversion module.
  • the heat insulating region 5 adjacent to the heat conductor 4 can be configured by a material having a lower thermal conductivity than the heat conductor 4 or by a vacuum.
  • the substance having a lower thermal conductivity than the thermal conductor 4 is preferably a substance having a lower thermal conductivity than thermoelectric conversion element body substrates 11 and 12 described later, and more preferably a heat insulating substance.
  • such a substance is not particularly limited, and has a thermal conductivity of less than 0.1 W / m ⁇ K, such as an inorganic fiber-based heat insulating material, a foamed plastic-based heat insulating material, and air,
  • a heat insulating material of less than 0.06 W / m ⁇ K is used.
  • the heat insulating material is air. This is because the heat insulation effect is enhanced by the fluidity of the air, and the temperature gradient in the joining direction of the thermoelectric conversion element body 10 can be increased.
  • the radiation reflector 21 and / or the radiation preventer 22 be disposed in the heat insulating region 5.
  • the heat insulating region 5 faces the high temperature side surface of the thermoelectric conversion element body 10.
  • four sides are partitioned by two heat conductors 4, a substrate 6 described later, and the high temperature side surface of the thermoelectric conversion element body 10. It is a void.
  • the radiation reflector 21 is not in contact with the substrate 6, it may be disposed at any position in the heat insulating region 5.
  • the radiation reflector 21 having such a specific arrangement, the radiation from the heat source is reflected, and the thermoelectric conversion element is prevented from being directly heated without passing through the heat conductor 4, whereby the joining direction of the thermoelectric conversion element
  • the temperature gradient in can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further increased.
  • the radiation reflector 21 may have a radiation reflectance of 90% or more. More preferably, from the viewpoint of maximizing the radiation reflection effect, the radiation reflector 21 is disposed adjacent to the high temperature side surface of the thermoelectric conversion element body 10 to connect the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2.
  • thermoelectric conversion module 100 does not include the substrate 6
  • the radiation reflector 21 is formed by the two heat conductors 4, the heat source, and the high temperature side surface of the thermoelectric conversion element body 10 as long as they are not in contact with the heat source. It can be arranged at any position in the gap where the four sides are partitioned.
  • the radiation reflector 21 is not specifically limited, For example, it may be a sheet-like structure formed by blending flat metal particles with a resin.
  • the flat metal particles are preferably oriented so as to be substantially parallel to the surface direction.
  • the radiation preventing body 22 can be disposed at any position in the heat insulating region 5 as long as it is not in contact with the thermoelectric conversion element body 10 and the radiation reflector 21.
  • the thermoelectric conversion module 100 includes the above-described radiation reflector 21, the radiation preventing body 22 is disposed at a higher temperature side than the radiation reflector 21 (that is, the radiation reflector 21 with the thermoelectric conversion element body 10 as a standard). Rather than a position farther in the thickness direction of the thermoelectric conversion module). And the radiation direction from the heat source is prevented by the radiation preventing body 22, and the thermoelectric conversion element body 10 is prevented from being directly heated without passing through the heat conductor 4.
  • the temperature gradient in can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further increased.
  • the radiation preventing body 22 is disposed adjacent to the substrate 6 and both end portions of the radiation preventing body 22 in the connecting direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. However, it can arrange
  • the radiation preventing body 22 is not particularly limited, and is the same material as the radiation reflecting body 21 or, for example, a commercially available heat shielding film (manufactured by Nippon Shokubai Co., Ltd. “Top Heat Barrier (registered trademark) THB-WBE1”). ) And a general material with low radiation.
  • thermoelectric conversion module 100 A schematic scheme of power generation by the thermoelectric conversion module 100 is as follows. First, the heat released from the heat source 200 is transmitted through the thermal conductor 4 to each end of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 joined at the joint 3A. Thereby, a temperature gradient in the joining direction of the thermoelectric conversion module 100 is generated in each of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. An electromotive force is generated by the Seebeck effect resulting from the temperature gradient, and the thermoelectric conversion module 100 generates power. If the temperature gradient is large, the electromotive force generated increases, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be improved.
  • thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10 is not particularly limited, and is a bismuth tellurium compound, antimony compound, silicon-based material.
  • a compound, a metal oxide compound, a Heusler alloy compound, a conductive polymer compound, a conductive fiber, a composite material thereof, and the like can be used.
  • conductive fibers it is preferable to use conductive fibers, and it is more preferable to use fibrous carbon nanostructures such as carbon nanotubes (hereinafter also referred to as CNT). This is because if CNTs are used, the mechanical strength of the thermoelectric conversion module 100 of the present invention can be further improved and the weight can be reduced.
  • the CNT is not particularly limited, and single-wall CNT and / or multi-wall CNT can be used, and the CNT is preferably single-wall CNT. This is because single-walled CNTs tend to have superior thermoelectric properties (Seebeck coefficient).
  • CVD chemical vapor deposition
  • oxidizing agent catalyst activating substance
  • the produced CNT can be used (hereinafter, the CNT produced according to such a method may be referred to as “SGCNT”). Furthermore, SGCNT has a feature that it is bent a lot. Here, although CNT has high thermal conductivity due to electron transfer, it is considered that the effect of lowering thermal conductivity due to phonon vibration is also high. However, SGCNT is more bent than CNTs manufactured according to other general methods, and thus has a structure in which phonon vibration is less likely to be amplified, and can suppress a decrease in thermal conductivity due to phonon vibration. . Therefore, SGCNT can be a material more advantageous as a thermoelectric conversion material than other general CNTs.
  • thermoelectric conversion material for comprising the thermoelectric conversion element body 10
  • CNTs have characteristics as p-type thermoelectric conversion elements as they are. Therefore, it is necessary to apply a process for obtaining the n-type thermoelectric conversion element 2 (hereinafter also referred to as “n-treatment”) to the CNTs.
  • n-treatment a process for obtaining the n-type thermoelectric conversion element 2
  • a bucky paper which is a CNT formed into a thin film, which is produced by a known method or is commercially available, is described in a general method, for example, as described in International Publication No. 2015/198980.
  • the length in the joining direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 is preferably 5 mm or more, respectively. If the length in the joining direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 is not less than the above lower limit value, the temperature difference in the joining direction of the thermoelectric conversion element body can be further expanded, and the thermoelectric conversion module Thermoelectric conversion efficiency can be further increased.
  • thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10 it is preferable to use a thermoelectric conversion material having a structure having a void inside.
  • thermoelectric conversion material having a structure having voids therein include a conductive structure having a density of 0.1 g / cm 3 or less and a fibrous network structure.
  • a conductive structure can be specifically composed of a fibrous carbon nanostructure such as CNT.
  • thermoelectric conversion material having a void inside is used as the thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2, the thermal conductivity of the thermoelectric conversion element body 10 is lowered. Thus, the temperature gradient in the joining direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further improved.
  • thermoelectric conversion material having a structure having voids therein is not particularly limited, and can be formed by using, for example, a fibrous carbon nanostructure containing CNTs and unexpanded expanded particles in combination.
  • the respective thermal conductivities in two directions orthogonal (crossing) to each other may be different. Therefore, the direction in which the thermal conductivity is high can be formed so as to coincide with the thickness direction of the thermoelectric conversion module 100.
  • a sheet containing a non-foamed expanded particle and a fibrous carbon nanostructure containing CNTs is formed, and the obtained sheet is sandwiched between upper and lower or left and right molds, It can be produced by foaming.
  • the joint 3A to which the thermal conductor 4 is coupled is formed of a metal having conductivity and thermal conductivity. It is preferable.
  • the metal having conductivity and thermal conductivity include a metal material having an electrical conductivity (JIS K 0130: 2008) of 10 S / m or more and a thermal conductivity of 10 W / m ⁇ K or more, more specifically. , Ag, Cu and the like. Among these, Ag is preferable from the viewpoint that there is an easily available paste-like material, the cost of the process can be reduced, and the ease of the process can be imparted.
  • the joint part 3 includes a metal material having conductivity and thermal conductivity, the heat transfer efficiency between the joint part 3A and the heat conductor 4 is increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module can be further increased. . Furthermore, it is preferable that the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 are directly bonded at the bonding part 3B where the thermal conductor 4 is not bonded. In the thermoelectric conversion module, if the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 are directly bonded at the bonding portion 3B to which the heat conductor 4 is not bonded, the bonding direction of the thermoelectric conversion element body 10 is determined.
  • thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further increased.
  • thermal conductivity is a value that can be measured for a measurement object such as a thermal conductor, for example, using a laser flash method.
  • the junction 3A can be formed by connecting the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 using a paste-like resin material containing Ag as a conductive material.
  • the resin material is not particularly limited, and is a general resin such as (meth) acrylic resin, epoxy resin, fluorine resin, silicone resin, olefin resin, polyamide resin, and polyimide resin. Materials can be used. Preferably, a polyimide resin having high flexibility and high heat resistance is used as the resin material.
  • (meth) acryl means “acryl” or “methacryl”.
  • the heat conductor 4 connected to the thermoelectric conversion element body 10 is coupled to the joint 3 as described above.
  • the heat conductor 4 is disposed so that the heat insulating regions 5 adjacent to the heat conductor 4 communicate with each other. This is because air can flow between the heat insulating regions 5 to further enhance the heat insulating properties of the heat insulating regions 5 and increase the temperature gradient in the joining direction of the thermoelectric conversion element body 10.
  • the heat insulating regions 5 adjacent to the heat conductor 4 communicate with each other, and each of the plurality of heat insulating regions 5 communicates directly or indirectly with the outside atmosphere of the thermoelectric conversion module 100. It is preferable to arrange so as to. It is because the temperature gradient in the joining direction of the thermoelectric conversion element body 10 can be further increased by further increasing the heat insulating property of the heat insulating region 5.
  • the heat conductor 4 is not particularly limited, and is made of a heat conductive material including a heat conductive inorganic material such as a metal material similar to the above-described joint portion 3A and a heat conductive organic material such as a heat conductive resin. Can be formed. Among these, Al is preferable from the viewpoint of lightness.
  • the thermal conductivity of the heat conductor 4 is preferably 10 W / m ⁇ K or more, more preferably 50 W / m ⁇ K or more, further preferably 100 W / m ⁇ K or more, and 200 W / m Particularly preferred is m ⁇ K or more.
  • the heat conductor 4 has the thickness direction length of the thermoelectric conversion module 100 of 1 mm or more.
  • thermoelectric conversion element body 10 This is because the temperature gradient in the joining direction of the thermoelectric conversion element body 10 can be further increased. Furthermore, the thermal conductor 4 is in contact with the thermoelectric conversion element body 10 in a region that is 1/5 or less of the length of each junction direction of the junction 3A and the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. Is preferred.
  • the heat conductor 4 may be an anisotropic heat conductor.
  • the thermal conductivity in the thickness direction of the thermoelectric conversion module 100 is higher than the thermal conductivity in the transverse direction with respect to the thickness direction. If the heat conductor 4 is an anisotropic heat conductor rich in heat conductivity in the thickness direction, loss that may occur when the heat conductor 4 conducts heat is reduced, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 is reduced. Can be further improved.
  • the heat conductor 4 is an anisotropic heat conductor, it is preferable that the heat conductivity of the thickness direction of this anisotropic heat conductor is 10 W / m * K or more, and is 50 W / m. More preferably, it is K or more, more preferably 100 W / m ⁇ K or more, and particularly preferably 200 W / m ⁇ K or more.
  • the anisotropic heat conductor is not particularly limited, and is formed using, for example, a graphite sheet, an organic anisotropic heat conductive material such as CNT, and an inorganic anisotropic heat conductive material such as flat metal particles. can do.
  • the flat metal particles mean, for example, flat metal particles having an aspect ratio of 3 or more. It is preferable to use an organic anisotropic heat conductive material from the viewpoint of imparting flexibility to the thermoelectric conversion element body 10 and reducing the weight. Furthermore, from the viewpoint of further improving the thermoelectric conversion efficiency of the thermoelectric conversion module 100, it is preferable to form the anisotropic heat conductor constituting the heat conductor 4 using CNTs.
  • the anisotropic heat conductor is not particularly limited, and is formed by using these anisotropic heat conductive materials and a general resin material that can also be used for forming the joint portion 3. Can do.
  • the anisotropic heat conductor includes a coating process, a pressurizing process, and the like so that the direction of high thermal conductivity of the anisotropic heat conductive material matches the thickness direction of the thermoelectric conversion module 100 using these. It can be produced by a known production method.
  • the film-like thermoelectric conversion element body 10 may have at least one thermoelectric conversion element body substrate that supports the thermoelectric conversion element body 10.
  • the thermoelectric conversion element body 10 is sandwiched from both sides by a high temperature side thermoelectric conversion element body substrate 11 and a low temperature side thermoelectric conversion element body substrate 12. If the thermoelectric conversion element body 10 is supported by at least one thermoelectric conversion element body substrate, the mechanical strength of the thermoelectric conversion module 100 can be further improved.
