WO2023123862A1 - 一种抗菌防病毒空气净化材料制备方法 - Google Patents

一种抗菌防病毒空气净化材料制备方法 Download PDF

Info

Publication number
WO2023123862A1
WO2023123862A1 PCT/CN2022/096536 CN2022096536W WO2023123862A1 WO 2023123862 A1 WO2023123862 A1 WO 2023123862A1 CN 2022096536 W CN2022096536 W CN 2022096536W WO 2023123862 A1 WO2023123862 A1 WO 2023123862A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
air purification
solution
purification material
preparation
Prior art date
Application number
PCT/CN2022/096536
Other languages
English (en)
French (fr)
Inventor
仲兆祥
武军伟
周虹佳
周群
冯厦厦
邢卫红
Original Assignee
江苏久朗高科技股份有限公司
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏久朗高科技股份有限公司, 南京工业大学 filed Critical 江苏久朗高科技股份有限公司
Priority to EP22865918.1A priority Critical patent/EP4226994A4/en
Publication of WO2023123862A1 publication Critical patent/WO2023123862A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/086Filter cloth, i.e. woven, knitted or interlaced material of inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0028Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions provided with antibacterial or antifungal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • B01D46/543Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00046Organic membrane manufacture by agglomeration of particles by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0654Support layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0668The layers being joined by heat or melt-bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the technical field of air purification, and in particular relates to a method for preparing an antibacterial and antivirus air purification material.
  • porous PTFE membrane material has excellent chemical stability and thermal stability, which makes it difficult to adhere to the surface of other materials. It is necessary to select a suitable reaction precursor to provide sufficient surface activation energy and improve the effect of atomic layer deposition. Or doping metal ions, polyphenols, organic acids and other organic substances on the fiber surface through electrospinning technology. The uncertainty of electrospinning parameters affects the structure and shape of nanofibers, which has a great impact on the antibacterial properties of fibers. At the same time, the strength of electrospun nanofibers is low and the production efficiency is not high, which limits its industrial production. In addition, porous PTFE membrane materials have relatively poor mechanical properties such as tensile resistance. No matter which modification method is used, corresponding support materials must be provided in practical applications to improve the mechanical strength of the material and increase the service life of the material.
  • the invention discloses an antibacterial and antivirus air purification material, which has the advantages of simple process, strong continuous production capacity, etc., and has the advantages of The prospect of large-scale production, the antibacterial and antivirus air purification material prepared by the method has high air permeability, good antibacterial performance and long service life.
  • a preparation method for an antibacterial and antivirus air purification material comprising the following steps:
  • Step 1 Mix carbon nanotubes and ethanol aqueous solution in a certain proportion, add surfactant under magnetic stirring after ultrasonication, add buffer solution after stirring evenly, and stir evenly to obtain carbon nanotube dispersion liquid.
  • Step 2 soak the porous PTFE membrane material in the ethanol solution, take it out and put it in the mixed solution of surfactant and buffer solution, rinse it with deionized water after soaking, and then dry it naturally.
  • Step 3 The carbon nanotube dispersion obtained in Step 1 is suction-filtered and loaded onto the treated porous PTFE material, and dried to obtain a multi-layer PTFE membrane material.
  • Step 4 Add the organic antibacterial agent to deionized water to prepare an antibacterial solution, adjust the pH value to increase the solubility of the antibacterial agent, and then immerse the multi-layer PTFE membrane material in the antibacterial solution after magnetic stirring, drying and drying after hydrothermal reaction.
  • Step 5 Laminate the PTFE film material with antibacterial agent and the base cloth by high temperature hot pressing method, adjust the high temperature lamination process through the heating temperature, pressure and lamination speed of the lamination roller, and collect the composite film after completion roll.
