WO2023123277A1 - 显示面板及其制备方法 - Google Patents

显示面板及其制备方法 Download PDF

Info

Publication number
WO2023123277A1
WO2023123277A1 PCT/CN2021/143347 CN2021143347W WO2023123277A1 WO 2023123277 A1 WO2023123277 A1 WO 2023123277A1 CN 2021143347 W CN2021143347 W CN 2021143347W WO 2023123277 A1 WO2023123277 A1 WO 2023123277A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
layer
color conversion
display panel
Prior art date
Application number
PCT/CN2021/143347
Other languages
English (en)
French (fr)
Inventor
樊勇
Original Assignee
厦门市芯颖显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市芯颖显示科技有限公司 filed Critical 厦门市芯颖显示科技有限公司
Priority to PCT/CN2021/143347 priority Critical patent/WO2023123277A1/zh
Publication of WO2023123277A1 publication Critical patent/WO2023123277A1/zh

Links

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a manufacturing method thereof.
  • MicroLED (Micro Light emitting diode (light emitting diode) display is a new next-generation display technology after liquid crystal display and OLED display.
  • the MicroLED display panel uses LED light-emitting chips (MicroLED chips) with a size ranging from a few microns to tens of microns as pixel units, which are closely arranged in an array one by one, and each chip can be independently driven to light up and emit light.
  • MicroLED display panels have many advantages such as self-illumination, high efficiency, long life, and ultra-high resolution.
  • Embodiments of the present application provide a display panel and a manufacturing method thereof, which can avoid the problem of poor display effect caused by light crosstalk between adjacent pixels, and help improve the display effect of the display panel.
  • the embodiment of the present application provides a display panel, including:
  • a display substrate the display substrate includes a TFT substrate and a plurality of light-emitting devices and a light-absorbing layer arranged on one side of the TFT substrate, and the light-absorbing layer is arranged in the interval area between the plurality of light-emitting devices and a plurality of the light-absorbing layers the periphery of the light-emitting device;
  • a color filter substrate set opposite to the display substrate, the color filter substrate includes a first substrate and a plurality of color filters and a black matrix arranged on one side of the first substrate, the black matrix There are a plurality of hollowed out areas, and a plurality of the color filters are respectively located in the plurality of the hollowed out areas, and the plurality of the color filters are respectively set corresponding to the plurality of the light emitting devices; the color filter The substrate also includes a plurality of color conversion layers and reflective barriers, the plurality of color conversion layers are respectively disposed on the side of the plurality of color filters away from the first substrate, and the reflective barriers are disposed on A side of the black matrix away from the first substrate;
  • the side of the display substrate provided with a plurality of the light-emitting devices and the light-absorbing layer is set toward the side of the color filter substrate provided with the plurality of the color conversion layers and the reflective barrier .
  • the material of the light absorbing layer includes black metal oxide.
  • the ferrous metal oxide includes molybdenum oxide.
  • the light-absorbing layer includes a first metal layer, a light-transmitting medium layer, and a second metal layer stacked in sequence, wherein the first metal layer is disposed close to the TFT substrate, and the first metal layer layer includes one or more of copper, silver and aluminum, the second metal layer includes one or more of molybdenum and titanium, and the light-transmitting medium layer includes metal oxide, silicon oxide, silicon nitride one or more of.
  • the material of the light absorbing layer includes an organic black material.
  • the material of the reflective barrier includes organic materials and inorganic materials, and the organic materials include one or more of BT resin, silica gel, methyl methacrylate, and polyimide.
  • the inorganic material includes one or more of titanium dioxide and tantalum pentoxide.
  • the height of the reflective barrier is greater than the height of the color conversion layer.
  • the height difference between the reflective barrier and the color conversion layer is more than 1/10 of the height of the light emitting device.
  • the material of the reflective barrier is a hydrophilic material
  • the material of the color conversion layer is a hydrophobic material
  • the display substrate is provided with a plurality of the light-emitting devices and the side of the light-absorbing layer and the color filter substrate is provided with a plurality of the color conversion layers and the reflective barrier One side is connected together by adhesive glue layer.
  • the embodiment of the present application provides a method for manufacturing a display panel, including:
  • TFT substrate Provides a TFT substrate, and transfer multiple light-emitting devices on the TFT substrate;
  • a first substrate is provided, and the first substrate includes a first substrate and a plurality of color filters and a black matrix arranged on one side of the first substrate, and a plurality of hollowed-out areas are arranged on the black matrix.
  • Each of the color filters is located in the plurality of hollowed-out areas, and the plurality of color filters are arranged corresponding to the plurality of light-emitting devices;
  • a plurality of color conversion layers are respectively formed on the side of the plurality of color filters away from the first substrate, and a reflective barrier is formed on the side of the black matrix away from the first substrate, making Obtain a color filter substrate;
  • An adhesive layer is provided to connect the display substrate and the color filter substrate together to obtain a display panel.
  • the material of the reflective barrier is a hydrophilic material, and the material of the color conversion layer is a hydrophobic material;
  • the forming a plurality of color conversion layers on the sides of the plurality of color filters away from the first substrate respectively includes: forming a plurality of color conversion layers by doctor blade coating;
  • the forming of the reflective barrier on the side of the black matrix away from the first substrate includes: forming the reflective barrier by spraying.
  • a light-absorbing layer is provided in the display substrate, so that a plurality of light-emitting devices are respectively arranged in a plurality of hollow areas on the light-absorbing layer, and at the same time, the color filters and color filters in the color filter substrate
  • the conversion layer is set to correspond to the light-emitting device, and the light-absorbing layer can be used to absorb the light emitted into the space area between the light-emitting devices on the display substrate, so as to prevent the light emitted by the light-emitting device from being reflected into adjacent pixels through the surface of the space area Interference is caused in the color conversion layer and the color filter, thereby avoiding the problem of light crosstalk between adjacent pixels and resulting in poor display effect, which is conducive to improving the display effect of the display panel.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the light absorbing layer provided in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a method for manufacturing a display panel provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a TFT substrate provided in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of transferring a light-emitting device on a TFT substrate according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of forming a light absorbing layer on a TFT substrate according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first substrate provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of preparing a color conversion layer on a first substrate according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of preparing a reflective barrier on a first substrate according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • An embodiment of the present application provides a display panel 100 , including a display substrate 10 and a color filter substrate 20 disposed opposite to each other.