  • the high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate 12 have at least one ventilation hole, the heat insulation property of the heat insulation region 5 is improved by improving the air permeability of the heat insulation region 5. Can be improved. For this reason, the temperature difference in the connection direction of the thermoelectric conversion element body 10 can be further expanded.
  • the high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate 12 are not particularly limited, and may be a film formed of a heat-resistant and flexible resin material such as polyimide.
  • vents of the high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate 12 are not particularly limited, and are along the joining direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. , Can be arranged at equal intervals.
  • thermoelectric conversion module 100 may include a substrate 6 connected to the thermoelectric conversion element body 10 via the heat conductor 4. If at least one substrate 6 connected to the thermoelectric conversion element body 10 via the thermal conductor 4 is provided, the mechanical strength of the thermoelectric conversion module 100 can be improved. Further, the at least one substrate 6 can also function to protect the components inside the module from the external environment.
  • the substrate 6 can be a resin substrate or a metal substrate.
  • a so-called flexible substrate which is a substrate including a resin material having flexibility, can be given.
  • examples of such a flexible substrate include substrates formed using a resin having low thermal conductivity and excellent heat resistance and flexibility.
  • the high-temperature side thermoelectric conversion element substrate 11 and the low-temperature side are exemplified.
  • substrate 12 is mentioned.
  • a resin substrate and a metal substrate can each be used independently, both can be laminated
  • thermoelectric conversion module 100 flexibility can be imparted to the thermoelectric conversion module 100, and the ease of installation of the thermoelectric conversion module can be improved.
  • the installation location of the thermoelectric conversion module is not always flat, so if flexibility can be given to the thermoelectric conversion module, the thermoelectric conversion module can be freely deformed according to the shape of the installation location, and the power generation efficiency can be improved. Can be raised.
  • a metal substrate is employed as the substrate 6, the temperature gradient in the joining direction of the thermoelectric conversion elements can be further increased, and the thermoelectric conversion efficiency can be further increased.
  • an anisotropic heat conductive substrate formed using an anisotropic heat conductive material similar to that of the heat conductor 4 can also be used as the substrate 6.
  • the thermal conductivity in the transverse direction with respect to the thickness direction of the substrate is higher than the thermal conductivity in the thickness direction of the substrate. Therefore, if at least the substrate 6 is an anisotropic heat conductive substrate having high thermal conductivity, the heat collection efficiency from the heat source is increased, and the amount of heat input to the thermoelectric conversion element body 10 via the heat conductor 4 is increased. Can be made. Thereby, the temperature gradient in the joining direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency can be further improved.
  • the thickness of the thermoelectric conversion module 100 including the thermoelectric conversion element body 10 is preferably 10 mm or less, and more preferably 6 mm or less. This is because the ease of attachment of the thermoelectric conversion module 100 can be improved.
  • FIG. 2 shows a plan view of another example of the schematic structure of the thermoelectric conversion module of the present invention.
  • the top view which looked at the thermoelectric conversion module 101 from the low temperature side is shown.
  • the continuous joined body of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10 ' is arranged in a meandering manner.
  • “meandering arrangement” means that a continuous joined body of a plurality of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2 is arranged in a shape as if folded into a predetermined area. Means an embodiment.
  • thermoelectric conversion element body 10 ′ If the continuous joined body of the plurality of thermoelectric conversion elements constituting the thermoelectric conversion element body 10 ′ is meanderingly arranged, a large number of thermoelectric conversion elements can be efficiently integrated and arranged in a limited space. The thermoelectric conversion efficiency of the conversion module can be further increased.
  • thermoelectric conversion elements having different conductivity types are connected by conductive members 30 at both ends of the folded shape.
  • the conductive member 30 can be made of a metal material such as Ag and Cu, or a carbon-based material such as a graphite sheet and CNT.
  • the longitudinal direction of the rectangular heat conductor 4 with respect to the continuous joined body of the plurality of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2 arranged meandering is the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion. They are arranged in a direction that coincides with the direction perpendicular to the joining direction of the element 2 (within the illustrated plane). And the same heat conductor 4 has couple
  • thermoelectric conversion module the temperature difference between several junction part 3A which the same heat conductor 4 couple
  • the temperature difference becomes uneven depending on the location of the thermoelectric conversion element body 10 ′, the electromotive force (voltage) becomes uneven, and the current value obtained according to the portion of the thermoelectric conversion element body 10 ′ becomes different. Since the thermoelectric conversion module is formed by joining each element in series, if there is a difference in current value, it will be regulated to the lowest current value, and as a result, it may cause a decrease in the power generation of the thermoelectric conversion module. .
  • the “perpendicular direction to the joining direction” is perpendicular to or substantially perpendicular to the joining direction within the surface of the thermoelectric conversion element body (the angle formed with the joining direction is 90 °). Within ⁇ 5 °).
  • “rectangular shape” means a shape in which any one or a plurality of corners are C-chamfered or R-chamfered in addition to a shape in which all four corners such as a square and a rectangle are 90 °. Including.
  • thermoelectric conversion element body 10 ′ is sandwiched between the high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate.
  • the low temperature side thermoelectric conversion element body substrate is not shown for the sake of clarity.
  • the conductive member 30 can also be sandwiched between the high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate (not shown).
  • the high temperature side thermoelectric conversion element body substrate 11 has a plurality of vent holes 31 arranged at predetermined intervals along the joining direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2.
  • a low-temperature side thermoelectric conversion element body substrate (not shown) may also have a plurality of vent holes at corresponding positions.
  • the heat insulating region 5 as shown in FIG. 1 is electrically connected to the outside by the vent hole 31, the air permeability is improved, and it is possible to suppress heat from being trapped in the heat insulating region 5.
  • thermoelectric conversion module 101 the conductive wires 40 are connected to both ends of the thermoelectric conversion element body 10 ', and the electric power generated by the thermoelectric conversion element body 10' can be taken out.
  • FIG. 3 is a plan view of still another example of the schematic structure of the thermoelectric conversion module of the present invention.
  • the thermoelectric conversion module 102 shown in FIG. 3 has the same structure except that the shape and arrangement of the heat conductor 4 ′ are different from the shape and arrangement of the heat conductor 4 of the thermoelectric conversion module 103 shown in FIG. 2.
  • the longitudinal length of the heat conductor 4 ′ is substantially equal to the length in the direction perpendicular to the joining direction of the P / n type thermoelectric conversion elements 1/2.
  • the plurality of heat conductors 4 ′ are not connected to each other in the direction perpendicular to the joining direction (within the illustrated plane), and the heat conductors 4 ′ are spaced apart from each other. Yes. If the plurality of thermal conductors coupled to the meandering continuous joined body are spaced apart from each other, the flexibility of the thermoelectric conversion module can be further enhanced.
  • FIG. 4 is a plan view of still another example of the schematic structure of the thermoelectric conversion module of the present invention.
  • each p-type thermoelectric conversion element 1 ′ or n-type thermoelectric conversion element 2 ′ disposed at each end in the bonding direction is a bonding target at each end.
  • An end junction 3C that directly joins to another n-type thermoelectric conversion element 2 ′ or p-type thermoelectric conversion element 1 ′ having different conductivity types is formed.
  • the end joint 3C is formed by a p-type thermoelectric conversion element 1 ′ and an n-type thermoelectric conversion element 2 ′ having an L-shape or an inverted L-shape at the end.
  • thermoelectric conversion elements having end shapes deformed into an L shape or an inverted L shape are directly joined to each other at both ends in the joining direction of the meandering continuous joined body,
  • the flexibility of the conversion module can be further increased.
  • the “L-shape or inverted L-shape” means a shape having a constituent part whose axis can be a direction intersecting the joining direction, and the joining direction and the intersecting direction are not necessarily perpendicular to each other. It does not have to be. Further, in FIG.
  • thermoelectric conversion module 103 is the thermoelectric shown in FIG. 2. This is the same as the conversion module 101.
  • both the p-type thermoelectric conversion element 1 ′ and the n-type thermoelectric conversion element 2 ′ have L-shaped or inverted L-shaped portions at the ends.
  • the L-shaped part is illustrated as forming the end joint 3C.
  • the shapes of the p-type thermoelectric conversion element 1 ′ and the n-type thermoelectric conversion element 2 ′ are not limited to such shapes, and for example, either the p-type thermoelectric conversion element 1 ′ or the n-type thermoelectric conversion element 2 ′. Only one of them has an L-shape or an inverted L-shape, and the end joint 3C may be formed with the other thermoelectric conversion element that is a normal rectangular shape. Further, the corners forming the L-shaped or inverted L-shaped portion may be chamfered or R-chamfered.
  • thermoelectric conversion module that can achieve both thermoelectric conversion efficiency and flexibility.
  • thermoelectric conversion module 200 1, 1 'p-type thermoelectric conversion element 2, 2' n-type thermoelectric conversion element 3A, 3B joint 3C end joint 4, 4 'thermal conductor 5 heat insulation region 6 substrate 10, 10', 10 "thermoelectric conversion Element body 11 High temperature side thermoelectric conversion element body substrate 12 Low temperature side thermoelectric conversion element body substrate 21 Radiation reflector 22 Radiation prevention body 30 Conductive member 31 Vent hole 40 Conductive wire 100 to 103 Thermoelectric conversion module 200 Heat source

Abstract

A thermoelectric conversion module 100 according to the present invention is provided with: a film-shaped thermoelectric conversion element body 10 having a p-type thermoelectric conversion element 1 and an n-type thermoelectric conversion element 2 that are joined to each other along a joining direction that is one direction in the plane, one surface of the thermoelectric conversion element body 10 being represented by a first surface that receives heat from a heat source, and the other surface being represented by a second surface; and a thermal conductor 4 that is joined, only via the first surface, to a joining part 3A of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2.

Description

熱電変換モジュールThermoelectric conversion module
 本発明は、熱電変換モジュールに関するものである。 The present invention relates to a thermoelectric conversion module.
 近年、温度差を利用して熱を電気に変換する熱電変換モジュールが注目されている。なかでも、熱電変換モジュールとしては、起電力が大きいことから、p(Positive)型半導体材料とn(Negative)型半導体材料とを接合して形成した接合体を含んでなる熱電変換モジュールが注目されている。そして、熱電変換モジュールは、未利用の熱エネルギーを活用するための有効な手段として期待されている。 In recent years, thermoelectric conversion modules that convert heat into electricity using temperature differences have attracted attention. In particular, as a thermoelectric conversion module, a thermoelectric conversion module including a joined body formed by joining a p (Positive) type semiconductor material and an n (Negative) type semiconductor material has attracted attention because of its large electromotive force. ing. And the thermoelectric conversion module is anticipated as an effective means for utilizing an unused thermal energy.
 ここで、熱電変換モジュールとしては、p型素子及びn型素子を平面的に交互に配置して構成された熱電変換素子と、複数の凸部を有する外層部材とを備える構造の熱電変換モジュールが提案されてきた(例えば、特許文献1参照)。特許文献1に記載の熱電変換モジュールでは、外層部材の凸部がp型素子及びn型素子の接続部に対応した位置に熱的に結合されている。より具体的には、特許文献1には、熱電変換素子の平面に対して上下両側に、熱伝導性の高い材料からなる凸部を交互に配置して、p型素子及びn型素子の複数の接続部に対して熱及び冷熱を交互に伝達する構造が開示されている。かかる構造によれば、高温側に配置した外層部材により熱源から熱を回収して、凸部を介して熱電変換素子に伝達する共に、低温側に配置された外層部材により冷熱を得て、凸部を介して熱電変換素子に伝達することが可能であった。 Here, as the thermoelectric conversion module, there is a thermoelectric conversion module having a structure including a thermoelectric conversion element configured by alternately arranging p-type elements and n-type elements in a plane and an outer layer member having a plurality of convex portions. It has been proposed (see, for example, Patent Document 1). In the thermoelectric conversion module described in Patent Document 1, the convex portion of the outer layer member is thermally coupled to a position corresponding to the connection portion of the p-type element and the n-type element. More specifically, Patent Document 1 discloses a plurality of p-type elements and n-type elements in which convex portions made of a material having high thermal conductivity are alternately arranged on both upper and lower sides with respect to the plane of the thermoelectric conversion element. A structure is disclosed in which heat and cold are alternately transmitted to the connecting portion. According to such a structure, heat is recovered from the heat source by the outer layer member arranged on the high temperature side and transferred to the thermoelectric conversion element via the convex portion, and cold is obtained by the outer layer member arranged on the low temperature side, It was possible to transmit to the thermoelectric conversion element via the part.