  • the mass fraction of the ethanol solution is 25%, 50%, 75%
  • the surfactant is dopamine, sodium lauryl sulfate, sodium dodecylbenzenesulfonate, lauryl polyoxyethylene ether
  • the buffer solution is tris(hydroxymethyl)aminomethane aqueous solution, sodium tetraborate aqueous solution, mixed phosphate aqueous solution.
  • the mass of carbon nanotubes accounts for 20-30% of the mixed solution
  • the ultrasonic time is 0.5-2h
  • the mass ratio of carbon nanotubes to surfactant is 1:1-4
  • the buffer solution and carbon nanotubes The volume ratio of aqueous solution is 1:3-5.
  • the concentration and volume of the surfactant and the buffer solution in the mixed solution are the same, the concentration range of the surfactant and the buffer solution is 10-30mM, the number of times of washing with deionized water is 3-6 times, and the immersion time of the porous PTFE material is uniform. 5-20min.
  • the suction filtration pressure of the vacuum pump is 0.04-0.098MPa
  • the drying temperature is 100-200°C
  • the drying time is 12-24h.
  • the antibacterial agent is diketones, polyphenols, chitosan organic antibacterial agent
  • the antibacterial agent quality accounts for 5-20% of the mixed solution
  • the pH regulator is hydrochloric acid, acetic acid, sodium hydroxide and carbonic acid Sodium hydrogen
  • the magnetic stirring time is 0.5-1h
  • the hydrothermal temperature is 60-120°C
  • the hydrothermal time is 0.5-5h
  • the drying temperature is 80-100°C
  • the drying time is 1-4h.
  • the high-temperature hot pressing method is to pass the film material and the substrate through the laminating roller in sequence, and the laminated fabric passes through the traction roller to complete the winding.
  • the cladding roller and the traction roller are made of stainless steel.
  • the base fabric is made of polyester, polyethylene, or glass fiber cloth
  • the lamination temperature is 100-400°C
  • the lamination pressure is 0.1-0.5MPa
  • the lamination speed is 2-5m/min.
  • the antibacterial and anti-virus air purification material preparation method of the present invention increases the dispersion and stability of carbon nanotubes through surfactants and buffer solutions, and builds a multi-level structure on the surface of PTFE fibers to increase the interaction with pollutants.
  • the contact area and surface roughness increase the antibacterial loading rate and loading fastness in the later stage.
  • the organic antibacterial agent is loaded on the carbon nanotubes and PTFE fibers by simple and rapid hydrothermal reaction.
  • the virus membrane material is laminated on the base fabric, which increases the overall strength of the antibacterial and anti-virus air purification material without reducing the air permeability and antibacterial effect, ensuring long-term stable use of the material.
  • Fig. 1 is the SEM image of different carbon nanotube loadings on the surface of PTFE membrane according to the present invention.
  • Fig. 2 is an SEM image of the film material of the present invention after being laminated with a substrate.
  • a preparation method for an antibacterial and antivirus air purification material comprising the following steps:
  • Step 1 Add 10 mg of carbon nanotubes to 30 mL of 75% ethanol aqueous solution and mix. After ultrasonication for 1 hour, add 40 mg of dopamine under magnetic stirring. After stirring evenly for 5 minutes, add 10 mL of 10 mM tris(hydroxymethyl) aminomethane aqueous solution, and stir for 10 minutes until the carbon nanotubes are evenly obtained. nanotube dispersion.
  • Step 2 Immerse the porous PTFE membrane material in a 75% ethanol solution, take it out and place it in a mixed solution of 10mM dopamine solution 10mL and 10mM tris(hydroxymethyl)aminomethane aqueous solution 10mL, rinse with deionized water 3 times after soaking for 10min Then dry naturally.
  • Step 3 The carbon nanotube dispersion liquid obtained in Step 1 is loaded onto the treated porous PTFE material by suction filtration, the suction filtration pressure is 0.06 MPa, and the multilayer PTFE membrane material is obtained after drying at 100° C. for 12 hours.
  • Step 4 Add curcumin to deionized water to prepare an antibacterial solution, adjust the pH value to 9 with sodium hydroxide, immerse the multi-layer PTFE membrane material in the antibacterial solution after magnetic stirring for 1 hour, react with hydrothermal reaction at 80°C for 2h, and heat at 80°C Dry at low temperature for 1h.