  • the display substrate 10 includes a TFT substrate 11 and a plurality of light-emitting devices 13 and a light-absorbing layer 14 arranged on one side of the TFT substrate 11, and the light-absorbing layer 14 is arranged in the interval area between the plurality of light-emitting devices 13 and the periphery of the plurality of light-emitting devices 13 (That is, a light-absorbing layer 14 is provided between any two adjacent light-emitting devices 13 , and a light-absorbing layer 14 is also provided outside the light-emitting device 13 at an edge position).
  • the color filter substrate 20 includes a first substrate 21 and a plurality of color filters 22 and a black matrix 23 arranged on one side of the first substrate 21.
  • the black matrix 23 is provided with a plurality of hollow areas, and a plurality of color filters Sheets 22 are respectively located in multiple hollowed-out areas, and multiple color filters 22 are respectively arranged corresponding to multiple light emitting devices 13;
  • color filter substrate 20 also includes multiple color conversion layers 24 and reflective barriers 25, multiple color conversion layers The layers 24 are respectively disposed on the side of the plurality of color filters 22 away from the first substrate 21 , and the reflection barrier 25 is disposed on the side of the black matrix 23 away from the first substrate 21 .
  • the side of the display substrate 10 provided with a plurality of light-emitting devices 13 and the light absorbing layer 14 faces to the side of the color filter substrate 20 provided with a plurality of color conversion layers 24 and reflective barriers 25 .
  • the side of the display substrate 10 provided with a plurality of light-emitting devices 13 and the light-absorbing layer 14 and the side of the color filter substrate 20 provided with a plurality of color conversion layers 24 and reflective barriers 25 pass through an adhesive layer 30 connected together.
  • the display panel 100 in the embodiment of the present application, it can be defined that in the vertical direction, one light emitting device 13, one color conversion layer 24, and one color filter 22 correspond to each other to form a pixel.
  • the panel 100 displays a picture and the light-emitting device 13 in a certain pixel needs to emit light
  • the surface of the space area between adjacent light-emitting devices 13 on the display substrate 10 has a reflective effect
  • the light reflected by the space area is likely to be Passing through the adhesive layer 30 into the color conversion layer 24 and the color filter 22 of the adjacent pixel causes interference to the adjacent pixel, especially when the adjacent pixel does not need to be lighted, because the crosstalk of the reflected light will As a result, the pixel is turned on, resulting in poor display.
  • the light-absorbing layer 14 is provided on the surface of the space between the light-emitting devices 13 on the display substrate 10, which can effectively solve the problem of light crosstalk caused by reflection and improve the display effect of the display panel 100.
  • a light-absorbing layer 14 is provided in the display substrate 10, so that a plurality of light-emitting devices 13 are respectively arranged in a plurality of hollow areas on the light-absorbing layer 14, and at the same time, the color filter substrate 20
  • the color filter 22 and the color conversion layer 24 are set to correspond to the light-emitting devices 13, and the light absorbing layer 14 can be used to absorb the light emitted into the space between the light-emitting devices 13 on the display substrate 10, so as to prevent the light-emitting devices 13 from emitting
  • the light reflected by the surface of the spaced area to the color conversion layer 24 and the color filter 22 in the adjacent pixel causes interference, thereby avoiding the problem of light crosstalk between adjacent pixels and resulting in poor display effect, and has the advantages of It is beneficial to improve the display effect of the display panel 100 .
  • the TFT substrate 11 may include a second substrate 111 and a TFT device layer 112 stacked, and a plurality of light-emitting devices 13 and light-absorbing layers 14 are arranged on the side of the TFT device layer 112 away from the second substrate 111, A plurality of light emitting devices 13 are electrically connected to the TFT device layer 112 .
  • the material of the light absorbing layer 14 may be black metal oxide.
  • the black metal oxide may be molybdenum oxide.
  • FIG. 2 is a schematic structural diagram of the light absorbing layer provided in the embodiment of the present application.
  • the light-absorbing layer 14 may include a first metal layer 141, a light-transmitting medium layer 143, and a second metal layer 142 that are sequentially stacked, wherein the first metal layer 141 is disposed close to the TFT substrate 11, and the first metal layer 141 includes one or more of copper (Cu), silver (Ag) and aluminum (AL), the second metal layer 142 includes one or more of molybdenum (Mo) and titanium (Ti), and the light-transmitting medium Layer 143 includes one or more of metal oxide, silicon oxide (SiOx), silicon nitride (SiNx).
  • the first metal layer 141, the light-transmitting medium layer 143 and the second metal layer 142 can be utilized.
  • the two metal layers 142 form a harmonic cavity. Because the material (molybdenum, titanium) of the second metal layer 142 has better light absorption performance, when light enters the second metal layer 142, part of the light is absorbed, and the other part of the light passes through the second metal layer 142.
  • the second metal layer 142 enters the harmonic cavity.
  • the light After the light enters the harmonic cavity, it can be reflected back and forth between the second metal layer 142 and the first metal layer 141, but can no longer be emitted from the second metal layer 142, thereby achieving the effect of light absorption. .
  • the cost of the stacked structure solution is relatively low.
  • the material of the light absorbing layer 14 may include an organic black material.
  • the organic black material may be a mixture of organic resin material and black pigment.
  • the function of the reflective barrier 25 is to separate adjacent pixels, preventing the light emitted by the light emitting device 13 in one pixel and the emitted light from the color conversion layer 24 from entering the color conversion layer 24 in an adjacent pixel. And in the color filter 22, thereby causing interference to adjacent pixels.
  • the reflectivity of the reflective barrier 25 may be above 85%, such as 85%, 90%, 95%, 100% and so on.