特開2014-154761号公報JP 2014-154761 A
 ここで、熱電変換モジュールには、高い熱電変換効率と共に、様々な取り付け態様に対応可能となるように、高いフレキシブル性が求められている。しかし、特許文献1に記載されたような、高温側からの熱伝達、及び低温側からの冷熱伝達を併用して、熱電変換素子のPN接続方向における温度差を高める構造には、熱電変換効率及びフレキシブル性を両立するという点で改善の余地があった。 Here, the thermoelectric conversion module is required to have high flexibility so as to be compatible with various mounting modes as well as high thermoelectric conversion efficiency. However, as described in Patent Document 1, the heat transfer from the high temperature side and the cold heat transfer from the low temperature side are used in combination to increase the temperature difference in the PN connection direction of the thermoelectric conversion element. In addition, there is room for improvement in terms of achieving both flexibility and flexibility.
 そこで、本発明は、熱電変換効率及びフレキシブル性を両立可能な熱電変換モジュールを提供することを目的とする。 Therefore, an object of the present invention is to provide a thermoelectric conversion module that can achieve both thermoelectric conversion efficiency and flexibility.
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱電変換モジュールは、熱源からの熱を電力に変換する熱電変換モジュールであって、面内の一方向である接合方向に沿って接合されたp型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、前記熱電変換素子体の一方の面を熱源からの熱を受容する第1面とし、他方の面を第2面として、前記第1面のみで、前記p型熱電変換素子及び前記n型熱電変換素子の接合部に対して結合された熱伝導体と、を備えることを特徴とする。このように、熱電変換モジュールを、熱源からの熱を受容する第1面のみで熱電変換素子体の接合部に接合された熱伝導体を備えた構造とすれば、熱電変換モジュールの熱電変換効率及びフレキシブル性を両立することができる。 An object of the present invention is to advantageously solve the above-described problems, and a thermoelectric conversion module of the present invention is a thermoelectric conversion module that converts heat from a heat source into electric power in one direction in a plane. A film-like thermoelectric conversion element body having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element bonded along a certain bonding direction, and a first surface of the thermoelectric conversion element body for receiving heat from a heat source A heat conductor coupled to the junction of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element only on the first surface, with the other surface as the second surface. It is characterized by. As described above, if the thermoelectric conversion module has a structure including the heat conductor bonded to the bonding portion of the thermoelectric conversion element body only on the first surface that receives heat from the heat source, the thermoelectric conversion efficiency of the thermoelectric conversion module is obtained. And flexibility can be achieved.
 ここで、本発明の熱電変換モジュールは、前記膜状の熱電変換素子体が、p型熱電変換素子及びn型熱電変換素子が少なくとも2対以上連続接合してなり、前記熱伝導体が、前記少なくとも2対以上の前記p型熱電変換素子及び前記n型熱電変換素子の複数の接合部に対して、一つおきに結合され、前記熱伝導体が結合された前記接合部が、導電性及び熱伝導性を有する金属材料を含んでなることが好ましい。熱電変換モジュールにおいて、熱伝導体が結合された接合部が、導電性及び熱伝導性を有する金属材料を含んでいれば、伝熱効率が高まり、熱電変換モジュールの熱電変換効率を一層高めることができる。 Here, in the thermoelectric conversion module of the present invention, the film-shaped thermoelectric conversion element body is formed by continuously joining at least two pairs of p-type thermoelectric conversion elements and n-type thermoelectric conversion elements, and the thermal conductor is At least two or more pairs of the p-type thermoelectric conversion elements and the n-type thermoelectric conversion elements are joined to every other joint, and the joints to which the thermal conductors are joined are electrically conductive and It is preferable to comprise a metal material having thermal conductivity. In the thermoelectric conversion module, if the joint portion to which the heat conductor is bonded contains a metal material having conductivity and heat conductivity, the heat transfer efficiency is increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module can be further increased. .
 また、本発明の熱電変換モジュールは、前記複数の接合部のうちの前記熱伝導体が結合されない接合部が、前記p型熱電変換素子及び前記n型熱電変換素子が直接接合されてなることが好ましい。熱電変換モジュールにおいて、熱伝導体が結合されていない接合部が導電型の異なる熱電変換素子同士が直接接合されることで形成されていれば、熱電変換素子体の接合方向における温度差を一層拡大することができ、熱電変換モジュールの熱電変換効率を一層高めることができる。 In the thermoelectric conversion module of the present invention, the p-type thermoelectric conversion element and the n-type thermoelectric conversion element may be directly bonded to a bonding portion to which the thermal conductor is not coupled among the plurality of bonding portions. preferable. In the thermoelectric conversion module, if the joint where the thermal conductor is not bonded is formed by directly joining thermoelectric conversion elements of different conductivity types, the temperature difference in the joining direction of the thermoelectric conversion element body is further expanded. The thermoelectric conversion efficiency of the thermoelectric conversion module can be further increased.
 また、本発明の熱電変換モジュールは、前記膜状の熱電変換素子体が、少なくとも一つの熱電変換素子体基板を有し、前記熱電変換素子体基板が、少なくとも1つの通気孔を有することが好ましい。熱電変換モジュールにおいて、通気口を有する熱電変換素子体基板により熱電変換素子体が支持されていれば、熱電変換素子体の強度を高めると共に、熱電変換素子体の接合方向における温度差を一層拡大することができる。 In the thermoelectric conversion module of the present invention, it is preferable that the film-shaped thermoelectric conversion element body has at least one thermoelectric conversion element body substrate, and the thermoelectric conversion element body substrate has at least one vent hole. . In the thermoelectric conversion module, if the thermoelectric conversion element body is supported by the thermoelectric conversion element body substrate having a vent, the strength of the thermoelectric conversion element body is increased and the temperature difference in the joining direction of the thermoelectric conversion element body is further expanded. be able to.
 また、本発明の熱電変換モジュールは、前記p型熱電変換素子及び前記n型熱電変換素子の、前記接合方向の長さが、それぞれ5mm以上であることが好ましい。熱電変換素子体を構成する各熱電変換素子の接合方向長さが5mm以上であれば、熱電変換素子体の接合方向における温度差を一層拡大することができ、熱電変換モジュールの熱電変換効率を一層高めることができる。 In the thermoelectric conversion module of the present invention, it is preferable that the p-type thermoelectric conversion element and the n-type thermoelectric conversion element each have a length in the joining direction of 5 mm or more. If the joining direction length of each thermoelectric conversion element constituting the thermoelectric conversion element body is 5 mm or more, the temperature difference in the joining direction of the thermoelectric conversion element body can be further expanded, and the thermoelectric conversion efficiency of the thermoelectric conversion module is further increased. Can be increased.
 また、本発明の熱電変換モジュールは、前記接合方向における前記熱伝導体の両側に隣接した断熱領域を備え、さらに、前記断熱領域内に、輻射反射体及び/又は輻射防止体を有することが好ましい。熱伝導体の接合方向両側の断熱内に輻射反射体及び/又は輻射防止体が配置されていれば、熱電変換素子体の接合方向における温度差を一層拡大することができ、熱電変換モジュールの熱電変換効率を一層高めることができる。 The thermoelectric conversion module of the present invention preferably includes a heat insulating region adjacent to both sides of the heat conductor in the joining direction, and further includes a radiation reflector and / or a radiation preventer in the heat insulating region. . If the radiation reflector and / or the radiation preventing body are disposed in the heat insulation on both sides of the heat conductor in the joining direction, the temperature difference in the joining direction of the thermoelectric conversion element body can be further expanded, and the thermoelectric conversion module thermoelectric module The conversion efficiency can be further increased.
 また、本発明の熱電変換モジュールは、前記膜状の熱電変換素子体を構成する前記p型熱電変換素子及び前記n型熱電変換素子の連続接合体が、蛇行配置されてなることが好ましい。熱電変換素子体を構成する複数の熱電変換素子の連続接合体が、蛇行配置されていれば、限られたスペース内に熱電変換素子を効率的に集積配置することができ、熱電変換モジュールの熱電変換効率を一層高めることができる。 Further, in the thermoelectric conversion module of the present invention, it is preferable that the p-type thermoelectric conversion element and the n-type thermoelectric conversion element constituting the film-like thermoelectric conversion element body are arranged in a meandering manner. If the continuous joined body of the plurality of thermoelectric conversion elements constituting the thermoelectric conversion element body is arranged in a meandering manner, the thermoelectric conversion elements can be efficiently integrated and arranged in a limited space. The conversion efficiency can be further increased.
 また、本発明の熱電変換モジュールは、前記蛇行配置された前記連続接合体に対して結合された複数の熱伝導体が、前記接合方向に対して前記面内で垂直方向に相互に連結されてなることが好ましい。蛇行配置された連続接合体に対して結合された複数の熱伝導体が、接合方向に対して垂直方向に相互に連結されていれば、接合方向における柔軟性と、接合方向に対して垂直な方向における強度とを両立することができる。 In the thermoelectric conversion module of the present invention, a plurality of thermal conductors coupled to the continuous assembly arranged in a meandering manner are interconnected in a direction perpendicular to the joining direction in the plane. It is preferable to become. If a plurality of heat conductors coupled to a meandering continuous joined body are interconnected in a direction perpendicular to the joining direction, flexibility in the joining direction and perpendicular to the joining direction are obtained. It is possible to achieve both strength in the direction.
 また、本発明の熱電変換モジュールは、前記蛇行配置された前記連続接合体に対して結合された複数の熱伝導体のそれぞれが、他の熱伝導体とは離隔配置されてなることが好ましい。蛇行配置された連続接合体に対して結合された複数の熱伝導体が、相互に離隔配置されていれば、熱電変換モジュールの柔軟性を一層高めることができる。 Further, in the thermoelectric conversion module of the present invention, it is preferable that each of the plurality of thermal conductors coupled to the continuous arrangement of the serpentine arrangement is separated from other thermal conductors. If the plurality of thermal conductors coupled to the meandering continuous joined body are spaced apart from each other, the flexibility of the thermoelectric conversion module can be further enhanced.
 また、本発明の熱電変換モジュールは、前記蛇行配置された前記連続接合体の、前記接合方向の各端部に配置された各p型熱電変換素子又はn型熱電変換素子が、前記各端部にて接合対象となる導電型の異なる他のn型熱電変換素子又はp型熱電変換素子と、直接接合する端部接合部をなしており、前記端部接合部は、末端がL字状又は逆L字状である前記p型熱電変換素子及び/又は前記n型熱電変換素子により形成されてなることが好ましい。L字状又は逆L字状に変形された端部形状を有する熱電変換素子が、蛇行配置された連続接合体の接合方向両端部にて相互に直接接合していれば、熱電変換モジュールの柔軟性を一層高めることができる。 In the thermoelectric conversion module of the present invention, each p-type thermoelectric conversion element or n-type thermoelectric conversion element arranged at each end in the joining direction of the continuous assembly arranged in a meandering manner has each end. And an n-type thermoelectric conversion element or a p-type thermoelectric conversion element having a different conductivity type to be bonded to each other to form an end joint portion that is directly joined, and the end joint portion has an L-shaped end or It is preferably formed by the p-type thermoelectric conversion element and / or the n-type thermoelectric conversion element having an inverted L shape. If the thermoelectric conversion elements having an end shape deformed into an L shape or an inverted L shape are directly joined to each other at both ends in a joining direction of the meandering continuous joined body, the flexibility of the thermoelectric conversion module It is possible to further improve the properties.
 本発明によれば、熱電変換効率及びフレキシブル性を両立可能な熱電変換モジュールを提供することができる。 According to the present invention, a thermoelectric conversion module that can achieve both thermoelectric conversion efficiency and flexibility can be provided.
本発明の熱電変換モジュールの概略構造の一例を示す断面図である。It is sectional drawing which shows an example of schematic structure of the thermoelectric conversion module of this invention. 本発明の熱電変換モジュールの概略構造の他の一例を示す平面図である。It is a top view which shows another example of schematic structure of the thermoelectric conversion module of this invention. 本発明の熱電変換モジュールの概略構造の更に他の一例を示す平面図である。It is a top view which shows another example of schematic structure of the thermoelectric conversion module of this invention. 本発明の熱電変換モジュールの概略構造の更に他の一例を示す平面図である。It is a top view which shows another example of schematic structure of the thermoelectric conversion module of this invention.
 以下、本発明の実施の形態を、図面に基づき詳細に説明する。なお、各図において、同一の符号を付したものは、同一の構成要素を示すものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, what attached | subjected the same code | symbol shall show the same component.
 ここで、本発明の熱電変換モジュールは、特に限定されることなく、保冷庫等に用いられうる温度調節素子、廃熱発電や雪氷発電等のための発電素子、さらには、リチウムイオン電池等のための電極として用いることができる。また、本発明の熱電変換モジュールの熱源としては、特に限定されることなく、例えば、電気機器等の熱源、並びに液化天然ガス、雪、及び氷等の冷熱源でありうる。なお、以下の説明では、明瞭のために、熱源の温度が熱電変換素子内に形成すべき温度勾配の高温側の温度よりも高い場合、即ち、熱源が冷熱源以外の熱源であると仮定して説明する。 Here, the thermoelectric conversion module of the present invention is not particularly limited, and is a temperature control element that can be used in a cold storage or the like, a power generation element for waste heat power generation or snow ice power generation, and a lithium ion battery or the like. Can be used as an electrode. Moreover, it does not specifically limit as a heat source of the thermoelectric conversion module of this invention, For example, it can be heat sources, such as an electric equipment, and cold heat sources, such as liquefied natural gas, snow, and ice. In the following description, for the sake of clarity, it is assumed that the temperature of the heat source is higher than the temperature on the high temperature side of the temperature gradient to be formed in the thermoelectric conversion element, that is, the heat source is a heat source other than the cold heat source. I will explain.