  • Step 5 Laminate the PTFE membrane material with antibacterial factor and polyethylene base cloth by high temperature hot pressing method.
  • the lamination temperature is 110°C
  • the lamination pressure is 0.2MPa
  • the lamination speed is 2m/min.
  • the composite film is rolled up.
  • the antibacterial and antivirus air purification material prepared in this example has an inhibition rate of more than 95% for Escherichia coli and Staphylococcus aureus, and the antibacterial effect remains unchanged after 60 days of use.
  • a preparation method for an antibacterial and antivirus air purification material comprising the following steps:
  • Step 1 Add 15 mg of carbon nanotubes to 35 mL of 50% ethanol aqueous solution and mix, after ultrasonication for 1 hour, add 45 mg of sodium lauryl sulfate under magnetic stirring, stir evenly for 15 minutes, then add 20 mL of 10 mM tris(hydroxymethyl)aminomethane aqueous solution, and stir 20min until the carbon nanotube dispersion is uniformly obtained.
  • Step 2 Immerse the porous PTFE membrane material in a 50% ethanol solution, take it out and place it in a mixed solution of 20mL of 10mM sodium lauryl sulfate solution and 20mL of 10mM tris(hydroxymethyl)aminomethane aqueous solution, soak for 20min and remove Rinse 4 times with deionized water and dry naturally.
  • Step 3 The carbon nanotube dispersion liquid obtained in Step 1 is loaded onto the treated porous PTFE material by suction filtration, the suction filtration pressure is 0.08 MPa, and the multilayer PTFE membrane material is obtained after drying at 100° C. for 12 hours.
  • Step 4 Add tea polyphenols to deionized water to prepare an antibacterial solution, adjust the pH value to 3 with hydrochloric acid, and then immerse the multi-layer PTFE membrane material in the antibacterial solution after magnetic stirring for 1 hour. Dry in the oven for 1 hour.
  • Step 5 Laminate the PTFE film material with antibacterial factor and polyester base cloth by high temperature hot pressing method.
  • the lamination temperature is 250°C
  • the lamination pressure is 0.2MPa
  • the lamination speed is 3m/min.
  • the composite film is rolled up.
  • the antibacterial and antivirus air purification material prepared in this example has an inhibition rate of more than 95% for Escherichia coli and Staphylococcus aureus, and the antibacterial effect remains unchanged after 45 days of use.
  • a preparation method for an antibacterial and antivirus air purification material comprising the following steps:
  • Step 1 Add 15mg of carbon nanotubes to 45mL of 25% ethanol aqueous solution and mix. After ultrasonication for 2h, add 30mg of sodium dodecylbenzenesulfonate under magnetic stirring. Stir for 20min and then add 20mL of 20mM mixed phosphate aqueous solution. Stir for 20min until uniform A carbon nanotube dispersion was obtained.
  • Step 2 Immerse the porous PTFE membrane material in 25% ethanol solution, take it out and place it in a mixed solution of 20mM sodium dodecylbenzenesulfonate solution 20mL and 20mM mixed phosphate aqueous solution 20mL, rinse with deionized water after soaking for 20min Let it dry naturally after 5 times.
  • Step 3 The carbon nanotube dispersion liquid obtained in Step 1 is loaded onto the treated porous PTFE material by suction filtration, the suction filtration pressure is 0.09 MPa, and the multilayer PTFE membrane material is obtained after drying at 100° C. for 24 hours.
  • Step 4 Add chitosan derivatives to deionized water to prepare an antibacterial solution, adjust the pH to 3 with acetic acid, and immerse the multi-layer PTFE membrane material in the antibacterial solution after magnetic stirring for 1 hour. Dry at low temperature for 2 hours.
  • Step 5 Laminate the PTFE film material with antibacterial factor and polyester base cloth by high temperature hot pressing method.
  • the lamination temperature is 250°C
  • the lamination pressure is 0.3MPa
  • the lamination speed is 3m/min.
  • the composite film is rolled up.
  • the antibacterial and antivirus air purification material prepared in this example has an inhibition rate of more than 95% for Escherichia coli and Staphylococcus aureus, and the antibacterial effect remains unchanged after 30 days of use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Materials (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