  • the material of the reflective barrier 25 includes organic materials and inorganic materials, wherein the organic materials include one or more of BT resin, silica gel, methyl methacrylate (MMA), and polyimide (PI) ;
  • BT resin is based on bismaleimide (BMI) and triazine as the main resin components, and adding epoxy resin, polyphenylene ether resin (PPE) or allyl compounds as modified components, the formed thermosetting Resin;
  • the inorganic material includes one or more of titanium dioxide (TiO2) and tantalum pentoxide (Ta2O5).
  • the color of the reflective retaining wall 25 is white.
  • the height of the reflective barrier 25 is greater than that of the color conversion layer 24 , so as to prevent mutual interference of emitted light from the color conversion layer 24 in adjacent pixels.
  • the height difference between the reflective barrier 25 and the color conversion layer 24 is between 1/10 and 1/2 of the height of the light emitting device 13 (such as 1/10, 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, etc.).
  • the height of the reflective barrier 25 may be greater than 20 ⁇ m (eg, 20 ⁇ m, 23 ⁇ m, 25 ⁇ m, 28 ⁇ m, 30 ⁇ m, etc.).
  • the material of the reflective barrier 25 is a hydrophilic material
  • the material of the color conversion layer 24 is a hydrophobic material.
  • the polarity between the material of the reflective barrier 25 and the material of the color conversion layer 24 is mutually repulsive, so the method of spraying can be used to prepare the reflective barrier 25.
  • the material of the wall 25 will not be adsorbed on the color conversion layer 24 and cause pollution to it.
  • the preparation cost of the reflective barrier 25 in the embodiment of the present application is relatively low.
  • the material of the color conversion layer 24 may include one or more of quantum dot materials, phosphor materials, and phosphorescent photoluminescent materials.
  • the quantum dot material may include one or more of CdS/CdSe, InP, and perovskite quantum dots
  • the phosphor material may include one of YAG phosphor, silicate phosphor, and nitride phosphor.
  • phosphorescent photoluminescent materials may include KSF.
  • the color conversion layer 24 can convert the light emitted by the light emitting device 13 into light with a wavelength range of 500nm-660nm.
  • the light converted by the color conversion layer 24 may be a combination of green light (G) and red light (R), yellow light (Y), a combination of yellow light (Y) + red light (R), green light (G) + combination of orange light (O), etc.
  • the plurality of light-emitting devices 13 can all be blue light-emitting devices, and the light converted by the color conversion layer 24 can be a combination of green light and red light.
  • the blue light emitted by the color conversion layer 24 in the light-emitting device 13 The green excitation light and the red excitation light are generated under the excitation, and the green excitation light, the red excitation light and the remaining unexcited blue light are mixed to form white light.
  • the light-emitting device 13 can be an LED chip. It can be understood that when the plurality of light-emitting devices 13 are all blue light-emitting devices, since only a single-color chip such as a blue-light MicroLED chip needs to be transferred, it is different from transferring a red-light MicroLED chip at the same time. Chip, green MicroLED chip and blue MicroLED chip technical solutions, this application can improve the transfer efficiency of LED chips 3 times, the transfer cost is reduced; in addition, because the cost of the blue MicroLED chip is lower than that of the red MicroLED chip and the green light The cost of Micro LED chips is low, so the cost of using LED chips can be further reduced.
  • the pixel structure of the display panel 100 can be a pixel structure design such as RGBW, RGB, RGBC, RGBY, RGBC, RGBYC, RGBYM, RGBCM, RGBYC, WYCM; where R is red, G is green, B is blue, W is white, M is magenta (including B and R), Y is magenta (including G+R), and C is cyan (including B+G).
  • the plurality of color filters 22 may include a red filter (for forming red pixels), a green filter (for forming green pixels), and a blue filter (for forming blue pixels) , which can also include clear filters (for white pixels), magenta filters (for magenta pixels), magenta yellow filters (for magenta yellow pixels), cyan filters (for magenta to form cyan pixels), etc.
  • the material of the black matrix 23 may include an organic black material.
  • the organic black material may be a mixture of organic resin material and black pigment.
  • FIG. 3 is a schematic diagram of a method for manufacturing a display panel provided in an embodiment of the present application.
  • the embodiment of the present application provides a method for preparing a display panel, which can be used to prepare the display panel in any of the above embodiments, and the preparation method includes:
  • TFT substrate Provides a TFT substrate, and transfer multiple light emitting devices on the TFT substrate.
  • FIG. 4 is a schematic structural diagram of a TFT substrate provided in an embodiment of the present application.
  • the TFT substrate 11 may include a second substrate 111 and a TFT device layer 112 stacked in layers, and a plurality of light emitting devices 13 and light absorbing layers 14 are all provided On the side of the TFT device layer 112 away from the second substrate 111 .
  • FIG. 5 is a schematic diagram of transferring a light emitting device on a TFT substrate according to an embodiment of the present application. After the plurality of light emitting devices 13 are transferred on the TFT substrate 11 , the plurality of light emitting devices 13 are electrically connected to the TFT device layer 112 .
  • Form a light-absorbing layer on a TFT substrate and the light-absorbing layer is arranged in the interval region between multiple light-emitting devices and the periphery of the multiple light-emitting devices, so as to obtain a display substrate.
  • FIG. 6 is a schematic diagram of forming a light absorbing layer on a TFT substrate according to an embodiment of the present application.
  • the light absorbing layer 14 is disposed in the interval area between the plurality of light emitting devices 13 and the periphery of the plurality of light emitting devices 13 .
  • the material of the light-absorbing layer 14 is an organic black material
  • the light-absorbing layer 14 may be formed by coating (such as spray coating, blade coating, etc.).
  • the material of the light absorbing layer 14 is black metal oxide
  • the light absorbing layer 14 may be formed by chemical vapor deposition.
  • the first metal layer 141 and the second metal layer 142 can be formed by physical vapor deposition.
  • the optical medium layer 143 can be formed by chemical vapor deposition.
  • the first substrate includes a first substrate, a plurality of color filters and a black matrix arranged on one side of the first substrate, and a plurality of hollow areas are arranged on the black matrix, and a plurality of color filters are arranged on one side of the first substrate.
  • the sheets are respectively located in the multiple hollowed-out areas, and the multiple color filters are set correspondingly to the multiple light-emitting devices.