 図1は、本発明の一例にかかる熱電変換モジュール100の概略構造を示す断面図である。熱電変換モジュール100は、一方の面が、熱源からの熱を受容する第1面であり、他方の面が、第1面の逆側面の第2面である。第1面が高温雰囲気に面する高温側面であり、第2面が低温雰囲気に面する低温側面である。熱電変換モジュール100の高温側面が、熱源200に隣接して配置されうる。図1では、下側を高温側、上側を低温側として示す。 FIG. 1 is a cross-sectional view showing a schematic structure of a thermoelectric conversion module 100 according to an example of the present invention. In the thermoelectric conversion module 100, one surface is a first surface that receives heat from a heat source, and the other surface is a second surface opposite to the first surface. The first surface is a high temperature side surface facing a high temperature atmosphere, and the second surface is a low temperature side surface facing a low temperature atmosphere. The high temperature side surface of the thermoelectric conversion module 100 may be disposed adjacent to the heat source 200. In FIG. 1, the lower side is shown as the high temperature side, and the upper side is shown as the low temperature side.
 熱電変換モジュール100は、p型熱電変換素子1及びn型熱電変換素子2が面内の一方向である接合方向に沿って接合されてなる、膜状の熱電変換素子体10を備える。なお、図上、熱電変換素子体10は、p型熱電変換素子1及びn型熱電変換素子2を3対有するものとして示すが、これに限定されることなく、熱電変換素子体10は、少なくとも1対のp型熱電変換素子1及びn型熱電変換素子2を有していればよい。そして、熱電変換素子体10は、一方の面を熱源からの熱を受容する高温側面とし、他方の面を低温側面として、高温側面のみで、p型熱電変換素子1及びn型熱電変換素子2の接合部3Aに対して結合された熱伝導体4を備える。そして、p型熱電変換素子1及びn型熱電変換素子2の接合方向に沿う熱伝導体4の両側には、断熱領域5が隣接して配置されている。かかる構造の熱電変換モジュール100は、熱電変換効率及び柔軟性を高いレベルで両立可能である。この理由は明らかではないが、以下の通りであると推察される。まず、膜状の熱電変換素子体の両面側に熱伝導体が配置された構造では、両面側に配置された熱伝導体の存在により熱電変換モジュールの柔軟性を十分に高めることができないことがあった。また、本発明者らの検討により、膜状の熱電変換素子体の両面側に熱伝導体が配置された構造を有する熱電変換モジュールでは、構成部材の材質やモジュールのサイズ、熱源の温度等の諸条件の組み合わせによっては、低温側面に配置された熱伝導体にも熱源からの輻射熱等が伝導するケースがありうることが明らかとなった。低温側面に配置された熱伝導体が温められてしまえば、折角熱電変換素子体に生じた温度差が却って狭められてしまうことになる。そこで、本発明者らは、膜状の熱電変換素子体10に対して、低温側面には熱伝導体を配置せず、高温側面の接合部のみで熱伝導体4を結合する構造とすることで、熱電変換素子体10に生じた温度差を狭めることを回避可能であるとともに、熱電変換モジュールの柔軟性が過度に低下することを抑制可能な構造を創出した。 The thermoelectric conversion module 100 includes a film-like thermoelectric conversion element body 10 in which the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 are joined along a joining direction that is one direction in the plane. In the figure, the thermoelectric conversion element body 10 is shown as having three pairs of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2. However, the thermoelectric conversion element body 10 is not limited to this, It is only necessary to have a pair of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2. The thermoelectric conversion element body 10 has one surface as a high-temperature side surface that receives heat from a heat source, the other surface as a low-temperature side surface, and only the high-temperature side surface, and the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. The thermal conductor 4 coupled to the joint 3A is provided. And the heat insulation area | region 5 is arrange | positioned adjacent to the both sides of the heat conductor 4 along the joining direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. The thermoelectric conversion module 100 having such a structure can achieve both thermoelectric conversion efficiency and flexibility at a high level. The reason for this is not clear, but is presumed to be as follows. First, in the structure in which the heat conductor is arranged on both sides of the film-like thermoelectric conversion element body, the flexibility of the thermoelectric conversion module cannot be sufficiently increased due to the presence of the heat conductor arranged on both sides. there were. In addition, in the thermoelectric conversion module having a structure in which heat conductors are arranged on both sides of the film-like thermoelectric conversion element body, the materials of the constituent members, the size of the module, the temperature of the heat source, etc. It became clear that depending on the combination of various conditions, there may be cases where radiant heat from the heat source is conducted to the heat conductor disposed on the low temperature side surface. If the heat conductor arranged on the low temperature side is warmed, the temperature difference generated in the folded thermoelectric conversion element body is narrowed. Therefore, the inventors of the present invention have a structure in which the heat conductor 4 is bonded to the film-shaped thermoelectric conversion element body 10 only at the joint portion on the high temperature side surface without arranging the heat conductor on the low temperature side surface. Thus, it was possible to avoid the temperature difference generated in the thermoelectric conversion element body 10 from being narrowed, and to create a structure capable of suppressing an excessive decrease in flexibility of the thermoelectric conversion module.
 ここで、熱伝導体4に隣接する断熱領域5は、熱伝導体4よりも熱伝導率が低い物質、或いは真空により構成されうる。さらに、熱伝導体4よりも熱伝導率が低い物質は、後述する熱電変換素子体基板11及び12よりも熱伝導率が低い物質であることが好ましく、断熱物質であることがより好ましい。具体的には、そのような物質としては、特に限定されることなく、無機繊維系断熱材、発泡プラスチック系断熱材、及び空気のような、熱伝導率が0.1W/m・K未満、好ましくは0.06W/m・K未満の断熱物質が挙げられる。なかでも、断熱物質は空気であることが好ましい。空気の流動性により断熱効果が高まり、熱電変換素子体10の接合方向における温度勾配を高めることができるからである。 Here, the heat insulating region 5 adjacent to the heat conductor 4 can be configured by a material having a lower thermal conductivity than the heat conductor 4 or by a vacuum. Further, the substance having a lower thermal conductivity than the thermal conductor 4 is preferably a substance having a lower thermal conductivity than thermoelectric conversion element body substrates 11 and 12 described later, and more preferably a heat insulating substance. Specifically, such a substance is not particularly limited, and has a thermal conductivity of less than 0.1 W / m · K, such as an inorganic fiber-based heat insulating material, a foamed plastic-based heat insulating material, and air, Preferably, a heat insulating material of less than 0.06 W / m · K is used. Among these, it is preferable that the heat insulating material is air. This is because the heat insulation effect is enhanced by the fluidity of the air, and the temperature gradient in the joining direction of the thermoelectric conversion element body 10 can be increased.
 さらに、断熱領域5内には、輻射反射体21及び/又は輻射防止体22が配置されることが好ましい。ここで、断熱領域5は、熱電変換素子体10の高温側面に面しており、例えば、2つの熱伝導体4、後述する基板6、及び熱電変換素子体10の高温側面により四方が区画される空隙である。輻射反射体21は、基板6に非接触である限りにおいて、断熱領域5内の何れかの位置に配置されていても良い。かかる特定配置の輻射反射体21によれば、熱源からの輻射を反射して、熱伝導体4を介することなく熱電変換素子が直接加熱されることを抑制することで、熱電変換素子の接合方向における温度勾配を一層大きくして、熱電変換モジュール100の熱電変換効率を一層高めることができる。好ましくは、輻射反射体21は、輻射反射率が90%以上でありうる。さらに好ましくは、輻射反射効果を最大化する観点から、輻射反射体21は、熱電変換素子体10の高温側面に対して隣接配置し、p型熱電変換素子1及びn型熱電変換素子2の接続方向の接合方向両端部が、上記空隙を区画する2つの熱伝導体4に接するように配置されうる。
 なお、熱電変換モジュール100が基板6を備えない場合には、輻射反射体21は、熱源と非接触である限りにおいて、2つの熱伝導体4、熱源、及び熱電変換素子体10の高温側面により四方が区画される空隙内の何れかの位置にて配置されうる。
Furthermore, it is preferable that the radiation reflector 21 and / or the radiation preventer 22 be disposed in the heat insulating region 5. Here, the heat insulating region 5 faces the high temperature side surface of the thermoelectric conversion element body 10. For example, four sides are partitioned by two heat conductors 4, a substrate 6 described later, and the high temperature side surface of the thermoelectric conversion element body 10. It is a void. As long as the radiation reflector 21 is not in contact with the substrate 6, it may be disposed at any position in the heat insulating region 5. According to the radiation reflector 21 having such a specific arrangement, the radiation from the heat source is reflected, and the thermoelectric conversion element is prevented from being directly heated without passing through the heat conductor 4, whereby the joining direction of the thermoelectric conversion element The temperature gradient in can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further increased. Preferably, the radiation reflector 21 may have a radiation reflectance of 90% or more. More preferably, from the viewpoint of maximizing the radiation reflection effect, the radiation reflector 21 is disposed adjacent to the high temperature side surface of the thermoelectric conversion element body 10 to connect the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. Both ends in the joining direction of the direction may be arranged so as to be in contact with the two heat conductors 4 defining the gap.
In the case where the thermoelectric conversion module 100 does not include the substrate 6, the radiation reflector 21 is formed by the two heat conductors 4, the heat source, and the high temperature side surface of the thermoelectric conversion element body 10 as long as they are not in contact with the heat source. It can be arranged at any position in the gap where the four sides are partitioned.
 そして、輻射反射体21は、特に限定されることなく、例えば、樹脂に対して扁平金属粒子を配合してなるシート状の構造体でありうる。かかるシート状の構造体中において、扁平金属粒子は、面方向に略平行になるように配向されていることが好ましい。 And the radiation reflector 21 is not specifically limited, For example, it may be a sheet-like structure formed by blending flat metal particles with a resin. In such a sheet-like structure, the flat metal particles are preferably oriented so as to be substantially parallel to the surface direction.
 さらに、輻射防止体22は、熱電変換素子体10及び輻射反射体21に非接触である限りにおいて、断熱領域5内の何れかの位置にて配置されうる。熱電変換モジュール100が上述した輻射反射体21を備える場合には、輻射防止体22の配置は、かかる輻射反射体21よりも高温側(即ち、熱電変換素子体10を規準として、輻射反射体21よりも、熱電変換モジュールの厚み方向に遠い位置)である必要がある。そして、輻射防止体22により、熱源からの輻射を防止して、熱伝導体4を介することなく熱電変換素子体10が直接加熱されることを抑制することで、熱電変換素子体10の接合方向における温度勾配を一層大きくして、熱電変換モジュール100の熱電変換効率を一層高めることができる。好ましくは、輻射防止効果を最大化する観点から、輻射防止体22は、基板6に隣接配置し、p型熱電変換素子1及びn型熱電変換素子2の接続方向における輻射防止体22の両端部が、上記空隙を区画する2つの熱伝導体4に接するように配置することができる。なお、熱電変換モジュール100が基板6を備えない場合には、輻射防止体22を熱源200に直接隣接して配置することができる。 Furthermore, the radiation preventing body 22 can be disposed at any position in the heat insulating region 5 as long as it is not in contact with the thermoelectric conversion element body 10 and the radiation reflector 21. When the thermoelectric conversion module 100 includes the above-described radiation reflector 21, the radiation preventing body 22 is disposed at a higher temperature side than the radiation reflector 21 (that is, the radiation reflector 21 with the thermoelectric conversion element body 10 as a standard). Rather than a position farther in the thickness direction of the thermoelectric conversion module). And the radiation direction from the heat source is prevented by the radiation preventing body 22, and the thermoelectric conversion element body 10 is prevented from being directly heated without passing through the heat conductor 4. The temperature gradient in can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further increased. Preferably, from the viewpoint of maximizing the radiation preventing effect, the radiation preventing body 22 is disposed adjacent to the substrate 6 and both end portions of the radiation preventing body 22 in the connecting direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. However, it can arrange | position so that the two heat conductors 4 which divide the said space | gap may be touched. In the case where the thermoelectric conversion module 100 does not include the substrate 6, the radiation preventing body 22 can be disposed directly adjacent to the heat source 200.