一种抗菌防病毒空气净化材料的制备方法,通过表面活性剂和缓冲溶液增大碳纳米管的分散性和稳定性,在PTFE纤维表面构建多层次结构,以增大与污染物的接触面积和提高表面粗糙度,增加后期抗菌剂的负载率和负载牢度,利用水热反应将有机抗菌剂负载到碳纳米管及PTFE纤维上,烘干干燥后采用高温热压法将PTFE膜材料覆合在基布上,在不降低透气性和抗菌效果的前提下,增加抗菌防病毒空气净化材料的整体强度,确保材料长期稳定使用。

Description

一种抗菌防病毒空气净化材料制备方法 技术领域
本发明属于空气净化技术领域,尤其涉及一种抗菌防病毒空气净化材料制备方法。
背景技术
禽流感、甲型H1N1、流行性感冒等传染性疾病的频繁爆发,使人们深刻意识到日常生活中微不足道的细菌、病毒等致病微生物们的所潜藏的巨大危害性。近年来,人们将防护材料的研究重点从拦截细小颗粒物的单一模式转变为拦截颗粒物的同时灭杀细菌病毒的协同模式。当前抗菌材料制备方法主要是通过原子层沉积或等离子体接枝等方法将带有抗菌功能的金属离子或金属氧化物合成到载体上,较强的化学键能延长了抗菌效果但其程序繁琐,不适合大规模推广应用。另外,多孔PTFE膜材料具有优良的化学稳定性和热稳定性,导致其与其他材料的表面粘合比较困难,需要选择合适的反应前驱体以提供足够的表面活化能,提高原子层沉积效果。或通过静电纺丝技术将金属离子、多酚类、有机酸类等有机物掺杂在纤维表面,静电纺丝参数的不确定性影响着纳米纤维的结构和形态,对纤维抗菌性能产生极大的影响,同时静电纺纳米纤维的强度较低且生产效率不高,限制了其工业化生产。另外多孔PTFE膜材料抗拉伸性等机械性能比较差,无论使用哪种方法改性,在实际应用时必须有相应的支撑材料以提高材料的机械强度,增加材料的使用寿命。
发明内容
为了解决当前抗菌材料制备方法繁琐,抗菌因子负载率低、覆合牢度不高的问题,本发明公开了一种抗菌防病毒空气净化材料,具有工艺简单,连续化生产能力强等优点,具有规模化生产前景,该方法制备出来的抗菌防病毒空气净化材料透气性高,抗菌性能好,使用寿命长。
本发明的技术方案:
一种抗菌防病毒空气净化材料制备方法,包括以下步骤:
步骤一:将碳纳米管、乙醇水溶液按一定比例混合,超声后在磁力搅拌下加入表面活性剂,搅拌均匀后加入缓冲溶液,搅拌均匀得到碳纳米管分散液。
步骤二:将多孔PTFE膜材料浸渍在乙醇溶液中,取出后置于表面活性剂和缓冲溶液的混合溶液中,浸泡完成后去离子水冲洗后自然晾干。
步骤三:将步骤一得到的碳纳米管分散液抽滤负载到处理过的多孔PTFE材料上,干燥后得到多层次PTFE膜材料。
步骤四:将有机抗菌剂加入到去离子水中配置抗菌溶液,调节pH值增加抗菌剂的溶 解度,磁力搅拌均匀后将多层次PTFE膜材料浸入抗菌溶液中,水热反应后烘干干燥。
步骤五:采用高温热压法将负有抗菌剂的PTFE膜材料与基布覆合,通过覆合辊筒的加热温度,压力及覆合速度调控高温覆膜工艺,完成后对复合膜进行收卷。
更进一步的步骤一中乙醇溶液质量分数为25%、50%、75%,表面活性剂为多巴胺、十二烷基硫酸钠、十二烷基苯磺酸钠、十二烷基聚氧乙烯醚,缓冲溶液为三(羟甲基)氨基甲烷水溶液、四硼酸钠水溶液、混合磷酸盐水溶液。
更进一步的步骤一中碳纳米管质量占混合溶液20-30%,超声时间为0.5-2h,碳纳米管的加入量与表面活性剂质量比为1:1-4,缓冲溶液与碳纳米管水溶液体积比1:3-5。
更进一步的步骤二中混合溶液中表面活性剂和缓冲溶液浓度和体积相同,表面活性剂和缓冲溶液浓度范围在10-30mM,去离子水冲洗次数为3-6次,多孔PTFE材料浸渍时间均为5-20min。
更进一步的步骤三中真空泵抽滤压力为0.04-0.098MPa,干燥温度为100-200℃,干燥时间为12-24h。
更进一步的步骤四中抗菌剂为二酮类、多酚类、壳聚糖类有机抗菌剂,抗菌剂质量占混合溶液的5-20%,pH调节剂为盐酸及醋酸和氢氧化钠及碳酸氢钠,磁力搅拌时间为0.5-1h,水热温度为60-120℃,水热时间为0.5-5h,干燥温度为80-100℃,干燥时间为1-4h。
更进一步的步骤五中高温热压法是将膜材料和基材按照顺序穿过覆合辊筒,覆合好的面料通过牵引辊筒,完成收卷。
更进一步的步骤五中覆合辊筒和牵引辊筒的材质均为不锈钢。
更进一步的步骤五中基布材质为聚酯、聚乙烯、玻璃纤维布,覆合温度为100-400℃,覆合压力为0.1-0.5MPa,覆合速度为2-5m/min。