  • FIG. 7 is a schematic structural diagram of the first substrate provided by the embodiment of the present application.
  • the first substrate 40 includes a first substrate 21 and a plurality of color filters 22 and a black matrix 23 arranged on one side of the first substrate 21, and the plurality of color filters 22 in the first substrate 40 may include a red filter.
  • the light sheet, the green filter and the blue filter, when white light passes through the above filters, can form red light, green light and blue light respectively.
  • the black matrix 23 may correspond to the light absorbing layer 14 .
  • FIG. 8 is a schematic diagram of preparing a color conversion layer on the first substrate provided by the embodiment of the present application.
  • a plurality of color conversion layers are formed on the side away from the first substrate 21 on a plurality of color filters 22.
  • Layer 24 please refer to FIG. 9.
  • FIG. 9 is a schematic diagram of preparing a reflective barrier on the first substrate provided by the embodiment of the present application.
  • a reflective barrier is formed on the side of the black matrix 23 away from the first substrate 21, and the obtained A color filter substrate 20 .
  • the material of the reflective barrier 25 can be a hydrophilic material, and the material of the color conversion layer 24 can be a hydrophobic material;
  • a plurality of color conversion layers 24" may specifically include: forming a plurality of color conversion layers 24 using a scrape coating process; "forming a reflective barrier 25 on the side of the black matrix 23 away from the first substrate 21" may specifically include: using spray coating process to form the reflective barrier 25 .
  • the material cost of the color conversion layer 24 can be further reduced, so it is different from the production of the existing color conversion layer 24 Compared with other processes (including yellow light process and/or inkjet printing process), the solution of the present application to prepare the color conversion layer 24 by using the doctor blade coating process can greatly reduce the production cost of the color conversion layer 24 .
  • the order of preparation of the display substrate and the color filter substrate is not sequential, that is, the display substrate and the color filter substrate can be prepared at the same time, or the display substrate can be prepared first and then the color filter substrate can be prepared. substrate, or the color filter substrate may be prepared first and then the display substrate may be prepared.
  • An adhesive layer is arranged between the side of the display substrate on which multiple light-emitting devices and light-absorbing layers are provided and the side of the color filter substrate on which multiple color conversion layers and reflective barriers are provided, so as to attach the display substrate It is connected with the color filter substrate to make a display panel.