 輻射防止体22は、特に限定されることなく、輻射反射体21と同様の材料、或いは、例えば、市販の遮熱フィルム(日本遮熱社製、「トップヒートバリアー(登録商標)THB-WBE1」)のような、一般的な輻射の小さい材料により形成することができる。 The radiation preventing body 22 is not particularly limited, and is the same material as the radiation reflecting body 21 or, for example, a commercially available heat shielding film (manufactured by Nippon Shokubai Co., Ltd. “Top Heat Barrier (registered trademark) THB-WBE1”). ) And a general material with low radiation.
 熱電変換モジュール100による発電の概略スキームは以下の通りである。まず、熱源200より放出された熱が熱伝導体4を経て、接合部3Aにて接合されたp型熱電変換素子1及びn型熱電変換素子2の各端部に伝えられる。これにより、p型熱電変換素子1及びn型熱電変換素子2のそれぞれにて、熱電変換モジュール100の接合方向の温度勾配が生じる。この温度勾配に起因するゼーベック効果により起電力が生じ、熱電変換モジュール100が発電する。温度勾配が大きければ、生じる起電力が大きくなり、熱電変換モジュール100の熱電変換効率が向上しうる。 A schematic scheme of power generation by the thermoelectric conversion module 100 is as follows. First, the heat released from the heat source 200 is transmitted through the thermal conductor 4 to each end of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 joined at the joint 3A. Thereby, a temperature gradient in the joining direction of the thermoelectric conversion module 100 is generated in each of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. An electromotive force is generated by the Seebeck effect resulting from the temperature gradient, and the thermoelectric conversion module 100 generates power. If the temperature gradient is large, the electromotive force generated increases, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be improved.
 熱電変換素子体10を構成するp型熱電変換素子1及びn型熱電変換素子2を形成するための熱電変換材料としては、特に限定されることなく、ビスマステルル系化合物、アンチモン系化合物、シリコン系化合物、金属酸化物系化合物、ホイスラー合金系化合物、導電性高分子化合物、導電性繊維、及びこれらの複合材料等を用いることができる。中でも、導電性繊維を用いることが好ましく、カーボンナノチューブ(以下、CNTとも称する)などの繊維状の炭素ナノ構造体を用いることがより好ましい。CNTを使用すれば、本発明の熱電変換モジュール100の機械的強度を更に向上させると共に、軽量化することができるからである。さらに、CNTとしては特に限定されることなく、単層CNTおよび/または多層CNTを用いることができるが、CNTは、単層CNTであることが好ましい。単層CNTの方が、熱電特性(ゼーベック係数)が優位である傾向があるからである。なお、単層カーボンナノチューブとしては、CNT製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて製造したCNTを用いることができる(以下、かかる方法に準じて製造されたCNTを「SGCNT」と称することがある)。さらにSGCNTは折れ曲がりが多いという特徴を持っている。ここで、CNTは、電子移動による熱伝導性は高いが、フォノン振動による熱伝導性の低下効果も高いと考えられている。しかし、SGCNTは、他の一般的な方法に従って製造したCNTよりも折れ曲がりが多いため、フォノン振動が増幅されにくい構造となっており、フォノン振動に起因した熱伝導性の低下を抑制することができる。よって、SGCNTは、他の一般的なCNTと比較して、熱電変換材料としてより優位な材料でありうる。 The thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10 is not particularly limited, and is a bismuth tellurium compound, antimony compound, silicon-based material. A compound, a metal oxide compound, a Heusler alloy compound, a conductive polymer compound, a conductive fiber, a composite material thereof, and the like can be used. Among these, it is preferable to use conductive fibers, and it is more preferable to use fibrous carbon nanostructures such as carbon nanotubes (hereinafter also referred to as CNT). This is because if CNTs are used, the mechanical strength of the thermoelectric conversion module 100 of the present invention can be further improved and the weight can be reduced. Furthermore, the CNT is not particularly limited, and single-wall CNT and / or multi-wall CNT can be used, and the CNT is preferably single-wall CNT. This is because single-walled CNTs tend to have superior thermoelectric properties (Seebeck coefficient). As single-walled carbon nanotubes, when a raw material compound and a carrier gas are supplied onto a substrate having a catalyst layer for producing CNTs on the surface, CNTs are synthesized by chemical vapor deposition (CVD). In addition, according to the method of dramatically improving the catalytic activity of the catalyst layer by making a small amount of oxidizing agent (catalyst activating substance) present in the system (super growth method; see International Publication No. 2006/011655). The produced CNT can be used (hereinafter, the CNT produced according to such a method may be referred to as “SGCNT”). Furthermore, SGCNT has a feature that it is bent a lot. Here, although CNT has high thermal conductivity due to electron transfer, it is considered that the effect of lowering thermal conductivity due to phonon vibration is also high. However, SGCNT is more bent than CNTs manufactured according to other general methods, and thus has a structure in which phonon vibration is less likely to be amplified, and can suppress a decrease in thermal conductivity due to phonon vibration. . Therefore, SGCNT can be a material more advantageous as a thermoelectric conversion material than other general CNTs.
 そして、熱電変換素子体10を構成するための熱電変換材料としてCNTを使用するにあたり、p型熱電変換素子1及びn型熱電変換素子2をそれぞれ構成するCNTのゼーベック係数を異なるものとする必要がある。ここで、CNTは、そのままではp型熱電変換素子としての特性を有する。よって、n型熱電変換素子2を得るための処理(以下、「n化処理」とも称する)をCNTについて適用する必要がある。具体的には、例えば、既知の方法により作製した、或いは市販されている、薄膜状に成形されたCNTであるバッキーペーパーを、一般的な方法、例えば、国際公開第2015/198980号に記載の方法に従ってn化処理することで、n型熱電変換素子2として機能しうるバッキーペーパーを得ることができる。 And in using CNT as the thermoelectric conversion material for comprising the thermoelectric conversion element body 10, it is necessary to make the Seebeck coefficients of the CNT constituting the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 different from each other. is there. Here, CNTs have characteristics as p-type thermoelectric conversion elements as they are. Therefore, it is necessary to apply a process for obtaining the n-type thermoelectric conversion element 2 (hereinafter also referred to as “n-treatment”) to the CNTs. Specifically, for example, a bucky paper, which is a CNT formed into a thin film, which is produced by a known method or is commercially available, is described in a general method, for example, as described in International Publication No. 2015/198980. By performing n-treatment according to the method, a bucky paper that can function as the n-type thermoelectric conversion element 2 can be obtained.
 ここで、p型熱電変換素子1及びn型熱電変換素子2の接合方向の長さは、それぞれ5mm以上であることが好ましい。p型熱電変換素子1及びn型熱電変換素子2の接合方向の長さが上記下限値以上であれば、熱電変換素子体の接合方向における温度差を一層拡大することができ、熱電変換モジュールの熱電変換効率を一層高めることができる。 Here, the length in the joining direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 is preferably 5 mm or more, respectively. If the length in the joining direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 is not less than the above lower limit value, the temperature difference in the joining direction of the thermoelectric conversion element body can be further expanded, and the thermoelectric conversion module Thermoelectric conversion efficiency can be further increased.
 さらに、熱電変換素子体10を構成するp型熱電変換素子1及びn型熱電変換素子2を形成するための熱電変換材料として、内部に空隙を有する構造の熱電変換材料を用いることが好ましい。内部に空隙を有する構造の熱電変換材料としては、密度が0.1g/cm3以下であると共に、繊維状の網目構造を有する導電性構造体が挙げられる。そのような導電性構造体は、具体的には、CNTのような繊維状炭素ナノ構造体により構成されうる。p型熱電変換素子1及びn型熱電変換素子2を形成するための熱電変換材料として、内部に空隙を有する構造の熱電変換材料を用いれば、熱電変換素子体10の熱伝導性を低下させることで、熱電変換素子の接合方向における温度勾配を一層大きくして、熱電変換効率を一層向上させることができる。 Furthermore, as a thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10, it is preferable to use a thermoelectric conversion material having a structure having a void inside. Examples of the thermoelectric conversion material having a structure having voids therein include a conductive structure having a density of 0.1 g / cm 3 or less and a fibrous network structure. Such a conductive structure can be specifically composed of a fibrous carbon nanostructure such as CNT. If a thermoelectric conversion material having a void inside is used as the thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2, the thermal conductivity of the thermoelectric conversion element body 10 is lowered. Thus, the temperature gradient in the joining direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further improved.
 なお、内部に空隙を有する構造の熱電変換材料は、特に限定されることなく、例えば、CNTを含む繊維状炭素ナノ構造体と未発泡の発泡粒子とを併用して形成することができる。内部に空隙を有する構造の熱電変換材料では、相互に直交(交差)する2つの方向における各熱伝導率が、相異なり得る。そこで、熱伝導率の高い方向が、熱電変換モジュール100の厚み方向に一致するように形成することができる。具体的には、例えば、未発泡の発泡粒子とCNTを含む繊維状炭素ナノ構造体を含むシートを形成し、得られたシートを上下又は左右が開放された金型にて挟み、発泡粒子を発泡させることにより作製することができる。 In addition, the thermoelectric conversion material having a structure having voids therein is not particularly limited, and can be formed by using, for example, a fibrous carbon nanostructure containing CNTs and unexpanded expanded particles in combination. In the thermoelectric conversion material having a structure having voids inside, the respective thermal conductivities in two directions orthogonal (crossing) to each other may be different. Therefore, the direction in which the thermal conductivity is high can be formed so as to coincide with the thickness direction of the thermoelectric conversion module 100. Specifically, for example, a sheet containing a non-foamed expanded particle and a fibrous carbon nanostructure containing CNTs is formed, and the obtained sheet is sandwiched between upper and lower or left and right molds, It can be produced by foaming.
 p型熱電変換素子1及びn型熱電変換素子2を電気的に接続する接合部3のうち、熱伝導体4が結合された接合部3Aは、導電性及び熱伝導性を有する金属により形成されることが好ましい。かかる導電性及び熱伝導性を有する金属としては、導電率(JIS K 0130:2008)が10S/m以上であると共に熱伝導率が10W/m・K以上である金属材料、より具体的には、Ag及びCu等が挙げられる。中でも、入手しやすいペースト状の材料があり、プロセスの低コスト化を実現し、且つプロセスの容易性を付与し得るといった観点から、Agが好ましい。接合部3が導電性及び熱伝導性を有する金属材料を含んでいれば、接合部3Aと熱伝導体4との間における伝熱効率が高まり、熱電変換モジュールの熱電変換効率を一層高めることができる。さらに、接合部のうちの熱伝導体4が結合されない接合部3Bでは、p型熱電変換素子1及びn型熱電変換素子2が直接接合されていることが好ましい。熱電変換モジュールにおいて、熱伝導体4が結合されていない接合部3Bにて、p型熱電変換素子1及びn型熱電変換素子2が直接接合されていれば、熱電変換素子体10の接合方向における温度差を一層拡大することができ、熱電変換モジュール100の熱電変換効率を一層高めることができる。
 なお、本明細書において、「熱伝導率」は、熱伝導体等の測定対象物について、例えば、レーザーフラッシュ法を用いて測定することができる値である。
Of the joints 3 that electrically connect the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2, the joint 3A to which the thermal conductor 4 is coupled is formed of a metal having conductivity and thermal conductivity. It is preferable. Examples of the metal having conductivity and thermal conductivity include a metal material having an electrical conductivity (JIS K 0130: 2008) of 10 S / m or more and a thermal conductivity of 10 W / m · K or more, more specifically. , Ag, Cu and the like. Among these, Ag is preferable from the viewpoint that there is an easily available paste-like material, the cost of the process can be reduced, and the ease of the process can be imparted. If the joint part 3 includes a metal material having conductivity and thermal conductivity, the heat transfer efficiency between the joint part 3A and the heat conductor 4 is increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module can be further increased. . Furthermore, it is preferable that the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 are directly bonded at the bonding part 3B where the thermal conductor 4 is not bonded. In the thermoelectric conversion module, if the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 are directly bonded at the bonding portion 3B to which the heat conductor 4 is not bonded, the bonding direction of the thermoelectric conversion element body 10 is determined. The temperature difference can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further increased.
In the present specification, “thermal conductivity” is a value that can be measured for a measurement object such as a thermal conductor, for example, using a laser flash method.
 例えば、接合部3Aは、p型熱電変換素子1及びn型熱電変換素子2を、導電材料としてAgを含むペースト状の樹脂材料を用いて接続することにより形成することができる。なお、樹脂材料としては、特に限定されることなく、(メタ)アクリル系樹脂、エポキシ樹脂、フッ素系樹脂、シリコーン系樹脂、オレフィン系樹脂、ポリアミド系樹脂、及びポリイミド系樹脂等の一般的な樹脂材料を用いることができる。好ましくは、樹脂材料として、柔軟性に富むと共に耐熱性の高いポリイミド系樹脂を用いる。なお、本明細書において(メタ)アクリルとは、「アクリル」又は「メタアクリル」を意味する。 For example, the junction 3A can be formed by connecting the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 using a paste-like resin material containing Ag as a conductive material. The resin material is not particularly limited, and is a general resin such as (meth) acrylic resin, epoxy resin, fluorine resin, silicone resin, olefin resin, polyamide resin, and polyimide resin. Materials can be used. Preferably, a polyimide resin having high flexibility and high heat resistance is used as the resin material. In the present specification, (meth) acryl means “acryl” or “methacryl”.