有益效果:本发明所述的抗菌防病毒空气净化材料制备方法,通过表面活性剂和缓冲溶液增大碳纳米管分散性和稳定性,在PTFE纤维表面构建多层次结构以增大与污染物的接触面积和提高表面粗糙度增加后期抗菌负载率和负载牢度,利用简单快速的水热反应将有机抗菌剂负载到碳纳米管及PTFE纤维上,烘干干燥后采用高温热压法将抗菌防病毒膜材料覆合在基布上,在不降低透气性和抗菌效果的前提下增加抗菌防病毒空气净化材料整体强度,确保材料长期稳定使用。
附图说明
图1为本发明所述的不同碳纳米管负载量在PTFE膜表面的SEM图。(a)1.4g/m 2,(b)2.8g/m 2,(c)4.2g/m 2(d)5.6g/m 2
图2为本发明所述的膜材料与基材覆合后的SEM图。
具体实施方式
实施例1
一种抗菌防病毒空气净化材料制备方法,包括以下步骤:
步骤一:将10mg碳纳米管加入到30mL75%乙醇水溶液混合,超声1h后在磁力搅拌下加入40mg多巴胺,搅拌均匀5min后加入10mM三(羟甲基)氨基甲烷水溶液10mL,搅拌10min直至均匀得到碳纳米管分散液。
步骤二:将多孔PTFE膜材料浸渍在75%乙醇溶液中,取出后置于10mM多巴胺溶液10mL和10mM三(羟甲基)氨基甲烷水溶液10mL的混合溶液中,浸泡10min后去离子水冲洗3次后自然晾干。
步骤三:将步骤一得到的碳纳米管分散液抽滤负载到处理过的多孔PTFE材料上,抽滤压力0.06MPa,在100℃干燥12h后得到多层次PTFE膜材料。
步骤四:将姜黄素加入到去离子水中配置抗菌溶液,用氢氧化钠调节pH值至9,磁力搅拌1h后将多层次PTFE膜材料浸入抗菌溶液中,80℃水热反应2h,在80℃温度下烘干干燥1h。
步骤五:采用高温热压法将负有抗菌因子的PTFE膜材料与聚乙烯基布覆合,覆合温度为110℃,覆合压力为0.2MPa,覆合速度为2m/min,完成后对复合膜进行收卷。
本实施例制备的抗菌防病毒空气净化材料大肠杆菌抑制率大于95%,金黄色葡萄球菌抑制率大于95%,使用60天抗菌效果保持不变。
实施例2
一种抗菌防病毒空气净化材料制备方法,包括以下步骤:
步骤一:将15mg碳纳米管加入到35mL50%乙醇水溶液混合,超声1h后在磁力搅拌下加入45mg十二烷基硫酸钠,搅拌均匀15min后加入10mM三(羟甲基)氨基甲烷水溶液20mL,搅拌20min直至均匀得到碳纳米管分散液。
步骤二:将多孔PTFE膜材料浸渍在50%乙醇溶液中,取出后置于10mM十二烷基硫酸钠溶液20mL和10mM三(羟甲基)氨基甲烷水溶液20mL的混合溶液中,浸泡20min后去离子水冲洗4次后自然晾干。
步骤三:将步骤一得到的碳纳米管分散液抽滤负载到处理过的多孔PTFE材料上,抽滤压力0.08MPa,在100℃干燥12h后得到多层次PTFE膜材料。
步骤四:将茶多酚加入到去离子水中配置抗菌溶液,用盐酸调节pH值至3,磁力搅拌1h后将多层次PTFE膜材料浸入抗菌溶液中,100℃水热反应2h,在80℃温度下烘干干 燥1h。
步骤五:采用高温热压法将负有抗菌因子的PTFE膜材料与聚酯基布覆合,覆合温度为250℃,覆合压力为0.2MPa,覆合速度为3m/min,完成后对复合膜进行收卷。
本实施例制备的抗菌防病毒空气净化材料大肠杆菌抑制率大于95%,金黄色葡萄球菌抑制率大于95%,使用45天抗菌效果保持不变。
实施例3
一种抗菌防病毒空气净化材料制备方法,包括以下步骤:
步骤一:将15mg碳纳米管加入到45mL25%乙醇水溶液混合,超声2h后在磁力搅拌下加入30mg十二烷基苯磺酸钠,搅拌均匀20min后加入20mM混合磷酸盐水溶液20mL,搅拌20min直至均匀得到碳纳米管分散液。
步骤二:将多孔PTFE膜材料浸渍在25%乙醇溶液中,取出后置于20mM十二烷基苯磺酸钠溶液20mL和20mM混合磷酸盐水溶液20mL的混合溶液中,浸泡20min后去离子水冲洗5次后自然晾干。
步骤三:将步骤一得到的碳纳米管分散液抽滤负载到处理过的多孔PTFE材料上,抽滤压力0.09MPa,在100℃干燥24h后得到多层次PTFE膜材料。
步骤四:将壳聚糖衍生物加入到去离子水中配置抗菌溶液,用醋酸调节pH至3,磁力搅拌1h后将多层次PTFE膜材料浸入抗菌溶液中,60℃水热反应3h,在80℃温度下烘干干燥2h。
步骤五:采用高温热压法将负有抗菌因子的PTFE膜材料与聚酯基布覆合,覆合温度为250℃,覆合压力为0.3MPa,覆合速度为3m/min,完成后对复合膜进行收卷。
本实施例制备的抗菌防病毒空气净化材料大肠杆菌抑制率大于95%,金黄色葡萄球菌抑制率大于95%,使用30天抗菌效果保持不变。