  • the adhesive layer 30 must be a transparent adhesive layer, so that the light emitted by the light emitting device 13 can enter the color conversion layer 24 through the adhesive layer 30 .

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及其制备方法。本申请通过在显示基板中设置吸光层,使多个发光器件分别设置于吸光层上的多个镂空区域内,同时将彩色滤光基板中的彩色滤光片和色转换层设置为与发光器件相对应,能够避免相邻的像素之间发生光线串扰进而导致显示效果不佳的问题,有利于提升显示面板的显示效果。

Description

显示面板及其制备方法 技术领域
本申请涉及显示技术领域,特别涉及一种显示面板及其制备方法。
背景技术
MicroLED(Micro light emitting diode,微型发光二极管)显示是继液晶显示与OLED显示之后新出现的下一代显示技术。MicroLED显示面板采用尺寸在几微米至几十微米之间的LED发光芯片(MicroLED芯片)作为像素单元,一颗一颗紧密地排列成阵列,每颗芯片都能独立地被驱动点亮发出光线。MicroLED显示面板具有自发光、高效、长寿命、超高分辨率等诸多优点。
技术问题
然而,现有的MicroLED显示面板容易出现相邻的像素之间发生光线串扰进而导致显示效果不佳的问题。
技术解决方案
本申请实施例提供一种显示面板及其制备方法,能够避免相邻的像素之间发生光线串扰进而导致显示效果不佳的问题,有利于提升显示面板的显示效果。
第一方面,本申请实施例提供一种显示面板,包括:
显示基板,所述显示基板包括TFT基板以及设于所述TFT基板一侧的多个发光器件和吸光层,所述吸光层设于多个所述发光器件之间的间隔区域内及多个所述发光器件的***;
彩色滤光基板,与所述显示基板相对设置,所述彩色滤光基板包括第一衬底和设于所述第一衬底一侧的多个彩色滤光片和黑色矩阵,所述黑色矩阵上设有多个镂空区域,多个所述彩色滤光片分别位于多个所述镂空区域内,多个所述彩色滤光片分别与多个所述发光器件对应设置;所述彩色滤光基板还包括多个色转换层和反射挡墙,多个所述色转换层分别设于多个所述彩色滤光片上远离所述第一衬底的一侧,所述反射挡墙设于所述黑色矩阵上远离所述第一衬底的一侧;
其中,所述显示基板上设有多个所述发光器件和所述吸光层的一侧朝向所述彩色滤光基板上设有多个所述色转换层和所述反射挡墙的一侧设置。
在一些实施例中,所述吸光层的材料包括黑色金属氧化物。
在一些实施例中,所述黑色金属氧化物包括氧化钼。
在一些实施例中,所述吸光层包括依次层叠设置的第一金属层、透光介质层以及第二金属层,其中,所述第一金属层靠近所述TFT基板设置,所述第一金属层包括铜、银和铝中的一种或多种,所述第二金属层包括钼和钛中的一种或多种,所述透光介质层包括金属氧化物、氧化硅、氮化硅中的一种或多种。
在一些实施例中,所述吸光层的材料包括有机黑色材料。
在一些实施例中,所述反射挡墙的材料包括有机材料和无机材料,所述有机材料包括BT树脂、硅胶、甲基丙烯酸甲酯、聚酰亚胺中的一种或多种,所述无机材料包括二氧化钛和五氧化二钽中的一种或多种。
在一些实施例中,所述反射挡墙的高度大于所述色转换层的高度。
在一些实施例中,所述反射挡墙和所述色转换层之间的高度差是所述发光器件的高度的1/10以上。
在一些实施例中,所述反射挡墙的材料为亲水性材料,所述色转换层的材料为疏水性材料。
在一些实施例中,所述显示基板上设有多个所述发光器件和所述吸光层的一侧与所述彩色滤光基板上设有多个所述色转换层和所述反射挡墙的一侧通过粘合胶层连接在一起。
第二方面,本申请实施例提供一种显示面板的制备方法,包括:
提供TFT基板,在TFT基板上转移多个发光器件;
在TFT基板上形成吸光层,所述吸光层设于多个所述发光器件之间的间隔区域内及多个所述发光器件的***,制得显示基板;
提供第一基板,所述第一基板包括第一衬底和设于所述第一衬底一侧的多个彩色滤光片和黑色矩阵,所述黑色矩阵上设有多个镂空区域,多个所述彩色滤光片分别位于多个所述镂空区域内,多个所述彩色滤光片分别与多个所述发光器件对应设置;
在多个所述彩色滤光片上远离所述第一衬底的一侧分别形成多个色转换层,在所述黑色矩阵上远离所述第一衬底的一侧形成反射挡墙,制得彩色滤光基板;
在所述显示基板上设有多个所述发光器件和所述吸光层的一侧与所述彩色滤光基板上设有多个所述色转换层和所述反射挡墙的一侧之间设置粘合胶层,以将所述显示基板和所述彩色滤光片基板连接在一起,制得显示面板。
在一些实施例中,所述反射挡墙的材料为亲水性材料,所述色转换层的材料为疏水性材料;
所述在多个所述彩色滤光片上远离所述第一衬底的一侧分别形成多个色转换层包括:采用刮涂工艺形成多个所述色转换层;
所述在所述黑色矩阵上远离所述第一衬底的一侧形成反射挡墙包括:采用喷涂工艺形成所述反射挡墙。
有益效果
本申请实施例提供的显示面板,通过在显示基板中设置吸光层,使多个发光器件分别设置于吸光层上的多个镂空区域内,同时将彩色滤光基板中的彩色滤光片和色转换层设置为与发光器件相对应,能够利用吸光层对发射至显示基板上发光器件之间的间隔区域中的光线进行吸收,避免发光器件发射的光线经由间隔区域的表面反射至相邻像素内的色转换层和彩色滤光片中造成干扰,从而避免了相邻的像素之间发生光线串扰进而导致显示效果不佳的问题,有利于提升显示面板的显示效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示面板的结构示意图。
图2为本申请实施例提供的吸光层的结构示意图。
图3为本申请实施例提供的显示面板的制备方法的示意图。
图4为本申请实施例提供的TFT基板的结构示意图。
图5为本申请实施例提供的在TFT基板上转移发光器件的示意图。
图6为本申请实施例提供的在TFT基板上形成吸光层的示意图。
图7为本申请实施例提供的第一基板的结构示意图。
图8为本申请实施例提供的在第一基板上制备色转换层的示意图。
图9为本申请实施例提供的在第一基板上制备反射挡墙的示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请实施例提供的显示面板的结构示意图。本申请实施例提供一种显示面板100,包括相对设置的显示基板10和彩色滤光基板20。
显示基板10包括TFT基板11以及设于TFT基板11一侧的多个发光器件13和吸光层14,吸光层14设于多个发光器件13之间的间隔区域内及多个发光器件13的***(即在任意相邻的两个发光器件13之间设置有吸光层14,在边缘位置的发光器件13的外侧也设置有吸光层14)。
彩色滤光基板20包括第一衬底21和设于第一衬底21一侧的多个彩色滤光片22和黑色矩阵23,黑色矩阵23上设有多个镂空区域,多个彩色滤光片22分别位于多个镂空区域内,多个彩色滤光片22分别与多个发光器件13对应设置;彩色滤光基板20还包括多个色转换层24和反射挡墙25,多个色转换层24分别设于多个彩色滤光片22上远离第一衬底21的一侧,反射挡墙25设于黑色矩阵23上远离第一衬底21的一侧。
其中,显示基板10上设有多个发光器件13和吸光层14的一侧朝向彩色滤光基板20上设有多个色转换层24和反射挡墙25的一侧设置。