 熱電変換素子体10に接続する熱伝導体4は、上述したように、接合部3に結合される。ここで、熱伝導体4は、熱伝導体4に隣接する断熱領域5が相互に連通するように配置されることが好ましい。断熱領域5間を空気が流通することで、断熱領域5の断熱性を一層高めて、熱電変換素子体10の接合方向における温度勾配を高めることができるからである。さらに、熱伝導体4は、熱伝導体4に隣接する断熱領域5が相互に連通すると共に、各複数の断熱領域5のそれぞれが、熱電変換モジュール100の外側雰囲気と直接的又は間接的に連通するように配置されることが好ましい。断熱領域5の断熱性をより一層高めることで、熱電変換素子体10の接合方向における温度勾配を一層高めることができるからである。 The heat conductor 4 connected to the thermoelectric conversion element body 10 is coupled to the joint 3 as described above. Here, it is preferable that the heat conductor 4 is disposed so that the heat insulating regions 5 adjacent to the heat conductor 4 communicate with each other. This is because air can flow between the heat insulating regions 5 to further enhance the heat insulating properties of the heat insulating regions 5 and increase the temperature gradient in the joining direction of the thermoelectric conversion element body 10. Further, in the heat conductor 4, the heat insulating regions 5 adjacent to the heat conductor 4 communicate with each other, and each of the plurality of heat insulating regions 5 communicates directly or indirectly with the outside atmosphere of the thermoelectric conversion module 100. It is preferable to arrange so as to. It is because the temperature gradient in the joining direction of the thermoelectric conversion element body 10 can be further increased by further increasing the heat insulating property of the heat insulating region 5.
 熱伝導体4は、特に限定されることなく、上述した接合部3Aと同様の金属材料等の熱伝導性無機材料、及び熱伝導性樹脂などの熱伝導性有機材料を含む熱伝導性材料により形成されうる。中でも、軽量性の観点から、Alが好ましい。熱伝導体4の熱伝導率は、10W/m・K以上であることが好ましく、50W/m・K以上であることがより好ましく、100W/m・K以上であることがさらに好ましく、200W/m・K以上であることが特に好ましい。また、熱伝導体4は、熱電変換モジュール100の厚み方向長さが1mm以上であることが好ましい。熱電変換素子体10の接合方向における温度勾配を一層大きくすることができるからである。さらに、熱伝導体4は、接合部3Aと、p型熱電変換素子1及びn型熱電変換素子2の各接合方向長さの1/5以下の領域で、熱電変換素子体10に接触することが好ましい。 The heat conductor 4 is not particularly limited, and is made of a heat conductive material including a heat conductive inorganic material such as a metal material similar to the above-described joint portion 3A and a heat conductive organic material such as a heat conductive resin. Can be formed. Among these, Al is preferable from the viewpoint of lightness. The thermal conductivity of the heat conductor 4 is preferably 10 W / m · K or more, more preferably 50 W / m · K or more, further preferably 100 W / m · K or more, and 200 W / m Particularly preferred is m · K or more. Moreover, it is preferable that the heat conductor 4 has the thickness direction length of the thermoelectric conversion module 100 of 1 mm or more. This is because the temperature gradient in the joining direction of the thermoelectric conversion element body 10 can be further increased. Furthermore, the thermal conductor 4 is in contact with the thermoelectric conversion element body 10 in a region that is 1/5 or less of the length of each junction direction of the junction 3A and the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. Is preferred.
 さらに、熱伝導体4は異方性熱伝導体であってもよい。異方性熱伝導体では、熱電変換モジュール100の厚み方向の熱伝導率が、厚み方向に対して横断方向の熱伝導率よりも高い。熱伝導体4が厚み方向の熱伝導性に富む異方性熱伝導体であれば、熱伝導体4が熱を伝導する際に生じうるロスを低減して、熱電変換モジュール100の熱電変換効率を一層向上させうる。そして、熱伝導体4が異方性熱伝導体である場合には、かかる異方性熱伝導体の厚み方向の熱伝導率が、10W/m・K以上であることが好ましく、50W/m・K以上であることがより好ましく、100W/m・K以上であることがさらに好ましく、200W/m・K以上であることが特に好ましい。 Furthermore, the heat conductor 4 may be an anisotropic heat conductor. In the anisotropic thermal conductor, the thermal conductivity in the thickness direction of the thermoelectric conversion module 100 is higher than the thermal conductivity in the transverse direction with respect to the thickness direction. If the heat conductor 4 is an anisotropic heat conductor rich in heat conductivity in the thickness direction, loss that may occur when the heat conductor 4 conducts heat is reduced, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 is reduced. Can be further improved. And when the heat conductor 4 is an anisotropic heat conductor, it is preferable that the heat conductivity of the thickness direction of this anisotropic heat conductor is 10 W / m * K or more, and is 50 W / m. More preferably, it is K or more, more preferably 100 W / m · K or more, and particularly preferably 200 W / m · K or more.
 異方性熱伝導体は、特に限定されることなく、例えば、グラファイトシート、及びCNT等の有機系異方性熱伝導材料、並びに扁平金属粒子等の無機異方性熱伝導材料を用いて形成することができる。なお、扁平金属粒子とは、例えば、アスペクト比が3以上である扁平形状の金属粒子を意味する。好ましくは、熱電変換素子体10に柔軟性を付与すると共に、軽量化する観点から、有機系異方性熱伝導材料を用いることが好ましい。さらに、熱電変換モジュール100の熱電変換効率を一層向上させる観点から、熱伝導体4を構成する異方性熱伝導体を、CNTを用いて形成することが好ましい。
 なお、異方性熱伝導体は、特に限定されることなく、これらの異方性熱伝導材料と、接合部3の形成にも用いられうる一般的な樹脂材料とを併用して形成することができる。異方性熱伝導体は、これらを用いて、異方性熱伝導材料の熱伝導率の高い方向が、熱電変換モジュール100の厚み方向に一致するように、塗布工程及び加圧工程等を含む既知の製造方法により作製することができる。
The anisotropic heat conductor is not particularly limited, and is formed using, for example, a graphite sheet, an organic anisotropic heat conductive material such as CNT, and an inorganic anisotropic heat conductive material such as flat metal particles. can do. The flat metal particles mean, for example, flat metal particles having an aspect ratio of 3 or more. It is preferable to use an organic anisotropic heat conductive material from the viewpoint of imparting flexibility to the thermoelectric conversion element body 10 and reducing the weight. Furthermore, from the viewpoint of further improving the thermoelectric conversion efficiency of the thermoelectric conversion module 100, it is preferable to form the anisotropic heat conductor constituting the heat conductor 4 using CNTs.
The anisotropic heat conductor is not particularly limited, and is formed by using these anisotropic heat conductive materials and a general resin material that can also be used for forming the joint portion 3. Can do. The anisotropic heat conductor includes a coating process, a pressurizing process, and the like so that the direction of high thermal conductivity of the anisotropic heat conductive material matches the thickness direction of the thermoelectric conversion module 100 using these. It can be produced by a known production method.
 さらに、膜状の熱電変換素子体10は、熱電変換素子体10を支持する少なくとも一つの熱電変換素子体基板を有しうる。図1では、熱電変換素子体10は、高温側熱電変換素子体基板11及び低温側熱電変換素子体基板12により両面側から挟持されてなる。熱電変換素子体10が少なくとも一つの熱電変換素子体基板により支持されていれば、熱電変換モジュール100の機械的強度を一層向上させることができる。さらにかかる高温側熱電変換素子体基板11及び低温側熱電変換素子体基板12が少なくとも1つの通気孔を有していれば、断熱領域5の通気性を向上させることで、断熱領域5の断熱性を向上させることができる。このため、熱電変換素子体10の接続方向における温度差を一層拡大させることができる。 Further, the film-like thermoelectric conversion element body 10 may have at least one thermoelectric conversion element body substrate that supports the thermoelectric conversion element body 10. In FIG. 1, the thermoelectric conversion element body 10 is sandwiched from both sides by a high temperature side thermoelectric conversion element body substrate 11 and a low temperature side thermoelectric conversion element body substrate 12. If the thermoelectric conversion element body 10 is supported by at least one thermoelectric conversion element body substrate, the mechanical strength of the thermoelectric conversion module 100 can be further improved. Furthermore, if the high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate 12 have at least one ventilation hole, the heat insulation property of the heat insulation region 5 is improved by improving the air permeability of the heat insulation region 5. Can be improved. For this reason, the temperature difference in the connection direction of the thermoelectric conversion element body 10 can be further expanded.
 高温側熱電変換素子体基板11及び低温側熱電変換素子体基板12は、特に限定されることなく、ポリイミド等の耐熱性及び柔軟性に富む樹脂材料により形成されたフィルムでありうる。 The high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate 12 are not particularly limited, and may be a film formed of a heat-resistant and flexible resin material such as polyimide.
 また、高温側熱電変換素子体基板11及び低温側熱電変換素子体基板12の通気口は、特に限定されることなく、p型熱電変換素子1及びn型熱電変換素子2の接合方向に沿って、等間隔で配置されうる。 Moreover, the vents of the high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate 12 are not particularly limited, and are along the joining direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. , Can be arranged at equal intervals.
 さらに、図1に示すように、熱電変換モジュール100は、熱電変換素子体10に対して熱伝導体4を介して接続された基板6を有しても良い。熱電変換素子体10と熱伝導体4を介して接続する少なくとも一つの基板6を設ければ、熱電変換モジュール100の機械的強度を向上させることができる。また、かかる少なくとも一つの基板6は、外部環境からモジュール内部の構成要素を保護する機能も奏しうる。 Furthermore, as shown in FIG. 1, the thermoelectric conversion module 100 may include a substrate 6 connected to the thermoelectric conversion element body 10 via the heat conductor 4. If at least one substrate 6 connected to the thermoelectric conversion element body 10 via the thermal conductor 4 is provided, the mechanical strength of the thermoelectric conversion module 100 can be improved. Further, the at least one substrate 6 can also function to protect the components inside the module from the external environment.
 基板6は、樹脂基板又は金属基板でありうる。樹脂基板としては、柔軟性を有する樹脂材料を含んでなる基板である、いわゆるフレキシブル基板が挙げられる。そのようなフレキシブル基板としては、熱伝導性が低く、且つ耐熱性及び柔軟性に優れる樹脂を用いて形成された基板が挙げられ、具体的には、高温側熱電変換素子体基板11及び低温側熱電変換素子体基板12と同じくポリイミドを形成材料とする基板が挙げられる。また、金属基板としては、アルミニウム、銅、及び銀等の熱伝導性の高い金属材料を含んでなる基板が挙げられる。なお、樹脂基板及び金属基板は、それぞれ単独で用いることができるが、両方を積層して併用することも可能である。 The substrate 6 can be a resin substrate or a metal substrate. As the resin substrate, a so-called flexible substrate, which is a substrate including a resin material having flexibility, can be given. Examples of such a flexible substrate include substrates formed using a resin having low thermal conductivity and excellent heat resistance and flexibility. Specifically, the high-temperature side thermoelectric conversion element substrate 11 and the low-temperature side are exemplified. The substrate which uses polyimide as a forming material similarly to the thermoelectric conversion element body board | substrate 12 is mentioned. Moreover, as a metal substrate, the board | substrate which comprises metal materials with high heat conductivity, such as aluminum, copper, and silver, is mentioned. In addition, although a resin substrate and a metal substrate can each be used independently, both can be laminated | stacked and used together.
 基板6として樹脂基板を採用した場合には、熱電変換モジュール100に柔軟性を付与することができ、熱電変換モジュールの設置容易性を向上させることができる。熱電変換モジュールの設置場所は、必ずしも平たんな場所ではないので、熱電変換モジュールに柔軟性を付与することができれば、熱電変換モジュールが設置場所の形状に応じて自在に変形可能となり、発電効率を上げることができる。
 一方、基板6として、金属基板を採用した場合には、熱電変換素子の接合方向における温度勾配を一層大きくして、熱電変換効率を一層高めることができる。
When a resin substrate is employed as the substrate 6, flexibility can be imparted to the thermoelectric conversion module 100, and the ease of installation of the thermoelectric conversion module can be improved. The installation location of the thermoelectric conversion module is not always flat, so if flexibility can be given to the thermoelectric conversion module, the thermoelectric conversion module can be freely deformed according to the shape of the installation location, and the power generation efficiency can be improved. Can be raised.
On the other hand, when a metal substrate is employed as the substrate 6, the temperature gradient in the joining direction of the thermoelectric conversion elements can be further increased, and the thermoelectric conversion efficiency can be further increased.