Claims (10)

  1. 一种抗菌防病毒空气净化材料制备方法,其特征在于,包括以下步骤:
    步骤一:将碳纳米管、乙醇水溶液按一定比例混合,超声后在磁力搅拌下加入表面活性剂,搅拌均匀后加入缓冲溶液,搅拌均匀得到碳纳米管分散液;
    步骤二:将多孔PTFE膜材料浸渍在乙醇水溶液中,取出后置于表面活性剂和缓冲溶液的混合溶液中,浸泡完成后去离子水冲洗后自然晾干;
    步骤三:将步骤一得到的碳纳米管分散液抽滤负载到处理过的多孔PTFE材料上,干燥后得到多层次PTFE膜材料;
    步骤四:将有机抗菌剂加入到去离子水中配置抗菌溶液,调节pH值增加抗菌剂的溶解度,磁力搅拌均匀后将多层次PTFE膜材料浸入抗菌溶液中,水热反应后烘干干燥;
    步骤五:采用高温热压法将步骤四得到的PTFE膜材料与基布覆合,通过控制覆合辊筒的加热温度,压力及覆合速度制成复合膜,完成后对复合膜进行收卷。
  2. 根据权利要求1所述的一种抗菌防病毒空气净化材料制备方法,其特征在于,所述的乙醇溶液质量分数为25%、50%、75%,所述的表面活性剂为多巴胺、十二烷基硫酸钠、十二烷基苯磺酸钠、十二烷基聚氧乙烯醚,所述的缓冲溶液为三(羟甲基)氨基甲烷水溶液、四硼酸钠水溶液、混合磷酸盐水溶液。
  3. 根据权利要求1所述的一种抗菌防病毒空气净化材料制备方法,其特征在于,所述的步骤一中碳纳米管质量占混合溶液20-30%,所述超声时间为0.5-2h,所述的碳纳米管加入量与表面活性剂质量比为1:1-4,所述的缓冲溶液与碳纳米管水溶液体积比1:3-5。
  4. 根据权利要求1所述的一种抗菌防病毒空气净化材料制备方法,其特征在于,所述的步骤二中所述的混合溶液中表面活性剂和缓冲溶液浓度和体积相同,所述的表面活性剂溶液和缓冲溶液浓度范围在10-30mM,所述的去离子水冲洗次数为3-6次,所述的多孔PTFE材料浸渍时间均为5-20min。
  5. 根据权利要求1所述的一种抗菌防病毒空气净化材料制备方法,其特征在于,所述的步骤三中真空泵抽滤压力为0.04-0.098MPa,所述的干燥温度为100-200℃,所述的干燥时间为12-24h。
  6. 根据权利要求1所述的一种抗菌防病毒空气净化材料制备方法,其特征在于,所述的步骤四中抗菌剂为二酮类、多酚类、壳聚糖类有机抗菌剂,所述的抗菌剂质量占混合溶液的5-20%,所述的pH调节剂为盐酸及醋酸和氢氧化钠及碳酸氢钠,所述的磁力搅拌时间为0.5-1h,所述的水热温度为60-120℃,所述的水热时间为0.5-5h,所述的干燥温度为80-100℃,所述的干燥时间为1-4h。
  7. 根据权利要求1所述的一种抗菌防病毒空气净化材料制备方法,其特征在于,所述的步 骤五中高温热压法是将膜材料和基材按照顺序穿过覆合辊筒,覆合好的面料通过牵引辊筒,完成收卷。
  8. 根据权利要求1所述的一种抗菌防病毒空气净化材料制备方法,其特征在于,所述的步骤五中覆合辊筒和牵引辊筒的材质均为不锈钢。
  9. 根据权利要求1所述的一种抗菌防病毒空气净化材料制备方法,其特征在于,所述的步骤五中基布材质为聚酯、聚乙烯、玻璃纤维布,所述的覆合温度为100-400℃,所述的覆合压力为0.1-0.5MPa,所述的覆合速度为2-5m/min。
  10. 根据权利要求1-9任一项所述的一种抗菌防病毒空气净化材料制备方法制的膜材料,其特征在于,抗菌防病毒空气净化材料用于个人防护、室内净化领域。
PCT/CN2022/096536 2021-12-29 2022-06-01 一种抗菌防病毒空气净化材料制备方法 WO2023123862A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22865918.1A EP4226994A4 (en) 2021-12-29 2022-06-01 METHOD FOR PRODUCING ANTIBACTERIAL AND ANTIVIRAL AIR PURIFICATION MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111640536.6A CN114247309B (zh) 2021-12-29 2021-12-29 一种抗菌防病毒空气净化材料制备方法
CN202111640536.6 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023123862A1 true WO2023123862A1 (zh) 2023-07-06