示例性地,显示基板10上设有多个发光器件13和吸光层14的一侧与彩色滤光基板20上设有多个色转换层24和反射挡墙25的一侧通过粘合胶层30连接在一起。
可以理解的是,本申请实施例提供的显示面板100中,可以定义在竖直方向上,一个发光器件13、一个色转换层24、一个彩色滤光片22相互对应,构成一个像素,当显示面板100显示画面,需要某一个像素内的发光器件13发光时,如果显示基板10上位于相邻的发光器件13之间的间隔区域的表面具有反光效果,那么该间隔区域反射的光很可能会穿过粘合胶层30进入相邻的像素的色转换层24和彩色滤光片22中对相邻像素造成干扰,特别是当相邻的像素不需要点亮时,由于反射光的串扰会导致该像素点亮,从而造成显示不良,本申请通过在显示基板10上发光器件13之间的间隔区域表面设置吸光层14,能够有效解决反光导致的光线串扰问题,提升显示面板100的显示效果。
本申请实施例提供的显示面板100,通过在显示基板10中设置吸光层14,使多个发光器件13分别设置于吸光层14上的多个镂空区域内,同时将彩色滤光基板20中的彩色滤光片22和色转换层24设置为与发光器件13相对应,能够利用吸光层14对发射至显示基板10上发光器件13之间的间隔区域中的光线进行吸收,避免发光器件13发射的光线经由间隔区域的表面反射至相邻像素内的色转换层24和彩色滤光片22中造成干扰,从而避免了相邻的像素之间发生光线串扰进而导致显示效果不佳的问题,有利于提升显示面板100的显示效果。
请结合图1,TFT基板11可以包括层叠设置的第二衬底111和TFT器件层112,多个发光器件13和吸光层14均设于TFT器件层112远离第二衬底111的一侧,多个发光器件13均与TFT器件层112电性连接。
在一些实施例中,吸光层14的材料可以为黑色金属氧化物。示例性地,黑色金属氧化物可以为氧化钼。
请参阅图2,图2为本申请实施例提供的吸光层的结构示意图。在一些实施例中,吸光层14可以包括依次层叠设置的第一金属层141、透光介质层143以及第二金属层142,其中,第一金属层141靠近TFT基板11设置,第一金属层141包括铜(Cu)、银(Ag)和铝(AL)中的一种或多种,第二金属层142包括钼(Mo)和钛(Ti)中的一种或多种,透光介质层143包括金属氧化物、氧化硅(SiOx)、氮化硅(SiNx)中的一种或多种。
需要说明的是,通过将吸光层14设置为第一金属层141、透光介质层143以及第二金属层142依次层叠设置的结构,可以利用第一金属层141、透光介质层143以及第二金属层142形成一个谐腔,由于第二金属层142的材料(钼、钛)的吸光性能较好,因此当光线进入第二金属层142时,部分光线被吸收,另一部分光线穿过第二金属层142进入谐腔内,光线进入谐腔后,可以在第二金属层142和第一金属层141之间来回反射,但是无法再从第二金属层142中射出,从而实现吸光的效果。另外,该层叠结构方案与将吸光层14的材料全部设置为钼和/或钛的方案相比,成本相对较低。
在另一些实施例中,吸光层14的材料可以包括有机黑色材料。示例性地,有机黑色材料可以为有机树脂材料和黑色颜料的混合物。
可以理解的是,反射挡墙25的作用在于将相邻的像素隔开,避免一个像素中的发光器件13的发射光和色转换层24的出射光进入相邻的像素中的色转换层24和彩色滤光片22中,从而对相邻的像素造成干扰。示例性地,反射挡墙25的反射率可以为85%以上,例如85%、90%、95%、100%等。
示例性地,反射挡墙25的材料包括有机材料和无机材料,其中,有机材料包括BT树脂、硅胶、甲基丙烯酸甲酯(MMA)、聚酰亚胺(PI)中的一种或多种;BT树脂以双马来酰亚胺(BMI)和三嗪为主树脂成份,并加入环氧树脂、聚苯醚树脂(PPE)或烯丙基化合物等作为改性组分,所形成的热固性树脂;无机材料包括二氧化钛(TiO2)和五氧化二钽(Ta2O5)中的一种或多种。
示例性地,反射挡墙25的颜色为白色。
示例性地,反射挡墙25的高度大于色转换层24的高度,从而可以避免相邻的像素中的色转换层24的出射光相互干扰。
示例性地,反射挡墙25和色转换层24之间的高度差是介于发光器件13的高度的1/10至1/2之间(例如1/10、1/9、1/8、1/7、1/6、1/5、1/4、1/3、1/2等)。
示例性地,反射挡墙25的高度可以为20μm以上(例如20μm、23μm、25μm、28μm、30μm等)。
示例性地,反射挡墙25的材料为亲水性材料,色转换层24的材料为疏水性材料。此时,反射挡墙25的材料与色转换层24的材料之间的极性相排斥,因此可以实现采用喷涂的方法来制备反射挡墙25,在材料极性相排斥的情况下,反射挡墙25的材料不会吸附在色转换层24上对其造成污染,另外,由于喷涂工艺的成本较低,因此本申请实施例中反射挡墙25的制备成本较低。
具体的,色转换层24的材料可以包括量子点材料、荧光粉材料、磷光光致发光材料中的一种或多种。示例性地,量子点材料可以包括CdS/CdSe、InP、钙钛矿量子点中的一种或多种,荧光粉材料可以包括YAG荧光粉、硅酸盐荧光粉、氮化物荧光粉中的一种或多种,磷光光致发光材料可以包括KSF。
示例性地,色转换层24可以将发光器件13发出的光线转换成波长范围为500nm-660nm的光。
示例性地,色转换层24转换出的光线可以为绿光(G)和红光(R)的组合、黄光(Y)、黄光(Y)+红光(R)的组合、绿光(G)+橙光(O)的组合等。
在一些实施例中,多个发光器件13可以均为蓝光发光器件,色转换层24转换出的光线可以为绿光和红光的组合,此时,色转换层24在发光器件13发出的蓝光的激发下产生绿色激发光和红色激发光,绿色激发光、红色激发光和剩余未激发的蓝光混合形成白光。
示例性地,发光器件13可以为LED芯片,可以理解的是,当多个发光器件13均为蓝光发光器件时,由于只需要转移蓝光MicroLED芯片这一种单色芯片,与同时转移红光MicroLED芯片、绿光MicroLED芯片和蓝光MicroLED芯片的技术方案相比,本申请可以将LED芯片的转移效率提升 3 倍,转移成本降低;此外,由于蓝光MicroLED芯片的成本比红光MicroLED芯片和绿光 MicroLED芯片的成本低,因此可以进一步降低LED芯片的使用成本。
示例性地,显示面板100的像素结构可以为RGBW、RGB、RGBC、RGBY、RGBC、RGBYC、RGBYM、RGBCM、RGBYC、WYCM等像素结构设计;其中R为红色,G为绿色,B为蓝色,W为白色,M为品红色(包含B和R两色),Y为品黄色(包含G+R两色),C为青色(包含B+G两色)。
示例性地,多个彩色滤光片22可以包括红色滤光片(用于形成红色像素)、绿色滤光片(用于形成绿色像素)以及蓝色滤光片(用于形成蓝色像素),也可以包括透明滤光片(用于形成白色像素)、品红色滤光片(用于形成品红色像素)、品黄色滤光片(用于形成品黄色像素)、青色滤光片(用于形成青色像素)等。
在一些实施例中,黑色矩阵23的材料可以包括有机黑色材料。示例性地,有机黑色材料可以为有机树脂材料和黑色颜料的混合物。
请参阅图3,图3为本申请实施例提供的显示面板的制备方法的示意图。本申请实施例提供一种显示面板的制备方法,该方法可用于制备上述任一实施例中的显示面板,制备方法包括:
100,提供TFT基板,在TFT基板上转移多个发光器件。
请参阅图4,图4为本申请实施例提供的TFT基板的结构示意图,TFT基板11可以包括层叠设置的第二衬底111和TFT器件层112,多个发光器件13和吸光层14均设于TFT器件层112远离第二衬底111的一侧。
请参阅图5,图5为本申请实施例提供的在TFT基板上转移发光器件的示意图。在TFT基板11上转移多个发光器件13之后,多个发光器件13均与TFT器件层112电性连接。
200,在TFT基板上形成吸光层,吸光层设于多个发光器件之间的间隔区域内及多个发光器件的***,制得显示基板。
请参阅图6,图6为本申请实施例提供的在TFT基板上形成吸光层的示意图。吸光层14设于多个发光器件13之间的间隔区域内及多个发光器件13的***。当吸光层14的材料为有机黑色材料时,可以采用涂布(例如喷涂、刮涂等)的方式来形成吸光层14。当吸光层14的材料为黑色金属氧化物时,可以采用化学气相沉积的方式来形成吸光层14。当吸光层14由依次层叠设置的第一金属层141、透光介质层143以及第二金属层142构成时,第一金属层141和第二金属层142可以采用物理气相沉积的方式形成,透光介质层143可以采用化学气相沉积的方式形成。
300,提供第一基板,第一基板包括第一衬底和设于第一衬底一侧的多个彩色滤光片和黑色矩阵,黑色矩阵上设有多个镂空区域,多个彩色滤光片分别位于多个镂空区域内,多个彩色滤光片分别与多个发光器件对应设置。
请参阅图7,图7为本申请实施例提供的第一基板的结构示意图。第一基板40包括第一衬底21和设于第一衬底21一侧的多个彩色滤光片22和黑色矩阵23,第一基板40中的多个彩色滤光片22可以包括红色滤光片、绿色滤光片以及蓝色滤光片,当白光从上述滤光片中透过时,可以分别形成红光、绿光以及蓝光。黑色矩阵23可以与吸光层14相对应。
400,在多个彩色滤光片上远离第一衬底的一侧分别形成多个色转换层,在黑色矩阵上远离第一衬底的一侧形成反射挡墙,制得彩色滤光基板。
请参阅图8,图8为本申请实施例提供的在第一基板上制备色转换层的示意图,在多个彩色滤光片22上远离第一衬底21的一侧分别形成多个色转换层24,请参阅图9,图9为本申请实施例提供的在第一基板上制备反射挡墙的示意图,在黑色矩阵23上远离第一衬底21的一侧形成反射挡墙,制得彩色滤光基板20。示例性地,反射挡墙25的材料可以为亲水性材料,色转换层24的材料可以为疏水性材料;“在多个彩色滤光片22上远离第一衬底21的一侧分别形成多个色转换层24”具体可以包括:采用刮涂工艺形成多个色转换层24;“在黑色矩阵23上远离第一衬底21的一侧形成反射挡墙25”具体可以包括:采用喷涂工艺形成反射挡墙25。
可以理解的是,由于刮涂工艺的成本较低,以及刮涂工艺可以选择的材料的范围较大,可以使色转换层24的材料成本进一步降低,因此与现有的色转换层24的制作工艺(包括黄光工艺制程和/或喷墨打印制程)相比,本申请采用刮涂工艺制备色转换层24的方案可以大幅降低色转换层24的制作成本。
需要说明的是,本申请实施例中,显示基板和彩色滤光基板的制备顺序没有先后之分,即,可以同时制备显示基板和彩色滤光基板,也可以先制备显示基板后制备彩色滤光基板,或者也可以先制备彩色滤光基板后制备显示基板。
500,在显示基板上设有多个发光器件和吸光层的一侧与彩色滤光基板上设有多个色转换层和反射挡墙的一侧之间设置粘合胶层,以将显示基板和彩色滤光基板连接在一起,制得显示面板。
请结合图1,可以理解的是,粘合胶层30必须为透光胶层,以使发光器件13发出的光线可以经由粘合胶层30进入色转换层24。
以上对本申请实施例提供的显示面板及其制备方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,其中,包括:
    显示基板,所述显示基板包括TFT基板以及设于所述TFT基板一侧的多个发光器件和吸光层,所述吸光层设于多个所述发光器件之间的间隔区域内及多个所述发光器件的***;
    彩色滤光基板,与所述显示基板相对设置,所述彩色滤光基板包括第一衬底和设于所述第一衬底一侧的多个彩色滤光片和黑色矩阵,所述黑色矩阵上设有多个镂空区域,多个所述彩色滤光片分别位于多个所述镂空区域内,多个所述彩色滤光片分别与多个所述发光器件对应设置;所述彩色滤光基板还包括多个色转换层和反射挡墙,多个所述色转换层分别设于多个所述彩色滤光片上远离所述第一衬底的一侧,所述反射挡墙设于所述黑色矩阵上远离所述第一衬底的一侧;
    其中,所述显示基板上设有多个所述发光器件和所述吸光层的一侧朝向所述彩色滤光基板上设有多个所述色转换层和所述反射挡墙的一侧设置。
  2. 根据权利要求1所述的显示面板,其中,所述吸光层的材料包括黑色金属氧化物。
  3. 根据权利要求2所述的显示面板,其中,所述黑色金属氧化物包括氧化钼。
  4. 根据权利要求1所述的显示面板,其中,所述吸光层包括依次层叠设置的第一金属层、透光介质层以及第二金属层,其中,所述第一金属层靠近所述TFT基板设置,所述第一金属层包括铜、银和铝中的一种或多种,所述第二金属层包括钼和钛中的一种或多种,所述透光介质层包括金属氧化物、氧化硅、氮化硅中的一种或多种。
  5. 根据权利要求1所述的显示面板,其中,所述吸光层的材料包括有机黑色材料。
  6. 根据权利要求1所述的显示面板,其中,所述反射挡墙的材料包括有机材料和无机材料,所述有机材料包括BT树脂、硅胶、甲基丙烯酸甲酯、聚酰亚胺中的一种或多种,所述无机材料包括二氧化钛和五氧化二钽中的一种或多种。
  7. 根据权利要求1所述的显示面板,其中,所述反射挡墙的高度大于所述色转换层的高度。
  8. 根据权利要求7所述的显示面板,其中,所述反射挡墙和所述色转换层之间的高度差是所述发光器件的高度的1/10以上。
  9. 根据权利要求1所述的显示面板,其中,所述反射挡墙的材料为亲水性材料,所述色转换层的材料为疏水性材料。
  10. 根据权利要求1-9中任一项所述的显示面板,其中,所述显示基板上设有多个所述发光器件和所述吸光层的一侧与所述彩色滤光基板上设有多个所述色转换层和所述反射挡墙的一侧通过粘合胶层连接在一起。
  11. 一种显示面板的制备方法,其中,包括:
    提供TFT基板,在TFT基板上转移多个发光器件;
    在TFT基板上形成吸光层,所述吸光层设于多个所述发光器件之间的间隔区域内及多个所述发光器件的***,制得显示基板;
    提供第一基板,所述第一基板包括第一衬底和设于所述第一衬底一侧的多个彩色滤光片和黑色矩阵,所述黑色矩阵上设有多个镂空区域,多个所述彩色滤光片分别位于多个所述镂空区域内,多个所述彩色滤光片分别与多个所述发光器件对应设置;
    在多个所述彩色滤光片上远离所述第一衬底的一侧分别形成多个色转换层,在所述黑色矩阵上远离所述第一衬底的一侧形成反射挡墙,制得彩色滤光基板;
    在所述显示基板上设有多个所述发光器件和所述吸光层的一侧与所述彩色滤光基板上设有多个所述色转换层和所述反射挡墙的一侧之间设置粘合胶层,以将所述显示基板和所述彩色滤光片基板连接在一起,制得显示面板。