 さらに、基板6として、熱伝導体4と同様の異方性熱伝導材料を用いて形成した異方性熱伝導基板を用いることもできる。異方性熱伝導基板では、基板の厚み方向に対して横断方向の熱伝導率が、基板の厚み方向の熱伝導率よりも高い。よって、少なくとも基板6が熱伝導性に富む異方性熱伝導基板であれば、熱源からの集熱効率を高めて、熱伝導体4を介して熱電変換素子体10へと入力される熱量を増大させることができる。これにより、熱電変換素子体10の接合方向における温度勾配を一層大きくして、熱電変換効率を一層向上させることができる。なお、基板6を異方性熱伝導基板とする場合には、熱伝導体4と同様に、柔軟性及び軽量化の観点から、有機系異方性熱伝導材料を用いることが好ましい。 Furthermore, an anisotropic heat conductive substrate formed using an anisotropic heat conductive material similar to that of the heat conductor 4 can also be used as the substrate 6. In the anisotropic thermal conductive substrate, the thermal conductivity in the transverse direction with respect to the thickness direction of the substrate is higher than the thermal conductivity in the thickness direction of the substrate. Therefore, if at least the substrate 6 is an anisotropic heat conductive substrate having high thermal conductivity, the heat collection efficiency from the heat source is increased, and the amount of heat input to the thermoelectric conversion element body 10 via the heat conductor 4 is increased. Can be made. Thereby, the temperature gradient in the joining direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency can be further improved. In addition, when making the board | substrate 6 into an anisotropic heat conductive board | substrate, it is preferable to use an organic type anisotropic heat conductive material similarly to the heat conductor 4 from a viewpoint of a softness | flexibility and weight reduction.
 また、熱電変換素子体10を備える熱電変換モジュール100の厚みは、10mm以下であることが好ましく、6mm以下であることがより好ましい。熱電変換モジュール100の取り付け容易性を向上させることができるからである。 The thickness of the thermoelectric conversion module 100 including the thermoelectric conversion element body 10 is preferably 10 mm or less, and more preferably 6 mm or less. This is because the ease of attachment of the thermoelectric conversion module 100 can be improved.
 図2に本発明の熱電変換モジュールの概略構造の他の一例の平面図を示す。図2では、熱電変換モジュール101を低温側からみた平面図を示す。熱電変換モジュール101では、熱電変換素子体10’を構成するp型熱電変換素子1及びn型熱電変換素子2の連続接合体が、蛇行配置されている。「蛇行配置」とは、図2に示すように、複数のp型熱電変換素子1及びn型熱電変換素子2の連続接合体が、所定面積の区画内に折りたたまれたかのような形状で配置される態様を意味する。熱電変換素子体10’を構成する複数の熱電変換素子の連続接合体が、蛇行配置されていれば、限られたスペース内に多数の熱電変換素子を効率的に集積配置することができ、熱電変換モジュールの熱電変換効率を一層高めることができる。 FIG. 2 shows a plan view of another example of the schematic structure of the thermoelectric conversion module of the present invention. In FIG. 2, the top view which looked at the thermoelectric conversion module 101 from the low temperature side is shown. In the thermoelectric conversion module 101, the continuous joined body of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10 'is arranged in a meandering manner. As shown in FIG. 2, “meandering arrangement” means that a continuous joined body of a plurality of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2 is arranged in a shape as if folded into a predetermined area. Means an embodiment. If the continuous joined body of the plurality of thermoelectric conversion elements constituting the thermoelectric conversion element body 10 ′ is meanderingly arranged, a large number of thermoelectric conversion elements can be efficiently integrated and arranged in a limited space. The thermoelectric conversion efficiency of the conversion module can be further increased.
 なお、図2では、折りたたみ形状の両端部にて、導電型の異なる熱電変換素子(即ち、p型熱電変換素子に対するn型熱電変換素子、およびその逆の関係)が導電部材30により接続されている態様を例示する。そして、導電部材30は、Ag及びCu等の金属材料や、グラファイトシート及びCNT等の炭素系材料により構成されうる。 In FIG. 2, thermoelectric conversion elements having different conductivity types (that is, n-type thermoelectric conversion elements with respect to p-type thermoelectric conversion elements and vice versa) are connected by conductive members 30 at both ends of the folded shape. The aspect which is present is illustrated. The conductive member 30 can be made of a metal material such as Ag and Cu, or a carbon-based material such as a graphite sheet and CNT.
 蛇行配置された複数のp型熱電変換素子1及びn型熱電変換素子2の連続接合体に対して、矩形状の熱伝導体4の長手方向が、p型熱電変換素子1及びn型熱電変換素子2の接合方向に対して(図示した平面内にて)垂直な方向に一致する向きで配置されている。そして、接合方向位置が同じ複数の接合部3Aに対して、同じ熱伝導体4が結合している。かかる配置によれば、接合方向における柔軟性と、接合方向に対して垂直な方向における強度とを両立することができる。また、かかる配置によれば、同じ熱伝導体4が結合する複数の接合部3A間における温度差を低減することができ、熱電変換モジュールの起電力を均一化することができる。温度差が熱電変換素子体10’の場所によって不均一になると、起電力(電圧)にむらが生じ、熱電変換素子体10’の部位に応じて得られる電流値に差異を生じることとなる。熱電変換モジュールは各素子を直列に接合してなるので、電流値に差異ができると、最も低い電流値に規定されてしまい、結果的に、熱電変換モジュールの発電力の低下を引き起こすことがある。
 なお、本明細書において、「接合方向に対して垂直方向」とは、熱電変換素子体の面内で、接合方向に対して直交するか、或いは略直交する(接合方向となす角が90°±5°以内)であることを意味する。
 また、本明細書において、「矩形状」とは、正方形及び長方形等の4角が全て90°の形状以外にも、任意の1つ又は複数の角が、C面取り又はR面取りされてなる形状も含む。
The longitudinal direction of the rectangular heat conductor 4 with respect to the continuous joined body of the plurality of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2 arranged meandering is the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion. They are arranged in a direction that coincides with the direction perpendicular to the joining direction of the element 2 (within the illustrated plane). And the same heat conductor 4 has couple | bonded with respect to several junction part 3A with the same joining direction position. According to this arrangement, both flexibility in the joining direction and strength in a direction perpendicular to the joining direction can be achieved. Moreover, according to this arrangement | positioning, the temperature difference between several junction part 3A which the same heat conductor 4 couple | bonds can be reduced, and the electromotive force of a thermoelectric conversion module can be equalize | homogenized. When the temperature difference becomes uneven depending on the location of the thermoelectric conversion element body 10 ′, the electromotive force (voltage) becomes uneven, and the current value obtained according to the portion of the thermoelectric conversion element body 10 ′ becomes different. Since the thermoelectric conversion module is formed by joining each element in series, if there is a difference in current value, it will be regulated to the lowest current value, and as a result, it may cause a decrease in the power generation of the thermoelectric conversion module. .
In the present specification, the “perpendicular direction to the joining direction” is perpendicular to or substantially perpendicular to the joining direction within the surface of the thermoelectric conversion element body (the angle formed with the joining direction is 90 °). Within ± 5 °).
In addition, in this specification, “rectangular shape” means a shape in which any one or a plurality of corners are C-chamfered or R-chamfered in addition to a shape in which all four corners such as a square and a rectangle are 90 °. Including.
 さらに、熱電変換素子体10’は、高温側熱電変換素子体基板11及び低温側熱電変換素子体基板により挟持されてなる。図2では、明瞭のために低温側熱電変換素子体基板の図示を省略する。なお、導電部材30も、高温側熱電変換素子体基板11及び低温側熱電変換素子体基板(図示しない)により挟持されうる。 Furthermore, the thermoelectric conversion element body 10 ′ is sandwiched between the high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate. In FIG. 2, the low temperature side thermoelectric conversion element body substrate is not shown for the sake of clarity. The conductive member 30 can also be sandwiched between the high temperature side thermoelectric conversion element body substrate 11 and the low temperature side thermoelectric conversion element body substrate (not shown).
 また、高温側熱電変換素子体基板11は、p型熱電変換素子1及びn型熱電変換素子2の接合方向に沿って所定間隔で配置された複数の通気孔31を有する。図示しない低温側熱電変換素子体基板も、対応する位置に複数の通気口を有し得る。通気孔31により、図1に示したような断熱領域5が外部と導通することとなり、通気性が向上し、断熱領域5内に熱がこもることを抑制することができる。 Further, the high temperature side thermoelectric conversion element body substrate 11 has a plurality of vent holes 31 arranged at predetermined intervals along the joining direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. A low-temperature side thermoelectric conversion element body substrate (not shown) may also have a plurality of vent holes at corresponding positions. The heat insulating region 5 as shown in FIG. 1 is electrically connected to the outside by the vent hole 31, the air permeability is improved, and it is possible to suppress heat from being trapped in the heat insulating region 5.
 なお、熱電変換モジュール101には、熱電変換素子体10’の両端に導電線40が接続されてなり、熱電変換素子体10’により生じた電力を取り出すことができる。 In the thermoelectric conversion module 101, the conductive wires 40 are connected to both ends of the thermoelectric conversion element body 10 ', and the electric power generated by the thermoelectric conversion element body 10' can be taken out.
 図3は、本発明の熱電変換モジュールの概略構造の更に他の一例の平面図である。図3に示す熱電変換モジュール102は、熱伝導体4’の形状及び配置が図2に示した熱電変換モジュール103の熱伝導体4の形状及び配置と異なる以外は、同じ構造を有する。図3に示すように、熱電変換モジュール102では、熱伝導体4’の長手方向長さが、P/n型熱電変換素子1/2の接合方向直交方向長さに略一致している。そして、複数の熱伝導体4’が、接合方向に対して(図示した平面内にて)垂直な方向では、相互に連結されておらず、各熱伝導体4’が相互に離隔配置されている。蛇行配置された連続接合体に対して結合された複数の熱伝導体が、相互に離隔配置されていれば、熱電変換モジュールの柔軟性を一層高めることができる。 FIG. 3 is a plan view of still another example of the schematic structure of the thermoelectric conversion module of the present invention. The thermoelectric conversion module 102 shown in FIG. 3 has the same structure except that the shape and arrangement of the heat conductor 4 ′ are different from the shape and arrangement of the heat conductor 4 of the thermoelectric conversion module 103 shown in FIG. 2. As shown in FIG. 3, in the thermoelectric conversion module 102, the longitudinal length of the heat conductor 4 ′ is substantially equal to the length in the direction perpendicular to the joining direction of the P / n type thermoelectric conversion elements 1/2. The plurality of heat conductors 4 ′ are not connected to each other in the direction perpendicular to the joining direction (within the illustrated plane), and the heat conductors 4 ′ are spaced apart from each other. Yes. If the plurality of thermal conductors coupled to the meandering continuous joined body are spaced apart from each other, the flexibility of the thermoelectric conversion module can be further enhanced.
 図4は、本発明の熱電変換モジュールの概略構造の更に他の一例の平面図である。図4では、熱電変換素子体10’’において、接合方向の各端部に配置された各p型熱電変換素子1’又はn型熱電変換素子2’が、各端部にて接合対象となる導電型の異なる他のn型熱電変換素子2’又はp型熱電変換素子1’と、相互に直接接合する端部接合部3Cをなしている。かかる端部接合部3Cは、末端がL字状又は逆L字状であるp型熱電変換素子1’及びn型熱電変換素子2’により形成されてなる。このように、L字状又は逆L字状に変形された端部形状を有する熱電変換素子が、蛇行配置された連続接合体の接合方向両端部にて相互に直接接合していれば、熱電変換モジュールの柔軟性を一層高めることができる。
 なお、本明細書において「L字状又は逆L字状」とは、接合方向に対して交差する方向を軸線としうる構成部を有する形状を意味し、接合方向と交差方向とが必ずしも直交していなくても良い。
 また、図4において、各p型熱電変換素子1’又はn型熱電変換素子2’の形状及び導電部材30を備えない点以外は、熱電変換モジュール103のその他の構造は図2に示した熱電変換モジュール101と同じである。
FIG. 4 is a plan view of still another example of the schematic structure of the thermoelectric conversion module of the present invention. In FIG. 4, in the thermoelectric conversion element body 10 ″, each p-type thermoelectric conversion element 1 ′ or n-type thermoelectric conversion element 2 ′ disposed at each end in the bonding direction is a bonding target at each end. An end junction 3C that directly joins to another n-type thermoelectric conversion element 2 ′ or p-type thermoelectric conversion element 1 ′ having different conductivity types is formed. The end joint 3C is formed by a p-type thermoelectric conversion element 1 ′ and an n-type thermoelectric conversion element 2 ′ having an L-shape or an inverted L-shape at the end. In this way, if the thermoelectric conversion elements having end shapes deformed into an L shape or an inverted L shape are directly joined to each other at both ends in the joining direction of the meandering continuous joined body, The flexibility of the conversion module can be further increased.