Family

ID=80798663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096536 WO2023123862A1 (zh) 2021-12-29 2022-06-01 一种抗菌防病毒空气净化材料制备方法

Country Status (3)

Country Link
EP (1) EP4226994A4 (zh)
CN (1) CN114247309B (zh)
WO (1) WO2023123862A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116870232A (zh) * 2023-07-14 2023-10-13 广东美登新材料科技有限公司 一种一体式经期裤复合芯体及其制备方法
CN117180852A (zh) * 2023-11-06 2023-12-08 岚山环保科技(上海)有限公司 一种基于活性炭的多功能空气过滤网及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114247309B (zh) * 2021-12-29 2023-08-22 江苏久朗高科技股份有限公司 一种抗菌防病毒空气净化材料制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110024355A1 (en) * 2007-10-10 2011-02-03 Polymers Crc Ltd. Antimicrobial membranes
US20140209539A1 (en) * 2013-01-31 2014-07-31 Nouran Ashraf Abdel Hamied EL BADAWI Polymer-carbon nanotube nanocomposite porous membranes
CN106955603A (zh) * 2017-03-23 2017-07-18 同济大学 一种表面偏析功能化抗污染聚合物分离膜及其制备方法
CN207324288U (zh) * 2017-07-26 2018-05-08 河南省安克林滤业有限公司 空气净化用抗菌型低阻高效熔喷过滤布
CN114247309A (zh) * 2021-12-29 2022-03-29 江苏久朗高科技股份有限公司 一种抗菌防病毒空气净化材料制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118475B1 (ko) * 2010-01-22 2012-03-12 (주)바이오니아 친수화 표면개질된 복합 다공막 및 이의 제조방법
US9840425B2 (en) * 2014-01-31 2017-12-12 Khalifa University of Science and Technology Photo-regenerable filters useful for the removal of organic compounds
CN103861482A (zh) * 2014-03-25 2014-06-18 湖州森诺氟材料科技有限公司 一种聚四氟乙烯空气除尘过滤膜
CN106237876A (zh) * 2016-09-26 2016-12-21 江苏久朗高科技股份有限公司 一种多功能复合膜材料及其生产工艺
CN108404687B (zh) * 2018-04-27 2020-06-05 南京工业大学 一种用于空气净化的多层次功能膜的制备方法
CN111469507A (zh) * 2020-03-31 2020-07-31 安徽元琛环保科技股份有限公司 高效抗菌型口罩用纳米膜及制备方法、应用
CN111543693A (zh) * 2020-04-10 2020-08-18 北京大学深圳研究生院 一种高效抗菌口罩
CN111775520A (zh) * 2020-08-06 2020-10-16 福建省福杯满溢科技有限公司 一种过滤口罩用无纺布复合材料
CN112656061A (zh) * 2021-01-07 2021-04-16 辽宁新洪源环保材料有限公司 一种防护面罩
CN113684681A (zh) * 2021-07-28 2021-11-23 安信生物科技有限公司 一种口罩制备方法及基于该方法制备的口罩