  12. 根据权利要求11所述的制备方法,其中,所述反射挡墙的材料为亲水性材料,所述色转换层的材料为疏水性材料。
  13. 根据权利要求12所述的制备方法,其中,所述在多个所述彩色滤光片上远离所述第一衬底的一侧分别形成多个色转换层包括:采用刮涂工艺形成多个所述色转换层;
    所述在所述黑色矩阵上远离所述第一衬底的一侧形成反射挡墙包括:采用喷涂工艺形成所述反射挡墙。
  14. 根据权利要求11所述的制备方法,其中,所述吸光层的材料包括黑色金属氧化物。
  15. 根据权利要求14所述的制备方法,其中,所述黑色金属氧化物包括氧化钼。
  16. 根据权利要求11所述的制备方法,其中,所述吸光层包括依次层叠设置的第一金属层、透光介质层以及第二金属层,其中,所述第一金属层靠近所述TFT基板设置,所述第一金属层包括铜、银和铝中的一种或多种,所述第二金属层包括钼和钛中的一种或多种,所述透光介质层包括金属氧化物、氧化硅、氮化硅中的一种或多种。
  17. 根据权利要求11所述的制备方法,其中,所述吸光层的材料包括有机黑色材料。
  18. 根据权利要求11所述的制备方法,其中,所述反射挡墙的材料包括有机材料和无机材料,所述有机材料包括BT树脂、硅胶、甲基丙烯酸甲酯、聚酰亚胺中的一种或多种,所述无机材料包括二氧化钛和五氧化二钽中的一种或多种。
  19. 根据权利要求11所述的制备方法,其中,所述反射挡墙的高度大于所述色转换层的高度。
  20. 根据权利要求19所述的制备方法,其中,所述反射挡墙和所述色转换层之间的高度差是所述发光器件的高度的1/10以上。
PCT/CN2021/143347 2021-12-30 2021-12-30 显示面板及其制备方法 WO2023123277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143347 WO2023123277A1 (zh) 2021-12-30 2021-12-30 显示面板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143347 WO2023123277A1 (zh) 2021-12-30 2021-12-30 显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2023123277A1 true WO2023123277A1 (zh) 2023-07-06

Family

ID=86997064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143347 WO2023123277A1 (zh) 2021-12-30 2021-12-30 显示面板及其制备方法

Country Status (1)

Country Link
WO (1) WO2023123277A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066830A (zh) * 2021-03-16 2021-07-02 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN113437241A (zh) * 2021-06-28 2021-09-24 京东方科技集团股份有限公司 显示基板、显示装置及显示基板的制备方法
CN113764601A (zh) * 2021-09-08 2021-12-07 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066830A (zh) * 2021-03-16 2021-07-02 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN113437241A (zh) * 2021-06-28 2021-09-24 京东方科技集团股份有限公司 显示基板、显示装置及显示基板的制备方法
CN113764601A (zh) * 2021-09-08 2021-12-07 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、显示装置

Similar Documents

Publication Publication Date Title
CN109256456B (zh) 一种实现Micro-LED显示出光效率提升和窜扰降低的微结构及其制造方法
WO2010013637A1 (ja) 色変換方式有機elディスプレイ
US20210336096A1 (en) Display panel and manufacturing method thereof
KR20180101302A (ko) 유기발광 디스플레이 소자 및 그 제조방법
CN112582441B (zh) 一种显示面板、显示装置及显示面板的制备方法
CN112885823B (zh) 显示面板及其制备方法、显示装置
CN217280834U (zh) 一种显示装置
JP2007324113A (ja) バックライトユニット及びこれを備えた液晶表示装置
KR20180014334A (ko) 유기발광 디스플레이 소자 및 그 제조방법
WO2021042502A1 (zh) 量子点发光器件图案化方法及量子点发光器件
KR20180099997A (ko) 양자점 하이브리드 유기 발광 디스플레이 소자 및 그 제조 방법
WO2020211155A1 (zh) 双面白光有机发光二极管显示装置及其制造方法
CN113013310A (zh) 显示面板和显示装置
US20240047626A1 (en) Color film substrate, method for preparing color film substrate, and display panel
CN114566581A (zh) 显示面板及显示面板制造方法
WO2022262087A1 (zh) 量子点彩膜基板及其制备方法、显示装置
WO2023123277A1 (zh) 显示面板及其制备方法
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
JP4729754B2 (ja) 複数の有機el発光素子を利用した表示装置
US20200203563A1 (en) Led display device, method for manufacturing the same, and led display panel
CN216528893U (zh) 显示面板
WO2020133816A1 (zh) 显示面板及其制备方法
Cheng et al. Quantum Dot Film Patterning on a Trenched Glass Substrate for Defining Pixel Arrays of a Full-color Mini/Micro-LED Display
JP2009230889A (ja) 色変換フィルタの製造方法
CN116417490A (zh) 显示面板及其制备方法