In the present specification, the “L-shape or inverted L-shape” means a shape having a constituent part whose axis can be a direction intersecting the joining direction, and the joining direction and the intersecting direction are not necessarily perpendicular to each other. It does not have to be.
Further, in FIG. 4, except for the shape of each p-type thermoelectric conversion element 1 ′ or n-type thermoelectric conversion element 2 ′ and the absence of the conductive member 30, the other structure of the thermoelectric conversion module 103 is the thermoelectric shown in FIG. 2. This is the same as the conversion module 101.
 なお、図4では、末端にてp型熱電変換素子1’及びn型熱電変換素子2’の双方がL字状又は逆L字状部を有しており、これらのL字状部及び逆L字状部が端部接合部3Cを形成するものとして図示している。しかし、p型熱電変換素子1’及びn型熱電変換素子2’の形状は、かかる形状に限定されることなく、例えば、p型熱電変換素子1’又はn型熱電変換素子2’の何れか一方のみがL字状又は逆L字状形状を有しており、通常の矩形形状である他方の熱電変換素子との間で端部接合部3Cを形成していても良い。また、L字状又は逆L字状部を形成する角が、C面取り又はR面取りされていても良い。 In FIG. 4, both the p-type thermoelectric conversion element 1 ′ and the n-type thermoelectric conversion element 2 ′ have L-shaped or inverted L-shaped portions at the ends. The L-shaped part is illustrated as forming the end joint 3C. However, the shapes of the p-type thermoelectric conversion element 1 ′ and the n-type thermoelectric conversion element 2 ′ are not limited to such shapes, and for example, either the p-type thermoelectric conversion element 1 ′ or the n-type thermoelectric conversion element 2 ′. Only one of them has an L-shape or an inverted L-shape, and the end joint 3C may be formed with the other thermoelectric conversion element that is a normal rectangular shape. Further, the corners forming the L-shaped or inverted L-shaped portion may be chamfered or R-chamfered.
 以上説明したように、本発明によれば、熱電変換効率及びフレキシブル性を両立可能な熱電変換モジュールを提供することができる。 As described above, according to the present invention, it is possible to provide a thermoelectric conversion module that can achieve both thermoelectric conversion efficiency and flexibility.
1,1’         p型熱電変換素子
2,2’         n型熱電変換素子
3A、3B        接合部
3C           端部接合部
4,4’         熱伝導体
5            断熱領域
6            基板
10、10’、10’’   熱電変換素子体
11           高温側熱電変換素子体基板
12           低温側熱電変換素子体基板
21           輻射反射体
22           輻射防止体
30           導電部材
31           通気孔
40           導電線
100~103      熱電変換モジュール
200          熱源
1, 1 'p-type thermoelectric conversion element 2, 2' n-type thermoelectric conversion element 3A, 3B joint 3C end joint 4, 4 'thermal conductor 5 heat insulation region 6 substrate 10, 10', 10 "thermoelectric conversion Element body 11 High temperature side thermoelectric conversion element body substrate 12 Low temperature side thermoelectric conversion element body substrate 21 Radiation reflector 22 Radiation prevention body 30 Conductive member 31 Vent hole 40 Conductive wire 100 to 103 Thermoelectric conversion module 200 Heat source

Claims (10)

  1.  熱源からの熱を電力に変換する熱電変換モジュールであって、
     面内の一方向である接合方向に沿って接合された、p型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、
     前記熱電変換素子体の一方の面を熱源からの熱を受容する第1面とし、他方の面を第2面として、前記第1面のみで、前記p型熱電変換素子及び前記n型熱電変換素子の接合部に対して結合された熱伝導体と、
    を備える、熱電変換モジュール。
    A thermoelectric conversion module that converts heat from a heat source into electric power,
    A film-like thermoelectric conversion element body having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element bonded along a bonding direction which is one direction in the plane;
    One surface of the thermoelectric conversion element body is a first surface that receives heat from a heat source, the other surface is a second surface, and only the first surface is used for the p-type thermoelectric conversion element and the n-type thermoelectric conversion. A thermal conductor bonded to the junction of the element;
    A thermoelectric conversion module.
  2.  前記膜状の熱電変換素子体が、p型熱電変換素子及びn型熱電変換素子が少なくとも2対以上連続接合してなり、
     前記熱伝導体が、前記少なくとも2対以上の前記p型熱電変換素子及び前記n型熱電変換素子の複数の接合部に対して、一つおきに結合され、
     前記熱伝導体が結合された前記接合部が、導電性及び熱伝導性を有する金属材料を含んでなる、
    請求項1に記載の熱電変換モジュール。
    The film-like thermoelectric conversion element body is formed by continuously joining at least two pairs of p-type thermoelectric conversion elements and n-type thermoelectric conversion elements,
    The heat conductor is bonded to every other junction of the at least two pairs of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element,
    The joint to which the thermal conductor is bonded comprises a metal material having electrical conductivity and thermal conductivity;
    The thermoelectric conversion module according to claim 1.
  3.  前記複数の接合部のうちの前記熱伝導体が結合されない接合部が、前記p型熱電変換素子及び前記n型熱電変換素子が直接接合されてなる、請求項2に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 2, wherein the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are directly bonded to a bonding part to which the thermal conductor is not bonded among the plurality of bonding parts.
  4.  前記膜状の熱電変換素子体が、少なくとも一つの熱電変換素子体基板を有し、前記熱電変換素子体基板が、少なくとも1つの通気孔を有する、請求項1~3の何れかに記載の熱電変換モジュール。 The thermoelectric conversion device according to any one of claims 1 to 3, wherein the film-shaped thermoelectric conversion element body has at least one thermoelectric conversion element body substrate, and the thermoelectric conversion element body substrate has at least one vent hole. Conversion module.
  5.  前記p型熱電変換素子及び前記n型熱電変換素子の、前記接合方向の長さが、それぞれ5mm以上である、請求項1~4の何れかに記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 4, wherein each of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element has a length in the joining direction of 5 mm or more.
  6.  前記接合方向における前記熱伝導体の両側に隣接した断熱領域を備え、さらに、
     前記断熱領域内に、輻射反射体及び/又は輻射防止体を有する、請求項1~5の何れかに記載の熱電変換モジュール。
    A heat insulating region adjacent to both sides of the heat conductor in the joining direction;
    The thermoelectric conversion module according to any one of claims 1 to 5, further comprising a radiation reflector and / or a radiation preventer in the heat insulating region.
  7.  前記膜状の熱電変換素子体を構成する前記p型熱電変換素子及び前記n型熱電変換素子の連続接合体が、蛇行配置されてなる、請求項2~6の何れかに記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 2 to 6, wherein a continuous joined body of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element constituting the film-shaped thermoelectric conversion element body is arranged in a meandering manner. .
  8.  前記蛇行配置された前記連続接合体に対して結合された複数の熱伝導体が、前記接合方向に対して前記面内で垂直方向に相互に連結されてなる、請求項7に記載の熱電変換モジュール。 The thermoelectric conversion according to claim 7, wherein a plurality of thermal conductors coupled to the serpentinely arranged continuous joined body are interconnected in a direction perpendicular to the joining direction in the plane. module.
  9.  前記蛇行配置された前記連続接合体に対して結合された複数の熱伝導体のそれぞれが、他の熱伝導体とは離隔配置されてなる、請求項7に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 7, wherein each of the plurality of thermal conductors coupled to the continuous assembly arranged in a meandering manner is separated from other thermal conductors.
  10.  前記蛇行配置された前記連続接合体の、前記接合方向の各端部に配置された各p型熱電変換素子又はn型熱電変換素子が、前記各端部にて接合対象となる導電型の異なる他のn型熱電変換素子又はp型熱電変換素子と、直接接合する端部接合部をなしており、前記端部接合部は、末端がL字状又は逆L字状である前記p型熱電変換素子及び/又は前記n型熱電変換素子により形成されてなる、請求項7~9の何れかに記載の熱電変換モジュール。 Each p-type thermoelectric conversion element or n-type thermoelectric conversion element arranged at each end in the joining direction of the continuous joined body arranged in a meandering manner has a different conductivity type to be joined at each end. The other end type thermoelectric conversion element or p type thermoelectric conversion element forms an end joint that is directly joined, and the end joint has an L shape or an inverted L shape at the end. The thermoelectric conversion module according to any one of claims 7 to 9, wherein the thermoelectric conversion module is formed by a conversion element and / or the n-type thermoelectric conversion element.
PCT/JP2018/002913 2017-01-31 2018-01-30 Thermoelectric conversion module WO2018143178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018565554A JP7183794B2 (en) 2017-01-31 2018-01-30 Thermoelectric conversion module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015884 2017-01-31
JP2017-015884 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018143178A1 true WO2018143178A1 (en) 2018-08-09

Family

ID=63039709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002913 WO2018143178A1 (en) 2017-01-31 2018-01-30 Thermoelectric conversion module

Country Status (2)

Country Link
JP (1) JP7183794B2 (en)
WO (1) WO2018143178A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124867A1 (en) * 2019-12-19 2021-06-24 東洋インキScホールディングス株式会社 Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
JPWO2020071036A1 (en) * 2018-10-04 2021-09-02 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and cooling device or temperature measuring device using it or heat flow sensor or power generation device
US20220293843A1 (en) * 2019-08-08 2022-09-15 Denka Company Limited Thermoelectric conversion element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111345A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JP2003133600A (en) * 2001-10-24 2003-05-09 Kitagawa Ind Co Ltd Thermoelectric conversion member and manufacturing method therefor
JP2006186255A (en) * 2004-12-28 2006-07-13 Nagaoka Univ Of Technology Thermoelectric conversion element
JP2008060488A (en) * 2006-09-04 2008-03-13 Kansai Paint Co Ltd One-side electrode thermoelectric conversion module
JP2012079841A (en) * 2010-09-30 2012-04-19 Fujitsu Ltd Thermoelectric conversion device and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110094556A1 (en) 2009-10-25 2011-04-28 Digital Angel Corporation Planar thermoelectric generator
WO2011065185A1 (en) 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JP5708174B2 (en) 2011-04-12 2015-04-30 富士通株式会社 Thermoelectric conversion device and manufacturing method thereof
US20150136192A1 (en) 2012-04-30 2015-05-21 Universite Catholique De Louvain Thermoelectric Conversion Module and Method for Making it
JP2014154761A (en) 2013-02-12 2014-08-25 Furukawa Electric Co Ltd:The Thermoelectric conversion module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111345A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JP2003133600A (en) * 2001-10-24 2003-05-09 Kitagawa Ind Co Ltd Thermoelectric conversion member and manufacturing method therefor
JP2006186255A (en) * 2004-12-28 2006-07-13 Nagaoka Univ Of Technology Thermoelectric conversion element
JP2008060488A (en) * 2006-09-04 2008-03-13 Kansai Paint Co Ltd One-side electrode thermoelectric conversion module
JP2012079841A (en) * 2010-09-30 2012-04-19 Fujitsu Ltd Thermoelectric conversion device and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020071036A1 (en) * 2018-10-04 2021-09-02 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and cooling device or temperature measuring device using it or heat flow sensor or power generation device
JP7262086B2 (en) 2018-10-04 2023-04-21 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and cooling device, temperature measuring device, heat flow sensor or power generating device using the same
US20220293843A1 (en) * 2019-08-08 2022-09-15 Denka Company Limited Thermoelectric conversion element
WO2021124867A1 (en) * 2019-12-19 2021-06-24 東洋インキScホールディングス株式会社 Thermoelectric conversion element and method for manufacturing thermoelectric conversion element

Also Published As

Publication number Publication date
JP7183794B2 (en) 2022-12-06
JPWO2018143178A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018143185A1 (en) Thermoelectric conversion module
WO2018143178A1 (en) Thermoelectric conversion module
JP6159532B2 (en) Thermoelectric conversion member
JP2013175627A (en) Thermoelectric device and manufacturing method therefor
JP5831019B2 (en) Thermoelectric conversion module
JP2016187008A (en) Thermoelectric conversion device
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
KR20150116187A (en) Stretchable Thermoelectric Module
US10236431B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2019204927A (en) Thermoelectric conversion module and power generation system
JP2017204550A (en) Thermoelectric conversion material, thermoelectric conversion element and method of manufacturing thermoelectric conversion element
JP5573565B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP2019204926A (en) Thermoelectric conversion module and power generating system
US20220302365A1 (en) Thermoelectric conversion element
US20220293843A1 (en) Thermoelectric conversion element
US10115882B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6505585B2 (en) Thermoelectric conversion element
JP2013251309A (en) Thermoelectric conversion device
JPWO2012140800A1 (en) Air conditioning
JP2000183375A (en) Solar battery module having good heat radiation
JP7116465B2 (en) thermoelectric converter
JP5664158B2 (en) Thermoelectric conversion module
KR20170098564A (en) Thermo electric element
WO2016114220A1 (en) Thermoelectric conversion module and mounting method therefor
WO2017051699A1 (en) Thermoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748412

Country of ref document: EP

Kind code of ref document: A1