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110024355A1 (en) * 2007-10-10 2011-02-03 Polymers Crc Ltd. Antimicrobial membranes
US20140209539A1 (en) * 2013-01-31 2014-07-31 Nouran Ashraf Abdel Hamied EL BADAWI Polymer-carbon nanotube nanocomposite porous membranes
CN106955603A (zh) * 2017-03-23 2017-07-18 同济大学 一种表面偏析功能化抗污染聚合物分离膜及其制备方法
CN207324288U (zh) * 2017-07-26 2018-05-08 河南省安克林滤业有限公司 空气净化用抗菌型低阻高效熔喷过滤布
CN114247309A (zh) * 2021-12-29 2022-03-29 江苏久朗高科技股份有限公司 一种抗菌防病毒空气净化材料制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4226994A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116870232A (zh) * 2023-07-14 2023-10-13 广东美登新材料科技有限公司 一种一体式经期裤复合芯体及其制备方法
CN116870232B (zh) * 2023-07-14 2024-04-16 广东美登新材料科技有限公司 一种一体式经期裤复合芯体及其制备方法
CN117180852A (zh) * 2023-11-06 2023-12-08 岚山环保科技(上海)有限公司 一种基于活性炭的多功能空气过滤网及其制备方法
CN117180852B (zh) * 2023-11-06 2024-01-26 岚山环保科技(上海)有限公司 一种基于活性炭的多功能空气过滤网及其制备方法

Also Published As

Publication number Publication date
CN114247309B (zh) 2023-08-22
CN114247309A (zh) 2022-03-29
EP4226994A1 (en) 2023-08-16
EP4226994A4 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2023123862A1 (zh) 一种抗菌防病毒空气净化材料制备方法
Wang et al. Ag@ AgCl nanoparticles in-situ deposited cellulose acetate/silk fibroin composite film for photocatalytic and antibacterial applications
CN106512598A (zh) 具有除尘和催化脱硝功能的陶瓷膜过滤元件及其制备方法
CN104558664A (zh) 利用氧化石墨烯和纳米二氧化硅制备强亲水pet膜的方法
WO2022160567A1 (zh) 一种基于原位还原的无机改性膜的制备方法及其应用
CN102964878B (zh) 一种稀土氧化物/空心玻璃微珠复合材料的制备方法
CN103614863A (zh) Pva/金属纳米粒子复合纳米纤维膜的制备方法
CN103928202A (zh) 一种三维电极反应器的绝缘粒子及应用方法
CN105289325A (zh) 一种用于空气净化的载银碳纳米管陶瓷复合膜的制备方法
CN101385967B (zh) 用于光催化的纳米二氧化钛薄膜的制备方法
CN103406031A (zh) 一种低阻高通量耐污型水处理膜及其制备方法
CN1511630A (zh) 多孔陶瓷负载的高活性纳米二氧化钛的制备方法
CN109267023A (zh) 一种抗菌活性炭纤维材料及其制备方法
CN103908962B (zh) 银掺杂二氧化钛气凝胶涂层制备工艺及设备
CN111054142A (zh) 一种抑菌高吸附率过滤材料的制备方法
CN108755103B (zh) 一种光催化自清洁防紫外织物的制备方法
CN101775743B (zh) 低温原位制备Ag修饰TiO2复合空气净化功能织物的方法
CN110871099A (zh) 一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法
CN110652887A (zh) 一种制备稀土改性聚偏氟乙烯中空纤维膜的方法
CN106634501B (zh) 一种用于化工泵的耐温涂料
CN104445355A (zh) 一种用细菌纤维素制备过渡金属氧化物纳米管网络的方法
CN108246321A (zh) 一种NiTiO3-ZrO2污水处理复合膜的制备方法
CN105177505B (zh) 一种在碳化硅纤维表面生长氧化铝涂层的方法
CN106744921B (zh) 电热涂膜用的TiO2/石墨纳米片复合粉体的制备方法
CN109589957B (zh) 一种TiO2纳米粒子薄膜及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022865918

Country of ref document: EP

Effective date: 20230322